
Multilingual Indian Language Interface to \Veb

Dissertation Suhmitted to

Jawaharlal Nehru University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Technology

Computer Science & Technology

Submitted by

GAJANAN NIAL

to the

School of Computer & Systems Sci~ -:es

Jawaharlal Nehru University

New Delhi-11 0067

INDIA

January, 2000

Certificate

This is to certify that the dissertation entitled

"Multilingual Indian Language Interface to Web"

being submitted by me to the Jawaharlal Nehru

University in partial fulfillment of the requirements for

the award of the degree of Master of Technology in

Computer Science and Technology is a record of

original work done by me under the supervision of Dr.

D. K. Lobiyal, School of Computer and Systems

Sciences, during the Monsoon Semester, 1999.

The results reported in this project have not been

submitted in part or full to any other University or

Institution for the award of any degree.

Dean,
School of Computer &
Systems Sciences
JNU, New Delhi
INDIA

~~0uvb
(GAJANAN NIAL)

~~
Dr. D.K. Lobiyal
Asstt. Professor
School of Computer &
Systems Sciences,
JNU, New Delhi
INDIA

Abstract

The rapid growth in the number of Internet users in India demands a large

amount of content in Indian languages placed across the Intemet. For communication

across the :::lobe Intemet has served as one of the most efficient means. But. when it

comes to communicating in local dialects and scripts, we find lot of limitations. Many

users find it difficult to put forth their thoughts in a foreign language like English.

Certainly, Internet users in a country like India would prefer to communicate each

other in native languages and scripts. Moreover, to fill up forms for HTML format

users have to depend on the Latin-I encoding to submit the data. Keeping in mind the

multilingual features of the Indian languages, we have provided a solution, which

would allow users to fill up forms and communicate with each other through an

online chat application in their native languages. Presently, our solution caters Hindi

together with English as a means of communication, however it can be extended to

any Brahmi based Indian script.

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to Dr. D. K. Lobiyal, Assistant
Professor, School of Computer and Systems Sciences, Jawaharlal Nehru Universitv,
for the unfailing support he has provided throughout. In all respects, I am grateful for
the patience he has exhibited and for the time he has spent with me. It would have
been impossible for me to come out successfully without his constant supervision.

I extend my thanks to Prof. C. P. Katti, Dean, School of Computer and
Systems Sciences, J.N.U., for providing me the opportunity to undertake this project.
I would also like to thank the authorities of our school for providing me the necessary
facilities to complete my project in time.

I acknowledge and thank each and every one of those who directly or
indirectly helped me in this work. Specially, a mention about my family members is a
must, who have been source of support and encouragement for me. I would also take
this previelage to thank all my friends, lab mates in JNU, and coworkers at UBF for
their valuable support and concern for this work.

' ~

Last but not the least, I thank and praise God, who has been with me and
guiding me perfectly according to his sovereign will and plan.

sth January, 2000
SC & SS. J.N.U.,
NIAL)
New Delhi.

(GAJANAN

Table of Contents

Introduction > .. 1

1.1 Driving Force behind the Work

1.2 Problem Definition 2

1.3 Organization of the Report 3

2 Related \\'ork ... 4

2.1 The need for Multilingual Indian Language Interface 4

2.2 History of Indian scripts .. 4

2.3 Structure of Indian scripts .. 5

2.4 Standardization a need 7

2.5 Text processing of Indian languages on typewriters and computers 8

2.6 Fonts for Indian languages/scripts .. 8

3 Character and Font Encoding for Indian Languages 11

3.1 Concept of Character Encoding ... 11

3.1.1 ASCil .. 11

3 .1.2 ISCII 12

3.1.3 Unicode ... 13

3.1.4 UTF-8 .. 13

3. 2 Concept ofF ont Encoding .. 14

3.2.1 Problems faced in designing fonts for Indian languages 17

3 .2.2 Fonts as used in web pages and web displays 18

4 Design and Implementation 20

4.1 A Solution through Java Applet .. 20

4.2 Configuration Files .. 20

4.2.1 Character Encoding fonnat .. 21

4.2.2 Keyboard Map .. 21

4.2.3 Font lnfonnation ... 22

4.3 Devanagari Tnt Area ... 23

4.3.1 Documents ... 23

4.3.2 Keyboard to !SCI! encoding .. 24

4.3.3 Keyboard Map .. 24

4.3.4 ISCII .. : 24

404 Fonnation ofDevanagari Characters ooooooo000000000o0000° 0000000000000000000000000000000000000 24

4.401 Generation of Characters 00 0 00 oooooo 000 0 oooo 0 0 0 00 oo 0000 ooooo 0 0 0 oo 0 Oo 0 00 ° 00 0000 ° 0 0 Ooo 0 00 0 ° 0 0 0 0 00 24

4.402 Generating Glyphs from Intem1ediate Display Sequence ooooooooooooooooooooOOO 25

405 Position ofMatras OOOooooOoooooooooooooOOOooooOOOooooOOooOoooooooooOOOOOoooooooooOOOOOooooooooooooooooooo 25

406 Caret Positioning oooooooOOOooooOOoooooooooooooooooooooooooOOOooo 25

40 7 Text Manipulation ooooooooooooOOOoooooooooooooooooOOOooooooooooooooooooOOOooooooooooooooooooOOOOOoooooo 26

5 An Online Chat Application in Indian Language 0 00 0 0 0 0 000 oooooooooo 0 0 0 ooO 0 00 00 0 000 0 27

501 Building ofthe Chat Applet ooo 27

50101 Submit a Chat ooooooooOoooOOOOooOOOOOOOoOOOOOoOOOOO 27

501.2 Reading the Chat data ooooOooooooooooooooooooooOOooo 28

502 Adding Indian language features to the Chat Applet oooooooooooooooooooooooooooooooo 32

503 Sending Chat Data in Hindi OooooooooooooooooooOOOooooOOOOOooooo. OoooooooooOOOooooOOOoooo 0000oooOOOOO 33

50301 Typing Chat Data in Hindi ooo 33

50302 Encoding Chat data into UTF-8 oooooooooooooooooooooooooooooo.ooooooooooooooooooooooooooooooo 33

50303 SMTP ooOOOOoooOOooooOOOoooo 33

5.4 Receiving Chat Data typed in Hindi and English Dynamically OOooooooooooooOOOOOoo 34

50401 POP3 ooo34

5.4.2 Decoding the Chat Data ooo 35

5.4.4 Displaying the Chat Data oo 35

5.4.5 Online Chat in other Indian Languages oo····o·· 35

6 Conclusions and Future Work oooooo···············o•oooooooooooooooo·········oooo·o-oo••o·····o 37

6.1 Limitations

6.2 Future Work

Bibliography

00000000000000000000000 0ooOOoooooOOOOOooOooooooOooooOOOOOooooOOoooooOoooooooooooOOOOoooooooooooo 37
•.

ooOooOoooOOOOOOOoOOOoooOOOoo•oooooooooooo• 37

000000 oooooo ... oOooooooOooooooOooooooo•oooo .. ooooooooooooooooooooOOOOOOoOOoooooooOOOooOOOooooooooooo 39

Chapter 1

Introduction

The Internet has grown enonnously in the recent past. Moreover, there is

an exponential growth in the number of Internet users around the globe. In India,

Internet users are increasing rapidly. But in a multilingual country like India

where people find it difficult to communicate in a foreign language, it is necessary

to enable the people to communicate in their own languages. This has resulted in

large amount of content being created in Indian languages on the Web. People

would prefer to use their native tongue to communicate, for example, sending

e-mails in Hindi would be preferred than in English. Some software allows people

to communicate in Indian languages, but they are mainly platfonn dependent and

they require the user to install their package or a similar package. In this project

work the aim is to provide an interface for Indian languages on the Web, which

would help users to communicate in Indian languages without the explicit

installation of any package. The solution provided is platform independent as it is

written entirely in Java.

