
IMPLEMENTATION OF VORONOI DIAGRAMS
AND TRIANGULAR BEZIER PATCHES

Dissertation submitted to
JA \V AliARLAL NEHRU UNIVERSITY

in pa1tial fulfilment of requirements
for the award of the degree of

MASTER OF TECHNOLOGY
in

COMPUTER SCIENCE

. SANJAY RAJ

SCHOOL OF COMPUTER AND SYSTEM SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI - 110067

519.536 TH
.. R1372 lm

0
.. . Ill ll 11111111111111111111

· TH5E503

~ i'J.A~%
IMPLEMENTATION OF VORONOI DIAGRAMS

AND TRIANGULAR BEZIER PATCHES

JAWAHARLAJ.

Disserlation submitted to

JAWAHARLAL NEHRU UNIVERSITY
in parlial fulfilment of requirements

for the award of the degree of

MASTER OF TECHNOLOGY
in

COMPUTER SCIENCE

SANJAY RAJ

SCHOOL OF COMPUTER AND SYSTEM SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI - 110067

CERTIFICATE

This is to certify that the dissertation entitled

"Implementation of Voronoi Diagrams and

Triangular Bezier Patches ",

which is being submitted by Sanjay Raj to the School of Computer and

System Sciences, Jawahar Lal Nehru University, New Delhi for the

award of Master of Technology in Computer Sciences, is a record of

bonafide project work carried out by him under the supervision and guidance

of Dr. S Balasundaram.

This work is original and has not been submitted in part or full to any

other University or Institution for the award of any degree.

~~,~
Prof K.K. BHARADWA.J

(Deari, SC&SS)

1

Dr. S. BALASUNDARAM

(Supervisor)

A.cknowledgements

I wish t.o take this opportnnity t.o t.hank all the persons who have
helped and encouraged me throughout my stay here at JNU.

First of all I wish to thank our respected Dean Prof. K .K.
Bhardwaj for providing us with a nice and efficient working en
viromnent. I also wish to thank all the other hon'ble faculty
members for giving me a chance to learn from their vast experi
ence.

Above all I wish to express my gratitude to my supervisor
Dr. Balasrmdaram for his invaluable guidance. He has been a
remarkable influence in my life.

Finally I thank Arrm for helping me with computations and
Vishal for his assistance in typing the project report.

Sanjay Raj

.. ·..,·

CONTENTS

Chapter One
Introduction 1

Chapter Two
Curves and Surfaces 3

Chapter Three
Voronoi Diagrams and
Delaunay's Triangulation 9

Chapter Four
The Triangular Surface Patches IS

Conclusion 20

References , 21

Figure Captions 22

CHAPTER ONE

INTRODUCTION

It. can be just.ifiably be said that. we are living in a computer age.
From 1940's when c01uputers \Vere just what their nan1e suggested
i.e., nmnber crm1chers. the cmnput.ers have evolved a long way.
Now they are not only used in aritlunetic and logic operations
but also in areas such as :
• Simulation

• CAD /CAl\.f

• l\1edicine

• lrnage processing

• Cmnmunications

• Artificial Intelligence

• Business and Finance

• Modern art. and et.c.

A cursory look at the above list v.>ill show that ahnost all these
fields are based on or utilize extensively the means of pictorial or
graphical representation. Thus, it is no coincidence that the field
of computer graphics which is primarily concerned with rapid
and economical production of pictures has experienced an almost.
explosive growth.

Computer-generated pictures being a mapping of images fron1
3D.:. . to 2D-space , it is unportant to devise methods that would
do ~tie. mapping in a way so as to preserve the features of the

' .. ~.. 1

obj~c(~der study as best as possible. Specially in fields like
CAD (CAM, geographical representation and scientific research.
It is in this regard that mathen1atical representation of curves and
surfaces comes handy. It. is easy to generate and display nrrves
and surfaces using mat.hernatical representation . l\1oreover even
when the exact feahrres of surfaces/ curves being represented are

1

not known, we can n1ake surfaces/ curves which would approx
imate or mt.erpolat.e t.o whatever information (points, tangents
etc.) we have regards parrunetric representation for curves and
surfaces have t.hus become very conunon in graphics. Insofar a
representation of surface is concerned, most of the present meth
ods utilize the parametric rectangular surface patches. This is
because of their simple mathematical representation and intutive
appeal, the promenient repres~ntat.ionin this category are Bczier
surface patches,cubic surface patches, Coon surfaces ,Splines and
Hermite surface patches.

Another method for representation of surfaces is to use Trian
gular pat.ches and it is t.hi., represent.ation that I have endeavoured
to rmderstand and implement. Indeed there has not been much
research in this formulation as compared to rectangular surface
patches. As we shall see the Triangular representation for surface
patches is a much more powerful tool for interpolating a surface
through a set of datapoints. The outline of my thesis is as fol
lows : Chapter 2 defines the currently used in implementation of
curves/surfaces. In Chapter 3 we discuss the concepts of Voronoi
diagrams and Delarmay's triangulation.

Finally, in Chapter 4 we discuss in depth the concept of trian
gular surface patches with special emphasis on the Bezier trian
gular patches and its implementation.

2

CURVES AND SURFACES

2.1 lntrody~tion

1n t.his ~haph~r we ~hall discuss t.he currently used n1ethods
for unplementing curves and surfaces. We define the following
representations:

• .Algebraic and geometric
a) Cubic and Bicubic
b) Hennite

• Bezier

We then review the properties of these represent.ations. Finally
we introduce Thiangle representation for surface patches.

2.2 Curves

Mathemat.ically a curve is defined as a locus of points that satisfies
a relation of form

f(x,y,z)=c

fu the parametric representation we also introduced a fourth pa
rameter u into the coordinate system. Any point on the curve can
then be represented by a continous single-valued vector function
of the form

p(u) = (.r(u),y(u),z(u))

The para.1uetric variable u is constrained to the interval u E

[0, 1], and the positive sense on a curve in which u incr~ases. The
curve is a point-bounded because it has two definite end-points~
one at u = 0 and the other at u = 1.

3

Algebraic and Geo1uetric Forn1

In algebraic fonn a parmuet.ric cubic curve is given by the follow
ing equation

3 2 I (_·.v ~ ·) p(u) = a 3 u + a2u + a 1 u + a 0 ...-l.

where p and the coefficients a are all vectors and u E [0, 1) and
which is equivalent to following set of eqnat.ions

x(u)
y(u)
z(u.)

