
ELECTilONIC MAIL SYSTEM
ON TOP OF NETBIOS

Dissertation submitted to .Jawaharlal Nehru University

in partial fulfilment of the requirements

for the award of the Degree of

MASTER OF TECHNOLOGY

OM PRAkASH SONI

SCHOOL OF COMPUTER & SYSTEMS SCIENCES
)AWAHARLAL NEHRU UNIVERSITY

NEW DELH1~11 0067

1989

CERTIFICATE

This is to certify that this project thesis

entitled ELECTRONIC MAIL SYSTEM ON TOP OF NETBIOS LAN being

submitted by OM PRAKASH SONI , in partial fulfillment of the

requirements of the degree of Master Of Technology in Computer

Science has been completed under the supervision and

guidence of Prof. K. K. Nambiar ,J.N.U. and Dr. Surendra Pal,

D.O. E.

This work has been carried out at ERNET Project

Group, D.O.E. New Delhi and has not been submitted to any

other institution or University for award of any degree.

k~-- ~~~
Dr. Surendra Pal
Joint Director
Ernet Project Group
New Delhi

Prof K.K. Nambiar
SC & SS, J.N.U
New Delhi

s. ~e<I~J
4- ·I ~'38/

Mr S.Ramakrishnan
Additional Director
Ernet Project Group
New Delhi

ACKNOLEDGEMENTS

I am pleased to express my indebteness to

Mr Ramakrishnan Additional Director, ERNET Project, D.O.E. for

having given me the opportunity to work on this project and

allowing me to use all the resources available at ERNET

Project D.O.E.

I am very much indebted to my guides

Prof. K. K. Nambiar at J.N.U and Dr. Surendra Pal, Joint

Director at D.O.E New Delhi who had been a constant source of

encouragement and guided me throughout the course of this

project work.

I express my sincere thanks to Mr. Fateh Singh

(A.O.) SC & SS, JNU. for his valuable guidance throughout my

M.Tech. course.

I would also like to thanks the other friends

at D.O.E who had offered their critical and constructive

suggestions throughout.

/-4 ~
Date: 4. Jq-,

1

qo. OM PRAKASH SONI

II

CONTENTS

TOPICS

1. INTRODUCTION TO ERNET PROJECT

2. ISO/OSI OPEN NET IMPLEP~NTATION
2.1 INTRODUCTION
2.2 SOFTWARE OVERVIEW
2.2.1 PC Link2/iNA 960 Transport Layer
2.2.2 PC Link2/iNA 960 Network Layer
2.2.3 PC Link2/iNA 960 Data Link Layer

.3. ELECTRONIC MAIL SYSTEMS
3.1 INTRODUCTION
3.2 EVOLUTION OF E-MAIL SYSTEMS
3.3 TYPES OF E-MAIL SYSTEMS
3.4 GENERAL REQUIREMENTS OF AN E-MAIL
3.5 FUNCTION OF THE E-MAIL SYSTEMS
3.6 BENIFITS AND CONCERNS

4. SOFTWARE : NETBIOS
4.1 INTRODUCTION
4.2 THE NETBIOS SESSION LAYER
4.3 NETBIOS COMMANDS
4.3.1 Introduction
4.3.2 Commands
4.3.3 Command Structure
4.3.4 Wait And No_wait Options
4.3.5 Return Codes
4.3.6 NCB Fields Description
4.3.7 NCB Commands Description

5. E-MAIL ON NETBIOS
5.1 INTRODUCTION
5.2 PLANNING AND OBJECTIVES

SYSTEM

5.3 E-MAIL SYSTEM (Functional Block Diagram)
5.4 MAIL SERVER SYSTEM
5.4.1 Introduction
5.4.2 Block Diagram Description
5.4.3 Message Codes And Operation
5.4.4 Important Message structures
5.4.5 Mail System File Structure And Management
5.5 E-MAIL SYSTEM AT WORKSTATION
5.5.1 Introduction
5.5.2 Login To The Mail System
5.5.3 Message Compositi6n And Send A Mail
5.5.4 Read Or Action On Receipt Of Mail
5.5.5 Quit From The Mail System

Ill

Page No

----- 1

----- 2-4
----- 2
----- 3-4
----- 3
----- 3
----- 4

----- 5-13
----- 5
----- 6
----- 8
----- 11
----- 12
----- 13

----- 14-31
----- 14
----- 15
----- 16-31
----- 16
----- 17
----- 18
----- 20
----- 20
----- 21
----- 25

----- 32-58
----- 32
----- 33
----- 34
----- 39-51
----- 39
----- 39
----- 44
----- 46
----- 49
----- 51-55
----- 51
----- 52
----- 52
----- 53
----- 55

5. 6 OTHER RELATED SOFTWARE
5.6.1 The pass
5.6.2 The passwd
5.6.3 The adastat
5.6.4 The sesstat
5.6.5 The test·

6. CONCLUSION AND FUTURE IMPROVEMENTS

APPENDIX

BIBLIOGRAPHY

LISTING OF SOURCE CODE

----- 55-56
----- 55
----- 56
----- 57
----- 57
----- 58

----- 59-60

CHAPTER 1

INTRODUCTION TO ERNET PROJECT

Education and Research in Computer Networking

(ERNET) is a project of Department Of Electronics (DOE

Government of India), New Delhi, funded by the United Nations

Development programme (UNDP). The project is being implemented

by the DOE in close cordination with seven major technical

academic and research institution in India viz., five Indian

Institutes of Technology at New Delhi, Kanpur, Khargpur,

Madras, Bombay, Indian Institute of Science, Bangalore and

the National Center for software Technology, Bombay.

The developement objective of the project is

to improve national capabilities in the areas of computer

networking and emerging telematic concepts in the country

through establishment of experimental computer networks,

upgradation of skills and training of the manpower. The

immediate objectives are:

1. To design, setup, and interconnect Local Area Networks

for campus coverage at eight locations mentioned above,

Metropolitan Area Networks covering a few tens of

kilometers and Wide Area Network with national coverage.

2. To establish capabilities at the above mentioned

technical institutes to undertake research and development

in the area of computer networking.

3. To establish educational programmes in computer

networking at graduate and master level.

4. To lead and co-ordinate work in India on establishment

of computer networks.

1

CHAPTER 2

ISO / OSI OPEN NET IMPLEMENTATION

2.1 INTRODUCTION

The Open System Interconnection (OSI)

reference model is as shown in Fig- 2.1 below:

APPLICATION

PRESENTATION

1---- SESSION---- 1-
___ j-

PC Link2 software implements
NETBIOS

TRANSPORT
iNA 960 and PC Link2

NETWORK software implementation

DATA LINK
NIA

PHYSICAL implementation

FIG - 2.1 OSI Reference Model Layers

The Physical layer and some protocols of

Data Link layer's are implemented by PC Link2 NIA (Network

Interface Adapter) hardware. This is known as network control

board. It is an adapter board that provides an Ethernet\ IEEE

802.3 connetion t-o the PC system. The network control board

with iNA 960 and PC Link2 software performs all network

communication functions for the first four layers of the

ISO/OSI reference model. In addition to NETBIOS interface the

2

PC Link2 software provides a programmatic interface to the iNA

960 Transport software. The iNA 960 Transport software

provides the services of the Data Link, Network, and Trnsport

layers protocols of the osr reference model.

2.2 SOFTWARE OVERVIEW

The iNA 960 and The PC Link2 software provides

the services of the Data Link, Network And Transport Layers of

the osr reference model.

2.2.1 PC Link2/iNA Transport Layer

The transport layer ensures the integrity of

the data packets and are received from and are directed to the

Network Layer. The Transport Layer establishes either a

gauranteed, error_free, point_to point, (virtual circuit

connection that delivers messages in the sequence sent, or a

datagram service that does not gaurantee message delivery, the

order of delivery, or the integrity of the message.

2.2.2 PC Link2/iNA 960 Network Layer

The Network Layer establishes connections

across a communication network. On the receiving side, frames

are accepted from the Data Link Layer, network packets are

created and then forwarded to the Transport Layer. Conversely,

on the transmitting side, messages are accepted from the

Transport Layer, converted to data packets, and then a route

is established for forwarding the packets of the correct

network subsystem.

Routing is

that are maintained and

3

accomplished via routing· tables

updated by the iNA 960 Network

Management Facility (NMF). The routing table can be built by

the user application ar~ either statically or dynamically

updated using ISO routing protocol (IS 9542) .

2.2.3 PC Link2/iNA 960 Data Link Layer

The Data Link Layer assembles the raw data

that is received from the Physical Layer into frames. The

frames are then subsequently transmitted to the Network Layer.

In the same manner, the frames are received from the Network

Layer are converted into the raw data bits and forwarded to

the Physical Layer for transmission to the designated

receiving system.

4

CHAPTER 3

ELECTRONIC MAIL SYSTEMS

3.1 INTRODUCTION

Electronic Mail is a general name that refers

to a large class of message and document delivery equipment

and services, centered on the use of computers at some point

in the system. The concept of moving messages between

individuals can be approached differently, from simple

memeoranda to complex graphics and textual material. To some,

electonic mail is simply a mean of exchanging memoranda

between the microcomputers of individuals in a LAN. To others,

electronic mail is a way of distributing messages graphics

both on site and to widely scattered offices, using a large

host computer as the controller. To stil.l others, '+-1 ... is method

for the routine distribution of the large amo~~t of wTitten

material that is generated in a office.

Electronic mail system (EMS) are computer

oriented systems for the electronic transmission of

information, including messages, text, and graphics, between

two or more selected individuals. The types of information

transmitted are:

Messages, such as memoranda, new items, and reminders.

Documents, such as computer output reports generated at

central computers or microcomputers, and textual

material, either from electronic storag·e or terminal

entry.

Graphics, or graphic textual mixtures, which may be

5

microcomputer video screen, or may be transmitted to graphics

output machinary.

The implication of Electronic in EMS are

first, that the transmission will be fast. Second the

transmission will be distance independent, the receipt can be

almost instantaneous. Third there will be computer involvement

at one or more point in the system. This may be in the

switching equipment and at the terminals.

The implication of Mail are that this the form

of end to end communication capability, where a specific

message is sent from one individual to another, or to a

selected group. It is a direct , interpersonal communication

by any of a variety of media. A permanent record of the

communication can be printed out, recorded and made available.

It is usually non-simultaneous communication.

The implication of Systems are that electronic

mail systems are combination of the electronic and non-

electronic means employed in concert

procedures. There are usually computer

protocols that must be followed.

3.2 EVOLUTION OF E MAIL SYSTEMS

with understood

programs, with

In the evolution of electronic mail systems,

there were four major advances. The first was the telegraph,

which was introduced in the early part of the nineteenth

century. This was the first system to send

electronic mean. The problem with the telegraph

manual code conversion was required, handled

operator. There was also no switching capability.

6

messages by

system that

by' a human

The teletype system was developed in the early

part of twentieth century. It was the second generation of the

electronic mail, and had automatic code conversion. It was

also point-to-point. Both sending and receiving station had to

be active simultaneously. It has circuit switching. It has a

manual variety of message switching, in which the pieces of

punched paper tape are manually hung on pegboards, available

to be used for further transmission.

The third advance was message switching. this

was developed in early 1960's as a store-and-forward teletype

system. It has computer automated store and forward replacing

the old torn-tape system. It became the basis for TELEX and

TWX services. It supplies few end user services. The message

are simply S€nt from one TELEX room to another TELEX room,

with little capability of helping the user with further

handling of the messages, for electronic filing, word

processing and so on.

In 1970's, Computer_Based Message systems

(CBMS) were introduced. These systems provide variety of end

user functions. The allow flexible editing and addressing,

general query and retrieval capabilities, connection to

databases, and so on.

From this point there will not be a simple

progression to another step, but there will be a great variety

of alternative procedures introduced. There were include data,

text, image, and voice transmission, plus combination of all

of them. Equipment and technological approaches will

7

proliferate, and there will be no single description and

categorization comman to all. We are on the threshold of rich

variety of computer based message systems and their extension.

In the 1980's CBMS that are available commercially have

generally been called Electronics Mail or E-Mail.

3.3 TYPES OF E-MAIL SYSTEMS

In general most electronics mail system can be

grouped in to four categories.

1. Keyed Entry Networks

2. Facsimile Transmission

3. Communicating Word Processors

4. Computer-Based Message System (CBMS} or E-Mail Services

Keyed Entry Networks or Record services, are those services

that enable users to make station to station calls, similar to

regular telephone service, where the actual communication

involves electrical or electronic printing equipment rather

than the voice telephone. These generally involve some sort of

central or control computer message switching that has store

and forward capabilities, rather than simple switching. That

is, message can be received, held until they are requested,

and delivered automatically to a variety of recipients on a

list that may be data dependent or instruction dependent. The

commonest record services are teletypewriter networks, such as

TWX or Telex. These now has variety of enhancement available

and there are newer services, such as Teletex and Videotex

that are becoming available.

Facsimile Transmission, usually called FAX,

8

this is technology for the transmission of an image over the

communication lines. This may be a diagram, a picture, or a

reproduction of a printed document. The transmission is in the

form of electrical signals from one location to another, where

the original image is reproduced on special equipment or

paper.

Communicating Word Processors are simply text

editing units with communications capabilities. These units

can communicate with other communicating word processors as

well as full range output devices. they are simply a way for

one secretrial workstation to send and receive textual

material to and from another workstation. Communicating word

paocessors are frequently clustered with a small controlling

computer and are used to balance secretarial loads, to cross

edit, and to maintain cordinated files of finished material.

Computer-Based Message systems (CBMS) or E

Mail services pull together the other type of electronic

mail, and allow more comlex equipment networking to be

employed. They are simply any electronic mail system that

networks microcomputer with a minicomputer or a host mainframe

to exchange notes and memoranda at a single site or a multiple

sites, with all distribution control and switching handled by

an integrated computer system. They offer considerable

efficiency for intraoffice communication, and can handle bulk

of message switching and delivery that is required.

they offer

terminal/host

Most CBMS are microcomputer/host systems since

considerably more flexibility than dumb

systems. Automatic polling is available both

9

from the host and micros. The information can be

at the micros and returnd to the host network

handling. The trend in local area networks to

manipulated

for further

handle CBMS.

These usually have less overhead and faster message

than local networks that are simply a part of a larger

passing

system

with considerable competition for switching time. A LAN system

generally offers a greater variety of transmission

capabilities locally, and handles the interconnection problems

of a variety of equipment.

Inter Personal Message Services (IPMS) is a

term to cover a range of technology involving personal

computer and communicating word processors to send and receive

message using a appropriate high-level software. The term is

becoming widely used by the Consultative Co~uittee for

International Telephony and Telegraphy (CCITT) , an

international committee which is working on standards for data

communications. One standard is for Message Handling System

(MRS) •
The CCITT message handling system standard

(X.400) considers that there is a group of "message

agents" (MTA) to route message from originator

receivers. These MTA essentially put messages in

transfer

to the

electronic

"envelopes", and deliver them as packets through a Message

Transfer Service (MTS). The MTS is designed to carry any form

of electronic mail from ASCII text to voice and facsimile. The

MTS allows a variety of formats for messages, but specifies a

standard for one message form, the Interpersonal Message

Service. The IPMS standard, which uses the MTS for delivery,

10

specifies the internal format for messages.

3.4 GENERAL REQUIREMENTS OF AN E-MAIL SYSTEM

There are many specific functional requirment

for an Electroni Mail System that depend upon specific needs.

There are number of general requirments, however, which really

define the flexibility of an EMS. Some of these are:

1. Th-e EMS should provide store and forward

switching

manner.

between all units on the network in the

message

selective

2. The EMS should provide a message network using standard

computer terminal (such as ASCII, dial-up, synchronous) for

use at all required locations.

3. The EMS should provide acc-ess to public services such as

the Sources and Computer Serve, that may be desired for use.

4. The EMS shou~d provide support an essentially

unlimited number of switching nodes in the network, plus

essentially unlimited number of addressable stations between

the switches.

5. The EMS should be capable of single or multiple address

delivery to an essentially unlimited number of stations, with

a modifiable distribution list.

6. The EMS should support the possible future inclusion of

a delayed voice capability, or avoice store and forward

provision.

7. The EMS should provide the capability of secure message

storage and transmission by means of message encryption.

8. The EMS provide a security system with a minimum effort

11

for the verification and authentication of the sender of the

message.

3.5 FUNCTIONS OF THE E-MAIL SYSTEMS

The functions of the EMS can be divided in to

the five major parts, which may well be on separate pieces of

equipment or with separate controller.

1. Input wiil normally be microprocessor at the sending

end, although it may be other type of equipment. The input may

be alphanumerics, graphics, digital siganl, voice, or video.

2. Processing may be on a central host computer, or on a

dedicated minicomputer. The processing is concernt with data,

text, graphics, error control, media conversion, integration

of functions, and voice.

3. storage will normally be attached to the processing

computer, although it may be close to the terminal locations,

in part at least. The storage is concernt with data, text,

graphics, voice, and security.

4. Communications may be local area network, a private

network, a public network, or a third party services. The

communication deals with digital to analog conversion,

protocol handling, error control, routing and rerouting,

transport and distribution, and security.

5. output wii~ normally be microprocessor at the receiving

end, although it may be other type of equipment.The output may

be visual copy on screen, hard copy, graphics, digital siganl,

voice, or .video.

3.6 BENEFITS AND CONCERNS

- 12

The fact is that the electronic mail has many

direct benefits that can be translated to cost saving if

analyzed individually for specific circumstances. The general

benefits are listed below.

Faster than conventional mail.

Faster than conventional electronic transmission.

Minimized the rekeying and rehandling of data.

Increased efficiency of handling data.

Increased availability of electronically stored data.

Acceptable cost of operation.

Personalized automatic filing of information.

Aids time management.

Reduces lost telephone lines.

In any discussion of benefits, the concerns should also be

considered to be assure that the benefits can be realized in

actual circumstances. The concerns are listed below.

Security of information difficult to control.

Reluctance of user.

Developement and maintenance of exapanded electroni files.

External information mixed with internal.

Possible incompatibility of equipment and systems.

Requirement of many intelligent terminals.

Support of large number of participants needed.

Keyboarding by managers.

13

CHAPTER 4

SOFTWARE : NETBIOS

4.1 INTRODUCTION

A stand alone PC requires three layers of

software that work together and are quite similar to the

layers in a large computer. Closest to the computer is the

basic inputjoutput system, or BIOS, that manages all serial

periphera~s. In th.e layer above BIOS is the disk operating

system, DOS software. In the past, version of MSDOS and PCDOS

through Version 3.0 allowed only single user application. The

top software level is L~e applications software, which may be

a DBMS, utility programs, etc.

Terminal in a LAN have the same basic software

layers. The network server in the LAN must have additional

utilities and layers added to this scheme. At the BIOS level,

NETBIOS (Network Basic InputjOutput System) is introduced. It

sends and receives data from the network adapter card in the

same way that the regular DOS BIOS communicates with the

serial, parallel, and other communicat-ion ports. It thus

allows the networking cards to communicate with the PC

hardware in the network. At the next level a new disk

operating system (currently DOS 3.1} is introduced. With it

are programs called server and the redirector. The server

allows every PC on the network to share its pheripheral

dev-ices. Redirector determines when data should go out to and

be received by the network. An expanded application layer
•

resides above the redirector level. It may conain security

programs, utility programs, and menus.

14

4.2 THE NETBIOS SESSION LAYER

The responsibilities of NETBIOS Session Layer

includes the identification of the personal computer to the

network, session establishment and session termination between

pairs of network systems (peer}, and message transport.

Network peerer are physically connected to the network and

identified by names.

The Message Delivery for the NETBIOS session

layer is performed either as a reliable virtual circuit or as

a datagram services. Vertual circuit service delivers a

message between pairs of users involes four basic procedures.

First, network user is identified by a unique name or a group

name, which is added to local name table. As an alternative to

the name, the Permanent System Name (PSN) may be used. Next a

virtual circuit session is established between a pair of

network names. Once the session is established, message can be

sent andjor received. w~en the messge transactions are

complete, the session is terminated. The virtual circuit

service messages are delivered to a specified destination in

the exact order as sent from the source, without errors losses

or duplication.

Datagram message service is commanly used for

broadcast messages, where the destination is not specifically

defined, and does not require establishment of session between

pairs of users. For datagram services, the user name is

traslated to a transport address and then passed to the

transport layer. The datagram services do not provide the same

15

reliability as virtual circuit services.

The Session Layer dynamically binds user names

to transport addresses for both virtual circuit and datagram

services. A user is translated to a transport address by the

Session Layer and then passed to the services of Transport

Layers. Thus, session layer communication with a remote system

requires only that the application know the user name, and not

the transport address, in order to provide communication

services between two users.

The NETBIOS maintains a local name table that

holds a maximum of 64 user defined, ASCII character names plus

one, hexadecimal permanent system name (PSN). The PSN is

composed of ten bytes of zeros followed by a 6 bytes • unique

adapter identification number. The PSN is always the first

entry in the name table and can not be deleted.

4.3 NETBIOS COMMANDS

.-.3.1 Introduction

NETBIOS commands provides an interface for

programming the PC Link2 Network interface adapter. A NETBIOS

command is presented to the PC Link2 NIA in the form of a data

structure called a Network Control Block (NCB). Each NCB

consists of different fields that provide information to the

NIA about the command. The NCB also receives information from

the NIA that reflects the status of the command processing.

The following guidlines should be followed when issuing NCB

command to the NETBIOS:

1. Ensure that the NETBIOS software is operating.

2. Ensure that a minimum stack space of 20 bytes is

16

available for each outstanding command that is issued.

3. Allocate the data structure for the NCB and fill all the

necessary fields for the command being issued.

