
ON TRANSPARENCY IN THE DISTRIBUTED

DATABASE SYSTEMS

Dissertation Submitted to
JAWAHARLAL NEHRU UNIVERSITY

in partial fulfilment of requirements
for the award of the degree oj

Master of Technology
.
~n

Computer Science

by
K.S. Chaudhary

~···
SCHOOL OF COMPUTER & SYSTEMS SCIENCES

JAWAHARLAL NEHRU UNIVERSITY

I : oo5. 75a ~-~~
/ · C3934 · _: On

Ill II /li/1111 Ill II IIIII/I -
TH5613

- ~

NEW DELHI - 110 067

January 1996

CERTIFICATE

This is to certify that the dissertation entitled

ON TRANSPARENCY IN THE DISTRIBUTED DATABASE SYSTEMS

which is being submitted by Kirti Singh Chaudhary to the School of

Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi

for the mvard of Master of Technology in Com,puter Science, is a record of

bonafide'project work carried out by him under the supervision andguidance

of

Prof. R.G. Gupta.

This work is original and has not been submitted in part or full to any
;

University or Institution for the ajvard of any degree.

(Supervisor)

ACKNOWLEDGEMENT

I wish to convey my heartfelt gratitude and sincere acknowledgements to my .
guide Prof R G. Gupta, School of Computer & Systems Sciences for his whole

"
hearted, tireless and relentless effort in helping me for the successful completion of the

- . .. ~

project.

' I would like to record my sincere thanks to my Dean, Prof G. V. Singh,

School of Computer & Systems Sciences for providing the necessary facilities in the

centre for the successful completion of the project.

I take this opportunity to thank all my faculty members and friends for their

critical comments during the course of the project.

Kirti Singh Chaudhary

CONTENTS

1. Introduction .. 1

1.1. Why Go For Distributed Database ... 1

1.2. Feature of Distributed Verses Centralized Databases 2

2. Design Methodology in the Distributing Data in Distributed Databases 6

2.1. Introduction ... 6

2.2. Component of a Distributed Database Design ?

2.3. Objectives of the Design of Data Distribution ?

2.4. Distributed Data Design Methodology ~ 9

2.5. Data Fragmentation ... 10

3. Functions of Distributed DBMS and Transparencies 14

3.1. Reference Architecture for Distributed Databases 15

3.2. Functions of DDBMS .. 18

3.3. Distribution Transparency for Read-Only applications: An Example 20

4. Use of Transparency in View of Distributed Databases.: 24

4.1. lntroduction .. 24

4.2. Views in Distributed Database System ... 25

4.3. Distributed View Management... .. 28

.
5. Pros and Cons of Transparency , .. 31

5.1. A Case Against Transparent Access to Distributed Data 32

5.2. Manageability of a Distributed Database ... 34

5.3. The Case for Transparent Access to Cluster Data 34

6. R*: An Example of Location Transparency .. 36

6.1. Problems Solved By R* System .. 38

6.2. View Management in R* ... 39

6.3. ·R* Objectives .. 40

7. Conclusion .. 43

Bibliography .. .44

1
INTRODUCTION

From a technical viewpoint, distributed database technology is the marriage

of computer communication networking with database technology. From a

userviewpoint, it is an application of computer communication networking and

provides an efficient means ofshowing databases. Today there is a need for the

construction of distributed databases for the geographically separated user

community. Before going in depth of distributed databases, we will discuss the

centralized databases and the distributed databases in comparison of each other.

1.1. Why Go For Distributed Database

The basic premise behind a distributed database system is to make a data

store spread over a collection of machines in a wide or local area network appear to

the user as if it existed on a single machine.

As companies are fundamentally distributed, these have many offices in

many places, there is every incentive for each location to have its own computer. If

for no other reason, the cost of communication is prohibitive. One simply does not

want to have a terminal in Hong Kong that accesses a computer in New York; one

will quickly have a gigantic communications bill. 'All companies having computer

systems, typically spread around the world, and there are databases on each of

these machines, and most organizations must run applications that access data in

multiple databases on multiple computer systems. A simple example of such

geographically distributed data is the INGRES division of ASK. They maintain a

customer database for the USA customers at their headquarter in California. In

addition the British customers are on the machine in Frankfurt, the French customers

are on the machine in London, the Greman customers are on the machine in

Frankfurt, the French customers are on the machine in Paris, and so on. In general.

there is high locality of reference to the customer database; hence, the French

1

customers are usually accessed by the French INGRES personnel. However, there

are also across database accesses. For example, sometimes a salesman wants to

know all the INGRES customer in the world that are part of some multinational

corporation. This requires access to individual customer databases at all INGRES

locations. Obviously, a distributed databases that provides so called location

transparency will expedite such multidatabase queries.

However, geographical distribution is not the only reason to have distributed'

database system. It is obvious that dumb terminals will be replaced on most people

desks by workstations. Moreover, most workstations have local disks to achieve the

factor of these in performance that can be obtained. Moreover, a DBMS will run on

each workstation and manage local databases. Such databases will at least contain

personal data such as telephone directories, appointment calenders etc. In such an

environment one would clearly like to run a program that would schedule a meeting

by intersecting the available times for all the participants. Obviously, this is a

'
disributed database application. Hence the imminent presence of large no. of

workstations with disks will create the need for a distributed database system.

1.2. Feature of Distributed Verses Centralized Databases

Here it is required to look at the typical features of centralized databases and

to compare them with the corresponding features of distributed databases. The

features which characterize the centralized database approach are centralized

control, data independance, reduction of redundancy, complex physical structure for

efficient access, integrity, recovery, concurrent control, privacy and security.

Centralized Control In centralized databases, the centralized control over

information resources is considered as one of the strongest feature. The fundamental

function of a DBA is to guarantee the safety of data which requires a centralized

responsibility.

2

In distributed databases the idea of centralized control is much less

emphasized and also depends upon the various architecture and transparency. In

general, in distributed databases it is possible to identify a hierarchical control

structure based on a global database administrator, who has the control responsibility

of the whole database and on · local database administrators who have the

responsibility of their respective local .databases. However, it must be emphasized

that local database administrator may have a high degree of autonomy upto the point

that a global database administrator is cgmpletely missing and the intersite

coordination is performed by the local administrative themselves. This charcteristic is
'

usually called Site Autonomy.

Data lndependance In Distributed databases, data independance has the same

importance as in centralized databases, however, a new aspect is added to the usual

notion of data independance, namely distribution transparancy. By distribution

tranparency we mean that program can be unaffected by the movement of data

from one site to another, however, their speed of execution is affected.

Data independance is provided in centralized databases through a multilevel

architecture having different descriptions of data and mappings between them. The

notion of conceptual schema, storage schema , and external schemas were

developed for this purpose. In the same way distribution transparency is obtained in

distributed databases by introducing new levels and schemata.

Reduction of Redundancy In centeralized databases, redundancy was reduced

as far as possible so that inconsistencies among several copies of the same logical

data are automatically avoided by having only one copy and also storage space is

saved.

In Distributed databases, however there are several reasons for considering

data redundancy:

3

i) locality of applications can be increased if the data is replicated at all sites

where applications need it.

ii) availability of the system can be increased because a site failure does not

stop the execution of applications at other sites if the data is replicated.

The convenience of data replication increases because if we have several

copies of an item, retrieval can be performed on any copy, while updates

must be performed consistentely on all copies.

Complex Physical Structures and Efficient Access Complex accessing

structures like secondary indexes interfile chains are a major aspect of centralized

databases. The reason is to obtain efficient access to the data.

In distributed databases, complex accessing structures are not the right tool

for efficient access. Therefore, while efficient access is a main problem in distributed

databases, physical structures are not a relevant technological issue. Efficient access

to a distributed databases cannot be provided by using intersite ph'ysical structures,

because it is very difficult to build and maintain such structures.