1.1 Driving force behind tbe work

As of now, none of the existing packages provide facility to fill forms in

Indian languages, which would be quite handy for the users, who are not so

proficient in English. Typically, one would like to provide a solution in which the

software can be embedded in the User-Agent, so that the user need not bother

about a viewer. Moreover, when it comes to filling of fonns in a Web page, the

solution provided by HTML is not sufficient for supporting Indian languages. The

users have to type using the Latin-I encoding scheme, which is not very

conYenient for typing in Indian languages. A typical scenario is that the designers

of the Web page provide a transliteration scheme which would be used in the

hackend to process the user's r('quest and give an appropriate response. Some of

the disadvantages ofthis solution arc:

• It is difficult for users to work with the transliteration scheme provided by the

source.

• Different people can use different transliteration schemes.

• The user is never sure of whether the input he has given in the form is the

same as he intended to.

Ideally, users should be able to type in their native languages, preferably

with convenient key mappings and the characters typed should be displayed in the

native language itself, so that the user need not worry about any ambiguity. In this

project work, a Java applet has been provided, which can be embedded into an

HTML document and thus can be used to fill up forms. Further, the information

given as input through the applet allows easy processing, as the server-side

software can be easily written. As an example application of the applet provided

could be used to have a facility of on-line Chat and to send e-mails in Indian

languages. Though we have provided a solution for Hindi along with English, it

can be easily extended to any Brahmi based script. The solution requires the Java

plugin to be installed on the client machine as our applet is written using JDK1.2

and also the font used by the applet, for rendering the glyphs, to be present on the

client machine.

1.1 Problem Definition :

The enormous growth in the use of Internet in India demands vanous kinds of

services provided by the World Wide Web. Specifically, communication across the globe

through Internet has proved to be very successful and the most efficient way. However,

when it comes to communicate in Indian languages, the present browsers do not provide

enough scope for that. As a result, many users find it difficult to put forth their thoughts

in a foreign language like English. Moreover, to fill up forms for HTML format, users

have to depend on the Latin-I encoding to submit the data.

Therefore, the need of a wrapper for Indian languages arises to allow users to fill up

fonns and communicate each other in Indian languages, supporting dynamic fonts. Such

a wrapper will facilitate in editing and viewing text in Indian languages. The application

2

areas of having a facility like this will include sending and rece1vmg mails, web

publishing and online chat etc. in Indian languages.

1 .2 Organization of the report :

The present chapter is the introductory part of the study. In chapter 2, we

have discussed related work in the area of multilingual aspect of the Indian

languages and their scripts. The standard of encoding characters and fonts for

Indian language content is discussed in chapter 3. The design and implementation

aspects for Indian language scripts are taken up in chapter 4. Chapter 5 presents

the building of a Chat Applet in Java, which provides a facility for online chat in

Hindi and English language script. In chapter 6, we have given the conclusion and

future direction for the improvement of this work. The Appendix enumerates

some sample configuration files.

3

Chapter 2

Related Work

2.1 The Need for Multilingual Indian Language Interface to Web

The demand for computer systems capable of providing input/output facilities in

Indian scripts started in 1970s. The need for this facility was felt when the computers

became popular for office automations. As a result of this lots of Research and

Development efforts were made by various organizations to provide this facility. The

approaches made by this people were mostly for the specific script and on ad-hoc basis.

The simultaneous use of ASCII was not possible. The common formula for all the scripts

in India was not thought. It was DOE (Department of Electronics) who took initiative in

1983 for standardization of the Indian code chart. This ISSCII-83 code complied with

ISO 8-bit code recommendations (Report of the sub-committee on standardization of

Indian scripts and their codes for Information processing, DOE July 1983). While

retaining the ASCII character set in the lower half, it provided the Indian script character

set in upper 96 characters. This also had the recommendation on a Phonographic based

keyboard layout for all Indian scripts.

A common platform for all Indian scripts was thought in 1986 by DOE (Report

of the committee for "Standardization of Keyboard Layout for Indian Scripts Based

Computers" in Electronics-Infonnation & Planning, Vo1.14, No.1, Oct 1986). This report

recommended 8-bit ISCII code. The revmsmon of the same in 1988 made the code chart

more compact.

2.2 History of Indian Scripts

There are 15 officially recognized Indian scripts. These scripts are broadly

divided into two categories namely, Brahmi and Perso-Arabic scripts. The Brahmi scripts

consists of Devanagari, Punjabi. Gujarati, Oriya, Bengali, Assamese, Telugu, Kannada,

Malayalam and Tamil. And the Perso-Arabic scripts include Urdu, Sindhi and Kashmiri.

The Dcvanagari script is used for Hindi. Marathi and Sanskrit languages only. The

characteristics of the languages within the family are quite peculiar. They have the

4

common phonetic structure, making the common character set. Within the same family

again north Indian scripts like, Hindi, Marathi, Punjabi, Gujarati, Oriya, Bengali,

Assamese have common features while Southern scripts like Tamil, Telugu, Kannada and

Malayalam have common features. This clear division of characteristics has simplified

the use of computers in a multilingual aspect.

All these scripts mentioned above are written m a nonlinear fashion. Unlike

English, the size of the characters are different even within the same script. The division

between consonant and vowel is applied for all Indian scripts. The vowels getting

attached to the consonant are not in one (or horizontal) directions, they can be placed

either on the top or the bottom of consonants. This makes the use of the scripts on

computers more complicated to represent them.

To use language for any applications the characteristics of that language are

required to be known. Once this is known, the application can make use languages in a

most unifom1 manner. Indian scripts have a very different structure and have

communality amongst them. They follow almost same rules, however, the way of

representing them is different.

2.3 Structure of Indian Scripts

Since the origin of all these scripts is same, they share the common phonetic

structure. The alphabet may vary slightly and also in their graphical shapes. All of them

have basic consonants and vowels, their phonetic representation is also same. Using this

characteristic a transliteration facility benveen any Indian scripts is possible. Same way it

can be represented in Roman with the help of diacritic marks. Typically the alphabets are

divided into following categories:

The Consonants

All Indian scripts use 5 types of consonants groups, called varga. Some of the

vowel like "a" is included in the consonant category. Each varga has 5 consonants, with

primary and secondary pairs. The second consonant in each pair is derived from the first

consonant \\·ith 'h' sound, and has separate graphical representation.

Consonants nasal example

K Kha Ga Gha Na gangA

Cha Cha Ja Jha N-a mane

Ta Tha Da Dha N. ghantA

Ta Tha Da Dha N sant

Pa Ph a Ba Bha M stambha

other consonants not present in this category are,

Ya Ra La Va 'Sa S.a Sa Ha

and invisible consonant like, Ra (halant) and (halant) Ra, get formed differently.

Vowels

All the vowels are represented by separate symbols. These vowels are placed on the

consonants either in the beginning or after the consonants. Each of these vowels are

pronounced separately. Typical vowels are,

vowel: A Ee u u ru Ee

usage: Ka Ki Kee Ku KU Kru Kee

vowel :e E a 0 0 au ao

usage: Ke KE Ka Ko KO Kau Kao

anuswar

Gets used with nasal as shown in the example of consonants. e.g. rambhA

chandrabindu

e.g. PAnch

Visarga

Puts a sound of 'h' between two consonants. e.g.

du: kha

6

While forming the conjuncts, the use of broken consonants is activated by halant. On

mixing of two or more consonants the shape of the conjunct varies. Many a times halmll

is required to indicate the vowel-less ending e.g. Ramnathan.

conjunct

Complex form made from consonants and vowels.

nishkriya = Na Ee Sha (halanat) Ka (halant) Ra i Ya

Halant is also used to make the soft halant and explicit halant.

Ka (halant) Ta = Kta to make Ka (halant) (halant) Ta =Kat

Nukta

Nukta is used to derive some of the characters used in Hindi, Punjabi and Urdu etc.

Punctuation and numerals

All the punctuation and numerals are common between English and Indian scripts. They

are used on the computers using English symbols.

Vedic characters

Apart from Hindi and Marathi, Devanagari has Sanskrit language, which uses Vedic

symbols. The provision of these symbols is made by keeping the extended character set.