4. Allocate the buffer that are used by the command.

5. Load the NCB address into the ES:BX register pair, place

a value of OlH in to the AH register, and issue an INT 5CH

software interrupt.

6. Do not move or alter the NCB untill the command is

completed processing.

7. Check the status of the completed command. Result codes

are obtained from either the AL register or the return code

field of the issued command.

4.3.2 Commands

The NETBIOS commands are divided in to

following four categories:

1. GENERAL COMMANDS make it possible for the NETBIOS to

control and monitor other commands.

reset sets the maximum number of session and commands.

cancel terminates processing of other command.

adapter_status provides information about the adapter.

2. NAME SUPPORT COMMANDS supports the identification of the

personal computer on the network.

add name validates and adds a name to the local name table.

add_group_name allowes a name to be -used by other users.

delete name removes name from the local name table.

3. SESSION SUPPORT COMMANDS establish and terminate network

connections and transfer information between pairs of network

systems.

17

call establish local or remote session.

listen waits for a call from another system.

hang_up terminates a session.

send transmits data to the session end point.

chain_send concatenates session messages.

receive_any waits for message from any network system.

session_status provides status of active session.

4. DATAGRAM SUPPORT COMMANDS are used to exchange datagram

messages with other network users.

send_datagram sends a datagram to a specified name or

group name.

send broadcast_datagram sends a datagram to all network

systems.

receive_datagram waits for datagrams from a name or group

name.

receive_broadcast_datagram waits for datagrams from any

name.

4.3.3 Command struture

The each command consists of fields that provide

the information about the command. Command fields are used to

send as well as receive information.Field information includes

the session number, the users, and the addresses of the buffer

that are associated with the processing.Command fields also

information about wait or no-wait option and the status of

command processing.

The wait option instructs the NETBIOS not to

return control to the user program and to wait until the

18

command is complete.The no-wait option instructs the NETBIOS

to return control to the user program and continue with the

next program instruction immediately after the NCB co~~and

is invoked.

the return code field of acommand provides

information about the status of the command. Two types of the

return codes are available for the command.

* ir~ediate return codes

* final return cddes

I~~ediate ·return codes are only for no-wait option

commands.Final return codes are issued upon completion of all

commands for both wait or no-wait options.

The data struture used for all Network Control Block commands

is as shown below.

define BYTE unsigned char
define WORD unsigned int

struct NCB {

} ;

BYTE command;
BYTE retcode;
BYTE lsn;
BYTE
char
WORD
BYTE
BYTE
BYTE
BYTE
WORD
WORD
BYTE
BYTE
BYTE

num;
far *buffer;

length;
callname[16];
name[16];
rto;
sto;
off_post;
seg post;
lana num;
cmd_cplt;
reserve[14];

Network Control Block (NCB) Struture.

19

4.3.4 Wait and No_wait Options

The application's interface into the NETBIOS varies

according to whether the wait option or no wait option is

chosen.

The wait option command does not pass control

to the next program instruction until the NIA completes

processing of the command. When the wait option command

completes, a final return code is placed in the AL register

and the retcode field of the NCB.

With no wait option control is immediately

returned to the next program instruction and an immediate

return code is placed in the AL register. When the no wait

option command completes, a fina~ return code is sent to both

AL register and the retcode field. The no_wait option allows

for Queueing of multiple commands and is recommended for

maximum throughput. No_wait option command can be specified to

execute a posting routine upon command completion. The address

of the posting routine is given in the post_addr field.

No wait posting routines are performed on an interrupt level

with interrupts masked. If the post_addr field contains a

value of OOH, the application is not interrupted for a posting

routine.

4.3.5 Return Codes

Immediate Return Codes:

Immediate return codes are only valid for
..

no wait option commands and are received in AL register

immediately after the NCB is invoked. An immediate return code

20

other than OOH (cmmand complete) or FFH (pending) indicates

that the command executed with an error condition. If the

post_addr field is OOH, the application i.s not interrupted for

a posting routine when the NCB completes. The cmd_cplt

contains a value FFH (pending) until NCB completes. The table

2 i.n appendix A summarizes the i.mmedaiate return codes that

may be received in the cmd_cplt field.

Final Retu_~ Code:

For no wait option commands, a value change

(from FFH) in the AL register indicates that command

processing is complete. The value returned in the AL register

is the same as the value returned in the retcode field. For

wait option commands, the final return cade value is s.ent

to the retcode field of the NCB wh·en the command completes

processing. The Appendix A has the

return codes and recommended action.

4.3.6 NCB Field Description

of all

NCB is used for the fixed size data structure

that is allocated for each NETBIOS command. Not all fields are

used for every command.

1. The command Field

This si~gle byte field is the command code

that indicates which command is to execute. Setting the high

order bit to 1 selects the no wait option. The wait option is

selected by setting the high order bit 0. the remaining 7 bits

determine the actual command that is executed by NETBIOS.

Table 4.1 lists the command codes for each command.

21

Table-4.1 Command Codes

WAIT NO WAIT COMMAND NAME -

lOH 90H call
llH 91H listen
12H 92H hang_ up
14H 94H

I
send

15H 95H receive
16H 96H

I
receive any

17H 97H chain send
20H AOH I send datagram I I

i 2lH I AlR

I
receive datagram

22.H I A2H send broadcast datagram I 23H

I
A3H I receive_broadcast_datagram

JOH BOH I add name
31H BlH delete name
32H ! -. reset
33H BJH adapter status
34H B4H session-status -35H cancel
36H B6H add_group_name

I
I

2. The retcode Field

The retcode field occupies one byte of memmory

and indicates the completion status of an NCB command. A

return code value of OOH in this field represents successful

command completion, other values indicate incomplete operation

or that the command executed with an error condition. In the

Appendix A complete description of return code values and

recommended actions.

3. The lsn Field

The local session number field is the 1 byte

field representing a number assigned for a session with

another network user. The local session is returned in this

field after successful completion of _-a call and listen

command. Ensure that correct values are used for send and

22

receive commands. When applied to the reset command, this

field indicates the maximum number of supported sessions.

•· The num Field

The num is 1 byte field contains a value that

is returned after executing add name or add_qroup_name

command. This number identifies the name table entry for the

added name or group name and must be used for all datagram

commands and receive_any command.

5. The buffer Field

This 4 bytes field pointer to a message buffer

associated with a command. The maximum length of the buffer

pointed to by this pointer is 64,535 bytes.

6. The length Field

the 2 bytes length field indicates the length

in bytes, of the data that is to be transferred. For commands

that rec-eive data this field indicates the number of bytes to

receive. After the data is received the length field is

adjusted by the NETBIOS to reflects the actual number of bytes

received. For commands that send data, the field indicates the

number of bytes to send.

7. The callname Field

The 16 bytes callname field specifies the name

of the user being called. This field may indicate a name in

the name table of the local system or remote system. All 16

bytes of the callname field must be used. The chain send

command uses bytes 0 to 6 of the callname field to specify

length and address of the second data buffer.

8. The name Field

23

The name 16 bytes field that indicates the

local system through out the network. All 16 bytes of the name

field must be used. The Permanent System Name (PSN) can also

be used in the name field.

9. The rto Field

The 1 byte rto

specifies, in increments of 500

(receive time_out} field

milliseconds, the maximum

amount of time that can elapse before a receive command

returns the time-out error. For call and listen commands, the

time-out period applies to all receive commands associated

with the session. A value of zero indicates no time-out.

10. The sto Field

specifies, in

The 1 byte sto

increments of 500

(send time-out)

milliseconds, the

field

maximum

amount of time that can elapse before a send command returns a

time-out error. For call and listen commands, the time-out

period applies to all send commands associated with a session.

A value od zero indicates no time-out. Send command time-out

terminates the session on expiration and should be used with

caution.

11. The post addr Field

The field is valid only with no wait option

command. The no wait option is used to allow an application to

continue processing while waiting for NCB command to complete.

The post_addr field is a segment:offset address specifying a

posting routine. When the command completes, the NETBIOS

interrupts the application at the address specified in the

post_addr field and the posting routine is executed. When the

24

post_addr field is set to zero, the application is not

interrupted for a posting routine.

12. The lana num Field

This 1 byte field indicates the adapter that

is to receive the NCB commands. A value of 0 instructs the

NETBIOS to issue the command to the primary PC Link2 NIA, the

value of 1 for secondary adapter.

13. The cmd cplt Field

The field is useful only for no wait option

command that do not call posting routines (post_addr = 0) .

The cmd_cplt (command completion) is 1 byte field used to

indicate that an NCB command has been completed. This field

will contain an immediate return code.

14. The reserve Field

This 14 bytes field is reserved for NETBIOS

and should not be altered.

4.3.7 NCB commands Description

Under this topic we will describe some of the

NETBIOS commands which are used in the E MAIL System.

NETBIOS GENERAL COMMANDS:

1. cancel

The cancel command issues a termination

-request to another command. The fields used by this command

are as mentioned below:

BYTE
char far
BYTE
BYTE

commnad
* buffer
lana num
retcode

/* wait option only */

/* value returrned */

25

The cancel command is used to terminate pending NCB

commands. The address of the command that is to be canceled is

specified in the buffer field of the cancel command. Caution

has to be taken when cancelling a send command. Because the

cancelled send command also terminates the session. the

following commands can not be terminated by the cancel

command:

add_group_name reset

add name send broadcast_datagram

cancel send_datagram

delete name session status

2. Adapter_status

The adapter_stattus command is used to obtain

the information about alocal or remote adapter. The fields

that are used for the adapter status command are mentioned

below:

BYTE command I* wait or no wait option *I
char far *buffer
WORD length I* value returned *I
BYTE callname(l6]
WORD off_post I* if no wait option used *I
WORD seg_post I* if no-wait option used *I
BYTE lana num
BYTE cmd cplt I* if no_wait option used *I
BYTE retcode I* value returned *I

The adapter_status command provides status

information for the adapter defined in the callname field. The

status information is returned in the message buffer that is

pointed to by the buffer field. When the message buffer has

received the status information, a value is returned in the

length field to indicate the actual number of bytes received

26

in the buffer. If the specified length of buffer is too small

to contain all the data, a return code of 06H return to the

retcode field, and the excess data is lost. The actual message

buffer ranges in size from 60 to 348 bytes depending on the

number of names in the local name table. The PSN of the local

or remote sytem can be obtained by this command. For

more details refer [1].

NETBIOS SESSION SUPPORT COMMANDS:

Under this topic we will discuss NCB session

support commands which are used to establish virtual circuit

connection between systems, excahnge messages, terminate

connections, and to provide the status of a virtual circuit

connection. The commands provides reliable data exchange for

messages ranging in size from 0 to 65,535 bytes. More than one

command may be active at the same time. A maximum of 32

session may be esablish at one time.

1. Call

The call command establishes a session with a

local or remote name. The fields used by the call commands are

mentioned as below:

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
WORD
WORD
BYTE
BYTE
BYTE

command
lsn
callname(16]
name[16]
rto
sto
off post
seg post
lana num
cmd cplt
retcode

27

/* wait or no wait option */
/* session number returned*/

I* if no wait option used *I
/* if no-wait option used *I

I* if no_wait option used *I
I* value returned *I

,-

The call command is used to establish a

session connection between two users, as identified in the

callname and name fields. The system specified in the callname

field must have an outstanding listen command before the

connection can be established. Virtual circuit connection can

be established for local/local or localjremote name pair. More

than one session can be established between the same pair of

names.

After completion of call command, a number is

assigned and returned in the lsn field. This number is called

the Local Session Number (LSN) and is used by other commands

when referring to the established session. When the specified

time out interval expires (rto and sto fields), any

unsuccessful send and receive commands that are associated

with the session are aborted. The call command not aborted

unless it is unsuccessful when the system time out limits are

reached.

2. Listen

The listen command enables a session between

network systems waiting to establish a session. The fields

used by the listen commands as mentioned below:

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
WORD
WORD
BYTE
BYTE
BYTE

command
lsn
callname(l6)
name(16)
rto
sto
off post
seg-post
lana num
cmd_cplt
ret code

28

/* wait or no wait option */
/* session number returned*/

I* if no wait option used *I
/* if no-wait option used *I

!* if no wait - option used *I
/* value returned *I

A session established between systems that issue listen and

call command. A system that issue a call command (identified

in the callname field) cannot open a session unless a name

that is called (identified in the name field) has previously

issued a listen command to recognize the caller. The asterisk

(*) in the callname field indicates that the NIA is to listen

for ca~ls from any name on the network. Upon completion it

also returns LSN in the lsn field. A listen command does not

time out however it is a session entry and holds a status of

"pending" for session information returned by the adapter

satatus command.

3. Hanq_up

The hang_ up command terminates a s.es-sion. The

fields used by the hang up commands are as mentioned be~ow:

BYTE command I* wait or no wait option *I -BYTE lsn
WORD off_post /* if no wait option used *I
WORD seg_post I* if no wait option used *I
BYTE lana num
BYTE retcode /* value returned *I

The hang_up command closes a session with

a previously assigned LSN. The hang_up command also terminates

any associated pending receive, receive_any, send, and

chain send commands and sends the session closed return code

(OAH) to the originator.

4. Send

The send command is used to dispatch messages

to other system. The fields associated with the send commands

29

are as followes:

BYTE
BYTE
char far
WORD.
WORD
WORD
BYTE
BYTE
BYTE

command
lsn
*buffer
length
off post
seg-post
lana num
cmd eplt
retcode

I* wait or no wait option */

I* if no wait option used *I
I* if no wait option used *I

I* if no wait option used *I
I* value-returned *I

The send command transmits buffer data to

other system. The transmitted data is taken from a message

buffer pointed to by the buffer field. Data is transmitted on

the FIFO basis when more than one send command is pending. The

receiving system must issue a corresponding receive command.

When the time out is reached, the command time out return cod-e

(05H) is returned in the retcode field. Send command have

priority over hang_up command. Pending local send command halt

the hang_up command until completion of the send command or an

elapsed time of 20 seconds, whichever occurs first.

5. Receive

The receive command accepts incomming

messages. The fields used by receive command are as followes:

BYTE command I* wait or no wait option *I
BYTE lsn
char far *buffer
WORD length I* data length returned *I
WORD off~post I* if no_wait option used *I
WORD seg_post I* if no wait option used *I
BYTE lana num
BYTE cmd cplt I* if no_wait option used *I
BYTE retcode I* value returned *I

The receive command accepts data transmitted

30

by a send command for the session identified in the lsn field.

Receive commands are processed in a FIFO order when more than

one receive or receive any commands are pending. Time out

values are specified by a call or listen command. If the

receive data buffer is too small to contain all the

transmitted data, an incomplete message return code of 06H is

assigned to the NCB. The remaining data can be retrieved by

issuing another receive command before the time out expires.

CHAPTER 5

E-MAIL ON NETBIOS

5.1 INTRODUCTION

This Electronic Mail System is one part of the

VOICE MAIL SYSTEM ON LAN project carried out at Ernet project.

The Voice Mail System consist of two parts one is the NETBIOS

inteface and another is the voice degitizer

This Mail system on NETBIOS has been

card interface.

implemented and

interfaced with existing Voice Degitizer card inteface to

develope the Voice Mail System on LAN.

An E-MAIL system is being implemented on

NETBIOS, which requires an office environment where LAN

exists. A dedicated mail server (micro computer) has been

designed which is a node of LAN and has NETBIOS installed. As

explained in earlier chapter that NETBIOS is required to

establish a session between the server and workstation. Mail

server stores all the messages and manages them for retrieval,

deletion, store, and security.

The principle feature of the E-MAIL is that it

operates in a store and forward manner. This means that the

originator of message need not wait until the

indicates willingness to accept the message.

receipients

Rather the

originator can submit a message at any time convenient to him

and equally the recepient can choose the time when he will

actually read it. A further feature of this is that it does

not require the originator computing system to be have a

session to the'recepient system. Instead the message is routed

via some intermediate system which is capable of having a

32

session to any system in the LAN. The originator can send a

message to multiple recepients. It also has the following

features:
Automatic time tagging.
Permanent storage on user request.
Variable length messages.
Friendly user interface.

Each mail system user is provided with a

mail box. This mail box has all the message headers of the

messages were sent to the user in a fixed format. The user can

access his mail box via user ID and password. For additional

security, user may encrypt the messages. Addition and deletion

of the user name from this mail system can be performed by

another routine at mail server end. All user ID and passwords

are stored in a perticular file.

Only successful completion of authentic check

will provide access to the real message system. For smooth

handling of the user's all request related to a mail we have

to send a corresponding message code at the server end and

server sends back the response of the requested command. If

user is not in interaction since a perticular time period (It

can be changed) then server will hangup that perticular

session.

This system can handle multiple user

(fixed) simultaneously. To make multiple user environment we

have used "polling" technique.

5.2 PLANNING AND OBJECTIVES

Electronic mail system represents a major

change in the way managers run their daily routines and desk

work. They are not just a quicker way of sending message but a

33

new way of feeling retrieving and discussing the informations.

It has been pointed out that there are variety of approaches

to electronic mail and each has its set of benifits and

concerns. The selection of a system therefore should not be

arbitrary decision, but should be based on which features are

most helpful and which type of system most likely to be

popular.
The following are the objectives of the E-MAIL

system:

Easier preparation of information.

Faster distribution of informations.

More complete and timely information available.

Reduced efferts in filling (read, store, and delete and

retrieving information.

More effective supervision and management.

More effective security.

Voice mail facility.

5.3 E-MAIL SYSTEM (FUNCTIONAL BLOCK DIAGRAM)

In this E-MAIL System there is mail server

which manages all the messages. Only the mail server has the

hard copy of each message. To send a message and to read a

message to/from any system or user a session has to be

establish between mail server and user's computing system. The

functional bloCk diagram of the E-MAIL system is as shown in

the Fig-5. 1.

As shown in the block diagram the server wait

for a call from any system in network. After establishing the

session the mail server issues a pending receive command for

34

FIG - 5.1 FUNCTIONAL BLOCK DIAGRAM OF THE MAIL SYSTEM

WORKSTATION END

ISSUE CALL TO SERVER

SERVER END

ISSUE LISTEN AND WAIT
FOR CALL FROM ANY

ESTABLISH NETBIOS SESSION

RESPONSE

DENIAL

CONFIRMATION

VERIFY USER ID
& PASSWORD

QUIT
~-------------------------~~ HANGUP THE SESSION

READ RE

HEADERS

DISPLAY
MESSAGE HEADERS

35

SEND MESSAGE
HEADERS

">--~O::..:T~H,:.:E;;:.:,R~R.:..:E;:.:;S:;.:;P...::O~N:..::;S:;.:;E::..__~ SEND MESSAGE FILE/
DELETE MESSAGE

DISPLAY MESSAGE/
STORE MESSAGE

ENTER
RECEPIENT'S ID

MESSAGE CONTENTS

USER'S ID
VERIFY USER' ID

RESPONSE

DENIAL

CONFIRM

COMPOSE/EDIT
MESSAGE

SAVE MESSAGE

FIG - 5.1 Contd

36

this session, the user enters its ID and password. The user ID

and password sends to the server in the perticular format.

Mail server always has a pending receive for each active

session. After receiving the user ID and password the mail

server checks the the user ID and password with the already

stored user ID and password. If it is not correct then user

has to retype the ID and password to proceed further.

Only successful completion of authentication

allow to access the mail system further. After all this check

user will have three option with him.

1. READ messages.
2. SEND a mail.
3. QUIT (From the mail system) .

If user wants to read a message then read request is sent to

the mail server and issue a pending receive command to receive

the response of the read request command. In response to this

read request the server reads message header from the user's

mail box and sends them at the user end. At the user end the

message headers are displayed in a perticular format with

sender's ID, time of submission and Subject.

After displaying the headers the user can

read, delete, and store a perticular message by typing the

message number which were displayed along with the message

headers. From this message number we derive the message file

name and send it to the mail server. If the message command is

to read a message (mail) then server reads the message file

and sends the contents of the this file to the user end. At

the user
requested

end it will be displayed and then stored if the user
to store the message at local drive. If the user

37

request to delete a perticular message then server will delete

the required message from the user's mail box. After quit from

the read option user again comes to main options.

If user want to send a mail then he has to

give the recepient(s) ID. These recepients ID are send to the

mail server for recepients confirmation. Server checks the

recepients ID and sends the results at the user end. Server

also assign a message file name and creates a file with this

name. After confirmation user is allowed to edit the subject

or text. The file naming strategy and structure is such that

we can have voice mail in between text part. This is explained

later. In between editing of text we sends dummy commands at

server to avoid time out of pending receive command at the

mail server. After completion of the text editing we sends the

text along with the all verified recepients, to store the

message at the mail server. Mail server prepares header and

appends it to all recepient's mail box and stores the message

in to the message file which created earlier. After completion

of send a mail user again comes to the main options.

system.

hangup

request

related

session.

If the user option is to quit from the

Then we send the quit request to the mail server

the session at user end. After receiving this

mail

and

quit

the mail

to this

server cancels if any pending commands

session and issue a command to hangup the

All the session support commands at the mail

server are with "no wait'' option to make this system as

multiuser. Means more -than one user can use this mail system

38

at the same time. At the user end all the commands are issued

with "wait" option.

5.4 MAIL SERVER SYSTEM

5.4.1 Introduction

This is one part of the E-MAIL on NETBIOS.

This system can be install and run on any micro computer in

the network. This system makes the computer as mail server.

Before starting to execute this system the manager should

check the following points:

1. Ensure that NETBIOS software is operating.

2. Ensure that latest version of all the files related with

this mail system should be resides in the current directory

i.e. userlist, all the mail boxes and all the message files

should exist.

This system will run continuously until some

one wants to stop it or abnormal condition occures. This

system handles all the message request, related to the mail

system. A special care has been taken in designing this system

that the system should not enter to an infinite loop except ..
the main loop. It should not serve a perticular user for long

time to reduce the response time in multiuser case. After

responding one message for an active session it responds to a

pending message of another active session. There is a maximum

limit of the number of active session supported by this

system at the same time.

