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CHAPTER-1 

INTRODUCTION 

The study of the four species models occupies an important place in theoretical 

biology. The elucidation of these models will lead to clues to an understanding of the 

more complex multispecies systems. The ecosystem models, as described by a set of 

differential equations, are in general non linear. It is difficult to obtain exact analytical 

solutions in these cases. Any information obtainable using either any analytical or 

numerical methods or a combination of both is therefore very useful. It is easier to obtain 

such information for models with lower number of interacting species. Such information 

may then provide clues to results for more complex systems. 

In this dissertation we have discussed four species ecosystem model within the 

frame work of Lotka Velterra model. We have analysed the one prey-three predator 

system in which the prey-predator interaction and self interaction for the prey are 

considered. 

Next we have considered the three prey-one predator system in which prey

predator interaction and self interaction for the predator are included. 

The details of these models and results claimed on them are discussed in chapter 

3. In chapter 4 numerical solution using rung kutta method are obtained. Chapter 5 gives 

our main conclusions. The methods used by us were developed in certain three species 

systems with Lotka-Volterra interactions, which were stimulated by similar three species 

models with Gompertz interaction which lead to exact solution. These three species are 

reviewed in chapter 2. 



CHAPTER-2 
(Section- A) 

REVIEW OF SOME THREE SPECIES MODELS 

We discuss the Gompertz models for some of the three species ecosystems. For 

instance we consider a food chain system. Let N 1, N2 and N3 be the three populations 

with N2 preying on N 1 and N3 preying on N2. The time development of these populations 

will be governed by the various self interactions and mutual interaction terms. All these 

interaction terms are written in Gompertz form. The equations describing the model are: 

... (1) 

Where N 1, N 2 and N 3 stand for the respective time derivatives. The signs of 

various terms depend on whether they represent self interaction, or prey predator 

interaction. The sign is negative for the first one and as for the latter terms, there is a 

negative sign in the equation for time development of prey population and a positive sign 

in the corresponding equation for the predator population. The E 1 term is here the natural 

growth term and E2 and E3 are decay terms. Terms carrying the constants a~, p2 and a 3 

are self interaction terms and remaining terms represent the prey predator interactions. 

Introducing the notations 

We can rewrite equations (1) as 
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... (2) 

The above was the general situation where we considered all the different types of 

interactions. Out interest is to see what happens when only pre-predator interactions and 

self interaction for population N2 are there. 

So we have 

Thus equation (2) reduces to 

x 1 = E1- ~~ x2 ... (3) 

... (4) 

... (5) 

First differentiating equation ( 4) and then substituting the values of X 1 and X 3 

from equation (3) and (5), 

we get 

... (6) 

where A = a2 E 1 + Y2 E 3 

equation (6) is non homogenous linear equation, the full solution of which is 

... (7) 

Where D 1 and 0 2 are two arbitrary constants and 
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-B +~B 2 
-4B 

E - 2 2 ,-
2 

-B-~B 2 -4B 2 2 

2 

Substituting the value ofX2 from equation (7) in equation (3) and (5) we get 

r fo E - P E ) 
Where K = 2 IJ-1 3 1 1 3 and 

B 

... (8) 

.... (9) 

... (10) 

C1 and C2 are integration constants. It is clear from equation (8) that E1 and E2 

always have negative parts. Therefore, X2 (and hence N2) is always finite and non 

vanishing. 

For t~ co , it acquires the value 

A x2 (t ~co)= -
B 

The value of X, and X3 are governed by the condition on (p3 E 1 = p 1 E 3). 
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Condition (P3 E 1 - P1 E3) = 0 

NI(t---+ oo)---+ cl 

N3 (t---+ oo) ---+C2 

Hence N 1 and N3 remain finite and coexist. 

We see the following results. 

1. Under condition (i), population N 1 and N3 rise indefinitely and population N2 

oscillates and then settles to finite value. 

11. Under condition (ii), populations N 1 and N3 vanishes and population N2 settles to 

finite value. 

m In this case, there is coexistence of all the three populations. 

It is found that under suitable choice of parameter (p3 E 1 - p 1 E 3 > 0) both N 1 and 

N3 rose indefinitely while N2 reached a finite constant value asymptotically. Here the 

two rising populations behave as if they are growing in an unlimited environment without 

any apparent interaction between them. Yet in reality they are linked via intermediate 

quiescent population. 

Under condition (ii), population N1 and N3 vanishes, which is clearly a rather 

unphysical situation, since this would mean that despite vanishing of the prey population 

N 1, the predator population N2 continues to be finite. This results shown up because our 

interaction are not fully causal. This results can be improved by incorporating appropriate 

time-lags in all our interactions. 

5 



CHAPTER- 2 
(Section- B) 

REVIEW OF ASSYMPTOTICS OF SOME THREE-SPECIES MODELS 

Here the asymptotic behavior of component populations in a few intera~ting three 

species models is derived. This is done by exploiting a constraint that exists in the 

subspace of two of the three population, and by using Lauent serious expansions in the 

asymptotic region in a suitable variable. 