Integrity, Recovery and Concurrency Control Integrity and recovery are· major

aspects which are particularly important in distributed databases because some of

the sites involved in transaction execution might fail. Concurrency control deals with

ensuring transaction atomicity in the presence of concurrent execution of

transactions. This problem can be seen as a typical synchronisation problem. In

distributed· databases, the synchronisation problem is harder than in centralized

system.

Privacy and Security In centralized databases, the DBA, having centralized

control can ensure that only authorized access to the data is performed. In distributed

databases, local administrators are faced essentially with the same problem as DBA

in centralized. However two peculiar aspects of distributed databases are:-

4

(i) in a distributed database with a very high degree of autonomy the owners

of local data feel more protected because they can enforce their own

protections instead of depending on a central DBA.

(ii) security problems are intrinsic to distributed systems in general because

communication networks can represent a weak point w.r.t. protection.

Thus we have seen that distributed database technology extends that

centralized database technology in a nontrivial way, and in brief advantages of a

distributed database over a centralized one are increased availability decreased

access time, easy expansion and possible integration of existing databases. The

acceptance and widespread usage of distributed databases will highly depend on

their efficiency. Therefore it is important to supply a database management system

with tools to efficiently process queries and to determine allocation of the data such

that the availability is increased, the access time is decreased and/or the overall

usage of resources is minimized.

5

2
DESIGN METHODOLOGY IN DISTRIBUTING THE DATA

IN DISTRIBUTED DATABASES

2.1. Introduction

Design methodology in distributed data includes the allocation of data and

operations to nodes in a computer communications network together with the

transparency of the database is a critical issue in distributed database design. An

efficient design must trade off performance and cost among retrieval and update

activities at the various nodes. It must consider the concurrency control mechanism

used as well as capacity constraints at nodes and on l!nks in the network. it must

determine where data will be allocated, the degree of data replication, which copy of

the data will be used for each retrieval activity and where operations such as

SELECT, PROJECT, JOIN and UNION will be performed.

In general, satisfying a user request in a distributed database involves five

major steps: ·

i) Accessing the network directory to determine where the needed data is

located.

ii) Determining an access strategy that specifies which copy of the data to

access (and when), where the data will be processed, and how it will be

routed.

iii) Sending request messages to the appropriate nodes(for update requests

this may involves waiting for locks to be established and response

messages to be sent back).

iv) Accessing and processing data at each of these nodes, and

v) Routing the response to the requesting node for final processing.

If (a copy of) all the data required by a retrieval request is located at the

requesting node, then only local accessing and processing are needed. However, if

6

some needed data is not located at the requesting node, then data must be accessed

from, and possibly processed at other nodes.

Key distributed design issues include data and operation allocation. Data

allocation defines what data is stored at what nodes (including possible redundancy).

Operation allocation defines where accessing and processing operations will be

performed.

2.2. Component of a Distributed Database Design

Design of distributed database systems is extremely complex. There are four

major aspects which must be considered

1.the communication network (e.g. location of nodes, allocation of computer

resources, network topology and selection of link capacities)

2.data allocation (e.g. determine units of data to allocate i.e. file

fragmentation and allocating copies of those units to nodes)

3.operating strategies related to query optimization and concurrency control

(e.g. determine which copy or copies of data to access, where to process

the data, how to route the data, locking and commit protocols)

0

4.1ocal database design (record structures, record placement algorithms,

secondary indexes, processing algorithms):

2.3. Objectives of the Design of Data Distribution

In the design of data distribution the following objectives should be taken into

consideration:

Processing locality : Distributing data to maximize processing locality

c9rresponds to the simple principle of placing data as close as possible to the

applications which use them. The simplest way of characterizing processing locality

is to consider two types of references to data: "local" references and "remote"

references. Clearly, once the sites of origin of applications are known. locality and

remoteness of references depend only on the data distribution.

7

Designing data disribution for maximizing processing locality can be done by

adding the no. of local and remote references corresponding to each candidate

fragmentation and fragment allocation and selecting the best solution among them.

An extension to this simple optimization criterion is to take into account when

an application has complete locality, which can be completely executed at their sites

of origin. The advantage of complete locality is not only the reduction of remote

accesses. but also the increased simplicity in controlling the execution of the

application.

Availability and Reliability of Distributed Data : A high degree of availability

<

for read-only application is achieved by storing multiple copies of the same

information; the system must be able to switch to an alternative copy when the one

that should be accessed under normal conditions is not available.

Reliability is also achieved by storing multiple copies of the same

information, since· it is possible to recover from crashes or from the physical

destruction of one of the copies by using the other, still available copies. Since

physical destruction can be caused by , events which have nothing to do with

computer crashes, it is relevant to store replicated copies in geographically dispersed

locations.

Workload distribution : Distributing the workload over the sites is an

important feature of distributed computer systems. Workload distribution is done in

order to take advantage of the different powers or utilization of computers at each

site and to maximize the degree of parallelism of execution of applications. Since

workload locality, it is necessary to consider the trade-off between them in the design

of data distribution.

Storage costs and availability : Database distribution should refelect the cost

and availability of storage at different sites. It is possible to have specialized sites in

the network for data storage, or conversely to have sites which do not support mass

storage at all. Typically the cost of data of data storage is not relevant if compared

8

with CPU, 1/0 and tranmission costs of appliactions, but the limitation of available

storage at each site must be consisdered.

2.4. Distributed Data Design Methodology

The distributed data design methodology given in Fig. 1, takes into

consideration data distribution requirements. The methodology produces a global

conceptual schema and local logical and physical schemata for each network site. A

new data distribution design step in the methodology takes in the global concetual .
schema and the distribution requirements of the system. This step performs two

principal activities. First, a data allocation design for the distributed system is
. i ...

developed. Then, based on the data allocation, the global conceptual schema is

divided into local concep[tual schemata for each of the processing sites in the

system. This step in the methodology passes the local conceptual schemata to each

site where the logical and physical data design steps are performed.

Four significant design decisions compose the data allocation design for

distributed systems: '

1. Data Partitioning. Partitioning (or, fragmentation) is the process of

determining divisions of data to be used as allocation units on the network. A given

data entity can be divided either vertically or horizontally. Vertical partitions divide

an entity by grouping attributes into defined subsets. Each partition must contain a

key attribute that identifies the unique entity occurance associated with each record.

This is needed in order to rebuild a complete entity across all vertical partitions.

Horizontal partitions divide an entity by grouping records based on some

. qualification on attribute values. The original entity can be regained by unioning the

records from all horizontal partitions.

2. Data Placement. Placement determines at which site in the distributed

system each data partition is placed for best benefit.

3. Data Replication. Replication determines how many copies of each data

partition are placed on the system at different sites. The resulting data redundancy

9

Distributed System Requirements

Data Requirements

Local Logical
Design

Local Physica
Design

Data

Conceptual Data Design

Data Allocation Design

- Data Partition
- Data Placement
- Data Replication
-Dynamic Data Design

Local Conceptual Design

Fig. 1. Distributed Data Design Methodology

Distribution
Requirements

Local Conceptual Schemata

provides some of the major benefits of distributed systems in data availability and

reliability. However, the costs of data replication are significant. Decisions on data

placement and replication are closely related and the decision processes for

placement and replication are highly interactive.

4. Dynamic Data Allocation. Initial distributed data designs may turn out to

be unsatisfactory when the system is in operation, either because of poor design

decisions or changes in system requirements. A strategy of monitoring system

performance and altering the distributed data allocation is an important component of

a total system data design. White for some systems the answer may be to stop the

system and perform a complete reallocation of the distributed data, many systems

will require some ability to dynamically perform data partitioning, data placement and

data replication. A decision process for invoking these dynamic operations is needed.

