
A FAULT TOLERANT SEMAPHORE MECHANISM FOR
MUTUAL EXCLUSION IN DISTRIBUTED SYSTEMS -

Dissertation Submitted to
JAWAHARLAL NEHRU UNIVERSITY

in partial fulfilment of requirements
for the award of the degree of

Master of Technology
.
~n

Computer Science ·

by
S. Mahadev

SCHOOL OF COMPUTER & SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI - 110 067

January 1996

CERTIFICATE

This is to certify that the dissertation entitled

A FAULT TOLERANT SEMAPHORE MECHANISM FOR

MUTUAL EXCLUSION IN DISTRIBUTED SYSTEMS

which is being submitted by Mr. 5. · Mahadev to the
School of Computer and Systems Sciences, Jawaharlal Nehru

University, New Delhi for the award of Master of Technol

ogy in Computer Science, is a record of bonafide work
carried out by him under the supervision and guid
ance of Prof. K. K. Nambiar.

This work is 9riginal and has not been submitted in
part or full. to any University or Institution for the
award of any degree.

Prof. G. Prof. K. K. Nambia·r

(Supervisor)

to my parents · · ·

ACKNOWLEDGEMENT

I take this opportunity to thank variou.s person.s who greatly injlw:nced rne through-

01li rny 8iay in .JNU.

My heartfelt tlwnks to rny guide Prof. K.K. Nambiar for hi8 valv.ablc s'//.g

gestion.s througho·u.t this work. My profov.nd thank.s for his rnoti-ou.hon and g·nidanu;

during thi.s period.

I am indebted to Prof. G.V. Singh, Dean, SC&SS, for providing necessary

facilities to carry out my work. My sincere tha.nk.s are due to a.ll fawlty, SCUSS.

I extend my thanks to my classmates and friends.

S. Maha.dev

CONTENTS

1. Introduction 1

1.1. Distributed Systems 1

1.1.1. Goals of Distributed Systems 2

1.2 Mutual Exclusion in Distributed Systems 3

1.2.1. A Centralized Algorithm 3

1.2.2. A Distributed Algorithm 5

1. 2. 3. A Token Ring Algorithm 7

1.3. Fault Tolerance in Distributed Systems 8

1.3.1. Primary Backup Algorithm 0

1.4. Need for a new Approach 11

2. Detailed Problem Analysis 12

2.1. Problem Statement 12

2.2. Related work & Background 12

2.3. Problem Analysis 15

2.3.1. Data Flow Diagram (DFD) of the System 1G

2.3.2. External Interface Requirements 18

3. Design & Implementation Issues 20

3 .1. Design Strategies 20

3.1.1. Server Design- D_SemSer 20

3.1.2. Need for the Key_A.rbiter 21

3.1.3. Fault Tolerant features 22

3.1.4. Failure Recovery 25

3.2. Design Specification 25

3.2). Structure Chart 25

3.2.2. Data Definitions

3.3. Implernent.ation Issues

3.3.1. Module Algorithms

3.3.2. D_ScmSer Architecture

3.3.3. Development Environment

4. Mutual Exclusion using D_5emSer

·· 4.1. Algorithm

4.2. Description

4.3. A11alysis

5. Cm1clusion

Bibliography

26

31

:n

37

:38

40

40

41

44

45

46

1. INTRODUCTION

1.1 Distributed Systems

Two rnajor advancements in technology led computer designers to radically switch

from old fashioned centralized systems consisting single CPU, its memory, peripherals

& some terminals to a much reliable Distributed Systems. The first advancement was

the development of powerful microporcessors. Initially, these were 8- bit machines and

later on manufacturers came out with 16 bit, 32 bit ami now 64 bit CPUs. Many

of these have the computing power of a decent. sized mainframe computer, but for a

fraction of the price.

The second development was the invention of h.igh-speed computer networks. The

Local Area Net\vorks or LANs allow dozens, or even hundreds, of machines within a

building to be connected in such a ~ray that small amount of information can be

transferred between machines in a millisecond or so. The \iVide Area ~etworks or

\iVAN s allow millions of machines all over the earth to be connected at speeds varying

from 54' Kbps to Gig~bits per second.

(

The result of these technologies is that, it is now not only feasible, but easy to

put together computing systems composed of large numbers of CPUs connected by a

high speed network. They are called Distributed Systems

Since this is a dissertation involving distributed system, it may be appropriatE

to begin with an attempt at a definition; as Andrew Tanenbaum [9] says, various

definitions of distributed systems have been given in the literature, none of them

satisfactory and none of them in agreement with any of the others. For our purpose

it is sufficient to give a loose characterization :

A di8tributed system is a collection of independent computers that appear to

the user.~ of the system as a single computer.

1

This definition has two aspects. The first one deals with hardware : the machines

are autonomous. The second one deals with software : the users think of the system

as a sinp;le cornputer.

1.1.1 Goals of Distributed Systems

Not just because it is possible to build distributed systems. dul' to t.Pdmolop;

ical advancements. it came into existance. There are many motivations behind its

development.

The real driving force behind the trend toward decentralization is economics. As

Grosch's Law :states :

The Cmnputing poweT of a CPU is proportional to the sqnare of 1:t.~ pTio::

\~lith microprocessor technology, Grosch's Law no longer holds. For a few hundred

dollars you p;et a CPU chip that can execute more instructions per s<~c<md than one

of the larp;est. 1980s mainframe. If you are willing to pay twice as much, you get the

same CPU, but running at a somewhat higher clock speed. As a result, the most cost

effective solution is frequently to harness a large number of cheap CPUs together in

a. system. Thus the leading reason for the trend toward distributed systems is that

these systems potentially have a much better price/performance ratio than a single

large centralized system would have.

A next reason for building a distributed system is that some applications are

inherently distributed. You can think about a large bank with hundreds of branch

offices all over the world. Each office has a master computer to store local accounts

and handle local transactions. In addition, each computer has the ability to talk to all

other branch computers and thus transactions can be done without rep;ard to where a

customer or account is.

2

Another potential advantage of a distributed system over centralized system is

higher reliability. By distributing the workload over many rnachines, a sinp;le chip

failure will bring clown at most one machine.

Finally, incremental p;rowth is also potentially a big plus. Oftc:u. <l compa.uy will

buy a mainframe with the intentions of doing all its work on it. If the company

prospers a.nd the workload grows, at a certain point the mainframe will no lonp;er be

adequate. The only solutions are either to replace the mainframe with a larp;er one or

to add a second mainframe. Both of these can wreak major havoc on the company's

operations. Iu contrast, with a. distributed system, it may be possible to simply to

add more processors to the system, thus allowing it to expand gradually as the need

}),rises.

1.2 Mutual exclusion in Distributed Systems

Systems involving multiple processes are often most easily programmed using crit

ical regions. Vlhen a process has to read or update certain shared data structures, it

first enters a critical region to achieve mutual exclusion and ensure that no other pro

cess will user the shared data structures at the same time. In single-processor systems,

critical regions arc protected using semaphores, monitors, and similar constructs. In

the following section we will look at few algorithms which allow us to achieve mutual

exclusion in a distributed system.

1.2.1 A Ce,ntralized Algorithm

The most straightforward way to achieve mutual exclusion in a distributed system

is to simulate how it is done in a one-processor system. One process is elected as the

coordinator (e.g., the one running on the machine with the highest network address).

Whenever a process wants to enter a critical region, it sends a request message to the

coordinator stating which critical region it wants to enter and asking for permission.