3 2
a3zU +azxU + arzU +aox

3 2 a311 u + az11 u + ar 11 u + aoy

a3zu
3 + azzU

2 + atzU + aoz

(Y)

where a3x, a3y, a3.: are cmnponents of vedor a3 and so on.
Using equations (_;f) and (Y), the end-point condition and

the corresponding tangent vectors pu = dp / du we obtain the
following

p(O)

p(l)

pu(O)

pu(l)

By solving t.lus set of four simult.aneous equations in four nn
knowns we can redefine the algebraic coefficients in terms of the
bonndary conditions

a 0 p(O)

a1 pu(O)

8z -3p(O) + 3p(l)- 2pu(O)- pu(l)

83 2p(O)- 2p(l) + pu(O) + pu(l)

Subsit.uting t.hese expressions for algebraic coeffkient.s in equa
tion (X) we get

'
p(u) = (2u 3

- 3u 2 + l)p(O) + (-2-u3 + 3u2)p(l)

+(u 3
- 2u.2 + u)pu(O) + (u3

- u2)pu(l)

4

Tlus equation is sunplifi.ed by followu1g subsit.utions:

Fdu) 2u3 - 3u2 + 1

F2(u) -2u3 + 3u2

Fa(u) u3
- 2u2 + u

F.du) 'U3- 'U2

It. is noteworthy that two curves having exactly the srune shape
would have different algebraic coefficients dependll1g upon their
orientation and size in space; thus user does not have a priori
idea regarding the shape of the curves from above representation
. fu this regard geon1etric representation is very useful in t.hat. it.
offers user or designer an intutive idea of the curve. The geon1etric
representation for cm·ves is given as

using subscript to represent. end-point. value u.

Hermite Curves

Referring to equations (Y) we see that in geon1etric representa
tion the cubic curves are defined by the coordinates and the tan
gent vectors at their end-points. Such a representation is called
Hermite (cubic) curve.

Obviously in the case of a Hennite cubic curve user has a
fairly good idea regards the shape of the curve as he is specifying
the end-points as well as the slope at the end-points. These points
and the derivat.ives fL""<-UP t.he 12-degrees of freedon1 in the set of
equation (Y).

Bezier Curves

A French engineer Bezier devised a paranlt=-t.ric representation
for curves whid1 is an approximate tecluuque for generating a
curve i.e, the curve does not. pass t.hrough all the control points
but rather t.ries to approxilnat.e then1 where control points is a set

5

of points input by the designer. This set. of points in a specified
order defines a control polygon. The shape of the enrve being
governed by this cont.rol polygon. Mat.lunat.ically. t.lw curve is
defined as

n

p(u) = LB;,n(u) u E [0, 1)
i=O

where Bi,n is a Ben1st.eil1 basis polynonual

() (11) i()n i Bi,n U = i U 1 - U -·

Bi,n 's are said to define a Bernstein basis of degree n; in indi
vidual ctrrve coordinates we can write :

n

x(u) L xkBk,n(u)
k=O

n

y(u) L YkBk,n(u)
k=O

n

z(u) L ZkBk,n(u)
k=O

u E [0, 1)

The polynomial B k ,n (u) are called blending functions because
they blend the control points to form a composite function de
scribing the curve. This composite function is a polynomial of
degree one less than the number of control points used. Three
points generate a parabola, four points a cubic ctrrve, and so forth.
Figure (2.1) de1nonstrat.es the appearance of son1e Bezier curves
for various selections of control points in the xy plane (z = 0).
An important property of any Bezier curves is that it lies within
the convex hull (polygon botmdary) of the control points (figtrre
2. 2). This ensures that the curve sn1oothly follows the control
points without. erratic oscillations.

Bezier also have an added attraction of sirnple ntat.hernatical
fonnulat.ion and good intuitive appeal.

G

" I \
I \

I

(a)

(d)

P, p2
,----~

(b)

P,

1 ...
I \

\
I \ PJ

~

\
\
\
\
\

I
I

I
I

\ I
I w p2

(e)

\ I

lei

I
\ I
\ I ..
p2

Figure 1..1 Examples of Bezier curves generated from three,four and
five control points in the zy plane. Dashed lines show the straight
line connection of the control points.

p2

/~
/ \

/ \
\

\
\

\ ____ ,

Figure 2. 2 Convex hull (dashed line) of the control for a B ezier curve.

2.3 Surfaces

In direct. analogy with eurves we ean define para1net.ric repre
~entation for surlaces in different representations by sin1ply in
troducing a new parruneter v. The irnportant t.lung to note is
that. both para1net.ers a and v can take values in [0,1); so in pa
ranwt.er space t.hey define a square patch with boundary curves
v = 0, v = 1, u = 0 and u = 1.

The represent.at.ions for surfaces are as follows

a) Bicubic Surface
The algebraic forn1 of a bicubic patch is given by

3 3

P(u v) -) Y' a· ··L/u.i
'' - .i..-J L.......t t) ' '

i=O j=O

The 8ij vectors are called t.he algebraic coefficients of the surface.

b) Bezier Surface
In this representation the shape of the surface is governed by a grid
of (m + 1) X (n + 1) points which is said to define a control polygon.
Points on the surface are given by following equation

tn n

p(u, v) = L L p;jB;,m(u)Bj,n(v)
i=Oj=O

where the Pii are the vert.ices of the characteris t.ic polygon t.hat forms
a (m + 1) X (n + 1) rectangular array of points: and B;,m and Bj,n are
defined as for curves. The appeal and widespread use of rectangular
patches lies in the fact that they are very easy to understand and
uuplement.. The user has a good intuitive sense regards the shape of
the surlace but still they suffer from the handicap that they carmot
interpolate to a set of datapoints. Also the shape t.hat. is generat.ed
for a given set of control poii1ts is not .. always dose to the one that.
is described i.e., given a set of datapoints the user has no way of
lmowing whether the shape generated is the one that describes the
object or not.

7

CHAPTER THREE

VORONOI DIAGRAMS AND DELAUNAY'S
TRIANGULATION

3.1 Introduction

In this chapt.er we introduce the concept. of Voronoi diagran1 and
list briefly the algorit.luns for obtaining Voronoi diagrams for a
set of points in a plane . We shall see that. the Voronoi diagrams
are actually t.he basis of Delaunay's triangulation Finally we
explain, in detail, the Delaunay 's triang1llat.ion .

3.2 Voronoi diagran1s

Very oft.en in real life situations we are faced with the problem
of partitioning a plane given a set S of N points in the plane such
that each partition has exactly one point p; and all the points in
that partition are closer to Pi then to any other Pi, where i f: j.
These N regions partition the plane into a convex net which is
called a Voronoi diagram, denoted as Vor(s), see Figure 3.1. The
vertices of the diagram are \toronoi vertices, and its line segments
are Voronoi edges.