2.5. Data Fragmentation

The first step of a distributed data allocation is determining th~ most

effective partitions of data to be units of distribution., We term this the data

fragmentation problem. Previously, designers have simply taken the data file to be

the unit of allocation. However, several performance advantages can l:)e gained by

partitioning data files into smaller units for allocation. Vertical fragmentation or

partitioning group attributes that have a high probability of being accessed together,

but at the same time keeping the partitions group records of an entity that satisfy a

given condition on attribute values. For example, a large personnel file can be

partitioned based upon the department in which an employee works. Each horizontal

fragmentation or partition can then be distributed to the site of that department.

The shared database should be fragmented so that the system throughput is

maximal. The fragmenting of the database are executed efficiently, while the

capacity constraints of all the processors and limits of the commmunication network

is observed. A poor partitioning of the database can lead to higher processing costs

10

in the nodes or to grater demands on the communication network, so that the system

may not be able to handle the required set of transactions.

The database resides on multiple processors which are connected using a

dense and reliable communication network. The contents of the database are

assigned to the processor nodes. Associated with very transaction is an initial

network node. Since the user is not connected to any prespecified node, the initial

network node is to be assigned as part of the design.

The capacity limit of each of the processors may be given i~ terms of

processor cycle capacity and 10-block move capacity per unit time. The capacity

limit of the network is given in terms of of aggregate block transfttr capacity per unit

time. The demands of the transactions are then given using the same measures.

As we know the database is a collection of relations. The given conceptual

relation may be too large to be effectively assigned to single processors. We initially

consider how the relation can be fragmented, and then allocate those fragments to

the processor nodes. In the qesigned database, each transaction accesses some

subset of the tuples and the attributes of each original relation. In order to complete

transactions that do not find all their data on the same processor, a scheduling

algorithm can be invoked' which can optimize the processing over the network.

There are, however, some rules which must be followed when defining

fragments: ·

Completeness condition : All the data of the global relation must be mapped

into the fragments; i.e., it must not happen that a data item which belongs to a global

relation does not belong to any fragment.

Reconstruction condition : It must always be possible to reconstruct each

global relation from its fragments. The necessity of this condition is obvious: in fact,

only fragments are stored in the distributed database, global relation have to be built

through this reconstruction operation, if necessary.

11

Disjointness condition This condition is useful mainly with horizontal

fragmentation, while for vertical fragmentation we should sometimes allow this

condition to be violated.

We can now discuss the fragmentation rules.

Horizontal Fragmentation Horizontal fragmentation consists of partitioning the

tuples of global relation into subsets; this clearly useful in distributed databases,

where each subset can c~ntain data which have common geographical properties. It

can be defined be expressing each fragment as a selection operation on the global

relation. For exar"!lple, let a global relation be

SUPPLIER(SNUM, NAME, CITY)

Then the horizontal fragmentations can be defined in the following way:

SUPPLIER1 = SLciTY = "SF"SUPPLIER

SUPPLIER2 = SLciTY = "LA"SUPPLIER

The above fragmentation satisfies the completeness condition if "SF" and "LA" are

the only possible values of the CITY attribute; otherwise we would not know to which

fragment the tuples with other CITY values belong.

Vertical Fragmentation The vertical fragmentation of a global relation is the

subdivision of its attribute into groups; fragments are obtained by projecting the

global relation over each group. This can be useful in distributed databases where

each group of attributes can contain data- which have common geographical

properties. The fragmentation is correct if each attf)bute is mapped into at least

one attribute of the fragments; moreover, it must be possible to reconstruct the

original relation by joining the fragments together. Consider, for example, a glo~al

relation.

EMP(EMPNUM, NAME, SAL, TAX, MGRNUM, DEPTNUM)

A vertical fragmentation of this relation can be defined as

EMP1 = PJEMPNUM NAME MGRNUM DEPTNUM EMP
' ' '

12

EMP2 = PJEMPNUM, SAL, TAX EMP

This fragmentation could reflect an organization in which salaries and taxes are

managed separatively. The reconstruction of relation EMP can be obtained as

EMP = EMP1 JNEMPNUM = EMPNUM EMP2

because EMPNUM is a key of EMP.

3
FUNCTIONS OF DISTRIBUTED DBMS WITH RESPECT TO

TRANSPARENCIES

The basic premise behind a distributed database system is to make a data

store spread over a collection of machines in a wide or local area network appear to

the user as if it existed on a single machine.

As companies are fundamentally distributed and these have many offices in

many places, and there is every incentive for each location to have its own

computer. If for no other reason, the cost of communication is prohibitive. One

simply does not want to have a terminal in Hong Kong that accesses a cqmputer in

New York; one will quickly have a gigantic communications bill. All companies

having computer systems, typically spread around the world, and there are

databases on each of these machines, and most organizations must run applications

that access data in multiple databases on multiple computer systems. A simple

example of such geographically distributed data is the INGRES division of ASK.

They maintain a customer database tor the USA customers at their headqurter in

California. In addition the British customers are on the machine in Frankfurt, the

French customers are on the machine in London, the German customers are on the

machine in Frankfurt, the French customers are on the machine in Paris, and so on.

In general. there is high locality of reference to the customer database; hence, the

French customers are usually accessed by the French INGRES personnel. However,

there are also across database accesses. For example, sometimes a salesman

wants to know all the INGRES customer in the world that are part of some

multinational corporation. This requires access to individual customer databases at

all INGRES locations. Obviously, a distributed databases that provides so called

location transparency witt expedite such multidatabase queries.

14.

However, geographically distribution is not the only reason to have

distributed database system. It is obvious that dumb terminals will be replaced on

most people desks by workstations. Moreover, most workstations have local disks to

achieve the factor of these in performance that can be obtained. Morever, a DBMS

will run on each workstation and manage local databases. Such databases will at

least contain personal data such as telephone ,directories, appointment calenders etc.

In such an environment one would clearly like to run a program that would schedule

a meeting by intersecting the available times for all the participants. Obviously, this

is a disributed database application. Hence the imminent presence of large no. of

workstations with disks will create the need for a distributed database syste-m.

Now we will discuss the different levels at which an application programmer

views the distributed database, depending on how much distribution transparency is

provided by the distributed database management system. Distribution transparency

is nothing but the independence of the application program from the distribution of

data and h.as been considered to be conceptually equivalent to data independence in

centralized databases.

There are several levels of distribution transparency. For studying these

'
levels, we considered a layerd reference architecture for a distributed database. This

architecture will allow us to determine easily different levels of distribution

transparencies. The levels are conceptually relevant in order to understand

distributed databases.

3.1. Reference Achitecture for Distributed Databases

Fig. 2 shows a reference architecture for a distributed database. This

reference architecture is not explicitly implemented in all distributed databases;

however, its levels are conceptually relevant in order to understand the organization

of any distributed databases.

At the top of the level is the global schema. The global schema defines all

the data which are contained in the distributed database as if the database were not

15

Local
Mapping
Schema 1

DBMS of
Site 1

Local
Database
at site 1 ...

Global Schema

l
Fragmentation Schema

J
Allocution Schema

Site

) idependent
schema

Local
Mapping
Schema2

DBMS of
Site 2

~ / -..... ...,
Local
Database
at site 2

-....::-
(other sites)

Fig. 2: A Reference Architecture for Distributed Databases

distributed at all. For this reason, the global schema can be defined exacly in the

same way as in a non distributed database. However, the data model which is used

for the definition of a global schema should be Gonvenient for the definiton of the

mapping to the other levels of the distributed database. Using this model, the global

schema consists of the definition of a set of global relations.

Each global relation can be split into several nonoverlapping portions which

are called fragments. There are several differnt ways in which to perform the

splitting operations. The mapping between global relations and fragments is defined .
in the fragmentation schema. This mapping is one to many; i.e., several fragments

correspond to one global relation, but only one global relation corresponds to one
~ - - -

fragment.