If no other process is currently in that critical region,.the coordinator sends back a

3

reply granting permission. \Vhen the reply arrives, the requesting process enters the

critical region.

Now suppose that another process 2, asks for permission to enter th~ sc-une critical

region. The coordinator knows that a different process is already in the critical rcg;ion.

so it e<mnot grant permission. The exact method used to deny permission is system

dependent. For example, the coordinator just refrains from replying. thus blocking

process 2, which is waiting for a reply. Alternatively, it could seud a reply saying

"permission denied". Either way, it queues the rc<]uest from 2 for the time being.

When process 1 exits the critical region, it s~nds a message to the coordinator

releasing its exclusive access. The coordinator takes the first item off the queue of

deferred requests and sends that process a grant message. If the process was still

blocked (i.e., this is the first message to it), it unblocks and enters the critical region.

If an explicit message has alrea?y been sent denying permission, the process will have

to poll for incoming traffic, or block later. Either way, when it sees the grant, it can

enter the critical region.

It is easy 'to see that the algorithm guarantees mutual e~clusion : the coordinator

lets only one process at a time into each critical region. --It is also fair, since requests

are granted in the order in which ther are received. No process ever waits forever
0

(starvation). The scheme is easy to implement, and requires only three messages per

use of a critical region (request, grant, release). It can ;;leo be used for more g;eneral

resource allocation rather than just managing critical regions.

The centralized approach also has shortcomings. The coordinator is a single point

of failure, so if it crashes, the entire system may go down. If processes normally block

after making a request, they cannot distinguish a dead coordinator from "permission

denied" since in both cases no message comes back. In addition, in a large system.

single coordinator can become a performance bottleneck.

4

1.2.2 A Distributed Algorithm

Ha.vinp; a ::;inp;le point of failure is frequently unacceptable, so n·s<-~archcrs haYe

looked for distributed mutual exclusion algorithms. In this section we discnss Ric;ut

and Agrawala's algorithm.

This algorithm requires that there be a total ordering of all events in the system.

That is, for auy pair of events, such as messages, it must be unambiguous which one

happened first. The algorithm works as follows. \iVhen a process w<:mts to enter a

critical region, it builds a message containing the name of the critical region it wants

to enter, its process number, and the current time. It then sends the messap;e to all

other process, conceptually including itself. The sending of messages is assumed to

be reliable; that is, every message is acknowledged. Reliable group communciation if

available, can lw used instead of individual messages.

\Vhen a. process receives a request message from another process, the action It

takes depends on its state with respect to the critical region named in the message.

Three cases have to be distinguished :

o If the receiver is not in the critical region and does not want to enter it, it

sends back an 0 K message to the sender.

o If the receiver is already in the critical region, it does not reply. Inste_ad, it

queues the request.

o If the receiver wants to enter the critical region but has not yet done so, it

compares the timestamp in the incoming message with the one contained in

the message that it has sent everyone. The lowest one wins. If the incoming

message is lower, the receiver sends back an OK message. If its own message

has a lower timestamp, the receiver queues the incoming request and sends

" nothing.

5

After sending out request asking permission to enter a critical region, a process sits

back and waits until everyone else has given permission. As soon as all the permissions

are in, it may enter the critical region. \~Then it exits the critical region, it sends OK

messages to all processes 011 its queue and deletes them all from the queue.

Let us try to understand why the algorithm works. If there is no conflict. it

clearly works. Hm:vever, suppose that two processes try to enter tl-w same critical

region simultaneously. Process 0 sends everyone a request with timestamp 8, while at

the sametime, process 2 sends everyone a request with timestamp 12. Process 1 is not

interested in entering the critical region, so it sends OK to both senders. Processes 0

and 2 both see the conflict and compare timestamps. Process 2 sees that it has lost,

so it grants permission to 0 by sending OK. Process 0 now queues the request from

2 for later· processing and enters the critical region. \iVhen finished, it removes the

request from 2 from its queue and sends an OK message to process 2 allowin)S the

, later to enter its critical region. The algorithm works because in the case of a conflict,

the lowest timestamp wins and everyone agrees on the ordering of the timestamps.

As with the centralized algorithm discussed above, mutual exclusion is guaranteed

without deadlock or starvation. The number of messages required per entry is now

2(N-l), where the total number of processes in the system is N. Best of all, no single

point of failure exists.

Unfortunately, the single point offailure has been replaced by n points offailure. If

any process crashes, it will fail to respond to Tequests. This silence will be interpreted

(incorr~ctly) as denial of permission, thus blocking all subsequent attempts by all

processes to enter all critical regions. Since the probability of one of the N times as

large as a single coordinator failing, we have managed to replace a poor algorithm

with one that is N times worse and requires much more network traffic to boot.

The problem with this algorithm is that either a group communication primitive

must be used, or each process must maintain the group membership)ist itself, including

6

processes entering the group, leaving the group, and crashing. The method works he:st

with small groups of processes never change their group memberships.

Finally, recall that one of the problems with the centralit>;ed algorithm is that

making it handle all requests can lead to a bottleneck. In the distributed a.lgoritnm,

'all' processes are involved in 'all' decisions concerning entry into critical regions. If

one process is unable to handle the load, it is unlikely that forcing everyone to do

exactly the same thing in parallel is going to help much.

1.2.3 A Token Ring Algorithm

A completely different approach to achieving mutual exclusion in a distributed
0

system is discussed in this section. Here we have a bus network, with no inherent

ordering of the processes. In software, a logical ring is constructed in which each pro

cess is assigned a position in a ring. The ring positions may be allocated in numerical

order of network addresses or some other means. It does •not matter \:vhat the ordering

IS. All that matters is that each process knows who is next in line after itself.

When the ring is initialized, process 0 is given a TOKEN. The token circulates

around the ring. It is passed from process K to process K+l (modulo the ring size),

in point-to-point messages. When a process acquires the token from its neighbor, it

checks to see if it is attempting to enter a critical region. If so, the process enters

the regi<;m, does all the work it needs to, and leaves the region. After it has exited, it

passes the token along the ring. It is not permitted to enter a second critical n;gion

using the same token.

If a process is handed the token by its neighbor and is not interested in entering

a critical region, it just passes it along. As a consequence, when no processes want to

enter any critical regions, the token just circulates at high speed around the ring.

The correctness of this algorithm is evident. Only one process has the token at

any instant, so only one process can be in a critical region. Since the token circulates

7

among the processes in a. well-defined order, starvation cannot occur. Once a process

decides it wants to enter a critical region, at worst it will have to wait for evny other

process to enter and leave one critical region.

The problem with this algorithm is, if the token is ever losL it must he regener

ated. In fact, detecting that it is lost is difficult, since the amount of time between

successive appearances of the token on the network is unbounded. The fact that the

token has not been spotted for an hour does not mean that it has been tost; somebody

may still be using it. The algorithm also runs into trouble if a process cr;1shes, but

recovery is easier than in the other cases. If we require a process receiving tlw token

to acknowledge receipt, a dead process will be detected when its neighbor tries to give

it the token and fails. At that point the dead process can be removed from the group, .
and the token holder can throw the token over the head of the dead process to the

next member down the line.

1.3 Fault Tolerance in Distributed Systems

A system is said to fail, when it does not meet its specification. In some cases such

as a distributed air traffic control system, a failure may be catastrophic. As ~omputers

and distributed systems become widely used in safety-critical missions, the need to

prevent failures becomes correspondingly greater. A hardware and/or software fault

may reduce the availability of a system. A fault tolerant system continues to operate

even afte; some hardware/software components have failed and are not available to

the user. The l<ey advantage of distributed systems is that they can be more fault

tolerant than the centralized systems.

