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1 
INTRODUCTION 

From a technical viewpoint, distributed database technology is the marriage 

of computer communication networking with database technology. From a 

userviewpoint, it is an application of computer communication networking and 

provides an efficient means ofshowing databases. Today there is a need for the 

construction of distributed databases for the geographically separated user 

community. Before going in depth of distributed databases, we will discuss the 

centralized databases and the distributed databases in comparison of each other. 

1.1. Why Go For Distributed Database 

The basic premise behind a distributed database system is to make a data 

store spread over a collection of machines in a wide or local area network appear to 

the user as if it existed on a single machine. 

As companies are fundamentally distributed, these have many offices in 

many places, there is every incentive for each location to have its own computer. If 

for no other reason, the cost of communication is prohibitive. One simply does not 

want to have a terminal in Hong Kong that accesses a computer in New York; one 

will quickly have a gigantic communications bill. 'All companies having computer 

systems, typically spread around the world, and there are databases on each of 

these machines, and most organizations must run applications that access data in 

multiple databases on multiple computer systems. A simple example of such 

geographically distributed data is the INGRES division of ASK. They maintain a 

customer database for the USA customers at their headquarter in California. In 

addition the British customers are on the machine in Frankfurt, the French customers 

are on the machine in London, the Greman customers are on the machine in 

Frankfurt, the French customers are on the machine in Paris, and so on. In general. 

there is high locality of reference to the customer database; hence, the French 
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customers are usually accessed by the French INGRES personnel. However, there 

are also across database accesses. For example, sometimes a salesman wants to 

know all the INGRES customer in the world that are part of some multinational 

corporation. This requires access to individual customer databases at all INGRES 

locations. Obviously, a distributed databases that provides so called location 

transparency will expedite such multidatabase queries. 

However, geographical distribution is not the only reason to have distributed' 

database system. It is obvious that dumb terminals will be replaced on most people 

desks by workstations. Moreover, most workstations have local disks to achieve the 

factor of these in performance that can be obtained. Moreover, a DBMS will run on 

each workstation and manage local databases. Such databases will at least contain 

personal data such as telephone directories, appointment calenders etc. In such an 

environment one would clearly like to run a program that would schedule a meeting 

by intersecting the available times for all the participants. Obviously, this is a 

' 
disributed database application. Hence the imminent presence of large no. of 

workstations with disks will create the need for a distributed database system. 

1.2. Feature of Distributed Verses Centralized Databases 

Here it is required to look at the typical features of centralized databases and 

to compare them with the corresponding features of distributed databases. The 

features which characterize the centralized database approach are centralized 

control, data independance, reduction of redundancy, complex physical structure for 

efficient access, integrity, recovery, concurrent control, privacy and security. 

Centralized Control In centralized databases, the centralized control over 

information resources is considered as one of the strongest feature. The fundamental 

function of a DBA is to guarantee the safety of data which requires a centralized 

responsibility. 
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In distributed databases the idea of centralized control is much less 

emphasized and also depends upon the various architecture and transparency. In 

general, in distributed databases it is possible to identify a hierarchical control 

structure based on a global database administrator, who has the control responsibility 

of the whole database and on · local database administrators who have the 

responsibility of their respective local .databases. However, it must be emphasized 

that local database administrator may have a high degree of autonomy upto the point 

that a global database administrator is cgmpletely missing and the intersite 

coordination is performed by the local administrative themselves. This charcteristic is 
' 

usually called Site Autonomy. 

Data lndependance In Distributed databases, data independance has the same 

importance as in centralized databases, however, a new aspect is added to the usual 

notion of data independance, namely distribution transparancy. By distribution 

tranparency we mean that program can be unaffected by the movement of data 

from one site to another, however, their speed of execution is affected. 

Data independance is provided in centralized databases through a multilevel 

architecture having different descriptions of data and mappings between them. The 

notion of conceptual schema, storage schema , and external schemas were 

developed for this purpose. In the same way distribution transparency is obtained in 

distributed databases by introducing new levels and schemata. 

Reduction of Redundancy In centeralized databases, redundancy was reduced 

as far as possible so that inconsistencies among several copies of the same logical 

data are automatically avoided by having only one copy and also storage space is 

saved. 

In Distributed databases, however there are several reasons for considering 

data redundancy: 
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i) locality of applications can be increased if the data is replicated at all sites 

where applications need it. 

ii) availability of the system can be increased because a site failure does not 

stop the execution of applications at other sites if the data is replicated. 

The convenience of data replication increases because if we have several 

copies of an item, retrieval can be performed on any copy, while updates 

must be performed consistentely on all copies. 

Complex Physical Structures and Efficient Access Complex accessing 

structures like secondary indexes interfile chains are a major aspect of centralized 

databases. The reason is to obtain efficient access to the data. 

In distributed databases, complex accessing structures are not the right tool 

for efficient access. Therefore, while efficient access is a main problem in distributed 

databases, physical structures are not a relevant technological issue. Efficient access 

to a distributed databases cannot be provided by using intersite ph'ysical structures, 

because it is very difficult to build and maintain such structures. 

Integrity, Recovery and Concurrency Control Integrity and recovery are· major 

aspects which are particularly important in distributed databases because some of 

the sites involved in transaction execution might fail. Concurrency control deals with 

ensuring transaction atomicity in the presence of concurrent execution of 

transactions. This problem can be seen as a typical synchronisation problem. In 

distributed· databases, the synchronisation problem is harder than in centralized 

system. 

Privacy and Security In centralized databases, the DBA, having centralized 

control can ensure that only authorized access to the data is performed. In distributed 

databases, local administrators are faced essentially with the same problem as DBA 

in centralized. However two peculiar aspects of distributed databases are:-
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(i) in a distributed database with a very high degree of autonomy the owners 

of local data feel more protected because they can enforce their own 

protections instead of depending on a central DBA. 

(ii) security problems are intrinsic to distributed systems in general because 

communication networks can represent a weak point w.r.t. protection. 

Thus we have seen that distributed database technology extends that 

centralized database technology in a nontrivial way, and in brief advantages of a 

distributed database over a centralized one are increased availability decreased 

access time, easy expansion and possible integration of existing databases. The 

acceptance and widespread usage of distributed databases will highly depend on 

their efficiency. Therefore it is important to supply a database management system 

with tools to efficiently process queries and to determine allocation of the data such 

that the availability is increased, the access time is decreased and/or the overall 

usage of resources is minimized. 
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2 
DESIGN METHODOLOGY IN DISTRIBUTING THE DATA 

IN DISTRIBUTED DATABASES 

2.1. Introduction 

Design methodology in distributed data includes the allocation of data and 

operations to nodes in a computer communications network together with the 

transparency of the database is a critical issue in distributed database design. An 

efficient design must trade off performance and cost among retrieval and update 

activities at the various nodes. It must consider the concurrency control mechanism 

used as well as capacity constraints at nodes and on l!nks in the network. it must 

determine where data will be allocated, the degree of data replication, which copy of 

the data will be used for each retrieval activity and where operations such as 

SELECT, PROJECT, JOIN and UNION will be performed. 

