ASYMPTOTIC OF SOME THREE AND FOUR SPECIES MODELS

Dissertation submitted to the Jawaharlal Nehru University
In partial fulfilment of the requirements
For the award of the degree of
MASTER OF PHILOSPHY

KUNWAR SINGH

SCHOOL OF ENVIRONMENTAL SCIENCES JAWAHARLAL NEHRU UNIVERSITY NEW DELHI -110067, INDIA

JAWAHARLAL NEHRU UNIVERSITY NEW DELHI - 110067

School of Environmental Sciences
21 July. 1999

CERTIFICATE

Certified that this dissertation entitled "Asymptotics of some three and four species models" submitted by KUNWAR SINGH in partial fulfilment of the requirements for the award of the degree of Master of Philosophy of Jawaharlal Nehru University is his own work and has not been previously submitted for any other degree of this or any other university.

KUNWAR SINGH

Prof. L. K PANDE (Supervisor)

ACKNOWLEDGEMENTS

With deep sense of gratitude, I thank Prof. L.K.Pande for his keen interest, encouragement and invaluable guidance he provided to me in the completion of this work.

I thank the DEAN of our school for providing me the research facilities.
Special thanks to Rajiv Azad, B.K. Singh and D.K. Panda for their invaluable help.

Thanks to all my friends for keeping my spirits high.

CONTENTS

Page No.

Chapter 1- Introduction 1
Chapter 2 - \quad Section A: Review of Gompertz model for three species food chain model. 2Section B: Review of some three species model.
Chapter 3 - Analysis of asymptotices of Four species models. 15Section A - Three prey-one predator model.Section \boldsymbol{B} - One prey-Three predator model.
Chapter 4 - Illustration of Analytical Results. 35
Graphs
Chapter 5- Conclusion 49
Bibliography
Appendix - Computer programmes for both the models.

CHAPTER- 1

INTRODUCTION

The study of the four species models occupies an important place in theoretical biology. The elucidation of these models will lead to clues to an understanding of the more complex multispecies systems. The ecosystem models, as described by a set of differential equations, are in general non linear. It is difficult to obtain exact analytical solutions in these cases. Any information obtainable using either any analytical or numerical methods or a combination of both is therefore very useful. It is easier to obtain such information for models with lower number of interacting species. Such information may then provide clues to results for more complex systems.

In this dissertation we have discussed four species ecosystem model within the frame work of Lotka Velterra model. We have analysed the one prey-three predator system in which the prey-predator interaction and self interaction for the prey are considered.

Next we have considered the three prey-one predator system in which preypredator interaction and self interaction for the predator are included.

The details of these models and results claimed on them are discussed in chapter 3. In chapter 4 numerical solution using rung kutta method are obtained. Chapter 5 gives our main conclusions. The methods used by us were developed in certain three species systems with Lotka-Volterra interactions, which were stimulated by similar three species models with Gompertz interaction which lead to exact solution. These three species are reviewed in chapter 2.

CHAPTER- 2

(Section-A)

REVIEW OF SOME THREE SPECIES MODELS

We discuss the Gompertz models for some of the three species ecosystems. For instance we consider a food chain system. Let $\mathrm{N}_{1}, \mathrm{~N}_{2}$ and N_{3} be the three populations with N_{2} preying on N_{1} and N_{3} preying on N_{2}. The time development of these populations will be governed by the various self interactions and mutual interaction terms. All these interaction terms are written in Gompertz form. The equations describing the model are:

$$
\begin{gather*}
\dot{\mathrm{N}}_{1}=\epsilon_{1} \mathrm{~N}_{1}-\alpha_{1} \mathrm{~N}_{1} \log \mathrm{~N}_{1}-\beta_{1} \mathrm{~N}_{1} \log \mathrm{~N}_{2} \\
\dot{\mathrm{~N}}_{2}=-\epsilon_{2} \mathrm{~N}_{2}-\beta_{2} \mathrm{~N}_{2} \log \mathrm{~N}_{2}+\alpha_{2} \mathrm{~N}_{2} \log \mathrm{~N}_{1} \tag{1}\\
-\mathrm{r}_{2} \mathrm{~N}_{2} \log \mathrm{~N}_{3} \\
\dot{\mathrm{~N}}_{3}=-\epsilon_{3} \mathrm{~N}_{3}-\alpha_{3} \mathrm{~N}_{3} \log \mathrm{~N}_{3}+\beta_{3} \mathrm{~N}_{3} \log \mathrm{~N}_{2}
\end{gather*}
$$

Where $\dot{\mathrm{N}}_{1}, \dot{\mathrm{~N}}_{2}$ and $\dot{\mathrm{N}}_{3}$ stand for the respective time derivatives. The signs of various terms depend on whether they represent self interaction, or prey predator interaction. The sign is negative for the first one and as for the latter terms, there is a negative sign in the equation for time development of prey population and a positive sign in the corresponding equation for the predator population. The ϵ_{1} term is here the natural growth term and ϵ_{2} and ϵ_{3} are decay terms. Terms carrying the constants α_{1}, β_{2} and α_{3} are self interaction terms and remaining terms represent the prey predator interactions. Introducing the notations

$$
X_{1}=\log N_{1} ; X_{2}=\log N_{2}, X_{3}=\log N_{3} ;
$$

We can rewrite equations (1) as

$$
\begin{align*}
& \dot{X}_{1}=\epsilon_{1}-\alpha_{1} X_{1}-\beta_{1} X_{2} . \\
& \dot{X}_{2}=-\epsilon_{2}-\beta_{2} X_{2}+\alpha_{2} X_{1}-\gamma_{2} X_{3} \tag{2}\\
& \dot{X}_{3}=-\epsilon_{3}-\alpha_{3} X_{3}+\beta_{3} X_{2} .
\end{align*}
$$

The above was the general situation where we considered all the different types of interactions. Out interest is to see what happens when only pre-predator interactions and self interaction for population N_{2} are there.

So we have

$$
\alpha_{1}=\alpha_{3}=0
$$

Thus equation (2) reduces to

$$
\begin{align*}
& \dot{X}_{1}=\epsilon_{1}-\beta_{1} X_{2} \tag{3}\\
& \dot{X}_{2}=-\epsilon_{2}-\beta X_{2}+\alpha_{2} X_{1}-\gamma_{2} X_{3} \tag{4}\\
& \dot{X}_{3}=-\epsilon_{3}+\beta_{3} X_{2} \tag{5}
\end{align*}
$$

First differentiating equation (4) and then substituting the values of \dot{X}_{1} and \dot{X}_{3} from equation (3) and (5),
we get

$$
\begin{equation*}
\ddot{\mathrm{X}}_{2}=\mathrm{A}-\mathrm{B} \mathrm{X} \mathrm{X}_{2}-\beta_{2} \dot{\mathrm{X}}_{2} \tag{6}
\end{equation*}
$$

where $A=\alpha_{2} \epsilon_{1}+\gamma_{2} \in_{3}$

$$
B=\alpha_{2} \beta_{1}+\gamma_{2} \beta_{3}
$$

equation (6) is non homogenous linear equation, the full solution of which is

$$
\begin{equation*}
X_{2}=\frac{A}{B}+D_{1} e^{E_{1} t}+D_{2} e^{E_{2} t} \tag{7}
\end{equation*}
$$

Where D_{1} and D_{2} are two arbitrary constants and

$$
\begin{align*}
& E_{1}=\frac{-B_{2}+\sqrt{B_{2}{ }^{2}-4 B}}{2} \tag{8}\\
& E_{2}=\frac{-B_{2}-\sqrt{B_{2}{ }^{2}-4 B}}{2}
\end{align*}
$$

Substituting the value of X_{2} from equation (7) in equation (3) and (5) we get

$$
\begin{align*}
& X_{1}=C_{1}+K_{1} t-\beta_{1}\left(\frac{D_{1}}{E_{1}} e^{E_{1} t}+\frac{D_{2}}{E_{2}} e^{E_{2} t}\right) \tag{9}\\
& X_{3}=C_{2}+\frac{\alpha_{2}}{\gamma_{2}} K t+\beta_{3}\left(\frac{D_{1}}{E_{1}} e^{E_{1} t}+\frac{D_{2}}{E_{2}} e^{E_{2} t}\right) \tag{10}
\end{align*}
$$

Where $K=\frac{r_{2}\left(\beta_{3} \epsilon_{1}-\beta_{1} \epsilon_{3}\right)}{B}$ and
C_{1} and C_{2} are integration constants. It is clear from equation (8) that E_{1} and E_{2} always have negative parts. Therefore, X_{2} (and hence N_{2}) is always finite and non vanishing.

For $t \rightarrow \infty$, it acquires the value

$$
X_{2}(t \rightarrow \infty)=\frac{A}{B}
$$

The value of X_{1} and X_{3} are governed by the condition on ($\beta_{3} \in 1=\beta_{1} \in 3$).
$\left(\beta_{3} \epsilon_{1}-\beta_{1} \epsilon_{3}\right)>0$
$N_{1}(t \rightarrow \infty) \rightarrow \infty$
$\mathrm{N}_{3}(\mathrm{t} \rightarrow \infty) \rightarrow \infty$
Condition $\left(\beta_{3} \in_{1}-\beta_{1} \in_{3}\right)<0$
$\mathrm{N}_{1}(\mathrm{t} \rightarrow \infty) \rightarrow 0$
$\mathrm{N}_{3}(\mathrm{t} \rightarrow \infty) \rightarrow 0$

Condition $\left(\beta_{3} \in_{1}-\beta_{1} \in_{3}\right)=0$

$$
\begin{aligned}
& \mathrm{N}_{1}(\mathrm{t} \rightarrow \infty) \rightarrow \mathrm{C}_{1} \\
& \mathrm{~N}_{3}(\mathrm{t} \rightarrow \infty) \rightarrow \mathrm{C}_{2}
\end{aligned}
$$

Hence N_{1} and N_{3} remain finite and coexist.
We see the following results.
i. Under condition (i), population N_{1} and N_{3} rise indefinitely and population N_{2} oscillates and then settles to finite value.
ii. Under condition (ii), populations N_{1} and N_{3} vanishes and population N_{2} settles to finite value.
iii In this case, there is coexistence of all the three populations.
It is found that under suitable choice of parameter $\left(\beta_{3} \in_{1}-\beta_{1} \in_{3}>0\right)$ both N_{1} and N_{3} rose indefinitely while N_{2} reached a finite constant value asymptotically. Here the two rising populations behave as if they are growing in an unlimited environment without any apparent interaction between them. Yet in reality they are linked via intermediate quiescent population.

Under condition (ii), population N_{1} and N_{3} vanishes, which is clearly a rather unphysical situation, since this would mean that despite vanishing of the prey population N_{1}, the predator population N_{2} continues to be finite. This results shown up because our interaction are not fully causal. This results can be improved by incorporating appropriate time-lags in all our interactions.

CHAPTER- 2

(Section- B)

REVIEW OF ASSYMPTOTICS OF SOME THREE-SPECIES MODELS

Here the asymptotic behavior of component populations in a few interacting three species models is derived. This is done by exploiting a constraint that exists in the subspace of two of the three population, and by using Lauent serious expansions in the asymptotic region in a suitable variable.