In a critical distributed system, often we are interested in making the system be

able to survive component (in particular, processor) faults, rather than just making

these unlikely. System reliability is especially important in a distributed system due

to the large number of components present, hence the greater chance of one of them

being faulty.

8

Use of Redundancy

The general approach to fault tolerance is to use redundancy. Three kinds arc

possible : information rcduudancy, time redundancy, and physical redundancy. \Vit.h

information redundancy, extra bits are added to allow recovery from garbled hits. For

example, a Hamming code can be added to transmitted data to recover from noise on

the transmission line.

\;>;,Tith time redundancy, an action is performed, and then, if w~cd be, it. is per

formed again. If a transaction aborts, it C<lll be redone with no ha.rm. Time redun

dancy is especially helpful when the faults ar~e transient or intermitteut.

\;>;,Tith physical redundancy, extra ·equipment is added to make it possible for the

system as a whole to tolerate the losss or malfunctioning of some components. Foe

example, extra processors can be added to the system so that if a few of them crash,

the system ca.n still function correctly. This type of redundancy is helpful when the

faults are permanent.

There are two ways to realize : active replication and·primary backup. Consider

the case of a server. \Vhen active replication is used,< all the processors are used all

the time as servers (in parallel) in order to hide faults completely. In contrast, the

primary backup scheme just uses one processor as a server, replacing it with a backup
0

if it fails.

Here, we g1ve emphasis to Primary Backup' scheme, as this method has been

incorporated in the developed system for achieving fault tolerance.

1.3.1 Primary Backup Algorithm

The essential idea of the primary-backup method is that at any one instant, one

server is the primary and does all the work. If the primary fails, the backup takes

over. Ideally, the cutover should take place in a clean way and be noticed only by the

9

client operating system, not by the application programs. Few examples in real world

scenario would be : Government (the Vice-President), aviation (co-pilot) etc,.

Primary-backup fault. tolerance has two major advantages over active replica.t.ion.

First, it is simpler during normal operation since messages go to just one server (the

primary) and to a whole group. The problenis associated with ordering these messages

also disappear. Second, in practice it requires fewer machines, because at any instant

one primary and one backup is needed (although when a backup is put into service

as a primary, a new backup is needed i'nstantly). On the downside, recovery from a

primary failure can be complex and time consuming.

As an example of the primary-backup solution, consider the simple protocol,
0

m which, the client sends a message (1. request) to the primary, which does the

work (2. do work) and then sends an update (3. update)message to the backup.

When the backup gets the message, it does the work (4. do work) and then sends an

acknowledgement (5. Ack) back to the primary. When the acknowledgement arrives,

the primary sends the reply (6. reply), to the client.

Now, let us consider the .effect of a primary crash at various moments during a

client request. If the primary crashes before doing the work(2), no harm is done. the

client will time out and retry. If it tries often e11ough, it will eventually get the backup

and the work will be done exactly once. If the primary crashes after doing the work

but before sending the update(3), when the backup takes over and the request comes

in again, the work will be done a second time. If the work has side effects, this could

be a problem. If the primary crashes after step 4 but before step 6, the work may end

up being done three times, once by the primary, once by the backup as result of step

3, and once after th~ backup becomes the primary. If requests carry identifiers, it may

be possible to ensure that the work is done only twice, by getting it done exactly once

!s difficult to impossible.

10

One theoritical and practical problem with the primary-backup approach is when

to 91t over from the primary to the backup. In the protocol above, the hackup could

send 'Are _you alive'!' messages periodically to the primary. If the primary fails to

respond within a certain time, the backup would take over.

1.4 Need for a new approach

It is very evident from the previous sections that the problem of providir~p; mu

tually exclusive access to a critical region (section) in a distributed system is not

trivial. Various algorithms were published to provide solution for Mutual Exclusion

in a distributed system, each of which fall into any one of the class discussed earlier

viz., Centralized, Distributed and Token Ring. But each one has got its own limita- o

tions. In this dissertation, we discuss about implementation of Distributed Semaphore
0

mechanism for providing mutual exclusion in distributed systems, which incorporates

a variation of both Centralized and Distributed mutual exclusion algoritl;ms, with a

provision of Fault Tolerance for any node failure.

11

2. DETAILED PROBLEM ANALYSIS

In this chapter, we define the complete problem statement and review some corre

sponding work abour the solutions of Mutual Exclusion in Distributed systems. Com-

plete problem analysis is given depicting Data Flow Diagram (DFD) for the system

along with the Fullctional specification.

2.1 Problem' Statement

Providinp; solution for Mutual Exclusion in a distributed system is a much involved

task. Conventionally, in a single CPU system, Semaphores are the classic mechanism

of solution fo this problem. The intent of this dissertation is to dew~lop a Distributed

Semaphore mechanism that meets the following criteria. First, it must always maintain

mutual exclusion regardless of any node failure. In addition, the whole system should
•

be distributed as e,venly as possible across all the nodes in the network.

2.2 Related work & Background

There has been a lot of research activity in the area of mutual' exclusion algo

rithms for distributed syste~s. A survey of some existing mutual exclusion algorithms

appears in Table 2.1. The schemes propsed fall into two catagories, Consensus and

Token-Ring algorithms.

In distributed systems the implementation of mechanisms for synchronization has

traditionally taken one of the two approaches : Application-level based and Operat

ing System Kernel-level based. One of the early attempts at realizing a distributed

semaphore mechanism was in LOCUS [5]. It is an OS Kernel-level implementation

and concerns itself with augmenting the LOCUS distributed operating system.

However, the usefulness of such a system is limited, because they were tailor-made

for specific environments. The reality is that most of the popular workstations are

12

Table 2.1. Survey of Mutual Exclusion Algorithms

Algorithm Number of Messages Method of Resolution

Lamport 3(N-1) • Consensus
Ricart-Agrawala 2(N-1) Consensus
Suzuki-Kasami N Token Ring
Carvalho-Roucairol 0 - 2(N-1) Consensus

'
Maekawa O(VN) Consensus
Mishra-Srimani N Token Ring '

N aimi-Trehel O(log N) Token Ring
Helary et al. 0- N-l+d Token Ring
Raymond O(log N) Token Ring

Singhal (N+l) Token Ring -2-

13

being marketed with one of the predominant UNIX sytems (BSD, System V, OSF),

and UNIX will continue to be the preferred operating system by most users. Since

new facilities for distributed systems are also being developed, requiring changes to

the kernel iu order to support a specific facility, becomes a costly a.ud sdf defeating

approach. The alternative i~ to develop these facilities entirely at. t.lw applic!1tion level.

The work published by Shyan-Ming Yuan, et al.[ll], suggests an architecture at the

application level.

Consequently, the design presented here requires no changes to the UNIX ker

nel. It is entirely implemented at the application level. So it gains insight into the

portabilility for all workstations running a version or a derivative of UNIX operating

system which supports BSD Sockets and System V IPC.

Background

Semaphore is a synchronization primitive that prevents two or more processes

from accessing a shared resource simultaneously; our distributed semaphore is also

the same. The processes can synchronize their operations on the differents nodes by

means of the distributed semaphore.

Dijkstra published the Dekkers algorithm that describes implementation of sema

phore, integer valued object that has the following operations defined for it. :.o

o Creation and initialization of a semaphore to a non-negative value.

o A P operation that decreases the value of the semaphore. If the value of the

semaphore is less than 0 after decreasing its value, the process that did the P

goes to sleep.

o A V operation that increases the value of the semaphore. If the value of the

semaphore becomes greater than or equal to 0 as a result, one process that

had been sleeping as tpe result of a P operation wakes up.

