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CHAPTER ONE 

INTRODUCTION 

It. can be just.ifiably be said that. we are living in a computer age. 
From 1940's when c01uputers \Vere just what their nan1e suggested 
i.e., nmnber crm1chers. the cmnput.ers have evolved a long way. 
Now they are not only used in aritlunetic and logic operations 
but also in areas such as : 
• Simulation 

• CAD /CAl\.f 

• l\1edicine 

• lrnage processing 

• Cmnmunications 

• Artificial Intelligence 

• Business and Finance 

• Modern art. and et.c. 

A cursory look at the above list v.>ill show that ahnost all these 
fields are based on or utilize extensively the means of pictorial or 
graphical representation. Thus, it is no coincidence that the field 
of computer graphics which is primarily concerned with rapid 
and economical production of pictures has experienced an almost. 
explosive growth. 

Computer-generated pictures being a mapping of images fron1 
3D.:. . to 2D-space , it is unportant to devise methods that would 
do ~tie. mapping in a way so as to preserve the features of the 
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obj~c( ~der study as best as possible. Specially in fields like 
CAD (CAM, geographical representation and scientific research. 
It is in this regard that mathen1atical representation of curves and 
surfaces comes handy. It. is easy to generate and display nrrves 
and surfaces using mat.hernatical representation . l\1oreover even 
when the exact feahrres of surfaces/ curves being represented are 
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not known, we can n1ake surfaces/ curves which would approx
imate or mt.erpolat.e t.o whatever information (points, tangents 
etc.) we have regards parrunetric representation for curves and 
surfaces have t.hus become very conunon in graphics. Insofar a 
representation of surface is concerned, most of the present meth
ods utilize the parametric rectangular surface patches. This is 
because of their simple mathematical representation and intutive 
appeal, the promenient repres~ntat.ionin this category are Bczier 
surface patches,cubic surface patches, Coon surfaces ,Splines and 
Hermite surface patches. 

Another method for representation of surfaces is to use Trian
gular pat.ches and it is t.hi., represent.ation that I have endeavoured 
to rmderstand and implement. Indeed there has not been much 
research in this formulation as compared to rectangular surface 
patches. As we shall see the Triangular representation for surface 
patches is a much more powerful tool for interpolating a surface 
through a set of datapoints. The outline of my thesis is as fol
lows : Chapter 2 defines the currently used in implementation of 
curves/surfaces. In Chapter 3 we discuss the concepts of Voronoi 
diagrams and Delarmay's triangulation. 

Finally, in Chapter 4 we discuss in depth the concept of trian
gular surface patches with special emphasis on the Bezier trian
gular patches and its implementation. 
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CURVES AND SURFACES 

2.1 lntrody~tion 

1n t.his ~haph~r we ~hall discuss t.he currently used n1ethods 
for unplementing curves and surfaces. We define the following 
representations: 

• .Algebraic and geometric 
a) Cubic and Bicubic 
b) Hennite 

• Bezier 

We then review the properties of these represent.ations. Finally 
we introduce Thiangle representation for surface patches. 

2.2 Curves 

Mathemat.ically a curve is defined as a locus of points that satisfies 
a relation of form 

f(x,y,z)=c 

fu the parametric representation we also introduced a fourth pa
rameter u into the coordinate system. Any point on the curve can 
then be represented by a continous single-valued vector function 
of the form 

p(u) = (.r(u),y(u),z(u)) 

The para.1uetric variable u is constrained to the interval u E 

[0, 1], and the positive sense on a curve in which u incr~ases. The 
curve is a point-bounded because it has two definite end-points~ 
one at u = 0 and the other at u = 1. 
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Algebraic and Geo1uetric Forn1 

In algebraic fonn a parmuet.ric cubic curve is given by the follow
ing equation 

3 2 I ( _·.v ~ ·) p(u) = a 3 u + a2u + a 1 u + a 0 ...-l. 

where p and the coefficients a are all vectors and u E [0, 1) and 
which is equivalent to following set of eqnat.ions 

x(u) 
y(u) 
z(u.) 

3 2 
a3zU +azxU + arzU +aox 

3 2 a311 u + az11 u + ar 11 u + aoy 

a3zu
3 + azzU

2 + atzU + aoz 

(Y) 

where a3x, a3y, a3.: are cmnponents of vedor a3 and so on. 
Using equations (_;f) and (Y), the end-point condition and 

the corresponding tangent vectors pu = dp / du we obtain the 
following 

p(O) 

p(l) 

pu(O) 

pu(l) 

By solving t.lus set of four simult.aneous equations in four nn
knowns we can redefine the algebraic coefficients in terms of the 
bonndary conditions 

a 0 p(O) 

a1 pu(O) 

8z -3p(O) + 3p(l)- 2pu(O)- pu(l) 

83 2p(O)- 2p(l) + pu(O) + pu(l) 

Subsit.uting t.hese expressions for algebraic coeffkient.s in equa
tion (X) we get 

' 
p(u) = (2u 3

- 3u 2 + l)p(O) + ( -2-u3 + 3u2 )p(l) 

+(u 3
- 2u.2 + u)pu(O) + (u3

- u2)pu(l) 
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Tlus equation is sunplifi.ed by followu1g subsit.utions: 

Fdu) 2u3 - 3u2 + 1 

F2(u) -2u3 + 3u2 

Fa(u) u3 
- 2u2 + u 

F.du) 'U3- 'U2 

It. is noteworthy that two curves having exactly the srune shape 
would have different algebraic coefficients dependll1g upon their 
orientation and size in space; thus user does not have a priori 
idea regarding the shape of the curves from above representation 
. fu this regard geon1etric representation is very useful in t.hat. it. 
offers user or designer an intutive idea of the curve. The geon1etric 
representation for cm·ves is given as 

using subscript to represent. end-point. value u. 

Hermite Curves 

Referring to equations (Y) we see that in geon1etric representa
tion the cubic curves are defined by the coordinates and the tan
gent vectors at their end-points. Such a representation is called 
Hermite (cubic) curve. 

Obviously in the case of a Hennite cubic curve user has a 
fairly good idea regards the shape of the curve as he is specifying 
the end-points as well as the slope at the end-points. These points 
and the derivat.ives fL""<-UP t.he 12-degrees of freedon1 in the set of 
equation ( Y). 