Fragments are logical portions of global relations which are physically

located at one or several sites of the network. The allocation schema defines at

which site(s) a fragment is located. The type of mapping defined in the allocation

schema determines whether the distributed database is redundant or nonredundant:

in the former case' the mapping is one to many, while in the latter case the mapping

is one to one. All the fragments which correspond to the same global relation R and

are located at the same site j constitute the physical image of global relation R at site

j. There is therefore a one to one mapping between a physical image and a pair

<global relation, site>; physical images can be indicated by a global relation name

and a site index.

An example of the relationship between the object types is given in Fig. 3. A

global relation R is split into four fragments R1, R2, R3 and R4. These four fragments

are allocated redundantly at the three sites of a computer network, thus buiJ51ing

three physical images R1, R2 and R3. (Ri indicates the ith fragment of global relation

R, and Ri indicates the physical image of the global relation Rat site J).

Here we note that two physical images can be identical, which is a physical

image of another physical image.

16 .. ·

R

R~

R~

R3 (Site 3)

Global Relations Fragements Physical images

Fig. 3: Fragments and Physicallrriages For a Global Relation

In the architecture the three levels are site independent; so they do not

depend on the data model of the local DBMSs. At a lower level, it is necessary to

map the physical images to the objects which are manipulated by the local DBMSs.

This mapping is called a local mapping schema and depends on the type of local

DBMS; therefore in a heterogenous system we have diffemt types of local mapping

at different sites.

This architecture provides a very general conceptual framework for

understanding distributed databases. The three most important obectives which

motivate the features of this architecture are the seperation of data fragmentation

and allocation, the control of redundancy, and the independance from local DBMSs.

1. Separating the concept of data fragmentation from the concept of data

allocation. This seperation allows us to distinguish two different levels of distribution

transparency, namely fragmentation transparency and location transparency.

Fragmentation transparency is the highest degree of transparency and consists of

'
the fact that the user or application programmer works on global relations .. Location

transparency is a lower degree of transparency and requires the user or application

programmer to work on fragments instead of global relations; however, they do not

know where the fragments are located. The seperation between the concept of

fragmentation and allocation is very convenient in distributed database design,

because the determination of relevant portions of the data is thus distinguished from

the problem of optimal allocation.

2. Explicit control of redundancy. The reference architecture provides

explicit control of redundancy at the fragment level. For example Fig. 3 shows two

physical images R2 and R3 are overlapping; i.e., they contain common data.

3. Independence from local DBMSs. This feature, called local mapping

transparency, allows us to study several problems of distributed database

management without having to take into account the specific data models of local

DBMSs.

17

Another type of transparency which is stricly related to location

transparency is replication transparency. Replication transparency means that the

user is unaware of the replication. of fragments. Clearly, replication transparency is

implied by location transparency; however, in certain cases it is possible that the user

has no location transparency but has replication transparency (thus, only one

particular copy is used and the system makes appropriate actions on the other

copies).

3.2. Functions .of DDBMS

Now we will define the desired functions of a distributed DBMS by a

collection of transparencies:

1 . Location Transparency.

'
A major objective of distributed database system is to provide ease of

access to data for users at many different locations. To meet this objective, the

distributed database system must provide what is called location transparency.

Location transparency means that a user requesting data.need not know at which site

these data are located. Any request to retrieve or update data at a nonlocal site is

automatically forwarded by the system to that site. So, idealy the user is unaware of

the distribution of data and all data in the network appears as a single logical

database. Thus it means that a user can submit a quary that accesses distributed

objects without having to know where the objects are.

2. Performance Transparency.

Performance transparency means that a distributed query optimizer has

been constructed to find a heuristically optimized plan to execute any distributed

command. Obviously, if one has 1,000,000 objects in New York and 10 objects in

Berkley, one wants to perform the join by moving the 10 objects to New York and not

vice versa. Performance transparency loosely means that a query can be submitted

from one node in a distributed DBMS and it will run with comparable performance.

18

3. Copy Transparency:

Copy transparency means that the system supports the optional existence

of multiple copies of database obejects. Hence, if a site is down, users can still

access database objects by obtaining one of the copies from another site.

4. Transaction Transparency:

Transaction transparency means that a user can run a arbitrary transaction

that updates data at any no. of sites, and the transaction behaves exactly like the

transaction either commits or aborts and no intermediate states are possible.

5. Fragment Transparency:

Fragment transparency means that the distributed DBMS allows a user to

cut up a class (relation) into multiple pieces and place these pieces at multiple site

according to distribution criteria. For example, the following distribution criteria might

' control the placement of tuples from EMP relation

EMP where dept = "shoe" at Berkley

EMP where dept!= "shoe" at New York

In this way the tuples of a relation can be distributed and user can access the EMP

relation unaware of this distribution.

6. Schema Change Transparency.

Schema change transparency means that a user who adds or deletes a

database object from a distributed database need make the change only one (to the

"· distributed dictionary) and does not need to change the catalog at all sites that

participate in the distributed databases.

7. Local DBMS Transparency:

Lastly, local DBMS transparency requires that the distributed database

system be able to provide its services without regard for what local databases

systems are actually managing local data.

But it is extremely difficult or impossible to construct any distributed

optimizer which support all of the above transparencies. Together with the

transparencies the distributed optimizer should deal the following problems:

19

-- Load balance

-- Machine speed differences

-- Network nonuniformity

-- Administrative constraints

-- Cost constraints

-- Space constraints.

3.3. Distribution Transparency for Read-Only Applications: An

Example

We consider a simple application, called SUPINQUIRY, which consists in

accepting a supplier numer from a terminal, finding the corresponding supplier name,

and displaying it at the terminal. We will analyze how this application sees the

database at decreasing levels of distribution transparency.

An SQL statement in this application defines a required database access

primitive; it can be interpreted as the invocation of a procedure which receives some

input parameters from the Pascal-like program, accesses the database, and returns

the result as an output parameter. In order to indicate the input and output

'
parameters for these database access procedures, the Pascal variables which are

used as parameters in the SQL statement are prefixed with a "$" symbol. The input

parameters of an SQL query appear in the where-clause, while the output

parameters apper in the select-clause. For instance, the query

select NAME into $NAME

from SUPPLIER

where SNUM = $SNUM

can be considered as a procedure which receives the variable $SNUM as an input

parameter, selects the name of the supplier who has the current value of $SNUM as

supplier number, and returns this name to the Pascal-like program in the variable

$NAME.

20

In some cases, the application has also to commnicate with the distributed

DBMS in order to exchange some control information. The Pascal variable which are

used for this type of communication are prefixed with the "#" symbol.

Leve/1: Fragmentation Transparency The way in which the application

accesses the database if the DDBMS provides fragmentation transparency is shown

in Fig. 4a. First the application accepts a supplier number from the terminal; then it

accesses the database. The whole· SOL statement represents a single distributed

databases access primitive, which receives the variable $SUPNUM as input

parameter and returns the variable $NAME as output parameter. The DDBMS

interprets this primitive be accessing the databases at any one of three sites in a '!fay

which is completely determined by the system. From the viewpoint of distribution

transparency, the application referes to the global relation name SUPPLIER,

completely ignoring the fact that the database is distributed. In this way, the

application is completely immune to any change which is applied to all schemata

which are below the global schema in our refe(ence architecture.

Level 2: Location Transparency If the DDBMS provides location

transparency but not fragmentation transparency, the same application can be

written as shown in Fig. 4b. The request for the supplier with the given number is first

issued referring to fragment SUPPLIER1, and if the DDBMS returns a negative

answer in the control variable #FOUND, a similar request is issued with respect to

fragment SUPPLIER2. At this point, this naive implementation assumes that the

supplier has been found and displays the result. Several variations are possible, for

instance, issuing both requests in parellel in order to exploit the parallelism of

distributed system; however, this does not change the distribution transparency

characterstics. This application is independent from changes in the allocation

schema, but not from changes in the fragmentation schema, because the

fragmentation structture is incorporated in the application. However, location

transparency is very useful because it allows the applications to ignore which copies

21

read(terminai,SSNUM};
select NAME !D.to SNAME
from SUPPLIER
where SNUM = SSSUM; .

write(terminai.SNAME).