We define each polygonal region as a Voronoi polygon V(i).
Thus if (x, y) E F (i) then Pi is the nearest neighbor of (x, y).
The Voronoi diagram contains, in a powerful sense, all of the
proximity infonnation defined by the given set.

We state the properties of Voronoi diagrams with a special
description of triangulat.ion property which we shall see in Delau
nay's triangulat.ion .

An Assurnption. 1Vo four points of the original set are cocircular.

9

• •
!I •

•
• 0 • •

• •
• • •

•
•

(a)

(b)

Figure 3.1

(a) Datapoints and Voronoi polygon.

(b) Voronoi diagram for the given datapoints.

Theoren1 1 Evf'ry vertf'x of the Vormwi diagran1 is tlH' conllllOll in
tersection of exactly tlrree edges of the diagran1.

Theoretn 2 For ev~ry vertex v of the Voronoi diagra.1n of S, the circle
C (v) contains no other point of S

Theoretn 3 Every nea.rest neighbor p; d("fines an edge of tl1e ·voronoi
polygon l/ (i) .

Theoretn 4 Polygo11 V (i) is U11bound("d if and only if Pi is a point on
the bormdary of the convex hull of tl1e set S.

Theorem 5 The sf.raigl1t-line dual of the Voronoi diagran1 is a t.rian
gtilation of S.

The Voronoi diagrams are also used in many fields apart. from
triangulation . In archaelogy, Voronoi polygons are used to map
the spread of the use of tools in ancient cultures and for studying
the influence of rival centers of conunerce [Hodder-Orton(1976)].
In ecology, the survival of an organism depends on the number
of neighbors it must compete for food and light, and the Voronoi
diagram of forest species and territ.orial animals is used to in
vestigate the effect. of overcrowding [Pielou (1977)). In physics,
Voronoi diagrams are used in the study of disordered syst.en1s.
The structure of a Inolecule is determined by the combined influ
ence of electrical and short-range forces~ which have been probed
by constructing Voronoi diagrams.

3.3 Algorithms for obtaining Voronoi Diagrams

Algorithm 1.0

Let. {PI, ... , Pi} be a set. S of point.s t.hen this algorit.hn1 proceeds
as follows

10

Step 1. Partition 5 int.o two subsets 5 1 and 5 2 of approxin1at.ely equal
SlZe.

Step 2. Const.ruct. Vor(5r) and Vor(52) recursively.

Step 3. "Merge" Vor(5t) and Vor(52) t.o obtain Vor(s).

A refinen1ent of this algorithm is

Algorithm 1.1

Step.l. Part.ition 5 into two subsets 5 1 and 5 2 of approxin1at.ely equal
SlZe.

St.ep 2. Construct Vor(5 1) and Vor(52) recursively.

Sten1 3. Construct the polygonal chain a, separating 5 1 and 52.

Step 4. Discard all edges of Vor(5:.d t.hat. lie t.o the left, of a and all
edges of Vor(5I) that. lie to the right of u. The result is Vor(5), the
Voronoi diagram of the entire set.

Where a chain u = (u 1 , ••• , up) is a planer st.raightline graph
with vertex set { u1 , ... , up} and edge set {(u;, u;+l)li = 1, ... 1p-

1}
In other words a chain is the planer embedding of a graph

theoretic chain a11d is also called polygonal line. See [Preparta]
for further det.ails.

The above algoritlun requires that. all points be known and
sorted before the user starts constructing the Voronoi diagram.

The order is (nlogn) x n.
Below we present an alternate algorithm for obtaining Voronoi

diagran1s. This algorit.lun has been devised by us . It has the ad
vantage that one need not. sort. the points. Also one can introduce
new points at any stage of computation i.e., all the points need
not. be known a prion:.

11

Our Algorithm

Step 1 Pic.k one point fr01n the set S and initialize the whole plane as
~;.

Step 2 Fron1 the point.s not. yet choosed pick one n1ore point· (it.h) if no
more points go to 5.

Step 3 Rearrange the Voronoi diagran1 to obtain V(i + 1) frmn Vi.

Step 4 Go to Step 2.

Step 5 Draw all edges and stop.

3.4 Triangulation

Given a set of data point.s in a plane the process of t.riangulation
consists in dividing the plane into a set of triangles where vertex of
each triangle is a data point; and each data point is itself shared by
atnwst three triangles.

Since, ordinarily the data points are not. in a plane we first project
each of these data points onto the xy plane and then carry out the
t.ria.ngulation

1

• Most methods for triangulation place a restriction
that the input points be in an increasing order of x-coordinate ; this
reduces the amount of computation.

We have obtained Delaunay's t.riangulation using Watson's Algo
rithm. The Watson's a.lgoritlun is as follows: •

Watson's Algorithm

1. Sort the N points to be triangulated in ascending sequence of
their x-coordinate.

2. Define t.he vertices of the supert.riangle in ant.idockwise order.
It is convenient to number these vertices as N + 1 ~ 1\l + 2~ and
J.V + 3. Set t.he coordinates of these vertices so t.hat. all of the
point.s to be t.riangulated lie within the supertriangle. Add the

12

supert.riangle to a list of triangles fonned and flag it as incom
plete.

3. Introduce a new point from t.he~list. of sorted points with coor

dinates (X new, Ynew) ·

4. Examine the list of all triangles fonned so far. For each triangle
which is flagged as incomplete, do steps 5 to 9.

5. Compute the coordinates of t.he triangle circumcenter, (xc, Yc),
and the square of its circ1uncircle R2

•

6. Compute the square of t.he x-distance from the new point to the
triangle circumcenter, i.e., the quantity

D 2 ()2 x = X- Xnew

7. if D z > R 2 , then the circumcircle for this triangle carmot be
intersected by any-of the remaining points. Flag t.his triangle as

complete and do not execute steps 8 and 9.

8. Compute the square of the distance fron1 the new point to the
triangle circumcenter, i.e., the quantity

9. if D2 < R 2 , then the new point intersects the circumcircle of this
triangle. Delete this triangle from the list. of triangles formed
and store the three pair of vertices which define its edges on a
list of edges. H D 2 > R 2

, then the new point. lies on or out
side the circmncircle for this triangle and the triangle remains
UI1modifi ed.