Bezier Curves 

A French engineer Bezier devised a paranlt=-t.ric representation 
for curves whid1 is an approximate tecluuque for generating a 
curve i.e, the curve does not. pass t.hrough all the control points 
but rather t.ries to approxilnat.e then1 where control points is a set 
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of points input by the designer. This set. of points in a specified 
order defines a control polygon. The shape of the enrve being 
governed by this cont.rol polygon. Mat.lunat.ically. t.lw curve is 
defined as 

n 

p(u) = LB;,n(u) u E [0, 1) 
i=O 

where Bi,n is a Ben1st.eil1 basis polynonual 

( ) (11) i( )n i Bi,n U = i U 1 - U -· 

Bi,n 's are said to define a Bernstein basis of degree n; in indi
vidual ctrrve coordinates we can write : 

n 

x( u) L xkBk,n( u) 
k=O 

n 

y(u) L YkBk,n(u) 
k=O 

n 

z(u) L ZkBk,n(u) 
k=O 

u E [0, 1) 

The polynomial B k ,n ( u) are called blending functions because 
they blend the control points to form a composite function de
scribing the curve. This composite function is a polynomial of 
degree one less than the number of control points used. Three 
points generate a parabola, four points a cubic ctrrve, and so forth. 
Figure (2.1) de1nonstrat.es the appearance of son1e Bezier curves 
for various selections of control points in the xy plane ( z = 0). 
An important property of any Bezier curves is that it lies within 
the convex hull (polygon botmdary) of the control points ( figtrre 
2. 2). This ensures that the curve sn1oothly follows the control 
points without. erratic oscillations. 

Bezier also have an added attraction of sirnple ntat.hernatical 
fonnulat.ion and good intuitive appeal. 
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Figure 1..1 Examples of Bezier curves generated from three,four and 
five control points in the zy plane. Dashed lines show the straight
line connection of the control points. 
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Figure 2. 2 Convex hull (dashed line) of the control for a B ezier curve. 



2.3 Surfaces 

In direct. analogy with eurves we ean define para1net.ric repre
~entation for surlaces in different representations by sin1ply in
troducing a new parruneter v. The irnportant t.lung to note is 
that. both para1net.ers a and v can take values in [0,1); so in pa
ranwt.er space t.hey define a square patch with boundary curves 
v = 0, v = 1, u = 0 and u = 1. 

The represent.at.ions for surfaces are as follows 

a) Bicubic Surface 
The algebraic forn1 of a bicubic patch is given by 

3 3 

P( u v) - ) Y' a· ··L/u.i 
'' - .i..-J L.......t t) ' ' 

i=O j=O 

The 8ij vectors are called t.he algebraic coefficients of the surface. 

b) Bezier Surface 
In this representation the shape of the surface is governed by a grid 
of ( m + 1) X ( n + 1) points which is said to define a control polygon. 
Points on the surface are given by following equation 

tn n 

p(u, v) = L L p;jB;,m(u)Bj,n(v) 
i=Oj=O 

where the Pii are the vert.ices of the characteris t.ic polygon t.hat forms 
a (m + 1) X (n + 1) rectangular array of points: and B;,m and Bj,n are 
defined as for curves. The appeal and widespread use of rectangular 
patches lies in the fact that they are very easy to understand and 
uuplement.. The user has a good intuitive sense regards the shape of 
the surlace but still they suffer from the handicap that they carmot 
interpolate to a set of datapoints. Also the shape t.hat. is generat.ed 
for a given set of control poii1ts is not .. always dose to the one that. 
is described i.e., given a set of datapoints the user has no way of 
lmowing whether the shape generated is the one that describes the 
object or not. 
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CHAPTER THREE 

VORONOI DIAGRAMS AND DELAUNAY'S 
TRIANGULATION 

3.1 Introduction 

In this chapt.er we introduce the concept. of Voronoi diagran1 and 
list briefly the algorit.luns for obtaining Voronoi diagrams for a 
set of points in a plane . We shall see that. the Voronoi diagrams 
are actually t.he basis of Delaunay's triangulation Finally we 
explain, in detail, the Delaunay 's triang1llat.ion . 

3.2 Voronoi diagran1s 

Very oft.en in real life situations we are faced with the problem 
of partitioning a plane given a set S of N points in the plane such 
that each partition has exactly one point p; and all the points in 
that partition are closer to Pi then to any other Pi, where i f: j. 
These N regions partition the plane into a convex net which is 
called a Voronoi diagram, denoted as Vor(s), see Figure 3.1. The 
vertices of the diagram are \toronoi vertices, and its line segments 
are Voronoi edges. 

We define each polygonal region as a Voronoi polygon V(i). 
Thus if ( x, y) E F ( i) then Pi is the nearest neighbor of ( x, y). 
The Voronoi diagram contains, in a powerful sense, all of the 
proximity infonnation defined by the given set. 

We state the properties of Voronoi diagrams with a special 
description of triangulat.ion property which we shall see in Delau
nay's triangulat.ion . 

An Assurnption. 1Vo four points of the original set are cocircular. 
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Figure 3.1 

(a) Datapoints and Voronoi polygon. 

(b) Voronoi diagram for the given datapoints. 



Theoren1 1 Evf'ry vertf'x of the Vormwi diagran1 is tlH' conllllOll in
tersection of exactly tlrree edges of the diagran1. 

Theoretn 2 For ev~ry vertex v of the Voronoi diagra.1n of S, the circle 
C ( v) contains no other point of S 

Theoretn 3 Every nea.rest neighbor p; d("fines an edge of tl1e ·voronoi 
polygon l/ ( i) . 

Theoretn 4 Polygo11 V ( i) is U11bound("d if and only if Pi is a point on 
the bormdary of the convex hull of tl1e set S. 

Theorem 5 The sf.raigl1t-line dual of the Voronoi diagran1 is a t.rian
gtilation of S. 

The Voronoi diagrams are also used in many fields apart. from 
triangulation . In archaelogy, Voronoi polygons are used to map 
the spread of the use of tools in ancient cultures and for studying 
the influence of rival centers of conunerce [Hodder-Orton(1976)]. 
In ecology, the survival of an organism depends on the number 
of neighbors it must compete for food and light, and the Voronoi 
diagram of forest species and territ.orial animals is used to in
vestigate the effect. of overcrowding [Pielou (1977)). In physics, 
Voronoi diagrams are used in the study of disordered syst.en1s. 
The structure of a Inolecule is determined by the combined influ
ence of electrical and short-range forces~ which have been probed 
by constructing Voronoi diagrams. 

