
FROM A SIMPLE SANSKRIT SENTENCE TO VERB &

KARAKA SPECIFICATIONS: An NLP Approach

Disserlatiott submitted to

Jawalrarlal Nelrru Uttiversity

ill partial fulfilmellt of the requireme11ts

for the award of the degree of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE & TECHNOLOGY

by

Sanjay Kumar Dhurandher

SCHOOL OF COMPUTER & SYSTEJ\<IS SCIENCES

JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI - 110067

INDIA

JANUARY, 1994

CERTIFICATE

This is to certify that the dissertation t.itled "From a Simple Sanskrit Sentence to V_erb and

Karaka Specifications : An NLP Approach" being submitted by me to Jawaharlal Nehru

University, New Delhi, in partial fulfilment of the requirements for the award of the degree of

Master of Technology in Computer Science & Technology, is a record of the original work done

by me under the supervision of Prof. G. V. Singh, School of Computer and Systems Sciences,

during the Monsoon Semester, 1993.

The results reported in this dissertation have not been submitted in part or in full to any other

university or institution for the award of any degree.

Dean,
·School of Computer &
Systems Scien~es,
Jawaharlal Nehru University,
New Delhi.

~~~ 
S.¥-·~ 
Sanjay Kumar Dhurandher 

Prof. G. V. ingh 
School of C mputer & 
Systems Sciences, 
Jawaharlal Nehru University 
New Delhi. 



ACKNOWLEDGEMENT 

It is my pleasure to express my deep sense of gratitude to Prof. G. V. Singh, SC&SS, JNU, 

for his gracious and valuable guidance. This dissertation would not have happened without his 

timely and proper guidance. I feel privileged that I worked under his supervision. 

My warmest thanks also to Prof. K. K. Bharadwaj, Dean, SC&SS,JNU, for providing the 

excellent academic environment and facilities which enabled the successful completion of my 

project. 

My sincerest thanks to my friend O.K. Lobiyal for reviewing, commenting and providing 

valuable information. My heartfelt thanks to Amit, for revealing mysteries and tricks of Prolog. 

Reeta Nath, Susmita, Ajay, Bhushan and my classmates were so friendly and ever so ready to 

cooperate. My thanks to them. I thank my very own Roshan for his friendliness, cooperaticm and 

being .such a good company in those long hours in the Lab. 

I also express my thanks to DoE for funding the machines on which the present work was carried 

out. 

My special thanks to Dr. K. Suryanarayan, who explained me the intricacies of Paninian 

Grammar. At various stages of preparation of this work, I availed his expertise and valuable 

suggestions .. 

New Delhi 
January, 1994. 

Sanjay Kumar Dhurandher 



To 

My Parents 



CONTENTS 

CHAPTER 1 

NLP : AN INTRODUCTION 

1.1 Natural Language Processing · 

1.1.1 Introduction 

1.1.2 Natural Language Understanding 

1.1.3 Problems in NL Understanding 

1.1.4 General Approaches to NL Understanding 

1.2 Parsing 

1.3 Overview of The Problem 

CHAPTER2 

PANINIAN GRAMMATICAL FRAMEWORK 

2.1 Paninian Grammar 

2.2 Sanskrit Syntax 

2.3 Karaka Relations 

2.4 Karaka to Vibhakti Mapping 

2.5 Paninian Theory Based Parsing 

2.6 Morphological Process 

1-8 

1 

1 

2 

3 

5 

6 

7 

<J-20 

9 

9 

11 

16 

17 

19 



CHAPTER3 

SANSKRIT SENTENCE ANALYSIS 

3.1 Sentence Analysis 

3.2 Semantic Representation 

3.3 Pada Aanlyzer 

3.4 Computational Lexicon 

CHAPTER4 

IMPLEMENTATION 

4.1 Lexicon 

4.1.1 Dhatukosh 

4.1.2 Pratipadi kkosh 

4.2 Analyzer 

4.2.1 Reverse Subant 

. 4.2.2 Reverse_ Tigant 

4.3 Main Module 

CHAPTERS 

CONCLUSION 

BIBLIOGRAPHY 

APPENDIX 

21-26 

21 

23 

23 

25 

27-46 

27 

27 

33 

42 

42 

42 

43 

47 

48 



CHAPTER I 



NLP : AN INTRODUCTION 

1.1 Natural Language Processing 

1.1.1 Introduction 

Understanding or producing sentences or texts in 'natural language' (i.e. the language we 

use every day) have become crucial elements in human-machine communication [10]. They are 

therefore front-line research areas in the fields of Artificial Intelligence, Computational 

Linguistics and Cognitive Psychology. The 'language industry' is fast developing while research 

work in recent years in various countries has shown that a considerable amount of work is still 

to be done. 

The term 'natural language processing' itself covers a variety of interpretations, while at the 

same time the topic also goes under various other names, including 'natural language analysis', 

'computational linguistics', 'linguistic processing', 'automatic language processing' and so on. 

The principal areas of research in Natural Language Processing (NLP) are :

* Developing and modelling linguistic systems. 

* Conceiving and implementing models and systems of NLP. 

* Evaluating such systems from the point of view of human- machine interfaces. 

Natural language understanding and Natural .language generation are, the two 

components of Natural language processing - a technology with the ambitious goal of making 

it easy to communicate with computers as it is with people [5]. The phrase natural language 

processing generally refers to typed, printed, displayed, or spoken language rather than the 

1 



speech. Getting computers to understand speech is the focus of related AI technologies called 

Speech recognition and Speech understanding. 

l.L2 Natural Language Understanding 
. . . 

Compared to people, computers require a great deal of precision, completeness, exactness 

in communication. For example, if we want someone to bring something for us, to drink, we 

might get the same result by saying any of the following sentences:-

* Please get me something to drink. 

* Bring me a drink. 

* Got anything to drink ? 

* I'm thirsty - can you get me something ? 

Unfortunately, a computer does not have the same kind of linguistic tlexibility. 

The goal of natural language understanding research is to enable computers to understand 
•.-~·- . 

us well enough to perform an intended appropriate action .. 

Developing programs to understand natural language is important in AI because a natural 

form of communication with systems is essential for user acceptance. Furthermore, one of the 

most critical tests for intelligent behaviour is the ability to communicate effectively. AI programs 

must be able to communicat~ with their human counterparts in a natural way, and natural 

language is one of the IJ.lOSt important mediums for that purpose. 

We say a program understands a natural language if it behaves by taking a (predictably) 

correct or acceptable_ action in response to the input. For example, we say a child demonstrates 

undersianding if it responds with the L'Orret..'t answer to a question. The action taken need not be 

2 



an external response. It may simply be the creation of some internal data structures as would 

occur in learning some new facts. But in any case, the structures created should be meaningful 

and correctly interact with the world model representation held by the program. 

1.1.3 Problems in Natural Language Understanding 

Developing programs that understand a natural ianguage is a difficult problem. Natural 

languages are large. They contain an infinity of different sentences. One of the problems is to 

account for the infinite number of sentences by developing a finite number of rules. Natural 

/ 

