
I

REVERSE ENGINEERING

OF

·C++ CODE

Dissertation submitted in partial fulfillment

of the requirements for the

award of the degree of

Master of Technology

in

Computer Science

by

S. Ramanarayana Reddy

SCHOOL OF COMPUTER & SYSTEMS SCIENCES

JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI -110067

December 2001

006.711 TH

R2467 Re

l,____,_III~U~-~~~--~~~1_11111~-/

REVERSE ENGINEERING

OF

C++ CODE

Dissertation submitted in partial fulfillment

of the requirements for the

award of the degree of

Master of Technology

in

Computer Science

by

S. Ramanarayana Reddy

• c

-SCHOOL OF COMPUTER & SYSTEMS SCIENCES

JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI -110067

December 2001

CERTIFICATE

ACKNOWLEDGEMENTS

ABSTRACT

1. INTRODUCTION

2. UNIFIED MODULING

LANGUAGE

3. DESIGN

4. IMPLEMENTATION

5. SAMPLE RESULTS

6. CONCLUSION

REFERENCES

CONTENTS

II

iii

l

15

20

28

38

47

48

IV

CERTIFICATE

This is to certify that the project entitled "Reverse Engineering of C++ code" being

submitted by S. Ramanarayana Reddy to the School of Computer and Systems Sciences,

.lawaharlal Nehru University, New Delhi, in partial fulfillment of the requirements for the

award of the degree of Master of Technology in Computer Science is a bonafide vlork

carried by me under the guidance and supervision of Prof Pari mala N.

The matter embodied in the dissertation has not been submitted for the award of any

other degree or diploma.

f' ··~~'-'": So\Ooe0t

{:

'. .. ,"\.. :;,.~~~{11~
• ~ 1 . !!~· wt

Sche>'': '' ' .,. · . \. "t·.;•"'\¥;.1 .
·ah~t·-~

Jew . u••" \ , A I QIDf 1P'h,,lltia1a N. '2A1 1 v ll)

School of Computers and Systems Sciences,

.lawaharlal Nehru University,

New Delhi-11 0067.

Prof K.K. Bharadwaj

Dean,

School of Computers and Systems Sciences,

.Jm.vaharlal Nehru University,

Nevv· Delhi- II 0067.

(S.Rama~y)

ACKNO,VLEDGEMENTS
.: _;

I am thankful to my guide, Prof Pari mala N. for suggesting me to do the work in Reverse

Engineering and being there to direct me all the time.

I would like to thank Prof K.K. Bharadwaj, Dean, School of Computers and Systems

Sciences (SC&SS), JNU for providing excellent lab facilities.

I would also like to thank Mr. T.V. Vijay Kumar, research scholar, SC&SS,

Mr. G. Srikanth, my classmate and all my batch mates for their cooperation and advice.

ABSTRACT

Reverse engmeermg (RE) is a process of analyzing a system to identify the system

components and their interrelationships and recreate the design of the system. RE

generally involves extracting design artifacts. We can perform reverse engineering at any

stage of project life cycle.

The primary purpose of reverse engineering a software system is to help in understanding

of the system for both maintenance and further development. The other objectives are to

generate an alternative views, design recovery, facilitate reuse andre-documentation etc.

The aim of this project is to arrive at the design of C++ program in UML notation. UML

is used to represent the object-oriented design of the system: There are two views in any

system, the static and the dynamic. Static view shows the different mtifacts of the system

like classes, variables and function signatures etc. Dynamic view shows the run time

behavior ofthe system.

To achieve the static view of the system, class names, and variables of all types and

function signatures in each class are identified. With this information, it generates the

class diagram which shows the relationships between the different classes in the source

program.

In this project, to achieve the dynamic view of the system the interaction between the

objects of different classes at run time is identified. Objects interact by passing messages.

This system generates the sequence diagram. lt shows the sequence of messages

representing the interaction between objects. In order to generate the dynamic view the

source code is modified and the modified source code is executed to get an output tile.

This is then parsed to get sequence diagram. This project is implemented in C++.

Ill

CHAPTER-I

INTRODUCTION

1.1 Role of Reverse Engineering

The need for maintaining and improving software systems has increased dramatically

over the last 15 years. Dealing with old software systems consumes billion-dollar assets

to organizations, governments and educational institutions etc. It is a critical problem for

those institutions and organizations. Studies indicated that 50-80% software development

efforts are spent on maintaining existing systems rather than developing new systems.

The greater part of software maintenance process is devoted to understanding the system

being maintained. It involves reading documentation, scanning source code and

understanding the changes to be made. If we want to improve the software development,

we should look at maintenance and if we want to improve the maintenance we should

facilitate the process of easy understanding of the existing programs. This can be

achieved through Reverse Engineering.

1.2 Definition of reverse engineering

Reverse Engineering (RE) is a process of analyzing a system to identify the system

components and their interrelationships and recreate the representation of the system in

another form.