5.4.2 Block Diagram Description

The block diagram of the main loop of the mail

server is as shown in the Fig-5.2.

39

FIG - 5. 2 FLOW C:HAR'r OF MAIL SERVER MAIN LOOI,

IJiiTrALISE NCB STRl7C:;;~~;;J L __ , AND VARIABLES
---····~-... --.,... -··-·-... ··-··-·

L'>----~--

ISSUE LISTEN
COMMAND

40

YES

ISSUE RECEIVE COMMAND
FOR THE CALLED

WORKSTATION

YES

YES

41

NO

YES

DO REQUESTED
OPERATION AND SEND
RESPOSE OR MESSAGE

ISSUE RECEIVE FOR
SES (I) I IF REQ.

HANGUP THE SESSION
AND DEC NO SES

DISPLAY INFORMATION

FIG- 5.2 Contd ..

Before starting the description we should

discuss about the variables, fixed numbers and the structure

used in the main loop of the mail server system block diagram.

I is an integer variable.

MAX SES is the number of the maximum active session that

can exist at a time.

no ses number of active session existing.

There is one session structure alloted to each active

session with server. The following are the fields of the

session structure.

struct session {

int flag;
int fflag;
int fptr;
struct NCB rncb;
struct NCB sncb;
char user[9];
char dir[15];
char text_file[8];

} ses(MAX_SES];

f* session active or not */
f* file pointer legal or illegal */
f* file pointer */
f* NCB for receive command */
f* NCB for send command */
f* user ID who is ungaged */
f* message header file name */
/* message file name without ext */

Before entering to the main loop the server

initialises the session structure and NCB structure and load

userlist file in to the memory. After initialisation it enters

into the main loop. It issues a listen NETBIOS command for any

node if there is no pending listen. This listen will remain

pending till some one executes call command to the server.

After successful completion of the listen and call commands

server reserves one session structure for that session and

initialize it. Then increase the no ses by one and then issue

one receive (no_wait option) command in pending for the called

42

workstaion. Now if the no ses is less than MAX SES then server

will issue another listen command, in this way there will be

always a listen command in pending when no ses is less than

the MAX SES.

Now it enters to a loop in which it checks all

the session structure one by one. If the session structure is

associated with an active session then it checks the status of

the receive command. If the receive command related to this

session is not pending then do operation according to the

message received from the workstation. The list of the message

code and operation to be done is given in artical 5.4.3. After

this, send (no_wait option the response or message to the

workstation and then issue another receive command for this

session to receive next message code. In this way there will

be always a pending receive command for each active session.

After this it enters to a second loop in which

it checks for all active session one by one, if the receive or

send command timed_out then hangup that session, decrease the

no_ses by one and flagged off the session structure so it can

be reserve for another new session. The time of time out of

these pending commands is decided during the completion of

listen and call commands. It is same for all session because

we are using same NCB structure for all listen commands.

After this it checks for any key board entry.

If the typed character is legal then server will diaplay the

corresponding information. Like we can get the mail address

(user ID) of all the users of this mail system. We can also

43

get the list of all the currently interactive users. We can

shutdown the server by typing relevant command at the server

side. After responding key board hit it start from the

starting position of the main loop, if the server is not

stopped. In this way it wiil remain in the main loop and

serves to all the interactive mail users.

5.4.3 Message Codes And Operation

As shown in the functional diagram FIG - 5.1

if server has received some message from any node then it has

to do some operation acccording to the request of the mail

user. For the smooth functioning of the system we have

defined some codes and the operation to be done at the server

end. The codes and corresponding operation are as listed

below:

Commande Code 'A' Verify User ID and Password.

This command is send when user wants to login to the mail

system. The server has to verify the user ID and password

and then has to send the respose at user end.

Command Code 'B' Read Request.

This command is used when the user wants to read his mail.

In response to this command server reads the mail box and

forwards the message headers to the user computing system.

Command Code 'C' Send Message Number.

This command send to the user when user wants to read a

perticular message. The server will send the contents

of the message_having the message number asked by the user.

Command Code •o• Play Back Request.

44

Command Code 1 E 1 Start Voice Play Back.

The above mentioned both the command codes are used to

listen the voice mail during reading of the mail.

Command Code 1 F 1 Send Request.

This command tells to server that user wants to send a

mail. The server verifies the recepient's IDs which are

along with the send request command.

Command Code I G I Voice Record Request.

Command Code I H' Voice Record Start.

Command Code I I I Review The Just Recorded Voice.

Command Code I Jl Delete The Just Recorded Voice.

All the above four mentioned commands are used to record

the voice at the server end, for a voice mail.

Command Code 1 K1 Save The Message.

This commands informs to server to store the message

contents (>!
for the recepient(s). The format of this command

is described in the # 5.4.4.

Command Code 'M' Quit.

This command informs to server that user wants to quit from

the mail system. The server hangup the session after

receiving this command.

Command Code 1 0 1 Change Password.

This command send to server when a user wants to change his

password. The server will check old password and if find

correct then replaces old password with new password.

Command Code 1 P' Voice Record Stop.

Commnd Code 1 Q1 Create Text File.

On receiving this command code server assigns a unique file

45

name to the message and creates the file with the same

name.

Command Code 'R' Dummy Command.

This command is used to avoide the time out of the pending

receive command at the server side. The server again isuue

a receive command.

Command Code 'S' Delete Message.

This code is send when user wants to delete a message. The

server will remove the message header from the mail box and

then delete the text file if no other user has the same

mail.

Command Code 'T' Delete Text File.

This command is used when the message length is zero. The

server will delete the corresponding text file which was

created earlier.

After every operation (except quit) the server

issues a receive command.

5.4.4 Important Message Structures

The message code and the related data

be received in the buffer associated with "rncb" of

session structure. The first byte of this buffer will

will

the

be

always the message code and the remaining bytes will be the

data associated with this message code. The structure of these

data is different for different mesage code. Out of these

message structures some important message structures are

discussed below.

1. Verify User ID and Password

46

This message is send to the server when user

wants to login to the mail system. The message structure is as

shown below:

0 10 24 34

A USER ID PASSWORD

The Oth location of buffer has the command code 'A'. The user

ID is stored from lOth to 24th location and password is stored

at the 25th to 34th location of the buffer. The message buffer

length will be 35 bytes.

2. send Request (Recepient's ID Verification)

This message is send to server when a mail

user wants to send a mail to other user(s). The sender have to

enter recepient(s) ID. The format of this message is as

follows:

0 10 20 30 40 50 60

F4 RECPl ID RECP2 ID RECP3 ID RECP4 ID

At the Oth location the command code 'F' is stored. The lth

location will have the number of recepients to be verified,

this nuber can be maximum upto 10. The recepient ID will be

stored from lOth location of the buffer. Ten bytes are used

for each recepient ID i.e. 1st recepient ID is stored at lOth

to 19th location, 2nd recepient ID is stored at 20th to 29th

location and so on. The length of buffer to be send is depend

on the number of recepients to be verified. The length can be

calculated as follow:

47

LENGTH = (R * 10) + 10 Bytes

Where 'R' is the number of recepients.

3. save The Text

This message is send after the completion of

composition of the message. After completion of the message

the server has to prepare a message header and then append it

to the mail box of each recepient and then store the message

into the text file which has been created on send request

message command. So with the message we have to send all the

verified recepint's ID along with the composed message.

If the size of message is smaller than 900

Bytes then we can send the complete message in a single send

command. But if the mesage size is greater than 900 Bytes than

we have to sent remaining message i.n next send command, but

recepient's ID is need not be send again. We have to send the

information that the buffer contains recepient's ID & 1st part

of the message or last part of the message or the other part

of the message. So that according to the message received the

appropriate operation can be done on the message text file.

All these informations are send through the 2

Bytes in the sbuff. The message stored in the sbuff will be as

follows:

sbuff[O] 'K'

sbuff[2] = 0/1

/* Command Code */

If sbuff[2] = 0 means the buffer contains the recepient's

ID also and the message part is the first part of the message

and message starts from the llOth location onward. In this

case server has to append message headers in the recepient's

48

mail box and open the text_file to store the message.

If sbuff[2] = 1 means the buffer contains the message part

only and message start from the lOth location of the buffer.

sbuff[3] = 0/1

If sbuff[3] = 1 indicates that the message is uncomplete

and more message is there to send.

If sbuff[3] = 0 means the buffer has the last part of the

message and after storing it into the text file the file

should be closed.

sbuff[4] location contains the number of the verified

recepints whom the message were sent. The length of the buffer

to be send depend on the size of the message.

4. Delete Message

This message is send to the server when user

has come out from the read mail option and deleted some

messages. The format of this message contains only the total

number of messages to be deleted and the message numbers. From

the message numbers the server derives the location of the

message header in the mail box. The format is as below:

sbuff[O] = 'S' /* Commnad Code */

sbuff[2] = Number of messages to delete.

sbuff[ll] and onward will have the message number.

The message number will be less than 256 so we can store in

a single byte. The length of this message will be 11 more than

the number of the messages to be deleted.

5.4.5 Mail System File Structures And Management

As mentioned earlier that there exist a file

49

named as userlist, it contains all the user ID their related

password. This file is read at the starting of the mail server

and stored into the memory in a doubly linked list data

structure. This link list is used during the users

authentication. The addition and deletion of any user name is

done through an another software (pass) before loading the

mail server.

At the time of adding a new user name into the

mail system creates a file for each user that is called as

mail box. The name of this file will be same as user ID with

extension ".HDR". Each user will have its own mail box. This

mail box will contain only header part of a mail which was

sent for the user. The length of one message header is 80

bytes. The structure of each message header is as follows:

8 bytes --19 bytes-- I --- 40 bytes --- --12 bytes

sn's ID date & time Subject M. file name

The first 8 bytes of the message header will have the sender's

address or the ID. The next 19 bytes are for the time and date

of the submission of the message. The next 40 bytes are

reserved to store the subject of the message, and the

remaining 12 bytes are reserved for the name (without

extension) of the message file. This header is prepared at

the server end and appended to mail box each recepient,s of

the message. As mentioned earlier that one mail can be send to

more than one recepient. All the recepient which are going to
..

be share will have the same message header and message file.

To built a message header we need a message

50

file name in which the message will be stored. At the server

side we have a routine which derives a unique file name which

is not already exist in the mail directory. After getting the

name of the file it creates a file with this name having the

extension ".Tnn" where the 'T' denotes the text file and 'nn'

is the number of the users, will share this file. The message

will be store in this file. This naming technique supports the

voice mail in between the text. The voice file may have the

same name with the extension ".Vnn". Where 'V' indicates that

it is a voice file and 'nn' gives the number of voice file in

the message file having the same name with different

extension.

This whole structure support easy deletion of

a message from mail box. If a user wants to delete a perticular

message then derive the message text file name from the header

in the mail box. Then from a routine we gets the full name of

the text message file now if the extension ".Tnn" has the

value of 'nn' as one then delete all the files with this name

else rename this file with same name having extension as

".Tmm", where 'mm' = 'nn' - 1. Which means that the number of

users which will share this file has reduced by one.

5.5 E-MAIL SYSTEM AT WORKSTATION

5.5.1 Introduction

This part of the mail system is complement of

the mail server which is discussed earlier in # 5.4. This

system has to be run at the users computing system which

should be a node of the same LAN in which the mail server is

51

connected. If any mail system user wants to send or read a

message then he has to run this system. This system is bound

to establish a session between the mail server and work

station.

After establishing a session with the mail

server the user can have a series of conversation with mail

server until user do not want to quit from the mail system

or user timed out due to non interactive with the mail server

since a long time (3 minutes approx).

5.5.2 Login To The Mail system

Just after completion of call and listen

command or establishing the session between the server. The

system ask for the user ID and password. This user ID and

password are send to the mail server for verification. If the

user ID or password is not correct then user will get two more

chances to reenter the ID and password. If user fails to enter

the correct user ID and password then this system sends an

information to the mail server to hangup the session and then

exit from further execution. This system provides protection

from the false messages from the unauthorised user, and access

of messages to unauthorisd user. Only the user who knows the

correct user ID and corresponding password can send and read a

message or login to the mail system. After login user have one

choice out of the three options (read, send, and quit from

the mail system).

5.5.3 Message Composition And send A Mail

If the user wants to send a mail then system

52

ask the destination addresses or the recepients ID, whom the

mail is to be send. User can enter a list of recepients ID in

a single line (not more than 10). After typing of the list,

this system sends this list at the server end for verification

of the recepient's ID. If there is any incorrect recepient ID

then system will give a chance to retype the correct recepient

ID before starting the composition of the message. After

completion of the recepient's ID verification the system

provides a small editor to edit the message. This editor is

not much efficient but user can enter a line, delete a line,

insert some text in between two lines, and listing of the

edited text.

User may have bigger message to type and it

may take longer time than timed out duration of the receive

command of the mail server, then mail server will hangup the

session. To encounter this problem we sends a dummy message to

the mail server at every hit of return key. This dummy message

simply use the pending receive command at the server and issue

a new receive commnd. So the user may not timed out during

editing of message.

User have to type -o at the and of message.

After end of the editing of the message, the text along with

verified recepients ID and some necessary information transfer

to a send buffer for sending it to the mail server for storing

this message. After completion of message send, the system

again ask users option.

5.5.~ Read or Actions On Receipt Of Mail

If user have option to read his mail then this

53

system will send a read request message to the mail server to

receive the mail headers from the user's mail box. After

receiving the message headers this system will diaplay the

message headers after numbering them.

Now user can have one of the following choice

on the received mails:

1. Read a mail.

2. Store the mail. (s)

3. Delete a mail. (d)

4. Quit from read. q

For reading a message user have to type only

the message number. From this message number system derives

the message file name from the message headers and send a

request to the mail server to receive the contents of the

message. Now the contents of the message are. displayed along

with the message senders name, time and date on which the mail

was send and the subject.

The another action that may be taken after

reading a message is to store the message on to the local

storage. So that the recepient can have a hard copy of the

recveived mail. To store the mail at local storage, user has

to type 's' then system will ask the file name where the

message (which was read latest) to be store. After getting

the file name the system creates the file and store the

message with header in that file.

The another action that may be taken on

receipt of electronic mail is to delete it. The recepient may

not want to cluttering of messages or even filling the holding

storage for delayed delivery of the message. Therefore there

must be a possibility of deleting message, if it is found of

no interest or it has past its time of interest. For deleting

the message recepient has to type 'd' then system will ask the

message number to be delete. Then system flagged that message

as discarded message. If user wants to delete another message

then has to type again 'd' and then the message number. The

information to delete some message is send to the mail server

after user have quit from this read mail option by typing 'q'.

5.5.5 Quit From The Mail System

It is recepient controlled system. If

recepient wants to quit from the mail system then us-er can

select the quit option from the main menu. After selection of

this option the system sends an information to the mail server

to hangup the session and then exit from the further

execution.

5.6 OTHER RELATED SOFTWARE

Along with the mail system some necessary and

important software routine has been developed. Which are

related with mail management and status informations.

5.6.1 The pass

In a mail system mail manager should have a

facility that he can add a new user name or delete an existing

user name from the mail system, and the list of all the

existing user of the mail system. This routine provides all

these facility to the mail manager. On execution of this

routine along with add name, delete a name and list of user

the manager has 7 options but these three are of important

use.

Add a new user name option asks the user ID

and then password. After reading user name and password it is

stored into the userlist file, and creates a mail box for the

newly added user name. All the user ID are stored in this file

in sorted doublly linked list.

To delete an existing user from ~~e mail

system not an easy task as add a user name. Because to delete

a user means to delete all the messages related to the

corresponding user. Before deleting a user name we have to

read th-e user's mail box and from mail box access the message

file nam-e and then delete all the message files related to the

user. On deleting the message files we have to take care of

the message files which are shared by other users. After

deleting the message files delete the mail box and then remove

the user ID from the 'userlist'.

With the list of user option the mail manager

can have the list of all the users of the mail system. In this

option system reads the userlist file and then displays the

all users of the mail system.

This routine should only be used by the mail

manager or an authorised person. No other user should have

access to this routine otherwise any body can delete or add a

name. This routine should be executed at the server system.

5.6.2 The passwd

This routine is related to personal security.

56

The user of the mail system may wants to cahnge his password

after some time, or after disclosing of existing password then

user should have a facility to change the password. This

routine provides the facility to cahnge the password from any

node and for any user.

This routine establishes a session between user

workstation and mail server, then ask user's ID, old password,

new password, and again new password for confirmation. The

user name along with old password and new password send to the

mail server then after verification of autorised user the old

password is replaced by new password and then stores in to the

userlist file.

5 • 6 • 3 Th-e ad-asta t

There are two types adastat routine one is

local adapter satatus ladastat, and another is remote adapter

status radastat . As we knouw each node in the network has NIA

(Network Interface Adapter) card. With these routines user

can get the status of any adapter (local/remote) card in the

network.

With the remote adapter status routine user

has to specify the node name as the command line parameter.

Along with the node PSN (Permanent system Name), number of

session, and node's local name table, these routine gives more

information about adapter status. More detail to about adapter

status refer (1].

5.6.4 The sesstat

This routine gives the session status of the

57

local node. this routine uses session status METBIOS command.

This routine lists all the active sessions along with session

number, session status, local and remote system names, and

total number of outsatnding receive and send commands. For

more detail about session status refer [1].

5.6.5 The test

This

installation. This

interrupt with a

If the

routine is used to test the

obtained by issuing an INT 2FH

value of B951H in AX and OOFFH

NETBIOS interface is installed

NETBIOS

software

in

the

BX

BX register.

register will change to a value of OlH. Otherwise the value

unchanged to 0.

58

CHAPTER 6

CONCLUSION AND FUTURE IMPROVEMENTS

The main objective to develope an E-MAIL

system on top of NETBIOS is to provide system which can

support the Voice Mail facility. So this system is designed to

provide backbone for a Voice Mail System. This system can

developed as Voice Mail System (with PABX) in which you can

have voice mail in between the text part of a message.

Although this E-MAIL System has all basic

features of an Electronic Mail System i.e. send a mail, read a

mail, delete a mail, store the mail at loacl storage, s€curity

etc. but there are few things which can be improved or

implement to increase the features of this present E-MAIL

System.

1. Replacement of the line editor with a screen editor. So the

mail sender feel comfortable during composition of message.

2. Implementation of forwarding of received message. Means a

mail recepients can forward the same mail to another user

after receipt of the mail.

3. Implementation of a feature that a mail sender can send a

stored record as a message.

4. To improve the security in the system the information

stored in the "userlist" file can be encrypted. This file

contains all the mail user's ID and their password. Further

the message to be stored can also be encrypted before

59

sending it to the server and during display of the message

at recepient end it should be decrypted.

5. The maximum number of total message files this system can

support is 676. This figure can be increase by a small

modification in the "newfile" routine in mail server. The

system can handle maximum 125 messages for a single user,

this can also be increase if required.

6. This system interpret user ID as mail address. We can have

mail address different from user ID to make it more

flexible.

7. Implementation of the feature that the mail manager can add

new user name or can delete a user from any node in the

network without stoping server.

8. Graphics textual mixture, which may be microcomputer video

screen or may be which transmitted to graphic output

machinary.

60

APPENDIX

This appendix lists all the return code and

recommended actions. The codes are listed include both

immediate codse and final return codes.

OOH successful command completion.

The execution of command has completed successfully. No

action is required.

01H Illegal buffer length.

This message indicates that an invalid length is

for a buffer that is associated with one of the

specified

following

commands adapter_status, session_status, send_datagram, or

send_broadcast_datagram.

Reissue the command after speci£ying the correct buffer

length.

03H Command not valid.

The command code is not valid, reissue the command using

the correct code.

OSH Command timed out.

If this return code

adapter_status command,

is received for a call or

the system time out period has

expired. Ensure that correct name is used and reissue the

command.

For a receive, receive_any, or send command, the 05H return

code is received when the command time out period has

expired.

command.

For receive or receive_any command, reissue

For send command this return code means that

the

the

session has been abnormally terminated. Establish the

61

aother session and reissue the command.

If the return code is received for hang_up command means

that the 20 seconds time-out period has expired. The

session has been terminated abnormally. No further action

is required.

06H Incomplete message.

Only part of the message is received. This is because

specified bu-f-fer is not large enough to receive the

message.

OSH Illegal local session number.

the

full

The specified session number is not an active session

number. Specify the active session number and reissue the

command.

09H No resources available.

This return code indicates that there is insufficient

adapter space for the session. Reissue the command at a

later time.

OAH Session closed.

The session is closed by the local or remote system. This

notification is received for pending send, receive, or

receive_any commands. If this return code is received for a

hang_up command it means that session has been closed by

remote system.

OBH Command cancelled.

If the cancelled command was a send or a chain send

command, then the session was abnormally terminated. No

action is required.

62

ODH Name duplicated in local name table.

This return code occurs in response to an attempt to

specify a name that already exist in the local name table.

OEH Local name table is full.

The local name table can hold a maximum of 16 names. The

maximum number of names already been added in name table.

Reissue the add name or add_qroup_name after a delete name

command is issued.

OFH command completed. Name has active sessions, now

de_reqistered.

This message means the name is to be deleted is currently

active in a session, but is flagged as de_registered. When

the active session is ended, the name is removed from the

name table.

llH Local session table full.

This means that insufficient table entry space exist in the

session table. Wait for a session to close. and thereby

provide the available space.

12H Request for session open is rejected.

The remote system does not have an outstanding listen

command. Wait until the listen command is issued at the

remote system.

13H Illegal name number.

The name table entry number, as specified in the num field,

is incorrect. The original name number must be used.