languages are ambiguous. A word as well as a sentence may have several meanings. For 

example, the word "bear" and the sentence such as "I saw a man on the hill with the tel~scope" 

can have different meanings in different contexts. This makes the creation of programs that 

"understand" a natural language, one of the most challenging tasks in AI. It requires that a 

program transform sentences occurring as part of a dialogue into data structures which convey 

the intended meaning of the sentences to a reasoning program. In general, this means that the 

reasoning program must know a lot about the structure of the language, the possible semantics, 

the beliefs and goals of the user, and a great deal of general world knowledge. 

The four problems that cause difficulties in natural language understanding are ambiguity, 

imprecision, incompleteness, and inaccuracy. 

Ambieui~ 

Natural language can be ambiguous due to multiple word meanings, syntactic ambiguity, 

and unclear antecedents. For example, 

3 



John hit Bill hecause he sympathized with Mary. 

Who sympathized with Mary ? As in this case of syntactic ambiguity, one cannot determine the 

antecedent of "he" without establishing a context for the sentence. 

Imprecision 

Concepts often are not descrihed with precision. One's ability to understand what is being 

said may rely on one's familiarity with a situation. For example, consider the following 

sentences:-

* I have been waiting in the doctor's office for a long time. 

* The crops died because it hadn't rained in a long time. 

* The dinosaurs ruled the earth a long time ago. 

If you read a story that included these sentences and then someone asked you ahout the 

length of the wait in the doctor's office, you might respond that it was no longer than a few 

hours because you are familiar with the concepts discussed in the sentences. Without the 

conceptual familiarity, a computer would not be able to differentiate between the three different 

lengths of time represented by the same phrase. 

Incompleteness 

Since we expect other people to "fill in the details" when we tell them something, we 

often supply incomplete information. For example, Elaine Rich suggests the following story : 

"John went out to a restaurant last night. He ordered steak. When he paid for it, 

he noticed that he was running out of money." 

4 



Did John eat steak? Although it is not stated explicitly in the story, you probably assumeu that 

he did; after aiL why else wotllu he have paid for it? Your expectations of likely events in that 

particular situation allowed you to understand information that was not included in the text. To 

he able to comprehend incomplete information, a computer must possess the same kind of 

situational expectations [7]. 

1.1.4 General Approaches to Natural Language Understanding 

Essentially, there have been three different approaches taken in the development of natural 

language understanding programs, (1) the use of keyword and pattern matching, (2) combined 

syntactic (structural) anu semantic directed analysis, and (3) comparing and matching the input 

to real world situations (scenario representations). 

The keyword and pattern matching approach is the simplest. 

The third approach is haseu on the use of structures such as the frames or scripts. 

The second approach is one of the most popular approaches currently being used. With 

this approach, knowledge structures are constructed during a syntactical and semantical analysis 

of the input sentences. Parsers are used to analyze individual sentences and to build structures 

that can he used directly or transformed into the required knowledge formats. The advantage of 

this approach is in the power and versatility it provides. The disadvantage is the large amount 

of computation required and the need for still further processing to understand the contextual 

meanings of more than one sentence. 

One way to ensure that none of the elements of a sentence is overlooked is to conduct 

a thorough analysis of the sentence's syntax. This syntactic analysis requires some kind of 

5 



parsing technique (a method of separating a sentence into its component parts), which is the 

computer's equivalent of diagramming a sentence. 

1.2 PARSING 

Before the meaning of a sentence can be determined, the meanings of its constituent parts 

must be established. This requires a knowledge of the structure of the sentence, the meanings 

of individual words and how the words modify each other. The process of determining the 

syntactical structure of a sentence is known as parsing [6]. 

Parsing is the process of analyzing a sentence by taking it apart word-by-word and 

determining its structure from its constituent parts and subparts. The structure of a sentence can 

be represented with a syntactic tree or a list. The parsing process involves finding a 

grammatical sentence structure from an input string. When given an input string, the lexical pa11s 

or terms (root words) must first be identified by type, and then the role they play in a sentence 

must be determined. These parts can then be combined successively into larger units until a 

complete tree structure has been completed. 

To determine the meaning of a word, a parser must have access to lexicon. When the 

parser selects a word from the input stream it locates the word in the lexicon and obtains the 

word's possible function and other features, including semantic information. This information 

is then used in building a tree or other representation structure. The general parsing process is 

illustrated in the figure below :-

6 



Input 
PA JIS EJI >. 

Output 
lltpresentation 

String - Structure 

-

Lexicon 



A lexicon is a dictionary nf words (usually morphemes or root words together with their 

derivatives), where each word contains some syntactic, semantic, and possibly some pragmatic 

information. The information in the lexicon is needed to help determine the function and 

meanings of the words in a sentence. 

Basic Parsing Techniques 

Parsing takes advantage of inherent regularities in natural language to ensure that the 

computer understands the precise function of each word in a sentence, as well as its relationship 

to each of the other words. 

Basic parsing techniques used for analysis include the following : 

Top-Down Parsing : A top-down parser begins by hypothesizing a sentence and successively 

prediCting lower level constituents until individual preterminal symbols are written. These are 

then replaced by the input sentence words which match the terminal categories. 

Bottom-Up Parsing: A bottom-up parser begins with the actual words appearing in the sentence 

and is, therefore, data driven. 

1.3 OVERVIEW OF THE PROBLEM 

Sentence generation and analysis are the two main issues-in Natural Language Processing. 

Compared to generation, parsing is a complex process. The structure of a language is also an 

important point in this regard. Parsing languages like English, which are configurational 

languages is simpler compared to non- configurational languages, like Sanskrit. 

Syntax is one of the most important aspects of the grammar that needs to be considered 

7 



for sentence analysis. 

Syntax may be described as the mode of arranging words in a st:ntence. Herein, questions 