RE is a part of the maintenance process that helps you understand the system so that you

can make appropriate changes.

RE is an inverse process of forward engineering.

CODE OF A >
REVERSE

=>
DESIGN OF A

SYSTEM ENGINEERING SYSTEM

Figure 1.1 Reverse Engineering process.

1.3 Overview of RE

RE generally involves extracting design artifacts. We can perform reverse engineering at

any stage of project life cycle. There are many sub systems in reverse engineering like

redocumentation and design recovery. RE is a process of EXAMINATION, not a change

or replication. RE is regularly applied to improve your own products, as well as to

analyze a competitor product.

Many REtools have been built over the last 15 years to help understand the S/W systems.

These tools aid the extraction of S/W artifacts and their dependencies and the synthesis of

high level concepts.

Many ofthe currently available REtools emphasize STATIC RE i.e. analyzing the static

structure of a subject S/W system. Such environments have been successfully used to

support the understanding of applications written in procedural programming languages.

However the change of programming languages and styles also affects the evaluation of

REtools and methods.

2

The adoption of object oriented paradigm has changed programming styles significantly.

Dynamic nature of object oriented programs emphasizes the importance of dynamic RE

that is analyzing the runtime behavior of a system. To understand the architecture of

object oriented system both static and dynamic analysis is needed.

1.4 Sub-Systems in RE

RE can be performed at any stage of project life cycle. In the spanning Iifecycle stages

RE covers a broad range starting from the existing implementation, recreating the design

etc. The main sub-systems in RE are

+ Redocumentation.

+ Design recovery.

Redocumentation:

It is the simplest and oldest form of RE. It is the creation or revision of a semantically

equivalent representation with in the same relative abstraction level. Some of the tools

used to perform the redocumentation are

+ Pretty printers -which display code listing in an improved form.

+ Diagram generators - which creates diagrams directly from the code.

+ Cross-reference listing generators.

The key goal of this tool is to provide easier ways to visualize relationships among

program components so you can recognize and follow paths clearly.

Design recovery:

It is a subset of RE in which domain knowledge, external information and reduction or

fuzzy reasoning are added to the observations of the subject system to identify the

meaningful higher level of abstractions beyond those obtained directly by examining the

system itself Design recovery recreates design abstractions from a combination .of code,

existing design documentation, personal experience, and general knowledge about

problem and application domain. Design recovery must reproduce all of the information

required for a person to fully understand

+ What a program does?

+ How it does?

+ Why it does it?, and so forth.

1.5 Objectives of RE

We do RE of a S/W system to achieve

• Design recovery .

• Generate alternative views .

• Recover lost information .

• Cope with complexity .

• Detect side effects .

+ Personal education.

+ To make it compatible with other products.

+ To learn the principles that guides a competitor design.

+ Determine whether a product is capable of living up to its advertised

climes.

+ Reprogramming in different languages.

4

+ Determine whether another company had stolen and reused some of his

companies source code.

Gene.-ate alternative views:

RE tools facilitate the generation or regeneration of graphical representations from other

forms. While many designers work from a single, primary perspective (like data flow

diagrams), RE tools can generate additional views from other perspectives (like control

flow diagrams, structure charts [6], and entity relationship diagrams) to aid the review

and verification process.

Detect side effects:

Initial design and successive modifications can lead to unintended ramifications and side

etTects that impede a system's performance in subtle ways. RE can provide observations

beyond those that can be obtained with a forward-engineering perspective and it can help

detect anomalies and problems before users report them as bugs.

Recover lost information:

The continuing evaluation of large, long-lived systems leads to the recovery of the

information lost about the system design. Modifications are frequently not reflected in

documentation. By RE a software system, we can achieve the complete documentation.

Cope with complexity:

We must develop methods to better deal with the share volume and complexity of

system. A key to controlling these attributes is automated support. RE methods and tools

will provide a way to extract relevant information so that decision-makers can control the

process and the product in the systems evolution.

Facilitate reuse:

RE can help to identify reusable software components from present systems for creation

of new systems. This facilitates the development of the new systems easily and saves lot

of resources.

1.5 Model of reverse engineering tool

Most tools of RE, restructuring and reengineering use the same basic architecture. This as

shown in Figure 1.2, consists of Parser, Semantic analyzer, Information base and View

composer(s).

Software Parser, Semantic View __. New view(s)

work ...-~ analyzer
1--- of Composer(s)

product

~ /
product

Information
base

Figure 1.2 Model ofRE tool.

1.6 Related terms in RE and their relationships

Reengineering:

Reengineering is the examination and alteration of a subject system to reconstitute it in a

new form and the subsequent implementation ofthe new form. It generally includes some

form of RE followed by some form of fonvard engineering or restructuring.