In general, satisfying a user request in a distributed database involves five 

major steps: · 

i) Accessing the network directory to determine where the needed data is 

located. 

ii) Determining an access strategy that specifies which copy of the data to 

access (and when), where the data will be processed, and how it will be 

routed. 

iii) Sending request messages to the appropriate nodes( for update requests 

this may involves waiting for locks to be established and response 

messages to be sent back). 

iv) Accessing and processing data at each of these nodes, and 

v) Routing the response to the requesting node for final processing. 

If (a copy of) all the data required by a retrieval request is located at the 

requesting node, then only local accessing and processing are needed. However, if 
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some needed data is not located at the requesting node, then data must be accessed 

from, and possibly processed at other nodes. 

Key distributed design issues include data and operation allocation. Data 

allocation defines what data is stored at what nodes (including possible redundancy). 

Operation allocation defines where accessing and processing operations will be 

performed. 

2.2. Component of a Distributed Database Design 

Design of distributed database systems is extremely complex. There are four 

major aspects which must be considered 

1.the communication network (e.g. location of nodes, allocation of computer 

resources, network topology and selection of link capacities) 

2.data allocation (e.g. determine units of data to allocate i.e. file 

fragmentation and allocating copies of those units to nodes) 

3.operating strategies related to query optimization and concurrency control 

(e.g. determine which copy or copies of data to access, where to process 

the data, how to route the data, locking and commit protocols) 

0 

4.1ocal database design (record structures, record placement algorithms, 

secondary indexes, processing algorithms): 

2.3. Objectives of the Design of Data Distribution 

In the design of data distribution the following objectives should be taken into 

consideration: 

Processing locality : Distributing data to maximize processing locality 

c9rresponds to the simple principle of placing data as close as possible to the 

applications which use them. The simplest way of characterizing processing locality 

is to consider two types of references to data: "local" references and "remote" 

references. Clearly, once the sites of origin of applications are known. locality and 

remoteness of references depend only on the data distribution. 
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Designing data disribution for maximizing processing locality can be done by 

adding the no. of local and remote references corresponding to each candidate 

fragmentation and fragment allocation and selecting the best solution among them. 

An extension to this simple optimization criterion is to take into account when 

an application has complete locality, which can be completely executed at their sites 

of origin. The advantage of complete locality is not only the reduction of remote 

accesses. but also the increased simplicity in controlling the execution of the 

application. 

Availability and Reliability of Distributed Data : A high degree of availability 

< 

for read-only application is achieved by storing multiple copies of the same 

information; the system must be able to switch to an alternative copy when the one 

that should be accessed under normal conditions is not available. 

Reliability is also achieved by storing multiple copies of the same 

information, since· it is possible to recover from crashes or from the physical 

destruction of one of the copies by using the other, still available copies. Since 

physical destruction can be caused by , events which have nothing to do with 

computer crashes, it is relevant to store replicated copies in geographically dispersed 

locations. 

Workload distribution : Distributing the workload over the sites is an 

important feature of distributed computer systems. Workload distribution is done in 

order to take advantage of the different powers or utilization of computers at each 

site and to maximize the degree of parallelism of execution of applications. Since 

workload locality, it is necessary to consider the trade-off between them in the design 

of data distribution. 

Storage costs and availability : Database distribution should refelect the cost 

and availability of storage at different sites. It is possible to have specialized sites in 

the network for data storage, or conversely to have sites which do not support mass 

storage at all. Typically the cost of data of data storage is not relevant if compared 
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with CPU, 1/0 and tranmission costs of appliactions, but the limitation of available 

storage at each site must be consisdered. 

2.4. Distributed Data Design Methodology 

The distributed data design methodology given in Fig. 1, takes into 

consideration data distribution requirements. The methodology produces a global 

conceptual schema and local logical and physical schemata for each network site. A 

new data distribution design step in the methodology takes in the global concetual . 
schema and the distribution requirements of the system. This step performs two 

principal activities. First, a data allocation design for the distributed system is 
. i ... 

developed. Then, based on the data allocation, the global conceptual schema is 

divided into local concep[tual schemata for each of the processing sites in the 

system. This step in the methodology passes the local conceptual schemata to each 

site where the logical and physical data design steps are performed. 

Four significant design decisions compose the data allocation design for 

distributed systems: ' 

1. Data Partitioning. Partitioning (or, fragmentation) is the process of 

determining divisions of data to be used as allocation units on the network. A given 

data entity can be divided either vertically or horizontally. Vertical partitions divide 

an entity by grouping attributes into defined subsets. Each partition must contain a 

key attribute that identifies the unique entity occurance associated with each record. 

This is needed in order to rebuild a complete entity across all vertical partitions. 

Horizontal partitions divide an entity by grouping records based on some 

. qualification on attribute values. The original entity can be regained by unioning the 

records from all horizontal partitions. 

2. Data Placement. Placement determines at which site in the distributed 

system each data partition is placed for best benefit. 

3. Data Replication. Replication determines how many copies of each data 

partition are placed on the system at different sites. The resulting data redundancy 
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provides some of the major benefits of distributed systems in data availability and 

reliability. However, the costs of data replication are significant. Decisions on data 

placement and replication are closely related and the decision processes for 

placement and replication are highly interactive. 

4. Dynamic Data Allocation. Initial distributed data designs may turn out to 

be unsatisfactory when the system is in operation, either because of poor design 

decisions or changes in system requirements. A strategy of monitoring system 

performance and altering the distributed data allocation is an important component of 

a total system data design. White for some systems the answer may be to stop the 

system and perform a complete reallocation of the distributed data, many systems 

will require some ability to dynamically perform data partitioning, data placement and 

data replication. A decision process for invoking these dynamic operations is needed. 

2.5. Data Fragmentation 

The first step of a distributed data allocation is determining th~ most 

effective partitions of data to be units of distribution., We term this the data 

fragmentation problem. Previously, designers have simply taken the data file to be 

the unit of allocation. However, several performance advantages can l:)e gained by 

partitioning data files into smaller units for allocation. Vertical fragmentation or 

partitioning group attributes that have a high probability of being accessed together, 

but at the same time keeping the partitions group records of an entity that satisfy a 

given condition on attribute values. For example, a large personnel file can be 

partitioned based upon the department in which an employee works. Each horizontal 

fragmentation or partition can then be distributed to the site of that department. 

The shared database should be fragmented so that the system throughput is 

maximal. The fragmenting of the database are executed efficiently, while the 

capacity constraints of all the processors and limits of the commmunication network 

is observed. A poor partitioning of the database can lead to higher processing costs 
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in the nodes or to grater demands on the communication network, so that the system 

may not be able to handle the required set of transactions. 

The database resides on multiple processors which are connected using a 

dense and reliable communication network. The contents of the database are 

assigned to the processor nodes. Associated with very transaction is an initial 

network node. Since the user is not connected to any prespecified node, the initial 

network node is to be assigned as part of the design. 

The capacity limit of each of the processors may be given i~ terms of 

processor cycle capacity and 10-block move capacity per unit time. The capacity 

limit of the network is given in terms of of aggregate block transfttr capacity per unit 

time. The demands of the transactions are then given using the same measures. 