The Three-Species Food Chain Model

The model consisted of three populations $\mathrm{N}_{1}, \mathrm{~N}_{2}$ and N_{3} with N_{2} praying on N_{1} and N_{3} preying on N_{2}. Besides containing the appropriate prey-predator interactions, the model also contained self-interaction for population N_{2}.

Equations

$$
\begin{align*}
& \dot{N}_{1}=\epsilon_{1} N_{1}-\beta_{1} N_{1} N_{2} \tag{1}\\
& \dot{N}_{2}=-\epsilon_{2} N_{2}-\beta_{2} N_{2}^{2}+\alpha_{2} N_{1} N_{2}-r_{2} N_{2} N_{3} \tag{2}\\
& \dot{N}_{3}=-\epsilon_{3} N_{3}+\beta_{3} N_{2} N_{3} \tag{3}
\end{align*}
$$

Where all the parameters ϵ_{1}, β_{1}, etc, are positive.
In terms of the variable Z defined by

$$
\begin{equation*}
z=\mathrm{e}^{\delta \mathrm{t}}, \delta>0 \tag{4}
\end{equation*}
$$

These equations become

$$
\begin{equation*}
\delta Z \frac{d N_{1}}{d Z}=\epsilon_{1} N_{1}-\beta_{1} N_{1} N_{2} \tag{1a}
\end{equation*}
$$

$$
\begin{align*}
& \delta Z \frac{d N_{2}}{d Z}=-\epsilon_{2} N_{2}-\beta_{2} N_{2}^{2}+\alpha_{2} N_{1} N_{2}-\gamma_{2} N_{2} N_{3} \tag{2a}\\
& \delta Z \frac{d N_{3}}{d Z}=-\epsilon_{3} N_{3}+\beta_{3} N_{2} N_{3} \tag{3a}
\end{align*}
$$

On equating the expression for N_{2} from (1a) and (3a), we get

$$
\begin{equation*}
-\frac{1}{\beta_{1}}\left\{\delta Z \frac{\mathrm{~d}}{\mathrm{~d} Z}\left(\log \mathrm{~N}_{1}\right)-\epsilon_{1}\right\}=\frac{1}{\beta_{3}}\left\{\delta Z \frac{\mathrm{~d}}{\mathrm{dZ}}\left(\log \mathrm{~N}_{3}\right)+\epsilon_{3}\right\} \tag{5}
\end{equation*}
$$

which on integration leads to,
$N_{1}{ }^{B_{3}} N_{3}{ }^{B_{1}}=K Z^{\sigma / \delta}$
Where K is constant and $\sigma=\epsilon_{1} \beta_{3}-\epsilon_{3} \beta_{1}$.
The pressure of self interaction term in equation (2) generally leads to frictional damping and saturation. Therefore we look for a solution of the system of equations such that

$$
\mathrm{N}_{2} \rightarrow \text { constant as } \mathrm{t} \rightarrow \infty
$$

Or

$$
\begin{equation*}
\lim _{Z \rightarrow \infty} N_{2}(Z)=b_{0} \text { where } b_{0} \text { is a constant } \tag{7}
\end{equation*}
$$

So, around $Z=\infty$, the Laurent expansion

$$
\begin{equation*}
\mathrm{N}_{2}(z)=\mathrm{b}_{0}+\sum_{n=1}^{\infty} \mathrm{b}_{-\mathrm{n}} z^{-n} \tag{8}
\end{equation*}
$$

We then have

$$
\lim _{Z \rightarrow \infty} Z \frac{d}{d Z}\left(\log N_{2}\right)=0
$$

Equation (2a) can be written as

$$
\begin{equation*}
\delta Z \lim _{Z \rightarrow \infty} Z \frac{d}{d Z}\left(\log N_{2}\right)=-\epsilon_{2}-\beta_{2} N_{2}+\alpha_{2} N_{1}-r_{1} N_{3} \tag{10}
\end{equation*}
$$

we get

$$
\begin{equation*}
\lim _{z \rightarrow \infty}\left\{\alpha_{2} N_{1}(z)-\gamma_{2} N_{3}(z)\right\}=\epsilon_{2}+\beta_{2} \mathrm{~b}_{0} \equiv \mathrm{C} \tag{11}
\end{equation*}
$$

Where C must be constant. Thus the laurent expansions of $N_{1}(Z)$ and $N_{3}(Z)$ around $Z=\infty$ should be

$$
\begin{align*}
& N_{l}(z)=\gamma_{2} f(z)+a_{0}+\sum_{n=1}^{\infty} a_{-n} z^{-n} \tag{12}\\
& N_{3}(z)=\alpha_{2} f(z)+c_{0}+\sum_{n=1}^{\infty} c_{-n} z^{-n} . \tag{13}
\end{align*}
$$

Where $f(Z)$ is as yet an unspecified function of Z which does not vanish as $Z \rightarrow \infty$.
Substituting these now in (5) for $Z \rightarrow \infty$, we get

$$
\begin{equation*}
\left[\gamma_{2} \mathrm{f}(\mathrm{Z})+\mathrm{a}_{0}+\ldots\right]^{\beta_{3}}\left[\alpha_{2} \mathrm{f}(\mathrm{Z})+\mathrm{C}_{0}+\ldots .\right]^{\beta_{1}}=\mathrm{KZ}^{\sigma / \delta} \tag{14}
\end{equation*}
$$

Now three cases arise.

CASE 1: $\sigma>0$
An examination of (14) reveals that the leading behavior of $f(Z)$ as $Z \rightarrow \infty$ must be z^{m} for some $m>0$. Thus

$$
\delta m=\frac{\sigma}{\beta_{1}+\beta_{2}}
$$

We may new choose to replace δ by $\delta^{\prime}=\delta \mathrm{m}$, and work with variable $Z^{\prime}=\mathrm{e}^{\delta^{\prime \prime}}$ instead. The leading behavior of $f\left(Z^{\prime}\right)$ is then simply given by the term $K Z^{\prime}$ where K is a constant. For convenience we drop the prime on δ^{\prime}. Thus assymptotic expansion for $N_{1}(Z)$ and $\mathrm{N}_{3}(Z)$ thus take the form.

$$
\begin{equation*}
N_{l}(Z)=a_{l} Z+a_{0}+\sum_{n=1}^{\infty} a_{-n} Z^{-n} \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
N_{3}(Z)=C_{1} Z+C_{0}+\sum_{n=1}^{\infty} C_{-n} Z^{-n} . \tag{17}
\end{equation*}
$$

Substituting equation (8), (16), (17) in (1 a)- (3 a) and equating the coefficients of like powers of Z we obtain.

$$
\begin{aligned}
& c_{1}=a_{1}\left(\alpha_{2} / \gamma_{2}\right), b_{0}=\left(\in 1+\epsilon_{3}\right) /\left(\beta_{1}+\beta_{3}\right) \\
& a_{0}=\frac{\left(\epsilon_{2}+\beta_{2} b_{0}\right) \beta_{1}}{\left(\beta_{1}+\beta_{3}\right)}, c_{0}=\frac{-\alpha_{2} \beta_{3}}{\gamma_{2} \beta_{1}} a_{0} .
\end{aligned}
$$

Reverting to the variable t :

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} N_{1}(t)=a_{1} e^{\sigma^{\prime} t} \\
& \lim _{t \rightarrow \infty} N_{2}(t)=\left(\epsilon_{1}+\epsilon_{3}\right) /\left(\beta_{1}+\beta_{3}\right) \\
& \lim _{t \rightarrow \infty} N_{3}(t)=\left(\frac{\alpha_{2}}{\gamma_{2}}\right) a_{1} e^{\sigma^{\prime} t}
\end{aligned}
$$

where $\sigma^{\prime}=\sigma /\left(\beta_{1}+\beta_{3}\right)>0$

CASE $2:(\sigma<0)$

Since the r.h.s of (14) must vanish in the limit $Z \rightarrow \infty$, the function $f(Z)$ must be identically zero and furthermore a_{0} and c_{0} can not both be nonzero, only one of them can. The appropriate expansions in this case

$$
\begin{aligned}
& N_{1}=a_{0}+\sum_{n=1}^{\infty} a_{-n} Z^{-n} . \\
& N_{2}=b_{0}+\sum_{n=1}^{\infty} b_{-n} Z^{-n} \\
& N_{3}=\sum_{n=1}^{\infty} C_{-n} Z^{-n} .
\end{aligned}
$$

On substituting (22) in (1a)-(3a) we can get the value of a_{0} and b_{0}.
Hence the selection

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} N_{1}(t)=a_{0}=\frac{\left(\epsilon_{1} \beta_{2}+\epsilon_{2} \beta_{1}\right)}{\alpha_{2} \beta_{1}} \\
& \lim _{t \rightarrow \infty} N_{2}(t)=b_{0}=\epsilon_{1} / \beta_{1} \\
& \lim _{t \rightarrow \infty} N_{3}(t)=b_{0}=C_{-1} e^{\left(\sigma / \beta_{1}\right) t} \rightarrow 0
\end{aligned}
$$

CASE-3: $(\sigma=0)$
In this case, equations (5) reduces to

$$
\mathrm{N}_{1}{ }^{\mathrm{B}_{3}} \mathrm{~N}_{3}{ }^{\mathrm{B}_{1}}=\mathrm{K}
$$

Which in view of equation (11) implies the behaviour

$$
\begin{aligned}
& N_{1}(Z)=a_{0}+\sum_{n=1}^{\infty} a_{-n} Z^{-n} \\
& N_{3}(Z)=c_{0}+\sum_{n=1}^{\infty} c_{n} Z^{-n} .
\end{aligned}
$$

Substituting these expressions in (1 a) - (3 a) and equating coefficients of like terms, We get

$$
\mathrm{b}_{0}=\frac{\epsilon_{1}}{\beta_{1}}=\frac{\epsilon_{3}}{\beta_{3}},
$$

while a_{0} and c_{0} are given by the solutions of the equations

$$
\begin{aligned}
& \alpha_{2} a_{0}=\gamma_{2} c_{0}=\left(\epsilon_{1} \beta_{2}+\epsilon_{2} \beta_{1}\right) / \beta_{1} . \\
& a_{0}^{\prime \prime \prime} c_{n}^{\beta_{1}}=K
\end{aligned}
$$

Solution

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} N_{1}=a_{0} . \\
& \lim _{t \rightarrow \infty} N_{2}=b_{0}=\frac{\epsilon_{1}}{\beta_{1}} \\
& \lim _{t \rightarrow \infty} N_{3}=C_{0} .
\end{aligned}
$$

2. THE ONE PREY- TWO PREDATOR MODEL

The model consisted of three populations $\mathrm{N}_{1}, \mathrm{~N}_{2}$ and N_{3} with N_{2} and N_{3} preying on N_{1}. Besides containing the appropriate prey-predator interactions, the model also contained self-interaction for the population N_{1}.