Reengineering is a process of transforming a system to the same level of abstraction. That

is transforming assembly language program of one machine to another machine is also

reengmeenng process.

Restructuring:

It is the transformation from one representation form to another at the same relative

abstraction level, while preserving the subject system's external behavior such as

functional and semantic behavior. An essential aspect of restructuring is that the semantic

behavior of the original system and the new system remains the same. For example,

altering code to improve its structure is restructuring.

Forward engineet·ing:

forward engmeenng ts a process of transforming the system ft-om higher level

abstractions and logical, implementation independent designs to the physical

implementation of the system. Forward engineering follows a sequence of going tl·om

requirements through designing its implementations. Figure 1 .3 shown bellow depicts the

relation between forward engineering and reverse engineering.

7

Forward . .
engineering

._ __________ '}1.:

-~~:
~· \. ,
: l

····-·· J
:·················1 1

~-·················t.;···················.J
$

::1

Reverse . .
engmeer1ng
r···:
i ~
(... :

~~;
i····················'--··················:
i

~~:-..... -..... -..... """'J-..... -..... · ,
l : .. ·

J r r··················-'··-·················:

!.. .. :

Figurel.3 Forward and Reverse engineering process

X

Relationships

The relation between forward engmeenng, reverse engmeenng, design recovery,

reengineering and restructuring is depicted in Figure 1.6.

Requirements Design Implementation

Forward Forward

_ ... 1-_e_n..::g;_m_e_e_r_m....;g=----l~~··········-····························-······l--e_n..::g;_m_e_e_r_m_b=.u_-'l~~--·····-········· .. ···························· .. ~

Reverse Reverse
engmeenng engineering

~ ... 1<1111 1--------+······;·····················-················1<11~1----~--~·················· .. ···-... ············-·-····

I

Restmcturing

Design
recovery

.... Desiun
recovery

r---+-·····-···-·····-··········-····-······1--------.------1··························-············-......

-... Reeng1neenng5 ··· ___. Reeng1neer1ng

Restructuring

Figure 1.6 Relation between different terms.

I t
Redocumentation,
Restmcturing

')

I. 7 Sm-vey of RE Tools

Static RE (using RIGI)

RlGI (4] is an interactive and visual RE system. A semi-automatic RE approach ofRIGI

Consists oftwo phases.

1 . Identification of S/W artifacts and their relations.

2. The extraction of design information and system abstractions.

RlGI includes several parsers to extract artifacts from a source code of a target S/W. The

extracted static information can be visualized and analyzed using RIGI visualization

engine-RlGIEDIT. The different artifacts are

+ Classes

+ Methods

+ Interfaces

+ Constructors

+ Variables

+ Initialization blocks

In addition some attribute values are attached to those above S/W artifacts. They contain

information about

+ Return types

+ Visibility

+ Access modifiers.

10

.I Extractor tool in SHIMBA [I] extracts the following relationships among those artifacts.

+ Extension - Class extends another class.

+ Call - Method calls another method.

+ Implementation -A class implements an interface.

+ Containment - A class contains a method.

+ Assignment - Method assigns a value to variable.

+ Access- Method access a variable.

The extracted information is visualized usmg RIGI dependency graphs. RJGI uses

directed graphs to view such static information.

+ The S/W artifacts nodes.

~ Relationship between artifacts as edges.

+ Colors signify node and edge types.

+ Attribute values are attached to nodes and edges.

SHJMBA provides some metrics. The metrics measures the properties of the classes,

inheritance hierarchy and the interaction among classes of a subject system.

Dynamic RE (Shimba & SCED)

To collect the dynamic information using Shimba, we should select the classes and/or

methods for which the event trace information is to be collected. We can also choose

exceptions to be traced. Event trace information is generated that is 11ew elements are

added to SCED [1] sequence diagrams when methods are called or exceptions are

thrown. To capture the event trace information, breakpoints are set with the .I Debugger

tool. The dynamic control flow information is also generated using breakpoints at control

statements. Event trace information is generated when breakpoint is h\1 To capture the

II

dynamic information, state boxes, and assertion boxes are added to the SCED sequence

diagrams [7] corresponding to the conditions to be evaluated and the resulting values,

respectively.

C++ Reverse Engineering Overview

In this section the issues of GDPro 5.0 [8] for reverse engineering of C++ code are

discussed. GDPro provides detailed and comprehensive support for reverse engineering

source code \'lritten in any language. Both header files and body files can be reverse

engineered by running in GDPro. What is produced from Reverse Engineering of C++

code with the help of GDPro tool is shown bellow

1. UML [7] Class Diagram [7] which contains:

Classes

Class data members and methods

Inheritance

Class associations

2. Implementation Diagram whi~ch contains:

Files processed

File "Include Tree"

3. Repository completely populated with model data extracted from source code

When you perform reverse engineering of C++ code using GDPro a new system JS

created with two views, the view describing the classes is an Class model view and the

other is the Implementation model view. When GDPro reverses C++ classes, the

information about each class attribute is complete and there is no loss of any class

info:·mation. Embedded information within the C++ class is maintained in the class object

12

on the diagram. ln this manner, all implementation details, those details that are not

supported by a methodology, are stored for later use by code generation.