The Three-Species Food Chain Model 

The model consisted of three populations N" N2 and N3 with N2 praying on N 1 

and N 3 preying on N2. Besides containing the appropriate prey-predator interactions, the 

model also contained self-interaction for population N2• 

Equations 

..... (1) 

..... (2) 

..... (3) 

Where all the parameters E 1, p~, etc, are positive. 

In terms of the variable Z defined by 

... (4) 

These equations become 

... (la) 
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... (2a) 

... (3a) 

On equating the expression for N2 from (1 a) and (3a), we get 

... (5) 

which on integration leads to, 

N 8 1 N B, = ~ cr/8 
I 3 ... (6) 

Where K is constant and cr = E 1~3- E3~1· 

The pressure of self interaction term in equation (2) generally leads to frictional 

damping and saturation. Therefore we look for a solution of the system of equations such 

that 

N2 ~ constant as t ~ oo 

Or 

lim N, (~) = bo where bo is a constant 
C---1-:.:: -

... (7) 

So, around :6= oo, the Laurent expansion 

"' 
N2(6) = bo + :L>-n ~-n ... (8) 

n=l 

We then have 

Equation (2a) can be \vritten as 

..... (10) 
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we get 

lim {a2 Nt(-6)- Y2 N3 (-6)} = E2 + B2 bo = C 
l->ao 

0 0 .(11) 

Where C must be constant. Thus the laurent expansions of N 1(-6) and N3(6) 

around -6 = oo should be 

"' 
Nt(-6)=y2f(-6)+ao+:L a 0 6-n ... (12) 

n=l 

"' 
N3(-6) = a2 f(-6) +co+ L C_n :6 -n. 00 .(13) 

n=l 

Where f(Z) is as yet an unspecified function of :6 which does not vanish as z~ oo. 

Substituting these now in (5) for Z ~ oo, we get 

[y, f(Z) +a"+ ........ }" [a, f(Z)+ C" + .... Jf'' = KZcr/o •••(14) 

Now three cases arise. 

CASE 1: cr > 0 

An examination of ( 14) reveals that the leading behavior of f(-6) as :6 ~ oo must 

be :6 111 for some m > 0. Thus 

We may new choose to replace o by o' = om, and work with variable '!:.' = eo't instead. 

The leading behavior of f(-6 ')is then simply given by the term KZ' where K is a constant. 

For convenience we drop the prime on 8'. Thus assymptotic expansion for N 1(6) and 

N3(6) thus take the form. 

"' 
N t(:b) = atZ + ao + L a_n z-n. . .. (16) 

11=1 
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00 

N3(Z) = cl Z+ Co+ L Cn z-". . .. (17) 
11=l 

Substituting equation (8), (16), (17) in (1 a)- (3 a) and equating the coefficients of 

like powers of 6 we obtain. 

Reverting to the variable t: 

lim N 1 (t) = a 1 e''' 
1->oo 

CASE 2 : ( cr < 0) 

Since the r.h.s of (14) must vanish in the limit 6--....). oo, the function f(b) must be 

identically zero and furthermore ao and co can not both be nonzero, only one of them can. 

The appropriate expansions in this case 

0') 

N I = ao + L a_n z-n. 
n=l 

00 

N2 = bo + L b_nZ -n 

11=1 

00 

N3 = L CnZ -n. 
11=1 

9 



On substituting (22) in (1 a)- (3 a) we can get the value of ao and bo. 

Hence the selection 

limN 
3 
(t) = b

0 
= C_, e(atll,)t ~ 0 

l---?00 

CASE-3: (cr = 0) 

In this case, equations (5) reduces to 

N B, N B, =K 
I 3 

Which in view of equation (11) implies the behaviour 

0') 

NI(Z) = ao +I a_n z-n 
n=l 

0') 

N3(Z) =Co+ I Cn z-n. 
n=l 

Substituting these expressions in (1 a)- (3 a) and equating coefficients oflike terms, 

We get 

while a0 and c0 are given by the solutions of the equations 

,,, . ~. -K 
all ell -
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Solution 

lim N1 = ao. 
1-HJ) 

E 
lim Nz=bo= - 1 

t---+o:> A 
1-'] 

lim N3 =Co. 
I -->ao 

2. THE ONE PREY- TWO PREDATOR MODEL 

The model consisted of three populations N 1, N2 and N3 with N2 and N3 preying 

on N 1• Besides containing the appropriate prey-predator interactions, the model also 

contained self-interaction for the population N 1• 

Equations 

In terms of the variable Z, we new have the constraint 

Where L is constant determined by the initial conditions and 

Now two possibilities axises 

CASE-1 : (11 > 0) 

Here solution is 

II 



lim N3(t) = 0. 
l--700 

CASE-2: (11 < 0) 

Solution: is 

lim N2(t) = 0 
l--7ao 

lim N3 (t) = (a3 E 1- a1 E3)/a3y1. 
l--700 

CASE-3 : (11 = 0) 

Solution 

lim N 1(t) = E, 
l--700 

lim N2(t) = bo 
l--700 

lim N3(t) =co 
1--->oo 

Where 

12 



3. THE TWO PREY-ONE PREDATOR MODEL 

The model consisted of three populations N ~, N2 and N3 with N3 preying on N 1 

and N2 . Besides containing the appropriate prey-predator interactions, the model also 

contained self-interaction for populations N3. 