2.4 Standardization- a need

The applications of scripts on the computers have rapidly increased. These

applications are of various nature which include, data processing, DeskTop Publishing,

Telegraphic applications etc. If each of these application starts using the scripts in its own

way then the chances of their interfacing between any two fields becomes rare. This

interfacing requires enormous technical efforts and infrastructures to suit the

requirements of both the applications. At the same time similar kind of applications might

usc the script in a different manner, which will again limit the usc. All these efforts fur

each applications. and their limited use can be avoided by standardizing the script code.

This code can be designed by taking care of the characteristics of the languages and tht.:Jr

7

uniform rules. The standardization of the code charts for Indian languages for computer

applications has been done. This has made the implementations easier.

2.5 Text processing of Indian Languages on typewriters and computers

The text processing of Indian scripts on the mechanical typewriter and on

computers is different. There are some limitations on the mechanical typewriter as

compare to computers. Due to the complex nature of Indian script, formation of conjuncts

is extremely difficult on the typewriters. The approach used in typewriters is most suited

for graphical representation. For example, the formation of 'Pha' is done by using 'Pa'

and remaining graphical part of 'Pha'. This is not a very user-friendly approach. At the

same time it does not suit for all Indian languages. Using computer the text processing of

any kind is possible with the help of software and hardware. Specially in case of fom1ing

conjuncts the shapes of the characters vary, these various shapes can be provided on

computers by software. On the other hand the output on the typewriter is not up to the

mark. Many a times' simultaneous use of English along with Indian script is required.

This usage is made possible by standardizing the codes.

Indian scripts have tremendous applications in day-today life. These applications

include, Word processing, Database, DTP, Teleprinting, speech, OCR etc. Once the

characteristics of the scripts are known, making use of them for any of this application is

possible. Standard code chart is designed for dedicated applications as well as with

English. For any of this use, once the sequence of characters is known to form words or

conjuncts, they can be sent to or received from the device and formation of exact word is

done by software. This way device communication is nom1ally, only the receive and

sending device interprets the sequence.

2.6 Fonts for Indian languages/scripts

In simple terms, a font provides facility for displaying a set of symbols through

well-defined shapes for each symbol. The symbol is a generic concept and the font is an

instanCL' or speci fie representation of a set of symbols. Traditionally, the symbols

mentioned here have been the ktters of the alphabet in a particular language along \Yith

punctuation marks and special characters. Fonts used to be created by craftsmen and

artists during the days of printing machines that used movable type faces. Today, fonts

are created by mtists and designers who work with computer based tools.

Inside a font the specific shape for a symbol is described either in terms of a

digital image through bit maps or intem1s of a filled outline. The former is called a

bitmapped font and the latter, an outline font.

Outline fonts are increasingly being used on account of their scalability. The

descriptions result in a pictorial representation or shape for each symbol, which is

referred to as a glyph. Most fonts have a provision for describing upto 256 different

glyphs, though in practice only about 200 may be present.

Each glyph in the font is specified by a name or an integer that stands for the

location of the glyph in the set of 256. In the fonts for the Roman alphabet, it is common

to locate the glyph for a letter in the place corresponding to the ASCII code of the letter.

Thus, the glyph for "capital b" i.e., "B" will be in the sixty sixth position (the locations

are numbered from zero). Most of the frequently used glyphs are seen in the first 128

locations of the font. The second half, known as the upper ASCII, usually contains

special symbols, which are required in printed text to indicate phonetic aspects of the

letter or a reference symbol for footnotes etc ..

In most computer systems, a provision is available to display text using a font that

may be selected by the user. The text to be displayed is represented through the ASCII

codes of the characters to be shown. These codes may span the range 32-126, the usual

set of values for the letters of the alphabet, or the range 160-254 normally reserved for

special symbols.

There is no specific recommendation available on what symbols should get

displayed via the upper ASCII range though the International Standards organization has

recommended that the glyphs for some ofthe languages of Europe and the Middle east he

assigned these locations. the tenn character set is often used to refer to the set of numeric

codes assigned to the letters of the alphabet of a language. Thus, for a specified language.

the code assigned to a letter of the alphabet will be the same in all computers so that

application programs may recognize the letter from its internal code. If the glyph loc1tion

for that letter also coincides \\·ith this code, then a one to one relationship exists bct\\CCil

9

the code for a character and its glyph location in the font. For most European languages,

one letter invariably gets represented through one glyph.

The fixing of glyph locations for the letter has the most important advantage that

the text to be displayed may be shown using many different fonts. This is precisely the

idea behind wordprocessors permitting selected text to be displayed in a font chosen by

the user. As of today, fonts for most of the languages of the world are limited to 8 bit

codes for specifying the glyph positions. Almost all the languages of Asia, Japan, China

and Korea cannot be specified through 8 bit codes for their letters as there are far too

many of them. The Japanese character set includes some 24000 symbols while most of

the scripts of India provide for as many as 12000-14000 individually differing aksharas.

Later we will see how the aksharas of Indian languages may still be handled using 8 bit

fonts, i.e., fonts supporting only upto 256 glyphs.

10

Chapter 3

Characters and Fonts Encoding for Indian languages.

3.1 Concept of Character Encoding

A document on the Internet can be written in various languages. The character

encoding of a document represents a subset of the characters in the document. There are

several character encoding that contain characters from a few scripts for example, ASCII

(supports the characters in English), IS0-8859-1 (encodes most Western European

languages), IS0-8859-5 (supports Cyrillic), SHIFT JIS (a Japanese encoding). The

Unicode character encoding is a 16-bit character-encoding scheme, which can encode

more than 65,000 characters. UTF-8 (Universal Character Set Transformation Format)

encoding scheme is useful if English is used with other languages in the same document.

When a document is transferred on the Web, the User-Agent on the other side should be

informed what the character encoding of this document is.

3.1.1 ASCII

ASCII, The American Standard Code for Information Interchange is a standard

seven-bit code that was proposed by ANSI in 1963, and finalized in1968. Other sources

also credit much of the work on ASCII to work done in 1965 by Robert W. Bemer.

ASCII was established to achieve compatibility between various types of data processing

equipment. Later-day standards that document ASCII include IS0-14962-1997 and

ANSI-X3 .4-198(J(R 1997).

ASCII is the common code for microcomputer equipment. The standard ASCII

character set consists of 128 decimal numbers ranging from zero through 127 assigned to

letters. numbers. punctuation marks and the most common special characters. The tended

ASCII Character Set also consists of 128 decimal numbers and ranges from 128 through

255 representing additional special, mathematical, graphic, and foreign characters. Email.

gopher. ftp Lhe the 7-hit ASCII (American Standard Code for Information Interchange)

standard. alkl\\ 111~ f(H 128 characters. ASCII codes (J to 31 and 127 arc control characters

II

that are non-printable, whereas the other codes represent printable characters. The codes

32 to 126 represent characters of the Roman alphabet mapped to the standard qwerty

keyboard. ASCII characters arc each represented by one byte according to a standard

code. Usc of ASCII for information interchange has been severely limiting for languages

written in non-roman scripts.

3.1.2 ISCII

The Department of Electronics came up with a standard for Indian code chart. The

Indian Script Code for Information Interchange, ISCII[3], specifies a 7-bit code table,

which can be used in 7 or 8-bit ISO compatible environment. It allows English and Indian

script alphabets to be used simultaneously. ISCII retains the ASCII character set in the

lower half and provides the Indian script character set in the upper 96 characters in the

8-bit code. Some of the main features of ISCII are as follows:

• ISCII character set is a superset of all the characters required in the 10 Brahmi based

languages.

• The ISCII code contains only the basic alphabet required by Indian scripts.

Eight-bit ISCII code

ISCII -8 is an 8-bit encoding standardized by DOE in 1986. The lower 128

characters contains the ASCII character set, while the upper half of the table is used for

Indian script code. The first two columns in the upper half are reserved for control

characters as per the recommendation of the ISO(Intemational Standards Organization).

This encoding allows free mixing of Roman characters with Indian scripts.

Seven-bit ISCII code

Seven bit ISCII code is recommended for those computers and packages which do

not allow the usc of 8-bit codes. In 7-bit coding schemes, 128 positions are available for

representing all characters of the script. In this encoding scheme, control codes of ASCI I

arc retained and all other codes arc used to represent Indian scripts. The disadvantage or
thi~ C<Xk' is that Roman scripts ca:nnot be mixed with Indian scripts.