Equations

$$
\begin{aligned}
& \dot{N}_{1}=\epsilon_{1} \mathrm{~N}_{1}-\alpha_{1} \mathrm{~N}_{1} \mathrm{~N}_{2}-\beta_{1} \mathrm{~N}_{1} \mathrm{~N}_{2}-\eta_{1} \mathrm{~N}_{1} \mathrm{~N}_{3} . \\
& \dot{\mathrm{N}}_{2}=-\epsilon_{2} \mathrm{~N}_{2}+\alpha_{2} \mathrm{~N}_{1} \mathrm{~N}_{2} . \\
& \dot{\mathrm{N}}_{3}=-\epsilon_{3} \mathrm{~N}_{3}+\alpha_{3} \mathrm{~N}_{1} \mathrm{~N}_{3} .
\end{aligned}
$$

In terms of the variable Z, we new have the constraint

$$
\mathrm{N}_{2}{ }^{4,} \mathrm{~N}_{3}^{-\alpha_{2}}=\mathrm{LZ}^{n / \dot{\beta}}
$$

Where L is constant determined by the initial conditions and

$$
\eta=\alpha_{2} \epsilon_{3}-\alpha_{3} \epsilon_{2} .
$$

Now two possibilities axises

$$
\text { CASE-1 : }(\eta>0)
$$

Here solution is

$$
\lim _{t \rightarrow \infty} N_{1}(t)=\frac{\epsilon_{2}}{\alpha_{2}}
$$

$\lim _{t \rightarrow \infty} N_{2}(t)=\frac{\alpha_{2} \epsilon_{1}-\alpha_{1} \epsilon_{2}}{\alpha_{2} \beta_{1}}$
$\lim _{1 \rightarrow \infty} N_{3}(t)=0$.

CASE-2: $(\eta<0)$
Solution: is
$\lim _{t \rightarrow \infty} N_{1}(t)=\frac{\epsilon_{3}}{\alpha_{3}}$
$\lim _{t \rightarrow \infty} N_{2}(t)=0$
$\lim _{1 \rightarrow \infty} N_{3}(t)=\left(\alpha_{3} \in_{1}-\alpha_{1} \in_{3}\right) / \alpha_{3} \gamma_{1}$.

CASE-3: $(\eta=0)$

Solution

$\lim _{t \rightarrow \infty} N_{1}(t)=\frac{\epsilon_{2}}{\alpha_{2}}$
$\lim _{t \rightarrow \infty} N_{2}(t)=b_{0}$
$\lim _{1 \rightarrow \infty} N_{3}(t)=c_{0}$

Where

$$
\beta_{1} b_{0}+\gamma_{1} c_{0}=\left(\alpha_{2} \in_{1}-\alpha_{1} \in_{2}\right) / \alpha_{2}
$$

3. THE TWO PREY-ONE PREDATOR MODEL

The model consisted of three populations $\mathrm{N}_{1}, \mathrm{~N}_{2}$ and N_{3} with N_{3} preying on N_{1} and N_{2}. Besides containing the appropriate prey-predator interactions, the model also contained self-interaction for populations N_{3}.

Equation

$$
\begin{aligned}
& \dot{N}_{1}=\epsilon_{1} N_{1}-\gamma_{1} N_{1} N_{3} \\
& \dot{N}_{2}=\epsilon_{2} N_{2}-\gamma_{2} N_{2} N_{3} \\
& \dot{N}_{3}=-\epsilon_{3} N_{3}-\gamma_{3} N_{3}^{2}+\alpha_{3} N_{1} N_{3}+\beta_{3} N_{2} N_{3} .
\end{aligned}
$$

The constraint in terms of the variable Z, is now $N_{1}{ }^{\gamma_{2}} n_{2}^{-\gamma_{1}}=M Z^{w / \delta}$.
Where M is initial-condition dependant constant and

$$
w=\epsilon_{1} \gamma_{2}-\epsilon_{2} \gamma_{1} .
$$

CASE-1 : $(\mathrm{W}>0)$
The assymptotics are now given as follows

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} N_{1}(t)=\frac{\left(\epsilon_{3} \gamma_{1}+\epsilon_{1} \gamma_{3}\right)}{\alpha_{3} \gamma_{1}} \\
& \lim _{t \rightarrow \infty} N_{2}(t)=0 \\
& \lim _{t \rightarrow \infty} N_{3}(t)=\frac{\epsilon_{1}}{\gamma_{1}}
\end{aligned}
$$

$$
\text { CASE }-2:(w<0)
$$

In this case we get

$$
\lim _{t \rightarrow \infty} N_{l}(t)=0
$$

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} N_{2}(t)=\left(\epsilon_{3} \gamma_{2}+\epsilon_{2} \gamma_{3}\right) / \beta_{3} \gamma_{2} . \\
& \lim _{1 \rightarrow \infty} N_{3}(t)=\frac{\epsilon_{2}}{\gamma_{2}}
\end{aligned}
$$

$$
\text { CASE - 3: }(w=0)
$$

In this case, we get

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} N_{1}(t)=a_{0} \\
& \lim _{t \rightarrow \infty} N_{2}(t)=b_{0} \\
& \lim _{t \rightarrow \infty} N_{3}(t)=\frac{\epsilon_{1}}{\gamma_{1}},
\end{aligned}
$$

where

$$
\alpha_{3} \mathrm{a}_{0}+\beta_{3} \mathrm{~b}_{0}=\left(\epsilon_{3} \gamma_{1}+\epsilon_{1} \gamma_{3}\right) / \gamma_{1}
$$

The methods used here as a basis for discussion of certain four species models in the next chapter.

CHAPTER - 3

ANALYSIS OF ASSYMPTOPTICS OF SOME FOUR SPECIES MODELS

In this chapter we carry out an analysis of assymptotics of certain four species ecosystems. In section I we consider the three prey-one predator system in which preypredator interaction and self interaction for the predator is considered. In section II we deal with the one prey-three predator interaction in which prey-predator interaction and self interaction for the prey is considered.

It is not possible to write the exact solutions of the above systems. However important information about the populations can be ascertained by analysing the behaviour of the systems in the assymptotic region as $t \rightarrow \infty$. The results are obtained by exploring the constraint that exist in the subspace of three populations and using suitable laurent series expansions in an appropriately choosen variable in the assymptotic region.

SECTION - A

THREE PREY-ONE PREDATOR SYSTEM

The model consisted of four populations $N_{1}, N_{2}, N_{3}, N_{4}$ with N_{4} preying on N_{1}, $\mathrm{N}_{2}, \mathrm{~N}_{3}$, Besides the model containing the prey-predator interaction, the model also contained self interaction for the population N_{4}.

Equation

$$
\begin{align*}
& \dot{N}_{1}=a_{1} N_{1}-b_{1} N_{1} N_{4} \tag{1}\\
& \dot{N}_{2}=a_{2} N_{2}-b_{2} N_{2} N_{4} \tag{2}\\
& \dot{N}_{3}=a_{3} N_{3}-b_{3} N_{3} N_{4} \tag{3}\\
& \dot{N}_{4}=-a_{4} N_{4}-b_{4} N_{4}^{2}+c_{4} N_{1} N_{4}+d_{4} N_{2} N_{4}+e_{4} N_{3} N_{4} \tag{4}
\end{align*}
$$

where all the parameters $a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, a_{4}, b_{4}$ etc. are positive.
In terms of variable Z defined by

$$
\mathrm{Z}=\mathrm{e}^{\delta \mathrm{t}}
$$

These equation becomes:
$\delta Z \frac{d N_{1}}{d Z}=a_{1} N_{1}-b_{1} N_{1} N_{4}$
$\delta Z \frac{d N_{2}}{d Z}=a_{2} N_{2}-b_{2} N_{2} N_{4}$
$\delta Z \frac{d N_{3}}{d Z}=a_{3} N_{3}-b_{3} N_{3} N_{4}$
$\delta Z \frac{d N_{4}}{d Z}=-a_{4} N_{4}-b_{4} N_{4}^{2}+c_{4} N_{1} N_{4}+d_{4} N_{2} N_{4}+e_{4} N_{3} N_{4}$

The presence of the self interaction term in equation (4) generally leads to frictional damping and saturation. Therefore we look for a solution of the system such that

$$
\mathrm{N}_{4} \rightarrow \text { constant as } \mathrm{t} \rightarrow \infty
$$

$$
\begin{equation*}
\text { or } \lim _{Z \rightarrow \infty} N_{4}=d_{0} \tag{9}
\end{equation*}
$$

where d_{0} is constant. This would imply, around $Z=\infty$, the following Laurent expansion

$$
\mathrm{N}_{4}=\mathrm{d}_{0}+\sum_{\mathrm{n}=1}^{\infty} \mathrm{d}_{-\mathrm{n}} \mathrm{Z}^{-n}
$$

Equation (8) can be written as

$$
\begin{gathered}
\delta Z \frac{d}{d Z}\left\{\log N_{4}(Z)\right\}=-a_{4}-b_{4} N_{4}+c_{4} N_{1}+d_{4} N_{2}+e_{4} N_{3} \\
\text { or } \quad \lim _{Z \rightarrow x} \delta Z \frac{d}{d Z}\left\{\log N_{4}(X)\right\}=-a_{4}-b_{4} \lim _{Z \rightarrow x} N_{4}(Z)+c_{4} \lim _{Z \rightarrow \infty} N_{1}(Z) \\
+d_{4} \lim _{Z \rightarrow x} N_{2}(Z)+e_{4} \lim _{Z \rightarrow x} N_{3}(Z) s s
\end{gathered}
$$

or

$$
0=-a_{4}-b_{4} d_{0}+c_{4} \lim _{Z \rightarrow \infty} N_{1}(Z)+d_{4} \lim _{Z \rightarrow \infty} N_{2}(Z)+e_{4} \lim _{Z \rightarrow \infty} N_{3}(Z)
$$

or

$$
\begin{gathered}
c_{+} \lim _{z \rightarrow x} N_{1}(Z)+d_{4} \lim _{z \rightarrow x} N_{2}(Z)+e_{+} \lim _{z \rightarrow x} N_{3}(Z) \\
=a_{4}+b_{4} d_{0}=D
\end{gathered}
$$

where D is positive

Since c_{4}, d_{4}, e_{4} are positive and linear combination of N_{1}, N_{2} and N_{3} is also positive, hence $f(Z)$ term $\left(\Sigma \beta_{n} Z^{n}\right)$ in the Launent expansion will be absent.