(a) Fragmentation transparency

(Ieveil)

read(terminai,SSNUMJ:.
select NAME into SNAME
from SUPPUER1
where SNUM = SSNUM;

if not #FOUND then

select NAME into SNAME
from SUPPUER2

where SNUM= SSNUM;
write(terminai.SNAME).

(b) Location Transparency (level 2)

read(terminai,SSNUM};

select NAME into SNAME
from SUPPLIER1 at sitel
where SNUM = SSNUM;

if not #FOUND then

select NAME into SNAME
from SUPPLIER2 at site 3

wheu: SNUM= SSNUM
write(terminai,SNAME).

(c) Local Mapping Transparency (level 3)

DDBMS

Fig. 4. The read-only Applications SUPINQUIRY at different levels

of Distribution Transparency

sitel

site2

site3

sitel

site3

exit of each fragment, therefore allowing copies to be moved from one site to

another and allowing the creation of new copies without affecting the applications.

When location transparency is provided without fragmentation, it is very

efficient to write applications which take explicit advantage of knowing the

fragmentation structure. For example, the same application of Fig. 4b can be written

in the following way:

SUPINQUIRY:

read (terminal, $SNUM); .
read (terminal, $CITY);

case $CITY of
0

"SF": Select NAME into $NAME

from SUPPLIER1

where SNUM = $SNUM;

"LA" : Select NAME into $NAME

from SUPPLIER2

where SNUM = $SNUM

end;

write (terminal, $NAME).

Level 3: Local Mapping Transparency At this level we assumes that the

application still refers to objects using names which are independent from the

individual local systems; however, it has to specify at which site the objects reside.

The site names are indicated in the SOL statements by adding .an "at" clause to the

form "from" clause. Clearly in this case each database access use site-independent

fragment names. If the mapping were not provided, the application would incorporate

directly the filenames which are used by the local systems.

The most important aspect of local mapping transparency is not this name-

mapping between fragment names and local filenames, but the mapping of the

primitives used by the application program into the primitives used by the local

DBMS: Therefore the local mapping transparency is an important feature in a

22

heterogenous DDBMS. Suppose that the local DBMS at site 1 is IMS and the local

DBMS at site 3 is a Codasyl. In order to provide local mapping transparency, the

DDBMS has to perform the database access primitives issued by the application into

corresponding IMS and Codasyl programs. Similar translation problems can be found

in a homogenous DDBMS, because even in homogenous systems there is a

difference between the primitives which are useful at the global level and the

primitives of the local DBMS.

23

.4
USE OF TRANSPARENCY IN VIEWS OF DISTRIBUTED

DATABASES

4.1. Introduction

The structure of data to be stored by a Data Base Management System

(DBMS) is usually. decided by a database administrator. Individual users and

applications are generally interested in bnly a subset of the data stored in the

database. Often, they wish to see this subset structured in a way which reflects their

particular needs. Since it is not g~nerally possible to structure a database so as to

please all of its users, some mechanism is needed whereby each user can view the

data according to his own requirements. The representation of the data structure as

seen by a user is often referred to as an external schema; the view mechanism is a

means by which a DBMS can support various external schemas.

Besides providing users with tailered views of the data, the view mechnism
' '

contributes to :

Data independence: giving applications a logical view of data, thereby

isolating them from data reorganization.

-- Data isolation: giving the application exactly that subset of data it needs,

thereby minimizing error propagation.

In a relational DBMS, a view is defined as a "virtual table" derived by a

specific query on one or more base tables. The relational operations join, restrict and

project as well as statistical summaries of tables may be used to define a view.

Access rights may be granted and revoked on views just as through they were

ordinary tables. This allows users to selectively share data, preventing unauthorised

users from. reading sensitive information.

24

4.2. Views in Distributed Database Systems

Among numerous goals of a distributed DBMS, two have been recognized as

key objectives:

-- site autonomy and

--data distribution transparency.

Site Autonomy

Site autonomy means that each site can operate on its o,wn data as a stand-

alone, single-site DBMS, and that each site retains local control of its own data, even

_if the site participates in the execution of a distributed guery. This gurantees better

resiliency of failures of sites and communication lines, since there are no centralized

functions or services, such as a global dictionary or centralized deadlock detector.

Further, each site performs all operatoions on its own local data, including

authorization checking and database accesses and updates.

' Site autonomy in multidatabases: A key aspect of multidatabases is that each local

D~MS retains complete control over local data and processing. This is referred to as

site autonomy. f=ach site inedependently determines what inforamation it will share

with the global system, what global requests it will service, when it will join the

;

multidatabases, and when it will stop participating in the multidatabases. The DBMS

itself is not modified by joining the multidatabases. Global changes, such as addition

and deletion of other sites, or global optimization of data structures and processing

methods, do not have any effect on the local DBMS. Local DBAs are free to optimize

local data structures, access paths, and query-procesing methods to satisfy local

user requirements rather than global requirements. Since the global system

interfaces with the local DBMS at the user level, the local DBMS has as much

control over the global system as it does over local users.

The multidatabase approach of preserving site autonomy may be desirable

for a number of reasons. Some local databases may have critical roles in an

25

organization, and it may impossible from an economic standpoint to change these

systems. Site autonomy means the local DBMS can add global access without

changing existing local function. Another economic factor is that an organization may

have significant capital invested in existing hardware, software, and user traning. All

of this investment is preserved when joining a multidatabases since existing local

appilications can continue operating unchanged. Site autonomy can also act as a

security measure because. the local DBMS has full control over who accesses local

resources through the multi database interface and what processing absence will be

allowed. In particular, a site can protect information by not including it in the local

schema that is shared with the global system. An organization's requirements for

global access may be minimal or sporadic. Site autonomy allows the local DBMS to

join and quit the multi database with minimal local impact.

Despite the desirable aspects of site autonomy, it places a large burden on

global DBAs. Each site has independent local requirements and makes independent

local optimizaton to satisfy those requirements. Because of this independence and

the possibly large number of participating sites, global requirements and desirable

global optimization are likely to conflict with local ones. The global DBA must work

around these conflicts in intial global system design and ongoing global maintance.

Global performance suffers relative to a tightly coupled distributed data base

because of the lack of global control over local resources. Because of the

heterogeneity of local DBMSs, the global system may have to dedicate global

resources to compensate for any missing local function or information. Some of

these problems may be alleviated to a degree if the local DBAs agree to cooperate

and conform to some some global standards. Site aotonomy ensures that this

cooperation is not enforced by the system, but organisatinal policies can be used to

force cooperation.

Distribution Transparency: The second objective, distribution transparency, means

that users are shielded from the physical distribution and redundancy of data and are

26

able to interact with the distributed system as easily as with a conventional

centralized one. This ensures logical independence of applications.

Any extension of views to a DDBMS must preserve the appearnce of views

as virtual tables. This presents many problems due to the fact views definition site

and/or using other views defined at remote sites. Views defined using non-local

objects are themselves distributed objects, which requires that the operations of

creating, dropping and using a view be distributed operations.

The issue of authorization on views also has major implications for the

implementation. When a view is used in a query, view composition must take place

in order to derive an execution strategy for the query. If views are not objects of

authorizatoin, this composition can take place at any site. If views are objects of

authorization, site autonomy consideration require that the view definition site

maintain control over the materialization of the view. In particular, view composition

must take place at the view definition site. If view composition is allowed to occur at

any site, a malicious site could prevert the view definition by draping restrictions or

projections in the view definition.