The Implementation Model is used to provide the second view that is generated when

some C++ code is reverse engineered. It is a model used to represent all the files used in a

source code, which is reverse engineered. This includes both user and systems include

tiles. This model is used to provide support for seamless generation of C++ code from the

system, minimizing adverse changes to the reversed code. The implementation model

represents all the files for a system in a hierarchical, left to right layout.

1.8 Approach in this thesis

In this implementation, reverse engmeenng is performed by depicting the static and

dynamic views. Static view is represented by the class diagram and dynamic view by the

sequence diagram. With the help of these diagrams one can understand the static and

dynamic behavior of the system easily and quickly and can perform any modifications to

adopt the legacy systems for his current use.

For drawing the class diagram, the following design artifacts are extracted tl·om the

source code.

All the class names.

All types of variables in each class.

All function signatures with different return types in each class.

Inheritance relationships between the classes.

The above information is achieved by parsing the source program.

,.,
1.)

To depict the ruritime behavior of the source code this implementation follows the

different approach in which it creates a new source program by inserting additional

statements at appropriate places in the existing source program. The execution of the

modified source program will create a new file, which contains the sequence of messages

that are passed between the objects of different classes along with the class name of

message passing object. By using these· messages and class names the sequence diagram

will be drawn. The advantage with this approach is that this application doesn't need a

debugger to depict the run time environment. Using the modified version of the source

program generated by this application, the user, while using the :1pplication, can

simultaneously have a pieture of the run time environment.

14

CHAPTER-2

UNIFIED MODELING LANGUAGE

2.l UML

The Unified Modeling Language (UML) is the industry-standard language for specifying,

visualizing, constructing, and documenting the artifacts of software systems. Lt simplifies

the con1plex process of software design, making a "blueprint" for construction.

The UML was developed jointly by Grady Booch, lvar Jacobson, and Jim Rumbaugh at

Rational Software Corporation, with contributions from other leading methodologists,

software vendors, and many users. The UML provides the application modeling: langmtge

for:

+ Business processes modeling with use cases.

+ Class and object modeling.

+ Component modeling.

+ Distribution and deployment modeling.

First and foremost, the Unified Modeling Language fuses the concepts of Booch, OMT,

and OOSE. The result is a single, common, and wjdely usable modeling language for

users of these and other methods.

Second, the Unified Modeling Language pushes the envelope of what can be done with

existing methods. As an example, the UML authors targeted the modeling of concurrent,

distributed systems to assure that UML adequately addresses these domains.

Third~ the UML focuses on a standard modeling language, not a standard process.

Although the UML must be applied in the context of a process, it is our experience that

ditfercnt organizations and problem domains require different processes.

1.5

The UML specifies a modeling language that incorporates the object-oriented

community's consensus on core modeling concepts. It allows deviations to be expressed

in terms of its extension mechanisms.

I. 7.2 Class diagram

A class diagram shows static structure of the system. A class diagram is a diagram that

shows a set of classes, interfaces, collaborations and their relationships. A class diagram

commonly contains

+ Classes.

+ Interfaces and

+ Different relationships.

A class diagram is used to model the static design of the system. This supports the

following requirements of a system that is the services the system should provide to its

end users. A well-structured class diagram is focused on:

+ Communicating one aspect of a system's static view.

+ Contains only elements that are essential to understanding that aspect.

+ lt should not misinform the reader about important semantics.

A class diagram is drawn as follows:

+ Draw a class symbol-rectangle for each class.

+ Name the classes.

+ Enter the class attributes.

+ Enter the class operations.

+ Add links and associations.

+ Add notations.

-

CLASS DIAGRAI\1 : ELECTRONIC SHOEPING CART

Figure 2.1 Class Diagram

17

I. 7.2 Sequence diagram

Sequence diagram is an interaction diagram used in the UML for modeling the dynamic

nature of the systems. It emphasizes the time ordering of messages. A collaboration

diagram is an interaction diagram that emphasizes the structural organization of the

objects that send and receive messages. Interaction diagrams are important for

+ Modeling the dynamic aspects of the system.

+ Constructing executable systems through forward and reverse engineering.

A sequence diagram displays an interaction as a two dimensional chart.

Ve•·tical dimension:

+ It is the time axis.

+ lt starts from the top and proceeds down the page.

Horizontal dimension:

+ lt shows the classifier roles that represent individual objects m the

collaboration.

+ A vertical column-the life line represents each classifier role.

A message is shown as an arrow from the lifeline of one object to that of another object.