3.3 Algorithms for obtaining Voronoi Diagrams 

Algorithm 1.0 

Let. {PI, ... , Pi} be a set. S of point.s t.hen this algorit.hn1 proceeds 
as follows 
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Step 1. Partition 5 int.o two subsets 5 1 and 5 2 of approxin1at.ely equal 
SlZe. 

Step 2. Const.ruct. Vor(5r) and Vor(52) recursively. 

Step 3. "Merge" Vor(5t) and Vor(52) t.o obtain Vor(s). 

A refinen1ent of this algorithm is 

Algorithm 1.1 

Step.l. Part.ition 5 into two subsets 5 1 and 5 2 of approxin1at.ely equal 
SlZe. 

St.ep 2. Construct Vor( 5 1 ) and Vor( 52 ) recursively. 

Sten1 3. Construct the polygonal chain a, separating 5 1 and 52. 

Step 4. Discard all edges of Vor(5:.d t.hat. lie t.o the left, of a and all 
edges of Vor(5I) that. lie to the right of u. The result is Vor(5), the 
Voronoi diagram of the entire set. 

Where a chain u = ( u 1 , ••• , up) is a planer st.raightline graph 
with vertex set { u1 , ... , up} and edge set {(u;, u;+l)li = 1, ... 1p-

1} 
In other words a chain is the planer embedding of a graph

theoretic chain a11d is also called polygonal line. See [Preparta] 
for further det.ails. 

The above algoritlun requires that. all points be known and 
sorted before the user starts constructing the Voronoi diagram. 

The order is (nlogn) x n. 
Below we present an alternate algorithm for obtaining Voronoi 

diagran1s. This algorit.lun has been devised by us . It has the ad
vantage that one need not. sort. the points. Also one can introduce 
new points at any stage of computation i.e., all the points need 
not. be known a prion:. 
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Our Algorithm 

Step 1 Pic.k one point fr01n the set S and initialize the whole plane as 
~;. 

Step 2 Fron1 the point.s not. yet choosed pick one n1ore point· ( it.h) if no 
more points go to 5. 

Step 3 Rearrange the Voronoi diagran1 to obtain V(i + 1) frmn Vi. 

Step 4 Go to Step 2. 

Step 5 Draw all edges and stop. 

3.4 Triangulation 

Given a set of data point.s in a plane the process of t.riangulation 
consists in dividing the plane into a set of triangles where vertex of 
each triangle is a data point; and each data point is itself shared by 
atnwst three triangles. 

Since, ordinarily the data points are not. in a plane we first project 
each of these data points onto the xy plane and then carry out the 
t.ria.ngulation 

1 

• Most methods for triangulation place a restriction 
that the input points be in an increasing order of x-coordinate ; this 
reduces the amount of computation. 

We have obtained Delaunay's t.riangulation using Watson's Algo
rithm. The Watson's a.lgoritlun is as follows: • 

Watson's Algorithm 

1. Sort the N points to be triangulated in ascending sequence of 
their x-coordinate. 

2. Define t.he vertices of the supert.riangle in ant.idockwise order. 
It is convenient to number these vertices as N + 1 ~ 1\l + 2~ and
J.V + 3. Set t.he coordinates of these vertices so t.hat. all of the 
point.s to be t.riangulated lie within the supertriangle. Add the 
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supert.riangle to a list of triangles fonned and flag it as incom
plete. 

3. Introduce a new point from t.he~list. of sorted points with coor

dinates (X new, Ynew) · 

4. Examine the list of all triangles fonned so far. For each triangle 
which is flagged as incomplete, do steps 5 to 9. 

5. Compute the coordinates of t.he triangle circumcenter, (xc, Yc), 
and the square of its circ1uncircle R2

• 

6. Compute the square of t.he x-distance from the new point to the 
triangle circumcenter, i.e., the quantity 

D 2 ( )2 x = X- Xnew 

7. if D z > R 2 , then the circumcircle for this triangle carmot be 
intersected by any-of the remaining points. Flag t.his triangle as 

complete and do not execute steps 8 and 9. 

8. Compute the square of the distance fron1 the new point to the 
triangle circumcenter, i.e., the quantity 

9. if D2 < R 2 , then the new point intersects the circumcircle of this 
triangle. Delete this triangle from the list. of triangles formed 
and store the three pair of vertices which define its edges on a 
list of edges. H D 2 > R 2

, then the new point. lies on or out
side the circmncircle for this triangle and the triangle remains 
UI1modifi ed. 

10. Loop over t.he list of edges and delet.e all edges which are interior 
to the polygon formed by the intersected triangles. Since the 
vertices defining the edges of each triangle are always recorded in 
an anticlockwise. sequence, this step n1ay be executed efficiently 
by searching for ordered pairs. 

11. Form t.he new triangles by matching the new point with each pair 
of vertices in the list of edges. The new point forms new triangles 
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with each pair of vertices on the boundary of the polygon fonned 
by the intersected triangles. Define each new triangle such that 
its vertices are always listed in an anticlockwise sequence and 
flag it as incomplete. 

12. Repeat steps 3 to 11 rmtil the list. of points to be triangulated 
is exhausted. 

13. Form the final triangulation by removing all triangles which con
tain one or more of the supertriangle vertices. This may be 
achived by scanning the list of triangles and deleting any of 
those which have vertex numbers which are greater than N. 

We have implemented Watson's algorit.lun for a set. of 7 data points 
on a sphere, and the triangulation obtained is shown in figures 3.2-5. 

In chapter 4 we shall see that the triangular patches can be obtained 
by mapping the triangular patches in xy plane to the 3-D. 
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Figure 3.2 Triangulation obtained for 7 datapoint.s on a sphere. 



Figure 3.3 Triangulation obtained for 13 datapoints on a sphere. 



Figure 3.4 Triangulation obtained for datapoints on a ellipsoid. 



Figure 3.5 Triangulation obtained for scattered datapoints on a sphere. 



CHAPTER FOUR 

.THE TRIANGULAR SURFACE PATCHES 

4.1 Introduction 

In Chapter two we had briefly introduced the concept. of t.riangu
lar suface patches. In t.lus chapter we discuss t.hen1 in detail with 
particular emphasis on Bezier-Bernsteii1 patches. 