14H Cannot find oallname or no answer.

The specified callnmae cannot be found or did not answer.

63

Ensure that specified call name is correct, then reissue

the command using the correct or different callname.

lSH Name not found, cannot specify * or OOH.

One of the following condition exists:

The specified name is not in the name table.

The specified name contains an asterisk (*) in column one

of the name field.

The name is specified as DOH.

Reissue the command using the correct name.

16H Name is bein~ used at remote adapter.

This return code indicates that the name is already in use.

Specify another name and reissue the command.

17H Name deleted.

This return code is received when a name is deleted and no

outstanding listen, receive_any, receive_datagram, or

receive_broadcast_datagram commands exists for the

specified name. No action is required.

18H Session abnormally terminated.

This return code means one of the following condition is

true.
The remote system is powered off.
The Ethernet cable link is broken.
The session send or chain send command has timed out or
cancelled.

A hang_up command is timed out.

Check the status of the remote systenm and check the cable

connection.

19H Detected name conflict.

The network protocol detects two or more identical names on

the network.Duplicated names should be deleted immediately.

64

1AH Incompatible remote system.

An unexpected protocol packet was received. Ensure that all

network system agree and use the same protocol.

21H Interface busy.

This return code indicates that the NETBIOS is busy

processing an interrupt handler routine. Return and try

again later.

22H Too many outstandinq commands.

The maximum number of outstanding commands has reached.

Retry at a later time when less commands are outstanding.

23H Invalid number in the lana num field.

This return code means that an attempt was made to specify

a number other than OOH or OlH. Specify the correct value

and reissue the command.

24H Command completed durinq cancel.

The command being cancelled has already completed or does

not exist. No action is required.

25H Reserved name specified.

The name that has been specified is a reserved name and

cannot be used. Specify another name and reissue the
~

command.

26H Command not valid for cancel.

The following commands cannot be cancelled:

add name add_group_name

cancel delete name

reset send_datagram
.-

session status and send broadcast_datagram.

65

4xH Unusual network condition, x can be any number.

The NETBIOS is unable to define the condition encountered.

Try the command again.

SOH - FEH Adapter malfunction.

The Intel PC Link 2 Network Interface Adapter detects an

internal problem. Retry the operation or contact an

authorized service representative.

FFH Command pending.

The command is pending. No action is required.

Table - 2 Immediate Return Codes

CODE MEANING

I

I
OOH Successful command completion

I I I 03H Command not valid

21H Interface busy

22H Too many outstanding commands

23H Invalid lana num value -

24H Completed during cancel command

26H Not a valid command to cancel

40H-4FH Unusual network condition

50H-FEH NIA malfunction

FFH Pending
I

I

66

BIBLIOGRAPHY

1. PC Link2 Software Developer's Manual

Intel corporation.

2. Electronic Mail By:- John A. Bauckland

Critical Issues in Information Processing Management And

Technology Volume - 4.
3. Micro Computer Networking By:- John A. Bauckland

Critical Issues in Information Processing Mana-gement And

Technology Volume - 4.
4. Innovation In Electronic Mail

By :- H. M. Vervest

s. Current Trends In Electronic Mail Security

By :- K. V. Murphy

185 - 196, Message Handling System 1987.

6. iNA 960 Programmers Refe-rence Manual

Intel Corporation

/**
*

*
*
*
*/

This program is to check the NETBIOS instalation.
If NETBIOS installed then it returns BX = 1,
otherwise returns BX = 0.

#include <stdio.h>
#include <dos.h>

main()
{

}

union REGS r;

r.x.ax
r.x.bx

0x.B9-51;

Ox:OOEF;

int86 (Ox2~; &r, &r);

printf ("BX=%X", r .x._bx);

/**
*

*
*

This program is to find the session status of any node in
the network.

*/
#include <stdio.h>
#include <string.h>
#include <dos.h>
#include "ncbs.h"

#define Success 0
#define Failure -1
#define Pending OxFF
#define status Ox34

/* The NCB */ struct
byte

NCB ncb;
buff[347]; /* Data Buffer for the send NCB */

union REGS reg;
struct SREGS seg;

char signon[) = "\n SESSION STATUS\n\n";

main()
{

int i,len,p;

fprintf(stderr,"%s",signon);
init ();
ses_status ();
len = ncb.length;
if ((ncb.lsn l= 0) II (ncb.lsn l= OxFF)) {

printf ("Name table reference Num
print.f ("Num of session associated
printf ("Num of RCV DGM & RCV BCST DGM
printf ("Num of outstading RCV_ANYs
i = 4;

%2X\n",buff[O]);
%2X\n",buff[1));
%2X\n",buff[2));
% 2 X\ n" , buff [3)) ;

printf ("--\n");
while ((i <len) && (i < 76)) {

p = 0;
printf ("Session number
printf ("Session status
printf ("Local name
while ((p < 16) && (i <len)) {

printf ("%c",buff[i));

}

i++;
p++;

p 0;
printf ("\n");
printf ("Remote name
while ((p < 16) && (i < len)) {

printf ("%c",buff[i]);
i++;
p++;

}

printf ("\n");

: %2X\n",buff[i++));
: %2X\n",buff[i++));
: tt) i

: ") ;

printf ("Num of receive outstading :%2X\n",buff[i++]);
printf ("Num of send & csend outstanding:%2X\n",buff[i++]);

:m:::m:rm:::=:::::::r:2::::::r:::::::rr:::::g::r::::tr::::::::mrr:rr:r ::: ::::,,,,,:::== ?SESSTAT.tG :::::::: :::::::
}

}

}

/****************** sendncb (ncb) ***********************************

*
*
*
*
*/

Issues the NCB. If an error occurs, it exits after displaying
the error.

sendncb(ncb)
struct NCB *ncb;
{

char far *fptr;

fptr = (char far *) ncb;

reg.x.bx = FP_OFF (fptr);
seg.es = FP_SEG (fptr);
reg.h.ah = OxOl;

int86x (OxSC, ®, ®, &seg);
while (ncb->retcode == Pending)

if (kbhit()) getch();

if ((ncb->retcode !=Success) && (ncb->retcode !=Pending))
{

printf (" \nError: NCB Command is %2.2X and retcode
is %2.2X\n", ncb->command, ncb->retcode);

exit(l);
}

}

/*********** ses_status()**
*/
ses _status ()
{

}

char *lname = "*";

strncpy(ncb.name, lname, strlen(lname));
ncb.command = status;
sendncb(&ncb);

/**************** init () ***

*
* Initialises the fields in the NCB structure.

*/
init ()
{

}

char *name ...
ncb.buffer = (char far *) buff;
strncpy(ncb.name,name,l6);
ncb.lana_num = 0;
ncb.length = 340;

,

}

ncb.retcode = Success;
local = strupr(strdup(lname));
for (i = 0; i <= 15; i++) {

ncb.callname[i] = Ox20;
}

strncpy(ncb.callname, local, strlen(lname));
ncb.lana_num = 0;
ncb.length = 348;

/**************~***

*
*
*
*
*/

This program is used to find the NIA status of any node
in the network. You have to specify node name in command
line.

#include <stdio.h>
#include <string.h>
#include <dos.h>
#include "ncbs.h"

#define Success 0
#define Failure -1

#define Pending OxFF
#define status Ox33

struct
byte

NCB ncb;
buff[400];

/* The NCB */
/* Data Buffer for the send NCB */

union REGS reg;
struct SREGS seg;

char signon(] = "\n ADAPTER STATUS\n\n";

main(ac,av)
int ac;
char **av;
{

int i,len,p;

if (ac < 2) {

}

printf("Usage COMMAND
printf("Example: COMMAND
exit(l);

<Local or Remote name> \n");
lablxt <enter>\n");

fprintf(stderr,"%s",signon);
init (av(l]);
ncb_status ();
len = ncb.length - 1;
printf ("LENGTH : %d\n ", ncb.length);
if ((ncb.lsn != 0) II (ncb.lsn != OxFF)) {

printf ("\nUnit ID number ");
for (i = 0; i <= 5; i++)

printf ("%2X ",buff[i]);
printf ("\nExt jumper status : %2X\n",buff[6]);
printf ("Result of POST test : %2X\n",buff[7]);
printf ("Software Version No. :%2X.%2X\n",buff[8],buff[9]);
printf ("Actual Num of free NCBs :%2X%2X\n",buff[4l],buff[40]);
printf ("Max configured NCBs %2X%2X\n",buff[43],buff[42]);
printf ("Max free NCBs %2X%2X\n",buff[4S],buff[44]);
printf ("Pending sessions %2X%2X\n",buff[Sl],buff[SO]);
printf ("Max Pending sessions %2X%2X\n",buff[53],buff[52]);
printf ("Max possible sessions • %2X%2X\n",buff[SS],buff[S4));
printf ("Max sess data pkt size %2X%2X\n",buff[57],buff[56));
printf ("Num of names %2X%2X\n",buff[59],buff[58));
i = 60;
printf ("\n NAMES Num STATUS \n");
printf ("----------------------------------\n");
while ((i <len) && li < 347ll ~

}

}

p = 0;
while ((p < 16) && (i <len)) {

printf ("\c",buff[i]);
i++;
p++;

}

if (i < len) print£ ("
i++;
}

'!2X '!2X\n",buff[i],buff[++i]);

printf ("----------------------------------\n");

/********************* sendncb (ncb) ********************************

*
*
*
*/

This function issues the NCB. If an error occurs,
it exits after displaying the error.

sendncb(ncb)
struct NCB *ncb;
{

char far *fptr;

fptr = (char far *) ncb;
reg.x.bx = FP_OFF (fptr);
seg.es = FP_SEG (fptr);
reg.h.ah = OxOl;

int86x (OxSC, ®, ®, &seg);

while (ncb->retcode == Pending)
if (kbhit()) getch();

if ((ncb->retcode 1= Success) && (ncb->retcode !=Pending)) {
printf (" \nError: NCB Co~~and is %2.2X and retcode

is %2.2X\n", ncb->command, ncb->retcode);
exit (l) ;

}

}

/******************* ncb_status()************************************/

ncb_status()
{

ncb.command = status;
sendncb(&ncb);

}

/**************** init () ***

*
* Initialises the fields in the NCB structure.
*/
init(lname)
char *lname;
{

int
char

i.
I

*local;

ncb.buffer = buff;

I**
*

*
*
*

This program is to be run at the server end for
administravitive work regarding addition and
deletion of mail user.

*I

#include <stdio.h>
#include <stdlib.h>
#include <dos.h>
#include <malloc.h>
#include <string.h>
#include <sys\types.h>
#include <sys\stat.h>

struct user {

char user_name[9];
char pass_word[lO];
char directory[lS];
unsigned int sess_no;
struct user *next;
struct user *prior;

} list_entry;

I* pointer to next entry *I
I* pointer to previous record *I

struct find t fbuf;
struct user *start;
struct user *last;

I* pointer to first entry in the list *I
I* pointer t-o l.a:st entry *I

struct user *find(char *);

void enter(void),search(void),save(void);
void load(void),list(void);
void delete(struct user ••,struct user**);
void dls_store(struct user •i,

struct user **start,
struct user **last);

void inputs(char *,char*, int),display(struct user*);

int menu_select(void);
char maildir[) = "";

main()
{

start = last = NULL;
load();
for (; ;) {

switch(menu_select()) {

case 1: enter();
prin:tf("\n");
break;

I* initialize top & bottom pointers *I

case 2: delete(&start,&last);
printf("\n");
break;

case 3: list();
printf("\n");
break;

case 4: search();

}

}

}

printf ("\n");
break;

case 5: save();
printf("\n");
break;

case 6: load();
printf("\n");
break;

case 7: return (0);

/************ menu_select ()

*
**

* Display the menu and ask for choice.

*
* returns (int) your choice.

*/
menu select(void)
{

char s[BO];
int c;

printf("\tl: ENTER A USER NAME\n");
printf("\t2: DELETE A USER NAME\n");
printf("\t3: LIST THE FILE\n");
printf("\t4: SEARCH THE FILE FOR A USER\n");
printf("\tS: SAVE THE FILE\n");
printf("\t6: LOAD THE FILE\n");
printf("\t7: QUIT\n");

do {
printf("\n\tenter your choice: ");
gets(s);
c = atoi(s);

} while (c < 0 II c > 7) ;
return (c);

}

/*********** enter () ***
~

*
*
*/

Enter a new user in the node. And creats users HDR file
to store messages headers.

void enter(void)
{

struct user *info;
char result[lS];
int handle;

for (;;) {
info= (struct user*) malloc(sizeof(list_entry));
if(!info) {

}

printf("\n\tout of memory ");
return;

inputs("\tEnter name: ",info->user_name,B);

}

}

if (!info->user_name(O]) break;
inputs("\tEnter pass_word: ",info->pass_word,9);
strcpy(result,info->user_name);
strcpy(info->directory ,strcat(result,".hdr"));
if ((handle= creat (info->directory,

}

S_IREADjs_IWRITE)) != -1) {
close (handle);
dls_store(info,&start,&last);
save ();

else printf("Name not added.\n");

/************** inputs (*prompt, *s, count) *************************

*
*
*
*/

Reads a string from keyboard of length less than or equal
to the count.

void inputs(char *prompt,char *s, int count)
{

}

char p(255];

do {
printf(prompt);
gets (p);
if(strlen(p) >count) printf("\n too long\n");

} while(strlen(p) >count);
strcpy(s,p);

/*************** dls_store (*i, **start, **last) ********************

*
*
*
*/

It stores the new element '*i' in the doubly link list at
proper position to sort the list.

void dls_store(struct user *i, /* new element */

{

struct user **start,
struct user **last)

struct user *old,*p;

if(*last == NULL) {
i->next = NULL;
i->prior = NULL;
*last = i;
*start = i;
return;

}

p *start;

old = NULL;
while(p) {

/* first element in list */
/* last element in list */

/* first element in list */

/* start at top of list */

if(strcmp(p->user_name,i->user name) < 0) {
old = p;
p = p->next;

}

else {
if(p->prior) {

p->prior->next i;
i->next = p;

}

}

}

}

i->prior p->prior;
p->prior = i;

return;

i->next = p;
i->prior = NULL;
p->prior = i;
*start = i;
return;

}

old->next i;
i->next = NULL;
i->prior = old;
*last = i;

/* new first element */

/* put an end */

/************* delete (**start, **last) ****************************

*
*
*
*/

Remove an user from the list. It also calls remove hdr
to delete the hdr file.

void delete(struct user **start, struct user **last)
{

struct user *info, *find();
char s[80];

printf ("\tEnter the user_narne:\n");
gets(s);
info= find(s);
if (info) {

remove hdr (info->directory); /*To delete message hdr file.*/
if (*start == info) {

}

}

*start = info->next;
if (*start) (*start)->prior
else *last = NULL;

else {

NULL;

info->prior->next = info->next;
if (info 1= *last)

info->next->prior = info->prior;
else

*last = info->prior;
}

free(info);
save();

/* Return memory to system */

/*********** find (user_narne) ***************************************

*
*
*

*/

It finds the node in the list with user name.
returns : A pointer to that node if exists.

NULL pointer on non existance.

struct user *find(char *user_narne)
{

struct user *info;

}

info = start;
while (info) {

}

if (!strcmp(user_name, info->user_name)) return info;
info = info->next; /* Get next user */

printf ("\tName not found.\n\n");
return NULL;

/************* list ()***

*
* It displays the entire list.
*/
void list(void)
{

}

struct user *info;

info = start;
while (info) {

display(info);
info = info->next;

}

printf("\n");

/* Get next user */

/*************** display (info) *************************************

*
*
*
*/

This function actually prints fields of the node with
pointer info.

void display(struct user *info)
{

}

printf ("\tuser
printf ("\tpassword
printf ("\n");

%s\n", info->user_name);
%s\n", info->pass_word);

/*********** search () **

*
* Look for a user name in the list.
*/
void search(void)
{

}

char user_name[l5];
struct user *info, *find();

printf("\tEnter user_name to find\n");
gets(user_name);
info= find (user_name);
if (!info) printf("\tNot found\n");
else

printf("\tvalid user\n");

/************* save () **
*
* It save the link list in a file on the disk.
*/

}

void save(void)
{

}

struct user *info;

FILE *fp;

fp fopen ("user list", "wb");
if (!fp) {

}

printf ("\tcan't open the file userlist\n");
exit(l);

printf("\tSaving file on disk.\n\n ");
info = start;
while (info) {

fwrite(info, sizeof(struct user), 1, fp);
info = info->next; /* Get next user */

}

fclose(fp);

/************* load () **

*
*
*
*I

It loads the (userlist) file in to memory in the
form of a link list.

void load ()
{

struct user *info;
FILE *fp;

fp fopen("userlist","rb");
if (lfp) {

}

printf ("\tCan't open file userlist.\n");
exit(l);

/* Free any previously allocated memory */

while (start) {

}

info = start->next;
free (info) ;
start = info;

/* Reset top and bottom pointer */
start = last = NULL;
printf ("\tLoading file .\n\n");
while (I feof (fp)) {

}

info= (struct user*) malloc(sizeof(struct user));
if (!info) {

}

printf ("\tOut of memory.\n");
return;

if (1 I= fread (info, sizeof(struct user), 1, fp)) break;
dls store(info, &start, &last);

fclose (fp);

/************* remove hdr (hdr_file) ********************************

*
*
*
*
*
*
*/

It deletes all the message files releted to the hdr file
before deleting the hdr_file.

returns : -ve File not found.
0 Successful deletion of the hdr file

remove_hdr (hdr_file)
char *hdr_file;
{

int n_bytes,fptr,p,i,j;
char hdr[810], fname[lO];

if ((fptr =open (hdr_file,O)) < 0) {
printf ("ERROR : In opening \s file. \n", hdr_file);
return (-1);

}

}

else {

}

n_bytes =read (fptr, &hdr[0],800);
while (n_bytes > 0) {

}

p = 67;
while (p < n_bytes) {

i = p;
j = 0;
while (hdr[i]

fname(j]
j++; i++;

}

I= Ox20) {
hdr[i];

fname [j] = · \0 • ;
delmail (fname);
p = p + 80;

}

n_bytes read (fptr, &hdr[0],800);

close (fptr);
if (remove (hdr_file)) return (-2);
else return(O);

/********** delmail ***

*
* Delete mail files

*
*
*
*
*/

Returns: -1
0

>0

File not found
Deleted
Number of links remaining

delmail (name)
char *name; /* File Name without extension
{

int i, nlink, handle;
char fname[lOO], oldname(lOO], newname[lOO];

strcpy (fname, maildir);
strcpy (oldname, maildir);
strcpy (newname, maildir);

strcat (fname, name); strcat (fname, ".T*");

*/

if (_dos_findfirst (fname, _A_NORMAL, &fbuf)) return (-1);

strcat (oldname, fbuf.name); strcat (newname, fbuf.name);
for (i=strlen (oldname); i>O; i--) if (oldname[i] == '.') break;
if (i < 1) return (-1);

nlink 0;
sscanf (&oldname[i+2],"%d",&nlink);
if (nlink-- > 1) { /*Rename File */

}

sprintf (&newname(i+2],"%d",nlink);
if (rename (oldname, newname) != 0) return (-2);
return (nlink);

else {
strcpy (fname, maildir); strcat (fname, name);
strcat (fname, ".*");
if (_dos_findfirst (fname, _A_NORMAL, &fbuf)) return (-3);
while (1) {

strcpy (oldname, maildir);
if (remove (oldname)) return
if (_dos_findnext (&fbuf))

strcat (oldname, fbuf.name);
(-4);

return (0);

/**

*
*
*

This program is to change the password of any user, from
any node of this mail system.

*/
#include <stdio.h>
#include <string.h>
#include <dos.h>
#include "ncbs.h"

#define Success 0
#define Failure -1
#define Pending OxFF
#define Timeout OxOS
#define call OxlO
#define send Ox14
#define listen Oxll
#define recv OxlS
#define hangup Ox12
#define status Ox33

struct NCB ncb,ncbl; /* The
byte sbuffer[Bufsize];
byte rbuffer[Bufsize];
byte server[l6] = "LABlXT
byte buff[400];
byte local[l6] =

union REGS
struct SREGS

reg;
seg;

"*

NCB *I
/* Data Buffer
/* Data Buffer

". I

" . I

char signon(] = "\n CHANGING PASWORD.\n\n";

main()
{

}

int i,len;

fprintf(stderr,"%s",signon);
ncb_call ();
if ((ncb.lsn I= 0) II (ncb.lsn I= OxFF))

change_pwd ();

for the send NCB
for the recv NCB

*/
*/

/*************** change_pwd () **************************************

*
*
*
*

This function sends user name & password at
server & receives respose.

*/
change_pwd()
{

int i,p;
byte lsn;
char user(lS], opass[l0],1 npass[l0];

lsn ncb.lsn;
for (i = 0; i < 45; i++) {

buff[i] Ox20;
}

buff[O] = '0';

}

}

do {
printf ("\tUSER: ");
gets(user);
if(strlen(user) > 8) printf("\n too long\n");

} while(strlen(user) > 8);
printf ("\tOLD PASSWORD: ");
getpwd(opass,9);
print£ ("\n\tNEW PASSWORD: ");
getpwd(npass,9);
strncpy(&buff[10], user, 9);
strncpy(&buff[25], opass, 10);
strncpy(&buff[35], npass, 10);
printf ("\n\tNEW PASSWORD AGAIN: ");
for (i = 0; i < 10; i++)

npass[i] = Ox20;
getpwd(npass,9);
if (Jstrncmp(npass, &buff[35], 10)) {

for (i = 0; i < 45; ++i)
printf ("%c",buff[i));

ncb.length = 45;
ncb_send ();
ncb_recv (lsn);
if (rbuffer[O) == 'o') {

switch (rbuffer[10]) {

case

}

case

}

case

}

}

send_quit ();
}

0: {

1:{

2: {

printf ("\nPassword changed.\n");
break;

print£ ("\nUser name not found.\n");
break;

print£ ("\nUnauthorised user.\n");
break;

else printf ("\n\tCan't change the password.");

/************* quit () **
*
* Hangup the session.