14

o Close and remove an existing semaphore.

2.'8 Problem Analysis

In this sectioll. we ana.lyse the problem statement defined above completely to g;ain

an insight over the data fiow in the system and also specify the functional requirements

of the system.

In this system, each of the resources which are to be shared among different

processors (processes) n re given a unique KEY. Whenever a user wants to access the

shared resource, creates <~ Distributed Semaphore with the corresponding KEY to the

resource, and gets an ID inreturn. An important property of any distributed system

is the ability to access an:y' resource in the system transparently. i.e., the user need not

know where exactl:y the resource is existing. Thus the system we are going to present

should also provide a transparent access to the Semaphores. These user requests

arc s~rviced by a SERVER running in each node (Workstation). If a user tries to

create a distributed semaphore with a KEY which has already been created and being

used, then the system defers from creation, and requests the SERVER which created

the semaphore, and gets the ID. \)nee the user wants to enter the critical region, it

DOWNs (P operation) the semaphore using the ID. This request goes to the SERVER

where the distributed semaphore was created. The DOWN operation is carried out as

discussed in the Semaphore operations in the previous section and thus if any other

user is using the resource, which would have DOV/Ned the distributed semaphore,

then this user is blocked until the other releases it by an UP (V operation) operation

on the same distributed semaphore.

Another important feature to be discussed about the system is that, the fault

tolerance it provides. We discussed various methods of achieving fault tolerance in a

distributed system in the introduction. Here we try to provide an overall view of how

we could achieve fault tolerance in case of any node failure in the system:,

15

Every distributed semaphore operation (create, P, V, close) needs to be replicated

m any node other than the node in which it is created & serviced. Thus before

servicing (performing) any user request, the request should propagate to its replication

node. The actual service is carried out by the SERVER only after receiving the

acknowledgement from the replica node. Once any node failure is identified, the

replica node takes care of recovery.

2.3.1 Data Flow Diagram (DFD) of the System

With the information we obtained from the Problem Analysis section, we try to

define the Data Flow Diagram of the system and also the decisiolls made about the

system. Before that, we understand what a DFD is :

A DFD shows the flow of data through a system. Data Flow Diagram also shows

the movement of data through the different transformations or processes in the system.

The processes are shown hy named circles and data flows are represented by named

arrows entering or leaving the circles.

The Data Flow Diagram of Distributed Semaphore mechanism IS depicted m

Figure 2.1. The decisions made regarding the system are :

o Every node involving Distributed Semaphore mechanism runs, the only one

and the same copy of D_SemSer (Distributed Semaphore Server).

o Every process requests are directed to its local D_SemSer, where decision is

taken, which sometimes require consulting other nodes (D_ScmSer running in

those nodes), and serviced accordingly.

o Specific KEYs are assigned to shared resources in the distributed system, so

that any process requires to use a shared resource can create a distributed

semaphore 'with its (resource's) corresponding KEY.

16

User Process

Host
#3

User Process

Request

Service

Req,

'Unk:
Request

Service
Ubrary !of-~---'----\

Figure 2.1 Data Flow Diagram lDFD) of the System

17

Hos
#1

Inter-Host

message

Hm
#:

o K cy_Arbiter, played by any one of the D_SemSer running in any node, makes

sme that no other process creates a distributed semaphore with the same

KEY.

o Evcrv distributed semaphore operation must be replicated before being. ac

knowledged to the user.

o D_SemSers broadcast ALIVE message periodically to every other D_SemSers

such that node failures can be identified.

o Link Library , L_Library , takes care of forwarding all user programs' dis

tributed semaphore calls to the local D_ScmSer . Thus the system allows any

user program to use the distributed semaphore facility as a normal function

ci1ll, providing transparent service.

2.3.2 External Interface Requirements

The system is used by System programmers and Application developers. Thus

the usage of D_SemSer system is made entirely transparent. It enables the users to

use much of these library functions as simply across machine boundaries as within

a single machine. The system provides access facilities that are invoked in the user

program by calling a set of C functions :

A new distributed semaphore with a specified initial value is created by using

int s·emid = dsem_create(key _t key, int init_val);

dsem_crcate() returns a positive value as the semaphore identifier (semid) or -1

when an error occurs. -

If the distributed semaphore already exists, we do not initialize it and return -1.

If the caller knows that the distributed semaphore already exists, then dscm_open()

function should be used.

18

int semid = dsem_open{key_t key);

d.~em_open() returns a positive integer as the semaphore identifier (scmid) or -1

when error occurs. If the distributed sernaphore does not exist, we return -1.

Once a. distributed semaphore is created (or opened), operations a.re performed

on semaphore value using d8em_dowri() and dsem_up() functions.

int dsem_down(int semid, int a~ount);

int dsem_up{int semid, int amount);

The dscm_down() function decreases the distributed seri1aphore value by a user

specified amount. The dsem_np() function increases the distributed semaphore value

by a user-specified amount.

The dscm_closc() function is for a process to call before it exits. when it is done

with the distributed semaphore. If this is the last user of the distributed semaphore,

then we remove the distributed semaphore.

int dsem_close(int semid);

It returns a value to indicate the operation is successful or failed.'

19

3. DESIGN & IMPLEMENTATION ISSUES

The design of a. syst.ern is essentially a blueprint, or a plan for a solntiou for tlw

system. Here we consider a system to be a set of components with dearly defiued

behaviour, which interact. with each other in a. fixed, defined manner, to produce some

behaviour or services to its environment. Implementation Issues essentia.lly dea.ls with

the translation of desgin of the sytem produced during th.e design phase into code

in a given programming language which can be executed by a computer, and which

performs the computation specified by the design. In this Chapter, we talk about

the strategies followed for designing our model of distributed semaphore, followed

with design specifications. In the implementation issues, we provide the D_S(:m.Ser

architecture, development platform, its implementation details and the algorithms.

3.1 Design Strategies

0

3.1.1 Server Design - D_SemSer

Semaphores, which are the best suited for mutual exclusion and ~>ther sychroniza

tion problem, are not incorporated in Distributed operating systems it.eself, because

they invariably rely (imply) on the existence of shared memory. For example, two pre

ocesses that. are to synchronize their activity on sharing a resource using a semaphore,

must both be able to access the semaphore. If they are running on the same machine,

they can share the semaphore by having it stored in the kernel, and execute system

calls to access it, as it is in the case of System V IPC. If, however, they are running

on different machines, this method no longer works.

Our approach. to realize distributed semaphore mechanism is, in an abstract

shared memoi'y on a network. An abstract shared memory simulates a shared physical

memory.

20

In our model, D_5cmSer plays two kinds of roles at the sametime : one JS

the arbiter for some distributed semaphores, i.e., the one which creates distributed

semaphores a.nd coordinates its operations performed on it, on user requests. AnotlH'T

is the agent that is responsible to user for providing the distributed semaphore service.

i.e., the 011e which makes the distributed semaphores created elsewhere~ in the network

to be available to the user.

As from our problem analysis decisions, every node runs the only one and same

copy of code for D_ScmScr, and thus each of them act a.s ngent t.o the processes

(users) in their respective nodes where they are running. The problem here is, how

to select a D_ScrnSer as the arbiter of a distributed semaphore '?. V·l/e choose the

simi?lest and effective way: we let the D_SernSerof the node which first uses (creates)

the distributed semaphore be the arbiter of that distributed semaphore. Therefore,

performance R> optimised because operations on the semaphore will be local operations

for the arbiter.