Equation 

The constraint in terms of the variable b, is now N 1 v, n
2 

-·t, = MZw10
. 

Where M is initial-condition dependant constant and 

CASE-1: (W > 0) 

The assymptotics are now given as follows 

!-HI) 

CASE- 2: (w< 0) 

In this case we get 

lim N 1(t) = 0 
t--->o:> 

13 



lim N2(t) = ( E3 Y2 + E2 Y3)/P3Y2· 
t -><X> 

CASE-3: (w=O) 

In this case, we get 

lim N1(t)=ao 
t -><X> 

lim N2(t) = bo 
t -><X> 

lim N3(t) = .5_, 
1--->W • y I 

where 

The methods used here as a basis for discussion of certain four species models in the next 

chapter. 

14 



CHAPTER-3 

ANALYSIS OF ASSYMPTOPTICS OF SOME FOUR SPECIES MODELS 

In this chapter we carry out an analysis of assymptotics of certain four species 

ecosystems. In section I we consider the three prey-one predator system in which prey

predator interaction and self interaction for the predator is considered. In section II we 

deal with the one prey-three predator interaction in which prey-predator interaction and 

self interaction for the prey is considered. 

It is not possible to write the exact solutions of the above systems. However 

important information about the populations can be ascertained by analysing the 

behaviour of the systems in the assymptotic region as t --+ oo. The results are obtained by 

exploring the constraint that exist in the subspace of three populations and using suitable 

laurent series expansions in an appropriately choosen variable in the assymptotic region. 

15 



SECTION -A 

THREE PREY -ONE PREDATOR SYSTEM 

The model consisted of four populations Nt, N2, N3, N4 with N4 preying on N~, 

N2, N3, Besides the model containing the prey-predator interaction, the model also 

contained self interaction for the population N4. 

Equation 

.. . (1) 

... (2) 

... (3) 

... (4) 

where all the parameters at, bt, a2, b2, a3, b3, ~' b4 etc. are positive. 

In terms of variable Z defined by 

These equation becomes: 

... (5) 

8Z dN 2 = a, N,- b
2 

N
2 

N
4 dZ - - ... (6) 

... (7) 

8Z dN' - - - b 2 d - a, N, , N, +c, N 1 N,+ , N 2 N,+e. N, N. dZ . · . ...(8) 

16 



The presence of the self interaction term in equation ( 4) generally leads to 

frictional damping and saturation. Therefore we look for a solution of the system such 

that 

N4 ---+ constant as t---+ oo 

or limN,= d" 
Z-+ci, 

... (9) 

where d0 is constant. This would imply, around Z = oo, the following Laurent 

expansiOn. 

"' 
N4 =do+ l.: d_" z-" 

n=l 

Equation (8) can be written as 

d 
8Z -{logN;(Z)}=-a,-b, N,+c, N,+d, N,+e, N, 

dZ · 

or 

+d, lim N,(Z)+e, lim N,(Z) ss 
Z-+z Z-+x · 

or 0 =- a4 - b4 do+ C4 lim N
1
(Z) + d4 lim N

2
(Z) + e

4
lim N

3
(Z) 

z~~ z~z z~~ 

or c, lim N,(Z)+d, lim N,(Z)+e,lim N,(Z) 
Z-+:t: Z-to~ Z-to7. -

where Dis positive 

Since c4, d-t, e4 are positive and linear combination ofN 1, N2 and N3 is also positive, 

hence f(Z) term (L: ~n Z11
) in the Launent expansion will be absent. 

Thus the laurent expansion ofN1, N2 and N3 around Z = oo should be; 

17 



"" 
Nl = ao + L a_n z-n 000(10) 

n=l 

'h 

N 2 = b0 + 2: b -n z-" 0 0 0(11) 
n=l 

UJ 

N "' z-n 3 = CO + L..J C -n 000(12) 
n=l 

On equating the expression for N4 from equation (5) and (6), we get 

1 d 1 d 
- {8Z- (log N ) -a } =- {8Z- (log N ) -a } 
b' dZ I I b dZ 2 2 

I 2 

which on integration leads to the equation 

000(13) 

On equating the expression for N4 from equation (5) and (7), we get 

1 d 1 d 
- {8Z- (log N )-a}=- {8Z- (logN )-a} 
b dZ I I b dZ 3 3 

I 3 

which on integration leads to equation 

0 0 0(14) 

CASE- I 

(cr> 0, 11 > 0) 

Rewriting equation (13) and (14) 

18 



For cr> 0, 11 > 0 right hand side of above equations tends to infinite as z~ oo. Hence 

constant term bo and c0 in N2 and N3 must be zero. 