relating to concord, government and order are to be considered. Sanskrit is mainly conct:rned 

with the first two. In our system we consider the concord of the verb with the subject. 

Government is considered by the karakas. 

It is mentioned above that Sanskrit is a non-configurational language. For the same 

reason, the mere order of words is not of material importance. There are, however, certain 

constraints on this order. 

The topic of the present dissertation is "From a simple Sanskrit sentence to verb and 

karaka specifications : An NLP approach". For the purpose of this work, we consider sentences 

comprising of one or more noun-forms and a finite verb-form .. To_handle this problem, two 

-

lexicons were designed, one for the verbal bases (i.e. dhatukosh) and another for nouns (i.t:. 

pratipadikkosh). Further, detailed procedures for identifying verb-forms (i.e. reverse _tigant) and 
.----· -

noun-for~s (i.e. reverse _subant) are written. 

The input to the system is a simple sentenct:. The system identifies, with the help of 

above procedures, the verb with its attributes and noun with its attributes. Further, the verb also 

displays all possible kara~s that it takes. The sentence is considered to be correct if the karakas 

-

of the_ verb and the case-suffixes of the nouns match. There is a straight mapping of the 

case-suffixes to the karakas. 

The system assumes and is augmented by the related work 'Sentence generation based 

on the verb and karaka specifications'. The system does not account for sentences with 

adjectives, adverbs, participle and pas5ive voice. 

8 



CHAPTER II 



PANINIAN GRAMMATICAL FRAMEWORK 

2.1 Paninian Grammar 

Panini formulated rules of Sanskrit grammar in his work called ASHTADHYA YI (literally 

Eight Chapters) [3]. With a finite set of rules he attempts to account for intinite variety of 

language forms. His work is equally well known for its style as for its contents. This style called 

Sutra, is a formal language which challenges to achieve utmost brevity in its code. Some of the 

techniques adopted to achieve this brevity are: (a) information chaining (anuvritti and particle 

ca), (b) concept of iths as control characters and operators, (c) arrangement of sounds in specific 

order, (d) concept of hierarchies in several layers, (e) exception handling, etc. He also details 

the procedures to derive the verb from verbal roots, noun. forms from nominal bases and the 

treatment of syntax through karaka. These procedures have similarities to computer program. 

The most impressive aspect of the system of Ashtadyayi is that the rules are logically 

interrelated and cohesively organized on sound scientific principles. Panini's system is algebraic 

in style and is very different from the classic Sanskrit and gives a!Jthorjtative description of the 

Sanskrit language. 

The technique of description and methodology adopted by Panini in his work, has 

attracted wide attention and interest in recent times, by linguists as well_ as computer scientists. 

The relevance of Sanskrit in the Indian linguistic context need hardly be emphasized. 



2.2 Sanskrit Syntax 

The goal of Paninian theory is to construct a theory of human natural language 

communication. Grammar, a part of such a theory of communication, is a system of rules that 

establish a relation between what the speaker decides to say and his utterance, and similarly, what 

the hearer hears and what meaning he extracts. 

The main problem the Paninian approach addresses is how to extract karaka relations 

(which are syntactico-semantic relations) from a sentence. As it is inspired by an intlectionally 

rich language, it emphasizes the roles of case markers. 

According to Sanskrit grammarians sentence is the minimal meaningful unit of a language. 

The division of a sentence into words and, of a word into base and suffixes are merely for the 

sake of grammatical analysis, states Bhartrhari, the grammatical-philosopher of the 5th centuary 

AD [3]. 

The verb plays a key role and is th~ semantic focus of a Sanskrit sentence. A finite 

verbal form contains information regarding tense/mood, number, person , voice and so on. 

However, it may he mentioned here that Sanskrit allows purely nominal sentences. 

The comer-stone of Sanskrit syntax is the notion of Karaka. Karaka is conceptual notion 

that mediates mapping between grammatical relations and case-suffixes. 

A syntactic unit is called 'pada' and Panini defines it as: 

sup-ting antam padam P.1.4.14. 

'that which ends with a sup suffix (i.e. inflected noun) or with a ting suffix (i.e. inflected verh) 

is called pada'. 

Therefore, a Sanskrit sentence may be conceived as made up of inflected nouns and 

10 



conjugated verbs. 

There are six types of Karakas in Sanskrit. They are as follows : 

1. KARTA : The most independent person /thing in the performance of an action. 

2. KARMA : The object most desired ( to be obtained ) by the agent of action. 

3. KARANA : The efficient means in the performance of an action. 

4. SAMPRADANA : The recepient of the object of the verb da ( to give ). 

5. APADANA : The static point in the action of separation. 

6. ADHIKARANA : The substratum of the action performed. 

_Each karaka is expressed in terms of a case-ending. While a strict one-to-one 

correspondence of a karaka and a case-suffix may not be established, in general, it may be stated 

that, a particular case-suffix r()ughly corresponds to one karaka. Thus, e.g. to refer to the 

instrument in bringing about an action (karana), the third case-suffix is employed. 

2.3 Karaka Relations 

There is no straight forward mapping from vibhakti to semantic relation between noun 

groups and verbs. The key to arriving at an answer is to identify intermediate relations. 

The Paninian grammar specifies a mapping from the nominals and the verb(s) m a 

sentence to karaka re1ations between them. Thus, these relations by themselves do not give the 

semantics. They specify relations which mediate between vibhakti of nominals and the verb form 

on one hand and semantic relations on the other [4]. The various levels in the Paninian model 

are as shown below : 

11 



Uibbal<ti 
SeiY.Il tics Ka.raka Labe I s 

(ciSe-..arkers> 

dhruvu ipaye ipadani Pi.llCiMi 

sadhaka tanu karana tri tya 

kariY.Il a y u saMpradana chaturthi 
ibhipri ti 

adhani idhikarana sapta"i 

kart uri psi ta 
tua 

karMa dvi tiya 

svatantra kart a pratha!Wtritiya 

Fig. 2.1 

13 



Semantic Level (What the speaker has in mind) 

Karaka Level 

Vibhakti Level 

Surface Level (uttered sentence) 

The karaka relations may be shown in the following manner as shown in fig. 2.1. 

In all there are about six types of karaka relations. What the karaka relations do specify 

with respect to a verb, however, are six or so relations of nominals to that particular verb. These 

are sufficient for providing a mapping from karaka relations to semantic relations. Thus the 

karakas provide the maximum necessary information relative to a verb. For example, the karta 

karaka may get mapped lo agent for one verb, and experience for another, etc. Karaka theory 

incorporates two other insights. 