3.1.2 Need for the K cy_Arbiter

Since we are talking about arbiter, we consider t.he other arbiter involved in

our system, that is K cy_A rbiter. The requirement for this could be best explained

with an example. Consider an user wants to acquire a shared resource, first issues a

create distributed semaphore call (dsem_create) with the KEY corresponding to the

resource. The D._S emS er running in the node creates a semaphore and returns an ID

to the user, which allows user to do other operations like DOWN (dsem_down), before

actually using the resource. Supposing, another user from some other node, with the

same requirement, isssues a create distributed semaphore call (dsem_create) with the

same KEY. The D~SernScr running in that node creates a semaphore and returns an

ID. This totally defeats the idea of our model, to provide mutual exclusion, since both

users can , after getting the ID, do a DO\VN operation (dsem_dmvn), which would be
'->,.

21

serviced locally for them, and they try to acquire the shared resource when any one

of them is already using it.

To avoid such scenarios, every distributed semaphore create call (dscrru:reate)

will be directed to the Key_Arbiter running in any one of the nodes ill the uetwork.

This maintains a table which contain all the distributed semaphores created over

the network at any instant along with the creators Node address. Thus if any user

tries to create a distributed semaphore with a. KEY which has lwen already created

elsewhei:·e in the network, K ey_Arbiter returns an error message. Thus the user can use

distributed semaphore open call (dsem_open) with tl:e same KEY, to synchronize its

activity with the user who created the distributed semaphore elsewhere, as it returns

the ID of that distributed semaphore. Subsequent operations like 'dsern_down' will be

forwarded to the D_SemSer, whose address is maintained in the Key_Arbiter, which

is the arbiter of the distributed semaphore.

There is a problem of how to. select a D_SemSer as the Key_Arbiter ?. The sim

plest solution would be the first node (D_SemSer) which participates in the network,

wiH fork a child, which acts as Key_Arbiter. Since every D_SemSer sends a broadcast

message when the node becomes alive, it is easy for a node to ,identify itself whether

it is the first node to become alive.

3.1.3 Fault Tolerant Features

The necessity for fault tolerance in any distributed sys,tem was discussed in great

detail in chapter 1. Evidently, node failure of the arbiter of some distributed sema

phores will lead to loss of all informations of some distributed semaphore, whcih may

lead to undesirable results in the system.

Typically, in our model, the fault tolerance is enforced through replication. Here,

each distributed semaphore has its own hot-stand by replica at the other site. Usually,

the hot-standby copy of a distributed semaphore is located at the site which is the

22

second site using the distributed semaphore in the distributed system. Therefore, it is

fault tolerant provided that there exits at least one correct copy in the systern _except

that the both sites crash simultaneously.

FirsL we assume that failures are absent. In normal circumst<ll1Ccs. a service

request, from the user is sent to the D_SemSer running in that node. which is the

primary replica of the distributed semaphore. Then after the request is handled by

D_SemSer, the request will propagate to the hot-standby replica of tbc distributed

semaphore. The primary replica will wait for the acknowledgement of its hot-standby

replica after its D_ScmSer has sent out the request. Upon receiving that sip;nal from

its hot-standby replica, the primary replica sends the result to the requesting user.

But from the viewpoint of client, the request is made only once, and only one copy of

the result is received by the client. The request and the acknowledp;ement sent by tbe

client and D_ScmSer are shown in Figure 3.1.

Secondly, the failure may occcur in the pnmary replica. This kind of failure

can occur at two times: before or after the the D_SemSer of primary replica has

propagated the request. If the failure occurs ip. the primary replica before the request

is propagated to the standby, the client will detect that the 'primary replica had failed,

and same request will be sent to the hot-standby replica. Then everything continues

just as if no error has occured, except that the client resends the request and result is

sent directly from the standby to the client.

Now, let us consider the case of failure occuring in the primary replica after the

request is propagated to its standby. If the primary replica fails after the request has

propagated to the standby replica, the standby replica will receive the same request

twice. Since the request carries with it a sequence number, the standby will process

the request only once, and the result is sent directly from the standby to the client,

rather than from the primary replica.

23

Host
#1

L

Host
#2

Backup

L

Primary Storage Site

(Arbiter)

ACK

Hot-Standby
Storage Site

/
Request

Result

Figure 3.1 0 SemSer Replication Operation

24

Client

(User Process)

3.1.4 Failure Recovery

Recovery from the failure is important for a fault tolerant system. Our recovery

mechanism is rather simple when compared with other comph~x schemes. \iVhere the

resposiblilities of the failed primary will be taken over by its hot-standby, and then

we must recreate a new standby replica. to ensure that there are always a.va.ila.blc hot-

standby replica.. The using site is in the client machine that issues the requ<~st. and

receives the result; the storage site is the place where a distributed semaphore is stored

adually.

Dangerous situation could occur if a process does a semaphore operation, presume

ably locking some resouce, and then exits without resetting the semaphore value. Such

situations can occur as the result of receipt of a signal that causes sudder1 termination

of a process or site crash. Hence other processes could find the semaphore locked even

though the process that had locked it no longer exists. To avoid such problems, it is
•

necessary to back out the updates so that changes appear invisible. The mechanism

which is used to implement this is an undo log. Each storage site records an undo log

that indicates how to undo the semaphore if an application updates the semaphore

and is aborted by a signal or site crash. The undo log .entries ar<~ removed when the

semaphore is removed.

3.2 'Design Specification

3.2.1 Structure Chart

Structured design methodology views every software sytem as having some inputs

which are converted into the desired outputs by the software system. The software is

viewed as a transformation function that transforms the given inputs into the desired

outputs, and the central problem of designjng software systems is considered to be

properly designing this transformation function. The goal is to produce a design for

the software system that consists of many modules such that the modules have the least

25

interconnections bebveen them. With such a design, each module can be implemented

and changed with minimal consideration of the other modules of tlw s~'stcm.

In Structured design methodology, the design is represented by structure charts.

The structure of a program is made up of the modules of that pro;sram top;ether with

the interconnections between modules. The structure chart of a proppun is a graphic

representation of its structure. In the structure chart, we rcpr<~sent a module hy a

box. Here, the focus is on representing the hierarchy of modules. The structun' chart

representing the high-level design is shown in Fig11.rc 3.2.

3.2.2 Data definitions

For our model to execute successfully, each node in the network (D _5 emS er) must

maintain certain information locally. In this section, we define the datastructures

which are used represent these informations in detail.

1. MESSAGE
{ .

msg_type
req_type
proc_id
key
semjd
value
Address

--+ Specifies whether internal or external
--+ Specifies 'the type of service required
--+ Process ID of the user' requesting for service
--+ KEY of a distributed semaphore
--+ Corrsponding ID of distributed semaphore
--+ Distributed semaphore value
--+ Node address of the user requesting for service

Dc8cription : The basic entity by which the dataflow within the system
and among the nodes are achieved through message passing. The mes
sage structure is depicted above. Whenever a user makes a distributed
semaphore call, a message structure as defined above is constructed in the
library function and passed to the D_SemSer. Again, for any inter-server
communication, i.e., between D_SemSers, the message format is as above.
Other than m8g_type, all the other fields are meaningfully interpreted ac
cording-to the type of service specified in the req_typc. Different Service
request references are given in Table 3.1.

26

From other

~·

Service
Extern

Service return _____ ,

to the requesting Host.

Main Mndule

0 SemSer

Service
Local

Figure 3.2 Structure Chart for 0 SemSer

27

Perform
Recovery

Service Request
to other Hosts.
Including KEY

· Arbitration request.