Hence 

~' 

N, = ao + L a_n z-n 
n =I 

'fo 

N2 =I b_" z-" 
n=2 

'fo 

N 3 = .L C_" z-" 
n=3 

Rewriting equation (5) 

oZ dN, =a, N, - b, N, N, 
dZ 

d w 7. -~ 
oZ- (a"+ .L a_"Z-") = a,(a" +I a_" z-")- b,(a" + .La_,T") 

dZ n=l n=l u=l 

Cd"+f d_, z-") 
n=l 

Comparing the constant term in above equation, 

Either ao = 0 or (a1 - b1 do)= 0 

Since ao * 0, 

d --_a, 
" b, 

Rewriting the equation (8) 

oZ d~, =-a, N, -b,N: +c, N IN, +d, N, N, +e, N, N, 

19 

... (15) 

... (16) 
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dN ~ z ~ 
or 8Z -' =-a, (d" + 'L d_ .. z-·)- b,(d

11 
+ 'L d_,z-")' + c,(a" + 'L a_ .. z-") 

dZ n=l n=l n=l 

(dll + i: a_., z-")+dJI b_ .. z-n) (dll + f c_ .. z ") +e,(I c_., T") (d .. + i:c_ .. z-n) 
n=l n=l n=l n=l n=l 

Comparing the constant term 

Since d0 7:- 0 

Hence Solution 

lim N?(t) = 0 
t--+Y~ -

lim N
3 
(t) = 0 

1-+Xl 

lim N.(t) = ~ 
·~~ b 

I 

CASE- II 

(cr < 0, 11 < 0) 

Equations 

20 



For cr< 0 , 11 < 0, right hand side of above equation tends to zero as Z ~ rYJ. So the 

constant term ao in N 1 must be zero. 

Hence, 

en 

Nl = L a_n z-n ... (18) 
n=l 

'L 

N 2 =bo+I b_" z-n ... (19) 
n=l 

N, = c" + I c -n z-" ... (20) 
n=l 

Now substituting equation (18), (19), (20) m equation (5), (6), (7), (8) and 

equating coefficient of like powers of z. 

We get, 

d=~=~ 
() b b 

2 ' 

Hence the solution 

limN,=b
0 

l~X: -

limN,= c" 
1-+::C . 

1. N a, a, un = ---=- = ____;_ 
H< < b b 

~ J 

where a4 + b4 do = d-t bo + e4 co 

21 



CASE- Ill 

( cr > 0, 11 < 0) 

Rewriting the equation (13) and (14) 

... (9a) 

... (lOa) 

where 

For cr> 0, right hand side of equation (9a) tends to oo as Z tends to oo. Hence 

constant term bo in N2 must 9e zero. 

For 11 < 0, Right hand side of equation (1 Oa) tends to zero as Z tends to infinite. 

Hence constant term a0 inN 1 must be zero. 

Let N =~ 
I z 

N=~ 
2 z 

Substituting these in equation (9a) 

Since cr > 0, hence b 1-b2 > 0 

New Conditions are 

cr > 0, 11 < 0, and (bt - b2) > 0 

N =~ 
I z ... (21) 

22 



N=~ 
l z ... (22) 

N, = c" +I c_. z-· 
· n=l 

... (23) 

N, = d" + I d -· z-· ... (24) 
n=l 

Substituting the equations (19), (21), (22), (23), and (24) in equations (5) (6) (7) (8), 

comparing the coefficients of like powers of Z. 

d =a, 
II b 

1 

Hence Solution 

limN,= 0 
·~~ 

limN,= 0 
t~oc 

limN = ~ ...... ,.. " b 
J 

Rewriting the equation (13) and (14) 

CASE- IV 

(cr < 0. YJ> 0) 

.... (9a) 



.... (lOa) 

For a < 0, Right hand side of equation (9a) tends to zero as Z ~ oo. Hence 

constant term a0 inN 1 will be zero. 

For 11 > 0 right hand side of equation (I Oa) tends to z~ oo. Hence constant term 

co in N3 will be zero. 

Suppose N =~ 
I 

z 

N=s_ 
3 z 

Substituting these in equation (I Oa) 

New Conditions are a< 0, 11 > 0, and b, - b3 > 0 

Now 

N =~ 
I .:.(25) 

z 

N, = b" +I b_
1
Z-n ... (26) 

n=l 

... (27) 

' 
N.=d"+I d_,.z-n ... (28) 

n=l 

Substituting the equations (25), (26), (27) and (28) in equations (5), (6), (7) and 

(8) and comparing the coefficients of powers of z. 

d =a, 
" b, 

24 



Solution 

limN,= 0 
I-40J 

I. N a,b 2 + a 2b, 
Ill = ____.:.__:__--=--_.::._ 

·~" 
2 

b d 
2 ' 

limN,= 0 
1-+::.o . 

limN =~ 
1-+'k " b 

2 

25 



SECTION -B 

THEONEPREY-THREEPREDATORSYSTEM 

The model consisted of four populations N 1, N2, N3 and N4 with N2, N3, N4 

preying on N 1• Besides the model containing the prey- predator interaction the model also 

contained self interaction for the population N2. 