12

3.1.3 Unicode

Unicode is a 16-hit character encoding that allows 65,535 characters compared to

the 256 characters provided by 8-bit ASCI I. The Unicode Character Standard is designed

to support the interchange, processing and display of texts in various languages of the
-

modem world. Unicode is the first plane of ISO-I 0646, which is also called BMP (Basic

Multilingual Plane) or Plane Zero. ISO-I 0646 is a 32-bit encoding. It is divided into

32,000 planes, each of 64,000 character capacity. This permits 2,080 million characters.

This fom1 is also called UCS-4, Universal Character Set 4-bytes. Only the first plane of

UCS-4 encoding, Unicode, is in use. The Devanagari block of the Unicode standard is

based on ISCII-1988. The Devanagari characters are encoded in the range U+0900--

U+097F.

3.1.4 UTF-8

Character encoding standards define not only the identity of each character and its

numeric value, or code position, but also how this value is represented in bits. The

Unicode standard endorses two forms that correspond to ISO 10646 transformation

formats, UTF-8 (Universal Character Set Transformation Format)[4] and UTF-16. UTF-8

is a way of transforming all Unicode characters into a variable length encoding of bytes.

It has the advantages that the Unicode characters corresponding to the familiar ASCII set

end up having the same byte values as ASCII, and that Unicode characters transformed

into UTF-8 can be used with much existing software without extensive software rewrites.

Any Unicode character expressed in the 16-bit form can be converted to the UTF -8 form

and back without loss of information. Some salient features of the UTF -8 encoding are as

follo\\"s:

• All UCS characters ? Ox7f are encoded as a multibyte sequence consisting only of

bytes in the range Ox80 to Oxfd.

• The lexicographic sorting order of UCS-4 strings is preserved.

• All possible 2 31 UCS codes can be encoded using CTF-8.

• The hytes OxiC and Oxffare never used in the LTF-8 encoding.

• L'TF-~ encoded UCS characters can he upto six bytes long.

• The first byte of a multibyte sequence which represents a single non-ASCII UCS

character is always in the range OxcO to Oxfd and indicates how long this multibytc

sequence IS.

3.2 Concept of Font Encoding.

The encoding of a font specifies the mapping from character codes (an integer,

typically between 0 and 255) to the characters. There are no particular standards for

encoding fonts and almost every vendor comes up with an encoding scheme that is

convenient for use in their software. Though character encoding is different from font

encoding, the font encoding coulo be the same as the character encoding and this would

greatly reduce the standardization problem of font encoding.

Font encoding basically refers to the set of glyph locations recognized by a

computer system. The glyphs need not bear any relationship to the letter (Roman)of the

alphabet associated with the glyph location. The font designer can therefore place a

glyph in any desired location but refer to the glyph using the code assigned to that glyph

location (or equivalently, the name assigned to that glyph).

The concept of font encoding allows us to generate displays of text strings in

many different languages by designing fonts which contain the glyphs corresponding to

their alphabet. The text to be displayed is represented as a series of eight bit characters

and for all practical purposes, these may be reckoned as a string of ASCII codes. The

computer system takes each code and displays the glyph associated with it. The glyphs

may be viewed as the building blocks for the letter to be displayed where, by placing the

glyphs one after another. the required display is generated. Fonts also incorporate a

feature whereby some of the glyphs may be defined to have zero width even though they

extend over a horizontal range. Thus when the system places·a zero width glyph next to

another, the two are superimposed and thus permit more complex shapes to be generated,

such as accented letters. Zero width glyphs are very important for Indian language fonts.

The location of a glyph within a font that caters to non-Roman letters is pretty

much arbitrary though designers tend to follow one or more encoding standards.

Different encoding methods arc in usc today whcrc each encoding has standardized the

k)cations \\here glyph:; may he- placed. Unfortunate!\·. these locations arc not unit'orm

14

across different encoding. This is a consequence of different vendors or independent

groups choosing to support their own encoding standard in their applications (or the

Operating System). Over the years, the following encoding standards have become

popular.

1. The standard Latin character set as per IS0-8859-1

This encoding is recognized under most Operating Systems. The standard

provides for about 190 glyphs.

2. Windows specific Latin character set known as Latin-1252

This encoding supports a dozen or more glyphs beyond the number supported

under 8859-1. This encoding is the most common choice under Microsoft Windows, in

respect of non-Roman fonts.

3. Macintosh Encoding.

The Mac encoding is similar to the windows 1252 but differs in a few specific

glyph locations.

4. Encoding supported under PostScript.

PostScript is an independent approach to generating printed documents based on a

Graphic description language developed at Adobe Systems, USA. There are two or three

different encoding supported under PostScript but it is possible to have user specified

fonts with arbitrary encoding.

More glyphs in a font means that the font will pem1it display of a more

comprehensive set of letters and characters. However due to variations in text processing

across different computers, only the first of the above mentioned standards is really

usable across different computers.

Fonts arc inherently proprietary in nature and tend to be incompatible across

computer systems as well as applications. Today, it appears that very few non_Roman

fonts are available for practical usc which are supported under all the important

platfom1s. This has imposed fairly sc\·ere restrictions in respect of web displays of

Indian Language text on account of the totally arbitrary approach to designing the fonts.

True. these fonh were not designed with the idea of text processing but more for getting

15

good printouts. However when we use the same for web pages, we run into many

incompatibilities.

In editors and word processors, the internal representation of text is the ASCI I

code of the letter displayed and these codes happen to be the same as the numeric code

assigned to the glyph locations containing the letters. When it comes to fonts for Indian

languages, the display has to be built up with more than one glyph for many aksharas and

hence the internal representation of the aksharas is purely a function of where the glyphs

for the akshara are located within the font. Thus one faces the problem that the stored text

is not in a format that can be viewed on different computer systems because the encoding

standard may not be supported in each system. Also, glyph codes are the choice of the

font designer and will bear no relationship to the ordering of the aksharas in our scripts.

Thus linguistic processing of the stored text is a formidable task, being font dependent

even for a given script.

The crux of the problem in respect of Indian language fonts is best illustrated

through an example. Xdvng is a popular font for Devanagari that follows the ISI-8859-1

encoding. Sanskrit_l.2 is a beautiful font for Devanagari which is available only for the

Windows platform. Shown below are the glyphs present in each of the fonts. Sanskrit_l.2

provides for many more glyphs and includes some Vedic symbols as welL

Clearly the ASCII strings required to display Devanagari text differ for each font.

Also there ate some aksharas which may be displayed in Sanskrit_l.2 but not in Xdvng.

One would also notice that the number of glyphs required to display an akshara depend

on the akshara (or samyuktakshara) and thus a variable number of bytes is required to

represent each akshara. This is in contrast with the western alphabet where one letter is

displayed through just one glyph.

The phonetic aspect of Indian languages generally compact a lot of phonetic

information in a displayed akshara. A complex conjunct may contain as many as four

consonants and a VO\\ el but may be displayed as a unique shape with just one specially

designed glyph. Thus. no matter how best \\ e attempt to design fonts for our languages,

we are beset with the problem of haYing to deal with tc\t in tern1s of multiple byte

representations fi.1r the aksharas. Text processing ,,·ith \ ariablc number of bytes for each

unit of information is a nightmarish proposition and it is precisely tor this reason that \\ c

16

have not seen general applications supporting Indian language user interfaces which work

in a universal manner on all computer systems.

The solution to one akshara one glyph for Indian languages lies in the adoption of

sixteen bit codes for the aksharas. We will then have a set of nearly 14000 different codes

for our languages where each code is exactly 16 bits. Also if we can have fonts developed

to accommodate that many glyphs (as is the case with Japanese characters), then a one to

one correspondence between the akshara and its glyph will be possible. The only

difficulty today is that no computer system will look at a 16 bit character code, index into

a 16 bit font and display the glyph. Unicode, though claimed to be a sixteen bit code, is

really an eight bit code for each language and is therefore not suited to this requirement.

In respect of Chinese, Japanese and Korean, Unicode does indeed support a fixed 16 bit

code for each character (about 24000 of them) but the problem of large numbers of

aksharas in our languages has never been properly addressed by Unicode.