L Each and every verb refers to an activity or event that can be further sub-divided into a 

complex of activities. Each _of the sub-activities has its own semantic relations and karaka 

-

relations. For example, in the action of cooking rice, a person kindles the firewood, 

places the vessel on the fire, puts water and rice in the vessel and so on. Each of these 

14 



sub_ activities has its own semantic relations with associated objects. Thus, for each of 

the sub- activities there will be appropriate karaka relations. For example, 

(i) ramah sthalyam odanam pacati. 

(Ram cooks rice in the pot) 

(ii) sthali pacati. 

(The pot cooks(the rice)) 

(iii) odanah pacyate. 

(The rice cooks). 

In (i) the speaker decides to give importance to the role of Ram, whereas in (ii) the 

speaker wishes to emphasize the role of pot. Even though the verb representing a main 

activity may be used in a sentence, the karaka relations specified might correspond to a 

particular sub- activity. This will have obvious consequences for semantic relations. 

2. Karaka relations also depend on the concept of Vivaksha. Vivaksha refers to the speaker's 

viewpoint or attitude towards the activity. A sentence is not a statement of an objective 

activity. Rather it is the speaker's viewpoint of the world reality. Usually vivaksha 

affects the choice of verb form, which in turn affects the karaka relations and vibhakti. 

Karta karaka holds between that nominal and a verb in a sentence, whose referent is 

'swatantra' or the most independent or autonomous out of all the karaka nom!nals that 

are expressed by the speaker. However, it is with respect to the_ activit~ implied by the 

verb. In (i), out of Ram and sthali, it is the former which is more independent. HenGe, 

Ram is the karta in (i). In (ii), in the absence of any mention of Ram, out of sthali and 

odana it is the former which is more independent. Hence, sthali is the karta. 

15 



According to Kaundhhatta, who further elaborates on the concept of swatantra, every verb 

in a sentence refers to <m activity. Sometimes the verb can he ambiguous, in which case it may 

refer to several activities. When used in a sentence, it may refer to any one of its possible 

activities. Karta of a verb in a sentence is one which is the 'ashraya' or base of the activity. 

In (i), the activity referred to is the act of cooking rice by Ram by placing the vessel on the fire, 

putting the water in the vessel etc. Thus, Ram is the karla of this activity. In (ii), the activity 

referred to is the cooking of the rice by the pot. The pot is the karla of this activity. In (iii), 

the rice is conceived as the agent in the process of cooking. Different languages make different 

lexical choices for the activities. English, for example, retains the same verbal root for all the 

three activities above. 

2.4 Karaka to Vibhakti Mapping 

The mapping from karaka level to vibhakti level will allow the mapping of a repres_entation 

of a sentence at the karaka level to a representation at the vibhakti level. 

We now give the rules in the Astadhyayi that relate these karakas with the case-suffixes 

(vibhaktt). Only the most general rules are mentioned. 

1. pratipadikartha-linga-parimana-vacanamatre prathama 

(P.2.3.46) 

Where the sense is that of the Crude form or where there is the additional sense of gender 

only, or measure only, the first case-affix is employed. 

2. karmani dvitiya (P.2.3.2) 

When the object is not denoted hy the termination of the verb, &c. i.e. the verb does not 

16 



agree with it, the second case- aftix is added to the word. 

3. kartrkaranayos tritiya (P.2.3.18) 

In denoting the agent or the instrument the third case- affix is employed. 

4. Chaturthi sampradane (P.2.3.13). 

In denoting the sampradana-karaka the fourth affix or Dative is employed after the noun. 

5. apadane pancami (P.2.3.28) 

When the Apadana-karaka is denoted, the fifth case-affix is employed. 

6. saptamyaadhikarane ca (P.2.3.36) 

The seventh case-affix is employed when the sense is that of location. 

2.5 Paninian Theory Based Parsing 

The Paninian theory discussed above can be used for building a parser. Parsing is the · 

reverse of generation, where given a sentence a suitable semantic structure is to be assigned to 

it. If we build a parser based on the Paninian theory, we have to obtain a representation of a 

given sentence at the vibhakti level, using which we must obtain a representation the karaka 

level, and finally, a representation at the semantic (or mental) level. 

It turns out that the Paniniari theory is extremely suitable from computational point of view. 

It can be used in a natural manner for structuring a parser which is extremely efficient. 

It is fairly obvious that one part of the parser must take care of morphology. For each word 

in the input sentence, a dictionary or a lexi~on needs to be looked up, and associated grammatical 

information needs to be retrieved. The words have to be grouped together yielding nominals, 

verbals etc. Finally, the karaka relations among the elements have to be identified. The structure 

17 



Sentence Surface level 

Active Morphological 

Lexicon analyzer 

llords with as so cia ted 

graMatical infor-Mati on 

Uerb for.. Local word 

Chart grouper 

words groups Uibhakti level 

Karab chart a Core 

Laks han charts parser 

Parse structure J<araka level 

Fig. 2.2 : Structure of the Parser 

18 



of the parser is as shown in Fig. 2.2. 

2.6 Morphological Process 

It was mentioned that syntactic units are generated by morphological process. The procedures 

whereby a noun and verb are intlected are called subant and tiRant respectively (9). A brief 

description of the same is given below 

SUBANT 

A subant is made up of a nominal base and a nominal suffix. The nominal base is called 

pratipadik. There are 21 nominal suftixes in Sanskrit. In all there are 7 vibhaktis and 3 vachans 

in Sanskrit. The nominal suffixes are arranged in 7 x 3 paradigm. The suftixes are listed as : 

ekvachan dvivachan · bahuvachan 

vibhakti 

prathama su au ;as 

dvitiya am aut sas 

tritiya taa bhyam hhis 

chaturthi ne bhyam bhyas 

panchami nast bhyam bhyas 

shashti nas OS a am 

saptami nt OS sup 

The nouns may be classified as sangya, sarvnam and sankhyavachak. The first varga sangya 

-

includes nouns, proper or common. The second group is that of sarvnam (pronouns), and 

sankhyavachak deals with numerals. The transformational rules for forming subant are different 

19 



for each varga. 

TIGANT 

Tiganl deals with verb intlexion. Panini divides all the verb roots (dhatu) into ten ganas. 

They are : bhavadi, adadi, juhotyadi, divadi, svadi, tanadi, krayadi, churadi, tudadi, rwllzadi. 

There are about 2000 dhatus in Sanskrit. The hlravadi gana is by far the largest one 

comprising of almost 40% of all the dhatus. The transformation rules acting on verbal roots are 

different for each gana and they are the same within a particular gana. The verbal root from a 

specific gana can then be a parasmaipadi, atmanepadi or uhhaypadi. Knowledge of lakar (which 

pertain to tense or mood of a verb) is required to specify a desired action. Sanskrit has ten lakars 

viz. lot, lrit,lul. Like English, we have three numbers or purushas in Sanskrit namely, utlam 