Equations 

.. . (1) 

... (2) 

... (3) 

... (4) 

where all the parameters a1, b 1, c1, d1 etc are positive. 

In terms of variable :6 defined by 

these Equations become 

1. 

2 . 

.., 
.). 

4. 

26 



The presence of self interaction term in equation (I) generally leads to frictional 

damping and saturation. Therefore we look for a solution of the system of equation such 

that 

N 1~ constant as t ~ oo. 

or lim N 1 (b) = a0 (constant) 
z -->Cfl 

Then Around b = oo, the laurent expansion. 

N 1 = ao + I a_, :6-" 
n==l 

We then have 

lim b _d_ {log N 1 (b)= 0 
l -->Cfl d:6 

From equation (5) 

or 

or = a1 - b1 lim N 1 
z --7-:1) 

lim [c1 lim N2 + d1 lim N3 + e1 lim N4]. 
z -->oO l -->oO z -->"- z -->oO 

or 0 = a1- b1 ao- lim [c1 lim N2 + d1 lim N3 + e1 lim N4] 
l -->oo Z -->oO l -->>:> l -->oO 

[c1 lim N2 + d1 lim N3 + e1, lim N4] 
z -->oO l -->oO l -->oO 

Where C must be greater then zero. Since c1, d1, e1 are positive and positive linear 

combination ofN1. N2 and N3 is also positive. 

27 



hence f(z) term ((LEn .zn) in the laurent expansion will be absent. 

Thus the laurent expansion ofN2, N3 and N4 around Z = oo should be 

"' 
N2 =bo +I bn_z-n 

Z =I 

"' 
8(b) N 3 = C0 + I C_n_z-n 

Z =I 

"' 
N4 = do +I d_n_z-n 

Z =I 

On equating the expression for N 1 from equation (6) and (7), we get 

-
1 

[8.6 _d_ {log N,}+a
2

] = __!__ [8 z_d_ (log NJ+a,] 
b2 dZ b, dZ. 

Solving the above equation 

N bz N -b, = K:-Z "'" 
2 ] 0 0 0(9) 

On equating the expression for N 1 from equation ( 6) and (8) 

Solving the equation 

000(10) 

where cr = b2 a4 - a2 b4 , L is constant 

CASE-1 

28 



Rewriting the equation (9) and (10) 

N b, N -b, _ L.£ ato 
2 4 -

For 11 > 0, cr > 0, right hand side of above equation goes to CfJ as b ~ CfJ. 

Hence in equation 8(b) the constant term c0 and do of the N3 and N4 will be zero. 

ro 

N1(b) = ao +I a.n b-1 ... (11) 
n=l 

ro 

N2 (b)= bo +I b.nb-n ... (12) 
n=l 

U) 

N3 (b) = L e-n b-n ... (13) 
n=l 

</) 

N4(b) = I d.n b-n ... (14) 
n=l 

Substituting the equation (11), (12), (13) and (14) in equation (5), (6), (7) and (8) and 

comparing coefficients of like powers of z. 

Hence 

lim N1(b) = a 2 

1->a:J b2 

lim N3(b) = 0 
t-400 

29 



lim N4(b) = 0 
'~"' 

CASE-2 

(11 < 0, cr < 0) 

Re-writing the equation (9) and (10) 

N o2 N -o, = K-zn!o 
2 3 ... (9a) 

... (10 a) 

For cr < 0, 11 < 0, right hand side of above equation is zero as b ~ oo .So the 

constant term b0 in N2 must be zero. 

N,(Z) =a"+ f a_.z-· 
n=l 

"' 
N2 (b)= L b.nz-n 

n=l 

00 

N3 (6) = co+ I C.n z·n 
n=l 

"' 
N4 (6) = do + I d_n b-n 

n=l 

On substituting (15) in equations (5), (6), (7) and (8). We get the constant term. 

_a, a, ao- -=-
b, b, 

Hence the solution: 

l. N _ a, a, 
lm 1- -=-
1~"' b, b, 
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LimN2 = 0 
1---+o:> 

LimN3 =co 
1---+o:> 

LimN4 =do 
1---+a:> 

CASE-III 

(YJ = 0, cr < 0) 

Rewriting the equations (9) and (10) 

N ~>, N -b, =L z;crto -lOa 
2 4 

For 11 > 0, right hand side of (9 a) goes to oo as 'b goes to oo. 

Hence constant term in N3 (co) will be zero. 

Since cr < 0, right hand side of (1 0 a) goes to zero as 'b goes to oo. 

Hence constant term b0 in N2 will be zero. 