The encoding of a font specifies the mapping from character codes (an integer,

typically between 0 and 255) to the characters. There are no particular star.;:!ards for

encoding fonts and almost every vendor comes up with an encoding scheme that is

convenient for use in their software. Though character encoding is different from font

encoding, the font encoding could be the same as the character encoding and this would

greatly reduce the standardization problem of font encoding.

3.2.1 Problems faced in designing fonts for Indian languages.

In respect of Indian language text display and processing, we are confronted with

the following issues. There is no simple solution to the problems faced.

1. We cannot have standard fonts for each script as the number of glyphs required to

fom1 the aksharas properly is more than 256. Any attempt at standardization \\iII

necessarily have to compromise on the approach to displaying the conjuncts. Worse

stilL this will have to be done individually for each script.

It may he possible to agree on a compromise set of glyphs for each script and

request font designers to place them at specified locations in the fonts. This ,,·ay. some

uniformity may be possible in displaying the text for that script. However. this may not

17

be feasible in practice since printing requirements are fairly stringent on the conjuncts

and require that many be included.

2. An eight bit representation of the consonants and vowels may he feasible but one

will have to live with multibyte codes for the aksharas. !SCI I was an early attempt at

achieving some uniformity but this was not sustainable across all the Indian

languages.

3. We need to support automatic transliteration to pem1it language independent

information to be read in any script. Here one is confronted with the identification of

a global set of aksharas.

4. A one to one mapping between an akshara and a glyph is ruled out if eight bit fonts

are used. As of now, 16 bit fonts are not handled properly in most computer systems.

5. There is no clue to how many aksharas are actually needed in a language, for many

new samyuktaksharas may be formed. The set of 14000 may eventually increase.

6. It is not merely the aksharas we must display. For educational needs we also must

display the symbols for the matras along with special letters and punctuation. These

should also be coded into the character set and explicit glyphs for these must be

provided. Due to the variable physical width of the aksharas themselves, more than

one representation for a matra may be needed (see the glyphs of the Xdvng font).

3.2.2 Fonts as used in web pages and web displays

Indian language text may be conveniently displayed on web pages using the hfml

based approach. While it is indeed possible to display our texts this way, certain

interesting problem crop up when transparent viewing across different web browsers is

required. It is true that the html standard does allow user specified fonts to be used for the

display but there is no guarantee that all web browsers will support the particular

encoding specified in a font. Most \\'eb browsers can be told the encoding to be used for

the font which will display the downloaded page, automatic switch over to the encoding

applicable to individually specified fonts within the downloaded page is never

guaranteed.

18

It has also been observed that Dynamic fonts, a very interesting and useful

concept which permits the fonts used in a web page to be sent along with the page, are

rendered properly only if they confom1 to the IS08859-1 Latin encoding. As of now

Dynamic fonts generation tools work only with true type fonts. Many Indian language

fonts in True Type format are not rendered _properly on Unix systems as these fonts for

Indian languages are encoded according to windows-1252 encoding which pem1its

several more glyphs to be accommodated in the font compared to iso-8859-1. In fact,

Sanskrit_1.2, a truly high quality Devanagari font, does not get rendered properly when

sent as a Dynamic font. This is a very useful font as it supports Vedic symbols as well but

it is usable only under Windows-95. The same applies to a Telugu font called Pothana.

It appears that as of today, the safest approach to displaying Indian language text

on web pages so as to be viewed from almost all the browsers, is to restrict the font used

to an IS0-8859-1 encoding. If Java based applications are considered, then it is even

more important that we stick to this encoding.

Such a restriction always goes against the wishes of font designers who would

like to accommodate as many glyphs as possible to allow a richer set of aksharas to be

rendered. Among the freely available fonts for Indian languages, very few seem to

conform to this requirement of 8859-1 coding. This may be a consequence of the fact that

font design tools are more easily available for the MSWindows platforms and thus most

designers' end up producing TrueType fonts.

]<)

Chapter 4

Design and Implementation

The limitations one meet while communicating in various languages through the

Internet is that due to lack of sufficient standards and protocols. Presently language

content in UTF-8 encoding only have been possible with the available standards. Indeed,

UTF-8 is a safe way of encoding for transmission across various networks. Moreover,

most of the computers have the "qwerty" keyboard, using which typing in different

languages is not possible unless there is a keyboard driver that allows the user to do this.

Users have to depend on Latin-I to fill forms. This restricts Multilingual features of the

Web in a big way. Our design provides a way to get around this problem of feedback in

Latin-I by providing a Java applet that allows users to type in Indian languages. The

applet can then communicate with the server and transfer the information provided by the

user.

4.1 A Solution through Java Applet

As a solution to have text processing facility in Indian language, we have

provided a Java applet, that acts as a keyboard driver and allows users to type in Indian

languages. The language in which the user can type and the font dependent information

can be provided to the applet through the various configuration files.

The advantage of a Java applet is that it is platform and operating system

independent and it can be easily downloaded across the network and interpreted by the

browser. Further applets written in Java do not pose any security threats to the client

system. Java applets can be easily embedded in HTML documents. They can be used to

create smart fom1s, that are interactive, and can do input verification at the client side,

rather than verifying on the server, which can save bandwidth.

4.2 Configuration Files

The .Ia\ a applet requires the following configuration tiles while startup. The place

where the applet can find these files on the scr\'cr is specified in the !PARAM? tag in the

20

HTML file that embeds the Java applet. The following have to be specified in the HTML

file:

• ISCIIFILE, the file containing the character encoding information

• KEYBOARDFILE, the file containing information about the layout of various keys.

• FONTT ABLEFILE, the file that contains information on the conjuncts in the

language.

• FONTFILE. the file that contains information of the glyph positioning 111 the

corresponding font that is used.

• UNICODEFILE, is the file that contains the mapping between Unicode and ISCII.

The internal representation of characters are in ISCII forn1 for processing, but in Cnicode

format when stored or when sent across the network.

4.2.1 Character Encoding Format

This file is provided so that the other configuration files can be easily written

interpreted. This file has the format:

STRING REPRESENTATION OF CHARACTER CHARACTER CODE - - -

The character code is an integer. It can be an 8-bit character code or a 16-bit character

code. As this string representation of characters is used in all the other files, this helps in

using any character encoding the user prefers. The file name should be set as the value

for ISCIIFJLE parameter. In this file the string representation of a character as well as the

character code are one word each. The string representation is not standard, but it is used

internally by the applet in reading other configuration files.

4.2.2 Keyboard Map

The layout of various keys on the keyboard is specified in the "keyboard map" file. This

file name is specified in the HTML file, which emheds the Java applet as a par;.uncter

using the 'PARAM? tag. By changing the file, the user can gin~ a keyboard layout '")r his

choice. This file should be written in the lollO\\·ing format:

!\SCI Iv~ful: of thc_kcy !_set of ISCII_codc'> Ill stnng fi>rmat

21

The set of !SCI! codes represent the codes corresponding to the character in that layout. If

a key corresponds to more than one ISCII code, then the codes are written in the same

line separated by whitespace. This file should be specified as the value of the parameter

KEYBOARDFILE. In this file, ASCII value of a key is a single word, but the ISCII

codes can be any number of codes mapped to that key.

Conjuncts

Conjuncts are clusters of upto four consonants without the intervening implicit vowels in

Indian scripts. The shape of these conjuncts can differ from those of the constituent

characters. Different Indian scripts have different conjuncts and hence have to be defined

in the configuration file, so as to make the applet language independent. The format of

the conjunct file is as follows:

STREAM OF ISCII CHARACTERS INTERMEDIATE GLYPH CODE - - - - -

The ISCII characters are separated by whitespace. The intermediate glyph code is an

integer which is used to represent each possible character that can be generated from the

font. This file can be specified as the parameter FONTTABLEFILE. The intermediate

glyph code is a unique number and is the last word of each line. The rest of the words

correspond to the ISCII characters that are represented by the glyph code. The glyph code

is not a standard code, but used internally by the applet.