purusha (first), madhyam puru.sha (second) and pratham purur;ha (third). And finally we need 

a purusha to form a tingant pada. 

For purposes of analysis, we have to take these procedures into consideration. These 

procedures have to be analyzed in a reverse manner for identification of word forms. 

Detai Is of the same are given in the following chapter. 

20 



CHAPTER III 



SANSKRIT SENTENCE ANALYSIS 

3.1 Sentence Analysis 

Panini d<.1esn't formally define the term vakya (sentence), but the word is used in Astadhyayi. 

A sentence is a series of connected words. To express the connection between the words, Panini 

uses different non-technical terms such as joining (1.4.59 yo,Ra), syntactically connected (2.1.1 

Samaratha), wish or desire (3.2.114 sakanksha) and so on. 

In Astadhyayi, derivation of words and their interrelation in a sentence starts from meaning. 

But in analyzing it, one starts with the sentence and arrives at the meaning or intention. 

Before discussing about sentence analysis, formation in the Paninian system is given by 

example below : 

Example: Let us say we want to generate the sentence 'Rama reads a hook'. Here, the verb is 

in present tense (varthamana kala) and hence gets Lat. Rama is the agent of the action and book 

(pustaka) is the goal. 

- By 3.4.69,· Lat expresses ( l) agent· or (2) goal or (3) the state (where the verb lackS goal). 

If we choose Lat to represent the agent, after transformations the final verb form is pathati. The 

goal can be expressed by 2.3.2 accusative case, since it is not expressed yet (anabhihita), (by 

2.3.2) we get p~takam (pustaka + am). Verb ending already expressed agent (by 3.1.68 karthari 

shap), hence we cannot express it again. Now second or third case ending becomes applicable 

21 



(by 2.3.2 and 2.3.1R). But since we have to only express gender and number (hy 2.3.46), the 

nominal stem gets the nominative case (su) and we form the word (rama + su) ramah. 

agent 

Rama + su patha + thiP 

pustaka +am 

goal 

Final form is : Rama(h) pustak(am) patha(ti). 

In order to analyze the above sentence, the process starts by identifying the constituent 

words. By identification is meant identifying the base word as well as the case markers/verb

suffixes. Once the words are identified, the relation among the different words is established. 

~The Paninian grammar provides for generation of words and sentences. That is, the grammar 

describes the process in the forward direction, which is known and hence predictable. However, 

for sentence analysis and parsing, a reverse approach has to be adopted. It may be mentioned 

here, that Panini, nor any of the grammarians that follow him, provide us any rules in this 

direction. The most obvious reason being, there was no necessity, whatsoever, for such an 

analysis. 

In the a~ve situation, the immediate task is to develop procedures and tools f(1r such an 

analysis. The advent of computers and the emergence of Artificial Intelligence, with enhanced 

programming paradigms, mainly logic programming, help in the realization of this goal. The most 

important aspects of AI, namely, inference and heuristics, and an approach based on it make such 

22 



an analysis possible. 

Now, for analyzing the ahove sentence, initially we select the first W(lrJ (i.e.ramah here) and 

send it to the reverse_tigant procedure. If the word is identified as a tigant, the system returns 

the base along with its attributes. If it is not identified, the same is then sent to the 

reverse_suhant procedure. If the word is identified as a subant the system returns its attributes. 

If it is neither a tigant nor a suhant we say that the word is wrong. Similar processing is done 

for other words also. 

A detailed description of the reverse_tigant and reverse_suhant procedures are discussed in 

chapter 4. 

3.2 Semantic Representation 

Once the constituent words are identified, the vihhaktis are established, which are checked 

for syntactic compatibility. The verb lexicon contains a list of possible karaka5> it can take. If 

these values match with the obtained vihhaktis the sentence is considered as valid. 

It may he mentioned here that as the work in this direction (i.e. computer analysis of Sanskrit 

) is in very preliminary stages, the present work may he looked as an initial step in the same 

direction. Further the scope of the work is limited to simple sentences( e.g. this doesn't consider 

adjectives, passive structures etc.), as tools are to be developed for analyzing complex sentences 

and so on. 

3.3 Pada Analyzer 

The process of determining the syntactical structure of the sentence is known as Parsing. It 



is the process of analyzing a sentence hy taking it apart word-by-word and determining its 

structure from it'> constituent parts and sub-parts. When given an input string, the lexical p;uts, 

i.e. the root word-. must first he identified by type, and then the role they play in a sentence must 

he determined. 

The sentence Ramah Pustakam Pathati contains three syntactic units, namely, ramah, 

pustakam and pathati. A program has been developed that identifies the word-forms along with 

the grammatical attributes that go with them. Let us say we want to analyze the word-form 

ramah. Any syntactic unit being essentially either an intlected noun or intlected verb, we need 

consider only the nominal-suftixes (i.e. sup suftixes) or verbal- suffixes (i.e. tinx suffixes). An 

identiticatinn process based on the suftixal part is also an economical method, considering the 

fact that there are only 21 nominal suftixes and 18 verbal suffixes. It may he noted that the end 

part of any syntactic unit corresponds to the suffix part, either as it is, or in a moditied form. 

In some cases, the suftix may also he totally dropped. To illustrate, consider the singular number 

of nominal case, which is su. This suffix h<L'> three possible representations, as mentioned below: 

1. su -- > h 

2. su --> am 

3. su --> 0 

Thus, the final h in ramah, may he inferred as the modified form of su. 

Similarly, in the word pathati, the end part, i.e. ti, may be traced to suftix tip, 1.e. third 

person singular. 

L tip--> ti 

The remaining part of the word, i.e. patha, represents the base word. For the identitication of 

24 



the base word the computational lexicon has to he consulted. 

A major difficulty in the process of word-identification anses due to case-clashes. For 

example, 

bhyas --> hhyah 

may either he a plural suftix of dative or ablative case. 

The above are some important issues that one needs to consider while analyzing a 

word-form. These ambiguities can he resolved to a great extent by the computational lexicon. 

3.4 Computational Lexicon 

Knowledge can he represented using an appropriate data structure, which is referred to as 

lexicon. Lexicon is quite essential and necessary for Natural Language Processing (NLP) 

systems, i.e. parser, generator, translator, etc. It is because almost all the components of NLP 

systems refer to lexicon in order to accomplish their task. A simple lexicon for NLP systems 

may contain syntactic, semantic and contextual knowledge. 

The lexicon may he detined as a collection of lexemes along with their related attributes. 