*/
quit ()
{

}

ncb.command = hangup;
sendlncb (&ncb);

/************ send_quit () **
*
* Sends message to server to hang up the session.
*/
send_quit{)
{

bu f f [0) ' M ' ;

}

ncb send ();
quit ();

/****************** load ncb (ncb) **********************************

*
*
*
*/

This function issues the NCB. If an error occurs,
it exits after displaying the error.

load_ncb(ncb)
struct NCB *ncb;
{

}

char far *fptr;

while (ncb->retcode ==Pending) if (kbhit()) getch();
if (ncb->retcode != Success) {

}

printf (" \nError: NCB Command is \2.2X and retcode is %2.2X\n"
, ncb->comrnand, ncb->retcode);

if ncb->retcode == Timeout) {
if (ncb->comrnand == recv) send_quit ();
else quit () ;

}

exit(l);

fptr = (char far *) ncb;

reg.x.bx = FP_OFF (fptr);
seg.es = FP_SEG (fptr);
reg.h.ah = Ox01;

int86x (OxSC, ®, ®, &seg);
if ((ncb->retcode 1= Success) && (ncb->retcode !=Pending)) {

}

printf (" \nError: NCB Command is %2.2X and retcode is %2.2X\n"
, ncb->comrnand, ncb->retcode);

if (ncb->retcode == Timeout) {
if (ncb->command == recv) send_quit ();
else quit () ;

}

exit(l);

/************ sendlncb () **

*
*
*
*/

Issues the NCB. It does not do any error display
or checking.

sendlncb(ncb)
struct NCB *ncb;
{

char far *fptr;

fptr = (char far *) ncb;
reg.x.bx = FP_OFF (fptr);
seg.es = FP SEG (fptr);
reg.h.ah = Ox01;
int86x (OxSC, ®, ®, &seg);

/************** ncb_call () ***

*
*
*
*/

This procedure performes a call to the remote node
specified after having added the local name.

ncb call{)
{

int i,p,len;

initl ();
ncb status ();
len= ncb.length;
i = 60;
p = 0;
while ((p < 16) && (i <len)) {

ncb.name[p) = buff[i];
i++;
p++;

}

strncpy(ncb.callname, server, 16);
ncb.command = call;
load_ncb(&ncb);

}

/*************** ncbsend () **/

ncb_send()
{

}

ncb.command = send;
load_ncb(&ncb);

/************* ncb_recv(lsno) ***************************************

*
*
*

This function initialises the ncb to recv where
lsno is the corresponding session number.

*/
ncb_recv(lsno)
byte lsno;
{

}

ncbl.lsn = lsno;
ncbl.buffer = (char far *) rbuffer;
ncbl.length = Bufsize;
ncbl.lana_num = 0;
ncbl.command = recv;
load_ncb(&ncbl);

/********** ncb_status ()**

*
* It issues the adapter status command to get local name.
*/
ncb_status()
{

}

strncpy(ncb.callname, local, 16);
ncb.command = status;
load_ncb(&ncb);

'/* *********** initl () * *'******* * *** ** * * **** *** * * ***** * ** ** *** ****** *
*
* Predefines the fields in the NCB structure.
*/
initl()
{

}

ncb.buffer = (char far *) buff;
ncb.retcode = Success;
ncb.lana_num = 0;
ncb.length = 348;
ncb.sto = 60;
ncb.rto = 60;

/*********** getpwd (linebuf, maxch) *******************************
*
*
*
*
*
*/

This function reads atmost maxch character(s) from
the keyboard for p~ssword and store in linebuf.

returns : Number of character read.

getpwd(linebuf, maxch)
char linebuf[];
int maxch;
{

}

int ch, nch = 0;

while ((ch = getch()) !~ OxOd) {
if (ch >= Ox20) {

if (nch < maxch) {
linebuf(nchj ch; nch++;

}

}

else if (ch --
if (nch !=

}

else if (ch --
}

linebuf(nch) = 0;
return(nch);

8) {'

0) nch--;

0) getch();

/**

*
* Header file for Network Control Block (NCB).
*/
#define byte unsigned char
#define word unsigned int

#define Bufsize 1000

struct NCB {

byte command;
byte retcode;
byte lsn;
byte num;
char far *buffer;
word length;
byte call name (16] ;
byte name (16];
byte rto;
byte sto;
word off_post;
word seg_post;
byte lana_num;
byte cmd_cplt;
byte reserve(14];

}

/***************************~~***************************************
*

*
*

This program is the vMS server program which is to be run
at the server end.

*/
#include <stdio.h>
#include <string.h>
#include <dos.h>
#include <stdlib.h>
#include <rnalloc.h>
#include "ncbs.h"
#include <sys\types.h>
#include <sys\stat.h>
#include <tirne.h>
#include <fcntl.h>
#include <io.h>

#define Success 0
#define Pending OxFF
#define Closed Ox.OA
#define Timeout Ox05
#define listen Oxll
#define recv OxlS
#define send Ox14
#define no wsend Ox94
#define no wl.isten Ox91
#define no wrecv Ox9'5
#define hangup Ox:l2
#define no_whangup Ox92
#define st.atus Ox33
#define cancel Ox3-S
#define MAX SES 4

#define VMS BLEN 8000

struct
struct
byte
byte
union
struct
char
char

NCB ncb,ncbc;
find_t fbuf;
rbuff[MAX_SES][Bufsize];/*
sbuff[MAX_SES][Bufsize];/*
REGS reg;
SREGS seg;
server[16] = "LABlXT
rnaildir [] "" ;

struct user {

/* The NCBs */

Data Buffer for the receive
Data Buffer for the send

'
It.
' '

/* pointer to next entry */

NCB */
NCB */

char user_narne[9];
char pass_word[lO);
char directory[lS];
unsigned int sess_no;
struct user *next;
struct user *prior; /* point~r to previous record */

} ;

struct session {
int flag;
int fflag;
int fptr;
struct NCB rncb;
struct NCB sncb;
char user[9];

char dir(lS];
char text_file(B];

}ses(MAX_SES];

struct user *start; /* pointer to first entry in the list */
struct user *last; /* pointer to last entry */
struct user *find(char *);

void load_list(void),list(void),save(void);
void dls_store(struct user *i,

struct user **start,
struct user **last);

void display(struct user*);

char signon[] = "VMS_Server: ";
int
int
int

no_ses = 0;
sign = 1;
line_ flag 0;

/* Number session existing. */

unsigned char vms_buf[VMS_BLEN*2+100], *vms_buf1, *vms_buf2;
int vms_count, max_count;
unsigned char vms_irq, vms_flag, *vms_bobuf, *vms_eobuf, *vms_bufptr;

extern
extern
extern
extern

main ()
{

void
void
void
void

int
char
byte

vms_start();
vms_stop();
voiceon();
voiceoff();

i,len,num,signal;
ch,com[10];
lsn;

fprintf(stderr,"%s",signon);
signal = 1;
start = last = NULL;
load list ();
init ();
num = 0;
while (1) {

start:if ((ncb.retcode
ncb listen ();
sign = 0;

Success) && (sign)) {

}

if ((ncb.cmd_cp1t ==Success) && (!sign)) {
if {ncb.retcode == Success) {

}

}

len = ncb.lsn;
if ((num = find_ses(lsn,num)) < MAX_SES) {

no_ses++;

}

sign = 1;
ncb_recv(num);
if (no_ses < MAX_SES) goto start;
else sign = 0;

for (i = 0; i < MAX_SES; i++) {
if (ses(i].flag)

if (ses[i].rncb.cmd cplt Success)

if(ses[i].rncb.retcode ==Success) {
switch (rbuff[i][O]) {

case 'A': chkpwd (i);
ncb recv (i);
break;

case 'B': read file (i);
ncb recv (i);
break;

case 'C': read file (i);
ncb recv (i);
break;

case 'F': recepient (i);
ncb recv (i);
break;

case 'G': process_voice_req(i);
ncb recv (i);
break;

case 'H': ncb_recv(i);
process start_key(i);
while(rbuff[num](O] I= 'P')

dovoice(ses(num].fptr,2);
process_stop_key(i);
ncb recv (i);
break;

case 'I': process_pback_req(i);
ncb recv (i);
break;

case 'J': process_del_vfile(i);
ncb recv (i);
break;

case 'K': save text (i);
ncb recv (i);
break;

case 'M': quit(i);
break;

case '0': change_pwd(i);
ncb recv (i);
break;

case 'Q': file name (i);
ncb recv (i);
break;

case 'R': ncb recv (i) ;

break;

CqSe . s.: del _meg (i) ;
ncb recv (i) ;
break;

}

}

}

}

case 'U': process pback_key(i);
ncb recv (i);
break;

case 'V': process hang_key(i);
ncb recv (i);
break;

case 'W': process_pback_quit(i);
ncb recv (i);
break;

for (i = 0; i < MAX_SES; i++) {

}

if (ses[i].flag) {
if (ses[i].rncb.retcode

quit (i);
Timeout) {

ses[i].rncb.retcode =Success;
}

if ((ses[i].sncb.retcode ==Timeout) &&
(ses[i].sncb.comrnand == no_wsend)) {
quit (i);
ses[i].sncb.retcode = Success;

}

if (ses[i].sncb.command == no_whangup) {
if (ses[i).sncb.cmd_cplt == Success) {

}

}

if (ses[i].sncb.retcode ==Success) {
ses[i].sncb.command = no_wsend;
ses[i).sncb.retcode =Success;
ses[i).sncb.cmd_cplt =Success;
ses[i].flag = 0;

}

if ((no_ses == MAX_SES) && (!sign))
sign = 1;

no sea--;

else {

}

if ((ses[i] .sncb.cmd_cplt == Timeout) II

}

(ses[i].sncb.cmd_cplt ==Closed)) {
ses[i].sncb.comrnand = no_wsend;
ses[i].sncb.retcode =Success;
ses[i].sncb.cmd_cplt =Success;
ses[i].flag = 0;
if ((no_ses == MAX_SES) && (!sign))

sign = 1;
no_ses--;

if (kbhit()) {
gets(com);
signal = 0;
if (strcmp(com, NULL) I= 0) {

sscanf(com, "\c", &ch);
tolower (ch);

~:::m~~tttiitttitiilrnmmt1tt11tltti1:n;:mnr:r::::~::::r::t~tt1ttimntrS.EBVERrG:n::mmr:::m::::::mmmm:::::::m::n : . : = : =:::.

}

}

}

}

switch (ch) {

}

case''?': help ();
break;

case iu•: list ();
break;

case 'w': c user ();
break;

case • s,' : shut down () ;
break;

default:. printf ("Unrecognized conunand.");
printf ("Type? for HELP.\n");

if (I signal) {

}

fprintf (stderr, "%s"~ signon);
signal = 1;

/********** process voice request ***************************************

*
*
*
*
*
*
*/

processes the voice compose,request from any user.
checks if line available if ,so Create and Opens a voice file
Also initialises the digitiser card.
Returns: 0 server available

1 server not available

process_voice_req(num)
int num;
{

int voice no,i;
char vf_name[12];

rbuff[num)[O) = Ox20;
sbuff[num)(O] = •g•;
voice_no = rbuff(num)[10];

if(line_flag) sbuff[num)(10] 1;
else {

line_flag = 1; /* hold the line */
vms_card_on(2); /*initialize at card*/
if(voicefile(ses(num).text_file, voice_no) == 0) {

strcpy (vf name, maildir);
strcat (vf_name, ses(num].text_file);
strcat (vf_name, ".V");
i = strlen (vf_~ame);
sprintf (&vf nalhe[i], "%d" ,voice_no);
if (!ses(num].fflag) {

if ((ses[num].fptr open(~f_name,O_RDWRjO_BINARY)) < 0) {
sbuff[num)[10] 1;

}

else {

}

}

}

}

ses(num].fflag
sbuff[num] (10]

else sbuff(num](10] 1;
}

ncb_send(num,15);

1;
Success;

/********** process start key for digitisation

*

* initiates digitisation.
Returns: 0 success always

*/
process_start_key(num)
int num;

/***** TO DIGITIZE VOICE *******/

{

}

rbuff(num](O] = Ox20;
sbuff(num](O] = 'h';
sbuff[num](10] =Success;
ncb_send(num,15);
voice_on(15); /*start_digitization();*/

/********** process stop key ***************************************

*
*
*
*
*
*
*/

processes user initiated stop key for stopping digitisation.
vms card is turned off. Voice file is closed and line
released
Returns: 0 Success

1 Failure

process_stop_key(num)
int num;
{

}

rbuff(num](O] Ox20;
sbuff(num](O] 'p';
voice_off();
vms_card_off();
if (ses(num].fflag) {

close(ses(num].fptr);
ses(num].fflag = 0;
sbuff(num](10] =Success;

}

else sbuff(num](10] = 1;
line_flag = 0;
ncb_send (num, 15);

/** RELEASE LINE********/

/********** process hang up key ************************************

*
*
*

processes quit key to hang up when server is found busy.
Closes and deletes the voice-file,releases the line.

* Returns: 0 Success
* 1 Failure

*/

process_hang_key(num) /* ESC PRESSED TO ABORT */

int num;
{

}

int voice_no;
int i = 0;
char vf_name(12];

voice_no = rbuff[nurn][10];
rbuff[num][O] = Ox20;
sbuff[num][O] = 'v';
if (ses[num].fflag) {

}

close(ses[nurn].fptr);
ses[num].fflag = 0;

else sbuff[nurn][lO] = 1;

strcpy (vf_name, maildir);
strcat (vf_name, ses[nurn].text_file);
strcat (vf_name, ".V");
i = strlen (vf_name);
sprintf (&vf_name[i],"\d",voice_no);i = 0;
i = remove(vf_name);
if(i == -1) printf(" ERROR MESSAGE :COULD NOT DELETE FILE\n");
sbuff[nurn][10] =Success;

line_flag = 0;
ncb send (num, 15);

/********** process play back request********************************

*
*
*
*
*I

initialses vms card for playback if line available.
Returns: 0 Success

1 Failure

process_pback_req(nurn)
int num;
{

}

rbuff[nurn][O] = Ox20;
sbuff[num][O] = 'i';

if(line_flag) sbuff[num][lO]
else {

line_flag = 1;
vms_card_on(l);
sbuff[nurn][10] Success;

}

ncb_send(num,15);

1;

/* assigning line */

/********** process play back start key **~**************************

*
*
*
*
*
*

opens the voice file for read. closes it after read is
complete and resets vms card. Then closes the file and
releases the line.
Returns: 0 Success

1 Failure
*/

process_pback_key(num)

}

int num;
{

int voice_no;
int i = 0;
char vf_name[l2];

voice_no = rbuff[num][lO];
rbuff[num][O] Ox20;
sbuff[num)[O] = 'u';

strcpy (vf_name, maildir);
strcat (vf_name, ses[num).text_file);
strcat (vf_name, ".V");
i = strlen (vf_name);
sprintf (&vf_name[i],"%d",voice_no);

if (lses[num].fflag) {
if ((ses[num].fptr open(vf_name,O_RDONLYIO_BINARY)) < 0) {

sbuff[num][lO] = 1;

}

}

else {
ses[num].fflag
sbuff[num][10]

1;
Success;

}

voice_on(15);
while(leof(ses[num).fptr))
dovoice(ses[num].fptr,1);
voice_ off();
vms_card_off();
if (ses[num].fflag) {

close(ses[num).fptr);
ses[num].fflag = 0;
line_flag = 0;

}

else sbuff[num)[10] 1;

else sbuff[num)[10]
line_flag = 0;
ncb_send(num,15);

1;

/* AND RBUFF[O] != XXX */

/* close file , session etc. */

/* release line */

/********** play back quit ***

*
*
*
*
*/

If line is busy then close voice file,release line flag.
Returns: 0 Success

1 Failure

process_pback_quit(num)
int num;
{

rbuff[num][O] = Ox20;
sbuff[num][O] = 'w';
if (ses(num].fflag) {

}

close(ses(num].fptr);
ses(num].fflag 0;
sbuff[num)[lO] =Success;

else sbuff[num][10] = 1;
line_flag = 0;

/* CLOSE VOICE FILE */

/** RELEASE LINE********/

ncb send (num, 15);
}

/********** delete voice file ***************************************

*
*
*
*
*
*/

deletes the specified voice file. file no available in
rbuff[num][lO].
Returns: 0 Success

1 Failure

process_del_vfile(num)
int num;
{

}

int voice_no;
int i = 0;
char vf_name[12];

voice_no = rbuff[num](10];
rbuff[num][O] = Ox20;
sbuff[num][O] = 'j';
strcpy (vf name, maildir);
strcat (vf_name, ses[num].text_file);
strcat (vf_name, ".V");
i = strlen (vf_name);
sprintf (&vf_name(i],"%d",voice_no);i = 0;
i = remove(vf_name);
if(i == -1){

sbuff[num][10] 1;
}

else {
sbuff[num][10] =Success;

}

ncb_send(num,15);

/********* vms card on ***

*
* Initialise the voice card and set redirect interrupt
*/

vms card on (mode)
int mode;
{

}

vms buf1 vms_buf; vms buf2
vms bobuf = vms_buf1; vms eobuf
vms_bufptr vms_bobuf; vms_irq

vms_buf1+VMS_BLEN;
vms buf1 + VMS_BLEN*2;
OxOc;

if ((mode< 1) I I (mode> 2)) return (-1);
vms_flag =mode; vms start ();

return (0);

/********** voice on **

*
* Start Digitisation/Paly Back of Voice

*/
voice_on (maxtime)
int - maxtime;
{

/* max time in Seconds */

}

vms count = 0;
max count = (maxtime * 80001) f VMS_BLEN;
voiceon ();
return (0);

/********** voice off ***

*
* Stops Digitisation/Play back of Voice
*/

voice_off ()
{

}

int time;

voiceoff ();
time= ((11 * vms_count) * VMS_BLEN) I 80001;
return (time+1);

/********** vms card off **

*
* Disable voice card and switch relay off.

*/

vms card off ()
{

}

vms_stop ();
return (0);

/********** dovoice ***

*
* Process voice bufferes

*/

dovoice (fd, mode)
int fd, mode;
{

if (((vms_count%2) == 0) && (vms_bufptr >= vms_buf2)) {
if (mode == 1) {

}

}

if (++vms count>= max count) voice_off();
if (read (fd, vms_buf1, VMS_BLEN) >= VMS_BLEN)

return (0);

else if (mode == 2) {

}

if (++vms_count >= max_count) voice_off();
if (write (fd, vms_buf1, VMS_BLEN) >= VMS_BLEN)

return (0) -;

return (-1);

if (((vms_count%2) == 1) && (vms_bufptr < vms_buf2)) {
if (mode == 1) {

}

if (++vms count>= max count) voice_off();
if (read (fd, vms_buf2, VMS_BLEN) >= VMS BLEN)

return (0);

else if (mode == 2) {
if (++vms_count >= max_count) voice_off();
if (write (fd, vms_buf2, VMS_BLEN) >= VMS_BLEN)

return (0);
}

return (-1);
}

return (0);
}

/*********** help () **

*
* This function prints the server commands.

*/
help ()
{

}

printf("\n\n\t ________________ HELP ____________ \n");
printf ("\n\tW: Who are currently interactive.\n");
printf ("\tU Users list.\n");
printf ("\tS Shutdown the server.\n");
printf ("\t? Help.\n");

/********** c_user () ***

*
* This function prints the currently interactive user(s) list.

*/
c user ()
{

int i, num;

num = 0;
for (i 0; i < MAX_SES; i++) {

if (ses[i].flag} {
num++;
printf ("\n\t%d. %s\n",num,ses[i].user);

}

}

if (num == 0) printf ("\n\tNo entries in the list.\n");
}

/**********shut down () **

*
* This function confirm shut down of server.

*
*/
shut_down ()
{

char ch;

printf ("\n\tSHUT DOWN SERvER? PRESS Y/N. ");
ch = getche ();printf("\n");
if ((ch == 'y') II (ch == 'Y')) exit(l);

}

/************* quit(num) **
*
* This funcyion hangup the session having ses(num].
*
*/
quit(num)
int num;
{

if ((ses[~um].rncb.cmd_cplt ==Pending) I I

}

}

(ses[num].rncb.retcode ==Pending)) {
ncb_cancel(&ses[num].rncb);

if ((ses[num].sncb.cmd_cplt ==Pending) I I
(ses[num].sncb.retcode ==Pending)) {
ncb_cancel(&ses[num].sncb);

rbuff[num][O] = Ox20;
ses[num].sncb.command = no_whangup;
load_ncb(&ses[num].sncb);

/*********** find_ses(lsn, num) *************************************
* formal parameter :
* lsn

* num
is the local session number.
is the ses index.

*
*
*
*
*/

This function search session array.
returns :The index if session available.

:MAX SES otherwise.

find_ses(lsn,num)
byte lsn;
int num;
{

}

int i,j;
for (j = num; j < j + MAX SES; j++) {

i = (j % MAX_SES);
if ((lses[i].flag) && (ses[i).sncb.cmd_cplt

}

ses [i] • flag = 1;
ses[i].rncb.lsn
ses[i].sncb.lsn
return (i);

}

return(MAX_SES);

len;
lsn;

Success)) {

/************* ncb_cancel(ncb) **************************************

*
*
*
*/

formal parameter :ncb is the pointer to pending command NCB.
This function the cancel pending the command.

ncb_cancel(ncb)
struct NCB *ncb;
{

}

ncbc.buffer = (char far *) ncb;
load_ncb(&ncbc);

/************** load ncb (ncb) **************************************

*
* formal parameter : ncb pointer to NCB.