Thus the laurent expansion of N_{1}, N_{2} and N_{3} around $Z=\infty$ should be;

$$
\begin{align*}
& N_{1}=a_{0}+\sum_{n=1}^{\infty} a_{-n} Z^{-n} \tag{10}\\
& N_{2}=b_{0}+\sum_{n=1}^{\infty} b_{-n} Z^{-n} \tag{11}\\
& N_{3}=c_{0}+\sum_{n=1}^{\infty} c_{-n} Z^{-n} \tag{12}
\end{align*}
$$

On equating the expression for N_{4} from equation (5) and (6), we get

$$
\frac{1}{b_{1}}\left\{\delta \mathrm{Z} \frac{\mathrm{~d}}{\mathrm{dZ}}\left(\log \mathrm{~N}_{1}\right)-\mathrm{a}_{1}\right\}=\frac{1}{\mathrm{~b}_{2}}\left\{\delta \mathrm{Z} \frac{\mathrm{~d}}{\mathrm{dZ}}\left(\log \mathrm{~N}_{2}\right)-\mathrm{a}_{2}\right\}
$$

which on integration leads to the equation

$$
\begin{align*}
& \mathrm{N}_{1}^{\mathrm{b}_{2}} \mathrm{~N}_{2}^{-\mathrm{b}_{1}}=\mathrm{k} Z^{\left(\mathrm{a}_{1} \mathrm{~b}_{2}-b_{1} a_{2}\right) / \delta} \tag{13}\\
& \mathrm{N}_{1}^{\mathrm{b}_{2}} \mathrm{~N}_{2}^{-\mathrm{b}_{1}}=\mathrm{k} Z^{\sigma / \delta}
\end{align*}
$$

On equating the expression for N_{4} from equation (5) and (7), we get

$$
\frac{1}{\mathrm{~b}_{1}}\left\{\delta \mathrm{Z} \frac{\mathrm{~d}}{\mathrm{dZ}}\left(\log \mathrm{~N}_{\mathrm{t}}\right)-\mathrm{a}_{1}\right\}=\frac{1}{\mathrm{~b}_{3}}\left\{\delta \mathrm{Z} \frac{\mathrm{~d}}{\mathrm{dZ}}\left(\log \mathrm{~N}_{3}\right)-\mathrm{a}_{3}\right\}
$$

which on integration leads to equation

$$
\begin{align*}
& N_{1}^{b_{3}} N_{3}^{-b_{1}}=L Z^{\eta / 8} \tag{14}\\
& \text { where } \eta=a_{1} b_{3}-b_{1} a_{3}
\end{align*}
$$

CASE - I

$$
(\sigma>0, \eta>0)
$$

Rewriting equation (13) and (14)

$$
\begin{aligned}
& \mathrm{N}_{1}^{\mathrm{b}_{2}} \mathrm{~N}_{2}^{-\mathrm{b}_{1}}=\mathrm{kZ} Z^{\sigma / \delta} \\
& \mathrm{N}_{1}^{\mathrm{b}_{3}} \mathrm{~N}_{3}^{-\mathrm{b}_{1}}=\mathrm{L} Z^{\mathrm{n} / \delta}
\end{aligned}
$$

For $\sigma>0, \eta>0$ right hand side of above equations tends to infinite as $z \rightarrow \infty$. Hence constant term b_{0} and c_{0} in N_{2} and N_{3} must be zero.

Hence

$$
\begin{align*}
& N_{1}=a_{0}+\sum_{n=1}^{\infty} a_{-n} Z^{-n} \tag{15}\\
& N_{2}=\sum_{n=2}^{\infty} b_{-n} Z^{-n} \tag{16}\\
& N_{3}=\sum_{n=3}^{\infty} C_{-n} Z^{-n} \tag{17}
\end{align*}
$$

Rewriting equation (5)

$$
\begin{aligned}
& \delta Z \frac{d N_{1}}{d Z}=a_{1} N_{1}-b_{1} N_{1} N_{+} \\
& \delta Z \frac{d}{d Z}\left(a_{n}+\sum_{n=1}^{\infty} a_{-n} Z^{-n}\right)=a_{1}\left(a_{n}+\sum_{n=1}^{\infty} a_{-n} Z^{-n}\right)-b_{1}\left(a_{n}+\sum_{n=1}^{n} a_{-n} Z^{-n}\right) \\
& \quad\left(d_{n}+\sum_{n=1}^{\infty} d_{-n} Z^{-n}\right)
\end{aligned}
$$

Comparing the constant term in above equation,

$$
\begin{aligned}
& a_{1} a_{0}-b_{1} a_{0} d_{0}=0 \\
& a_{0}\left(a_{1}-b_{1} d_{0}\right)=0
\end{aligned}
$$

Either $\mathrm{a}_{0}=0$ or $\left(\mathrm{a}_{1}-\mathrm{b}_{1} \mathrm{~d}_{0}\right)=0$
Since $a_{0} \neq 0$,
hence $a_{1}-b_{1} d_{0}=0$

$$
d_{0}=\frac{a_{1}}{b_{1}}
$$

Rewriting the equation (8)

$$
\delta Z \frac{d N_{4}}{d Z}=-a_{4} N_{4}-b_{4} N_{4}^{2}+c_{4} N_{1} N_{4}+d_{4} N_{1} N_{4}+e_{+} N_{1} N_{4}
$$

or

$$
\begin{aligned}
& \delta Z \frac{d N_{+}}{d Z}=-a_{+}\left(d_{v}+\sum_{n=1}^{\infty} d_{-n} Z^{-n}\right)-b_{+}\left(d_{n}+\sum_{n=1}^{\infty} d_{-n} Z^{-n}\right)^{2}+c_{+}\left(a_{n}+\sum_{n=1}^{\infty} a_{-n} Z^{-n}\right) \\
& \left(d_{n}+\sum_{n=1}^{\infty} a_{-n} Z^{-n}\right)+d_{+}\left(\sum_{n=1}^{\infty} b_{-n} Z^{-n}\right)\left(d_{n}+\sum_{n=1}^{\infty} c_{-n} Z^{-n}\right)+e_{+}\left(\sum_{n=1}^{\infty} c_{-n} Z^{-n}\right)\left(d_{n}+\sum_{n=1}^{\infty} c_{-n} Z^{-n}\right)
\end{aligned}
$$

Comparing the constant term

$$
\begin{aligned}
& \quad-\mathrm{a}_{4} \mathrm{~d}_{0}+-\mathrm{b}_{4} \mathrm{~d}_{9}^{2}+\mathrm{c}_{4} \mathrm{a}_{1} \mathrm{~d}_{0}=0 \\
& \text { or } \quad d_{0}\left(\mathrm{a}_{0} \mathrm{c}_{4}-\mathrm{a}_{4}-\mathrm{b}_{4} \mathrm{~d}_{0}\right)
\end{aligned}
$$

Since $d_{0} \neq 0$

$$
\begin{aligned}
& a_{0} c_{4}=a_{4}+b_{4} d_{0} \\
& a_{4}=\frac{a_{4} b_{1}+b_{4} a_{1}}{b_{1} c_{4}}
\end{aligned}
$$

Hence Solution

$$
\begin{aligned}
& \lim _{1 \rightarrow \infty} N_{1}(t)=\frac{a_{4} b_{1}+a_{1} b_{4}}{c_{4} b_{1}} \\
& \lim _{t \rightarrow \infty} N_{2}(t)=0 \\
& \lim _{1 \rightarrow \infty} N_{3}(t)=0 \\
& \lim _{1 \rightarrow \infty} N_{4}(t)=\frac{a_{1}}{b_{1}}
\end{aligned}
$$

CASE - II

$$
(\sigma<0, \eta<0)
$$

Equations

$$
\mathrm{N}_{1}^{\mathrm{b}_{2}} \mathrm{~N}_{2}^{-\mathrm{b}_{1}}=\mathrm{K} \mathrm{Z}^{\mathrm{\sigma} / \delta}
$$

TH- 8086

$$
N_{1}^{b_{3}} N_{3}^{-b_{1}}+L Z^{n / \delta}
$$

For $\sigma<0, \eta<0$, right hand side of above equation tends to zero as $Z \rightarrow \infty$. So the constant term a_{0} in N_{1} must be zero.

Hence,

$$
\begin{align*}
& N_{1}=\sum_{n=1}^{\infty} a_{-n} Z^{-n} \tag{18}\\
& N_{2}=b_{0}+\sum_{n=1}^{\infty} b_{-n} Z^{-n} \tag{19}\\
& N_{3}=c_{n}+\sum_{n=1}^{\infty} c_{-n} Z^{-n} \tag{20}
\end{align*}
$$

Now substituting equation (18), (19), (20) in equation (5), (6), (7), (8) and equating coefficient of liké powers of z.

We get,

$$
\begin{aligned}
& d_{0}=\frac{a_{2}}{b_{2}}=\frac{a_{3}}{b_{3}} \\
& a_{4}+b_{4} d_{0}=d_{4} b_{0}+e_{4} c_{0}
\end{aligned}
$$

Hence the solution

$$
\begin{aligned}
& \lim _{t \rightarrow x} N_{1}=0 \\
& \lim _{i \rightarrow x} N_{2}=b_{0} \\
& \lim _{1 \rightarrow x} N_{3}=c_{n} \\
& \lim _{1 \rightarrow x} N_{4}=\frac{a_{2}}{b_{2}}=\frac{a_{3}}{b_{3}}
\end{aligned}
$$

where $a_{4}+b_{4} d_{0}=d_{4} b_{0}+e_{4} c_{0}$

CASE - III

$$
(\sigma>0, \eta<0)
$$

Re writing the equation (13) and (14)

$$
\begin{align*}
& \mathrm{N}_{1}^{\mathrm{b}_{2}} \mathrm{~N}_{3}^{-b_{1}}=\mathrm{K}^{\sigma / \hbar} \tag{9a}\\
& \mathrm{N}_{1}^{\mathrm{b}_{3}} \mathrm{~N}_{3}^{-b_{1}}=\mathrm{L} \mathrm{Z}^{n^{/ 6}} \tag{10a}
\end{align*}
$$

where

$$
\begin{gathered}
\sigma=a_{1} b_{2}-b_{1} a_{2} \\
\eta=a_{1} b_{3}-b_{1} a_{3}
\end{gathered}
$$

For $\sigma>0$, right hand side of equation (9a) tends to ∞ as Z tends to ∞. Hence constant term b_{0} in N_{2} must be zero.