10. Loop over t.he list of edges and delet.e all edges which are interior
to the polygon formed by the intersected triangles. Since the
vertices defining the edges of each triangle are always recorded in
an anticlockwise. sequence, this step n1ay be executed efficiently
by searching for ordered pairs.

11. Form t.he new triangles by matching the new point with each pair
of vertices in the list of edges. The new point forms new triangles

13

with each pair of vertices on the boundary of the polygon fonned
by the intersected triangles. Define each new triangle such that
its vertices are always listed in an anticlockwise sequence and
flag it as incomplete.

12. Repeat steps 3 to 11 rmtil the list. of points to be triangulated
is exhausted.

13. Form the final triangulation by removing all triangles which con
tain one or more of the supertriangle vertices. This may be
achived by scanning the list of triangles and deleting any of
those which have vertex numbers which are greater than N.

We have implemented Watson's algorit.lun for a set. of 7 data points
on a sphere, and the triangulation obtained is shown in figures 3.2-5.

In chapter 4 we shall see that the triangular patches can be obtained
by mapping the triangular patches in xy plane to the 3-D.

14

Figure 3.2 Triangulation obtained for 7 datapoint.s on a sphere.

Figure 3.3 Triangulation obtained for 13 datapoints on a sphere.

Figure 3.4 Triangulation obtained for datapoints on a ellipsoid.

Figure 3.5 Triangulation obtained for scattered datapoints on a sphere.

CHAPTER FOUR

.THE TRIANGULAR SURFACE PATCHES

4.1 Introduction

In Chapter two we had briefly introduced the concept. of t.riangu
lar suface patches. In t.lus chapter we discuss t.hen1 in detail with
particular emphasis on Bezier-Bernsteii1 patches.

4.2 Baryc.entric Coordinates

\Ve here introduce the concept. of barycentric coordinates as they
form the basis of triangulation technique.

Let T be a triangle with vertices p 1 , p 2 and p 3 ;pi E 'R2
. Let p

be any point. in t.he same plane as p 1 : P2 and P3. It has a unique
representation

This can be seen easily if we consider vectors P1, P2 P3 between
the vertices and an arbitrary origin .Then (Pt- P2) and (Pt- Pa)
(see figure 4.1) form an axis for for the plane containing Pi:s.
Now any posit.ion-vect.or in this plane can be represented as

P Ut (Pt - P2) + u3(p3 - P2) + P2

=> p UtPt + U2P2 + U3P3

because u2 = 1 - 'Ut - u2

\Ve say that. p has barycentric coordillates u with respect. to
T (p,, p2, P3). The barycentric coordinates provide a very suitable
coordinat.e system for arbitrary triangles in the plane since they
are invariant under affine transformations.

In our discussion we always carry out. the triangulaion of points
after projection in (x-y) plane. Thus any function of the fonu

z = f(a·, y)

15

p

Figure 4.1 Barycentric coordinates, where p 1, p2 , p~ are centers of
the defining triangle. u 1 and ua are barycentric parameters. sphere.

can be put. down as

where u 1 , u 2 , u 3 are barycentric coordinates in (x, y) plane.

4.3 Bernstein Polynomials

In terms of barycentric coordinates of a fixed yet arbitrary trian
gle T the bivariate Bernstein polynomials are given as:

Bf(u.)

where /1 + 12 + 13 = n

u 1 + u 2 + u3 = 1

and 11 , 12, 13 E z+

(X)

Since Bf(u) are terms of the binomial expansion of (u1 +u2+u3)n,
and u1 + u2 + U.3 = 1 we see that ·

Also

L Bf(u) =
lll=n it,i'J,i3

i1+i2 +i3 =n

Bf (u) > 0 if u; > 0 ; i = 1, 2, 3

Equation (X) represents a bivariate polynomial of degree n or
less. Thus Br(u) form a basis for the space of polynomials of
degree less than or equal to n. lnfact any polynomial, of degree
less than n can be writen as

p(u) = L ~Bf(u)
lil=n

This form is the bivariate equivalent to Bernstein-Bezier -curves,
and the coefficients Bi posses a geometric interpretation analo
gous to the univariate case: the points (i/n, bi) form a piecewise
triangular polyhedron-the so-called control polyhedron-which
models t.he shape of t.he surface patch (u, p(u)) for u; > 0

16

rnodels the shape of the smface patch (u, p(u)) for ui > 0 (see
figure 4.1 (a)).

For the bormdary curve u = 0, we obtain

p(uo) = L ~Bi(uo)
lil=n

and analogous expressions for the other boundaries. Note that
the above equation describes a relation between univariate poly
nomials!

4.4 A modified nine parameter cubic

Suppose we wish to interpolate to a function J (u) that is defined
over T and suppose that we are given function value and gradient
at each vertex. Thus we have nine constraints altogther, and we
know thet a cubic polynomial has ten coefficients.

The cubic bormdary curves of the interpolant C f are uniquely
defined by the given data; their computation is a standard uni
variate problem. We express the three cubic boundary curves
in terms of univariate Bernstein polynomial. Since the control
polygonals of the boundary curves of C J constitute the bound
aries of the control polyhedron of C f, we can determine nine
coefficients by purely univariate methods, as given under.

In our case we determine bijk as follows: we are given the end-

points and the derivatives ~;, ~~ at three points

Also along a curve (say u 3 = 0)

Similarly

and
dz

du1

dx - = X2- X1
du1

as

dx
(A)

du~
u 1 = 1- u2

dy dy - = Y2 - Yt = - (B)
du 1 du2

dz dx + dz !l1l_ ax dul Tydu1

11

Figure 4.1 (a) P 1 , P2 , P3 are the vertices of the triangle and bij 1e 's are
the vertices of the control polyhedron.

Figure 4.2 Triangular patches for 7 datapoints on a sphere.

f (A) d (B) S. · dz dz t d · t r0111 an . 111Ce we are g1ven dX' Ty a .. en -p011l S We

can evaluate (C) at these points.
Let us briefly out.line how we can obtain bijk from this infor

mat.ion. In Bezier-Bemst.ein represent.at.ion points in surlace are
giVen as

At. u1 = u2 = 0 p(u) = P1

So

Pl = b3oo
and similarly P2 = boao

(D)

Along a particular curve, say u3 = 0

Then

dp(u)
du 1

= 3baooui - 3bo3o(1 - ut) 2 + 3b21oUt (1 - ut) - ib2wui

-3bt20U1 (1 - ut) + ~(1 - u1) 2

Putting u 1 = 1 we get

dp(u) 3
d . = 3baoo - -b21o (F)

Ut 2

dp(u)
In eq.(F) t.he terms d and b3oo are known. Thus frmn

1-'l
equations (A), (B), (C) and (D) we can detennine b210

A siinilar derivation works for b12o, bo21, bo12, b102, b201· Thus
in equation (X) for Bezier-Bernstem patch only one variable is
unknown.