As we know the database is a collection of relations. The given conceptual 

relation may be too large to be effectively assigned to single processors. We initially 

consider how the relation can be fragmented, and then allocate those fragments to 

the processor nodes. In the qesigned database, each transaction accesses some 

subset of the tuples and the attributes of each original relation. In order to complete 

transactions that do not find all their data on the same processor, a scheduling 

algorithm can be invoked' which can optimize the processing over the network. 

There are, however, some rules which must be followed when defining 

fragments: · 

Completeness condition : All the data of the global relation must be mapped 

into the fragments; i.e., it must not happen that a data item which belongs to a global 

relation does not belong to any fragment. 

Reconstruction condition : It must always be possible to reconstruct each 

global relation from its fragments. The necessity of this condition is obvious: in fact, 

only fragments are stored in the distributed database, global relation have to be built 

through this reconstruction operation, if necessary. 
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Disjointness condition This condition is useful mainly with horizontal 

fragmentation, while for vertical fragmentation we should sometimes allow this 

condition to be violated. 

We can now discuss the fragmentation rules. 

Horizontal Fragmentation Horizontal fragmentation consists of partitioning the 

tuples of global relation into subsets; this clearly useful in distributed databases, 

where each subset can c~ntain data which have common geographical properties. It 

can be defined be expressing each fragment as a selection operation on the global 

relation. For exar"!lple, let a global relation be 

SUPPLIER(SNUM, NAME, CITY) 

Then the horizontal fragmentations can be defined in the following way: 

SUPPLIER1 = SLciTY = "SF"SUPPLIER 

SUPPLIER2 = SLciTY = "LA"SUPPLIER 

The above fragmentation satisfies the completeness condition if "SF" and "LA" are 

the only possible values of the CITY attribute; otherwise we would not know to which 

fragment the tuples with other CITY values belong. 

Vertical Fragmentation The vertical fragmentation of a global relation is the 

subdivision of its attribute into groups; fragments are obtained by projecting the 

global relation over each group. This can be useful in distributed databases where 

each group of attributes can contain data- which have common geographical 

properties. The fragmentation is correct if each attf)bute is mapped into at least 

one attribute of the fragments; moreover, it must be possible to reconstruct the 

original relation by joining the fragments together. Consider, for example, a glo~al 

relation. 

EMP(EMPNUM, NAME, SAL, TAX, MGRNUM, DEPTNUM) 

A vertical fragmentation of this relation can be defined as 

EMP1 = PJEMPNUM NAME MGRNUM DEPTNUM EMP 
' ' ' 
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EMP2 = PJEMPNUM, SAL, TAX EMP 

This fragmentation could reflect an organization in which salaries and taxes are 

managed separatively. The reconstruction of relation EMP can be obtained as 

EMP = EMP1 JNEMPNUM = EMPNUM EMP2 

because EMPNUM is a key of EMP. 



3 
FUNCTIONS OF DISTRIBUTED DBMS WITH RESPECT TO 

TRANSPARENCIES 

The basic premise behind a distributed database system is to make a data 

store spread over a collection of machines in a wide or local area network appear to 

the user as if it existed on a single machine. 

As companies are fundamentally distributed and these have many offices in 

many places, and there is every incentive for each location to have its own 

computer. If for no other reason, the cost of communication is prohibitive. One 

simply does not want to have a terminal in Hong Kong that accesses a cqmputer in 

New York; one will quickly have a gigantic communications bill. All companies 

having computer systems, typically spread around the world, and there are 

databases on each of these machines, and most organizations must run applications 

that access data in multiple databases on multiple computer systems. A simple 

example of such geographically distributed data is the INGRES division of ASK. 

They maintain a customer database tor the USA customers at their headqurter in 

California. In addition the British customers are on the machine in Frankfurt, the 

French customers are on the machine in London, the German customers are on the 

machine in Frankfurt, the French customers are on the machine in Paris, and so on. 

In general. there is high locality of reference to the customer database; hence, the 

French customers are usually accessed by the French INGRES personnel. However, 

there are also across database accesses. For example, sometimes a salesman 

wants to know all the INGRES customer in the world that are part of some 

multinational corporation. This requires access to individual customer databases at 

all INGRES locations. Obviously, a distributed databases that provides so called 

location transparency witt expedite such multidatabase queries. 
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However, geographically distribution is not the only reason to have 

distributed database system. It is obvious that dumb terminals will be replaced on 

most people desks by workstations. Moreover, most workstations have local disks to 

achieve the factor of these in performance that can be obtained. Morever, a DBMS 

will run on each workstation and manage local databases. Such databases will at 

least contain personal data such as telephone ,directories, appointment calenders etc. 

In such an environment one would clearly like to run a program that would schedule 

a meeting by intersecting the available times for all the participants. Obviously, this 

is a disributed database application. Hence the imminent presence of large no. of 

workstations with disks will create the need for a distributed database syste-m. 

Now we will discuss the different levels at which an application programmer 

views the distributed database, depending on how much distribution transparency is 

provided by the distributed database management system. Distribution transparency 

is nothing but the independence of the application program from the distribution of 

data and h.as been considered to be conceptually equivalent to data independence in 

centralized databases. 

There are several levels of distribution transparency. For studying these 

' 
levels, we considered a layerd reference architecture for a distributed database. This 

architecture will allow us to determine easily different levels of distribution 

transparencies. The levels are conceptually relevant in order to understand 

distributed databases. 

3.1. Reference Achitecture for Distributed Databases 

Fig. 2 shows a reference architecture for a distributed database. This 

reference architecture is not explicitly implemented in all distributed databases; 

however, its levels are conceptually relevant in order to understand the organization 

of any distributed databases. 

At the top of the level is the global schema. The global schema defines all 

the data which are contained in the distributed database as if the database were not 
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distributed at all. For this reason, the global schema can be defined exacly in the 

same way as in a non distributed database. However, the data model which is used 

for the definition of a global schema should be Gonvenient for the definiton of the 

mapping to the other levels of the distributed database. Using this model, the global 

schema consists of the definition of a set of global relations. 

Each global relation can be split into several nonoverlapping portions which 

are called fragments. There are several differnt ways in which to perform the 

splitting operations. The mapping between global relations and fragments is defined . 
in the fragmentation schema. This mapping is one to many; i.e., several fragments 

correspond to one global relation, but only one global relation corresponds to one 
~ - - -

fragment. 

Fragments are logical portions of global relations which are physically 

located at one or several sites of the network. The allocation schema defines at 

which site(s) a fragment is located. The type of mapping defined in the allocation 

schema determines whether the distributed database is redundant or nonredundant: 

in the former case' the mapping is one to many, while in the latter case the mapping 

is one to one. All the fragments which correspond to the same global relation R and 

are located at the same site j constitute the physical image of global relation R at site 

j. There is therefore a one to one mapping between a physical image and a pair 

<global relation, site>; physical images can be indicated by a global relation name 

and a site index. 

An example of the relationship between the object types is given in Fig. 3. A 

global relation R is split into four fragments R1, R2, R3 and R4. These four fragments 

are allocated redundantly at the three sites of a computer network, thus buiJ51ing 

three physical images R1, R2 and R3. (Ri indicates the ith fragment of global relation 

R, and Ri indicates the physical image of the global relation Rat site J). 