* This function loads the NETBIOS command for execution.

*/

load ncb(ncb)
struct NCB *ncb;

::::t::::::m:::t:::::::::::t::ttf\'1fWIIl11f\!:l!H!It:f::r:::w::::::::ttfifi\{t@fH11WfffSE8ll£mGtf\I/IIt:::::::::r:t::m:::tttttitHttmt::::m::::m::::::::tttJttl31\::tt111t::::I
{

}

char far *fptr;

fptr = (char far *) ncb;

reg.x.bx = FP_OFF (fptr);
seg.es = FP_SEG (fptr);
reg.h.ah = Ox01;

int86x (OxSC, ®, ®, &seg);

/************** ncb_listen () ***************************************

*
* This function performes a listen command for any node.
*/
ncb _listen ()
{

}

char *rname = "*";
int i;

ncb.retcode = success;
ncb.cmd_cplt = Success;
ncb.buffer = (char far *) rbuff;
for (i = 0; i <= 15; i++) {

}

ncb.ca1lname(i] = Ox20;
ncb.name[i] = Ox20;

ncb.rto = 240;
ncb.sto = 120;
ncb.off_post 0;
ncb.seg_post = 0;
ncb.lana_num = 0;
strncpy (ncb.name, server, 16);
strncpy(ncb.callname, rname, strlen(rname));
ncb.command = no_wlisten;
load_ncb(&ncb);

/************ ncb receive (num) *************************************

*
* Issue a receive command for ses(num]
*/

ncb_recv(num)
int num;
{

}

ses[num].rncb.1ength = Bufsize;
rbuff[num](O] = Ox20;
ses[num).rncb.command = no_wrecv;
load_ncb(&ses[num).rncb);

/************* d1s store **

*
*
*
*
*/

This function store the new user name in the list of
users in sorted form.

void dls_store(struct user *i, /* new element */

{

}

struct user **start, /* first element in list */
struct user **last) /* last element in list */

struct user *old,*p;

if(*last == NULL) {
i->next = NULL;
i->prior = NULL;
*last = i;
•start = i;
return;

}

p •start;

old = NULL;
while(p) {

/* first element in list */

/* start at top of list */

if(strcmp(p->user_name,i->user name) < 0) {
old = p;
p = p->next;

}

else {

}

if(p->prior) {
p->prior->next = i;
i->next = p;
i->prior = p->prior;
p->prior = i;

return;
}

i->next = p;
i->prior = NULL;
p->prior = i;
•start = i;
return;

}

old->next i;
i->next = NULL;
i->prior = old;
*last = i;

/* new first element */

/* put an end */

/************ find **

*
*
*
*
*
*/

formal parameter: pointer to user_name.
This function search user list for user name.
returns: Pointer to the node if name exist.

NULL otherwise.

struct user *find(char *user_name)
{

etruct user *info;

info = start;
while (info) {

}

if (lstrcmp(user_name, info->user name)) return info;
info = info->next; /* Get next user */

return NULL;
}

/************** list ()**

*
* This function prints the name all users.

*
*/
void list(void)
{

}

struct user *info;

info = start;
printf ("\n\tLIST OF AUTHORISED USERS\n");
printf ("\t \n"); ---------------------------while (info) {

printf ("\t%s\n", info->user_narne);
info = info->next;

}

printf("\n");

/* Get next user */

/************ load_list () **

*
*
*
*/

This function load the user list to a file named as
userlist.

void load _list ()
{

}

struct user *info;
FILE *fp;

fp = fopen("userlist","rb");
if (! fp) {

}

printf ("\tCan't open file userlist.\n");
exit (1);

/* Free any previously allocated memory */
while (start) {

}

info = start->next;
free (info);
start = info;

/* Reset top and bottom pointer */
start = last = NULL;
while (!feof(fp)) {

}

info= (struct user*) malloc(sizeof(struct user));
if (!info) {

}

printf ("\tOut of memory. \n");
return;

if (1 != fread (info, sizeof(struct user), 1, fp)) break;
dls_store(info, &start, &last);

fclose (fp);

/*************** chkpwd (num)**

*
*
*

This function checks the user and password
and sends results to the workstation.

{:i::\:{=:::mr:::t16IM¥Hliitttt:==t=Jit:=m:=::::::m:=:::::tttt:: t:r·:;:;;;::·=: SERVER.tQ;t:i : : : :: .: :::;:
*/
chkpwd (num)
int num;
{

struct user *info;
int lsn,i;

i = 0;
rbuff[num)[O] = Ox20;
info= find (&rbuff[num)[lO]);
sbuff[num][O] = 'a';
if (!info)

sbuff[num][lO] = 1;

}

ses(num).sncb.command c no_wsend;
load_ncb(&ses(num).sncb);

/******************* Save ()************~***************************
* This function save the link list in to the userlist file.
*/
void save(void)
{

}

struct user *info;
FILE *fp;

fp = fopen ("userlist","wb");
if (1 fp) {

}

printf ("\tcan't open the file userlist\n");
exit(l);

info = start;
while (info) {

fwrite(info, sizeof(struct user), 1, fp);
info = info->next; /* Get next user */

}

fclose(fp);

/******************** init **
* This function initialises the structures.
*/
init ()
{

}

int i,p;

i++) { for (i = 0; i < MAX_SES;
ses[i].rncb.retcode
ses[i].rncb.cmd_cplt =
ses[i].rncb.length
ses[i].rncb.off_post
ses[i].rncb.seg_post
ses[i].rncb.lana_num =
ses[i].rncb.buffer
ses[i].rncb.command
ses[i].sncb.retcode
ses[i].sncb.cmd_cplt
ses[i].sncb.off_post
ses[i].sncb.seg_post
ses(i].sncb.lana_num
ses[i].sncb.buffer
ses[i].sncb.command
ses[i].flag = 0;
ses[i].fflag = 0;

}

ncbc.lana_num = b;
ncbc.command = cancel;

= Success;
Success;
Bufsize;
0;
0;
0;
(char far*) &rbuff[i][O];
no_wrecv;
Success;
Success;
0;
0;
0;

= (char far*) &sbuff[i][O];
= no_wsend;

/************** recepient (num) ***********************************

*
* This function checks valid users whom mail is to be send.
*/
recepient (num)
int num;

}

else
if (!strcmp(info->pass_word, &rbuff[num][25])) {

sbuff[num)[10] = 0;

}

strcpy(ses[num].user, info->user_name);
strcpy(ses[num].dir, info->directory);

else sbuff[num][10] = 2;
ncb send (num, 15);

/************* change_pwd (num)**************************************

*
*
*

This function change the users password if old password
is verified and send information to the workstation.

*/
change_pwd(num)
int num;
{

}

struct user *info;
int lsn,i;
rbuff[num](O] = Ox20;

info= find (&rbuff[num][10]);
sbuff[num][O] = 'o';
if (!info) {

sbuff[num][10] 1;
}
else {

}

if (!strcmp(info->pass_word, &rbuff[num][25])) {
sbuff(num][10] = 0;

}

strncpy(info->pass_word, &rbuff[num][35], 10);
save ();
load_list ();

else sbuff[num][lO] 2;

ncb_send (num, 15);

/************ ncb send (num, len) ***********************************

*
*
*
*

Formal parameter: 'len' is the length of sbuff to be send.
This function initialises ncb to send information to the
work station.

*/
ncb_send(num,len)
int num;
word len;
{

ses[num].sncb.length len;

:w::It!!'If!iffti!:8IIliHIIIIIIti~f:m: :: ~::::= t:rr==::::::r:: ':::::::::::m::::::m::mm::::::::m::::::mSEBllEIUG:=::::::::::::::::::r:::::::::r:::::::::m::mrm:::m:::::::::::::r:: trr:m::m:::::::::::II??:IIf:t1It::::::m:m:m:
{

}

struct user *info;
int i,len,no;
char name[9];

rbuff[nurn][O] = Ox20;
len= ses[nurn].rncb.length;
sbuff{nurn][O] = 'f';
no = len/10 - 1;
for (i = 0; i < no; i++) {

strncpy(narne,&rbuff[num)[(i+1)*10],9);
info= find (name);

}

if (1 info)
sbuff[num][i+10] = 1;

else sbuff[nurn)[i+10] = 0;

ncb send (num, 20);

/********************* read file (num) ****************************
*
* This function reads the headers or massage file and send it to user
*/
read file (nurn)
int num;
{

int n bytes, len;
char fnewnarne[12];

if (rbuff[nurn) [OJ == 'B') {
sbuff[nurn)[O] = 'b';

}

if (lses(nurn].fflag) {

}

if ((ses[nurn].fptr =open (ses(num].dir,O)) < 0) {
sbuff[nurn](2] = 2;
ncb_send (nurn, 10);

}

else ses[num].fflag = 1;

if (rbuff[nurn)(O] == 'C') {
sbuff[nurn][O] = 'c';

}

textfile (&rbuff[nurn][10], fnewname);
if (!ses(num].fflag) {

}

if ((ses(num].fptr =open (fnewname, 0)) < 0) {
sbuff[num)(2] = 2;
ncb_send (nurn, 10);

}

else ses(nurn].fflag = 1;

rbuff[num](O] = Ox20;
if (ses(num].fflag) {

n_bytes =read (ses(nurn].fptr, &sbuff[num)[10], 980);
if (n_bytes > 0) {

sbuff[num)[2] = 1;
len = n_bytes + 10;
ncb send (num, len);

}

else {
sbuff[nurn][2] = 0; _
close (ses{nurn].fpt7)i

}

}

}

}

ses(num].fflag 0;
ncb send (num, 10);

/********* filesize ***

*
* Calculates and returns the size of the named file.

*
*
*
*/

Returns: 0 (long)
size

if File not found
Otherwise

long
filesize (fname)
char *fname; /* Name of file to get size of */
{

}

if (_dos_findfirst (fname, _A_NORMAL, &fbuf))
while (1) {

return (01);

if ((31 & fbuf.attrib) _A_NORMAL) return (fbuf.size);
if (_dos_findnext (&fbuf)) return (01);

}

/********** newtextfile ***

*
* Create a new text file with given number of users.

*
* Returns: -1 if Unable to Create
* 0 otherwise

*/
newfile (name, nlink)
char *name;
int nlink;
{

/* String where file name will be returned */
/* Number of links */

char fname[lOO];
int i, handle;

if ((nlink < 0) I I (nlink > 99)) return (-1);

strcpy (fname, maildir); strcat (fname,"AA.*");
i= strlen (maildir);

for (fname[i]='A'; fname(i]<='Z'; fname[i]=fname(i]+1)
for (fname[i+1]='A'; fname(i+1]<='Z'; fname[i+l]=fname[i+1]+1){

if (_dos_findfirst (fname, _A_NORMAL, &fbuf) I= 0) {
strcpy (&fname[i+2], ".T");

}

}

*name 0;
return (-1);

sprintf (&fname[i+4],"%d",nlink);
if ((handle= creat (fname, S_IREADIS_IWRITE)) I= -1){

close (handle);

}

*name++= fname[i]; *name++= fname[i+1];
*name = 0;
return (0);

/********** textfile **

*
* Return full name of the text file

*
* Returns: -1 File not found
* 0 O.K.

*/

textfile (name, newname)
char *name, *newname; /* Strings used for file name
{

}

char fname[100];

strcpy (fname, maildir); strcat (fname,name);
strcat (fname, ".T*");
if (_dos_findfirst (fname,
strcpy (newname, maildir);
return (0);

_A_NORMAL, &fbuf)) return (-1);
strcat (newname, fbuf.name);

*/

/********** voicefile ***

*
* Create a new voice file with given name and msgid.

*
* Returns: -1 if Unable to Create
* 0 otherwise
*/

voicefile (name, msgid)
char *name; /* File Name without extensLon

/* Message Number int msgid;
{

}

int i, handle;
char fname[lOO];

if ((msgid < 0) I I (msgid > 99)) return (-1);

strcpy (fname, maildir); strcat (fname, name);
strcat (fname, ".V"); i = strlen (fname);
sprintf (&fname[i],"%d",msgid);
if ((handle= creat (fname, S_IREADIS_IWRITE)) l= -1) {

close (handle);
return (0);

}

return (-1);

*/
*/

/********** delmail ***

*
* Delete mail files
*
* Returns: -1 File not found
* 0 Deleted
* >0 Number of links remaining
*/

delmail (name)
char *name; /* File Name without extension
{

int i, nlink, handle;
char fname[lOO], oldname(lOO], newname[lOO];

strcpy (fname, maildir);
strcpy (oldname, maildir-) ;

*/

}

,,,,,,,, ,,,,,,,,,,,,,,,,,:,:;~::::::::,::::::::::::::::o:::::::o::,:::::·:::·o·:·:·o·o-o-o,:,:,:,,,,,,,,, ·_,_'.:_,_·.:_,·_:._,·_ .. :·: •.• ·-:·.: ... _··.'.·_··.'.·_·:.:''.··_·,_·, __ ,',:_,=,:_,'_,'-:',·_,,··_,._'.:_,,:_·:,:,·. _,',:_,',:_,.,:_,·,=,=,',',:_,',',,,',·',.'.·,,,'_:_·.,':,',',',·',,'_·,·,=.,· :,·_,,·_, _:'.:',',:_,',·.'_,',' .. ,':',:_,'5· ·EAVE· .··. 'R .• :::r-_ '···'_,',',:,:,'-.:,:_:,:,:,:,_·,:_,,:_:.'.:.'_:,'.:.:_:_:_:.:: .. :,;:;::::''''''''''''''':;::_::._':.:_:.:_·:.:_:',::_::_:_ ,._,._,._,._,._,_._,.,,._,._,_.'_·.:_'.: __ :._·_;_··.'·.· .. ' ... =.:·,·'',::_: .. ·;,_ ,:,:,._',:_::,:,:,:,:_,:,:,:.,'.·_'!1)_.,<4,.,: ,:,:,: ,:,:,:,:_:.,',:,:_:,:_:,:_:.:_:.:_:.::_::_:_:.::_::_=:::,:,· t:::=: -·-=-:-::::::=:r===~====:::::::~:;:::~=~=~=~=~=~=~=~=~===~=~=t~~tt=t==~~=~=~=r v ~:::a

strcpy (newname, maildir);

strcat (fname, name); strcat (fname, ".T*");

if (_dos_findfirst (fname, _A_NORMAL, &fbuf)) return (-1);

strcat (oldname, fbuf.name);
for (i=strlen (oldname); i>O;
if (i < 1) return (-1);

strcat (newname, fbuf.name);
i--) if (oldname[i] =='.')break;

nlink 0;
sscanf (&oldname[i+2],"%d",&nlink);
if (nlink-- > 1) { /* Rename File */

}

sprint£ (&newname[i+2],"%d",nlink);
if (rename (oldname, newname) I= 0) return (-2);
return (nlink);

else {

}

strcpy (fname, maildir); strcat (fname, name);
strcat (fname, ". *");
if (_dos_findfirst (fname, _A_NORMAL, &fbuf)) return (-3);
while (1) {

}

strcpy (oldname, maildir); strcat (oldname, fbuf.name);
if (remove (oldname)) return (-4);
if (_dos_findnext (&fbuf)) return (0);

/******************** file name (num) ******************************

*
* This function calls newfile to get a unique text file name.

*/

file_name(num)
int num;
{

}

int link,ret;

rbuff[num][O] = Ox20;
link= rbuff[num](lO];
sbuff[num](O] = 'q';
if ((ret= newfile(ses(num].text_file, link))

sbuff[num][10] = 0;
}

else sbuff[num][10] = 1;
ncb send (num, 15);

0) {

/************************** time_f(ctime) **************************
* This function gets the system time and date and returns in ctime.

*/

time_f(ctime)
char *ctime;
{

struct tm *newtime;
time t long_tirne;

tirne(&long_tirne);
newtime = localtime(&long_time);

}

strncpy (&ctime[OJ, asctime(newtime), 16);
sprintf(&ctime[16], " \d", newtime->tm_year);
return (0);

/**************************** save_text(num) ***********************
* This function save the message text and writes headers in
* corresponding user's headers file.
*/
save text (num)
int num;
{

char hdr[81], c_time[20], hf_name[12], tf_name[12];
int recp_no, ms_pnt, i, u_len, m_len;
FILE *fopen(), *fp;

if (rbuff[num][2} == 0) {
if (!ses[num].fflag) {

textfile (ses[num).text_file, tf_name);
if ((ses[num].fptr = open(tf_name,l)) < 0) {

sbuff[num}[O] = 'k';
sbuff[num}[10] = 1;
ncb_send(num, 15);

}

else {
ses[num}.fflag = 1;
recp_no = rbuff[num}[4};
ms_pnt = ((recp_no + 1) * 10);
u_len = strlen(ses[num].user);
time_f (c_time);
strncpy(&hdr[O], ses[num].user, u_len);
while (u_len <= 8) {

}

hdr[u_len} = Ox20;
u_len++;

strncpy (&hdr[8], c_time, 19);
i = 0;
while ((rbuff[num}[ms_pnt+i] 1= '\n') && (i < 40)) {

hdr[i+27] = rbuff[num][ms_pnt+i];
i++;

}

while (i < 40) {
hdr[i+27} = Ox20;
i++;

}

strcpy(&hdr[67], ses[num].text file);
u_len = strlen(hdr);
for(i = u_len; i < 80; i++)

hdr[i] = Ox20; -
hdr[80] = '\0';
while (recp~no > 0) {

strcpy (hf_name, strupr(&rbuff[num][recp_no*lO]));
strcat (hf_name, ".HDR");
if ((fp = fopen (hf_name, "a+")) ==NULL) {

sbuff[num)[lO+recp_no] = 1;
}

else {

}

fputs (hdr, fp);
fclose (fp);
sbuff[num][lO + recp_no) 0;

}

}

}

else {

recp_no--;
}

}

if (ses[num].fflag) {

}

m_len = ses[num].rncb.length - ms_pnt;
write (ses[num].fptr, &rbuff[num][ms_pnt], m_len);
if (rbuff[num][3] == 0) {

}

close(ses[num].fptr);
ses[num].fflag = 0;

sbuff[num] [OJ = 'k';
sbuff[num][lO] = 0;
ncb send (num, 21);

if (rbuff[num][2] == 1) {

}

}

if (rbuff[num] [3] 1= 0) {
write (ses[num].fptr, &rbuff[num][10], 990);

}

else {

}

m len= ses(num].rncb.length- 10;
write (ses[num].fptr, &rbuff(num](10], m_len);
close(ses(num].fptr);
ses(num].fflag = 0;
sbuff(num](O] = 'k';
sbuff(num](10] = 0;
ncb send (num, 15);

/**************** del_msg (num) *************************************

*
*
*
*
*/

This function deletes the message(s) from the header file
and calls delmail(name) to delete the corresponding
text file.

de1_msg (num)
int num;
{

int fpold, fpnew, handle;
int n_bytes, no_msg, msg_no, no, i, p;
char hdr(81], fname(l2];

rbuff(num](O) = Ox20;
sbuff[num](O] = 's';
no_msg = rbuff[num)[2];
if ((fpold = open(ses(num).dir, 0)) < 0) {

sbuff[num](10) = 1;
ncb_send (num, 15);
return (-1);

}

if ((handle= creat ("hdr.hdr", S_IREADjS_IWRITE)) != -1)
close (handle);

if ((fpnew = open("hdr.hdr", 1)) < 0) {
sbuff(num)[lO) = 1;
ncb send (num, 15);

}

return (-1);
}

no = 1;
while (no_msg > 0) {

}

msg_no = rbuff[num][10+no_msg);
while (no < msg_no) {

}

read (fpold, hdr, 80);
write (fpnew, hdr, 80);
no++;

if (no == msg no) {
read (fpold, hdr, 80);
no++;
i = 67;
p = 0;
while (hdr[i] I= Ox20) {

fname(p] = hdr(i];
p++;
i++;

}

delmail (fname);
}

no_msg--;

while ((n_bytes =read (fpold, hdr, 80)) > 0) {
write (fpnew, hdr, n_bytes);

}

close(fpold);
close (fpnew) ;
if (!remove (ses(num].dir))

if (!rename ("hdr.hdr", ses(num].dir))
sbuff[num][10] = 0;

else sbuff[num](10] = 1;
else sbuff[num][10] = 1;
ncb_send (num, 15);
return (0);

/**

*
* PROGRAM TO BE RUN AT THE WORKSTATION

*
*/

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>
#include <dos.h>
#include "ncbs.h"

#define Success 0
#define Pending OxFF
#define Timeout Ox OS
#define call OxlO
#define send Ox14
#define listen Oxll
#define recv Ox15
#define hangup Ox12
#define status Ox33

struct line {

int num;
char text[120];
struct line *next; /* pointer to next entry */
struct line *prior; /* pointer to previous record */

}

struct line *start; /* pointer to first entry
struct line *last; /* pointer to last entry

struct line *dls - store(struct line •;,•find(int);

int menu_select(void),enter(int);
void patchup(int,int),delete(void),list(void);
void save(char *),load(char *);

char wbuff[lOOO];

struct NCB sncb,rncb; /* The NCB */

in
*/

byte sbuff[Bufsize]; /* Data Buffer for the send
byte rbuff [Bufsize]; /* Data Buffer for
byte server[16] = "LABlXT
byte hbuff[lOOOO],mbuff[lOOOO];
byte local[16] = "*

struct recepient {
int flag;
char name(9];

}users[lO];

union REGS reg;
struct SREGS seg;

int del_no;
int voice_n~ = 0;;

". ,

" . ,

char sign~n[] = "\n MESSAGE SEND.\n\n";

the recv

the

NCB
NCB

list */

*/
*/

static int start_line,end_line;

main()
{

int i,len;

fprintf(stderr,"%s",signon);

del_no = 0;
cur_norrn();
ncb_call ();
printf ("LSN: %x\n",sncb.lsn);

/* for cursor size mgt */

if ((sncb.lsn 1= 0) II (sncb.lsn != OxFF)) {
rncb.lsn = sncb.lsn;
if (ver_pass () == 0) action ();

}

}

/***************************** quit *******************************

*/

quit ()
{

}

sncb.command = hangup;
sendlncb (&sncb);

/***************************** send quit **************************
*/
send_quit()
{

}

sbuff[O] = 'M';
ncb send ();
quit ();

/************************** load ncb *******************************
* issues the NCB. If an error occurs, it exits showing the error.
*/

load_ncb(ncb)
struct NCB *ncb;
{

char far *fptr;

while (ncb->retcode ==Pending) if (kbhit()) getch();
if (ncb->retcode 1= Success) {

printf (" \nError: NCB Command is %2.2X and retcode is %2.2X\n"
, ncb->command, ncb->retcode);

if ncb->retcode == Timeout) {
if (ncb->command == recv) send_quit ();
else quit ();

}

exit(l);

ncb->retcode = 4;
fptr = (char far *) ncb;

reg.x.bx = FP OFF (fptr);

}

seg.es = FP_SEG (fptr);
reg.h.ah = OxOl;

int86x (OxSC, ®, ®, &seg);
if ((ncb->retcode I= Success) && (ncb->retcode !=Pending)) {

printf (" \nError: NCB Command is %2.2X and retcode is %2.2X\n"
, ncb->command, ncb->retcode);

}

if ncb->retcode == Timeout) {
if (ncb->command == recv) send_quit ();
else quit ();

}

exit(l);

/**************************** sendlncb ****************************
* issues the NCB. It does not do any error display or checking.
*/

sendlncb(ncb)
struct NCB *ncb;
{

}

char far *fptr;

fptr = (char far *) ncb;
reg.x.bx = FP_OFF (fptr);
seg.es = FP_SEG (fptr);
reg.h.ah = OxOl;
int86x (OxSC, ®, ®, &seg);

/***************************** Ncb call ***************************
* This procedure performes a call to the remote node specified after
* having added the local name.