4.2 Baryc.entric Coordinates 

\Ve here introduce the concept. of barycentric coordinates as they 
form the basis of triangulation technique. 

Let T be a triangle with vertices p 1 , p 2 and p 3 ;pi E 'R2
. Let p 

be any point. in t.he same plane as p 1 : P2 and P3. It has a unique 
representation 

This can be seen easily if we consider vectors P1, P2 P3 between 
the vertices and an arbitrary origin .Then (Pt- P2) and (Pt- Pa) 
(see figure 4.1) form an axis for for the plane containing Pi:s. 
Now any posit.ion-vect.or in this plane can be represented as 

P Ut (Pt - P2) + u3(p3 - P2) + P2 

=> p UtPt + U2P2 + U3P3 

because u2 = 1 - 'Ut - u2 

\Ve say that. p has barycentric coordillates u with respect. to 
T (p,, p2, P3). The barycentric coordinates provide a very suitable 
coordinat.e system for arbitrary triangles in the plane since they 
are invariant under affine transformations. 

In our discussion we always carry out. the triangulaion of points 
after projection in ( x-y) plane. Thus any function of the fonu 

z = f(a·, y) 
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p 

Figure 4.1 Barycentric coordinates, where p 1, p2 , p~ are centers of 
the defining triangle. u 1 and ua are barycentric parameters. sphere. 



can be put. down as 

where u 1 , u 2 , u 3 are barycentric coordinates in (x, y) plane. 

4.3 Bernstein Polynomials 

In terms of barycentric coordinates of a fixed yet arbitrary trian
gle T the bivariate Bernstein polynomials are given as: 

Bf(u.) 

where /1 + 12 + 13 = n 

u 1 + u 2 + u3 = 1 

and 11 , 12, 13 E z+ 

(X) 

Since Bf(u) are terms of the binomial expansion of (u1 +u2+u3)n, 
and u1 + u2 + U.3 = 1 we see that · 

Also 

L Bf(u) = 
lll=n it,i'J,i3 

i1+i2 +i3 =n 

Bf ( u) > 0 if u; > 0 ; i = 1, 2, 3 

Equation (X) represents a bivariate polynomial of degree n or 
less. Thus Br(u) form a basis for the space of polynomials of 
degree less than or equal to n. lnfact any polynomial, of degree 
less than n can be writen as 

p(u) = L ~Bf(u) 
lil=n 

This form is the bivariate equivalent to Bernstein-Bezier -curves, 
and the coefficients Bi posses a geometric interpretation analo
gous to the univariate case: the points (i/n, bi) form a piecewise 
triangular polyhedron-the so-called control polyhedron-which 
models t.he shape of t.he surface patch ( u, p( u)) for u; > 0 
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rnodels the shape of the smface patch ( u, p( u)) for ui > 0 (see 
figure 4.1 (a)). 

For the bormdary curve u = 0, we obtain 

p(uo) = L ~Bi(uo) 
lil=n 

and analogous expressions for the other boundaries. Note that 
the above equation describes a relation between univariate poly
nomials! 

4.4 A modified nine parameter cubic 

Suppose we wish to interpolate to a function J ( u) that is defined 
over T and suppose that we are given function value and gradient 
at each vertex. Thus we have nine constraints altogther, and we 
know thet a cubic polynomial has ten coefficients. 

The cubic bormdary curves of the interpolant C f are uniquely 
defined by the given data; their computation is a standard uni
variate problem. We express the three cubic boundary curves 
in terms of univariate Bernstein polynomial. Since the control 
polygonals of the boundary curves of C J constitute the bound
aries of the control polyhedron of C f, we can determine nine 
coefficients by purely univariate methods, as given under. 

In our case we determine bijk as follows: we are given the end-

points and the derivatives ~;, ~~ at three points 

Also along a curve (say u 3 = 0) 

Similarly 

and 
dz 

du1 

dx - = X2- X1 
du1 

as 

dx 
(A) 

du~ 
u 1 = 1- u2 

dy dy - = Y2 - Yt = - (B) 
du 1 du2 

dz dx + dz !l1l_ ax dul Tydu1 

11 



Figure 4.1 (a) P 1 , P2 , P3 are the vertices of the triangle and bij 1e 's are 
the vertices of the control polyhedron. 



Figure 4.2 Triangular patches for 7 datapoints on a sphere. 



f (A) d (B) S. · dz dz t d · t r0111 an . 111Ce we are g1ven dX' Ty a .. en -p011l S We 

can evaluate (C) at these points. 
Let us briefly out.line how we can obtain bijk from this infor

mat.ion. In Bezier-Bemst.ein represent.at.ion points in surlace are 
giVen as 

At. u1 = u2 = 0 p(u) = P1 

So 

Pl = b3oo 
and similarly P2 = boao 

(D) 

Along a particular curve, say u3 = 0 

Then 

dp(u) 
du 1 

= 3baooui - 3bo3o(1 - ut) 2 + 3b21oUt (1 - ut) - ib2wui 

-3bt20U1 (1 - ut) + ~(1 - u1) 2 

Putting u 1 = 1 we get 

dp(u) 3 
d . = 3baoo - -b21o (F) 

Ut 2 

dp(u) 
In eq.(F) t.he terms d and b3oo are known. Thus frmn 

1-'l 
equations (A), (B), (C) and (D) we can detennine b210 

A siinilar derivation works for b12o, bo21, bo12, b102, b201· Thus 
in equation (X) for Bezier-Bernstem patch only one variable is 
unknown. 
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(E) 



It turns out. that b111 can be given any arbitrary value; it does 
not affect the interpolation properties of C f at all. The "stan
dard" value for bll 1 is (Barnhill 1977,Herron 1979] 

but = 1/3(b3oo + bo3o + boo3) 

This choice of b11 t ensures that C f has linear precision, i.e., if f 
is linear, so is C f. 