The arrows are arranged in time sequence down the diagram. The lifeline is double when

the objective is active and is doted if the objective is inactive. Sequence diagram is shown

in Figure 2.2.

IX

Custo1ner Baker Cashier Bagger

Order Bread =···· ::

Booch Interaction Model: Grocery Store ~)1hopping

Figure 2.2 Sequence Diagram

I'J

CHAPTER-3

DESIGN

3.1 The Design

The design of this system is represented with the help of' Structured charts'. Along with

the overview of the system these structure charts depict the processes of

I . Drawing the Class diagram.

2. Modifying the Source code

3. Drawing the Sequence diagram.

3.2 Str·ucture Chart for the complete system

This structured chart show m Figure 3. I depicts the main design components of the

system. They are:

Drawing the Class Diagram.

Creation ofthe modified source code.

Drawing Sequence Diagram.

These design components are described in the following sections.

The data items and process names ofFigure 3.1 are explained below.

fname: Name of the source file for which Class diagram/ Sequence diagram is drawn.

cdig: Class diagram.

mfname: Name of the temporary file which is created by the module 'CreateTemp'.

sdig: Sequence diagram.

20

N..
f'i...
~
~

J

~

CDGenerator: This module will generate the class diagram.

CreateTemp: This will create a temporary file, which contains the modified source

program for which sequence diagram is drawn by executing it.

SDGenerator: This module will generate the sequence diagram.

Main

fname
mfname

~
~

fname ~
c! ~ ~

sdig

cdig

~ mfname

CDGenerator CreatTemp SDGenerator

Figure 3.1 Structure chart for the complete system

I 11111111 Ill\ Ill \IIIII IIIII IIIII IIIII Ill\ Ill\
TH-9477 21

3.3 Stmcture chart for drawing class diagram

The structured chart for drawing the class diagram is shown in Figure 3.2. Each module

in the Figure 3.2 is described below.

Empty/;
file

Create

I face

Source
FileName

CDGenerator

Name 6
~ Design

Artifacts

Parser

Draw Line

Class
Diagram

DrawCDig

Artifacts

Class
Diagram

Display Aa·tifacts

Figure 3.2 Structure chart for drawing class diagram

22

Create:

This module will create an empty file to draw the class diagram and return to

CDGenerator module with specified dimensions.

I face:

This module is an interface between user and the CDGenerator. It requests the user to

enter the name of the file containing the source code for parsing and returns that file

name to CDGenerator.

Pa•·se•·:

This module receives the ·source file name from CDGenerator and extracts all design

artifacts fi·om the source file and returns those artifacts to CDGenerator.

OrawCDig:

This module recetves the design artifacts and calls Drawline and DisplayArtifacts

modules to draw the class diagram. It returns the class diagram to CDGenerator.

l)rawline:

This module receives the line parameters fi·om DrawCDig module and draws the line.

Display Artifacts:

This module receives the artifacts as input and displays the same in class diagram.

CDGenerator:

This is the coordinating module. lt invokes the Create, lface, Parser, and DrawCDig

modules to generate the class diagram. This gives the static view of the source program.

3.3 Modifying the source code

The structure chart for creation of modified source code is shown in Figure 3.3. The

functionality of each module is described below.

CreateFtemp

SFile

MSFil

MSFile
SDFile

SScanner Run Temp

Figure3.3 Structure Chart for the module that create an intermediate file

24

The data items and process names ofFigure 3.3 are explained below.

Stile: Name of the file containing the source code for which runtime environment has to

be depicted.

MSFile: Modified source file.

SDFile: This tile contains sequence of messages.

CreateFtemp:

This module calls SScanner and RunTemp modules to generate the runtime environment

of the source program and is saved in a file for later processing.

SScanner:

This module receives the source file and creates the temporary file, which contains the

modified source program to capture its runtime environment. The way the source code is

modified is explained in chapter no 4.

RunTemp:

This module receives the modified source file and requests the user to RUN it.

Executions of this file will results in creation of another file that contains the sequence of

messages that represent the interaction between different objects.

3.3 D•·awing the sequence diagram

Figure 3.4 shows the Structure chart for drawing the sequence diagram. About each

module in the Figure 3.4 are described as follows.

GetCnames:

This module receives the file name from SDGenerator and extracts the names of the

classes contained in the file and returns them to the SDGenerator.

PrintCnames:

This module receives the class names from SDGenerator and prints them in the sequence

diagram. It returns the partially drawn sequence diagram to SDGenerator.

DrawSD:

This module receives filename and S1diagram from SDGenerator and it calls

GenerateMess and PrintMessages modules to label the interactions between objects with

appropriate messages. This module returns the sequence diagram to SDGenerator.

GenerateMess:

This module extracts the messages passed between the objects and returns them to the

module DrawSD.