18

(E)

It turns out. that b111 can be given any arbitrary value; it does
not affect the interpolation properties of C f at all. The "stan
dard" value for bll 1 is (Barnhill 1977,Herron 1979]

but = 1/3(b3oo + bo3o + boo3)

This choice of b11 t ensures that C f has linear precision, i.e., if f
is linear, so is C f.

It is possible, however, to improve the interpolant such that
it will have quadratic precision as well. The above equation de
scribes one of many possible relationships between coefficients of
a cubic that is actually linear. A similar relation holds for the
coefficients of a cubic that is actually a quadratic

b _ 1/4 (b2ot + bw2 +bon.+ bo12 + b210 + b12o)
111 - I -1 6 (b3oo + bo3o + boo3)

We are now in a posit.ion to int.erpolate surfaces using this
method. We are giving here (figure 4.3) a interpolation for data
points on a sphere, it is seen that the interpolation is fairly accu
rate as long ·as the datapoints are not two-sided in space (infact
in such cases inversion is possible) the patches obtained are very
smooth. The fact that three parameter u 1, u2 , u3 are involved
means the process of computing points can be parallized which is
of great utility in real-time modelling and interpretation of data.

19

Figure 4.3 Triangular patches for 13 datapoints on a sphere.

Figure 4.4 Triangular patches for datapoints on a ellipsoid.

Figure 4.5 Triangular patches for scattered datapoints on a sphere.

CONCLUSION

We· see from our results that the triangular patches forn1 an
-elegant and efficient method for interpolation of a surface through
set of data points. However triangular patches suffer from the limi
tation that through scattered data points the desired surface is not
obtained, as is obvious from the last figure in the previous chap
ter. We also saw that Voronoi diagrams form an important basis
for triangulation techniques. We have partially implemented our
algorithm for obtaining Voronoi diagrams. Finally as a contin
uation of my work I am t.rying to implement triangular patches
using representations other than Bezier-Bernstein which is the
one which I have used for my project.

References

1. Mathematical Elements of Computer Graphics: Roger and Adams.

2. Computer Graphics: Hearn and Baker.

3. Geometric Modelling: Micheal E. Mortenson.

4. Computational Geometry: F .P.Preparata.

5. Computing the n-dimensional Delannay's triangulation with appli
cation to Voronoi polytopes, D.F. Watson, The Computer Journal
1981,24(2), 167.

6. Smooth interpolation to Scattered 3D data, G. Farin, in Surfaces in
Solids, R.E. Barnhill and W. Boehm (eds.) 1983.

7. A survey of curve a1la surface methods in CAGD, W. Bolun, G.
Farin and J. Kalunann, in Computer Aided Geometric Design 1981,
1, 60

21

Figure Captions

Figure 1.1 Examples of Bezier curves generated from three ,four and
five control points in the xy plane. Dashed lines show the straight
line connection of the control points.

Figure 2. 2 Convex hull (dashed line) of the control for a Bezier curve.

Figure 3.1

(a) Data points and Voronoi polygon.

(b) Voronoi diagram for the given datapoints.

Figure 3.2 Triangulation obtained for 7 datapoints on a sphere.

Figure 3.3 Triangulation obtained for 13 datapoints on a sphere.

Figure 3.4 Triangulation obtained for 7 datapoints on a ellipsoid.

Figure 3.5 '1\i.angulation obtained for scattered datapoints on a sphere.

Figure 4.1 Barycentric coordinates, where p 1 , p2 , Pa are centers of
the defining triangle. u1a.nd u3 are barycentric parameters. sphere.

Figure 4.1 (a) P 1 , P2, P3 are the vertices of the triangle and b;ilc' s are
the vertices of the control polyhedron.

Figure 4.2 Triangular patches for 7 datapoints on a sphere.

Figure 4.3 Triangular patches for 13 datapoints on a_ sphere.

Figure 4.4 Triangular patches for 7 datapoint.s on a ellipsoid.

Figure 4.5 Triangular patches for scat.t.ered dat.apoints on a sphere.

#include<iostream.h>
#include<graphics.h>
#include<math.h>
#include<conio.h>
#include<alloc.h>
#define rn.mpts 13
#define maxtri 8

double X[numpts+3]={125,162.5,162.5,200,237.5,237.5,275};
double Y[numpts+31={200,265,135,200,265,135,200}; // coord of points to be triangulated
double Z[numpts+31={130, 130,130,150,130, 130,130};
double Dzx[numpts]={0.577,0.2887,0.2887,0,-0.2887,-0.2887,-0.577};
double Dzy[numptsJ=<0,-0.5,0~5,0,-0.5,0.5,0>;

struct point{
double X,Y,Z;

};

double max(double Z[])
{ double maximium;

maximium=z[OJ;

//find maximium of z[J

}

for(int i=1;i<numpts;i++){
ifCmaximium < z[iJ){ maximium=z[iJ;)

}

return maximium;

double minCdouble z[J)
{

}

double minimium;
minimium=z[OJ;

for(int i=1;i<numpts;i++){
ifCminimium > z[iJ){ minimium=z[iJ;)

}

return minimium;

struct link{

};

class linklist{

int V1,V2,V3;
link *next;

public: link *first;

l inkl ist()
{first=NULL;}

void additem(int n1,int n2,int n3)
{

}

link *newlink=new link;
newlink->V1=n1;newlink->V2=n2;newlink->V3=n3;
newlink->next =first;
first= newlink;

void deleteitem(int a,int b,int c)
{

link *previous,*current=first;
previous=NULL;
while(currenti=NULL){

ifCCcurrent->V1==a)&&(current->V2==b)&&(current->V3==c))
{

ifCprevious==NULL){

current=first->next;

else

previous·>next=current->next;

free(first);
fi~:
}
{

free(CUTmt);

current=previous->next;

}

void remsuper()
{

VERTEX

else

}

link *prev,*p2=first;
prev=NUll;
while(p2!=NUll){

}

}

{

previous=current;
current=current->next;
}

//DElETE All TRI'S HAVING SUPERTRI

if((p2->V1>=numpts>ll<p2->V2>=numpts>ll<p2->V3>=numpts))

prev->next=p2->next;