For $\eta<0$, Right hand side of equation (10a) tends to zero as Z tends to infinite.
Hence constant term a_{0} in N_{1} must be zero.
Let $\quad N_{1}=\frac{a_{-1}}{Z}$

$$
N_{2}=\frac{b_{-1}}{Z}
$$

Substituting these in equation (9a)

$$
a_{-1}^{b_{2}} b_{-1}^{-b_{1}} Z^{b_{1}-b_{2}}=K Z^{\sigma / \beta}
$$

Since $\sigma>0$, hence $b_{1}-b_{2}>0$
New Conditions are

$$
\begin{align*}
& \sigma>0, \eta<0, \quad \text { and }\left(b_{1}-b_{2}\right)>0 \\
& N_{1}=\frac{a_{-1}}{Z} \tag{21}
\end{align*}
$$

$$
\begin{align*}
& N_{2}=\frac{b_{-1}}{Z} \tag{22}\\
& N_{3}=c_{0}+\sum_{n=1}^{\infty} c_{-n} Z^{-n} \tag{23}\\
& N_{+}=d_{0}+\sum_{n=1}^{\infty} d_{-n} Z^{-n} \tag{24}
\end{align*}
$$

Substituting the equations (19), (21), (22), (23), and (24) in equations (5) (6) (7) (8), comparing the coefficients of like powers of Z.

$$
\begin{aligned}
& \mathrm{d}_{n}=\frac{\mathrm{a}_{3}}{\mathrm{~b}_{3}} \\
& \mathrm{e}_{4} \mathrm{c}_{0}=\mathrm{a}_{4}+\mathrm{b}_{4} \mathrm{~d}_{0} \\
& \mathrm{c}_{0}=\frac{\mathrm{a}_{4} \mathrm{~b}_{3}+\mathrm{a}_{3} \mathrm{~b}_{4}}{e_{4} \mathrm{~b}_{3}}
\end{aligned}
$$

Hence Solution

$$
\begin{aligned}
& \lim _{i \rightarrow \infty} N_{1}=0 \\
& \lim _{\rightarrow \rightarrow \infty} N_{2}=0 \\
& \lim _{\rightarrow \infty} N_{3}=\frac{a_{1} b_{3}+a_{3} b_{4}}{e_{4} b_{3}} \\
& \lim _{1 \rightarrow \infty} N_{4}=\frac{a_{3}}{b_{3}}
\end{aligned}
$$

CASE - IV

$$
(\sigma<0 . \eta>0)
$$

Rewriting the equation (13) and (14)

$$
\begin{equation*}
\mathrm{N}_{1}^{\mathrm{b}_{2}} \mathrm{~N}_{2}^{-\mathrm{b}_{1}}=\mathrm{K} \mathrm{Z}^{\mathrm{c} / \mathrm{s}} \tag{9a}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{N}_{1}^{b_{3} ;} \mathrm{N}_{3}^{-b 1}=\mathrm{L} \mathrm{Z}^{1 / \mathrm{s}} \tag{10a}
\end{equation*}
$$

For $\sigma<0$, Right hand side of equation (9a) tends to zero as $Z \rightarrow \infty$. Hence constant term a_{0} in N_{1} will be zero.

For $\eta>0$ right hand side of equation (10a) tends to $Z \rightarrow \infty$. Hence constant term c_{0} in N_{3} will be zero.

Suppose $\quad N_{1}=\frac{\mathrm{a}_{-1}}{\mathrm{z}}$

$$
N_{3}=\frac{c_{-1}}{z}
$$

Substituting these in equation (10a)

$$
a_{-1}^{b_{3} c_{-1}^{-b_{1}} \quad Z^{b_{1}-b_{3}}=L Z^{n / 8} . \delta^{1 / 8}}
$$

Since $\eta>0$, so $b_{1}-b_{3}>0$
New Conditions are $\quad \sigma<0, \eta>0$, and $b_{1}-b_{3}>0$
Now

$$
\begin{align*}
& N_{1}=\frac{a_{-1}}{z} \tag{25}\\
& N_{2}=b_{n}+\sum_{n=1}^{x} b_{-1} z^{-n} \tag{26}\\
& N_{3}=\frac{c_{-1}}{z} \tag{27}\\
& N_{+}=d_{n}+\sum_{n=1}^{x} d_{-n} Z^{-n} \tag{28}
\end{align*}
$$

Substituting the equations (25), (26), (27) and (28) in equations (5), (6), (7) and (8) and comparing the coefficients of powers of z.

$$
\mathrm{d}_{\mathrm{n}}=\frac{\mathrm{a}_{2}}{\mathrm{~b}_{2}}
$$

$$
d_{\Delta} b_{n}=a_{+}+b_{4} d_{n}
$$

Solution

$$
\begin{aligned}
& \lim _{1 \rightarrow \infty} N_{1}=0 \\
& \lim _{1 \rightarrow \infty} N_{2}=\frac{a_{4} b_{2}+a_{2} b_{4}}{b_{2} d_{1}} \\
& \lim _{1 \rightarrow \infty} N_{3}=0 \\
& \lim _{1 \rightarrow \infty} N_{1}=\frac{a_{2}}{b_{2}}
\end{aligned}
$$

SECTION - B

THE ONE PREY- THREE PREDATOR SYSTEM

The model consisted of four populations $\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}$ and N_{4} with $\mathrm{N}_{2}, \mathrm{~N}_{3}, \mathrm{~N}_{4}$ preying on N_{1}. Besides the model containing the prey-predator interaction the model also contained self interaction for the population N_{2}.

Equations

$$
\begin{align*}
& N_{1}=a_{1}, N_{1}-b_{1}, N_{1}^{2}-C_{1} N_{1} N_{2}-d_{1} N_{1} N_{3}-e_{1} N_{1} N_{4} \tag{1}\\
& N_{2}=-a_{2} N_{2}+b_{2} N_{2} N_{1} \tag{2}\\
& N_{3}=-a_{3} N_{3}+b_{3} N_{1} N_{3} \tag{3}\\
& N_{4}=-a_{4} N_{4}+b_{4} N_{1} N_{4} \tag{4}
\end{align*}
$$

where all the parameters $a_{1}, b_{1}, c_{1}, d_{1}$ etc are positive.
In terms of variable Z defined by

$$
Z=e^{\delta t}, \delta>0
$$

these Equations become

1. $S Z \frac{d N_{1}}{d Z}=a_{1} N_{1}-b_{1} N_{1}^{2}-c_{1} N_{1} N_{2}-d_{1} N_{1} N_{3}-e_{1} N_{1} N_{4}$
2. $S Z \frac{d N_{2}}{d Z}=-a_{2} N_{2}+b_{2} N_{1} N_{2}$
3. $\quad S Z \frac{d N_{3}}{d Z}=-a_{3} N_{3}+b_{3} N_{1} N_{3}$
4. $\quad S Z \frac{d N_{4}}{d Z}=-a_{4} N_{4}+b_{4} N_{1} N_{4}$.

The presence of self interaction term in equation (I) generally leads to frictional damping and saturation. Therefore we look for a solution of the system of equation such that

$$
\mathrm{N}_{1} \rightarrow \text { constant as } \mathrm{t} \rightarrow \infty .
$$

or $\quad \lim _{Z \rightarrow \infty} N_{1}(Z)=a_{0}$ (constant)

Then Around $Z=\infty$, the laurent expansion.

$$
N_{1}=a_{0}+\sum_{n=1}^{\infty} a_{-n} z^{-n}
$$

We then have

$$
\lim _{z \rightarrow \infty} Z \frac{d}{d Z}\left\{\log N_{1}(Z)=0\right.
$$

From equation (5)

$$
\begin{aligned}
& \delta Z \frac{d N_{1}(Z)}{d Z}=a_{1} N_{1}-b_{1} N_{1} N_{1}-c_{1} N_{1} N_{2}-d_{1} N_{1} N_{3}-e_{1} N_{1} N_{4} . \\
& \text { or } \quad \delta Z \frac{d\left\{\log N_{1}(Z)\right\}}{d Z}=a_{1}-b_{1} N_{1}-c_{1} N_{2}-d_{1} N_{3}-e_{1} N_{4} . \\
& \text { or } \quad \lim _{z \rightarrow \infty} \delta Z \frac{d\left\{\log N_{1}(z)\right\}}{d Z}=a_{1}-b_{1} \lim _{z \rightarrow \infty} N_{1} \\
& \text { or } \quad \lim _{z \rightarrow \infty}\left[c_{1} \lim _{z \rightarrow \infty} N_{2}+d_{1} \lim _{z \rightarrow \infty} N_{3}+e_{1} \lim _{z \rightarrow \infty} N_{4}\right] . \\
& 0=a_{1}-b_{1} a_{0}-\lim _{z \rightarrow \infty}\left[c_{1} \lim _{z \rightarrow \infty} N_{2}+d_{1} \lim _{z \rightarrow \infty} N_{3}+e_{1} \lim _{z \rightarrow \infty} N_{4}\right] \\
& {\left[c_{1} \lim _{z \rightarrow \infty} N_{2}+d_{1} \lim _{z \rightarrow \infty} N_{3}+e_{1}, \lim _{z \rightarrow \infty} N_{4}\right]} \\
& \quad=a_{1}-a_{0} b_{1}=C
\end{aligned}
$$

Where C must be greater then zero. Since c_{1}, d_{1}, e_{1} are positive and positive linear combination of $\mathrm{N}_{1}, \mathrm{~N}_{2}$ and N_{3} is also positive.
hence $f(z)$ term $\left(\left(\Sigma \epsilon_{\mathrm{n}} Z^{\mathrm{n}}\right)\right.$ in the laurent expansion will be absent.
Thus the laurent expansion of N_{2}, N_{3} and N_{4} around $Z=\infty$ should be

$$
\text { 8(b) }\left\{\begin{array}{l}
N_{2}=b_{0}+\sum_{z=1}^{\infty} b_{n} z^{-n} \\
N_{3}=c_{0}+\sum_{z=1}^{\infty} C_{-n} z^{-n} \\
N_{4}=d_{0}+\sum_{z=1}^{\infty} d_{-n} z^{-n}
\end{array}\right.
$$

On equating the expression for N_{1} from equation (6) and (7), we get

$$
\frac{1}{\mathrm{~b}_{2}}\left[\delta Z \frac{\mathrm{~d}}{\mathrm{dZ}}\left\{\log \mathrm{~N}_{2}\right\}+\mathrm{a}_{2}\right]=\frac{1}{\mathrm{~b}_{3}}\left[\delta \mathrm{Z} \frac{\mathrm{~d}}{\mathrm{dZ}}\left(\log \mathrm{~N}_{3}\right)+\mathrm{a}_{3}\right]
$$

Solving the above equation

$$
\begin{equation*}
\mathrm{N}_{2}^{\mathrm{b}_{2}} \mathrm{~N}_{3}^{-\mathrm{b}_{3}}=\mathrm{K} \mathrm{Z}^{1 / 6} \tag{9}
\end{equation*}
$$

where $\eta=b_{2} a_{3}-b_{3} a_{2}, K$ is constant.
On equating the expression for N_{1} from equation (6) and (8)

$$
\frac{1}{\mathrm{~b}_{2}}\left[\delta Z \frac{\mathrm{~d}}{\mathrm{dZ}}\left\{\log \mathrm{~N}_{2}\right\}+\mathrm{a}_{2}\right]=\frac{1}{\mathrm{~b}_{2}}\left[\delta Z \frac{\mathrm{~d}}{\mathrm{dZ}}\left[\log \mathrm{~N}_{4}(\mathrm{Z})\right]+\mathrm{a}_{4}\right]
$$

Solving the equation

$$
\begin{equation*}
\mathrm{N}_{2}^{\mathrm{b}_{2}} \mathrm{~N}_{1}^{-\mathrm{b}_{1}}=\mathrm{L} Z^{\sigma / \beta} \tag{10}
\end{equation*}
$$

where $\sigma=b_{2} a_{4}-a_{2} b_{4}, L$ is constant

CASE - 1

$$
\begin{array}{ll}
\eta= & b_{2} a_{3}-a_{2} b_{3}>0 \\
\sigma= & b_{2} a_{4}-a_{2} b_{4}>0
\end{array}
$$