Here we note that two physical images can be identical, which is a physical 

image of another physical image. 
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In the architecture the three levels are site independent; so they do not 

depend on the data model of the local DBMSs. At a lower level, it is necessary to 

map the physical images to the objects which are manipulated by the local DBMSs. 

This mapping is called a local mapping schema and depends on the type of local 

DBMS; therefore in a heterogenous system we have diffemt types of local mapping 

at different sites. 

This architecture provides a very general conceptual framework for 

understanding distributed databases. The three most important obectives which 

motivate the features of this architecture are the seperation of data fragmentation 

and allocation, the control of redundancy, and the independance from local DBMSs. 

1. Separating the concept of data fragmentation from the concept of data 

allocation. This seperation allows us to distinguish two different levels of distribution 

transparency, namely fragmentation transparency and location transparency. 

Fragmentation transparency is the highest degree of transparency and consists of 

' 
the fact that the user or application programmer works on global relations .. Location 

transparency is a lower degree of transparency and requires the user or application 

programmer to work on fragments instead of global relations; however, they do not 

know where the fragments are located. The seperation between the concept of 

fragmentation and allocation is very convenient in distributed database design, 

because the determination of relevant portions of the data is thus distinguished from 

the problem of optimal allocation. 

2. Explicit control of redundancy. The reference architecture provides 

explicit control of redundancy at the fragment level. For example Fig. 3 shows two 

physical images R2 and R3 are overlapping; i.e., they contain common data. 

3. Independence from local DBMSs. This feature, called local mapping 

transparency, allows us to study several problems of distributed database 

management without having to take into account the specific data models of local 

DBMSs. 
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Another type of transparency which is stricly related to location 

transparency is replication transparency. Replication transparency means that the 

user is unaware of the replication. of fragments. Clearly, replication transparency is 

implied by location transparency; however, in certain cases it is possible that the user 

has no location transparency but has replication transparency (thus, only one 

particular copy is used and the system makes appropriate actions on the other 

copies). 

3.2. Functions .of DDBMS 

Now we will define the desired functions of a distributed DBMS by a 

collection of transparencies: 

1 . Location Transparency. 

' 
A major objective of distributed database system is to provide ease of 

access to data for users at many different locations. To meet this objective, the 

distributed database system must provide what is called location transparency. 

Location transparency means that a user requesting data.need not know at which site 

these data are located. Any request to retrieve or update data at a nonlocal site is 

automatically forwarded by the system to that site. So, idealy the user is unaware of 

the distribution of data and all data in the network appears as a single logical 

database. Thus it means that a user can submit a quary that accesses distributed 

objects without having to know where the objects are. 

2. Performance Transparency. 

Performance transparency means that a distributed query optimizer has 

been constructed to find a heuristically optimized plan to execute any distributed 

command. Obviously, if one has 1,000,000 objects in New York and 10 objects in 

Berkley, one wants to perform the join by moving the 10 objects to New York and not 

vice versa. Performance transparency loosely means that a query can be submitted 

from one node in a distributed DBMS and it will run with comparable performance. 
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3. Copy Transparency: 

Copy transparency means that the system supports the optional existence 

of multiple copies of database obejects. Hence, if a site is down, users can still 

access database objects by obtaining one of the copies from another site. 

4. Transaction Transparency: 

Transaction transparency means that a user can run a arbitrary transaction 

that updates data at any no. of sites, and the transaction behaves exactly like the 

transaction either commits or aborts and no intermediate states are possible. 

5. Fragment Transparency: 

Fragment transparency means that the distributed DBMS allows a user to 

cut up a class (relation) into multiple pieces and place these pieces at multiple site 

according to distribution criteria. For example, the following distribution criteria might 

' control the placement of tuples from EMP relation 

EMP where dept = "shoe" at Berkley 

EMP where dept!= "shoe" at New York 

In this way the tuples of a relation can be distributed and user can access the EMP 

relation unaware of this distribution. 

6. Schema Change Transparency. 

Schema change transparency means that a user who adds or deletes a 

database object from a distributed database need make the change only one (to the 

"· distributed dictionary) and does not need to change the catalog at all sites that 

participate in the distributed databases. 

7. Local DBMS Transparency: 

Lastly, local DBMS transparency requires that the distributed database 

system be able to provide its services without regard for what local databases 

systems are actually managing local data. 

But it is extremely difficult or impossible to construct any distributed 

optimizer which support all of the above transparencies. Together with the 

transparencies the distributed optimizer should deal the following problems: 
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-- Load balance 

-- Machine speed differences 

-- Network nonuniformity 

-- Administrative constraints 

-- Cost constraints 

-- Space constraints. 

3.3. Distribution Transparency for Read-Only Applications: An 

Example 

We consider a simple application, called SUPINQUIRY, which consists in 

accepting a supplier numer from a terminal, finding the corresponding supplier name, 

and displaying it at the terminal. We will analyze how this application sees the 

database at decreasing levels of distribution transparency. 

An SQL statement in this application defines a required database access 

primitive; it can be interpreted as the invocation of a procedure which receives some 

input parameters from the Pascal-like program, accesses the database, and returns 

the result as an output parameter. In order to indicate the input and output 

' 
parameters for these database access procedures, the Pascal variables which are 

used as parameters in the SQL statement are prefixed with a "$" symbol. The input 

parameters of an SQL query appear in the where-clause, while the output 

parameters apper in the select-clause. For instance, the query 

select NAME into $NAME 

from SUPPLIER 

where SNUM = $SNUM 

can be considered as a procedure which receives the variable $SNUM as an input 

parameter, selects the name of the supplier who has the current value of $SNUM as 

supplier number, and returns this name to the Pascal-like program in the variable 

$NAME. 
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In some cases, the application has also to commnicate with the distributed 

DBMS in order to exchange some control information. The Pascal variable which are 

used for this type of communication are prefixed with the "#" symbol. 

Leve/1: Fragmentation Transparency The way in which the application 

accesses the database if the DDBMS provides fragmentation transparency is shown 

in Fig. 4a. First the application accepts a supplier number from the terminal; then it 

accesses the database. The whole· SOL statement represents a single distributed 

databases access primitive, which receives the variable $SUPNUM as input 

parameter and returns the variable $NAME as output parameter. The DDBMS 

interprets this primitive be accessing the databases at any one of three sites in a '!fay 

which is completely determined by the system. From the viewpoint of distribution 

transparency, the application referes to the global relation name SUPPLIER, 

completely ignoring the fact that the database is distributed. In this way, the 

application is completely immune to any change which is applied to all schemata 

which are below the global schema in our refe(ence architecture. 

Level 2: Location Transparency If the DDBMS provides location 

transparency but not fragmentation transparency, the same application can be 

written as shown in Fig. 4b. The request for the supplier with the given number is first 

issued referring to fragment SUPPLIER1, and if the DDBMS returns a negative 

answer in the control variable #FOUND, a similar request is issued with respect to 

fragment SUPPLIER2. At this point, this naive implementation assumes that the 

supplier has been found and displays the result. Several variations are possible, for 

instance, issuing both requests in parellel in order to exploit the parallelism of 

distributed system; however, this does not change the distribution transparency 

characterstics. This application is independent from changes in the allocation 

schema, but not from changes in the fragmentation schema, because the 

fragmentation structture is incorporated in the application. However, location 

transparency is very useful because it allows the applications to ignore which copies 
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read(terminai,SSNUM}; 
select NAME !D.to SNAME 
from SUPPLIER 
where SNUM = SSSUM; . 

write(terminai.SNAME). 