It is possible, however, to improve the interpolant such that 
it will have quadratic precision as well. The above equation de
scribes one of many possible relationships between coefficients of 
a cubic that is actually linear. A similar relation holds for the 
coefficients of a cubic that is actually a quadratic 

b _ 1/4 (b2ot + bw2 +bon.+ bo12 + b210 + b12o) 
111 - I -1 6 (b3oo + bo3o + boo3) 

We are now in a posit.ion to int.erpolate surfaces using this 
method. We are giving here (figure 4.3) a interpolation for data
points on a sphere, it is seen that the interpolation is fairly accu
rate as long ·as the datapoints are not two-sided in space (infact 
in such cases inversion is possible) the patches obtained are very 
smooth. The fact that three parameter u 1, u2 , u3 are involved 
means the process of computing points can be parallized which is 
of great utility in real-time modelling and interpretation of data. 
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Figure 4.3 Triangular patches for 13 datapoints on a sphere. 



Figure 4.4 Triangular patches for datapoints on a ellipsoid. 



Figure 4.5 Triangular patches for scattered datapoints on a sphere. 



CONCLUSION 

We· see from our results that the triangular patches forn1 an 
-elegant and efficient method for interpolation of a surface through 
set of data points. However triangular patches suffer from the limi
tation that through scattered data points the desired surface is not 
obtained, as is obvious from the last figure in the previous chap
ter. We also saw that Voronoi diagrams form an important basis 
for triangulation techniques. We have partially implemented our 
algorithm for obtaining Voronoi diagrams. Finally as a contin
uation of my work I am t.rying to implement triangular patches 
using representations other than Bezier-Bernstein which is the 
one which I have used for my project. 
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Figure Captions 

Figure 1.1 Examples of Bezier curves generated from three ,four and 
five control points in the xy plane. Dashed lines show the straight
line connection of the control points. 

Figure 2. 2 Convex hull (dashed line) of the control for a Bezier curve. 

Figure 3.1 

(a) Data points and Voronoi polygon. 

(b) Voronoi diagram for the given datapoints. 

Figure 3.2 Triangulation obtained for 7 datapoints on a sphere. 

Figure 3.3 Triangulation obtained for 13 datapoints on a sphere. 

Figure 3.4 Triangulation obtained for 7 datapoints on a ellipsoid. 

Figure 3.5 '1\i.angulation obtained for scattered datapoints on a sphere. 

Figure 4.1 Barycentric coordinates, where p 1 , p2 , Pa are centers of 
the defining triangle. u1a.nd u3 are barycentric parameters. sphere. 

Figure 4.1 (a) P 1 , P2, P3 are the vertices of the triangle and b;ilc' s are 
the vertices of the control polyhedron. 

Figure 4.2 Triangular patches for 7 datapoints on a sphere. 

Figure 4.3 Triangular patches for 13 datapoints on a_ sphere. 

Figure 4.4 Triangular patches for 7 datapoint.s on a ellipsoid. 

Figure 4.5 Triangular patches for scat.t.ered dat.apoints on a sphere. 



#include<iostream.h> 
#include<graphics.h> 
#include<math.h> 
#include<conio.h> 
#include<alloc.h> 
#define rn.mpts 13 
#define maxtri 8 

double X[numpts+3]={125,162.5,162.5,200,237.5,237.5,275}; 
double Y[numpts+31={200,265,135,200,265,135,200}; // coord of points to be triangulated 
double Z[numpts+31={130, 130,130,150,130, 130,130}; 
double Dzx[numpts]={0.577,0.2887,0.2887,0,-0.2887,-0.2887,-0.577}; 
double Dzy[numptsJ=<0,-0.5,0~5,0,-0.5,0.5,0>; 

struct point{ 
double X,Y,Z; 

}; 

double max(double Z[]) 
{ double maximium; 

maximium=z[OJ; 

//find maximium of z[J 

} 

for(int i=1;i<numpts;i++){ 
ifCmaximium < z[iJ){ maximium=z[iJ;) 

} 

return maximium; 

double minCdouble z[J) 
{ 

} 

double minimium; 
minimium=z[OJ; 

for(int i=1;i<numpts;i++){ 
ifCminimium > z[iJ){ minimium=z[iJ;) 

} 

return minimium; 

struct link{ 

}; 

class linklist{ 

int V1,V2,V3; 
link *next; 

public: link *first; 

l inkl ist() 
{first=NULL;} 

void additem(int n1,int n2,int n3) 
{ 

} 

link *newlink=new link; 
newlink->V1=n1;newlink->V2=n2;newlink->V3=n3; 
newlink->next =first; 
first= newlink; 

void deleteitem(int a,int b,int c) 
{ 

link *previous,*current=first; 
previous=NULL; 
while(currenti=NULL){ 

ifCCcurrent->V1==a)&&(current->V2==b)&&(current->V3==c)) 
{ 

ifCprevious==NULL){ 

current=first->next; 

else 

previous·>next=current->next; 

free(first); 
fi~: 
} 
{ 

free(CUTmt); 



current=previous->next; 

} 

void remsuper() 
{ 

VERTEX 

else 

} 

link *prev,*p2=first; 
prev=NUll; 
while(p2!=NUll){ 

} 

} 

{ 

previous=current; 
current=current->next; 
} 

//DElETE All TRI'S HAVING SUPERTRI 

if((p2->V1>=numpts>ll<p2->V2>=numpts>ll<p2->V3>=numpts)) 

prev->next=p2->next; 

{ 

i f( prev==NUll) { 

else 

} 

} 

void draw(){ 
link *current=first; 
double x1,x2,x3,y1,y2,y3; 

while(currenti=NUll) 

else 

} 
{ 

prev=p2; 
p2=p2->next; 
} 

{ 
x1=X[current->V1l;x2=X[current->V2l; 
x3=X[current->V3l;y1=Y[current->V1l; 
y2=Y[current->V2l;y3=Y[current->V3l; 

} 

void display(){ 

l ine(x1, y1 ,x2, y2) ;. 
lineCx2,y2,x3,y3); 
line(x3,y3,x1,y1); 

current=current->next; 
} 

link *current=first; 
cout<<11 \n list:"; 
while(currenti=NULl) 

{ 

} 
{ 

p2=fi rst->rext; 
free(first); 
first=p2; 

free(p2); 
p2=prev; 

} 

cout<< current->V1 <<11 11 << current->V2 << 11 11 << current->V3<<11 ; 
11-, 

}; 

struct edge{ 
int vertex1,vertex2; 
edge *next; 
}; 