Table 3.1. Request Message Reference

Request Message

CREATE
OPEN
DOVvN
UP
CLOSE
REPLY
NACK
ALIVE
ADD_USR
KEY_ARB
KEY ~A..CK
KEY_NACK
KARB_ADD
EXT_MSG

Purpose

Create a distributed serp.aphore
Open an existing distributed semaphore
Down (P) Operation on specified d_8ern

Down (V) Operation on specified d_8em,

Delete requested user entry for the specified rLsern

Message carrying service to other HOSTS
Erronious request or request could not be serviced
Broadcast message for other HOSTS
New user participation to a distributed semaphore
For KEY arbitration
Creation with given KEY agreed
KEY already exists
K ey_A rbiter ·address broadcast message •
Request message from other HOSTS

28

2. SEM_TABLE

{

}

key ~ KEY of a distributed semaphore
senL.id ~ Corresponding ID of distributed semaphore
value ~ Distributed semaphore value
SEI"vLUSERS ~ List containing users of this semaphore
replica_add ~ Node, address of the standby node

De8cription : Every D_SemSers maintain a list of above structme. \\Then
ever a distributed semaphore is created in that node, a new st.nfcture entry
with appropriate field contents is appended to the list. The field repliuLa.dd
stores the address of the node which acts as the hot-standby replica for
that distributed semaphore. SEM_ USERS field contains the list of t1sers
who are using that distributed semaphore. When this list becomes NULL,
for any entry, that entry is removed from the list.

3. EXT _SE:tvLTAB
{

}

key
sem_id
value
owner_add
SE1vLUSERS.

is_replica

~ KEY of a distributed semaphore
~ Corresponding ID of distributed semaphore
~ Distributed semaphore value
~ Node address of the distributed semaphore creator
~, List containing users of this semaphore within

the node
~ Flag to check is it a standby replica for

the Distributed semaphore

0

Description : A list of above structure is maintained in every D_SemSers,
which stores the information about the distributed semaphores created
elsewhere in the network, and used by the processes within the node. \iVhen o

SEM_USERS field becomes NULL, for any entry, that entry is removed
from the list. If the field is_replica is TRUE, for any entry in this list in a
D_SemSer, it would take part in the recovery, if the creator crashes.

4. SEM_USERS
{

}

proc_id
address

~ Process ID of the user process
~ Node address of the user process

29

De8cription : A list of above structure is maintained in every entry of the
SEM_TABLE and EXT _SEM_TAB. A new entry to this list is added 'vhen
ever a new user process issues a dsem_open, pertaining to the corresponding
distributed semaphore entry in SEM_TABLE or EXT _SEM_TAB.

5. HOSTS_TABLE
{

}

address
status

--+ Node address of a workstation
--+ Specifies whether it is ALIVE or DEAD

DeM:ription : A static list of above structure is constructed at the time ·
when every D_SemSers are started from the file HOSTS. Each D_ScmScr
polls every entry in the list (i.e., every other D_ScmSers). The field status
is marked ALIVE if a positive acknowledgement is received.

6. ARB_TABLE
{

}

7. HOSTS

key
owner_add

--+ KEY of a distributed semaphore
--+ Node address of the distributed semaphore creator

DcsCTiption : A list of above structure is maintained)n the K ey_A rbitcr .
An entry is added to the list for every distributed semaphore created any
where over the network. It is deleted whenever that distribute,d semaphore
contains no active users.

--+ File containing Host addresses

Description This file contains all Host addresses in the network, which
is used by the D_SemSer to construct the HOST_TABLE.

8. UNDO_LOG --+ File containing Log entries of semaphore
operations performed by various users.

Description This file maintained by every D_SemSer, enters all the
operations performed on a distributed semaphore. This is helpful in re
covering information due to node crashes. The entries corresponding to
a distributed semaphore are removed when the distributed semaphore is
removed.

30

3.3 Implementation Issues

In this section, we discuss the algorithms used for implementing our model. Here,

we follow the TOP DO"WN approach of starting from the main module to tlw inner

most fra.e;ments. Every algorithm is presented in the pseudo code fashion for better un

derstanding. Vvc have also discussed about the entire architecture of the system along

with the techniques used for providing the programming solution. The development

environment of the sy~tem is also mentioned.

3.3.1 Module Algorithms

.
Followin.e; module algorithms constitute the D_SemSer system.

(a) Module Name =? D_ScmScr

Pttrpo8e =? Receives messages from user proce88 and from other node8 and doe.~
the required service by 'forking' a child. At the initialization, identifies

it.~ elf whether it is the K ey_Arbiter. Invokes P ERFORM_RECO VERY

1:ncase of any node failure.

BEGIN
Initialize datastructures SEM_TABLE and EXT _SEM_TAB.
Initialize Communication channels ..
Construct HOSTS_TABLE using HOSTS file.
Broadcast ALIVE message to all other nodes.
if (first node to participate in the network)
begin

end

Create a child.
make it Key_Arbiter

LOOP FOREVER
if (message received from user)
begin

end

Create a child.
SERVICK.LOCAL

if (message received from othernode)
begin

Create a child.

31

-----+ Only Child executes
-----+ Parent continues here

-----+ Only Child executes
-----+ Parent continues here

SERVICKEXTERN -t Only Child executes
end -t Parent continues here
Poll every node from. the HOSTS_TABLE periodically.
if (node N found DEAD)

PERFORM_RECOVERY
LOOP END

END.

{b) Module Name ::::} Key_A7·biter

Pmpo.H~ ::::} This module gets 'forked' as a. sepera.te pTocr.ss oij any one of thr~

D_SemSer identifies itself u.s the Key_ATbitcr. It a.llow.~ only onr~ di.s
iTibnted semaphore to be created for a given KEY over the nehnork at

BEGIN

END.

any instant. •

Initialize ARB_TABLE.
Broadcast KEY _ARB_ADDRESS to all D_SemSers.
LOOP FOREVER

recei vc_message_from_any _D _S emS er
if (CREATE request)
begin

end

if (Given KEY present i'n the ARB_TABLE)
return ERROR.

else
append new entry in the ARB_TABLE
· with creator's node address.

else if (OPEN request)
begin

end

G~t semaphore ID and creator's node address for the
given KEY from the ARB_TABLE.

Send ADD_USR to the creator along with the new
user process id and Address.

return semaphore ID.

else if (CLOSE request)
begin

end
LOOP, END

remove entry from ARB_TABLE for the given KEY.

32

(c) Module Name::::} PERFORM_RECOVERY

Purpose =:;, Docs necc8MJ,ry recovery steps needed incase of a.ny node fadure de

tected in thr. network.

BEGIN

END.

for (all semaphores in EXT _SEM_ TAB whose owner _add is node
~ and is_replica is TRUE)

begin

end

Create Semaphore with fields of EXT _SEM_TAB entry.
Make entries in SEM_TABLE.
Send request to K ey_A rbiter for change of creator.
Elect any other node as its hot-standby replica. .

for (all semaphore entries in the SEM_TABLE)
he gin

end

if (any user from node N in SEM_USERS list)
begin

Remove the entry from SEM_USERS list.
Undo the operations it had performed from v.ndo_log

end

(d) Module Name ::::} SERVICE_LOCAL

Purpose ::::} Any service request from the users within the node will be taken care

by this module. It also keeps the hot-standby replica of any particular

distributed semaphore be informed i.e., records every operation.