(a) Fragmentation transparency 

(Ieveil) 

read(terminai,SSNUMJ:. 
select NAME into SNAME 
from SUPPUER1 
where SNUM = SSNUM; 

if not #FOUND then 

select NAME into SNAME 
from SUPPUER2 

where SNUM= SSNUM; 
write(terminai.SNAME). 

(b) Location Transparency (level 2) 

read(terminai,SSNUM}; 

select NAME into SNAME 
from SUPPLIER1 at sitel 
where SNUM = SSNUM; 

if not #FOUND then 

select NAME into SNAME 
from SUPPLIER2 at site 3 

wheu: SNUM= SSNUM 
write(terminai,SNAME). 

(c) Local Mapping Transparency (level 3) 

DDBMS 

Fig. 4. The read-only Applications SUPINQUIRY at different levels 

of Distribution Transparency 

sitel 

site2 

site3 

sitel 

site3 



exit of each fragment, therefore allowing copies to be moved from one site to 

another and allowing the creation of new copies without affecting the applications. 

When location transparency is provided without fragmentation, it is very 

efficient to write applications which take explicit advantage of knowing the 

fragmentation structure. For example, the same application of Fig. 4b can be written 

in the following way: 

SUPINQUIRY: 

read (terminal, $SNUM); . 
read (terminal, $CITY); 

case $CITY of 
0 

"SF": Select NAME into $NAME 

from SUPPLIER1 

where SNUM = $SNUM; 

"LA" : Select NAME into $NAME 

from SUPPLIER2 

where SNUM = $SNUM 

end; 

write (terminal, $NAME). 

Level 3: Local Mapping Transparency At this level we assumes that the 

application still refers to objects using names which are independent from the 

individual local systems; however, it has to specify at which site the objects reside. 

The site names are indicated in the SOL statements by adding .an "at" clause to the 

form "from" clause. Clearly in this case each database access use site-independent 

fragment names. If the mapping were not provided, the application would incorporate 

directly the filenames which are used by the local systems. 

The most important aspect of local mapping transparency is not this name-

mapping between fragment names and local filenames, but the mapping of the 

primitives used by the application program into the primitives used by the local 

DBMS: Therefore the local mapping transparency is an important feature in a 
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heterogenous DDBMS. Suppose that the local DBMS at site 1 is IMS and the local 

DBMS at site 3 is a Codasyl. In order to provide local mapping transparency, the 

DDBMS has to perform the database access primitives issued by the application into 

corresponding IMS and Codasyl programs. Similar translation problems can be found 

in a homogenous DDBMS, because even in homogenous systems there is a 

difference between the primitives which are useful at the global level and the 

primitives of the local DBMS. 
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.4 
USE OF TRANSPARENCY IN VIEWS OF DISTRIBUTED 

DATABASES 

4.1. Introduction 

The structure of data to be stored by a Data Base Management System 

(DBMS) is usually. decided by a database administrator. Individual users and 

applications are generally interested in bnly a subset of the data stored in the 

database. Often, they wish to see this subset structured in a way which reflects their 

particular needs. Since it is not g~nerally possible to structure a database so as to 

please all of its users, some mechanism is needed whereby each user can view the 

data according to his own requirements. The representation of the data structure as 

seen by a user is often referred to as an external schema; the view mechanism is a 

means by which a DBMS can support various external schemas. 

Besides providing users with tailered views of the data, the view mechnism 
' ' 

contributes to : 

Data independence: giving applications a logical view of data, thereby 

isolating them from data reorganization. 

-- Data isolation: giving the application exactly that subset of data it needs, 

thereby minimizing error propagation. 

In a relational DBMS, a view is defined as a "virtual table" derived by a 

specific query on one or more base tables. The relational operations join, restrict and 

project as well as statistical summaries of tables may be used to define a view. 

Access rights may be granted and revoked on views just as through they were 

ordinary tables. This allows users to selectively share data, preventing unauthorised 

users from. reading sensitive information. 

24 



4.2. Views in Distributed Database Systems 

Among numerous goals of a distributed DBMS, two have been recognized as 

key objectives: 

-- site autonomy and 

--data distribution transparency. 

Site Autonomy 

Site autonomy means that each site can operate on its o,wn data as a stand-

alone, single-site DBMS, and that each site retains local control of its own data, even 

_if the site participates in the execution of a distributed guery. This gurantees better 

resiliency of failures of sites and communication lines, since there are no centralized 

functions or services, such as a global dictionary or centralized deadlock detector. 

Further, each site performs all operatoions on its own local data, including 

authorization checking and database accesses and updates. 

' Site autonomy in multidatabases: A key aspect of multidatabases is that each local 

D~MS retains complete control over local data and processing. This is referred to as 

site autonomy. f=ach site inedependently determines what inforamation it will share 

with the global system, what global requests it will service, when it will join the 

; 

multidatabases, and when it will stop participating in the multidatabases. The DBMS 

itself is not modified by joining the multidatabases. Global changes, such as addition 

and deletion of other sites, or global optimization of data structures and processing 

methods, do not have any effect on the local DBMS. Local DBAs are free to optimize 

local data structures, access paths, and query-procesing methods to satisfy local 

user requirements rather than global requirements. Since the global system 

interfaces with the local DBMS at the user level, the local DBMS has as much 

control over the global system as it does over local users. 

The multidatabase approach of preserving site autonomy may be desirable 

for a number of reasons. Some local databases may have critical roles in an 
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organization, and it may impossible from an economic standpoint to change these 

systems. Site autonomy means the local DBMS can add global access without 

changing existing local function. Another economic factor is that an organization may 

have significant capital invested in existing hardware, software, and user traning. All 

of this investment is preserved when joining a multidatabases since existing local 

appilications can continue operating unchanged. Site autonomy can also act as a 

security measure because. the local DBMS has full control over who accesses local 

resources through the multi database interface and what processing absence will be 

allowed. In particular, a site can protect information by not including it in the local 

schema that is shared with the global system. An organization's requirements for 

global access may be minimal or sporadic. Site autonomy allows the local DBMS to 

join and quit the multi database with minimal local impact. 

Despite the desirable aspects of site autonomy, it places a large burden on 

global DBAs. Each site has independent local requirements and makes independent 

local optimizaton to satisfy those requirements. Because of this independence and 

the possibly large number of participating sites, global requirements and desirable 

global optimization are likely to conflict with local ones. The global DBA must work 

around these conflicts in intial global system design and ongoing global maintance. 

Global performance suffers relative to a tightly coupled distributed data base 

because of the lack of global control over local resources. Because of the 

heterogeneity of local DBMSs, the global system may have to dedicate global 

resources to compensate for any missing local function or information. Some of 

these problems may be alleviated to a degree if the local DBAs agree to cooperate 

and conform to some some global standards. Site aotonomy ensures that this 

cooperation is not enforced by the system, but organisatinal policies can be used to 

force cooperation. 