4.2.3 Font Information

The font information file specified in the parameter FONTFILE, gives the mappmg

bet\,·een the intermediate glyph code and the glyph code used in the font. This file is

dependent on the font that is used as every font has its own encoding scheme. This file

also gives us the information about how many glyphs in the font correspond to a

particular character in the alphabet. This file should be in the format:

1\JTFRMFDIATL GLYI'll COD!:

CiLYPli_CODES _CORRESPONDI:\G_ TO_ THE_CHARACTER

22

As in the other configuration files, the glyph codes corresponding to the character are

separated by whitespace. All possible glyph sequences have unique intermediate glyph

number. These intermediate glyph numbers can map any number of glyphs in the font.

4.3 Devanagari Text Area

JDK I .2 provides JTextComponent class for text editing features. The

TcxtComponent class is a super class of a set of classes. The most commonly used

coJrq!onents for editing purposes are the JTextField and JtextArea. The JTextComponent

provides these customizable features for all its descendents:

• A separate model, known as the document, to manage the component's content.

• A separate view, which is in charge of displaying the component on the screen.

• A separate controller, known as an editor kit, that can read and write text and that

implements editing capabilities with actions.

•

•

•

Customizable keymaps and key bindings .

Support for infinite undo and redo .

Pluggable caret and support for caret change listeners .

4.3.1 Documents

Like all Swing components, a text component separates its data (known as model)

from its view of the data. A text component's model is known as a document. A

document provides these services for a text component:

•

•

•

A document stores the textual content, which can represent any logical text structure,

such as paragraphs, text runs that share styles, and so on.

Provides support for editing the text through the remove and insertString methods .

:\otifies document listeners and undoable edit listeners of changes to the text .

The DevTextArea, designed by us, is a subclass ofthe JTextArea, which is inherited from

the JTextComponent class. The DevTextArea has its own document, which is used to

display the variable number of glyphs associated with each character in Devanagari.

4.3.2 Keyboard to ISCII encoding

The DevTcxtArea uses the inscript keyboard layout for the input of characters.

The code of the typed key is converted into a corresponding ISC"II code. The following

subsections describe the process in detail.

4.3.3 Keyboard Map

The "keyboard map" specifies the mapping between the "qwerty" keyboard and

the inscript keyboard. The "keyboard map" file consists of the key codes and the

corresponding ISCII characters mapped to the key. Whenever a key is pressed the

corresponding ISCII codes for the key are generated and this serves as the input to the

routine which generates the display codes. As a key pressed generates a set of ISCII

codes which is independent of the font code, it is possible to generate the same character

to be displayed for all the key sequences required to generate a particular character. We

usc the inscript keyboard layout, in which the vowels and the consonants of the Indian

language alphabet are arranged on the left and right side of the keyboard respectively.

4.3.4 ISCII

The "iscii" file contains the mapping of symbols to the 8-bit ISCII codes. The

appendix lists the table of ISCII codes. This mapping decreases the complexity of other

files as other configuration files are written using these symbols and makes the

configuration files readable.

4.4 Formation of Devanagari Characters

Characters in Devanagari are represented as a series of ISCII codes. To obtain a

character in Devanagari. the constituent ISCII characters are combined based on the

information in the "font table" file, which specifies the set of ISCII characters that

correspond to the display code.

-L4.1 Generation of Characters

We construct a hash table, in which a set of ISCII characters are mapped to a

display code. If the input pattern consists of an JSCII character sequence which is a key

24

in the hashtable, the corresponding value is stored in the display buffer. The display

buffer thus consists of a set of display codes corresponding to a series of glyphs.

4.4.2 Generating Glyphs from Intermediate Display Sequence

All possible characters in Devanagari are given a unique numbering used for

internal representation. This numbering is different from the font code. The display code

numbering corresponds to logical characters in Devanagari. Once the display code is

obtained from the ISCII code, the characters to be displayed are generated using the

"FONTFILE" file, which contains the mapping between the display code and the font

code. The insertString method of DevTextArea's document model, does the conversion

between display code to font code. Thus characters which comprise of one or more

glyphs are generated and these glyphs are displayed in the DevTextArea.

4.5 Position of Matras

Matras are vowel signs that are added to consonants to indicate a vowel sound

other than the implicit one. All matras in Devanagari, except the Matra E are positioned

after the consonant. The Matra E is positioned before the consonant. Because of the

phonetic nature of ISCII encoding, the code of Matras appear after the code of the

consonants.

4.6 Caret Positioning

Whenever a character is added in the text area, the caret position has to be

changed to show the user a logical position where the next character would be added. As

a display code might represent more than one glyph, the caret has to be moved as mimy

places as the number of glyphs inserted, as otherwise the caret may be positioned

between the glyphs constituting to the character. The "fontinfo" file contains a mapping

between display code and font code. Thus from this file we can find out the number of

glyphs corresponding to a particular display code. With this infom1ation the caret can be

positioned at the appropriate place. Caret Movement In English, there is a one to one

correspondence between the input character and the symbol displayed. So movement of

the caret corresponds to positioning the caret according to the number of glyphs present.

Howe\·er, in Indian scripts many input characters may combine to fom1 one display

2)

symbol. When this kind of input occurs, the caret is moved to the end of previous syllable

when the user presses the left arrow key. Movement of the caret is done using the

setCaretPosition of the JComponent class. The position of the caret is calculated and the

setCaretPosition method is called with the appropriate caret position as its parameter. As

a different number of ISCII characters may combine to produce a particular glyph, a

separate buffer called the isciiBuffer maintains the ISCII string input through the key

board. When the user moves in the text, the corresponding movement in the isciiBuffer

also has to be obtained. This would result in the proper insertion of the characters as the

user might want. The change in the caret position leads to a corresponding change in all

the buffer positions.

4. 7 Text Manipulation

The DevTextArea serves as a Hindi text editor. Characters can be inserted at the

current caret position. The caret positions are demarcated by syllables. One can insert text

before or after syllables by not in between the characters in the syllable. Characters

cannot be inserted between the constituent characters of a syllable. To insert a character

between the constituent characters of a syllable, one has to break the syllable by pressing

the Backspace key by positioning the caret after the syllable and rewriting the word from

that position.

Since we modify the underlying document of the TextArea after every key

pressed, other features of any JComponent like scrolling can be easily supported by

enclosing the DevTextArea in a JscroliPanel.

Chapter 5

An Online Chat Application in Indian Languages

In this chapter, we have designed a Chat Applet in Java. The applet reads a log

file stored on the server repeatedly at a given interval of time. This log file stores the last

twenty chat submissions. We use a thread to read the log file every 8-10 seconds. Any

new data in the log file is appended to the text in a TextArea. Chat data are sent to the

server in a separate thread. Each person will be required to enter a name to chat With.

When a person enters or leaves the Web pages with the chat applet on it, a message will

be submitted to the server that informs others that he/she has either entered or exited the

chat room. While it would be a trivial task to read from the log file in a Java Applet,

sending data (to be appended) to the log file, using http, becomes a challenging task.

Each line of the log file will represent one line submitted to chat. Each chat line received

will be appended to the beginning ofthe log file so that the most recent submissions will

appear at the top of the file.

5.1 Building the Chat Applet

Each time the Java Applet reads the log file, it will read the most recent chat

lines first. The Applet will compare each line to the first line read in the previous reading.

If these lines are different, then the chat log has been updated since the applet last read it.

The Applet will continue to read the file until it either finds a match or reaches the end of

log file. Each line read are stored in a temporary String, appending each line read to the

beginning of the String. This will re-order the chat data with oldest chat first to most

recent chat last. Then temporary String is appended to the end of the TextArea, where the

users read the chat data.

5.1.1 Submitting a Chat

To submit a chat, we need to emulate the interaction that happens when a Wch

browser uses CGI to send data to a Web sen·cr. A Web browser can usc GET or POST to

send data to a Web server. A fonn in 1-!Tl\1 L is made where the GET method is used,

27

when a person presses the Submit button the browser would request the following or a

similar URL.

http://www.myserver.com/cgi-bin/

5.1.2 Reading the Chat data

The POST method works almost the same way as the GET. The main difference

is that the data is read from standard-in instead of the query string. It is almost always a

good idea to use the POST method over the GET, since the GET method has limitations.