Forcing view composition at the view definition site can have negative

.
effects on performance. If the definition site of a view is not the site at which a query

using the view is submitted (query master site), then it may not be possible for a

single site to produce a complete execution strategy for the query, because of the

view definition site. Further, in systems which separate planning a query from its

execution, the executiuon strategy must include accessing the view definition site to

check that the user is still authorized to use the view. This must be done at execution

time even if no tables referenced in the fully composed query are stored at the view

definition site.

For these, the execution strategy for a query referencing a remotely defined

view is unlikely to be optimal, and a performance penalty may be incurred. If the

views were not objects of authorization the query site could produce a complete

27

execution strategy, which would not require accessing the view definition site unless

some table were actually stored there.

Hence, two types of views are recognized. Shorthand views provide the data

hiding, data conversions, typing elimination and renaming functions associated with

views, but are not objects of authorization. The user posing queries against a

shorthand view must be authorized to access the objects referenced by the view.

Protection views provide the same semantics as shorthand views and in addition are

objects referenced by the protection view belong to the view and the user of the view
'

only needs the privilege to use the protection view. Queries refrencing remotely

defined shorthand views will in general execute more efficiently than identical

queries with shorthand views replaced by protection views.

4.3. Distributed View Management

Views are defined in terms of queries which may reference local and non-

'
local tables and views. Queries may. be imbedded in programs, which are

precomplied by DDBMS's. The result of precompilation is a set of access modules,

defining the execution plan for query, which are stored in the distributed database.

Precompilation also creates dependencies for the program on the tables and views

referenced in the program must be invalidated. At execution time of a program, the

system checks whether the program is valid. If the program is still valid, the system

loads it and executes the necessary access modules. If the program has been

invalidated, the system may try to recomplie the program; if recompilation succeeds,

the program is executed, otherwise an error is reported.

Since distribution transparency requires that the system have the same

behaviour with respect to users as a centralized DBMS, a correct implementation of

views in DDBMS must ensure that views are dependent on the objects they

reference, and that the programs refrencing views are independent on those views.

These requirements ensure a consistent usage of views by users.

28

In addition, site autonomy requires that each site be able to perform any

action on local (non-distributed) objects, such as dropping local tables or purely local

views, without notifying any other site. In particular, it should not be necessary to

contact other sites at which programs or views referencing the local objects are

stored or defined.

These two requirements suggest that dependecy recording should be

distributed among the sites of those objects on which the view (or program) depends.

In other words, view or program d~pendencies on remote tables are stored. This

allows local invalidation of distributed programs or remotedly defined views if a local

table is dropped or changed .•

Actually the situation is somewhat more complicated. Programs and views

may depend on remotely defined protection and shorthand views, as well as

remotely stored tables. Depenedencies on protection views are recorded at the view

definition site. In fact this site will be accessed at execution time, since the view is

materialized at that site.

If the dependency of a program on a shorthand view is recorded at the view

definition site, and that view is later dropped, it may not be possible to invalidate the

program. Thiswill happen if no table referenced by either program or view is stored

at the view definition site. In this situation, the program has no need to access the
'

view definition site at execution time and hence it will not discover that the view has

been dropped.

To invalidate a program in these circumstances, dependencies on shorthand

views are recorded at other sites, chosen in such a way that any program referencing

the view must access these sites at execution time. In fact, these sites are the sites

at which tables referenced by the view are stored.

An obvious consequence of these distributed depenedencies is that view

definition and view drop are distributed operations. At view definition time, the

dependency of a view on remote tables must be recorded at the table store sites.

When dropping a view, remote sites storing view dependencies must be accessed in

29

order to delete these dependencies and at the same time, invalidate prog~ams and
~-··

views depending upon the dropped view. The remote sites are only accessed when

the view is a distribute object. Local views are still dropped locally.

30

5
PROS AND CONS OF TRANSPARENCY

Distributed database software offers transparent access to data--- no matter

where in the network the data is located, an authorized program can access the data

as though it is local. Transparency has been the goal of distributed database systems

for over a decade--- it is at the core of next-generation distribuited database systems.

The real virtue of transparency is its ability to support· geographically centralized

clusters of computers.

The IBM's CICS/ISC and Tandem's Encompass have offered transparency.

Although these two distributed systems are very popular, their ability to transparency

access remote data is not used much. In fact, design experts of both vendors

recommend against transparent remote access to data; instead, they recommend a

requester-server design (sometimes called remote procedure call) in which requests .
for remote data are sent to a server which accesses its local data to service the

request. Ironically, CICS and Encompass initially offered only transparent distributed

data.

Manageability is the major problem for the geographically distributed

applications. This is the reason that the old-timers, who had the facility of

transparency, are skeptical about using transparency for geographically distributed

applications, while the newcomers are enthusiastic about the transparency in these

geographically dispersed applications, and so we can say that the geographically

distributed applications are a nightmare to operate. By definition they are a large and

complex syst~m involving hundreds if not thousands of people. Communication

among computers, administrators and operators in such a system is slow, unreliable,

and expensive (SAU). When confronted with a "real" distributed system, one with

SUE communication, successful application designers (all back on the requester-

31

server model. Such designs minimize communication among sites and maximize

modularity and local autonomy for each site.

Now the question arises that whether the distributed database have an

!mportant application: they allow modular growth-- the ability to grow a system by

adding hardware modules to a cluster instead of growing by trading up to a bigger,

more expensive box. It is not enough to have a "cluster'' hardware architecture-

distributed system software is needed to allow modular growth. Clusters avoid all the

hard problems of geographically distribution:

-- Clusters have high-bandwidth, low-latency, reliable and cheap communication

among all processors in the cluster. All data in the cluster is "close" since access ..

times are dominated by disk access time. Geographically distributed system must

deal with slow, unreliable, expensive communications via public networks. In

geographically distributed systems message delays dominate access times.

-- A cluster can be administered and operated by a single group with face-

. to-face contact and with similar organizational goals. "Real" distributed

systems involve multiple sites, each site having its own administration.

Personal communication and relations among sites are via slow,

unreliable, expensive mail and telephone - SUE again.

5.1. A Case Against Transparent Access to Distributed Data

Distributed databases offers transparent access to data. Beyond the

authorization mechanism, there is no control over what the program does to the data.

It can delete all the data, zero it, or insert random new data. In addition, no

comprehensible audit trail is kept telling who did what to the data. This interface is

convenient for programmers, but it is a real problem for application designers and

administrators.

The simplest way to explain the negative aspects of a distributed database is

to compare refrigerators to grocery stores. My refrigerator operates like a distributed

database. Anyone with a key to my house is welcome to take things from the

32

refrigerator or put them in. There is a rule that whoever takes the last beer should get

more at the grocery store.

Requester-server designs provide an administrative mechanism. They

provide defined, enforceable, auditable interfaces which control access to an

organization's data. Rather than publishing its database . design and providing

transparent access to it, an organizational publishes the CALL and RETURN

messages of its server procedures. These servers perform requests according to the

procedures specified by the site owner. They are site's standard operating

procedures. Requesters send messages to servers which in tum execute these

procedures and enforce the store's operating procedures.

Request-server designs are more modular than distributed databases. A site

can change its database design and operating procedures without impacting any

requesters. This gives each site cosiderable local autonomy. The only thing a site

cannot easily change are the request and reply message formats. In the parlance of

progrmming languages, distributed databases offer transparent types, servers offer

opaque types, sometimes called abstract types or encapsulated types.

Request-server designs are more efficient. They send fewer and shorter

messages. Considering the example of adding an invoice to a remote node's

database., A distributed database implemetation would send an update to the account

file, insert a record in the invoice file, and then insert several records in the invoice

detail file. This would add up to a dozen or more messages. A requester-server

design would send a single message to a server. The server would then perform the

updates as local operations. If the communication net is SUE then sending only

message is a big savings over multi-message designs.