Distribution Transparency: The second objective, distribution transparency, means 

that users are shielded from the physical distribution and redundancy of data and are 
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able to interact with the distributed system as easily as with a conventional 

centralized one. This ensures logical independence of applications. 

Any extension of views to a DDBMS must preserve the appearnce of views 

as virtual tables. This presents many problems due to the fact views definition site 

and/or using other views defined at remote sites. Views defined using non-local 

objects are themselves distributed objects, which requires that the operations of 

creating, dropping and using a view be distributed operations. 

The issue of authorization on views also has major implications for the 

implementation. When a view is used in a query, view composition must take place 

in order to derive an execution strategy for the query. If views are not objects of 

authorizatoin, this composition can take place at any site. If views are objects of 

authorization, site autonomy consideration require that the view definition site 

maintain control over the materialization of the view. In particular, view composition 

must take place at the view definition site. If view composition is allowed to occur at 

any site, a malicious site could prevert the view definition by draping restrictions or 

projections in the view definition. 

Forcing view composition at the view definition site can have negative 

. 
effects on performance. If the definition site of a view is not the site at which a query 

using the view is submitted (query master site), then it may not be possible for a 

single site to produce a complete execution strategy for the query, because of the 

view definition site. Further, in systems which separate planning a query from its 

execution, the executiuon strategy must include accessing the view definition site to 

check that the user is still authorized to use the view. This must be done at execution 

time even if no tables referenced in the fully composed query are stored at the view 

definition site. 

For these, the execution strategy for a query referencing a remotely defined 

view is unlikely to be optimal, and a performance penalty may be incurred. If the 

views were not objects of authorization the query site could produce a complete 
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execution strategy, which would not require accessing the view definition site unless 

some table were actually stored there. 

Hence, two types of views are recognized. Shorthand views provide the data 

hiding, data conversions, typing elimination and renaming functions associated with 

views, but are not objects of authorization. The user posing queries against a 

shorthand view must be authorized to access the objects referenced by the view. 

Protection views provide the same semantics as shorthand views and in addition are 

objects referenced by the protection view belong to the view and the user of the view 
' 

only needs the privilege to use the protection view. Queries refrencing remotely 

defined shorthand views will in general execute more efficiently than identical 

queries with shorthand views replaced by protection views. 

4.3. Distributed View Management 

Views are defined in terms of queries which may reference local and non-

' 
local tables and views. Queries may. be imbedded in programs, which are 

precomplied by DDBMS's. The result of precompilation is a set of access modules, 

defining the execution plan for query, which are stored in the distributed database. 

Precompilation also creates dependencies for the program on the tables and views 

referenced in the program must be invalidated. At execution time of a program, the 

system checks whether the program is valid. If the program is still valid, the system 

loads it and executes the necessary access modules. If the program has been 

invalidated, the system may try to recomplie the program; if recompilation succeeds, 

the program is executed, otherwise an error is reported. 

Since distribution transparency requires that the system have the same 

behaviour with respect to users as a centralized DBMS, a correct implementation of 

views in DDBMS must ensure that views are dependent on the objects they 

reference, and that the programs refrencing views are independent on those views. 

These requirements ensure a consistent usage of views by users. 
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In addition, site autonomy requires that each site be able to perform any 

action on local (non-distributed) objects, such as dropping local tables or purely local 

views, without notifying any other site. In particular, it should not be necessary to 

contact other sites at which programs or views referencing the local objects are 

stored or defined. 

These two requirements suggest that dependecy recording should be 

distributed among the sites of those objects on which the view (or program) depends. 

In other words, view or program d~pendencies on remote tables are stored. This 

allows local invalidation of distributed programs or remotedly defined views if a local 

table is dropped or changed .• 

Actually the situation is somewhat more complicated. Programs and views 

may depend on remotely defined protection and shorthand views, as well as 

remotely stored tables. Depenedencies on protection views are recorded at the view 

definition site. In fact this site will be accessed at execution time, since the view is 

materialized at that site. 

If the dependency of a program on a shorthand view is recorded at the view 

definition site, and that view is later dropped, it may not be possible to invalidate the 

program. Thiswill happen if no table referenced by either program or view is stored 

at the view definition site. In this situation, the program has no need to access the 
' 

view definition site at execution time and hence it will not discover that the view has 

been dropped. 

To invalidate a program in these circumstances, dependencies on shorthand 

views are recorded at other sites, chosen in such a way that any program referencing 

the view must access these sites at execution time. In fact, these sites are the sites 

at which tables referenced by the view are stored. 

An obvious consequence of these distributed depenedencies is that view 

definition and view drop are distributed operations. At view definition time, the 

dependency of a view on remote tables must be recorded at the table store sites. 

When dropping a view, remote sites storing view dependencies must be accessed in 
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order to delete these dependencies and at the same time, invalidate prog~ams and 
~-·· 

views depending upon the dropped view. The remote sites are only accessed when 

the view is a distribute object. Local views are still dropped locally. 
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5 
PROS AND CONS OF TRANSPARENCY 

Distributed database software offers transparent access to data--- no matter 

where in the network the data is located, an authorized program can access the data 

as though it is local. Transparency has been the goal of distributed database systems 

for over a decade--- it is at the core of next-generation distribuited database systems. 

The real virtue of transparency is its ability to support· geographically centralized 

clusters of computers. 

The IBM's CICS/ISC and Tandem's Encompass have offered transparency. 

Although these two distributed systems are very popular, their ability to transparency 

access remote data is not used much. In fact, design experts of both vendors 

recommend against transparent remote access to data; instead, they recommend a 

requester-server design (sometimes called remote procedure call) in which requests . 
for remote data are sent to a server which accesses its local data to service the 

request. Ironically, CICS and Encompass initially offered only transparent distributed 

data. 

Manageability is the major problem for the geographically distributed 

applications. This is the reason that the old-timers, who had the facility of 

transparency, are skeptical about using transparency for geographically distributed 

applications, while the newcomers are enthusiastic about the transparency in these 

geographically dispersed applications, and so we can say that the geographically 

distributed applications are a nightmare to operate. By definition they are a large and 

complex syst~m involving hundreds if not thousands of people. Communication 

among computers, administrators and operators in such a system is slow, unreliable, 

and expensive (SAU). When confronted with a "real" distributed system, one with 

SUE communication, successful application designers (all back on the requester-
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server model. Such designs minimize communication among sites and maximize 

modularity and local autonomy for each site. 

Now the question arises that whether the distributed database have an 

!mportant application: they allow modular growth-- the ability to grow a system by 

adding hardware modules to a cluster instead of growing by trading up to a bigger, 

more expensive box. It is not enough to have a "cluster'' hardware architecture-

distributed system software is needed to allow modular growth. Clusters avoid all the 

hard problems of geographically distribution: 

-- Clusters have high-bandwidth, low-latency, reliable and cheap communication 

among all processors in the cluster. All data in the cluster is "close" since access .. 

times are dominated by disk access time. Geographically distributed system must 

deal with slow, unreliable, expensive communications via public networks. In 

geographically distributed systems message delays dominate access times. 

-- A cluster can be administered and operated by a single group with face-

. to-face contact and with similar organizational goals. "Real" distributed 

systems involve multiple sites, each site having its own administration. 