{

i f(prev==NUll) {

else

}

}

void draw(){
link *current=first;
double x1,x2,x3,y1,y2,y3;

while(currenti=NUll)

else

}
{

prev=p2;
p2=p2->next;
}

{
x1=X[current->V1l;x2=X[current->V2l;
x3=X[current->V3l;y1=Y[current->V1l;
y2=Y[current->V2l;y3=Y[current->V3l;

}

void display(){

l ine(x1, y1 ,x2, y2) ;.
lineCx2,y2,x3,y3);
line(x3,y3,x1,y1);

current=current->next;
}

link *current=first;
cout<<11 \n list:";
while(currenti=NULl)

{

}
{

p2=fi rst->rext;
free(first);
first=p2;

free(p2);
p2=prev;

}

cout<< current->V1 <<11 11 << current->V2 << 11 11 << current->V3<<11 ;
11-,

};

struct edge{
int vertex1,vertex2;
edge *next;
};

}

current=current->next;
}

-class edgel ist{

I*

public:edge *first;

edgelist(){ first= NULL; }

void addedge(int a,int b){

}

void display(){

edge *newedge=new edge;
newedge->vertex1=a;
newedge->vertex2=b;
newedge->next=first;
first=newedge;

edge *current=first;
cout«"\n EDGELIST:";
while(current!=NULL){

}*/

void remove(){

cout<<current->vertex1<<current->vertex2<<";";
current=current->next;
}

int c,d,j;
edge *prev_to_rec=NULL,*recorder=first;
while(recorder!=NULL)

{

j=O;c=recorder->vertex1;d=recorder->vertex2;
edge *previous=NULL,*current=recorder;
while(current!=NULL)

{
current=current->next;

if (((c==current- >vertex 1) && (d==current- >v"e_rtex2)) II
((d==current->vertex1)&&cc==current->vertex2)))

void clear()
{

}

{

j=1;
if(previous==NULL)

{recorder->next=current->next;
free(current);
current= recorder;
}

else {

}

previous->next=current->next;
free(current);
current=previous;
}

else {

}

previous=current;
}

if(j==1)
{
if(prev_to_rec==NULL)

{

recorder=first->next;
free(first);
first=recorder;
}

else {

}

prev_to_rec->next=recorder->next;
free(recorder>;
recorder=prev_to_rec->next;
}

else { //when l=O,there is no duplicate

}

prev_to_rec=recorder;
recorder=recorder->next;
}

edge *p1;
while(first!=NULL)

{

}

};

int fact(int n)
{

'i nt x;

if(n>=O)

else

{

ifCn==O)
{

else

}

{

return 1;
}

{

x=n*fact(n-1);
return x;
}

p1=first->next;
free(first);
first=p1;
}

cout<<"\n error: -ve int;";
return 0;
}

}

double mypow(double u,int i)
{

if((u==O)&&C i==O >)
{ return 1.0; }

else { return pow(u, i); }
}

double BCint i1,int i2,int i3,double u1,double u2,double u3)
{

double x;
x= 6*(mypow(u1,i1)*mypow(u2,i2)*mypow(u3,i3))/(fact(i1)*fact(i2)*fact(i3) >;
returnx;
}

void main()
{

int N1,N2,N3,data_,v1_,v2_,v3_;
N1=~ts;
N2=~ts+1;
N3=~ts+2;

double ymax,ymin,xmax,xmin,xcen,ycen,Dmax,xnew,ynew,x1,x2,x3,y1,y2,y3,x21,x31,y21,y31,DET;
double R21,R31,Xcentr,Ycentr,Radisq,Distsq,radius;
ymax=max(Y); //find the maxmium y-coord value from all the given points
ymin=min(Y);

xmin=X[OJ;
xmax=X[numpts-11;

xcen=(xmax+xmin)/2;
ycen=(ymax+ymin)/2;

if((xmax-xmin)>(ymax-ymin)){ Dmax=<xmax·xmin)*3;} //define Dmax
else{ Dmax=3*(ymax·ymin);}

XCN1J=xcen·0.866*Dmax;
X[N2J=xcen+0.866*Dmax;
X [N3J =xcen;
Y[N1J=ycen·(Dmax/2);
YCN2]=ycen·(Dmax/2);
Y[N3J=ycen+Dmax;

//FIND COORD VERTICES OF SUPERTRIANGLE

linklist triincomplete,tricomplete; //ADD THE SUPERTRIANGLE AS THE '0'TRIANGLE IN THE
edgel ist edges;
triincomplete.addftem(N1,N2,N3); //LIST OF TRIANGLE VERTICES

- triinc~lete.display();
struct link *p1,p2,*present;

int gd=DETECT,gm;
initgraph(&gd,&gm,"">;

for(int i=O;i<numpts;i++)
{

//LOOP FOR ALL GIVEN POINTS

xnew=X [iJ;
ynew=Y[il;

//INTRODUCE A NE~ POINT

p1=triinc~lete.first; //LOOP THRU ALL TRIANGLES FORMED
whi leCp11=NULJ>

{int 1=1;
x1=X[p1->V1l;x2=X[p1->V2l;x3=X[p1->V3l;
y1=Y[p1->V1l;y2=Y[p1->V2l;y3=Y[p1->V3l;

x21=x2-x1;x31=x3-x1; //FIND THE ORTHOCENTER OF TRIANGLE
y21=y2-y1;y31=y3-y1;
DET=Cx21*y31)-(x31*y21);
DET=1f(2*DET);
R21=Cx21*x21)+(y21*y21>;
R31=(x31*x31)+(y31*y31);
Xcentr=DET*((R21*y31)-(R31*y21)); //COORD OF ORTHOCENTER
Ycentr=DET*((R31*x21)·(R21*x31)); //XCENTR & YCENTR
Radisq=(Xcentr*Xcentr)+(Ycentr*Ycentr);//SQUARE OF CIRCUMCIRCLE RADIUS
radius=sqrt(Radisq);
line(x1,y1,x2,y2);line(x2,y2,x3,y3);1ine(x3,y3,x1,y1);
Xcentr+=x1;
Ycentr+=y1;
circle(Xcentr,Ycentr,radius);putpixel(xnew,ynew, 15);