BEGIN
if (CREATE request)
begin

end

send KEY to Key_Arbiter.
if (ERROR returns)

return ERROR.
else

Branch to CREATE_DSEM.

Branch to OPEN_DSEM or DOWN_DSEM or UP_DSEM or CLOSE_DSEM
corresponding to the incoming request.

Send request to the hot-standby replica.
Record performed operations into UNDO_LOG.
return MESSAGE.

33

END.

(e) Module Name::::} SERVICE_EXTERN

P'll.rpo8e ::::} Every reque8t from any other nodes arc serviced in thi8 module. It
returns the result to the reqv.ested node thro7!.gh network commnnica.

tion.

BEGIN
Branch to OPEN_DSEM or DOWN_DSEM or UP _DSEM or CLOSE_DSEM

corresponding to the incoming request.
Construct MESSAGE
Send request to the hot-standby replica.
Establish c·onnection with the requested NODE and send MESSAGE.

END.

(f) Module Name ::::} CREATE_DSEM

Purpo8e ::::} Creates a distributed semaphore with the given KEY, if no otheT tli.~

trib1Lied semaphore with the same KEY has been created elsewhere in
the network.

•BEGIN

END.

Create a semaphore with the given KEY.
Make entry in the SEM_TABLE.
return semaphore ID.

(g) Module Name ::::} OPEN_DSEM

Purpose ::::} Allows any user to participate in a distributed semaphore which has
been alrea.dy created. For user requests within the node, if the node
is not the creator of the distributed semaphore, then request ·will be
forwarded to the creator. It also caters for the 0 PEN requests from
other nodes.'

BEGIN
if (semaphore not in SEM_TABLE for the given KEY)
begin

if (LOCAL request)
begin

Send KEY to the K ey_A rbiter .
if (ERROR returns)

return ERROR.
else

34

END.

end
else

end

begin
Make entry in the EXT _SEM_TAB.
return semaphore ID.

end

else if (GLOBAL request)
return ERROR.

return semaphore ID.

(h) Module Name:::} DOWN_DSEM

Purpose :::} Does DOWN operation on a specified semaphore. For the user re
quests within the node, if the node is not the creator, the reqnc.~t will
be foru)(Lrded to the creator. It also cater§ for the D 0 WN requests

from other nodes.

BEGIN

END.

if (semaphore not in SEM_TABLE for the given sem_ID)
begin

end
else
begin

end

if (LOCAL request)
begin

end

Get node address of the semaphore creator for the
given sem_ID from EXT _SEM_TAB.

Send request to that node.
Get reply.
return value.

else'if (GLOBAL request)
return ERROR.

Perform DOWN operation.
return value.

35

(i) Module Na1rw => UP_DSEM

P.u.T]JOBt: => Does UP opemtion on a specified .semaphoTe.- FoT the 1J.Ber n~qne8iB

within the node, if the node is not the creator, the n:qnr:.st will he
fonJJanled to the creator. It aLso wicTs for the UP reqnests from other

nodes.

BEGIN

END.

if (semaphore not in SEM_TABLE for the given ~em_ID)
begin

end
dse
begin

end

if (LOCAL request)
begin

end

Get node address of the semaphore creator for the
given sem_ID from EXT_SEM_TAB.

Send request to that node.
Get reply.
return value.

else if (GLOBAL request)
return ERROR.

Perform UP operation.
return value.

(j) Module Name => CLOSE...DSEM

Pv.rpose => The CLOSE requests are serviced within this module. The specified

distributed semaphore will be removed from the system, if this Tequest
comes from the only user of it. In other cases, only the user entry 1:s

removed.

BEGIN
if (semaphore not in SEM_TABLE for the given sem_ID)
begin

if (LOCAL request)
begin

Get node address of the semaphore creator for the
given sem_.ID from EXT _SEM_TAB.

Send request to that node.
Get reply.

36

END.

end
else
begin

end

end

Remove user entry from SEM_USER.S in EXT _SE1vLTAB
entry corresponding to the given scm_ID.

else if (GLOBAL request)
return ERROR

Remove user entry from SEM_USERS in SEM_TABLE entry
corresponding to the given sem_ID.

All use~· processes' (programs) requests are forwarded to the local D _S emS er only
through the library module, which should be linked with the user programs. Algorithm
for the Library module is depicted below.

(k) Module Name ::=} L_LIBRARY

P1Lrpo8e ::=} Thi8 module contains the function definitions of the distributed 8Cma

phore calls used in the user programs and shov.ld be used as a. link

library. This acts as the interface between the user programs and the
D_SemSer.

BEGIN
Initialize communication cha.nnnel.
Constru~t MESSAGE structure according to the function call made.
Send to D_SemSer. ---+ Local D_SemSer

receive from D_SemSer.

return necessary result.
END.

3.3.2 D_SemSer Architecture

The architecture of D_SemSeris shown in Figure 3.3. Every user process function

call (distributed semaphore's) will be passed through the L_LIBRARY module, where

a. MESSAGE structure is constructed according to the call made. This MESSAGE has

to be forwarded to the D_SemSer running in that machine. This intrasite communica

tions are based on UNIX System V !PC- MESSAGE QUETJES. The communication

37

between any two D_SemSers and \vith the Key_Arbiter is based on DATAGRAM

PROTOCOL (UDP /IP) SOCKETS. An utility d_sem, like ipc.s -.~in U:'\IX System V,

is provided for the user to view the network wide distributed semaphores, i.e., which

lists all the distributed semaphores over the network at that instant, with its KEY,

ID and ADDRESS of the creator.

3.3.3 Development Envrionment

Vve have implemented an initial version of the D_SemSer, running on a cluster of

DEC ALPHA ·workstations connected by a lOMbps Ethernet. The details regarding

the development environment are ,

Hardware

Operating System

Programming Tool

Networking Protocol

Other utilities

DEC ALPHA \iVorkstations.

OSF/1.

C.

UDP /IP .

UNIX System V IPC - Message Queues.

38

I

1
#1

NETWORK __1-.
---j

/'-

'

D_SemSer

I
I

MESSAGE QUEUE ,

CUENT PROCESSES

Figure 3.3 0 SemSer Architecture.

39

UDP
SOCKET

I
#n

4. MUTUAL EXCLUSION USING D_SemSer

The design of a mutual exclusion algorithm consists of defining the protocols to

synchronize entry into the critical section. Here, in this chapter we describe, how

the model discussed in earlier chapters, is helpful in achieving mutual exclusion in

distributed systems.

The following algorithm gives code to be executed for entry into the critical sec

tion, exit from the critical section. Before giving the algorithm, we assume the follow-

irig, for our example :

o The shared resource is associated with a unique KEY

o It is a single resource

4.1 Algorithm

begin

end.

id = dsem_create(KEY, 1);
if (ERROR returns)
{ '

id = dsem_open(KEY);
}
repeat

Execute Non-Critical Section.
dsem_down(id, 1);
Execute Critical Section.
dsem_up(id, 1);

until done
dsem_closc(id);

40

i.e., already created

Enter Critical Section

Exit Critical Section

4.2 Description

Consider userl executing; in nodel (workstation 1) and user2 executing in node2

(workstation 2), both want to synchronize their activity over acquiring a shared re

source which is associated with a unique KEY. Thus both users execute the above

algorithm.

Initially, both users (through D_SemSer) try to create a distributed semaphore

with the KEY. The Key_Arbiter allows"any one of the user to create the semaphore

(Module Key_Arbitr.r algorithm), and thus th(' D_ScmScr which creates it becomes the

'arbiter' of that distributed semaphore (Refer Rigurc 4.1 a). The other user simply gets

the ID of the distributed semaphore. For our convenience, say userl is the creator.