Personal communication and relations among sites are via slow, 

unreliable, expensive mail and telephone - SUE again. 

5.1. A Case Against Transparent Access to Distributed Data 

Distributed databases offers transparent access to data. Beyond the 

authorization mechanism, there is no control over what the program does to the data. 

It can delete all the data, zero it, or insert random new data. In addition, no 

comprehensible audit trail is kept telling who did what to the data. This interface is 

convenient for programmers, but it is a real problem for application designers and 

administrators. 

The simplest way to explain the negative aspects of a distributed database is 

to compare refrigerators to grocery stores. My refrigerator operates like a distributed 

database. Anyone with a key to my house is welcome to take things from the 
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refrigerator or put them in. There is a rule that whoever takes the last beer should get 

more at the grocery store. 

Requester-server designs provide an administrative mechanism. They 

provide defined, enforceable, auditable interfaces which control access to an 

organization's data. Rather than publishing its database . design and providing 

transparent access to it, an organizational publishes the CALL and RETURN 

messages of its server procedures. These servers perform requests according to the 

procedures specified by the site owner. They are site's standard operating 

procedures. Requesters send messages to servers which in tum execute these 

procedures and enforce the store's operating procedures. 

Request-server designs are more modular than distributed databases. A site 

can change its database design and operating procedures without impacting any 

requesters. This gives each site cosiderable local autonomy. The only thing a site 

cannot easily change are the request and reply message formats. In the parlance of 

progrmming languages, distributed databases offer transparent types, servers offer 

opaque types, sometimes called abstract types or encapsulated types. 

Request-server designs are more efficient. They send fewer and shorter 

messages. Considering the example of adding an invoice to a remote node's 

database., A distributed database implemetation would send an update to the account 

file, insert a record in the invoice file, and then insert several records in the invoice

detail file. This would add up to a dozen or more messages. A requester-server 

design would send a single message to a server. The server would then perform the 

updates as local operations. If the communication net is SUE then sending only 

message is a big savings over multi-message designs. 

Thus the disadvantages of the applications with transparent access to 

geographically distributed databases as comapred to a requester-server design are: 

--- Poor manageability, 

--- Poor modularity and, 

-- Poor message performance. 
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The lunatic fringe of distributed databse promise transparent access to 

heterogenous database. These folks promise to hide all the nasties of networking, 

security, performance, and semantics under the veil of tranparency. But the prospect 

of getting people who cannot agree on how to represent the letter "A" to agree to 

share their raw data is far fetched. Heterogenous systems are a very good argument 

for requesters and servers. The systems need only agree on a network protocol and 

a requester-server interfaces. Still a little far fetched unless a standard network and 

requester-server model emerges. 

5.2. Manageability of a Distributed Database 

If we have to,design and manage a distributed applications in the real world 

then we can not use transparent access to geographically remote data, because a 

distributed system is a big and complex thing and it needs to change and grow over 

time. We may want to add nodes, move data about, redesign the database, change 

the format or meaning of certain data items, and do other things which are likely to 

invalidate some programs using the data. 

5.3. The Case For Transparent Access to Cluster Data 

The transparent access is very convenient for programmers- it makes it 

easy to bring up distributed applications. Coding requesters-servers and making an 

application modular is extra work. Clustering is the 'real application of transparent 

access to distributed data. It offers both the customer and the vendor significant 

advantages. The customer can buy just what he needs and grow in small increments 

as he needs more. The vendors has two advantages. First it needs design and 

support only a very few modul·~ types. In addition, it can build systems which are 

exceed the power of the non-clustered vendours. 

The arguments against geographically distributed database do not apply to 

clustered systems. A cluster and its operators are typically in a single room. SUE is 
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not a problem. The people have face-to-face contact and the computers have 

duplexed, high-speed buses among them. 

A cluster is like a centralised system, so it can be managed as one. For 

small clusters the local autonomy derieved from modularity may be moot. A 

distributed database server cluster applications nicely, allowing data to be partitioned 

among any disks in the cluster and allowing servers to run on any cpus in the cluster. 

Because the intra-cluster communication is fast and cheap, the cost of distributing 

data in the cluster is negligible. 

/ 
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6 
R*: AN EXAMPLE OF LOCATION TRANPARENCY 

R* is an operational, experimental, distributed databases management 

system which supports the struct.rured query language (SOL). The most important 

object of R* is to provide site autonomy. Site autonomy is achieved when each site is 

able both to control accesses from other sites to its own data and to manipulate its 

data without being conditioned by any other site. While the first goal is completely 

achieved by R*, t~e second goal is partially achieved, since a loss of site autonomy 

cannot be avoidetf during the 2-phase-commitment of transactions. 

The site autonomy also requires that the system be able to grow 

incrementally and to operate continuosly, with new sites joining to existing ones, 

without requiring existing sites to agree with joining sites on global data structures or 

definitions. 

Another important issue in R* is locatior) transparency (the user is not aware 
' 

of the actual location of data); thus, from the programmer's viewpoint, the use of R* 

is essentially equivalent to the use of a centralized system. The relevant extentions 

to the SQL language due to distribution are: 

1. Naming, an R* systemwide name includes for each object the 

specification of 

<creator>@<creator-site>. <object>@<birth-site> 

This naming scheme inCludes the birth site of each object, which is a 

static property, but does not include the actual location of the object, 

which can change from time to time. 

2. The possibility of moving objects between sites. 

· R* is composed of three components: a local database management system, 

a· data communication component which provides message transmission, and a 

transaction manager which coordinates the implementation of multiple transactions. 
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The local database management if further divided into two components: a storage 

system, concerned with the storage and retrieval of data, a database language 

processor, which translates high-level SQL statements into operations on the storage 

system. The storage system used in the R* project, called RSS*, is based on the 

research storage system of Sytem R. 

R* sites communinacte via the Inter System Communication (ISC) facility of 

CICS. Each R* site runs in a CICS address space, and CICS handles terminal 1/0 

and message communication. The communication is assumed to be unreliable (i.e., 

there is no guarentee that a transmitted message will be eventually delivered), but it 

is ass~med that d~livered. messages are correct, not replicated, and recieved in the 

same order as they were sent. 

An application program makes all database access requests to the R* 

system at its local sites. All intersite communications are between R* systems at 

different locations, since R*, rather than an application program, is responsible for 

locating distributed data. Thus, in the R* environment there is no need for remote 

·application programs. 
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6.1. Problems Solved by R* System 

In a centralized database management system each database instance is 

located at a single geographical site. These centralized systems simplify the job of 

sharing data by providing a high-level database language (SQL), unit-of-work (i.e., 

transaction) management, concurrency management, authorization services and 

more. But what will happen to data sharing when an enterprise has more than one of 

these centralized DBMSs? For these applications that access only local data, there is 

no data sharing problem. However, for applications that need to access data at one 

or more remote databases, there is a data sharing problem and current centralized 
• .~ 0-

DBMSs do little help. 