} 

current=current->next; 
} 



-class edgel ist{ 

I* 

public:edge *first; 

edgelist(){ first= NULL; } 

void addedge(int a,int b){ 

} 

void display(){ 

edge *newedge=new edge; 
newedge->vertex1=a; 
newedge->vertex2=b; 
newedge->next=first; 
first=newedge; 

edge *current=first; 
cout«"\n EDGELIST:"; 
while(current!=NULL){ 

}*/ 

void remove(){ 

cout<<current->vertex1<<current->vertex2<<";"; 
current=current->next; 
} 

int c,d,j; 
edge *prev_to_rec=NULL,*recorder=first; 
while(recorder!=NULL) 

{ 

j=O;c=recorder->vertex1;d=recorder->vertex2; 
edge *previous=NULL,*current=recorder; 
while(current!=NULL) 

{ 
current=current->next; 

if ( ( ( c==current- >vertex 1) && ( d==current- >v"e_rtex2)) II 
((d==current->vertex1)&&cc==current->vertex2))) 

void clear() 
{ 

} 

{ 

j=1; 
if(previous==NULL) 

{recorder->next=current->next; 
free(current); 
current= recorder; 
} 

else { 

} 

previous->next=current->next; 
free( current); 
current=previous; 
} 

else { 

} 

previous=current; 
} 

if(j==1) 
{ 
if(prev_to_rec==NULL) 

{ 

recorder=first->next; 
free( first); 
first=recorder; 
} 

else { 

} 

prev_to_rec->next=recorder->next; 
free( recorder>; 
recorder=prev_to_rec->next; 
} 

else { //when l=O,there is no duplicate 

} 

prev_to_rec=recorder; 
recorder=recorder->next; 
} 

edge *p1; 
while(first!=NULL) 

{ 



} 

}; 

int fact(int n) 
{ 

'i nt x; 

if(n>=O) 

else 

{ 

ifCn==O) 
{ 

else 

} 

{ 

return 1; 
} 

{ 

x=n*fact(n-1); 
return x; 
} 

p1=first->next; 
free(first); 
first=p1; 
} 

cout<<"\n error: -ve int;"; 
return 0; 
} 

} 

double mypow(double u,int i) 
{ 

if( ( u==O )&&C i==O > ) 
{ return 1.0; } 

else { return pow(u, i); } 
} 

double BCint i1,int i2,int i3,double u1,double u2,double u3) 
{ 

double x; 
x= 6*( mypow(u1,i1)*mypow(u2,i2)*mypow(u3,i3) )/( fact(i1)*fact(i2)*fact(i3) >; 
returnx; 
} 

void main() 
{ 

int N1,N2,N3,data_,v1_,v2_,v3_; 
N1=~ts; 
N2=~ts+1; 
N3=~ts+2; 

double ymax,ymin,xmax,xmin,xcen,ycen,Dmax,xnew,ynew,x1,x2,x3,y1,y2,y3,x21,x31,y21,y31,DET; 
double R21,R31,Xcentr,Ycentr,Radisq,Distsq,radius; 
ymax=max(Y); //find the maxmium y-coord value from all the given points 
ymin=min(Y); 

xmin=X[OJ; 
xmax=X[numpts-11; 

xcen=(xmax+xmin)/2; 
ycen=(ymax+ymin)/2; 

if((xmax-xmin)>(ymax-ymin)){ Dmax=<xmax·xmin)*3;} //define Dmax 
else{ Dmax=3*(ymax·ymin);} 

XCN1J=xcen·0.866*Dmax; 
X[N2J=xcen+0.866*Dmax; 
X [N3J =xcen; 
Y[N1J=ycen·(Dmax/2); 
YCN2]=ycen·(Dmax/2); 
Y[N3J=ycen+Dmax; 

//FIND COORD VERTICES OF SUPERTRIANGLE 

linklist triincomplete,tricomplete; //ADD THE SUPERTRIANGLE AS THE '0'TRIANGLE IN THE 
edgel ist edges; 
triincomplete.addftem(N1,N2,N3); //LIST OF TRIANGLE VERTICES 



- triinc~lete.display(); 
struct link *p1,p2,*present; 

int gd=DETECT,gm; 
initgraph(&gd,&gm,"">; 

for(int i=O;i<numpts;i++) 
{ 

//LOOP FOR ALL GIVEN POINTS 

xnew=X [iJ; 
ynew=Y[il; 

//INTRODUCE A NE~ POINT 

p1=triinc~lete.first; //LOOP THRU ALL TRIANGLES FORMED 
whi leCp11=NULJ> 

{int 1=1; 
x1=X[p1->V1l;x2=X[p1->V2l;x3=X[p1->V3l; 
y1=Y[p1->V1l;y2=Y[p1->V2l;y3=Y[p1->V3l; 

x21=x2-x1;x31=x3-x1; //FIND THE ORTHOCENTER OF TRIANGLE 
y21=y2-y1;y31=y3-y1; 
DET=Cx21*y31)-(x31*y21); 
DET=1f(2*DET); 
R21=Cx21*x21)+(y21*y21>; 
R31=(x31*x31)+(y31*y31); 
Xcentr=DET*((R21*y31)-(R31*y21)); //COORD OF ORTHOCENTER 
Ycentr=DET*((R31*x21)·(R21*x31)); //XCENTR & YCENTR 
Radisq=(Xcentr*Xcentr)+(Ycentr*Ycentr);//SQUARE OF CIRCUMCIRCLE RADIUS 
radius=sqrt(Radisq); 
line(x1,y1,x2,y2);line(x2,y2,x3,y3);1ine(x3,y3,x1,y1); 
Xcentr+=x1; 
Ycentr+=y1; 
circle(Xcentr,Ycentr,radius);putpixel(xnew,ynew, 15); 

Distsq=(Xcentr-xnew)*(Xcentr-xnew>; 

if(Distsq>Radisq){ //triangle is c~lete 
v1_=p1->V1;v2_=p1->V2; 
v3 =p1->V3· 
trTc~let~.additem(v1_,v2_,v3_); 
p1=p1->next;l=O; 
triinc~lete.deleteitem(v1_,v2_,v3_); 
} 

else { //compute the DISTANCE OF NE~ POINT FROM THE ORTHOCENTER 
Distsq=Distsq+(Ycentr-ynew)*(Ycentr-ynew); 
if(Distsq<Radisq){ //POINT IS INSIDE THE TRIANGLE 

v1_=p1->V1;v2_=p1->V2;v3_=p1·>V3;p1=p1->next;l=O; //DELETE THIS TRIANGLE FROM THE 
triinc~lete.draw(); 
triinc~lete.deleteitem(v1_,v2_,v3_>; 