A lexerne is considered as one word taken along with its grammatical attributes, semantic 

attributes, conjugate list, computational words (derived words), relations, possible surface 

realization, pronunciation and meaning of the word. 

The system contains two lexicons, namely dhatuknsh :tnd pratipadikkosh. 

Dhatukosh : There are two thousand verbs in Sanskrit. These are distributed over ten classes 

called ganas. Further, a dhatu can be either of parasmaipadi or atmanepadi type. The lexicon 

contains the list of verbs along with its attributes i.e. the gana and the pada. A list of korakas, 

25 



both mandatory as well as ohligatory are also stored with each dhatu. 

Pr-atipadikkosh: The pratipadikkosh contains the list of nouns. In any language, the nouns are 

innumerable, and it is difticult to store them all. Hence, the lexicon contains a list of most 

commonly used nouns, along with their attributes. The attributes in case of a noun are its class 

(called var~a) whether it is of noun, pronoun or numeral type, and gender (i.e. ling). Secondly, 

a noun can either be of masculine, feminine or neuter gender type. 

26 



CHAPTER IV 



IMPLEMENTATION 

In the previous chapters the theoretical framework of Paninian grammar and the issues 

involved in language processmg are discussed. The present chapter deals with the 

implementation details of sentence analysis. In implementation, modular programming approach 

has been adopted. 

The system contains three major modules. These are : 

1. Lexicon 

2. Analyzer 

3. Main Module 

The above modules contain sub-modules. The system organization for the same is as shown 

Jn fig. 4.1. There are two lexicons, namely, Dhatukosh and Pratipadikkosh. Similarly, the 

Analyzer consists of two sub-modules, namely, Reverse tigant and Reverse subant. The 

Analyzer is the Processing module while the lexicon is the Maintainance module. The 

maintainance module is accessed by the Processing module. We now describe each of these 

modules. 

4.1 Lexicon 

This system operates on dhatu and nominal data. Therefore this module consists of 

dhatukosh and pratipadikkosh. These are described below : 

27 



WRITE 

WRITE 

MAIH 

MODULE 

LEX I COH ~-------------------------------------------• AHA L'i Z ER 

DIIATUKOSH 

READ 

RFJIJ) 

PRAIIPADIK 

KOSH 

I 

PELETE 

Fig. 4.1 

MODIFY 

MODIFY 

J 
REV_TIGAHT 

PROCEPU RE 

SysteM Organization 

28 

REU_SUBAHT 

PROCEDURE 



4.1.1 Dha tukosh 

This module consists of verh lexicon and procedures to operate on this lexict1n. In this 

lexicon (i.e. dhatukosh) the dhatu (verh root) along with its attrihutes is stored. These attrihutes 

are : 

1. Anyarup 

2. Gana 

3. Pada 

4. List of mandatory karakas 

5. List of optional karakas 

These attributes are stored in the lexicon through a functor mechanism of Prolog. The data 

structure used for this is as : 

dhatu attrib = dhatu attr(Dhatu,Otherform,Tens~roup,Gana,Pada, - -
List of Mandatory Karakas,List of Optional Karakas) 

This module opens with a menu displaying the procedures to create, maintain and access the 

dhatukosh. These procedures are WRITE, READ, DELETE and MODIFY. This menu (i.e.the 

main menu) appears as shown in A-1. To select any one of these procedures the user presses 

the <ENTER> key. These procedures are menu driven and are interactive in nature. They are 

described in detail below : 

4.1.1.1 WRITE 

To add a new dhatu to the dhatukosh the user selects the WRITE procedure from the main 

menu. By using this procedure one can store the various attributes of the dhatu in the dhatukosh. 

29 



Inter 

Tensegroup 

Gana 

Store 
in 

htabase 

Ho 

Enter 

Pada 

Yes 

Enter 
llandatoi'!I

Jial'aka 

Yes 

Yes 



The tlow chart for this procedure is shown in tig. 4.2. 

Once the user has selected the WRITE procedure, a message asking the user to enter the 

dhatu appears on the screen (as shown in A-2). After the dhatu has been entered.the user is 

required to give the otherfnrm (some special substitute form) of the verb, if any. In case, 

otherform exists then a menu appears asking the user to select the tensegroup (i.e. lakar group). 

For details see A-3. 

Similarly the user is asked to select the gana and pada to which the dhatu belongs from their 

respective submenus (as in A-4 and A-5). 

Once the above information is given, the user is required to input the list of mandatory 

karakas.• There are six karakas namely, Karta, Karma, Karana, Sampradana, Apadana, 

.... ~-
Adhikarana, out of which the selection is made. These are selected from the submenu (as shown 

in A-6). 

Once the user has selected the list of mandatory kat:pkas another menu consisting of optional 

karakas is displayed on the monitor (as in A-7). This menu consists of the karakas remaining 

after the selection of the mandatory karakas . 
. '.< 

Once this information is entered, this modules provides an option either for storing the 

information or to abandon it. For storing, the key "Fl", and for abandoning,the key "F2" is used 

(as shown in A-81. 

4.1.1.2 READ 

To know the attributes of a dhatu present in the dhatukosh, the user selects the READ 

procedure for the same from the main menu. The flow chart for this procedure is shown in 

31 



Fig. 4.3 

START 

Dhatu 

Ho 

Search 

Yes 

Display 

Attributes 

Yes EXIT 

Ho 

Dhatu not 

in Lexicon 

Flow chart for READ procedure 

3Z 



tig.4.3. 

After selecting this procedure a message appears on the monitor asking the user to specify 

the dhatu whose attributes he/she wishes to know (as in A-9). Having entered the uhatu the 

attributes of the same are displayed on the screen. 

4.1.1.3 DELETE 

If a particular dhatu in the dhatukosh is not required one can remove or delete the same from 

the dhatukosh by selecting the DELETE procedure from the main menu. The tlow chart for this 

procedure as shown in tig. 4.4. 

On selecting this procedure a message appears on the screen asking to input the dhatu the 

user wants to delete (as in A-10). 

4.1.1.4 MODIFY 

The changes or modifications in a dhatu present in the dhatukosh can be done by selecting 

the MODIFY procedure from the main menu. The flow chart for this pri.:lcedure.is as shown in 

fig.4.5 

On selecting this procedure all the previous attributes of the dhatu along with a menu appears 

on the monitor asking the userto select whic~ oft~e previous a!tributes·is required to be changed 

(as shown in A-11). On selecting these attributes, one at a time, one can make the necessary 

modifications. Once the moditications have been made the modified fcirm is displayed on the 

monitor. 

33 



START 

Dhatu 

Ho 

Searcll 

Yes 

Dtlete 

Dhatu 

Yes 

Ho 

EXIT 

Dhatu not -
in Lfxicon 

Fig. 4.4 : Flow chart for DELETE procedure 

34 



Ito 

Search 

- Yes 

Display 

Attributes 

llodify the 

Attribute 

Ito 

Yes 

EXIT 

Fig. 4.5 : Flow chart for MODIFY procedure 

35 . 



4.1.2 Pratipadikkosh 

This module consists of a nominal lexicon and procedures to operate on this not:t:~inal lexicon. 
. ~~ 

In nominal lexicon (i.e. Pratipadikkosh) a pratipadik along with its attributes is stored.· These 

attributes are : 

1. Varga 

2. Gender 

These attributes are stored in the lexicon through a functor mechanism of Prolog. The data 