PrintMessages:

This module receives the messages from DrawSD module and prints these messages in a

sequence diagram.

S OGenerat01·:

This is the coordinating module to draw the sequence diagram by invoking the

GetCnames, PrintCnames, and DrawSD modules. The dynamic behavior of the source

program is depicted with the help of sequence diagram.

GetCnames

Fname

Cnames

SDGenerator

Cnames

Fname, and
SlDiagram

SlDiagram

PrintCnames

Fname

GenarateMess

SDig

DrawSD

Messages
SDig

Messages
0~

PrintMessages

Figure3 .4 Stmctured chart for drawing the Sequence diagram

27

IMPLEMENTATION

4.1 lntt·oduction

Class diagram and the Sequence diagram have been implemented in this project in C++.

The Class diagram shows the static behavior and Sequence diagram shows dynamic

behavior ofthe system.

4.2 Implementation of the class diagram

The parser will scan the source program written m C++ and it does the following

functions:

Step I : lface wi II request the user to enter the filename containing the source whose static

view is to be depicted by drawing the class diagram.

Step2: The Parser will search for a class declarations in the source program, extract their

names and all types of variables and function signatures within each class. It also extracts

the relationships between the classes if they exist. At the end of this step all the design

artifacts of the system such as class names, all types of variables and function signatures

in each class etc are extracted.

Step3: DrawCDig module receives all the design artifacts to draw the class diagram and it

repetededly calls the 'DrawLine' and 'DisplayArtifacts' modules in the process of the

drawing of class diagram.

2X

The structure of the class in class diagram is shown in Figure below.

Class name

All variables oftype integer

Similarly for other variables

All function signatures that return void

Similarly for other functions

Structure of a class

Book

Char: aname, pname, title;

lnt: pages, cost, date;

Double: words;

lnt: getcost(),get pages();

Void: getdata ();

Actual structure ofthe class "DOOK".

2'J

4.3 Implementation of Sequence diagram

Sequence diagram shows the interaction between objects of the classes. To implement the

sequence diagram the following sequence of steps are performed.

Step I : SScanner module will requests the user to enter the filename containing the source

code whose run time behavior is to be depicted by drawing the Sequence diagram. This

module will create a temporary file that contains the source code with the following

modifications.

A. The statement given below is inserted in order to create a global file pointer. This tile

is used latter to depict the runtime environment.

FILE *Se;

B. When SScanner module encounters the beginning of the main program, the following

statement is inserted.

Se=fopen("fsec.cpp", "w") ;

The contents of the file fsec.cpp give information about the interaction between different

objects such as the classes to which those objects belong, the messages passed by those

objects etc. This file is created when the user runs the modified source code.

C. In every class definition, SScanner module will insert the following function

definition. This function will be executed whenever any method of the object IS

called. This results in printing the corresponding class name of the object.

vi•·tual void pnt()

fprintf (se, "'%s\n", Cname);

ln the above function declaration:

Se: tile pointer.

Cname: lt is a variable, which assumes the name of the class in which the definition is

inserted.

D. Whenever the SScanner module encounters the function definition in a class, it inserts

the following statement within the body ofthat function.

this->pntO;

The above statement will invoke the function 'pnt{)', and the execution of this function

results in printing the class name corresponding to the object by which a method is called.

E. Whenever the SScanner module encounters a statement invoking a function of

another object, it inserts 'fprintf' statement that contains the above invocation

statement.

This module will return the modified source file to 'CreateFtemp' module.

.11

Step2: CreateFtemp module will call the RunTemp module. RunTemp module will

request the User to run the modified source file. The execution of this tile will result in

the creation of another tile containing the sequences of messages (function calls). For

each message, the class of the object that passes the message is also stored in the file. The

sequence of messages reflects the interaction between the objects.

Step3: GetCname module wi 11 extract the class names and return to the SDGenerator

module. The interactions occur between objects of these classes. SDGenerator invokes

the PrintCname module to print the class names in the Sequence diagram.

Step4: SDGenerator will ihvoke the DrawSD module, which receives the messages

extracted by the GetMess module. These messages are passed to PrintMessagess module.

This module prints the messages between the interacting objects in the sequence diagram.·

This module is responsible to identify the object that passes the message and the one that

receives. This module completes the printing of messages in sequence diagram.

StepS: Finally DrawSD module will return the completed Sequence diagram to the

SDGenerator module.