Suppose 

Putting these in equation (9 a) 
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Since 11 > 0, So b3 - b2 > 0 

New conditions are 

11 > 0, cr < 0, and b3 - b2 > 0 

"' 
So, N 1 = ao + I an :6-n 

n;J 

... (17) 

N 
c_, 

3=-
l-

"' 
N4 = do+ I d_n :6-n 

n=l 

On substituting the (17) m equations (5, (6), (7) and (8) and comparing 

coefficients 

a, 
ao=-

b, 



Hence the solution 

I. N a, un t=ao=-
l. -40') b 

' 

lim N2 = 0 
~~if) 

CASE-IV 

(TJ < 0, cr > 0) 

Rewriting the equation (9) and (1 0) 

... (9 a) 

... (lOa) 

For YJ< 0, right hand side of (9 a) goes to zero as 6 goes to oo. 

Hence constant term b0 in N2 will be zero. 

Since cr > 0, right hand side of(lO a) goes to infinite as 6 goes to oo. 

Hence constant term do in N4 will be zero. 

0') 

Let N 1 = ao + L a_n 6-n. 
n~l 
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N =~ 
2 £ 

00 

N, =co+ 2:: c_-;z-· ... (18) 
n=l 

N, = d_, 
b 

substituting these in equation (1 0 a) 

Since a > 0 , hence b4 - b2 > 0. 

New conditions are 

11 < 0, a > 0 and 

Substituting equation (18) in equations (5), (6), (7) and (8), and comparing coefficients of 

like powers of Z. 

or 

Hence 

lim N2 = 0 
-t ---""' 



CHAPTER- 4 

ILLUSTRATION OF THE ANALYTICAL RESULTS USING RUNGE

KUTTA APPROXIMATION METHOD 

In this chapter we illustrate our previously obtained results using the Rung-Kutta 

approximation method for numerical analysis. The program used for this purpose is a 

standard Runge Kutta Fourth order. We fed our specific numerical inputs in the program 

and the results under different conditions were plotted. 

RESULTS 

Case 1: 

ONE PREY-THREE PREDATOR SYSTEM 

For cr>O i.eb2a3-a2b3>0 

11 > 0 i.e. b3 '4- a2 b4 > 0 

Initial value of the populations: 

N 1(0) = 2 

N2(0) = 3 

N3(0) = 2 

N4(0) = 3 

Numerical inputs for Different Parameters: 

a1 = 2 b2 = 8 

b, = 0.5 a3 = 3 

c, = 0.2 b3 = 1.5 

d, = 0.8 <4 = 4 

35 



e1 = 8 

a2 = 8 

The situation for this case is represented by Fig. 1. 

Case 2: For cr < 0 

11 < 0 

Initial value ofthe populations 

NI(O) = 3 

N2(0)=4 

N3 (0) =I 

N4 (0) = 4 

Numerical inputs for different parameters: 

a 1 = 2 b2 = 3 

bl = 0.5 a3 = 3 

CJ = 0.2 b3 = 1.5 

dl = 0.8 ~=4 

e1 = 0.1 b4 =2 

d2 = 8 

The Situation for tl~is case is represented by Fig. 2. 

Case 3: For cr > 0 

11 < 0 

Initial value of the populations: 

N1 (0) = 3 

N2 (0) = 4 
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N3 (0) = 4 

N4(0) = 3 

Numerical inputs for different parameters: 

a1 = 2 b2 = 3 

bl = .5 a3 = 3 

CJ = .2 b3 = 1.5 

dl = .8 <4 = 11 

e1 = .1 b4 =4 

d2 = 8 

Situation for this case is represented by Fig. 3. 

Case 4: For cr<O 

11>0 

Initial value of the populations: 

N1 (0) = 2 

N2 (0) = 4 

N3 (0) = 6 

N4 (0) = 8 

Numerical inputs for different parameters: 

a1 = 2.5 b2 = 8 

bl = 0.5 a3 = 10 

CJ = 0.2 b3 = 9 

dl = 0.8 '4 = 4 

e1 = 0.1 b-t = 5 
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a2 = 8 

The situation for this case is represented in Fig. 4. 

THREE PREY-ONE PREDATOR SYSTEM 

Case 1: For cr > 0 I.e 

TJ > 0 I.e. a, b3 - b, a3 > 0 

Initial value ofthe populations: 

N 1 (0) = 5 

N2 (0) = 5 

N3 (0) = 6 

N4 (0) = 2 

Numerical inputs for different parameters: 

a 1 = 4 ~=2 

b, = 2 b4 = 0.5 

a2 = 3 C4 = 0.2 

b2 = 3 d4 = 0.8 

a3 = 3 e4 = 0.1 

b3 = 3 

The situation for this case is represented by Fig. 5. 

Case 2: For cr<O 

TJ < 0 

Initial value of the populations: 

N, (0) = 5 

N2 (0) = 10 
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N3 (0) = 5 

N4 (0) = 5 

Numerical inputs for different parameters: 

a1 = 3 ~=2 

bl =4 b4 = 0.5 

a2 = 6 C4 = 0.2 

b2 = 3 d4 = 0.8 

a3 = 6 e4 = 0.1 

b3 = 3 

The situation for this case is represented by Fig. 6. 