Now, because of unequal non-critical section code, say user2 issues the dsem_down

call first. This call directed to the creator (D_SemSerl), downs the semaphore, finds

the value equal to 0 and returns to user2. Now user2 can execute critical section.

Subsequently, now userl is~ues dsem_down() call, for it to enter the critical section.

Now since it the creator, the request is a local request for D_SemSer1 and it downs

the semaphore, finds the value less than 0 and BLOCKS, i.e., userl is waiting on

dsem_down() call. (Refer Figure 4.1b).

Wh~never, in user2, the critical section code is over, it issues a dsem_up() call,

whic~ is directed to D_SemSerl through D_SemSer2, increments the distributed sema

phore's value by 1, finds value equal to 0, UNBLOCKS for userl (i.e., makes a return

to the call dsem_down() made by userl) and returnS, to user2. Now userl is executing

its critical section code, and user2 is in its non-critical section code.

Thus this alogrithm allows, at any instant of time, only one user to be m its

critical section.

Now, we consider how our model behaves in case of Faults i.e., node crashes.

Suppose, we assume that the system is as in Figure 4.1 b, and suddenly node2 crashes.

41

Forwarding
to KEY arbitration

node1

blocks as d_sem
value is less than 0

Key_ Arbiter

0 Sen1Ser/requestreaches
fi7st & gets ACK for creating
the semaphore.

Forwarding
to KEY arbitration

Create Req
with KEY

ERROR

, I node2

·figure -4.1 (a)

for user1 request. forward to arbiter ,---------, ,--------~

0 Sen1Ser.?

result

down request result down request

blocking on

dsem down() call

42
Figure 4.1 (bl

Here, userl is waiting for user2 to release the resource and user2 is nolonger using the

resource, moreover is nolon~er available. Now, our Fault tolerant featureincorporated

in our D_SemSer comes handy in this situation. In our model, each D_SemSer polls

every node periodically, thus D_ScmSerl in nodel polls and finds out that node2 is

nolon~er 'alive'. Hence, it initiates the PERFORM_RECOVERY module. This works

as follows :

First it checks, whether it is hot-standby replica for any distributed semaphore

and since no other semaphores are there in the system other than the one that is'

created here in nodel, this part does nothing.

Next thing it does is that, checks any distributed semaphore has users from the

failed node (node2), and finds that user2 is there for the distributed semaphore we are

talking about. D_SemSer 1 removes the user2 entry from its SEM_TABLE's user list

and undoes whatever operations user2 has done on the semaphore, which are stored

in the UNDCLLOG file. This makes the value of the distributed semaphore to be 0

and thus userl is released from its BLOCKING state as D_SemSerl sends a message

to userl to UNBLOCK from its dsem_down() call. Hence, userl enters its cri>tical

sect.ion. Thus, the algorithm works fine even in the case of any node failure and hence

it is Fault Tolerant.

Thus, here also , the model makes sure that at most only one user enters its

critical section, even in the case of the node failures, at any point of time. That too,

, all this fault tolerant recovery algorithm is executed transparently to the user that,

any distributed semaphore user hardly notices that there was a node failure, except

those who were using the failed node.

43

4.3 Analysis

A brief discussion over the performance of the above algorithm is given here. Tlw

number rnessages required for a process to enter and exit a critical region contribute

mainly to the analysis.

Every process willing to enter the critical section, first issues a dsem_create() call.

In case if distributed semaphore already exists, the process needs to issue dsem_opcn()

call.

Before entering the critical secti~n, the process issues a dsem_down() call, and

while exiting issues dsem_up() call. The process disengages its participation with the

distributed semaphore with a dsem_close() call.

Thus for any process, under the proposed model, the number of messages per

entry /exit to a critical section is 4 (incase if it is the creator, then the number messages

become 3).

44

5. CONCLUSION

A fault tolerant distributed semaphore mechanism for mutual exclusion in dis

tributed system has been presented. The main advantages claimed for the new archi

tecture are the reduction of the network traffic overhead due to fault tolerance and

the relative simplicity of the strategy. The fault tolerant distributed control stratcp;y

described in this dissertation is user_ful in realizing fault-tolerant global cm1trol of re

sources in distributed computing systems. The mechanism discussed here has· I H-!en

implemented without any Operating System Kernel modification (i.e.) at the applica

tion layer)) so that it can be ported to any system which supports UNIX.System V

IPC and BSD Sockets. User Interface has been provided as set of C library function

calls, which resembles any standard System call in UNIX.

The mechanism described has been implemented on OSF /1 platform, and is suc

cessfully runninp; on a cluster of DEC Alpha Workstations connected by a 10 Mbps

Ethernet.

Futm'e works include improving the protection access, management of replicas,

examining the performance of a number of typical asynchronous concurrent programs

using D_ScmSer.

45

BIBLIOGRAPHY

1. Bach, M .J. : The Design of the UNIX Operating System, Englewood diffs, N . .J

Prentice Hall, 1986.

2. Brown, C. : UNIX Distributed Programming, Prentice Hall International (UK),

1994

3. Comer, D.E. : Internetworking with TCP /IP vol I : Principles, Protocols and Ar

chitecture, 2nd ed, Englewood cliffs, N.J : Prentice Hall, 1991.

4. Comer, D.E. : Internetworking with TCP /IP vol III : Client Server Programming

and Application, Englewood cliffs, N .J : Prentice Hall, 1993.

5. Fleisch, B.D. : "Di8iribv.ted System V !PC in Locus: A Design a.nd Implementation

Retrospective,'' Proc. SIGCOMM' 86 Symp. on Communications Architectures and

Protocols, ACM, pp. 386-396, 1986.

6. Jalote, P. : An Integrated Approach to Software Engineering, Narosa, 1991.

7. Stevens, R.W. : Advanced Programming in the UNIX Environment, Addision

Wesley, 1992.

8. Stevens, R.W. : UNIX Network Programming, Englewood cliffs, N.J: Prentice Hall,

1990.

9. Tanenbaum, A.S. : Distributed Operating Systems, Er'lglewood cliffs, N. J :Prentice

Hall, 1995.

10. Wong, J ., Thambu, P., Stoen, R. : "A fault tolerant Algorithm for Mutual ex

clusion in a distributed system," Journal of Systems Software, vol. 29, pp. 121-134,

1995.

11. Yuan, S.M., Wu, C.J., Lien, H.M., Chen, I.N. : "Design and Implementation

of a. Distribv.ted Semaphore facility," Proc. 12th Conf. on Distributed Computing

Systems, IEEE, pp. 180-184, Apri11992.

46

	TH56150001
	TH56150002
	TH56150003
	TH56150004
	TH56150005
	TH56150006
	TH56150007
	TH56150008
	TH56150009
	TH56150010
	TH56150011
	TH56150012
	TH56150013
	TH56150014
	TH56150015
	TH56150016
	TH56150017
	TH56150018
	TH56150019
	TH56150020
	TH56150021
	TH56150022
	TH56150023
	TH56150024
	TH56150025
	TH56150026
	TH56150027
	TH56150028
	TH56150029
	TH56150030
	TH56150031
	TH56150032
	TH56150033
	TH56150034
	TH56150035
	TH56150036
	TH56150037
	TH56150038
	TH56150039
	TH56150040
	TH56150041
	TH56150042
	TH56150043
	TH56150044
	TH56150045
	TH56150046
	TH56150047
	TH56150048
	TH56150049
	TH56150050
	TH56150051
	TH56150052