Rewriting the equation (9) and (10)

$$
\begin{aligned}
& N_{2}^{b_{2}} N_{3}^{-b_{3}}=K Z^{\eta / \delta} \\
& N_{2}^{b_{2}} N_{4}^{-b_{4}}=L Z^{\sigma / \delta}
\end{aligned}
$$

For $\eta>0, \sigma>0$, right hand side of above equation goes to ∞ as $Z \rightarrow \infty$.
Hence in equation $8\left(\right.$ b) the constant term c_{0} and d_{0} of the N_{3} and N_{4} will be zero.

$$
\begin{align*}
& N_{1}(Z)=a_{0}+\sum_{n=1}^{\infty} a_{-n} Z^{-1} \tag{11}\\
& N_{2}(Z)=b_{0}+\sum_{n=1}^{\infty} b_{-n} Z^{-n} \tag{12}\\
& N_{3}(Z)=\sum_{n=1}^{\infty} c^{-n} Z^{-n} \tag{13}\\
& N_{4}(Z)=\sum_{n=1}^{\infty} d_{-n} Z^{-n} \tag{14}
\end{align*}
$$

Substituting the equation (11), (12), (13) and (14) in equation (5), (6), (7) and (8) and comparing coefficients of like powers of z.

$$
\begin{aligned}
& \mathrm{a}_{0}=\frac{\mathrm{a}_{2}}{\mathrm{~b}_{2}} \\
& \mathrm{~b}_{0}=\frac{\mathrm{b}_{2} \mathrm{a}_{1}-\mathrm{b}_{1} \mathrm{a}_{2}}{\mathrm{~b}_{2} \mathrm{c}_{1}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lim _{1 \rightarrow \infty} N_{1}(Z)=\frac{a_{2}}{b_{2}} \\
& \lim _{1 \rightarrow \infty} N_{2}(Z)=\frac{b_{2} a_{1}-b_{1} a_{2}}{b_{2} c_{1}}
\end{aligned}
$$

$$
\lim _{t \rightarrow \infty} N_{3}(Z)=0
$$

$$
\lim _{1 \rightarrow \infty} N_{4}(Z)=0
$$

CASE - 2

$$
(\eta<0, \sigma<0)
$$

Re- writing the equation (9) and (10)

$$
\begin{align*}
& N_{2}^{b_{2}} N_{3}^{-b_{3}}=K Z^{n / \delta} \tag{9a}\\
& N_{2}^{b_{2}} N_{4}^{-b_{4}}=L Z^{\sigma / \delta} \tag{10a}
\end{align*}
$$

For $\sigma<0, \eta<0$, right hand side of above equation is zero as $Z \rightarrow \infty$. So the constant term b_{0} in N_{2} must be zero.

$$
\begin{align*}
& N_{1}(Z)=a_{n}+\sum_{n=1}^{\infty} a_{-n} Z^{-n} \\
& N_{2}(Z)=\sum_{n=1}^{\infty} b_{-n} Z^{-n} \\
& N_{3}(Z)=c_{0}+\sum_{n=1}^{\infty} c_{-n} Z^{-n} \tag{15}\\
& N_{4}(Z)=d_{0}+\sum_{n=1}^{\infty} d_{-n} Z^{-n}
\end{align*}
$$

On substituting (15) in equations (5), (6), (7) and (8). We get the constant term.

$$
\begin{aligned}
& \mathrm{a}_{0}=\frac{\mathrm{a}_{3}}{\mathrm{~b}_{s}}=\frac{\mathrm{a}_{+}}{\mathrm{b}_{+}} \\
& \mathrm{c}_{0} \mathrm{~d}_{1}+\mathrm{d}_{0} \mathrm{e}_{1}=\mathrm{a}_{1}-\mathrm{b}_{1} \mathrm{a}_{0}
\end{aligned}
$$

Hence the solution:

$$
\lim _{1 \rightarrow \infty} N_{1}=\frac{a_{3}}{b_{3}}=\frac{a_{4}}{b_{4}}
$$

$$
\begin{gathered}
\operatorname{Lim}_{1 \rightarrow \infty} N_{2}=0 \\
\operatorname{Lim}_{t \rightarrow \infty} N_{3}=c_{0} \\
\operatorname{Lim}_{1 \rightarrow \infty} N_{4}=d_{0} \\
\text { where } \rightarrow C_{0} d_{1}+d_{0} e_{1}=a_{1}-a_{0} b_{1}
\end{gathered}
$$

CASE - III

$$
(\eta=0, \sigma<0)
$$

Rewriting the equations (9) and (10)

$$
\begin{array}{ll}
\mathrm{N}_{2}^{\mathrm{b}_{2}} \mathrm{~N}_{3}^{-\mathrm{b}_{3}}=\mathrm{K} Z^{1 / \delta} & -9 \mathrm{a} \\
\mathrm{~N}_{2}^{\mathrm{b}_{2}} \mathrm{~N}_{4}^{-\mathrm{b}_{1}}=\mathrm{L} Z^{\sigma / \delta} & -10 \mathrm{a}
\end{array}
$$

For $\eta>0$, right hand side of $(9$ a) goes to ∞ as Z goes to ∞.
Hence constant term in $\mathrm{N}_{3}\left(\mathrm{c}_{0}\right)$ will be zero.
Since $\sigma<0$, right hand side of (10 a) goes to zero as Z goes to ∞.
Hence constant term b_{0} in N_{2} will be zero.
Suppose

$$
\begin{aligned}
& N_{2}=\frac{b_{-1}}{Z} \\
& N_{3}=\frac{c_{-1}}{Z}
\end{aligned}
$$

Putting these in equation (9 a)

$$
\begin{aligned}
& \left(\frac{b_{-1}}{Z}\right)^{b_{2}}\left(\frac{c_{-1}}{Z}\right)^{-b_{3}}=L Z^{\eta / \delta} \\
& c_{-1}^{b_{2}} c_{-1}^{-b_{3}} Z^{b_{3}-b_{2}}=L Z^{1 / \delta}
\end{aligned}
$$

Since $\eta>0, S_{0} b_{3}-b_{2}>0$

New conditions are

$$
\eta>0, \sigma<0, \quad \text { and } b_{3}-b_{2}>0
$$

So, $\quad N_{I}=a_{0}+\sum_{n=1}^{\infty} a_{-n} z^{-n}$

$$
\mathrm{N}_{2}=\frac{\mathrm{b}_{-1}}{\mathrm{Z}}
$$

$$
N_{3}=\frac{c_{-1}}{Z}
$$

$$
\mathrm{N}_{4}=\mathrm{d}_{0}+\sum_{\mathrm{n}=1}^{\infty} \mathrm{d}_{-\mathrm{n}} Z^{-\mathrm{n}}
$$

On substituting the (17) in equations (5, (6), (7) and (8) and comparing coefficients

$$
\begin{aligned}
& a_{0}=\frac{a_{\perp}}{b_{4}} \\
& a_{1}-b_{1} a_{0}=e_{1} d_{0} \\
& d_{0}=\frac{a_{1} b_{1}-b_{1} a_{\perp}}{b_{1} e_{1}}
\end{aligned}
$$

Hence the solution

$$
\begin{aligned}
& \lim _{z \rightarrow \infty} N_{1}=a_{0}=\frac{a_{4}}{b_{4}} \\
& \lim _{z \rightarrow \infty} N_{2}=0 \\
& \lim _{z \rightarrow \infty} N_{3}=0 \\
& \lim _{z \rightarrow \infty} N_{4}=\frac{a_{1} b_{4}-b_{1} a_{4}}{b_{4} e_{1}}
\end{aligned}
$$

CASE - IV

$$
(\eta<0, \quad \sigma>0)
$$

Rewriting the equation (9) and (10)

$$
\begin{align*}
& N_{2}^{b_{2}} N_{3}^{-b_{3}}=K Z^{\eta / \delta} \tag{9a}\\
& N_{2}^{b_{2}} N_{4}^{-b_{4}}=K Z^{\sigma / \delta} \tag{10a}
\end{align*}
$$

For $\eta<0$, right hand side of (9 a) goes to zero as Z goes to ∞.
Hence constant term b_{0} in N_{2} will be zero.
Since $\sigma>0$, right hand side of (10 a) goes to infinite as Z goes to ∞.
Hence constant term d_{0} in N_{4} will be zero.

Let

$$
N_{1}=a_{0}+\sum_{n=1}^{\infty} a_{-n} Z^{-n}
$$

$$
\left[\begin{array}{l}
N_{2}=\frac{b_{-1}}{Z} \\
N_{3}=c_{n}+\sum_{n=1}^{\infty} c_{-n} Z^{-n} \tag{18}\\
N_{+}=\frac{d_{-1}}{Z}
\end{array}\right.
$$

substituting these in equation (10 a)

$$
\begin{aligned}
& \left(\frac{\mathrm{b}_{-1}}{Z}\right)^{\mathrm{b}_{2}}\left(\frac{\mathrm{~d}_{-1}}{Z}\right)^{-\mathrm{b}_{4}}=\mathrm{L} Z^{\sigma / \delta} \\
& \left(\mathrm{b}_{-1}\right)^{\mathrm{b}_{2}}\left(\mathrm{~d}_{-1}\right)^{-\mathrm{b}_{4}} Z^{\mathrm{b}_{4}-\mathrm{b}_{2}}=\mathrm{L} Z^{\sigma / \delta} .
\end{aligned}
$$

Since $\sigma>0$, hence $b_{4}-b_{2}>0$.
New conditions are

$$
\eta<0, \sigma>0 \quad \text { and } \quad b_{4}-b_{2}>0
$$

Substituting equation (18) in equations (5), (6), (7) and (8), and comparing coefficients of like powers of Z.

$$
\begin{array}{ll}
a_{0}=\frac{a_{3}}{b_{3}} \\
a_{1}-b_{1} a_{0}=d_{1} c_{0} \\
\text { or } \quad & c_{0}=\frac{a_{1} b_{3}-b_{1} a_{3}}{d_{1} b_{3}}
\end{array}
$$

Hence

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} N_{1}=a_{0}=\frac{a_{3}}{b_{3}} \\
& \lim _{t \rightarrow \infty} N_{2}=0 \\
& \lim _{t \rightarrow \infty} N_{3}=\frac{a_{1} b_{3}-b_{1} a_{3}}{d_{1} b_{3}} \\
& \lim _{t \rightarrow \infty} N_{4}=0
\end{aligned}
$$

CHAPTER - 4

ILLUSTRATION OF THE ANALYTICAL RESULTS USING RUNGEKUTTA APPROXIMATION METHOD

In this chapter we illustrate our previously obtained results using the Rung-Kutta approximation method for numerical analysis. The program used for this purpose is a standard Runge Kutta Fourth order. We fed our specific numerical inputs in the program and the results under different conditions were plotted.