structure for this is as : 

prc1tipadik_attrib = pratipadik_attr(Pratipadik,Gender, Varga) 

This module opens with a menu displaying the procedures to create, maintain and access the 

pratipadikkosh. These procedures are WRITE, READ, DELETE and MODIFY. This menu 

(i.e.the main menu) appears as shown in A-12. These procedures are menu driven and are 

interactive in nature. They are described. in detail below ~ 

4.1.2.1 WRITE 

If the user wants to add a new pratipadik to the pratipadikkosh, the WRITE procedure from 

the main menu is selected. Using his procedure various attributes of the- pratipadik can be stored 

in the.pratipadikkosb. The_tlow chart for this procedure is as shown in fig.-4.6. 

Once the user has selected the WRITE procedure from the main menu, a message asking 

the user to enter the pratipadik appears on the screen (as shown in A-13). After the pratipadik 

has been entered the gender of the pratipadik is required. The user selects this from the submenu 

(as shown in A-14). 

36 



Fig. 4.6 

Stol't 
in 

Databan 

Ho 

Enter 
Gender 

Ho 

Enter 
Uarga 

Yrs 

Yes 

Yu 

Yes 

Ho 

Displau -
Prati adfk 1 

it's atfributes 

EXIT 

Flow Chart for URITE procedure 



Similarly the user is asked to select the varga to which the pratipadik belongs from the 

submenu (as shown in A-15). 

Once the above information is entered, this modules provides an option either for storing the 

information or to abandon it. For storing, the key "Fl ", and for abandoning, the key "F2" is 

used. 

4.1.2.2 READ 

If the user wishes to know the attributes of a pratipadik which is present in the 

pratipadikkosh, the READ· procedure from the main menu is selected. On selecting this 

procedure the screen appears as shown in A-16. The tlow chart for this procedure is as shown 

in fig. 4.7. 

This procedure displays the attributes of the given pratipadik. 

4.1.2.3 DELETE 

If a particular pratipadik present in the pratipadikkosh is not required, the user can remove 

or delete the same from the pratipadikkosh by selecting the DELETE procedure from the main 

menu. On selecting this procedure the screen appears as shown in A-17. The flow chart for this 

procedure is given in fig. 4.8. 

This procedure deletes the pratipadik and its attributes. 

4.1.2.4 MODIFY 

To make modifications in a pratipadik (i.e. its attributes) present in the pratipadikkosh the 

3H 

--- ---~--- --------------



Fig. 4.7 

START 

Pratipadik 

Ho 

Search 

Yes 

- Dispby 

Attributes 

Yes 

Ho 

EXIT 

Pratipadik no-t 

in Lfxicon 

Flow chart for READ procedure 

39 



START 

Pratipadik 

Ho 

Search 

Yes 

Delete 
Pratipadik 

Ho 

EXIT 

Pratitadik not 
in Lexicon 

Fig. 4.8 : Flow chart for DELETE procedure 

49 



Pratipadilc not 

in Lexicon 

Ho 

Search 

11-----< 

Yes 

Display 

Attributes 

Modity the 

Attribute 

Ho 

Yes 

EXIT 

Fig. 4.9 Flow chart for MODIFY procedure 

41 



MODIFY procedure is· selected from the main menu. The tlow chart for this procedure is as 

shown in fig. 4.9. 

On selecting this procedure all the previous attributes of the pratipadik along with a menu 

appears on the monitor asking the user to select which of the previous attributes is required to 

be changed (given in A-18). On selecting these attributes, one at a time, one can make the 

neces~ary modifications. Once the modifications have been made the modified form is displayed 

on the monitor. 

4.2 Analyzer 

The analyzer module consists of two submodules, namely, Reverse_subant procedure and 

Reverse _tigant procedure. These are as described below : 

4.2.1 Reverse Subant 

Here the subant pada is the input to. the procedure. This procedure tries to identify the 

noun-base and the suftix. The approach is based on the heuristics of AI. The output of this 

procedure is 

I. Noun base 

2. Varga 

3. Nominal suffix. 

Sometimes t~ere are more than one solution to the input word. 

4.2.2 Reverse_ Tigant 

42 



As in the case of reverse _subant procedure, here also the input to the procedure is the tiKalll 

pada. This procedure tries to identify the base and suftix parts, based on the heuristic approach. 

The output of this procedure is 

1. Verbal base 

2. Gana 

3. Pada 

4. Lakar 

5. Tigant suffix. 

The above procedures are supported by databases wherein the bases and their related 

information are stored. 

4.3 Main Module 

Now the details of Main Module are described. The flow chart for this module is as shown 

in tig. 4.10. 

The input to the main module is a sentence (as in A-19). The constituent words of the input 

sentence are first stored in a list. Each element of the list (i.e. the word-form) is then sent to the 

reverse_tigant procedure for identification. If the word is identified as a tigant pada, then the 

module gives the corresponding attributes of the· verb. These attributes are : 

1. Dhatu 

2. Tigant Pratyaya 

3. Pada 

4. Gana 

43 



Brule into 

List of words 

Get Word 

Rev_tigant 

ProcediiJ'f 

Dhitukosh 

Display 
Dhitu and its 

attributu 

Store attributes 

in Database 

Identification of 
relation bet~en 
the e 1 e~~en ts 

Display U 
... f __ Ou_tpu_t_,..~r \ END 

Rev...subant 

ProcediiJ'f 

Pratipadiklcosh 

Ito 

Store attributes 

in Database 

Word is 

detected III'Ong -

Store 

in Database 

) 



5. Lakar 

Of these, the dhatu is selected and is sent to the dhatukosh. The dhatukosh (described above) 

contains the list of karakas. The karakas are further categorized as mandatory karakas and 

optional karakas. Every verb invariably takes its mandatory karaka, whereas the others are 

optional. The dhatukosh provides this information based on which further processing can take 

place.These attributes of the dhatu along with the list of karakas are then stored. 

If the reverse_tigant procedure fails to identify the input word, it is then sent to the 

reverse _subant procedure. If the reverse _subant procedure identifies the word, then its 

corresponding attributes would be the output. These attributes are: 

1. Pratipadik 

2. Sup Pratyaya 

3. Vibha/ai 

4, Vachan 

These attributes are then stored by the system. 

Of these, the pratipadik is sent to the pratipadikosh. The pratipadikkosh then gives the 

attributes of the same, which are : 

1. varga 

2. gender 

If the reverse subant procedure also fails to identify the word, a message is flashed on the 

monitor stating that the input word is wrong. 

-

A similar process is followed for remaining words of the input sentence. Once all the words 

in the list are identified, the task of identifying the relation among these elements remains. 

45 



In Chapter II, we mentioned that the syntactic relation of the words and their relation to verh 

are specitied by karakas. At the grammatical level, these are represented by the case-suffixes. 

It was also mentioned there, that there is no one-to-one correspondence between the vihhaktis and 

karakas. In our system, we assume a straight mapping between these two. We nnw have 

the attributes of the verb and the nouns of the input sentence. The sentence is declared correct, 

if and only the karakas determined by the case-suftixes of the nouns match with the list of 

karakas taken by the verb. Thus, if a verb takes the karma karaka as mandatory, then a 