Fig. 5 illustrates this problem. Assume that widget salespeople in New York 

need to access both sales information located in their local database and inventory 

information located at the manufacturing plant in Los Angeles. They need this 

information in order to produce a report which predicts their ability to supply future 

demand for widget in the New York area. There are several ways for the salespeople 

in the New York to access the data located in the Los angeles: 1) They could 

telephone someone at Los Angeles and as(( them to query the database and describe 

the results; 2) They could connect a terminal located in New York to application 

programs running against the Los Angeles database. 3) They could extract a data file 

containing the relevant inventory information from the Los Angeles database and 

transmit it to New York. Regardless of which these methods is used, the inventory 

data obtained from Los Angeles would then have to be combined with the sales data 

from New York by the application program or the salespeople themeselves to 

produce the desired report. There are numerous variations on how one_ might 

overcome the difficulties created by the fact that some of the required data is stored 

in a remote database; but each variation adds complexity for either the application 

designer or end-user that not be necessary if all the data were located in a single 

DBMS. 

38 



LA 

telephone 

· send tape 

NY 

SOL 

Fig. 5: Application Design is Difficult 

Manufacturing 
Plant 

Sales Region 



A distributed DBMS, such as R*, simplifies this data sharing problem 

permitting application programs to access data objects stored in a network of 

interconnected database sites by simply issuing database requests. Assume for a 

moment that R* is installed at both Los Angeles and New York. Assue also that the 

custodians of the Los Angeles database have entered appropriate SQL commands to 

authorize access to portions of the inventory tables to the salespeople at New York. 

An application program could then be written that contains SQL statement that 

reference the sales information tables located in the New York database and 

inventory information tables located in the Los Angeles database. The salespeople 

' 
could then run the application at New York and generate the report. 

6.2. View Management in R* 

' A view in R* is a non-materialized virtual relation defined by an SQL 

statement. It is defined in terms of one or more tables or previously defined views 

and during processing a view is materialized from its component objects. Views can 

be used as shorthand notation for reducing the amount of typing required when 

frequently executing queries, or they can be used as a protection mechanism for 

hiding rows or columns in underlying tables from the user of the view. Thus we can 

say that views satisfy the property of location transparency. 

In R* view component objects may be at different sites. Therefore to provide 

data protection between sites a protection view is materialized only at the site owing 

the view. This scheme prevents sending sensitive data to a node where no user is 

authorized to see it. Therefore during compilation the master site generates a plan 

for processing the view as if it were a physical table and sends the plan and SQL 

statements to the apprentices where the view will be -processed. An apprentice site 

may itself decompose a view component in terms of other views on tables at yet 

other sites. In that case the apprentice acts as a master to other apprentices and 

must generate a plan and send subplans to its apprentices sites. The plan 
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distribution progresses in this way unitl all views are resolved and may even back to 

a site that has already participated in the compilation. 

6.3. R* Objectives 

R* was desined to satify three design objectives: it should 1) be easy to use, 

2) be compatible of autonomous operation, and 3) provide good performance. To 

satiffy these objectives, many difficult design choices were addressed such as query 

decomposition, optimal site and access path selection, transaction consistency, . 
locking and detection, recovery and resilience with respect to site failure. 

Th~ first objective is ease :o use. R* is easy to use because application 

program developers and end-users can use SOL to access data objects just as they 

do today in SOUDS. The reason that R* users can use SOL is that R* supports the 

' 
notion of data location tranparency. The databse worries about where an object is 

currently stored, not the application programmer or end-user. In fact R* a single 

application program can be written which excutes at many different database sites in 

the network. At each site, a specially tailored access plan is developed by the 

database to optimize access to the database objects defined in the application, 

giving its execution location and the current locations of the database objects that it 

references. 

The second R* objective is site autonomy. One way to characterize a 

distributed system is the degree to which a single node in the system can operate 

when the connection to other nodes fail. In R*, this ability to operate autonomously is 

considered vital. Sites should also administered independently. They should be able 

to add new user to their system, switch to new releases etc., without consulting any 

central authority. To acheive this degree of autonomy, each database site must be 

entirely selfsufficient, it cannot rely on any form of central service such as a central 

name server or a central point for detecting deadlocks. Autonomy also implies that 

individual sites do not have global knowledge about what operations taking place at 
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other sites and the individual sites will continue database processing despite site 

and/or communication failures. 

Third and final R* objective is good performance. There are many things in 

R* that were done to promote good performance. One is that statements are 

complied into access modules. During compilation, database object names are 

resolved, ·access paths are determined, authorization rights are validated, and 

access plans are distributed to all in involved database sites. This early binding 

makes it unneccassary to repeat many of these time consuming operations each 

time the application program is actually executed. The other thing that leads to good 

performance is that R* enables user to place copies in of data in their local system to 
. .. 

avoid the overhead of using the communication system when their applications are 

executed. This concept is called locality of reference and is vital to good 

performance in any distributed system which utilizes relatively slow and unreliable 

communication devices. A user can invoke new MIGRATE TABLE statement to 

physically move table from a remote database site to the local database site. 

Alternatively; a user can create a snapshot of data. A snapshot is a stored database 

object, like a table, but it is for read-only access and it periodically refreshed from the 

base objects in its definition. The definltion of a snapshot is in the form of an arbitrary 

SQL SELECT query. 

Thus the R* prototype makes it posssible to build a distributed SQL system 

that is easy to use, can run autonomously and has good performance. It appears 

likely that workstation databases can be incorporated into the R* design and can 

thereby increase the degree of potential data sharing. Instead of just a few dozen 

large hosts sharing data, there may be thousands of workstations connected together 

or connected to a back-bone host database network. The level of potential data 

sharing in such a network is mind-boggling. Much research needs to be done to 

understand the various design alternatives and to understand how to configure and 

administer such distributed database networks. 
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Thus the R* achitecture supports several kinds of data distribution. Attention 

has been given to efficient execution of programs by the compilation and 

optimization of users queries and SOL programs. It emphasizes on site autonomy. At 

the same time, R* provides transparent remote data definition and manipulation 

facilities, distributed transaction management, and distributed concurrency control 

which should simplify data sharing for both ad hoc query users and application 

programmers. Existing single site SOL programs and queries can be run against 

distributed data without modification in an R* environment and programmers can 

continue to develop programs without having to worry about network issues. 
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7 
CONCLUSION 

For geographically distributed databases, to achieve the transparency at 

various levels together with the distribution of data, there are four distributed data 

allocation strategies which are distinct but interdependent: d,ata fragmentation, data 

placement, data replication and dynamic data allocation. Among these four main 

emphasize is given on data fragmentation which provides advantage~ of data locality 

and system environment. We can divide the database in mainly two ways i.e. 

horizontally or vertically .. In both cases we can get a differenUevel of transparency. 

Distribution transparency provides the independance of programs from the 

distribution of the databases. Different levels of distribution transparency can be 

provided by a DDBMS; at each level, different aspects of the real distribution of data 

are hidden from the application programmers. At the highest level, called 

fragmentation transparency, a modifi~ation of data distribution does not require 

rewriting programs. Providing distribution transparency for update applications is 

because update application attributes; in this case; a rather complex restructuring of 
. 

affected data might be required. 

Thus we can see that distributed database software offers transpar~nt access 

to data' irrespective of the location of the data in the network, an authorized program 

can access the data as though it is local. So the transparency in a geographically 

distributed system is unmanageable and has technical drawbacks. The real virtue of 

transparency is its ability to support geographically centralized clusters of computers. 
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