Case 3: For a> 0 

11 < 0 

Initial value of populations 

N1 (0) = 3 

N2 (0) = 5 

N3 (0) = 4 

N4 (0) = 2 

Numerical inputs for different parameters: 

a1 = 3 ~=2 

bl =4 b4 = 0.5 

a2 = 2 C4 = 0.2 

b2 = 3 d4 = 0.8 

a3 = 3 e4 = 0.3 
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b3 = 4 

The situation for this case is represented by Fig. 7. 

Case 4: For cr < 0 

11>0 

Initial value of populations: 

N1 (0) = 6 

N2 (0) = 5 

N3 (0) = 8 

N4 (0) = 2 

Numerical inputs for different parameters: 

a1 = 3 ~=2 

bl :== 6 b4 = 0.5 

a2 = 3 C4 = 0.2 

b2 = 3 d4 = 0.8 

a3 = 2 e4 = 0.1 

b3 = 5 

The situation for this case is represented by Fig. 8 . 
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CHAPTER-S 

CONCLUSION 

We have obtained the asymptotic behavior of the component population for two 

different four species models. This has been done by exploiting constraints which exist in 

the sub space of three of the four species in each case, and by using a Laurent expansion 

in suitably chosen variable. Our main results are summarized in the following tables. 

ASSYMPTOTIC BEHAVIOUR OF POPULATIONS IN 

THREE PREY ONE PREDATOR MODEL 

MODEL BEHAVIOUR FORt---+ oo, 

CASE-1 

Constraints CASE-2 

1. 0' < 0, ll < 0 
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CASE III 

a> 0, T) < 0 

N4 =do= a, 
b, 

CASE-IV 

I 
!(cr<O, TJ>O) 

N 1 =0 

~0 



ASSYMPTOTIC BEHAVIOUR OF POPULATIONS IN 

ONE PREY- THREE PREDATOR MODEL 

MODEL BEHAVIOUR FOR t ~ oo. 

CASE -1 (cr > 0, 11> 0) 

Constraints CASE-2 

( cr < 0, 11 < 0) 

N b, N -b, = L :z:,cr!s 
2 4 =~ 

b, 

where 

CASE-3 

( cr < 0, 11 > 0) 
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CASE-4 

(cr>O,YJ<O.) 
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DECLARE SUB lor (x!(), nn!, f!()) 
SCREEN 9 
CLS 
nn = 4 
DIM w(nn),_xo(nn), x1(nn), x2(nn), x3(nn), x4(nn), f(nn): x(nn) 
'OPEN "data2 11 FOR OUTPUT AS #1 
READ hh, tin, t~nd, hprint 
DATA .005,0,30,.1 
FOR i = 1 TO nn 
READ xO(i) 
NEXT 
DATA 2,4,6,8 
aa = 2.5 
bb = .. 5 
cc = .2 
dd = .8 
ee = .1 
ff = 8 
gg = 8 
ii = 10 
jj = 9 
kk 4 
11. = 5 
j = 0 
10 'graphics 

VIEW 
WINDOW (0, -25)-(tend, 25) 

I WINDOW (-2, -2)-(2, 2) 
REM LINE (-15, 0)-(tend, 0) 
LINE (-15, -25)-(-15, 25) 
FOR i = 1 TO nn 
w(i) =-xO(i)- -· 
NEXT 
t = tin 
250 'output f~om subprogram comes here 
'PRINT t; w(l), w(2), w(3) 
j = j + 1 
'plotting ~one here 
tp = t 
x_p = w(1) 
YP = w(2) 
zp = w(3) 
up = w(4) 
IF j = f THEN 11 
'WRITE #1, tp, xp, yp, zp, up 
~EM LINE (told, xo)-(tp, xp) 
PSET (tp, xp) 
REM LINE (told, yo)-(tp, yp) 
PSET (tp, yp) 
REM_ .LINE (told,· zo) .::-:1 tp, zp) 
PSET (tp, zp) 
REM LINE (told, uo)-(tp, up) 
PSET (tp, up) 
'LINE (xo, yo)·-(xp, yp) 

1.1 told =·tp 
xo = xp 
yo-= YP 
zo = zp 
uo = up 

IF t < tend THEN GOTO 555 
'CLOSE (1) 

·STOP 
555 
h2 = . 5 * hh 
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460 FOR i = 1 TO nn 
xo(i) = w(i) 
NEXT 
CALL lor(xO(), nn, f()) 
FOR i = 1 TO nn 
xl(i) = hh * f(i) 
NEXT 
t = t + h2 
FOR i - 1 TO nn 
x(j) = w(i) + x1(i) * .5 
NEXT 
CALL lor(x(), nn, f()) 
FOR i = 1 TO nn 
X2(i) = hh * f(i) 
NEXT . 
FOR i = -1 TO nn 
x(i) = w(i) + x2(i) * .5 
NEXT 
CALL lor(x(), nn, f()) 
FOR i = 1 TO nn 
xJ(i) = hh * f(i) 
NEXT . 
FOR i = 1 TO nn 
x(i) = w(i) + xJ(i) 
NEXT 
t = t + h2 
CALL lor(x(), nn, f()) 
FOR i = 1 TO nn 
X4(i) = hh * f(i) 
NEXT 
FOR i = 1 TO nn 
x(i) = w(i) + (x1(i) + 2 '* x2(i) + 2 *_x3(i} + x4(i)) 1 6 
NEXT 