Role of this pointer

C++ uses a unique keyword called this to represent an object that invokes a member

function. this is a pointer that points to the object for which this function was called. This

logic has been used in this implementation to depict the runtime environment by

extracting interactions that takes place between the objects of the different classes during

the execution of modified source program. This is explained in the following section with

the help of example.

l2

l~xample:

Consider the source program shown in Figure 5.1. This program is modified by the

SScanner module and creates a new file, which contains the modified source code. This

modified source code is used to depict the mntime environment of the original source

code by drawing the Sequence diagram. The modified source code is shown in Figure 5.2

Source program:

#include<iostream.h>

#i nclude<conio. h>

class X

{

int x;

public : int getx()

1·
j,

x=5;

return x;

class Y : public X

{

int y;

public : int gety()

{

y=lO;

return y;

1·
f,

void main()

int a,b,c;

clrscr();

X xO; Y yO;

a= xO.getx();

b= yO.getx();

c= yO.gety();

cout<<a<<'\n'<<b<<c;

\.·
J,

Figur5.1 Sample Source code.

Modified Source program:

#include<iostream.h>

#include<conio.h>

#include<stdio. h>

FILE *se;

class X

virtual void pnt()

{

fprintf(se,"'~,s","class X");

int x;

public : int getx()

{

this->pnt();

x=S;

return x;

l·
f'

class Y : public X

virtual void pnt()

{

fprintf(se,"'%s","c!ass Y: public X");

}

int y;

public : int gety()

this->pnt();

y=JO;

return y;

}

1 .
j,

void main()

{

se=fopen("fsec.cpp", "w") ;

int a,b,c;

clrscr();

X xO;

YyO;

fprintf(se," 'X.s"," a= xO.getx(); ");

a= xO.getx();

fprintf(se," %s", "b= yO.getx();");

b= yO.getx();

fp.-intf(se," 'X,s"," c= yO.gety(); ");

c= yO.gety();

cout<<a<<'\n'<<b<<c;

}

Figure 5.2 Modified Source program.

In the above program, the bold statements are the additional statements that are inse11ed

by the SScanner module to depict the runtime behavior of the source program. The

execution of modified source program that is shown in Figure 5.2 will result in the

creation of another file shown in Figure 5.3. This file contains the sequence of messages

that are passed between different objects, classes to which these objects belong etc.

a= xO.getx();class X

h=)'O.getx();class Y : fmhlic X

c= yO.getyQ;class Y : flUhlic X

Figure 5.3: Sequence of messages and their class names.

The messages and class names are extracted from the above Figure to draw the Sequence

diagram so that the runtime environment of the source program is depicted. Sequence

diagram for some sample code is shown in the chapter-6.

The platform

This project has been implemented in C++ and Windows 98 is the operating system on

'"'hich this project is developed. Bjarne Stroustrup at AT&T Bell Laboratories developed

C++.

C++ is an object oriented programming language and hence carries the advantages of

object oriented concepts such as Encapsulation, Inheritance, and Polymorphism. C: +

programs are easily expandable and maintainable. lt is expected that C++ will replace C

as a general-purpose language in the near feature.

As can be seen from previous sections, .a C++ compiler is a must in this implementation

for reverse engineering the given source code. Using the C++ language to develop this

application eliminates the need for another compiler and hence it is an added advantage .

. l7

CHAPTER-S

SAMPLE RESULTS

5.1 Sample Results

The following sections show few sample programs and the resulting Sequence diagram

and Class diagram. Sequence diagram shows the dynamic behavior and class diagram

shows the static behavior of the system. Examples depicting each of them are g1ven

below:

Sample source code-1

Class CC

{

int sl,s2;

public: int getsum()

).

f'

sl=JO;

s2=20;

return s 1 +s2;

void display()

AA oba;

oba. showsum();

}

Class BB

i .
J'

float fl;int ii;

public: float fgetsum()

{

CC obi;

fl=32.6;

ii=Ob l.getsum();

return fl-ii;

class AA

t.
J'

float sum;

public:void show()

}

BB ob2;

Sum=Ob2.fgetsum();

void showsum()

cout<<sum·
'

void main()

AA ob3; ob3.show();

CC obc;

obc.display();

s{~quence Diagram

Sequence diagram shows the Dynamic VIew of the system. Figure 6. I shows the

corresponding sequence diagram for the samplecode-1. ln the Figure 6. 1, AA, BB and

CC are the class names. The objects of one class interact with the objects of other classes

by passing messages. The message (function calls) along with the object name is shown

in Figure.

AA BB cc

fgetsum()
...

gets urn()

showsum()

Figure 6.1 Sequence Diagram for the above sample code

.j()

Sample source code-2

class student

protected: int roll-numb,age;

char name[],class [];

public: void getnumper(int num)

l J ,

void printnumer(void)

I l ·
\ . . f'

class test: public student

{

protected: int subl,sub2;

char sname;

public: void getmarks(int, int)

1.· J,

void printmarks(void)

\.
I'

class address: public student

protected: char fname,vname,state;

int pincode;

public: void getadd(char, char ,char ,int)

......... };

void printadd(void)

............ };

Figure 6.2 Sample code for drawing class diagram

-+I

Class Diagram

Class Diagram shows the Static view of the system. Figure 6.3 shows the Class Diagram

for the sample code shown in Figure 6.2. Student is a base class and address, test are

inherited from base class. Variables and functions in each class are shown in the Figure.