corresponding noun with third case-suffix must be present in the sentence. Otherwise, the 

sentence is declared wrong. 

WORDS --> Tigant + Mandatory Subants + Optional Subants 

1 

1 + n1 + n2 < Total Words < 1 + n1 { WRONG SENTENCE } 

The explanation of the formula follows as : 

A sentent.'e is declared to be wrong if the number of words it has is less than the sum of the 

tigant and the mandatory subants. Similarly, the sentence is also wrong if the total words it has 

is more than the sum of the tigant, the mandatory subants and the optional subants. 

The above describes the implementational aspects of our system. The results of the system 

are given in A-20. 

46 



CHAPTER V 



CONCLUSION 

The present work is a modest attempt to develop an analyzer to parse simple Sanskrit 

sentences. The system developed is based on Paninian Grammatical Framework The system 

provides user friendly environment and it is completely menu driven. 

Prolog has been chosen as the language for implementation because of its in-built 

backtracking and pattern matching mechanism which are useful for a natural language processing 

system. 

Though a vibhakti can denote more than one karaka and vice versa but because of the time 

limitation, only one-to-one mapping between karaka and vibhakti has been considered here. In 

addition to this, the present system does not account for sentences with adjectives, adverbs, 

participle and passive voice. No hierarchy of nouns is considered. Further, issues relating to 

semantics and pragmatics are needed to be considered. 

Thus, there is enormous scope for future expansion. Once the system is completely 

developed it can be used in various areas of Natural Language Processing, such as 

teaching/learning, text understanding n:tachi_!le translatio~, database interfaces, text generation, 

- -· 
etc. if it is complemented by the related work, namely, sentence generation based on verb and 

karaka specifications. 

The input specifications and the results of t-he system are given in appendix. 

47 



- BIBLIOGRAPHY 



BIBLIOGRAPHY 

[1] Allen, James. Natural Language Understanding. 

Menlo Park, CA : Benjamin/Cummings, 1987. 

(2] Harris, Mary Dee. Introduction to NLP. 

Reston : Reston Publishing Company, 1985. 

[3] Katre, Sumitra M. Astadhyayi of Panini. 

Delhi : Motilal Banarsidas, 1989. 

(4] Kiparsky, P. Some Theoretical Problems in Panini's Grammar. 

Poona : Bhandarkar Oriental Research Institute, 1982. 

(5] Mishkoff, Henry, C. Understanding Artificial Intelligence. 

Delhi-: BPB Publications, 1986. 

(6) Patterson, Dan W. Introduction to Artificial Intelligence and Expert Systems. 

New Delhi : Prentice-Hall of India, 1992. 

48 



[7] Rich, Elaine. Artificial lntelligenc~. 

New York : McGraw Hill, 19X3. 

(8] Sager, Naomi. Natural Language Information Processing. 

Reading, Mass : Addison-W~sley, 1981. 

(9] Singh, G.V., et. al., The Word-Morphology of Sanskrit, Sinha, R.M.K. (ed.), Proceedings of 

Computer Processing of Asian Language (CPAL-2). 

New Delhi : Tata McGraw-Hill, 1992. 

(10] Syseca, A G. Prolog for NLP. 

John Wiley & Sons, 1985. 

(11] Vasu, S C. The Siddhanta Kaumudi of Bhattoji Diksita. 

Delhi : Motilal Banarsidas, 1982. 

[12] . Winograd, T. Language as a Cognitive Process, Volume I : Syntax 

Reading, Massachusetts : Addison-Wesley, 1983. 

49 



APPENDIX. 



A-i 



~=============================~ i~~l ============================~ 

.------------------------------ P.J~l 
E::c ~ 

A -.:2_ 



rr=============:i:J:··-g am===========:::;'! '\1 

.--------------------------- A$1 

.--3J;:u ~~

~tdtir<j''h 
3-~.fuk}f.. 

Esc e~!~· 

A -3 



r=====================~.~~~====================~ 

--

ncr : 

~----------------~--~~~ 

A-4 



rr===========================d~~ ==========================~ 

.----------------------------------- ~z~~ 

A-s-

~--
OJ.~11tJ.:!l 
:{lt;-P..4•J·~ 
:;-~zro.tl" 



rr=======================~mu~ ======~================~ 

I 
I 

er-.·,.l..) [~r· ~ . , ·: · G~i'·( 

A-6 

:jh-:<!<5. •.:t'l'<·ih 

~~)(i·~ 

~ 
;JQUf 

~~P:1G!""i 

:jl• .. i/·~""1 
:~ft.:.-;~.'-'i 
A-.-..-
r-1'=*-,! ... ~-· 

I 
~ 

I 



r=====================~~~~=-======================, 

-

~,:hl})a; .:f;t •:.:>.-:- ; 

r---------~---------------------- ~~~~ 
~ $ Bv Esc ~ 

A-7 

""- -
--oj'.Jt)~:ft-l~ ~ -

~ 
~ 

·dl"!l~"4 

:3lQreR 
~ 
~ 



~====================dmijmm======================~ I 

~ ~ : [ "·:f}.-:il"] 

r--------------------------- R61 
Pl'-'!"w..t:l $ f.:1q Esc ~ 

A-~ 



F===========~~ ~ ============;'! 

~i'l~ = rrrt: 
3R:t ~ = ll=~~ 
~=~~ - ~ 

nor = ~.:life 
~ = t)--:."\~tJ~~ 
~jl!21~,.j •::t>i·{~; = 
~·~;~i;:q~; ~)j·{~: = 

["cn~"J 
f u -t-1P;(GI.,....H "'~~' u,:t:r.:w; ~ u:.:Eif" u.{.t1~¢-,•w,i" l L . . I ' ! - . . .I - t _! 0 • _, ~. ' - • ..I 

!'1J~! 
~·ii")i...:-; ,;; f?.v Esc ~~~~~ 

A-~ 

I 
I 
' 



r=======================~,~~~~========================~ 

.-------------------------~~~ 
P1~'ll--~ $ f;w Esc ~~~~t~) 

A-lo 



::_'07 ~ = ~!~~ 
·:'i~~-...r. = #>J~i~~) 
w ~ 
t:re" = • ..; -<:~'-!ei 
31;::,.-~.J;.: ~ ... ;!h = 
JJ~~ :-;,; "'*; = 

c· - • 
0;·~~. 

Esc 

A-ll 

~.l~~J'"i -
.:_~"";U :;;,q 



'iAIN MEN 
~-
qo;:j 

~ 
QQ4J4 

A-1.2... 



r-------------------------~ ~~I 
.... ,.. ("~-
L...·.;.·-· 

A-13 



r=====~==:!Alm1~ <mr 

~= 

eifu :------------- '·~· 

it ~ Esc ~ 

A-1'1 



em·~ ....... ';!~~·! 

wf: 

I 

I I 
r--------------------------- ~~! 

P-.-::t'~-:-1 $ ta'r:;r Esc <!~li~! 

A- IS" 



.-----------Qffi~~.:.t') ;:ffir/qc;;:{ 

Ult?iQ!ea> = ~ 
f.:in = gf.!:;:1ll 

.----------------~------- ~e~, 
~Zi·:H~~ $ gp Esc ~ 

A-16 



.------------- r~llt 
A·~<~ :$ ~ Esc e~10 

A-17 

J 



=~ 
~· 

=~ 

.-------------------------~~~ 
r=i<f>l.:-1 t- f.:N Esc ~ 

A-1& 

D
~:r::r ~1~1!~ . 

I 

. 



r-------------~ ~~~f~01 

A-19 



qlord : ~ UTl=l1i •1-d-i~ 
~-=~ 

Ulhi:&Cf·, = ~ 

P.n = ~ 
::nf = <:~~I 

h~=~ 

lJI!;o~1.:r; = UTP. 

~ = .-,J..:-i2hf~<l 
att=~ 

?II~ = l!i'k_ .. r;:, 
~=m:{ 
:?~- li"'!!A:;~ 

~~ ...... ~J .... '!='Q 07'!~)!·{ 

nuT = ~.::;& 
qc; = q ......... ~iJ& 
:j;f~~i-S .;:,;.<~·, = ["·::t;:::Jl"J 
,'!>,,1:;_.!-_.~d'.'.· .~.·.,,'.J.•-r·, -- rlH.,....{ll)::J ._,u u~~~l .H u ..... .., li.Jiu '*6f·+-;t~1f H.-)Tfi:,;;h.!OI·"', ~ _.... ""'" --. •. ~! ·' -~~1":0.!~ .~ '...~!·· .... ! ! • ·' ' .)4~ .,._ .. 

I 
I 


	TH68690001
	TH68690002
	TH68690003
	TH68690004
	TH68690005
	TH68690006
	TH68690007
	TH68690008
	TH68690009
	TH68690010
	TH68690011
	TH68690012
	TH68690013
	TH68690014
	TH68690015
	TH68690016
	TH68690017
	TH68690018
	TH68690019
	TH68690020
	TH68690021
	TH68690022
	TH68690023
	TH68690024
	TH68690025
	TH68690026
	TH68690027
	TH68690028
	TH68690029
	TH68690030
	TH68690031
	TH68690032
	TH68690033
	TH68690034
	TH68690035
	TH68690036
	TH68690037
	TH68690038
	TH68690039
	TH68690040
	TH68690041
	TH68690042
	TH68690043
	TH68690044
	TH68690045
	TH68690046
	TH68690047
	TH68690048
	TH68690049
	TH68690050
	TH68690051
	TH68690052
	TH68690053
	TH68690054
	TH68690055
	TH68690056
	TH68690057
	TH68690058
	TH68690059
	TH68690060
	TH68690061
	TH68690062
	TH68690063
	TH68690064
	TH68690065
	TH68690066
	TH68690067
	TH68690068
	TH68690069
	TH68690070
	TH68690071
	TH68690072
	TH68690073
	TH68690074
	TH68690075
	TH68690076
	TH68690077
	TH68690078
	TH68690079
	TH68690080
	TH68690081
	TH68690082