Thus the disadvantages of the applications with transparent access to

geographically distributed databases as comapred to a requester-server design are:

--- Poor manageability,

--- Poor modularity and,

-- Poor message performance.

33

The lunatic fringe of distributed databse promise transparent access to

heterogenous database. These folks promise to hide all the nasties of networking,

security, performance, and semantics under the veil of tranparency. But the prospect

of getting people who cannot agree on how to represent the letter "A" to agree to

share their raw data is far fetched. Heterogenous systems are a very good argument

for requesters and servers. The systems need only agree on a network protocol and

a requester-server interfaces. Still a little far fetched unless a standard network and

requester-server model emerges.

5.2. Manageability of a Distributed Database

If we have to,design and manage a distributed applications in the real world

then we can not use transparent access to geographically remote data, because a

distributed system is a big and complex thing and it needs to change and grow over

time. We may want to add nodes, move data about, redesign the database, change

the format or meaning of certain data items, and do other things which are likely to

invalidate some programs using the data.

5.3. The Case For Transparent Access to Cluster Data

The transparent access is very convenient for programmers- it makes it

easy to bring up distributed applications. Coding requesters-servers and making an

application modular is extra work. Clustering is the 'real application of transparent

access to distributed data. It offers both the customer and the vendor significant

advantages. The customer can buy just what he needs and grow in small increments

as he needs more. The vendors has two advantages. First it needs design and

support only a very few modul·~ types. In addition, it can build systems which are

exceed the power of the non-clustered vendours.

The arguments against geographically distributed database do not apply to

clustered systems. A cluster and its operators are typically in a single room. SUE is

34

not a problem. The people have face-to-face contact and the computers have

duplexed, high-speed buses among them.

A cluster is like a centralised system, so it can be managed as one. For

small clusters the local autonomy derieved from modularity may be moot. A

distributed database server cluster applications nicely, allowing data to be partitioned

among any disks in the cluster and allowing servers to run on any cpus in the cluster.

Because the intra-cluster communication is fast and cheap, the cost of distributing

data in the cluster is negligible.

/

35

6
R*: AN EXAMPLE OF LOCATION TRANPARENCY

R* is an operational, experimental, distributed databases management

system which supports the struct.rured query language (SOL). The most important

object of R* is to provide site autonomy. Site autonomy is achieved when each site is

able both to control accesses from other sites to its own data and to manipulate its

data without being conditioned by any other site. While the first goal is completely

achieved by R*, t~e second goal is partially achieved, since a loss of site autonomy

cannot be avoidetf during the 2-phase-commitment of transactions.

The site autonomy also requires that the system be able to grow

incrementally and to operate continuosly, with new sites joining to existing ones,

without requiring existing sites to agree with joining sites on global data structures or

definitions.

Another important issue in R* is locatior) transparency (the user is not aware
'

of the actual location of data); thus, from the programmer's viewpoint, the use of R*

is essentially equivalent to the use of a centralized system. The relevant extentions

to the SQL language due to distribution are:

1. Naming, an R* systemwide name includes for each object the

specification of

<creator>@<creator-site>. <object>@<birth-site>

This naming scheme inCludes the birth site of each object, which is a

static property, but does not include the actual location of the object,

which can change from time to time.

2. The possibility of moving objects between sites.

· R* is composed of three components: a local database management system,

a· data communication component which provides message transmission, and a

transaction manager which coordinates the implementation of multiple transactions.

36

The local database management if further divided into two components: a storage

system, concerned with the storage and retrieval of data, a database language

processor, which translates high-level SQL statements into operations on the storage

system. The storage system used in the R* project, called RSS*, is based on the

research storage system of Sytem R.

R* sites communinacte via the Inter System Communication (ISC) facility of

CICS. Each R* site runs in a CICS address space, and CICS handles terminal 1/0

and message communication. The communication is assumed to be unreliable (i.e.,

there is no guarentee that a transmitted message will be eventually delivered), but it

is ass~med that d~livered. messages are correct, not replicated, and recieved in the

same order as they were sent.

An application program makes all database access requests to the R*

system at its local sites. All intersite communications are between R* systems at

different locations, since R*, rather than an application program, is responsible for

locating distributed data. Thus, in the R* environment there is no need for remote

·application programs.

37

6.1. Problems Solved by R* System

In a centralized database management system each database instance is

located at a single geographical site. These centralized systems simplify the job of

sharing data by providing a high-level database language (SQL), unit-of-work (i.e.,

transaction) management, concurrency management, authorization services and

more. But what will happen to data sharing when an enterprise has more than one of

these centralized DBMSs? For these applications that access only local data, there is

no data sharing problem. However, for applications that need to access data at one

or more remote databases, there is a data sharing problem and current centralized
• .~ 0-

DBMSs do little help.

Fig. 5 illustrates this problem. Assume that widget salespeople in New York

need to access both sales information located in their local database and inventory

information located at the manufacturing plant in Los Angeles. They need this

information in order to produce a report which predicts their ability to supply future

demand for widget in the New York area. There are several ways for the salespeople

in the New York to access the data located in the Los angeles: 1) They could

telephone someone at Los Angeles and as((them to query the database and describe

the results; 2) They could connect a terminal located in New York to application

programs running against the Los Angeles database. 3) They could extract a data file

containing the relevant inventory information from the Los Angeles database and

transmit it to New York. Regardless of which these methods is used, the inventory

data obtained from Los Angeles would then have to be combined with the sales data

from New York by the application program or the salespeople themeselves to

produce the desired report. There are numerous variations on how one_ might

overcome the difficulties created by the fact that some of the required data is stored

in a remote database; but each variation adds complexity for either the application

designer or end-user that not be necessary if all the data were located in a single

DBMS.

38

LA

telephone

· send tape

NY

SOL

Fig. 5: Application Design is Difficult

Manufacturing
Plant

Sales Region

A distributed DBMS, such as R*, simplifies this data sharing problem

permitting application programs to access data objects stored in a network of

interconnected database sites by simply issuing database requests. Assume for a

moment that R* is installed at both Los Angeles and New York. Assue also that the

custodians of the Los Angeles database have entered appropriate SQL commands to

authorize access to portions of the inventory tables to the salespeople at New York.

An application program could then be written that contains SQL statement that

reference the sales information tables located in the New York database and

inventory information tables located in the Los Angeles database. The salespeople

'
could then run the application at New York and generate the report.

6.2. View Management in R*

' A view in R* is a non-materialized virtual relation defined by an SQL

statement. It is defined in terms of one or more tables or previously defined views

and during processing a view is materialized from its component objects. Views can

be used as shorthand notation for reducing the amount of typing required when

frequently executing queries, or they can be used as a protection mechanism for

hiding rows or columns in underlying tables from the user of the view. Thus we can

say that views satisfy the property of location transparency.

In R* view component objects may be at different sites. Therefore to provide

data protection between sites a protection view is materialized only at the site owing

the view. This scheme prevents sending sensitive data to a node where no user is

authorized to see it. Therefore during compilation the master site generates a plan

for processing the view as if it were a physical table and sends the plan and SQL

statements to the apprentices where the view will be -processed. An apprentice site

may itself decompose a view component in terms of other views on tables at yet

other sites. In that case the apprentice acts as a master to other apprentices and

must generate a plan and send subplans to its apprentices sites. The plan

39

distribution progresses in this way unitl all views are resolved and may even back to

a site that has already participated in the compilation.

6.3. R* Objectives

R* was desined to satify three design objectives: it should 1) be easy to use,

2) be compatible of autonomous operation, and 3) provide good performance. To

satiffy these objectives, many difficult design choices were addressed such as query

decomposition, optimal site and access path selection, transaction consistency, .
locking and detection, recovery and resilience with respect to site failure.