Sdate = &ctime(time);

chop($date);

Sdate = substr(Sdate,4, 12);

The lock file is simply a flag which indicates that ·someone has opened the log

file. When the ser is finished with the log file, he/she will delete the lock file. The idea

behind this lock file is:

• It needs to be checked if a lock file already exists. If it exists, someone else is in the

process of writing to the log file. So one needs to continue to check for its presence for

60 seconds.

• lfthe lock file disappears within the 60 second period, a new lock file is created so that

others will know that the log is being used currently. When it is done with the log file,

later the lock file has to be deleted using the &release_file_lock function so that others

can use the log file.

• If the lock file does not disappear, the user will assume that something went wrong. If

the Web server was rebooted while the lock file exists, for instance, it will reboot, in

error, with a lock file existing. Sixty seconds is more than enough time to wait. After

waiting this time period, one will take control of the lock file for himself.

A class called SubmitToChatServer has been created which implements

Runnable Thread to submit the data. This object uses the standard Start() method to

create and spawn the Thread. Objects of this class will be constructed with the following

parameters:

• String text This represents the actual chat text to he sent to the chat server.

• Applet app - This is a handle to the applet which is needed to construct the URL in

order to send the chatline, as well as to show status in the applet.

• String chatFileName- This specifies the name of the file on the Web Server which will

store the chat log.

We extract this file name from a parameter listed m the HTML file, which loads the

Applet. The reason we want to do this is so that we can use a single chat applet to open

several chat rooms. The HTML page, which has the name of the chat log file embedded in

it as a parameter, can be created on the fly.

The constructor will create a String, named completeMessage, by encoding the

data that will be sent to the Server by using a utility method in the URLEncoder class,

called encode(). We must separate each element with an & symbol and use the = sign to

assign the value. The URLEncoder.encode() method will replace illegal characters, such

as spaces, with characters that can be transmitted to the server without problems.

One method we need to call is setDoOutput(true). This provides the ability to

send our chat data to the Web server. In order not want to cache data, the

setUseCaches(false) method is called on our URLConnection object. The Post method

requires that the user specify what type of data he/she is sending and its length, in bytes.

Since the data are being Posted, the Content-type and Content-length using the

setRequestProperty() method need to be specified. The parameter sent as:

eMessage.length()" uses a kind of hack to convert the returned int from

completeMessage.length() into a String.

Once the URLConnection is set up like this, a DataOutputStream object can be

created with an output stream from the URLConnection object. Using this

DataOutputStream data are sent to the Web Server with the writeBytes() method.

The world sees the Java applet as a chat room. So we have chosen to create an

applet object and a Panel object. The applet will simply act as a container for the Panel

object. The Panel object will then be the meat of the project. The Chat class is derived

from the applet Class. This class will he called by the HTML web page, which contain

parameters that the applct will extract. The log file, which gets created and maintained by

the .Java Script. will reside on the \Veh server. In it the last ten chat submis-,ions arc

stored in order of most recent first.

29

The in it() method of the Chat class uses the ternary operatqr as a method to

extract the parameters in the HTML file. The init() method also makes an instance of the

ChatPanel object which will actually contain the chat engine. After setting the applet's

layout to BorderLayout, the ChatPanel object is added to it in its Center position.

The start() and stop() methods just call the ChatPanel object's start() and stop()

methods, respectively. This will be important not only for starting and stopping the chat

thread, but for sending a message to the Web server that the client has entered/exited the

chat room.

public void start(){

chatScreen.start();

public void stop() {

chatScreen.stop();

To construct this object, we will pass two parameters:

• A handle to the applet

• A String that will specify the file name of the chat log

The start method checks to see if the user has entered a name. If the user has not

entered a name to chat with, it will bring the setup panel to the front and request focus

for the TextField, which will be where the user will enter a name. If the user has entered

a name, then a new SubmitToChatServer object is created with a message indicating that

this person has entered the chat room. Each line we send to the chat server will work

exactly in this way, spawning a separate thread with which to send the data. Next, we will

start our chat engine by creating another thread for it, if one does not already exist, and

starting it. This will, in turn, invoke this object's run() method in the thread

The stop() method will do a similar thing to what the start() method does. It will

create another SubmitToChatServer object with a message indicating that the user has

left the chat room and start the process of sending it in another thread. After doing so, it

will stop the chat engine's thread so that it will not be constantly refreshing the screen.

30

public void stop(){

if(runner !=null){

new SubmitToChatServer("*** "+identity+" Has

Left This Chat Room. ***",app, chatFileName).start();

runner. stop();

runner= null;

The run() method will be the heart of the chat engine. The first thing we do is

request focus on the textField, which will be used for chat entry. In order to wrap the text

, we need to figure out the width, in pixels, of the average character in a specific font.

Once this is done, we go into an infinite while loop, which invokes a method called

refresh() and pauses the thread for the length of time specified in refresh time.

Next, we create a DatalnputStream object, which we will use to read its data.

Since the log file stores its most recent data first, we will need to read each line and pre

pend it to the front of a String, named chatData, which will be used to store the new data

with the oldest data first. The first line we read (Most Recent Chat) will be stored for the

next time this method is called. Each line read will need to be processed by the

processText() method. This method will perform the wrapping of text if necessary. We

will keep doing this on a line by line basis, until we read a line that matched the first line

read from the previous iteration of this method. When finished, we will append the

temporary String to the chatArea TextArea and close the stream. To force the TextArea

to scroll down to the bottom, we will select the last character of text contained within it

The processText() method is responsible for word wrapping within the

TextArea. It takes the nprocessed text in as a parameter and returns the processed text as

a String. If the text contains fewer characters than the average characters per line, then we

will simply return the text with two new-line characters appended to it. If the text

contains more characters than the average characters per line, then we examine the first

group or characters that fit on a line. We count backwards until we find the last

instance of a space. Here, we will insert a new-line character and repeat the process on

31

the remaining text after we pre-pend the person's name, which we extract from the text, to

the beginning of the remaining text. When finished, we return the completed processed

text with two new-line characters appended to the end.

new SubmitToChatServer(identity+" >:

"-chatLine.getText(),app,chatFileName).start();

chatLine.setText("");

To finish off this class, we have written a number of methods. These include:

setRefreshTime()

setldentity()

getldentity()

setChatLogName()

There may be a number of things one wish to do to optimize this Chat applet. For

instance, one may want to move the refresh time up or down depending on his/her chat

traffic. However it will be refreshing at longer or shorter intervals and each refresh will

read the current log file, which stores up to twenty lines of chat. If the user has heavy

traffic in his/her chat room, more than twenty lines may have been submitted during that

time period. The user may want to alter the Java Script to store more lines; however,

twenty seem to be more than adequate in most situations.

5.2 Adding Indian Language Feature to the Chat Application

The problems in having a facility for online chat in Hindi can be summarized as follows:

• Different fonts have different encoding schemes.

• ~ost of the existing UNIX systems use 7-bit encoding schemes to transfer

information through e-mail.

• ~ost systems come with the "qwerty" keyboard, using which typing messages in

Hindi is not possible.

• Even if the font is present on the system, there is usually no regular mapping

between keyboard and font code. So getting the appropriate characters would be

difficult.

32

• If we use the font code for encoding characters, it would not be possible to encode

all the characters using the 7 -bit code.

5.3 Sending Chat data in Hindi

In this section we discuss about how to send Hindi and English texts dynamically using

the existing resources.

5.3.1 Typing the Chat data in Hindi

We use the DevTextArea, which serves the purpose of an editor, to type the

messages in Hindi. As we have discussed earlier, this editor uses the lnscript keyboard

layout, in which the consonants are on the right side of the keyboard and the vowels on

the left side. Hence it is very convenient to type the messages in Hindi and English using

this editor. The DevTextArea represents the message typed as a stream of ISCII

characters. These ISCII characters are converted to Unicode characters. The Unicode

characters are sent over the network by encoding the characters in UTF-8.