*I

ncb_call()
{

}

int i,p,len;

initl ();
ncb status ();
len = sncb.length;
i = 60;
p = 0;
while ((p < 16) && (i <len)) {

sncb.name[p] = sbuff[i];
i++;
p++;

}

strncpy(sncb.callname, server, 16);
sncb.command = call;
load_ncb(&sncb);

/************************************** Ncbsend ******************/

ncb_ send()
{

sncb.command = send;

load_ncb(&sncb);
}

/**************************** ncb_recv(lsno) *********************
* This function initialises the ncb to recv where lsno is the

* corresponding session number.
*/

ncb_recv()
{

}

rncb.buffer
rncb.length

(char far *) rbuff;
Bufsize;

rncb.lana num = 0;
rncb.command = recv;
load_ncb(&rncb);

/********************************* Ncb status ****************** */

ncb_ status ()
{

}

strncpy(sncb.callname, local, 16);
sncb.comrnand = status;
load_ncb(&sncb);

/************************* initl ********************************
* predefines the fields in the NCB structure.

*/

initl()
{

}

sncb.buffer = (char far *) sbuff;
sncb.retcode = Success;
sncb.lana_num = 0;
sncb.length = 348;
sncb.sto 60;
sncb.rto = 60;

/*********************** Ver_pass *******************************
*
*
*/

ver
{

This function
respose.

_pass ()

int i,p;
byte lsn;

sends user name & password at server & receives

char user(lS], pass[lO];

lsn = sncb.lsn;
p = 0;
rbuff[O] = 'a';
while ((p < 3) && (rbuff[O] == 'a')) {

for (i = 0; i < 35; i++) {
sbuff[i] = Ox20;

}

}

if (i < 10) pass(i] = Ox20;
}

sbuff[O] = 'A';
do {

printf ("USER: ");
gets(user);
if(strlen(user) > 8) printf("\n too long\n");

} while(strlen(user) > 8);
printf ("PASSWORD: ");
getpwd(pass,9);
strncpy(&sbuff[10], user, 9);
strncpy(&sbuff[25], pass, 10);
sncb.length = 35;
ncb send ();
p++;
rbuff[O] = Ox20;
ncb recv ();
if (rbuff[O] == 'a') {

switch (rbuff[10]) {

}

}

case 0:{

}

rbuff[O] = Ox20;
return (0);

case 1:{ printf ("\nUser name not found.\n");
if (p == 3) {

}

send_quit ();
return (1);

}

break;

case 2:{ printf ("\nUnauthorised user.\n");
if (p == 3) {

}

send_quit ();
return (1);

}

break;

/****************************** getpwd *************************
* This function reads character(s) from the keyboard for password.
*/

getpwd(1inebuf, maxch)
char linebuf (] ;
int maxch;
{

int ch, nch = 0;

while ((ch = getch()) l=
if (ch >= Ox20) {

if (nc~ < maxch)
linebuf[nch]

}

OxOd) {

{

= ch; nch++;

}

}

}

else if (ch ==
if (nch I=

}

else if (ch ==
}

linebuf(nch) = 0;
return(nch);

8) {

0) nch--;

0) getch();

/**************************** main proceedures start here *******/

action()
{

for (; ;) {
switch(choice()) {

}

}

case 1: cur_block();
read_mail ();
cur_norm();
printf("\n");
break;

case 2: cur_block();
voice_no = 0;
send_mail ();
printf("\n");
cur _norm ();
break;

case 3: send_quit ();
return (0);

choice(void)
{

char s[80];
int c;

printf("\n\tl: READ THE MAIL.\n");
printf("\t2: SEND A MAIL.\n");
printf("\t3: QUIT\n");

do {
printf("\n\tEnter your choice: ");
cur_block();
gets(s);
c = atoi(s);
cur norm();

} while-(c < 0 I I c > 3);
return (c);

/***************************** send mail **************************
* This function checks recepients ID and sends mail to for them.

*/

send_mail ()
{

}

int len,recp_no;

recp_no = 0;
recp_no = recv user ();
if (recp_no > 0) {

}

len = 0;
len= editor();
if (len > 0) {

send text (len) ;
}

/*************************** read mail () ***********************/

read_mail ()
{

int fine,flag,msg_no,tmsg_no,r_flag;
char ch,resp[20];

r_flag = 0;
if ((fine= recv_hdr ()) > 0) {

tmsg no= display_hdr (fine);
flag = 1;
while (flag) {

gets(resp);
if (strcmp(resp ,NULL)) {

sscanf (reap, "%c", &ch);
switch (ch) {

case 'q•: if (del no > 0) -
{

send del (del no); -
del no = 0;

}

return (0) ;

case 'd': del_msg (tmsg_no);
break;

case 's': if (r_flag) {
r_flag = 0;
store_msg (msg_no);

}

else
printf("No message has been read.\n");

default:msg_no = atoi(resp);
if ((msg_no > 0) && (msg_no <= tmsg no)){

if (hbuff [(msg_no-1) *80] == '*') {
printf ("Dele_ted message.\n");

}

else {

}

}

else

get_msg (msg_no);
r_flag = 1;

printf("Invalid message number.\n");

}

}
}

}

}

else {

}

printf ("NO MAIL\n");
return (-1);

break;

/********************* recv_user () ******************************
* This function takes the recepient(s) name and verify them.
* It returns the number of verified recepients.
*/

recv _user ()
{

char recp[100);
int buflen,slen, i,j,k,s,p,row,col;
int ver_no,fault;

ver no = 0;
printf ("Give recepient(s) name.\n");
for (i = 0; i < 10; i++) {

}

users[i].flag = 0;
for (j = 0; j < 9; j++)

users[i).name[j) = Ox20;

again: gets(recp);
if (strcmp (recp, NULL)) {

s = 0;
fault = 0;
row = 0;
str1wr(recp);
slen = strlen(recp);
while (s < slen) {

while (recp[s) == Ox20) s++;
col = 0;

}

while ((col < 8) && (recp[s) I= Ox20) && (s < slen)) {
users[ver_no + row).name[col] = recp(s);
col++;
s++;

}

if (col I= 0) users[ver_no + row).name(col] = '\0';
if (col >= 8) {

printf ("Too long name %s\n",users[row).name);
printf ("Give all the name again.\n");
for (row = 0; row < 10; row++) {

users[i].flag = 0;
for (col = 0; col < 10; col++)

users(row).name(col] = Ox20;
}

s = 0;
ver no = 0;
goto again;

row++
while (recp(s) Ox20) s++;

}

}

buflen = (row + 1)*10;
for (i = 0; i < buflen; i++)

sbuff[i] = Ox20;
sbu f f [0] = ' F ' ;
for (i = 0; i < row; i++) {

p = i + ver_no;
strcpy(&sbuff[(i+1)*10], &users[p).name[O));

}

sncb.length = buflen;
ncb_send ();
rbuff[O] = Ox20;
ncb _recv ();
if (rbuff[O] == 'f') {

p = ver_no;
for (i = 0; i < row; i++) {

if (rbuff[i + 10] == 0) {
ver_no++;
users[i + p].flag = 1;

}

else {
fault++;
users[i + p].flag 0;

}

}

if (fault > 0) {

}

for (i = 0; i < row; i++) {

}

if (users[i + p].flag == 0) {
printf ("\nName '%s' not found. Enter again.\n",

users(p + i].name);
for (j = 0; j < 9; j++)

users[p + i].name[j) = Ox20;
}

for (i = p; i < (p +row); i++) {
if (users[i].flag == 0) {

}

}

for (j = i; j < (p +row -1); j++) {

}

strcpy (users[j].name, users[j+1].name);
users[j].flag = users[j+1].flag;

users[j].flag = 0;
for (k = 0; k < 9; k++)

users[j].name[k] = Ox20;

for (i = 0; i < 20; i++)
rbuff[i] = Ox20;

goto again;

if (ver_no > 0) {
printf ("VERIFIED USERS: \n");
for (i = 0; i < ver_no; i++) {

if (users(i].flag)
printf ("%d. %s\n",i+1,users(i).name);

}

sbuff[O] = 'Q';
sbuff[lO] = ver no;
sncb.length = lSi

}

}

}

ncb send ();
rbuff[O] = Ox20;
ncb recv ();
if (rbuff[O] = 'q') {

}

if (rbuff[10] I= 0) {

}

printf ("TEXT FILE CAN'T BE CREATED.\n");
return (0);

return (ver_no);

/**************************** recv_hdr () ************************
* This function receives the message header file.

*/

recv _hdr ()
{

}

int flag, len,i;

flag = 1;
i = 0;
sbuff[O) = 'B';
sncb.length = 10;
ncb send ();
rbuff[O] = Ox20;
rbuff[O] = Ox20;
ncb recv ();

while (flag) {
if (rbuff[O] = 'b') {

switch (rbuff[2]) {

case 0: { hbuff[i)
flag = 0;
return (i);

}

• \0.;

case 1: { len= (rncb.length- 10);

}

}

}

strncpy (&hbuff[i], &rbuff[lO], len);
i = i + len;
ncb send ();
rbuff[O] = Ox20;
rbuff[O] = Ox20;
ncb recv ();
break;

case 2: { printf ("Header file can't be open.\n");
return (-1);

}

/***************************** display_hdr(len) ******************
* This function display the message headers from hbuff.
* It will return number of total messages.

*/

display_hdr (len)

int
{

}

len;

int i, no,p;

i = 0;
no = 0;
while (i < (len-1)) {

}

printf ("%d. ",(no+l));
for (p = 0; p < 8; ++p) {

printf("%c",hbuff[i]);
++i;

}

printf (" ");
for (p = 0; p <19; ++p) {

printf("%c",hbuff[i]);
++i;

}

printf ("\"");
for (p = 0; (p <40); ++p) {

printf("%c",hbuff[i]);
++i;

}

while (p < 53) {
i++;
p++;

}

printf ("\"\n");
no++;

return (no) ;

/**************************** get_msg (msg_no) ******************
* This function find the text file name from hbuff and receive the
* message corresponding to 'msg_no' and display on the screen.

*/

get_msg (msg_no)
int msg_no;
{

int i,p,ret;

char fname[12];
i 0;
i = (msg_no-1)*80 + 67;
p = 0;
while (_hbuff [i] I= Ox20) {

fname[p] = hbuff[i];
p++;
i++;

}

fname[p] = '\C';
"ret = recv_msg(fname);

- if (ret > 0) {
i = (msg_no-1)*80;
printf ("\nFrom: ");
for (p = 0; p < 8; ++p) {

printf("%c",hbuff[i]);
++i;

}

}

}

}

printf ("\nDate: ");
for (p = 0; p < 19; ++p) {

printf("\c",hbuff[i));
++i;

}

printf ("\nSubject: ");
for (p = 0; ((p <40) && (hbuff[i] != '\0')); ++p) {

printf("%c",hbuff[i]);
++i;

}

printf ("\n");
printf (" \n"); ---display _meg () ;

/*************************** recv_msg
* This function receives the message
*/

(fnmae) **********************
file and stores in mbuff.

recv_msg (fname)
char fname(l2);
{

int flag, len,i;

flag = 1;
i = 0;
sbuff [0) = 'C' ;

strcpy(&sbuff[10], fname);
sncb.length = 22;
ncb_send ();
rbuff[O] = Ox20;
rbuff[O] = Ox20;
ncb recv ();

while (flag) {

}

if (rbuff [0] = 'c') {
switch (rbuff[2]) {

}

}

case 0: { mbuff[i] '\0';
flag = 0;
return (i);

}

case 1: { len= (rncb.length- 10);

}

strncpy (&mbuff[i], &rbuff[10], len);
i = i + len;
ncb send ();
rbuff[O] = Ox20;
rbuff[O] = Ox20;
ncb recv ();
break;

case 2: { printf ("Message file can't be open.\n");
return (-1);

}

}

/***************************** display_msg () *********************
* This function displays the message received in mbuff.

*/

display_ msg ()
{

int i,line,res,ret;
char ch;

i = 0;
line = 0;
while (mbuff[i] != '\0') {

while (mbuff[i] != '\n') {
printf("%c",mbuff[i]);
i++;

}

}

if (mbuff[i] == '\n') {
line++;
printf("\n");
i++;

}

if (line == 24) {
line_= 0;

}

printf ("PRESS ANY KEY OR Fl TO READ VOICE FILE \n");
while (!kbhit());

if((mbuff[i] = '\0') II (line -- 24))
{

}

res = getch();
if(res == 0)
{

}

res= getch();
ret= read_menu();
switch (ret) {

}

case 1: playback_voice_req();
break;

case 2: break;

read_ menu ()
{

char s[BO];
int c;

drawbox(2,19,40,4,38,1);
setcurpos(20,43);
printf("l: READ VOICE FILE");
setcurpos(2144);
printf("2: QUIT ");

do {
setcurpos(22,44);

f\ffi'ftl11:1l%ltitMMtM11J:::::::::t::::::m::::;:::::::::r::::::::::::::::::m:mtt::m::::::::11:iiiMAJI:tC : :f: X/ i ::: :: :?\ \::: : : ::II.' ' ::::::::

}

bright();
printf("enter your choice here: ");
normal();
gets(s);
c = atoi(s);

} while (c < 0 I I c > 2);
return (c);

/****************************** send_text (len) *******************
* This function sends the text of given length len to server.

*/

send_text(len)
unsigned int len;
{

unsigned int temp,i, ini_len, ms_pnt;

temp = len;
sbuff[O] = 'K';
i = 0;
while (users[i].flag) {

strcpy(&sbuff[(i+1)*10J, users[i].name);
i++;

}

ms_pnt = (i+1)*10;
ini len = 1000 - ms_pnt;
sbuff[4] = i;
if (temp < ini_len) {

sbuff [2) = 0;
sbuff[3] = 0;

}

strncpy (&sbuff[ms_pnt], &mbuff[O], temp);
sncb.length = temp + ms_pnt + 1;
ncb_send ();
rbuff[O] = Ox20;
ncb_recv ();
if (rbuff[O] == 'k') {

}

if (rbuff[10] == 0) {

}

printf ("MESSAGE SEND COMPLETED.\n");
for (i = 0; users[i].flag; i++)

if (rbuff[10+i] 1= 0)
printf ("ERROR: Message not send to '%s'\n",

users[i].name);

else printf ("ERROR: MESAGE NOT STORED.\n");

else {
sbuff[2] = 0;
sbuff[3] = 1;
strncpy (&sbuff[ms_pnt], &mbuff[O], ini_len);
sncb.1ength = Bufsize;
ncb_send ();
rbuff[O] = Ox20;
ncb_recv ();
if (rbuff [0] == 'k') {

if (rbuff[lO] != 0)

}

printf ("ERROR IN OPENING TEXT FILE.\n");
return (0);

}

}

}

else {

}

temp = temp - ini_len;
while (temp > 990) {

sbuff[2] = 1;
sbuff[3] = 1;

}

strncpy (&sbuff[10], &mbuff[ini_1en], 990);
sncb.length = Bufsize;
ncb_ send ();
temp = temp - 990;
ini len = ini len + 990;

if (temp >= 0) {
sbuff[2] = 1;
sbuff[3] = 0;

}

strncpy (&sbuff[lO], &mbuff[ini_len], temp);
sncb.length = temp+ 11;
ncb_send ();
rbuff[O] = Ox20;
ncb_recv ();
if (rbuff[O] == 'k') {

if (rbuff[lO] == 0)
printf ("MESSAGE SEND COMPLETED.\n");

else printf ("ERROR: MESAGE NOT STORED.\n");
}

/************************** del msg (tmsg no) *********************
* This function ask for message number to delete and mark the
* message deleted. The 'tmsg_no' is the total number of message.
*/

del_msg(tmsg_no)
int tmsg_no;
{

}

int msg_no, index;
char resp(20];

printf("What ?\n");
gets (reap) ;
msg_no = atoi(resp);
if ((msg_no > 0) && (msg_no <= tmsg_no)) {

index = (msg_no - 1) * 80;
if (hbuff[i~dex] == '*') {

printf ("Deleted message.\n");
}

else {
hbuff[index] =
del no++;

}

} '

- -

'*' . ,

else printf("Invalid message number.\n");

/*************************** send del(no meg) ********************
* This function sends the message to sere;er for deleting
* 'no_msg' number of message.

}

*/

send_del (no_msg)
int no_msg; /* Number of message(s) to delete.*/
{

int temp;

temp = 0;
sbuff[O] = 'S';
sbuff[2] = no_msg;
sncb.length = 10 + no_msg + 2;
while (no_msg > 0) {

}

if (hbuff[temp*80] == '*') {
temp++;

}

sbuff[lO + no_msg) = temp;
printf ("MSG-NO: %d\n",temp);
no_msg--;

else temp++;

ncb send ();
rbuff[O] = Ox20;
ncb recv ();
if (rbuff[O] = •a•) {

if (rbuff[lO] I= 0) {
printf ("ERROR: Message(s) not deleted.\n");

}

}

/******************** store_msg (msg_no) ***************************

*
*
*
*/

It store the message in to the current drive at work
station end.

store_msg (msg_no)
int msg_no;
{

int i,p,fptr;
char resp(20];
FILE *stream;

printf ("Type the file name.\n");
gets (reap);
if (strcmp (reap, NULL)) {

if ((fptr = creat(resp, 777)) < 0) {

}

printf ("ERROR in creating %s file.\n",resp);
return (-1);

else {
if ((stream= fopen(resp, "w")) ==NULL) {

printf ("ERROR in %s opening.\n",resp);
return (-1);

}

else {
i = 0;
i = (msg_no-1)*80;
fprintf (stream, "From: ");
for (p = 0; p < 8; ++p) {

fprintf (stream, "%c",hbuff[i]);
++i;

ttt:=:=ttt!f!1@@tir:::ttl@tJ:t:IIIt:::rr=ttitttttttrr::=rrr:nr:::::::::::t:r:::::rtMAitae.::=::=tn::tltttti't'tt:rmt:rrrrr::r:r::::tr:~:::::rr:t:::==rrrrr:::17ittttt::=:=rrr:
}

}

}

}

·}

fprintf (stream, "\nDate: ");
for (p = 0; p < 19; ++p) {

}

fprintf (stream, "\c",hbuff[i));
++i;

fprintf (stream, "\nSubject: ");
for (p = 0; ((p <40) && (hbuff[i] I= '\0')); ++p) {

fprintf (stream, "\c",hbuff[i]);
++i;

}
fprintf (stream, "\n ______________________________ \n");

i = 0;
while (mbuff[i] I= '\0') {

}

fprintf (stream, "\c",mbuff[i]);
i++;

fclose (stream);

/************************* text editor *****************************
* text and voice composing starts here.