FOR i = 1 TO nn 
w(i) = x(i) 
NEXT 

1200 GOTO 250 
STOP 
END 

SUB lor (x(), nn, f()) STATIC 
SHARED aa, bb, cc, dd,. ee, ff, 

- f{1) = aa * x( 1) - bb * X(4) * f ( 2·) = cc * x(2) dd * x(2} * f(J) = ee * x(J) - ff * X(3) * 

gg, ii, jj, kk, 11 
x(1) 
x(4) 
x(4) 

f ( 4 ) = -gg * X ( 4 ) - i i * X ( 4 ) *~ X ( 4 ) + j j * X ( 1 ) * X ( 4 ) · + kk · * X ( 2 ) * X ( 4 ) + 1 
END SUB 



-

DECLARE SUB lor (x!(), nn!, f!()) 
SCREEN 9 
CLS 
nn = 4 
DIM w(nn), xO(nn), x1(nn), x2(nn), x3{nn), x4(nn), f(nn), x(nn) 
'OPEN "datal" FOR OUTPUT AS #1 
READ hh, tin, tend, hprint' 
DATA .OOS,0,30,.1 . 
FOR i = 1 TO nn 
READ xO(i) 
NEXT 
DATA 3,5,8,10 
a a 3 
bb = 4 
cc = 2 
dd = 3 
ee = 3 
ff = 3 
gg = 2 
ii = .5 
jj = .2 
kk = .8 
11 = .1 
j = 0 
10 'graphics 

VIEW 
WINDOW (0, -25)-(tend, 50) 

'WINDOW (-2, -2)-(2, 2) 
REM LINE (-15, 0)-(tend, 0) 
LINE (-15, -25)-(-15, 50) 
FOR i = 1 TO nn 
w{i) = XO(i) 
NEXT 
t = tin 
250 'output from subprogram comes here 
'PRINT t; w{1), w(2), w(3) 
j = j + 1 
'plotting done here 
tp' = t 
xp = w(1) 
YP = w{2) 
zp = w{3) 
up = w{4) 
IF j = 1 THEN 11 
'WRITE #1, tp, xp, yp, ap, up 
REM LINE (told, xo)-{tp, xp) 
PSET- (tp, xp) 
REM LI~E (told, yo)-(tp; yp) 
PSET. (t.p, yp) 
REM LINE (told, zo)-(tp, zp) 
PSET (tp, zp) 
REM LINE (told, uo)-(tp, up). 
PSET ( tp ,_ up) -c-· 

'LINE (xo, yo)-(xp, yp) 
11 told = tp 

xo = xp 
yo = yp 
zo = zp 
uo = up 

IF t < tend THEN GOTO 555 
'CI;..OSE (1) 
STOP 
555 
h2 = .5 * hh ;& 



460 FOR i = 1 TO nn 
xo(;i.) = w(i) 
NEXT 
CALL lor(xO(), nn, f()) 
FOR i 1 TO nn 
X1(i) = hh * f(i) 
NEXT 
t = t + h2 
FOR i = 1 TO nn 
x(i) = w(i) + x1(i) * .5 
NEXT 
CALL lor(x(), nn, f()) 
FOR i 1 TO nn 
x2(i) = hh * f(i) 
NEXT 
FOR i = 1 TO nn 
x(i) = w(i) + x2(i) * .5 
NEXT 
CALL lor(x(), nn, f()) 
FOR i = 1 TO nn 
X3(i) = hh * f(i) 
NEXT 
FOR i = 1 TO nn 
x(i) = w(i) + x3(i) 
NEXT 
t = t + h2 
CALL lor(x(), nn, f()) 
FOR i = 1 TO nn 
X4(i) = hh * f(i) 
NEX'l' 
FOR i = 1 TO nn 
x(i) = w(i) + (xl(i) + 2 * x2(i) + 2 * x3(i) + x4(i)) 1 6 
NEXT 

FOR i = 1 TO nn 
w(i) = x(i) 
NEXT . 

1200 GOTO 250 
STOP 
END 

SUB lor (x(), nn, f()) STATIC 
SHARED aa, bb, cc, dd, ee,· ff., gg, ii, jj, kk, 11 
f(l) = aa * x(l) - bb * x(l) * x(l) - cc * x(l) * x(2) - dd * x(l) * x(3) - ee 
f(2) = ~ff * x(2) + gg * x(1) * x(.2) 
f{3) = -ii * x(3) + jj * x(1) * x(3) 
f(4) = -kk * x(4) + 11 * x(1) * x(4) 
END SUB 
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