RESULTS

ONE PREY-THREE PREDATOR SYSTEM

Case 1: For $\sigma>0$ i.e $b_{2} a_{3}-a_{2} b_{3}>0$

$$
\eta>0 \quad \text { i.e. } b_{3} a_{4}-a_{2} b_{4}>0
$$

Initial value of the populations:

$$
\begin{aligned}
& N_{1}(0)=2 \\
& N_{2}(0)=3 \\
& N_{3}(0)=2 \\
& N_{4}(0)=3
\end{aligned}
$$

Numerical inputs for Different Parameters:
$a_{1}=2$

$$
b_{2}=8
$$

$$
b_{1}=0.5
$$

$$
a_{3}=3
$$

$$
c_{1}=0.2
$$

$$
\mathrm{b}_{3}=1.5
$$

$$
d_{1}=0.8
$$

$$
a_{4}=4
$$

$$
\begin{array}{ll}
e_{1}=8 & b_{4}=2 \\
a_{2}=8 &
\end{array}
$$

The situation for this case is represented by Fig. 1.
Case 2: For $\quad \sigma<0$

$$
\eta<0
$$

Initial value of the populations

$$
\begin{aligned}
& \mathrm{N}_{1}(0)=3 \\
& \mathrm{~N}_{2}(0)=4 \\
& \mathrm{~N}_{3}(0)=1 \\
& \mathrm{~N}_{4}(0)=4
\end{aligned}
$$

Numerical inputs for different parameters:

$$
\begin{array}{ll}
\mathrm{a}_{1}=2 & \mathrm{~b}_{2}=3 \\
\mathrm{~b}_{1}=0.5 & \mathrm{a}_{3}=3 \\
\mathrm{c}_{1}=0.2 & \mathrm{~b}_{3}=1.5 \\
\mathrm{~d}_{1}=0.8 & \mathrm{a}_{4}=4 \\
\mathrm{e}_{1}=0.1 & \mathrm{~b}_{4}=2 \\
\mathrm{~d}_{2}=8 &
\end{array}
$$

The Situation for this case is represented by Fig. 2.
Case 3: For $\sigma>0$

$$
\eta<0
$$

Initial value of the populations:

$$
\begin{aligned}
& N_{1}(0)=3 \\
& N_{2}(0)=4
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{N}_{3}(0)=4 \\
& \mathrm{~N}_{4}(0)=3
\end{aligned}
$$

Numerical inputs for different parameters:

$$
\begin{array}{ll}
\mathrm{a}_{1}=2 & \mathrm{~b}_{2}=3 \\
\mathrm{~b}_{1}=.5 & \mathrm{a}_{3}=3 \\
\mathrm{c}_{1}=.2 & \mathrm{~b}_{3}=1.5 \\
\mathrm{~d}_{1}=.8 & \mathrm{a}_{4}=11 \\
\mathrm{e}_{1}=.1 & \mathrm{~b}_{4}=4 \\
\mathrm{~d}_{2}=8 &
\end{array}
$$

Situation for this case is represented by Fig. 3.
Case 4: For $\quad \sigma<0$

$$
\eta>0
$$

Initial value of the populations:

$$
\begin{aligned}
& \mathrm{N}_{1}(0)=2 \\
& \mathrm{~N}_{2}(0)=4 \\
& \mathrm{~N}_{3}(0)=6 \\
& \mathrm{~N}_{4}(0)=8
\end{aligned}
$$

Numerical inputs for different parameters:
$\mathrm{a}_{1}=2.5$
$b_{2}=8$
$b_{1}=0.5$
$a_{3}=10$
$c_{1}=0.2$
$b_{3}=9$
$\mathrm{d}_{1}=0.8$
$a_{4}=4$
$e_{1}=0.1$
$b_{4}=5$

$$
\mathrm{a}_{2}=8
$$

The situation for this case is represented in Fig. 4.

THREE PREY-ONE PREDATOR SYSTEM

Case 1: For $\quad \sigma>0$ i.e $\quad a_{1} b_{2}-b_{1} a_{2}>0$

$$
\eta>0 \quad \text { i.e. } \quad a_{1} b_{3}-b_{1} a_{3}>0
$$

Initial value of the populations:

$$
\begin{aligned}
& \mathrm{N}_{1}(0)=5 \\
& \mathrm{~N}_{2}(0)=5 \\
& \mathrm{~N}_{3}(0)=6 \\
& \mathrm{~N}_{4}(0)=2
\end{aligned}
$$

Numerical inputs for different parameters:

$$
\begin{array}{ll}
\mathrm{a}_{1}=4 & a_{4}=2 \\
\mathrm{~b}_{1}=2 & \mathrm{~b}_{4}=0.5 \\
\mathrm{a}_{2}=3 & \mathrm{c}_{4}=0.2 \\
\mathrm{~b}_{2}=3 & \mathrm{~d}_{4}=0.8 \\
\mathrm{a}_{3}=3 & \mathrm{e}_{4}=0.1 \\
\mathrm{~b}_{3}=3 &
\end{array}
$$

The situation for this case is represented by Fig. 5 .
Case 2: For $\sigma<0$

$$
\eta<0
$$

Initial value of the populations:

$$
\begin{aligned}
& N_{1}(0)=5 \\
& N_{2}(0)=10
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{N}_{3}(0)=5 \\
& \mathrm{~N}_{4}(0)=5
\end{aligned}
$$

Numerical inputs for different parameters:

$$
\begin{array}{ll}
a_{1}=3 & a_{4}=2 \\
b_{1}=4 & b_{4}=0.5 \\
a_{2}=6 & c_{4}=0.2 \\
b_{2}=3 & d_{4}=0.8 \\
a_{3}=6 & e_{4}=0.1 \\
b_{3}=3 &
\end{array}
$$

The situation for this case is represented by Fig. 6.
Case 3: For $\sigma>0$

$$
\eta<0
$$

Initial value of populations

$$
\begin{aligned}
& \mathrm{N}_{1}(0)=3 \\
& \mathrm{~N}_{2}(0)=5 \\
& \mathrm{~N}_{3}(0)=4 \\
& \mathrm{~N}_{4}(0)=2
\end{aligned}
$$

Numerical inputs for different parameters:
$a_{1}=3$
$a_{4}=2$
$b_{1}=4$
$\mathrm{b}_{4}=0.5$
$\mathrm{a}_{2}=2$
$\mathrm{c}_{4}=0.2$
$b_{2}=3$
$\mathrm{d}_{4}=0.8$
$a_{3}=3$
$\mathrm{e}_{4}=0.3$

$$
b_{3}=4
$$

The situation for this case is represented by Fig. 7.
Case 4: For $\quad \sigma<0$

$$
\eta>0
$$

Initial value of populations:

$$
\begin{aligned}
& N_{1}(0)=6 \\
& N_{2}(0)=5 \\
& N_{3}(0)=8 \\
& N_{4}(0)=2
\end{aligned}
$$

Numerical inputs for different parameters:
$a_{1}=3$

$$
a_{4}=2
$$

$$
b_{1}=6
$$

$$
b_{4}=0.5
$$

$$
\mathrm{a}_{2}=3
$$

$$
c_{4}=0.2
$$

$$
b_{2}=3
$$

$$
\mathrm{d}_{4}=0.8
$$

$$
a_{3}=2
$$

$$
e_{4}=0.1
$$

$$
b_{3}=5
$$

The situation for this case is represented by Fig. 8.

One Prey-Three Predator ($\sigma>0, \eta>0$)

FIG. 1

One Prey-Three Predator $(\sigma<0, \eta<0)$

FIG 2

One Prey-Three Predator $(\sigma>0, \eta<0,(b 4-b 2)>0)$

FIG. 3

One Prey-Three Predator $(\sigma<0, \eta>0,(b 3-b 2)>0)$

FIG. 4

FIG-5

Three Prey-One Predator ($\sigma<0, \eta<0$)

Fig. 6

Three Prey-One Predator $(\sigma>0, \eta<0,(b 1-b 2)>0)$

FIG. - 7

Three Prey- One Predator $(\sigma<0, \eta>0,(b 1-b 3)>0)$

FIG. 8

CHAPTER - 5

CONCLUSION

We have obtained the asymptotic behavior of the component population for two different four species models. This has been done by exploiting constraints which exist in the sub space of three of the four species in each case, and by using a Laurent expansion in suitably chosen variable. Our main results are summarized in the following tables.

ASSYMPTOTIC BEHAVIOUR OF POPULATIONS IN THREE PREY ONE PREDATOR MODEL

MODEL	BEHAVIOUR FOR $t \rightarrow \infty$,
$\dot{N}_{1}=a_{1} N_{1}-b_{1} N_{1} N_{4}$	CASE - 1
$\dot{N}_{2}=a_{2} N_{2}-b_{2} N_{2} N_{4}$	$\sigma>0, \eta>0$
$\dot{N}_{3}=a_{3} N_{3}-b_{3} N_{3} N_{4}$	$N_{1}=\frac{a_{4} b_{1}+a_{1} b_{4}}{c_{4} b_{1}}$
$\dot{N}_{4}=-a_{4} N_{4}-b_{4} N_{4}^{2}+C_{4} N_{1} N_{4}$	$N_{1}=0$
$+d_{4} N_{2} N_{4}+C_{4} N_{3} N_{4}$	$N_{3}=0$
Constraints	$N_{4}=\frac{a_{1}}{b_{1}}$
i. $N_{1}^{b_{2}} N_{2}^{-b_{1}}=K Z^{\sigma / \delta}$.	CASE -2
Where $\sigma=a_{1} b_{2}-b_{1} a_{2}$.	$\sigma<0, \eta<0$

$N_{1}^{b_{3}} N_{3}^{-b_{1}}=L Z^{1 / \delta}$.
$\eta=a_{1} b_{3}-b_{1} a_{3}$
$\mathrm{N}_{2}=\mathrm{b}_{0}$
$\mathrm{N}_{3}=\mathrm{C}_{0}$
$\mathrm{N}_{4}=\frac{\mathrm{a}_{2}}{\mathrm{~b}_{2}}=\frac{\mathrm{a}_{3}}{\mathrm{~b}_{3}}$
Where $a_{4}+b_{4} d_{0}=d_{4} b_{0}+e_{4} c_{0}$
CASE III
$\sigma>0, \eta<0$
$N_{1}=0$
$N_{2}=0$
$N_{3}=\frac{a_{4} b_{3}+a_{3} b_{4}}{b_{3} e_{+}}$
$\mathrm{N}_{4}=\mathrm{d}_{0}=\frac{\mathrm{a}_{3}}{\mathrm{~b}_{3}}$
CASE - IV
$(\sigma<0, \quad \eta>0)$
$N_{1}=0$
$N_{2}=\frac{a_{4} b_{2}+a_{2} b_{4}}{b_{2} d_{4}}$
$\mathrm{N}_{3}=0$

$$
N_{4}=\frac{a_{2}}{b_{2}}
$$

ASSYMPTOTIC BEHAVIOUR OF POPULATIONS IN

ONE PREY - THREE PREDATOR MODEL

$|$| $N_{1}=\frac{a_{4}}{b_{4}}$ |
| :--- |
| $N_{2}=0$ |
| $N_{3}=0$ |
| $N_{4}=\frac{a_{1} b_{4}-b_{1} a_{4}}{b_{1} e_{1}}$ |
| $\operatorname{CASE}-4$ |
| $(\sigma>0, \eta<0)$. |
| $N_{1}=\frac{a_{3}}{b_{3}}$ |
| $N_{2}=0$ |
| $N_{3}=\frac{a_{1} b_{3}-b_{1} a_{3}}{d_{1} b_{3}}$ |
| $N_{4}=0$ |

BIBLIOGRAPHY

Cramer, N.F and May, R.M. (1972) : Interspecific Competition, Predation and species diversity : A comment, vol. 34, 289-293.