Distsq=(Xcentr-xnew)*(Xcentr-xnew>;

if(Distsq>Radisq){ //triangle is c~lete
v1_=p1->V1;v2_=p1->V2;
v3 =p1->V3·
trTc~let~.additem(v1_,v2_,v3_);
p1=p1->next;l=O;
triinc~lete.deleteitem(v1_,v2_,v3_);
}

else { //compute the DISTANCE OF NE~ POINT FROM THE ORTHOCENTER
Distsq=Distsq+(Ycentr-ynew)*(Ycentr-ynew);
if(Distsq<Radisq){ //POINT IS INSIDE THE TRIANGLE

v1_=p1->V1;v2_=p1->V2;v3_=p1·>V3;p1=p1->next;l=O; //DELETE THIS TRIANGLE FROM THE
triinc~lete.draw();
triinc~lete.deleteitem(v1_,v2_,v3_>;

INCOMPLETE TRIANGLES
//LIST OF

cleardevice();
triinc~lete.draw();
edges. addedge(v1._, v2_); //AND ST~ THE THREE

EDGES OF TRIANGLE IN A LIST
edges.addedge(v2_,v3_);
edges.addedge(v3_,v1_>;
}

}

if(l==1){p1=p1->next;}
} //ALL TRI'S HAV BEEN CHECKED

edges • remove() ;
//FORM TRI'S ~ITH EACH EDGE IN THE LIST

edge *current;
current=edges.first; //FROM THE i'th POINT
while(currenti=NULL){

edges.clearO;

v1_=current->vertex1;v2_=current->vertex2;
if(i==Cnumpts-1)){

tric~lete.additem(i,v1_,v2_);
}

else {
triinc~lete.additem(i,v1_,v2_);
}

current=current->next;
}

cleardeviceO;
tricomplete.display();
tricomplete.draw();
}

cl eardevi ceO;
//tricomplete.display();
//tricomplete.draw();

getch();

cleardevice();

tricomplete.remsuper();
tricomplete.draw();

getchO;
setviewport(0,0,640,480,1);

double u1,u2,u3,dummyX,dummyY,dummyZ,x,y;
float Xe,Ye,Ze,l,a;
cout<<"\n GIVE EYE COORD:(Xe,Ye,Ze)";cin»Xe»Ye»Ze;
cout«"\n GIVE Z-PLANE OF PROJECTION:";cin>>a;

clearviewport();

present=tricomplete.first;
while(present!=NULL)

{
/1 TRAVERSE EACH TRIANGLE IN THE LIST

int v1,v2,v3;
v1=present->V1;v2=present->V2;
v3=present->V3;
struct point b300,b210,b120,b030,b021,b012,b003,b102,b201,b111;

b300.X=X [v1];
b300. Y=Y [v1] ;
b300. Z=Z [V1l ;

b210.X=(2*X[v1] + X[v2l)/3;
b210.Y=(2*Y[v1] + Y[v2])/3;
b210.Z=C (X[v2l -X[v1J)*Dzx[v1l + (Y[v2l - Y[v1])*Dzy[v1J +3*Z[v1l)/3;_

b120.X=(X[v1] + 2*X[v2l)/3;
b120.Y=(Y[V1] + 2*Y[v2l)/3;
b120.Z=(3*Z[v2] -(X[v2l -X[v1])*Dzx[v2l - (Y[v2l - Y[v1J)*Ozy[v2J)/3;

b030.X=X[v2l;
b030.Y:Y[v2l;
b030.Z=Z[v2J;

b021.X=(2*X[v2] + X[v3])/3;
b021.Y=(2*Y[v2] + Y[v3])/3;
b021.Z=((X[v3J -X[v2l)*Dzx[v2l + (Y[v3l - Y[v2J)*Ozy[v2l +3*Z[v2l)/3;

b012.X=(X[v2] + 2*X[v3l)/3;
b012.Y=(Y[V2] + 2*Y[v3])/3;
b012.Z=< 3*Z[v3] -(X[v3l -X[v2l)*Ozx[v3l - (Y[v3} - Y[v2J)*Dzy[v3])/3;

b003 .X=X [v3];
b003.Y=Y[v3J;
b003.Z=Z[v3J;

b102.X=(2*X[v3] + X[v1l)/3;
b102.Y=(2*Y[v3] + Y[v1l)/3;
b102.Z=((X [v1] -X [v3])*Ozx[v3] + (Y[v1l - Y[v3])*Ozy[v3] +3*Z rv3l>/3;

b201.X=(X[V3] + 2*X[v1l)/3;
b201. Y=<- Y[v3J + 2*Y[v1J)/3;
b201.Z=(3*Z[v1] -(X[v1l -X[v3J)*Dzx[v1l - (Y[v1] - Y[v3J)*Ozy[v1])/3;

b111.X=(X[v1l +X[v2l + X[v3])/3;
b111.Y=(Y[v1] +Y[v2l + Y[v3])/3;
b111.Z=(Z[v1l +Z[v2l + Z[v3l)/3;

b111.X=(b300.X + b030.X + b003.X)/3;
b111.Y=(b300.Y + b030.Y + b003.Y)/3;
b111.Z=(b300.Z + b030.Z + b003.Z)/3;

b111.X=(b201.X + b102.X + b021.X + b012.X + b210.X + b120.X)/4 · (b300.X + b030.X + b003.X)/6;
b111.Y=(b201.Y + b102.Y + b021.Y + b012.Y + b210.Y + b120.Y)/4 · (b300.Y + b030.Y + b003.Y)/6;
b111.Z=(b201.Z + b102.Z + b021.Z + b012.Z + b210.Z + b120.Z)/4 · (b300.Z + b030.Z + b003.Z)/6;

for(u3=0;u3<=1.01;u3+=0.25)
{

for(u2=0;u2<=1.001·u3;u2+=.005)
{

b120.X*B(1,2,0,u1,u2,u3)

b012.X*B(0,1,2,u1,u2,u3)

b201.X*B(2,0,1,u1,u2,u3)

b120.Y*B(1,2,0,u1,u2,u3)

b012.Y*B(0,1,2,u1,u2,u3)

b201.Y*B(2,0,1,u1,u2,u3)

b120.Z*BC1,2,0,u1,u2,u3)

b012.Z*B(0,1,2,u1,u2,u3)

b201.Z*B(2,0,1,u1,u2,u3)

}

u1=1-u2·u3;
dummyX= b300.X*B(3,0,0,u1,u2,u3)

+ b030.X*B(0,3,0,u1,u2,u3)

+ b003.X*B(0,0,3,u1,u2,u3)

+ b111.X*B(1,1,1,u1,u2,u3);

dummyY= b300.Y*B(3,0,0,u1,u2,u3)

+ b030.Y*B(0,3,0,u1,u2,u3)

+ b003.Y*B(0,0,3,u1,u2,u3)

+ b111.Y*B(1,1,1,u1,u2,u3);

dummyZ= b300.Z*B(3,0,0,u1,u2,u3)