Th~ first objective is ease :o use. R* is easy to use because application

program developers and end-users can use SOL to access data objects just as they

do today in SOUDS. The reason that R* users can use SOL is that R* supports the

'
notion of data location tranparency. The databse worries about where an object is

currently stored, not the application programmer or end-user. In fact R* a single

application program can be written which excutes at many different database sites in

the network. At each site, a specially tailored access plan is developed by the

database to optimize access to the database objects defined in the application,

giving its execution location and the current locations of the database objects that it

references.

The second R* objective is site autonomy. One way to characterize a

distributed system is the degree to which a single node in the system can operate

when the connection to other nodes fail. In R*, this ability to operate autonomously is

considered vital. Sites should also administered independently. They should be able

to add new user to their system, switch to new releases etc., without consulting any

central authority. To acheive this degree of autonomy, each database site must be

entirely selfsufficient, it cannot rely on any form of central service such as a central

name server or a central point for detecting deadlocks. Autonomy also implies that

individual sites do not have global knowledge about what operations taking place at

40

other sites and the individual sites will continue database processing despite site

and/or communication failures.

Third and final R* objective is good performance. There are many things in

R* that were done to promote good performance. One is that statements are

complied into access modules. During compilation, database object names are

resolved, ·access paths are determined, authorization rights are validated, and

access plans are distributed to all in involved database sites. This early binding

makes it unneccassary to repeat many of these time consuming operations each

time the application program is actually executed. The other thing that leads to good

performance is that R* enables user to place copies in of data in their local system to
. ..

avoid the overhead of using the communication system when their applications are

executed. This concept is called locality of reference and is vital to good

performance in any distributed system which utilizes relatively slow and unreliable

communication devices. A user can invoke new MIGRATE TABLE statement to

physically move table from a remote database site to the local database site.

Alternatively; a user can create a snapshot of data. A snapshot is a stored database

object, like a table, but it is for read-only access and it periodically refreshed from the

base objects in its definition. The definltion of a snapshot is in the form of an arbitrary

SQL SELECT query.

Thus the R* prototype makes it posssible to build a distributed SQL system

that is easy to use, can run autonomously and has good performance. It appears

likely that workstation databases can be incorporated into the R* design and can

thereby increase the degree of potential data sharing. Instead of just a few dozen

large hosts sharing data, there may be thousands of workstations connected together

or connected to a back-bone host database network. The level of potential data

sharing in such a network is mind-boggling. Much research needs to be done to

understand the various design alternatives and to understand how to configure and

administer such distributed database networks.

41

Thus the R* achitecture supports several kinds of data distribution. Attention

has been given to efficient execution of programs by the compilation and

optimization of users queries and SOL programs. It emphasizes on site autonomy. At

the same time, R* provides transparent remote data definition and manipulation

facilities, distributed transaction management, and distributed concurrency control

which should simplify data sharing for both ad hoc query users and application

programmers. Existing single site SOL programs and queries can be run against

distributed data without modification in an R* environment and programmers can

continue to develop programs without having to worry about network issues.

42

7
CONCLUSION

For geographically distributed databases, to achieve the transparency at

various levels together with the distribution of data, there are four distributed data

allocation strategies which are distinct but interdependent: d,ata fragmentation, data

placement, data replication and dynamic data allocation. Among these four main

emphasize is given on data fragmentation which provides advantage~ of data locality

and system environment. We can divide the database in mainly two ways i.e.

horizontally or vertically .. In both cases we can get a differenUevel of transparency.

Distribution transparency provides the independance of programs from the

distribution of the databases. Different levels of distribution transparency can be

provided by a DDBMS; at each level, different aspects of the real distribution of data

are hidden from the application programmers. At the highest level, called

fragmentation transparency, a modifi~ation of data distribution does not require

rewriting programs. Providing distribution transparency for update applications is

because update application attributes; in this case; a rather complex restructuring of
.

affected data might be required.

Thus we can see that distributed database software offers transpar~nt access

to data' irrespective of the location of the data in the network, an authorized program

can access the data as though it is local. So the transparency in a geographically

distributed system is unmanageable and has technical drawbacks. The real virtue of

transparency is its ability to support geographically centralized clusters of computers.

43

BIBLIOGRAPHY

[1] Apers P.M.G., "Data Allocation in Distributed Database Systems." ACM

Transactions on Database Systems, Vol. 13, No. 3, Sept. 1988, pp. 263--

304.

[2]. Bertino E., Haas M.J. and Lidsay B.G., "View Management in Distributed

Databse Systems," Proc. 1983 VLDB, pp. 376--3_78, Oct. 1983.

(3]. Ceri S. and Pelagatti G., "Distributed Databases: Principle and Systems,"

McGraw-Hill, New York, 1984.

(4]. Ceri S . .and Navathe S.B., "A Methodology for the Distribution Design of the
c

Databases," Proc. Compean 83, San Franscisco, march 1983.

(5]. Ceri S., Negri M. and Pelagatti G., " Horizontal Data Partitioning in Database

Design," In Proceedings of ACM-SIGMOD Conference, ACM, New York,

1982.

(6]. Gray J., 'Transparency in its Place---The Case Against Transparent Access to

Geographically Distritiuted Data," UNIX REVIEW, Vol. 5, No.2, May 1987.

(7]. Hevner A.R. and Rao A., "Distributed Data Allocation Strategies," Information

Systems Department College of Business and Management, University of

Maryland, College Park, Maryland 20742.

(8]. Hurson A.R. and Bright M.W., "multidatabase Systems: An Advanced

Concept in Handling Distributed Data," Advances in Computers, Vol. 32, pp.

149--197.

(9]. March S.T. and Rho S., "Allocating Data and Operations to Nodes in

Distributed Database Design," IEEE Transactions on knowledge and Data

Engineering, vol. 7, No. 2, pp. 305--320, Apr. 1995 .

. [10]. Navathe S.B., Ceri S., Wiederhold G. and Don J., "Vertical Partitioning for

Physical and Distyribution Design of Databases," Report No. STAN-CS-82-

957, Stanford University, Stanford, 1982.

44

[11]. Navathe S., Ceri S., Wiedershold G. and Don J., "Vertical Partitioning

Algorithms for Database Design," ACM Transactions on Database Systems,

Vol. 9, No.4, pp. 680--710, Dec. 1984.

[12]. Parent C., "Integrity in Distributed Databases," Proc. AICA 77, Pisa, 1977.

[13]. William R., Daniels D., Haas L., Lapis G., Lindsay B., Ng P., Obermarck R.,

Selinger P., Walker A., Wilms P. and Yost R., "R*: An Overview of the

Architecture," lmprovings ed., academic Press, Inc, New York, pp. 1--27,

1982.

(14]. Yost R.A. and Haas L.M., "R*: A Distributed Data Sharing System," Computer

Science, IBM Research report RJ4676 (49844), Apr. 1985.

45

	TH56130001
	TH56130002
	TH56130003
	TH56130004
	TH56130005
	TH56130006
	TH56130007
	TH56130008
	TH56130009
	TH56130010
	TH56130011
	TH56130012
	TH56130013
	TH56130014
	TH56130015
	TH56130016
	TH56130017
	TH56130018
	TH56130019
	TH56130020
	TH56130021
	TH56130022
	TH56130023
	TH56130024
	TH56130025
	TH56130026
	TH56130027
	TH56130028
	TH56130029
	TH56130030
	TH56130031
	TH56130032
	TH56130033
	TH56130034
	TH56130035
	TH56130036
	TH56130037
	TH56130038
	TH56130039
	TH56130040
	TH56130041
	TH56130042
	TH56130043
	TH56130044
	TH56130045
	TH56130046
	TH56130047
	TH56130048
	TH56130049
	TH56130050
	TH56130051
	TH56130052
	TH56130053
	TH56130054