student

int roll-numb,age;

char name[J,class[];

void getnumper(int num)

void printnumer(void)

test: public student

int sub I ,sub2;

char sname;

void getmarks(int, int)

void printmarks(void)

address: public student

char fname, vname,state;

int pincode;

void getadd(char, char,
char ,int)

void printadd(void)

Figure 6.3 Class Diagram

-+2

Sample code-3

#i nclude<iostream. h>

#i nclude<stdio .h>

#include<conio.h>

include<string.h>

class zz;

class mm

private:char s[20];

int age;

public: void get_mname();

\.
J,

class nn:public mm

iloat amount;

public: float getamount(float uu)

{

amount=uu;

return amount;

}

class zz

public: char *name;

public:void pntname()

f-loat numb;

mm objm;

objm.get_mname();

.J.:l

cout<<name;

nn objn;

numb=objn.getamount(45683 .87);

cout<<'\n'<<numb;

objn.get_mname();

cout< <'\n '<<name;

void setname(char* s)

{

name=s;

cout<<name;

}

l·
f,

void mm::get_mname()

scanf("%s'',s);

zz xi;

x l.setname(s);

void main()

{

clrscr();

zz objz;

objz. pntname();

Figure 6.4 Sample code for depicting static and dynamic view.

44

For the sample code -3 shown in Figure 6.4, resulting class diagram is shown in Figure

(J 5 and sequence diagram is shown in the Figure 6.6. ln both the figures M M, NN and ·

ZZ are the class names.

Class diagmm for· the sample code-3

MM zz

char s[20]; char *name;

· int age; void pntname ();

void get_mname(); void setname(char * s);

NN

tloat amount;

float getamount(float uu);

Figure 6.5 Class diagram for the sample code -3.

Sequence diagram for sample code- 3

zz l\tll\1 NN

get_mname()

setname() ...
'

getamount()
... ... ,

get_mname()

..

setname()
...
""

Figure 6.6 Sequence diagram tor the sample code -3.

CHAPTER-6

CONCLUSIONS

Software development productivity and quality is improved if programs can be enhanced

instead of rebuilding them. They are also improved if major pieces of existing systems

can be reused with least possible effort. These activities require the software engineers to

have the detailed knowledge of existing programs. Reverse engineering helps in

achieving the above mentioned tasks easily and effectively.

This application doesn't need a debugger to depict the run time environment. Using the

modified version of the source program generated by this application, the user, while

using the application, can simultaneously have a picture of the run time environment.

This implementation has its limitations. It is language dependent i.e. it extracts the design

of programs written in C++ only. At present many software organizations are developing

products in C++. There are some tools that can convert the code written in C or Pascal

into C++.

-17

REFERENCES

I. Shimba - an environment for reverse engineering java software system by Tarja

Systa,Koskimies,and Hausi Muller-SP&E,2001, 31:371-394.

2. Reverse engineering 4.7 million lines of code by P.Tonella, G.Antoniol, R .. Finutem

and F.Calzolari -SP&E, 2000,30:129-150.

3. Practical data exchange for reverses engineering frame works by Michael W.Godtrey

-Software engineering Notes, volume 26 no !,January 2001.

4. Rigi User's Manual-Version 5.4.1 by Kenny Wong ,July 10, 1996

5. Software Engineering, a practitioner's approach, 4111 edition by Roger S. Pressmen -

Me GRA W-HILL publications.

6. An integrated approach to software engineering, second edition, by Pankaj .Jalote

Narosa publications.

7. OMG UML Tutorials: http://www.celigent.com/omg/umlrtf/tutorials.htm

8. GDPro: http://www.advancedsw.com/products/products.html

KEY WORDS: reverse engineering, reengineering, maintenance, WCRE (working

conference on reverse engineering)

	TH94770001
	TH94770002
	TH94770003
	TH94770004
	TH94770005
	TH94770006
	TH94770007
	TH94770008
	TH94770009
	TH94770010
	TH94770011
	TH94770012
	TH94770013
	TH94770014
	TH94770015
	TH94770016
	TH94770017
	TH94770018
	TH94770019
	TH94770020
	TH94770021
	TH94770022
	TH94770023
	TH94770024
	TH94770025
	TH94770026
	TH94770027
	TH94770028
	TH94770029
	TH94770030
	TH94770031
	TH94770032
	TH94770033
	TH94770034
	TH94770035
	TH94770036
	TH94770037
	TH94770038
	TH94770039
	TH94770040
	TH94770041
	TH94770042
	TH94770043
	TH94770044
	TH94770045
	TH94770046
	TH94770047
	TH94770048
	TH94770049
	TH94770050
	TH94770051
	TH94770052
	TH94770053
	TH94770054