INCOMPLETE TRIANGLES 
//LIST OF 

cleardevice(); 
triinc~lete.draw(); 
edges. addedge( v1._, v2_); //AND ST~ THE THREE 

EDGES OF TRIANGLE IN A LIST 
edges.addedge(v2_,v3_); 
edges.addedge(v3_,v1_>; 
} 

} 

if(l==1){p1=p1->next;} 
} //ALL TRI'S HAV BEEN CHECKED 

edges • remove( ) ; 
//FORM TRI'S ~ITH EACH EDGE IN THE LIST 

edge *current; 
current=edges.first; //FROM THE i'th POINT 
while(currenti=NULL){ 

edges.clearO; 

v1_=current->vertex1;v2_=current->vertex2; 
if(i==Cnumpts-1)){ 

tric~lete.additem(i,v1_,v2_); 
} 

else { 
triinc~lete.additem(i,v1_,v2_); 
} 

current=current->next; 
} 



cleardeviceO; 
tricomplete.display(); 
tricomplete.draw(); 
} 

cl eardevi ceO; 
//tricomplete.display(); 
//tricomplete.draw(); 

getch(); 

cleardevice(); 

tricomplete.remsuper(); 
tricomplete.draw(); 

getchO; 
setviewport(0,0,640,480,1); 

double u1,u2,u3,dummyX,dummyY,dummyZ,x,y; 
float Xe,Ye,Ze,l,a; 
cout<<"\n GIVE EYE COORD:(Xe,Ye,Ze)";cin»Xe»Ye»Ze; 
cout«"\n GIVE Z-PLANE OF PROJECTION:";cin>>a; 

clearviewport(); 

present=tricomplete.first; 
while(present!=NULL) 

{ 
/1 TRAVERSE EACH TRIANGLE IN THE LIST 

int v1,v2,v3; 
v1=present->V1;v2=present->V2; 
v3=present->V3; 
struct point b300,b210,b120,b030,b021,b012,b003,b102,b201,b111; 

b300.X=X [v1]; 
b300. Y=Y [v1] ; 
b300. Z=Z [V1l ; 

b210.X=( 2*X[v1] + X[v2l )/3; 
b210.Y=( 2*Y[v1] + Y[v2] )/3; 
b210.Z=C (X[v2l -X[v1J)*Dzx[v1l + (Y[v2l - Y[v1])*Dzy[v1J +3*Z[v1l)/3;_ 

b120.X=( X[v1] + 2*X[v2l )/3; 
b120.Y=( Y[V1] + 2*Y[v2l )/3; 
b120.Z=( 3*Z[v2] -(X[v2l -X[v1])*Dzx[v2l - (Y[v2l - Y[v1J)*Ozy[v2J)/3; 

b030.X=X[v2l; 
b030.Y:Y[v2l; 
b030.Z=Z[v2J; 

b021.X=( 2*X[v2] + X[v3] )/3; 
b021.Y=( 2*Y[v2] + Y[v3] )/3; 
b021.Z=( (X[v3J -X[v2l)*Dzx[v2l + (Y[v3l - Y[v2J)*Ozy[v2l +3*Z[v2l)/3; 

b012.X=( X[v2] + 2*X[v3l )/3; 
b012.Y=( Y[V2] + 2*Y[v3] )/3; 
b012.Z=< 3*Z[v3] -(X[v3l -X[v2l)*Ozx[v3l - (Y[v3} - Y[v2J)*Dzy[v3])/3; 

b003 .X=X [v3]; 
b003.Y=Y[v3J; 
b003.Z=Z[v3J; 

b102.X=( 2*X[v3] + X[v1l )/3; 
b102.Y=( 2*Y[v3] + Y[v1l )/3; 
b102.Z=( (X [v1] -X [v3] )*Ozx[v3] + (Y[v1l - Y[v3] )*Ozy[v3] +3*Z rv3l>/3; 

b201.X=( X[V3] + 2*X[v1l )/3; 
b201. Y=<- Y[v3J + 2*Y[v1J )/3; 
b201.Z=( 3*Z[v1] -(X[v1l -X[v3J)*Dzx[v1l - (Y[v1] - Y[v3J)*Ozy[v1])/3; 

b111.X=( X[v1l +X[v2l + X[v3] )/3; 
b111.Y=( Y[v1] +Y[v2l + Y[v3] )/3; 
b111.Z=( Z[v1l +Z[v2l + Z[v3l )/3; 

b111.X=( b300.X + b030.X + b003.X )/3; 
b111.Y=( b300.Y + b030.Y + b003.Y )/3; 
b111.Z=( b300.Z + b030.Z + b003.Z )/3; 



b111.X=( b201.X + b102.X + b021.X + b012.X + b210.X + b120.X )/4 · ( b300.X + b030.X + b003.X )/6; 
b111.Y=( b201.Y + b102.Y + b021.Y + b012.Y + b210.Y + b120.Y )/4 · ( b300.Y + b030.Y + b003.Y )/6; 
b111.Z=( b201.Z + b102.Z + b021.Z + b012.Z + b210.Z + b120.Z )/4 · ( b300.Z + b030.Z + b003.Z )/6; 

for(u3=0;u3<=1.01;u3+=0.25) 
{ 

for(u2=0;u2<=1.001·u3;u2+=.005) 
{ 

b120.X*B(1,2,0,u1,u2,u3) 

b012.X*B(0,1,2,u1,u2,u3) 

b201.X*B(2,0,1,u1,u2,u3) 

b120.Y*B(1,2,0,u1,u2,u3) 

b012.Y*B(0,1,2,u1,u2,u3) 

b201.Y*B(2,0,1,u1,u2,u3) 

b120.Z*BC1,2,0,u1,u2,u3) 

b012.Z*B(0,1,2,u1,u2,u3) 

b201.Z*B(2,0,1,u1,u2,u3) 

} 

u1=1-u2·u3; 
dummyX= b300.X*B(3,0,0,u1,u2,u3) 

+ b030.X*B(0,3,0,u1,u2,u3) 

+ b003.X*B(0,0,3,u1,u2,u3) 

+ b111.X*B(1,1,1,u1,u2,u3); 

dummyY= b300.Y*B(3,0,0,u1,u2,u3) 