*/
editor ()
{

char s[20],choice,fname[20];
int len, linenum = 1;

char string[20],dir_str[1S],ss[30];
char *result;

start = last =NULL; /* initialize top & bottom pointers */
cls();cur_norm();
drawbox(2,10,25,4,30,1);
setcurpos(11,27);
printf("WELCOME TO THE VMS PACKAGE");
setcurpos(12,27);
printf(" version 1.0 ");
setcurpos(24,1);
printf("Press any key to begin .. ");
while(lkbhit());getch();
cls();
len = voice_no = 0;
for (;;) {

choice= menu_se1ect();
switch(choice) {

case 1: cur_block();
printf("Enter line number: ");
gets(s);
if (lstrcmp(s, NULL)) linenum last->num + 1;
else linenum = atoi(s);
setcurpos(3,0);
list ();
setcurpos(last->num + 3, 0);
enter (1 inenum) ;
cur_norm();
break;

}

}

}

case 2: delete();
cls();
break;

case 3: voice_no++;
voice_request(voice_no);
pastescrn(l8,39,6,40,wbuff);
break;

case 4: bright();
printf("enter file name :");
normal ();
gets (fname) ;
save(fname);
cls () ;
break;

case 5: bright();

case 6:

case 7:

case 8:

printf("enter file name:");
normal();
gets (fname);
load (fname) ;
list ();
break;

cls();
setcurpos (3,0);
list ();
printf ("\n");
break;

del voice file ();
break;

len = save - buff();
cls ();
return (len);

/***
* main menu to be displaced and selected from.
*/

menu_select(void)
{

char s[80];
int c;

setcurpos(O,O);
reverse();
printf(" 1: EDIT");
printf("2: DEL LINE");
printf("3: VOICE"};
printf("4: SAVE ");
printf("S: LOAD ");
printf("6: LIST ");

}

printf("7: DEL VOICE ");
printf("8: QUIT ");
normal();
clrline(l);
do {

setcurpos(O,O);
bright ();
printf("\nenter your choice: ");
normal ();
gets(s);
c = atoi(s);
clrline(l);
setcurpos(O,O);
printf("\nenter your choice: %s\n",s);

} while (c < 0 I I c > 8);
return (c);

/* link list being created --enter info in the node */

enter(int linenum)
{

}

int in;
char cmd;
struct line *info;

for (;;) {

}

info= malloc(sizeof(struct line));
if(!info) {

}

printf("\n\tout of memory ");
exit(l);

printf("\d: ",linenum);
gets(info->text);
sbuff[O] = 'R'; /**TO KEEP SERVER LISTENING*/
sncb.length = 10;
ncb_send ();
in= scan_line(info->text);
info->num = linenum;
if (in) {

if(find(linenum))
patchup(linenum,l); /* fix up old line no*/

if(in) start= dls_store(info);
}

else {
break;

}

linenum++;

return linenum;

/******* to reorder the line numbers after insertion/deletion ****/

void patchup(int n, int incr)
{

struct line *i;

i = find(n);

}

tt==:=:::::tttff20t:=:::ttf:Jft:IIti :: . . : ::::::t:,:/ :::::ttMAILtG:t: ::i .. ::= .. d::::t::::::r:=:::r::=:titttt:::tti{ ,., .. :::::::

}

while(i) {

}

i->num • i->num+incr;
i = i->next;

/******* double link sorted storage function **********************/

struct line *dls_store(struct line *i)
{

struct line *old,*p;

/* new element */

if (!last) { /* first element in list */

}

i->next = NULL;
i->prior = NULL;
last = i;
return i;

p start;
old = NULL;
while(p) {

/* start at top of list */

if(p->num < i->num) {
old p;
p = p->next;

}

else {
if(p->prior) {

p->prior->next i;
i->next = p;
p->prior = i;

return start;
}

i->next = p;
i->prior = NULL;
p->prior = i;
return i;

/* new first element */

}

}

old->next i;
i->next = NULL;
i->prior = old;
last = i;
return start;

/* put an end */

/* delete a line */
void delete(void)
{

struct line *info;
char s[lO];
int linenum;

bright ();
printf ("Enter the line number :");
normal();
gets(s);
linenum = atoi(s);
info= find(linenum);

}

if ((info) && (strncmp(info->text, "##### ", 6) 1= 0)) {

}

if (start == info) {
start = info->next;

}

if (start) start->prior = NULL;
else last = NULL;

else {

}

info->prior->next = info->next;
if (info 1= last)

info->next->prior = info->prior;
else

last = info->prior;

printf("\d: %s\n",info->num,info->text);
free(info); /*Return memory to system*/
patchup(linenum + 1, -1); /* dec line num */

/* Find a line of text */
struct line *find(int linenum)
{

struct line *info;

info = start;
while (info) { if (linenum

info info->next;
}

return NULL;
}

info->num) return info;
/* Get next line */

/* Display the entire text */
void list(void)
{

}

struct line •info;
int count;

count = 1;
info = start;
while (info) {

printf("\d: \s \n",info->num,info->text);
if(count == 23) {

}

}

info

count = 0;
bright();
setcurpos(24,1);
printf("Press any key •...... \n");
while(!kbhit());getch();
normal();

info->next;count++; /* Get next line */

/* Save the file to the disk*/
void save(char *fname)
{

struct line •info;
char *p;

FILE *fp;

fp = fopen (fname 1 "wb");
if (lfp) {

}

printf ("can't open the file \n");
exit(l);

printf("Saving file on disk.\n\n ");
info = start;
while (info) {

p = info->text;
while(*p) putc(*p++ 1 fp);
putc('\r' 1 fp);
putc('\n' 1 fp);

/*save byte at
/* terminator
/* terminator

a
*/
*/

info = info->next; /* Get next line

}

}

fclose(fp);

/* Load the file.*/
void load(char *fname)
{

register int size , lnct;
struct line *info,•temp;
char *p;
FILE *fp;

fp fopen(fname,"rb");
if (lfp) {

}

printf ("Can't open file \n");
return;

/* Free any previously allocated memory */

while (start) {
temp = start;

}

start = start->next;
free(temp);

printf ("Loading file .\n\n");
size= sizeof(struct line);
start= malloc(size);
if(!start) {

}

printf("out of memory \n");
return;

info = start;
p = info->text;
lnct = 1;
while ((*p = getc(fp)) 1= EOF) {

p++;
while(((*p = getc(fp)) 1= '\r') && (*p != EOF))

p++;

time

*/

if(*p 1= EOF) getc(fp);
*p = '\0';

/*throw away the \n

info->num = lnct++;

*/

*/

}

}

}

info->next = malloc(size); /*get away with next*/
if(!info->next) {

}

printf("out of memory:\n");
return;

info->prior = temp;
temp = info;
info = info->next;
p = info->text;

temp->next = NULL;
~ast = temp;
free (info);
start->prior NULL;
fclose(fp);

/***

*
*
*
*
*/

voice request from user processed here.Takes voice number as
argument and passes on to server for creation of appropriate
file.

voice_request(v_num)
int v_num;
{

sbuff[O] = 'G';
sbuff[lOJ = v_num;
sncb.length = 15;
ncb_send();
rbuff[O] = Ox20;

ncb_recv();
capturetext (18,39,6,40,wbuff);
drawbox(2,19,40,4,38,1);
if(rbuff[O] == 'g') {

}

switch(rbuff[lO]) {

}

case 0: instructions();
user_response();
break;

case 1: setcurpos(21,45);
printf("SERVER ENGAGED TRY LATER");
setcurpos(22,45);
printf("Press any key ..•.•.••••• ");
while (! kbhit ()) ;getch ();
pastescrn(18,39,6,40,wbuff);
return 0;

default: printf("something wrong somewhere\n");
break;

/**

* instructions to the user before speaking

*/

instructions ()
{

}

setcurpos(l9,56);
bright ();
printf ("DIAL");
normal ();
setcurpos(21,41);
printf("PLEASE RING UP THE SERVER NO: 4383");
setcurpos(22,41);
printf("PRESS");
reverse();
printf(" Fl ");
normal();
printf("TO SPEAK");
reverse();
printf(" ESC ");
normal();
printf(" TO ABORT");
curoff();

/*************** user response for above **************************/
user_ response ()
{

}

int res,test = 1;
while(test) {

res= getch();
if(res == 0) res
switch(res)

getch ();

{

case 59: test = 0;
start voice_key();
break;

case 27: test = 0;
hang_ up();
break;

/* Fl PRESSED */

/* ESC PRESSED */

default: setcurpos(24,0);
printf("PLEASE TRY AGAIN");
break;

}

}

/***

*
*
*
*
*/

when the connection is established with the server the user
starts speaking after pressing key Fl. this function handles
the response to above. After voice composing a sub menu is
displayed for replaying what was stored.

start_voice_key()
{

int res,choice,test;

sbuff[O] = 'H';
sncb.length = 10;
ncb_ send () ;
rbuff[O] = Ox20;
ncb_recv();

drawbox(2,19,40,4,38,1);
setcurpos(21,43);
if(rbuff[O] == 'h') {

switch(rbuff[lO]) {

case 0: printf(" PRESS");
reverse();
printf(" FS ");
normal();
printf("TO STOP SPEAKING");
curoff ();
do {

res= ((int)getch());
} while (res != 63);

sbuff[O] = 'P';
sncb.length = 10;
ncb_send();
rbuff[O] = Ox20;
ncb_recv();
drawbox(2,19,40,4,38,1);
setcurpos(21,43);
if(rbuff[O] == 'p') {

switch(rbuff[10]) {

case 0: printf(" COMPOSING SUCCESSFUL");
append_vfi1e ();
setcurpos(3,0);
list ();
setcurpos(22,43);
print£(" Press any key ");
while(!kbhit()) ;getch();

test = 1;
while (test) {
switch(choice = sub_menu()) {

}

case 1: playback_voice_req();
break;

case 2: test = 0;
break;

}

break;

case 1: printf(" ");

}

}

break;

printf("UNABLE TO CLOSE VOICE FILE");
setcurpos(22,43);
printf(" Press any key •.••... ");
while(!kbhit());getch();
break; /*return;*/

case 1: printf("UNEXPECTED ERROR BUFF PLEASE HANG UP");
setcurpos(22,43);
printf("Press any key ••.••. ");
while(!kbhit());getch();

}

}

}

curon();

break;

/***

*
*
*/

If the server is found busy or the line is not available
the user can hang up by pressing ESC key.

hang_ up()
{

}

sbuff(O] = ·v·;
sbuff[lO] = voice_no;
sncb.length = 15;
ncb_send();
voice_no--;
rbuff[O] = Ox20;
ncb_recv();
drawbox(2,19,40,4,38,1);
setcurpos(21,43);
if(rbuff[O] == 'v') {

switch(rbuff[lO]) {

}

case 0: printf("
break;

case l:printf("
break;

}

setcurpos(22,43);

THANKS FOR HANGING UP");

UNEXPECTED ERROR HANGING UP");

printf(" Press any key~ ");
while(lkbhit());getch();

/******************* sub menu for playback I quit *****************/
sub_menu()
{

char s(80];
int c;

drawbox(2,19,40,5,38,1);
setcurpos(19,52);
reverse ();
printf(" MENU SELECT");
normal();
setcurpos(21,44);
printf("l: PLAYBACK RECORDED VOICE ");
setcurpos(22,44);
printf("2: QUIT");

do {
setcurpos(23,44);
bright ();
printf("enter your choice here: ");
normal();
gets(s);

}

c = atoi(s);
} while (c < 0 I I c > 3);
clrline(24);
return (c);

/***
*
*/

playback_voice_req()
{

int ret;

sbuff[O] ='I';
sncb.length = 10;
ncb_send();
rbuff[O] = Ox20;
ncb_recv();
drawbox(2,19,40,4,38,1);
if(rbuff[O] == 'i') {

}

switch(rbuff[lO]) {

case 0: setcurpos(l9,56);
bright();
print£ ("DIAL");
normal();
setcurpos(21,41);
printf("PLEASE RING UP THE SERVER NO: --4383");
setcurpos(22,41);
printf("PRESS");
reverse();
printf(" FlO ");
normal();
printf("TO LISTEN");
reverse();
printf(" ESC ");
normal();
printf("TO ABORT");
curoff();
ret= play_back response();
switch(ret)
{

case 1: start_play_back();
break;

case 0: quit_play_back();
break;

}

break;

case 1: setcurpos(21,43);
printf("LINE NOT AVAILABLE PLEASE TRY LATER");
setcurpos(22,43);
printf("Press any key ");
while(!kbhit()); getch();
break;

}

curon();

trJw::=Ittt28:::mm:rrrttttr::::rmt:rrHtt:=:r: :::J=:::::::::: :: :MAitw€: ::::::::::::::: ::lrr ::::r ; :. : ,::::::::::=:::::::: :: ••• :=:::::::::m:.::=:::..=:::=::::::::, :;;;·:::::: .

}

}

play_back_response()
{

}

int res,test = 1;
while(test) {

}

res= getch();
if(res == 0) res
switch(res)

getch();

{

case 68: return 1;
case 27: return 0;
default: setcurpos (24,0);

printf("PLEASE TRY
break;

}

start_play_back()
{

char file_no[S);
int voice_no;

drawbox(2,19,40,4,38,1);
setcurpos(21,43);
printf("ENTER VOICE FILE NO: ");
gets(file_no);
voice_no = atoi(file_no);
sbuff[O) = 'U';
sbuff[lO] = voice_no;
sncb.length = 15;
ncb_send();
rbuff[O] = Ox20;
ncb_recv();
drawbox(2,19,40,4,38,1);
setcurpos(21,45);
if(rbuff[O) == 'u') {

switch(rbuff[lO]) {

/* PRESS FlO

/* PRESS ESC

AGAIN");

case 0: printf("PLAYING BACK VOICE FILE");
break;

}

case l:printf("UNEXPECTED PLAY BACK ERROR ");
break;

}

setcurpos(22,45);
print f ("Prtas s any key when over. . . • . ") ;
while(lkbhit()); getch();

quit_play_back()
{

sbu ff (0) = ' W ' ;
sncb.length = 10;
ncb_send();
rbuff[O) = Ox20;

*/
*/

}

ncb_recv();
drawbox(2,19,40,4,38,1);
setcurpos(21,43);
if(rbuff[O] == 'w') {

switch(rbuff[lO]) {

}

case 0: printf("
break;

case 1: printf("
break;

}

setcurpos(22,43);

QUITTING PLAYBACK SESSION ");

UNEXPECTED ERROR WHILE PLAYING BACK");

printf(" Press any key ");
while(lkbhit());getch();

/**
*

*
*/

This function is for deleting any voice file from the users
mailbox.

del_voice_file()
{

}

}

char file_no[S);
int vf_no;

drawbox(2,19,40,4,38,1);
setcurpos(21,42);
printf(" ENTER VOICE FILE NO: < 1 to %d > ",voice_no);

gets(file_no);
vf_no = atoi(file_no);

shu ff (0] = ' J ' ;

sbuff[lO] = vf_no;
sncb.length = 15;
ncb_send();
rbuff(O] = Ox20;
ncb_recv();
drawbox(2,19,40,4,38,1);
setcurpos(21,50);
if(rbuff(O] == 'j') {

switch(rbuff[lO]) {

case 0: printf(" DELETION COMPLETE ");
del vfnum (vf_no);
break;

}

case l:printf("
break;

CAN'T DELETE FILE ");

setcurpos(22 ,50);
printf(" Press any key ");
while(lkbhit()); getch();

/**~****
* capturetext - capture text from screen from the cursor position

*
*
*
*
*/

rowl/coll
nrowsfncols
buff

- position of first character read
- window size
- buffer to store character read with attribute

capturetext (rowl, coll, nrows, neola, buff)
int rowl, coll, nrows, neola;
unsigned int *buff;
{

}

int i,j;
union REGS r;

for(i=rowl; i<(nrows+rowl); i++){

}

for(j=coll; j<(ncols+coll); j++){
r.h.ah OxOf; int86(0x10, &r, &r);
r.h.ah 02;

}

r.h.dh i;
r.h.dl j;
int86(0x10, &r, &r);

r.h.ah = 8;

/* set the cursor position */

int86 (OxlO, &r, &r);/* read the character & attribute*/
*buff = r.x.ax;
buff++;

/**

*
*
*
*
*
*/

pastescrn - write text with attribute on screen

rowljcoll
nrowsfncols
buff

- position of first character of window
- window soze
- buffer from where data is displayed

pastescrn (rowl,coll,nrows,ncols,buff)
int rowl, coll, nrows, ncols;
unsigned int *buff;
{

int i,j;
union REGS r;

for(i=rowl; i<(nrows+rowl); i++){
for(j=coll; j<(ncols+coll); j++){

r.h.ah OxOf; int86(0x10, &r, &r);
r.h.ah 02;
r.h.dh i;
r.h.dl j;
int86(0x10, &r, &r);

r.h.ah = 9;
r.x.dx = *buff;
buff++;

/* set cursor position */

r.h.al
r.h.bl

r.h.dl; /* character to be written */
r.h.dh; /* attribute */

r.x.cx 1; /* no of times the character is written */

int86 (OxlO, &r, &r);
}

}

}

/***

*
*
*
*

When the composing is over and the user exits the editor
the link list content is transferred on to a buffer which
is later sent to the server.

*/

save_buff ()
{

}

int i,len;
struct line *info;

i = 0;
len = 0;

info = start;
while (info) {

len= strlen(info->text);
strcpy(&mbuff[i], info->text);
i = i + len;
mbuff[i] = '\n';
i++;
info = info->next;

}

if (i > 0) mbuff[i++]
printf("%s",mbuff);
return (i);

I \0 I;

/* Get next line */

/******cursor size management .• user interface. ****************/
cur_size(start,end)
int start,end;
{

}

union REGS u;

u.h.ah = 1;
u.h.ch = start line = start;
u.h.cl = end line = end;
int86(0xlO,&u,&u);

cur_norm()
{

/* SET CURSOR TO NORMAL */

if(get_crt() == 7) cur_size(ll,l2);
else cur_size(6,7);

}

cur _block ()
{

cur_size(O,end_line);
}

get_crt()
{

union REGS u;

/* SET CURSOR TO BLOCK SIZE */

}

u.h.ah a 15;
int86(0x10,&u,&u);
return((int)u.h.al);

/**** scans the
scan_line(xyz)
char xyz(120];

node for ctrl-d char which

/*
/*

is for END OF TEXT. ***/
scan line for ctrl-d */
ie for end of text */

{

}

int i;

for(i = 0; i < 120; i++)
{

if(xyz(i] == Ox04) return O;break; /* if found returnO */
}

return 1;

/************** append_vfile () ***********************************

*
* This function append the voice file number to the text file.

*
*/

append_ vf ile ()
{

int in,linenum;
char cmd;
struct line *info;

info= malloc(sizeof(struct line));
if (I info) {

}

printf("\n\tout of memory");
exit(l);

linenum = last->num + 1;
printf("%d : ",linenum);
info->num = linenum;
strcpy(info->text, "1#1#111111 THIS IS A VOICE FILE NO: ");
sprintf(&info->text(38], "%d", voice no);
strcpy(&info->text[40], "111111111#");
start= dls store(info);

return linenum;
}

/************************ del_vfnum(vfnum)**************************
* This function remove the voice file number from the text file.
*/

del_vfnum(vfnum)
int vfnum;
{

struct line *info;
int ret,vf_no,linenum;
char file no[S],s[SO];

strcpy(s,"ll#lllllll THIS IS A VOICE FILE NO: ");
sprintf(&s[38], "%d", vfnum);
strcpy(&s[40]," 111111#111");

}

info = start;
while (info) {

}

if ((ret= strncmp(info->text, s, 50)) == 0) {
linenum = info->num;

}

printf("\d: %s\n",info->num,info->text);
if (start == info) {

}

start = info->next;
if (start) start->prior
else last = NULL;

else {

NULL;

info->prior->next = info->next;
if (info != last)

info->next->prior = info->prior;
else

last = info->prior;
}

free(info);
patchup(linenum + 1, -1);
setcurpos(3,0);
list ();
return (0);

/* Return memory to system */
/* dec line num */

info = info->next; /* Get next line */

return (-1);

	TH68740001
	TH68740002
	TH68740003
	TH68740004
	TH68740005
	TH68740006
	TH68740007
	TH68740008
	TH68740009
	TH68740010
	TH68740011
	TH68740012
	TH68740013
	TH68740014
	TH68740015
	TH68740016
	TH68740017
	TH68740018
	TH68740019
	TH68740020
	TH68740021
	TH68740022
	TH68740023
	TH68740024
	TH68740025
	TH68740026
	TH68740027
	TH68740028
	TH68740029
	TH68740030
	TH68740031
	TH68740032
	TH68740033
	TH68740034
	TH68740035
	TH68740036
	TH68740037
	TH68740038
	TH68740039
	TH68740040
	TH68740041
	TH68740042
	TH68740043
	TH68740044
	TH68740045
	TH68740046
	TH68740047
	TH68740048
	TH68740049
	TH68740050
	TH68740051
	TH68740052
	TH68740053
	TH68740054
	TH68740055
	TH68740056
	TH68740057
	TH68740058
	TH68740059
	TH68740060
	TH68740061
	TH68740062
	TH68740063
	TH68740064
	TH68740065
	TH68740066
	TH68740067
	TH68740068
	TH68740069
	TH68740070
	TH68740071
	TH68740072
	TH68740073
	TH68740074
	TH68740075
	TH68740076
	TH68740077
	TH68740078
	TH68740079
	TH68740080
	TH68740081
	TH68740082
	TH68740083
	TH68740084
	TH68740085
	TH68740086
	TH68740087
	TH68740088
	TH68740089
	TH68740090
	TH68740091
	TH68740092
	TH68740093
	TH68740094
	TH68740095
	TH68740096
	TH68740097
	TH68740098
	TH68740099
	TH68740100
	TH68740101
	TH68740102
	TH68740103
	TH68740104
	TH68740105
	TH68740106
	TH68740107
	TH68740108
	TH68740109
	TH68740110
	TH68740111
	TH68740112
	TH68740113
	TH68740114
	TH68740115
	TH68740116
	TH68740117
	TH68740118
	TH68740119
	TH68740120
	TH68740121
	TH68740122
	TH68740123
	TH68740124
	TH68740125
	TH68740126
	TH68740127
	TH68740128
	TH68740129
	TH68740130
	TH68740131
	TH68740132
	TH68740133
	TH68740134
	TH68740135
	TH68740136
	TH68740137
	TH68740138
	TH68740139
	TH68740140
	TH68740141
	TH68740142
	TH68740143
	TH68740144
	TH68740145
	TH68740146
	TH68740147
	TH68740148
	TH68740149
	TH68740150