5.3.2 Encoding the Chat data in UTF-8

Characters in Unicode are of 2-bytes length. Hence, they cannot be sent over the

network directly. So they are encoded into the UTF-8 encoding, in which the Unicode

characters are represented as a set of two separate bytes. The StringEncoder class has a

method, unicodeToUTF8, which converts the given Unicode string into a set of UTF-8

bytes. These bytes are ready to be sent over the network.

5.3.3 SMTP

Our Chat client uses the Simple Mail Transfer Protocol, SMTP, to send messages.

A client delivers a message by opening socket connection to port 4455 on the ser-Ver.

Once the connection is established the client sends a series of commands, delivers the

message and disconnects.

All commands and responses to and from the SMTP server are terminated by

CRlF. For every command sent by the client, the server responds with a text response,

that starts with a 3-digit code. The server response codes are categorized in Table 5.1

:, Response Code Explanation

: 200-299 Successful command execution

33

300-399

400-499

500-599

Command was initially successful but it needs

more information to complete

There was an error on the server(server down, file

system full)

Indicate an error on the client side (Invalid

password, unknown command)

Table 5.1: Response codes in SMTP

The sequence of commands sent from the client to the server is:

• HELO host name - a simple greeting from the client to the server. The host name

field is optional, but the sendmessage programs require the host name field.

• MESSAGE FROM: sender's address - identifies the user account which is sending

this message. No check is performed by the server on to who is sending this message.

So it is virtually possible to send a message as anyone in the world

• RCPT TO: receiver's address- identifies the address where this message will be sent.

The SMTPSession class implements a session with the SMTP server. It is used by

our applet to send the message. The sendMessage method essentially opens a socket on

the SMTP port and writes the headers and other information essential for initiating the

SMTP session. Then the body of the message is written on the socket. Any error occurred

during the sending of message is reported by the SMTPSession class.

5.4 Receiving Chat Data typed in Hindi and English dynamically.

Our Chat client uses POP3 to fetch the message from the server. So the applet

should be fetched from a webserver, that also acts as the POP3 server for the local

network. The following sections describe in detail how the message is being fetched and

displayed to the user.

5.4.1 POP3

Post Office Protocol versiOn 3, POP3, is a popular protocol used to remotely

access m~ssagcs on the Intemet. By using th~ POP3 protocol, the user can read his/her

rnessagess. \\ ithout ha\ ing to copy on the local machine. POP3 responses start with a "+"

for a successful command and a"-" in the case of an error. POP3 responses could span

34

only a single line or many lines. If the response is a multiple line response, it is

tcnninated with a line containing a single ".". After connecting to a POP3 server, you

have to send a USER user name command, followed by a PASS command giving the

user's password.

The POP3Session class acts as a wrapper to the application, whereby it takes care

of the connection establishment, reading a message, converting the raw sequence of

characters into a Message, the data structure that represents a message.

5.4.2 Decoding the Chat Data

The message fetched using the RETR command contains the headers as well as the body

of the message. These headers are stripped from the message using find the method name

in the Message class. The body member of the Message Flass contains the body of the

message after the headers are stripped off. The body of the message is what we are

interested in as it consists UTF-8 encoded Unicode characters, which represents the Hindi

as well as English string.

We convert the UTF-8 encoded characters into Unicode usmg the

UTF8ToUnicode method of the StringConverter class. This sequence of Unicode

characters is converted into ISCII using UnicodeTolscii method of the StringConverter

class.

5.4.3 Displaying the Chat Data

The method setiSCIIString of DevTextArea converts the given sequence of ISCII

codes into a sequence of display codes, by using the longest matching sequence of

conjuncts as specified in the "font" file. The display code corresponds to a set of font

codes. When a particular display code is inserted into the text area, the underlying

document of the DevTextArea replaces this display code with a sequence of font codes.

Thus the text displayed in the message consists of a sequence of Hindi and English

characters.

Due to applet security restrictions, which state that an applet can make network

connections only to the host from which it is downloaded, it is required that the server

from which the applet is downloaded has to be the SMTP server as well as the POP3

server.

35

5.4.4 Online Chat in other Indian Languages

The application can be extended to display any other Indian language as all the Indian

languages have a similar structure. To send mails in other Indian languages, one has to

ensure the following things:

• The appropriate Indian language font has to be installed on the client machine.

• The keyboard layout of the particular language has to be specified in the

"keyboard_ map" file.

• Though the ISCII codes for all Indian languages are the same, the characters have

different Unicode values. The configuration file which contains the mapping table

between ISCII and Unicode has to be changed appropriately.

• The conjuncts in the appropriate Indian language have to mentioned m the

configuration file which has information about conjpncts.

36

Chapter 6

Conclusions and Future Work

In this thesis, we have presented a Java applet that can be embedded into a HTML

page, which is used to get user input in Indian languages. The solution is secure, portable

and transparent to the end user. The solution was implemented for Devanagari script

together with English. Devanagari forms the basis for documents in Hindi, Marathi and

Sanskrit. Due to constraint of time and resources the solution could not be implimented

for other Indian languages as it was intended. This solution can be e~tended to other

languages just by providing the configuration files required at startup. We have also

implemented a Chat client that allows users to transparently send and receive chat

messages in Hindi and English.

6.1 Limitations

Our solution has the following limitations:

• The solution requires the Java plugin 1.2 to be installed on the client machine.

• At present, only one Indian language with English can be used in the applet.

• Moreover, the applet does not allow dynamic change of fonts in the input. It requires

the font to be installed on the client machine.

• The startup time of the applet is quite high. This IS mainly because of the high

startup time of Java applets.

• The Chat applet requires the Web server to be support SMTP as well as POP3

protocols, as it cannot make network connections to other hosts in the network.

• The Chat applet also requires addresses to be typed using Latin-I encoding.

6.2 Future Work

Our applct supports only one Indian language together with English at a time. This

can be extended to support multiple Indian languages.

37

• The applet can be extended to support more than one font in the same input area.

• It can be extended to support styled text as input.

• The Chat applet can be used to exploit the security model provided by Java and

connect to any server on the network. This can be done by changing the default

security model provided by Java.

• The applet can be enhanced to allow users to enter URLs in Hindi. This can be

done by providing a small dictionary interface between the ISCJI code for the

URL and the absolute URL in Latin-I.

Bibliography

I. iLeap Intelligent Internet Ready Indian Language Word Processor

http://www .cdac.org/gist/i leap I .htm I

2. Gist Multi-lingual Card user's guide, Quark Computers Pvt. Ltd., C-1, Sarvodaya

Nagar, Kanpur, 1996

3. Indian Script Code for Information Interchange- ISCII, IS 13194: 1991, Bureau of

Indian Standards, Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002.

4. F. Ycrgeau, UTF-8, a transformation format of Unicode and ISO 10646, Request for

Comments: 2044, October 1996

5. The Unicode Standard, Version 2.0, The Unicode Consortium, Addison-Wesley

Developers Press, Chapter 6 pp33-34, Chapter 7 pp72-74

6. The Java 2 Platform API Specification

http://java.sun.com/products/jdk/1.2/docs/apilindex.html

7. The Java Tutorial

http://java.sun.com/docs/books/tutorial/index.html

8. Jonathan B. Postel, Simple Mail Transfer Protocol, Request for Comments: 821,

August 1982

9. J. Myers, M. Rose, Post Office Protocol - Version 3, Request for Comments: 1725,

November 1994

10. Mark Wutka, et. al. Hacking Java: The Java Professional's Resource Kit, Macmillan

Publications, 1997

	TH78600001
	TH78600002
	TH78600003
	TH78600004
	TH78600005
	TH78600006
	TH78600007
	TH78600008
	TH78600009
	TH78600010
	TH78600011
	TH78600012
	TH78600013
	TH78600014
	TH78600015
	TH78600016
	TH78600017
	TH78600018
	TH78600019
	TH78600020
	TH78600021
	TH78600022
	TH78600023
	TH78600024
	TH78600025
	TH78600026
	TH78600027
	TH78600028
	TH78600029
	TH78600030
	TH78600031
	TH78600032
	TH78600033
	TH78600034
	TH78600035
	TH78600036
	TH78600037
	TH78600038
	TH78600039
	TH78600040
	TH78600041
	TH78600042
	TH78600043
	TH78600044
	TH78600045