+ b030.Y*B(0,3,0,u1,u2,u3) 

+ b003.Y*B(0,0,3,u1,u2,u3) 

+ b111.Y*B(1,1,1,u1,u2,u3); 

dummyZ= b300.Z*B(3,0,0,u1,u2,u3) 

+ b030.Z*B(0,3,0,u1,u2,u3) 

+ b003.Z*B(0,0,3,u1,u2,u3) 

+ b111.Z*B(1, 1, 1,u1,u2,u3); 

l= ( a · Ze )/( dummyZ ·Ze >; 
x= Xe + ( dummyX ·Xe )*l; 
y= Ye + ( dummyY ·Ye )*l; 
putpixel(x,y,15>; 
} 

for(u2=0;u2<=1.01;u2+=0.25) 
{ 

for(u1=0;u1<=1.001-u2;u1+=.005) 
{ 

b120.X*B(1,2,0,u1,u2,u3) 

b012.X*B(0,1,2,u1,u2,u3) 

b201.X*BC2,0,1,u1,u2,u3) 

b120.Y*B(1,2,0,u1,u2,u3) 

b012.Y*B{0,1,2,u1,u2,u3) 

b201.Y*B(2,0,1,u1,u2,u3) 

b120.Z*B(1,2,0,u1,u2,u3) 

b012.Z*B(0,1,2,u1,u2,u3) 

b201.Z*B(2,0,1,u1,u2,u3) 

} 

u3=1·u2·u1; 
dummyX= 

+ 

+ 

b300.X*B(3,0,0,u1,u2,u3) 

b030.X*B(0,3,0,u1,u2,u3) 

b003.X*B(0,0,3,u1,u2,u3) 

+ b111.X*B(1,1, 1,u1,u2,u3); 

dummyY= b300.Y*B(3,0,0,u1,u2,u3) 

+ b030.Y*B(0,3,0,u1,u2,u3) 

+ b003.Y*B(0,0,3,u1,u2,u3) 

+ b111.Y*B(1,1, 1,u1,u2,u3); 

dummyZ= 

+ 

+ 

b300.Z*B(3,0,0,u1,u2,u3) 

b030.Z*B(0,3,0,u1,u2,u3) 

b003.Z*B(0,0,3,u1,u2,u3) 

+ b111.Z*B(1, 1, 1,u1,u2,u3); 

l= ( a · Ze )/( dummyZ ·Ze >; 
x= Xe + ( dummyX ·Xe )*l; 
y= Ye + ( dummyY ·Ye )*l; 
putpixel(x,y, 15); 
} 

+ b210.X*B(2,1,0,u1,u2,u3) + 

+ b021.X*B(0,2,1,u1,u2,u3) + 

+ b102.X*B(1,0,2,u1,u2,u3) + 

+ b210.Y*B(2,1,0,u1,u2,u3) + 

+ b021.Y*B(0,2,1,u1,u2,u3) + 

+ b102.Y*B(1,0,2,u1,u2,u3) + 

+ b210.Z*B(2,1,0,u1,u2,u3) + 

+ b021.Z*B(0,2,1,u1,u2,u3) + 

+ b102.Z*B(1,0,2,ui,u2,u3) + 

+ b210.X*B(2,1,0,u1,uZ,u3) + 

+ b021.X*B(0,2,1,u1,u2,u3) + 

+ b102.X*B(1,0,2,u1,u2,u3) + 

+ b210.Y*B(2,1,0,u1,u2,u3) + 

+ b021.Y*B(0,2,1,u1,u2,u3) + 

+ b102.Y*B(1,0,2,u1,u2,u3) + 

+ b210.Z*B(2,1,0,u1,u2,u3) + 

+ b021.Z*B(0,2,1,u1,u2,u3) + 

+ b102.-Z*B(1 ,0,2,u1 ,u2,u3) + 



for(u1=0;u1<=1.01;u1+=0.25) 
{ 

for(u3=0;u3<=1.001-u1;u3+=.005) 
{ 

b120.X*B(1,2,0,u1,u2,u3) 

b012.X*B(0,1,2,u1,u2,u3) 

b201.X*B(2,0,1,u1,uZ,u3) 

b120.Y*B(1,2,0,u1,u2,u3) 

b012.Y*B(0,1,2,u1,u2,u3) 

b201.Y*B(2,0,1,u1,u2,u3) 

b120.Z*B(1,2,0,u1,u2,u3) 

b012.Z*B(0,1,2,u1,u2,u3) 

b201.Z*B(2,0,1,u1,u2,u3) 

} 

u2=1-u1-u3· 
dummyX= ' b300.X*B<3,0;~o,u1 ,u2,u3) 

+ b030.X*B(0,3,0,u1,u2,u3) 

+ b003.X*B(0,0,3,u1,u2,u3) 

+ b111.X*BC1,1~1,u1,u2,u3>; 

dummyY= b300.Y*BC3,0,0,u1,u2,u3) 

+ b030.Y*B(0,3,0,u1,u2,u3) 

+ b003.Y*B(0,0,3,u1,u2,u3) 

+ b111.Y*B(1,1,1,u1,u2,u3); 

dummyZ= b300.Z*B(3,0,0,u1,u2,u3) 

+ b03~.Z*B(0,3,0,u1,u2,u3) 

+ b003.Z*B(0,0,3,u1,u2,u3) 

+ b111.Z*B(1,1,1,u1,u2,u3); 

l= < a • Ze )/( dummyZ -ze ); 
x= Xe + < dummyX -Xe )*l; 
y= Ye + ( dummyY ·Ye )*l; 
putpixel(x;y,15); 

} 

getchO; 
present=present ·>next; 
} 

getchO; 
} 

+ b210.X*BC2,1,0,u1,u2,u3) + 

+ b021.X*8(0,2,1,u1,u2,u3~ + 

+ b102.X*B<1,0,2,u1,u2,u3) + 

+ b210.Y*BC2,1,0,u1,u2,u3) + 

+ b021.Y*B(0,2,1,u1,u2,u3) + 

+ b102.Y*B(1,0,2,u1,u2,u3) + 

+ b210.Z*BC2,1,0,u1,u2,u3) + 

+ b021.Z*B(0,2,1,u1,u2,u3) + 

+ b102.Z*B(1,0,2,u1,u2,u3) + 
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