Fujii, K. (1977) : Complexity-Stability relationship of two prey one predator species system model : Local and Global Stability, Jr. Theor. Biol., Vol. 69, 613.

Holling, C.S.)1965) : The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., vol. 45, 1.

Holt R.D.)(1977) : Predation apparent competition and structure of prey communities, Theor. Population Biology, vo. 12, 197-29.

Hutson, V and Vickers, G. T. (1983) : A criteria for permanent coexistence of species with an application to a two pre-are predator system, Math. Bioscience, vol. 63.253.

Jain, M.K. (1984) Numerical Solutions of differential equations New Delhi; Wiley Eastern Limited.

Kolmogorov, A. N. (1936) : Sulla teoria di Volterra lotta per 1' esistenza, Giorn., Inst. Ita. Atturvai, vol. 7, 74-80.

Leslie, P. H. and Gower, J.C. (1960) : the properties of stochastic and model for predator prey type of interaction between two species, Biometrica, vol. 47, 219.

Loman, John (1988) : A graphical solution to a one predator, two prey system with apparent competition and Mutualism, Mathematical Bioscience, vol. 91-1-16.

Lotka, A. (1924) : Elements of Physical Biology, Williams and Wilkins, Baltimore, Md.

May, R. M. (1972) : Limit Cycles prey predator Communities, Science, vol 177, 900.

May, R. M. (1972) : Stability and complexity model ecosystem, Princeton Univ. Press.

May, R. M. (1973) : Qualitative Stability in Model ecosystem, Ecology, vol. 54, No.3, 638.

May, R. M. : Theoretical Ecology : Principles and Applications, Balckwell Scientific publications (1973).

0Noy-Mier, 1. (19810 ; Theoretical dynamics of competitors under predations, Oecologia, vol. 50, 277-284.

Parrish J.D2. and Saila S. b. (1970) : Interspecific competitions predation and species diversity, vol 27. 207-220.

Pielou, E. C. (1977) Mathematical ecology, New York, John-Wiley and Sons.

Rai V., Kumar V and Pande, L. K. (1991) : A new Prey predator model, IEEE Transactions on system men and cybernetics, p. 261. vol. 21. No.1.

Tanner J. T. (1975) : The stability and intrinsic growth rates of prey and predator population ecology, vol. 56, 855-867.

```
DECLARE SUB lor (x!(), nn!, f!())
SCREEN }
CLS
nn = 4
DIM w(nn), x0(nn), x1(nn), x2(nn), x3(nn), x4(nn), f(nn), x(nn)
'OPEN "data2" FOR OUTPUT AS #1
READ hh, tin, tend, hprint
DATA .C05,0,30,.1
FOR i = 1 TO nn
READ xO(i)
NEXT
DATA 2,4,6,8
aa = 2.5
bb = . 5
cc = . 2
dd = . }
ee =.l
ff = 8
gq = 8
ii}=1
jj = 9
kk = 4
11. = 5
j = 0
10 'graphics
    VIEW
    WINDOW (0, -25)-(tend, 25)
' WINDOW (-2, -2)-(2, 2)
REM LINE (-15, 0)-(tend, 0)
LINE (-15, -25)-(-15, 25)
FOR i = 1 TO nn
w(i) =-x0(i)-.
NEXT
t = tin
250 'output from subprogram comes here
'PRINT t; w(1), w(2), w(3)
j = j + 1
'plotting done here
tp = t
xp = w(1)
yp = w(2)
zp = w(3)
up = w(4)
IF j = 1 THEN 11
'WRITE #1, tp, xp, yp, zp, up
REM LINE (told, xo)-(tp, xp)
PSET (tp, xp)
REM LINE (told, yo)-(tp, yp)
PSET (tp, yp)
REM LINE (told, zo)-(tp, zp)
PSET (tp, 2p)
REM LINE (told, uo)-(tp, up)
PSET (tp, up)
'LINE (xo, yo)-(xp, yp)
11.told ='tp
    xo = xp
    yo = yp
    zo = 2p
    uo = up
IF t < tend THEN GOTO 555
'CLOSE (1)
STOP
555
h2 = .5 * hh
```

```
460 FOR i = 1 TO nn
xO(i) = w(i)
NEXT
CALL lor(x0(), nn, f())
FOR i = 1 TO nn
xi(i) = hh * f(i)
NEXT
t=t+h2
FOR i = 1 TO nn
x(i) = w(i) + xl(i) * . 5
NEXT
CALL lor(x(), nn, f())
FOR i = 1 TO nn
x2(i) = hh * f(i)
NEXT
FOR i = 1 TO nn
x(i) = w(i) + x2(i) * . 5
NEXT
CALL lor(x(), nn, f(j)
FOR i = 1 TO nn
x3(i) = hh * f(i)
NEXT
FOR i = 1 TO nn
x(i) = w(i) + x3(i)
NEXT
t=t+h2
CALL lor(x(), nn, f())
FOR i = 1 TO nn
x4(i)=hh * f(i)
NEXT
FOR i = 1 TO nn
x(i) =w(i) + (x1(i) + 2* x2(i) + 2*x3(i) + x4(i))/6
NEXT
    FOR i = 1 TO nn
    w(i) = x(i)
    NEXT
1200 GOTO 250
STOP
END
```

SUB lor ($x($), $n n, f())$ STATIC
SHARED aa, bb, cc, dd, ee, ff, gg, ii, jj, kk, 11
$f(1)=a \mathrm{a} * x(1)-b b * x(4) * x(1)$
$f(2)=c c * x(2)-d d * x(2) * x(4)$
$f(3)=$ ee $* x(3)-f f * x(3) * x(4)$
$f(4)=-g g * x(4)-i i * x(4) * x(4)+j j * x(1) * \dot{x}(4)+k k * x(2) * x(4)+1$
END SUB

```
DECLARE SUB lor (x!(), nn!, f!())
SCREEN 9
CLS
\(\mathrm{nn}=4\)
DIM \(w(n n), x(n n), x(n n), x 2(n n), x 3(n n), x 4(n n), f(n n), x(n n)\)
'OPEN "datal" FOR OUTPUT AS \#1
READ hh, tin, tend, hprint
DATA . 005, 0,30,. 1
FOR \(\mathrm{i}=1\) TO nn
READ \(\mathrm{x} 0(\mathrm{i})\)
NEXT
DATA 3,5,8,10
\(\mathrm{aa}=3\)
\(\mathrm{bb}=4\)
\(\mathrm{cc}=2\)
dd \(=3\)
ee \(=3\)
ff \(=3\)
\(\mathrm{gg}=2\)
ii \(=.5\)
\(j j=.2\)
\(\mathrm{kk}=.8\)
\(11=.1\)
\(j=0\)
10 'graphics
    VIEW
    WINDOW (0, -25)-(tend, 50)
    'WINDOW ( \(-2,-2\) )-(2, 2)
REM LINE \((-15,0)-(\) tend, 0\()\)
LINE \((-15,-25)-(-15,50)\)
FOR \(i=1\) TO nn
\(w(i)=x 0(i)\)
NEXT
\(\mathrm{t}=\mathrm{tin}\)
250 'output from subprogram comes here
'PRINT t; w(1), w(2), w(3)
\(j=j+1\)
'plotting done here
\(t \mathrm{p}=\mathrm{t}\)
\(x p=w(1)\)
\(y p=w(2)\)
\(\mathbf{z p}=w(3)\)
up \(=w(4)\)
    IF \(\mathrm{j}=1\) THEN 11
    'WRITE \#1, tp, xp, yp, zp, up
    REM LINE (told, xo)-(tp, \(x p\) )
    PSET ( \(\mathrm{tp}, \mathrm{xp}\) )
    REM LINE (told, yo)-(tp; yp)
    PSET. (tp, yp)
    REM LINE (told, zo)-(tp, zp)
    PSET (tp, zp)
    REM LINE (told, uo)-(tp, up)
    PSET (tp, up)
    'LINE (xo, yo)-(xp, yp)
    11 told \(=\) tp
        \(x_{0}=x p\)
        yo \(=y p\)
        \(z o=z p\)
        uo = up
    IF \(t\) < tend THEN GOTO 555
    'CLOSE (1)
    STOT
    555
    \(\mathrm{h} 2=.5\) * hh
```

460 FOR $i=1$ TO nn
$\mathbf{x O}(i)=w(i)$
NEXT
CALL $\operatorname{lor}(x 0(), n n, f())$
FOR $i=1$ TO nn
$\mathrm{xl}(\mathrm{i})=\mathrm{hh} * \mathrm{f}(\mathrm{i})$
NEXT
$t=t+h \dot{2}$
FOR $i=1$ TO $n n$
$x(i)=w(i)+x 1(i) * .5$
NEXT
CALL lor $(x(), n n, f())$
FOR $\mathrm{i}=1$ TO nn
$\mathrm{x} 2(\mathrm{i})=\mathrm{hh} * \mathrm{f}(\mathrm{i})$
NEXT
FOR $i=1$ TO nn
$x(i)=w(i)+x 2(i) * .5$
NEXT
CALL $\operatorname{lor}(x(), n n, f())$
FOR $i=1$ TO nn
$x 3(i)=h h * f(i)$
NEXT
FOR $i=1$ TO nn
$x(i)=w(i)+x 3(i)$
NEXT
$t=t+h 2$
CALL lor(x(), nn, $f())$
FOR $i=1 \mathrm{TO} \mathrm{nn}$
$\mathrm{x} 4(\mathrm{i})=\mathrm{hh} * \mathrm{f}(\mathrm{i})$
NEXT
FOR $i=1$ TO nn
$x(i)=w(i)+(x 1(i)+2 * x 2(i)+2 * x 3(i)+x 4(i)) / 6$
NEXT
FOR $i=1$ TO nn
$W(i)=x(i)$
NEXT
1200 GOTTO 250
STOP
END

```
SUB lor ( \(x(), \mathrm{nn}, \mathrm{f}())\) STATIC
SHARED aa, bb, cc, dd, ee, ff, gg, ii, jj, kk, 11
\(f(1)=a a^{*} x(1)-b b * x(1) * x(1)-c c * x(1) * x(2)-d d * x(1) * x(3)-\) ee
\(f(2)=-\mathrm{ff} * x(2)+\mathrm{g} \boldsymbol{\mathrm { f }} \mathrm{*} \times(1) * x(2)\)
\(f(3)=-i i * x(3)+j j * x(1) * x(3)\)
\(f(4)=-\mathrm{kk} * x(4)+11 * x(1) * x(4)\)
END SUB```