+ b030.Z*B(0,3,0,u1,u2,u3)

+ b003.Z*B(0,0,3,u1,u2,u3)

+ b111.Z*B(1, 1, 1,u1,u2,u3);

l= (a · Ze)/(dummyZ ·Ze >;
x= Xe + (dummyX ·Xe)*l;
y= Ye + (dummyY ·Ye)*l;
putpixel(x,y,15>;
}

for(u2=0;u2<=1.01;u2+=0.25)
{

for(u1=0;u1<=1.001-u2;u1+=.005)
{

b120.X*B(1,2,0,u1,u2,u3)

b012.X*B(0,1,2,u1,u2,u3)

b201.X*BC2,0,1,u1,u2,u3)

b120.Y*B(1,2,0,u1,u2,u3)

b012.Y*B{0,1,2,u1,u2,u3)

b201.Y*B(2,0,1,u1,u2,u3)

b120.Z*B(1,2,0,u1,u2,u3)

b012.Z*B(0,1,2,u1,u2,u3)

b201.Z*B(2,0,1,u1,u2,u3)

}

u3=1·u2·u1;
dummyX=

+

+

b300.X*B(3,0,0,u1,u2,u3)

b030.X*B(0,3,0,u1,u2,u3)

b003.X*B(0,0,3,u1,u2,u3)

+ b111.X*B(1,1, 1,u1,u2,u3);

dummyY= b300.Y*B(3,0,0,u1,u2,u3)

+ b030.Y*B(0,3,0,u1,u2,u3)

+ b003.Y*B(0,0,3,u1,u2,u3)

+ b111.Y*B(1,1, 1,u1,u2,u3);

dummyZ=

+

+

b300.Z*B(3,0,0,u1,u2,u3)

b030.Z*B(0,3,0,u1,u2,u3)

b003.Z*B(0,0,3,u1,u2,u3)

+ b111.Z*B(1, 1, 1,u1,u2,u3);

l= (a · Ze)/(dummyZ ·Ze >;
x= Xe + (dummyX ·Xe)*l;
y= Ye + (dummyY ·Ye)*l;
putpixel(x,y, 15);
}

+ b210.X*B(2,1,0,u1,u2,u3) +

+ b021.X*B(0,2,1,u1,u2,u3) +

+ b102.X*B(1,0,2,u1,u2,u3) +

+ b210.Y*B(2,1,0,u1,u2,u3) +

+ b021.Y*B(0,2,1,u1,u2,u3) +

+ b102.Y*B(1,0,2,u1,u2,u3) +

+ b210.Z*B(2,1,0,u1,u2,u3) +

+ b021.Z*B(0,2,1,u1,u2,u3) +

+ b102.Z*B(1,0,2,ui,u2,u3) +

+ b210.X*B(2,1,0,u1,uZ,u3) +

+ b021.X*B(0,2,1,u1,u2,u3) +

+ b102.X*B(1,0,2,u1,u2,u3) +

+ b210.Y*B(2,1,0,u1,u2,u3) +

+ b021.Y*B(0,2,1,u1,u2,u3) +

+ b102.Y*B(1,0,2,u1,u2,u3) +

+ b210.Z*B(2,1,0,u1,u2,u3) +

+ b021.Z*B(0,2,1,u1,u2,u3) +

+ b102.-Z*B(1 ,0,2,u1 ,u2,u3) +

for(u1=0;u1<=1.01;u1+=0.25)
{

for(u3=0;u3<=1.001-u1;u3+=.005)
{

b120.X*B(1,2,0,u1,u2,u3)

b012.X*B(0,1,2,u1,u2,u3)

b201.X*B(2,0,1,u1,uZ,u3)

b120.Y*B(1,2,0,u1,u2,u3)

b012.Y*B(0,1,2,u1,u2,u3)

b201.Y*B(2,0,1,u1,u2,u3)

b120.Z*B(1,2,0,u1,u2,u3)

b012.Z*B(0,1,2,u1,u2,u3)

b201.Z*B(2,0,1,u1,u2,u3)

}

u2=1-u1-u3·
dummyX= ' b300.X*B<3,0;~o,u1 ,u2,u3)

+ b030.X*B(0,3,0,u1,u2,u3)

+ b003.X*B(0,0,3,u1,u2,u3)

+ b111.X*BC1,1~1,u1,u2,u3>;

dummyY= b300.Y*BC3,0,0,u1,u2,u3)

+ b030.Y*B(0,3,0,u1,u2,u3)

+ b003.Y*B(0,0,3,u1,u2,u3)

+ b111.Y*B(1,1,1,u1,u2,u3);

dummyZ= b300.Z*B(3,0,0,u1,u2,u3)

+ b03~.Z*B(0,3,0,u1,u2,u3)

+ b003.Z*B(0,0,3,u1,u2,u3)

+ b111.Z*B(1,1,1,u1,u2,u3);

l= < a • Ze)/(dummyZ -ze);
x= Xe + < dummyX -Xe)*l;
y= Ye + (dummyY ·Ye)*l;
putpixel(x;y,15);

}

getchO;
present=present ·>next;
}

getchO;
}

+ b210.X*BC2,1,0,u1,u2,u3) +

+ b021.X*8(0,2,1,u1,u2,u3~ +

+ b102.X*B<1,0,2,u1,u2,u3) +

+ b210.Y*BC2,1,0,u1,u2,u3) +

+ b021.Y*B(0,2,1,u1,u2,u3) +

+ b102.Y*B(1,0,2,u1,u2,u3) +

+ b210.Z*BC2,1,0,u1,u2,u3) +

+ b021.Z*B(0,2,1,u1,u2,u3) +

+ b102.Z*B(1,0,2,u1,u2,u3) +

	TH56030001
	TH56030002
	TH56030003
	TH56030004
	TH56030005
	TH56030006
	TH56030007
	TH56030008
	TH56030009
	TH56030010
	TH56030011
	TH56030012
	TH56030013
	TH56030014
	TH56030015
	TH56030016
	TH56030017
	TH56030018
	TH56030019
	TH56030020
	TH56030021
	TH56030022
	TH56030023
	TH56030024
	TH56030025
	TH56030026
	TH56030027
	TH56030028
	TH56030029
	TH56030030
	TH56030031
	TH56030032
	TH56030033
	TH56030034
	TH56030035
	TH56030036
	TH56030037
	TH56030038
	TH56030039
	TH56030040
	TH56030041
	TH56030042
	TH56030043
	TH56030044
	TH56030045
	TH56030046
	TH56030047

