
®
FROM VERB & KARAKA SPECIFICATIONS TO SIMPLE

SANSKRIT SENTENCES : An NLP Approach

Dissertation submitted to

]awaharlal Nehru University

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE & TECHNOLOGY

by

-Roshan Lal

- SCHOOL OF COMPUTER & SYSTEMS SCIENCES

JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI - 110067

-INDIA

.JANUARY, 1994

To

My Parents

CERTIFICATE

This is to certify that the dissertation titled From Verb & Karaka Specifications to Simple

Sanskrit Sentences: An NLP Approach being submitted by me to Jawaharlal Nehru

University, New Delhi, in partial reyuirements for the award of the degree of Master of

Technology, is a record of the original work done by me under the supervision of

Prof. G. V. Singh, Professor, School of Computer and Systems Sciences, Jawaharlal Nehru

University, New Delhi, during Monsoon Semester, 1993.

The results reported in this dissertation have not been submitted in part or in full to any other

university or institution for the award of any degree or diploma.

'
/~~ "/ \

Prof. K. K. Bharadwaj
Dean,
School of Computer &
Systems Sciences,
Jawaharlal Nehru University,
New Delhi.

Prof. G. V. Singh
_School of .omputer &
Systems Sciences,
Jawaharlal Nehru University
New Delhi.

CHAPTER 1

INTRODUCTION TO NLP

1.1 What is NLP?

1.2 NL Understanding

1.3 NL Generation

CONTENTS

1.4 Issues Involved in NL Generation

1.5 Problem Specifications

CHAPTER 2.

PANINIAN GRAMMATICAL FRAMEWORK

2.1 Paninian Grammar

2.2 Sanskrit Syntax

· 2.3 Karaka Relations

2.4 Sentence Formation Based On Karaka

2.5 Role of morphology

2.5.1 Subanta

2.5.2 Tiganta

CHAPTER3

SENTENCE GENERATION

3.1 Sentence representation

3.2 Semantic basis of sentence generation

3.3 Role of morphology in sentence generation

3.3.1 Subanta (Noun morphology)

3.3.2 Tiganta (Verb Conjugation)

3.4 Computational Lexicon

1-6

1

1

2

3

5

7-15

7

9

9

-13

14

14

15

16-21

16

17

17

18

20

20

CHAPTER 4

IMPLEMENTATION

4.1 Lexicon

4.1.1 Dhatukosh

4.1.2 Pratipadikkosh

4.2 Generator

4.2.1 Subanta

4.2.2 Tiganta

4.3 Main Module

CHAPTERS

CONCLUSION

BIBLIOGRAPGHY

APPENDIX

22-45

22

22

30

38

38

3X

39

46

47

ACKNOWLEDGEMENT

It is my pleasure to express my deep sense of gratitude to Professor G. V. Singh, SC&SS. JNU.

for his gracious and valuable guidance. Without his guidance this work simply would not have

happened. I feel privileged that I worked under his supervision.

My warmest thanks also to Professor K. K. Bharadwaj, Dean, SC&SS, JNU, for providing the

excellent academic environment and facilities which enabled the successful completion of my

project.

My sincerest thanks to my friend O.K. Lobiyal. His advice were valuable, his helpful attitude

constant. Amit revealed mystries ami tricks of Prolog. My heartful thanks to him.

Reeta Nath, Susmita, Ajay, Archana, Bhushan, Sumitra and other classmates were ever so

friendly and ready to cooperate. My thanks to them. I thank my very own Sanjay for his

friendliness, cooperation and being such a good company in those long hours in the L1b.

My tha(}ks are due to Robin serving a good _quality tea during those tiring ~ours which I spent

in lab to accomplish this work.

I express my thanks to Department of Electronics for funding the machine on which the present

work was carried out.

My special thanks to D1·. K. Suryanarayan. He explained me the intricacies of Paninian

Grammar. Throughout the preparation of this work, I availed his expertise and valuable

suggestions.

New Delhi
January, 1994.

ROSI-IANIAL

CHAPTER I

NATURAL LANGUAGE PROCESSING

1.1 WHAT IS NLP'!

If we look at the world as a whole in a broad perspective, the world may be thought of

as made up of two entities namely OBJECTS and ACTIONS. Therefore, in our communication,

we express objects and actions performed on these objects. Our communication, generally, takes

place in the form of Natural L1nguage (sentences). Therefore, there should be a mapping between

these world constructs (objects and actions) and our language constructs.

In NL the basic unit of communication is a sentence which mainly consists of Noun

Phrases (NPs) and Verb Phrases (VPs). The objects are denoted by NPs and the actions by VPs.

To use computers for the processing of NL, we have to represent_objects and actions in a way

and form which is understandable to the computer. Conversely, the objects and action constructs

represented in computer have to be mapped to NL constructs to gener;te NL units. The mapping

of NL constructs to world constructs and the representation of the same for computers's

understanding is called Natural Language Understanding and the related process of generating

NL constructs from the representation of the intended idea, i~side computer, is called Natural

Language Generation. These two pa_rts constitute what is now commonly called Natural

Language Processing.

1.2 NATURAL LANGUAGE UNDERSTANDING

Computers require a great deal of precision, completeness, exactness in communication.

1

They don't have the linguistic tlexibility exhibited by humans. We can and do express the same

objects, actions or idea in sentences which are drastically different in their form. If we are thirsty

we may say to a waiter (i) A glass of water please (ii) Give me some water (iii) May I have a

glass of water ? To all sentences the waiter shall respond by giving us water. To be useful for

NLP, the computer should respond in the same way (as waiter) to our intended idea, however

we paraphrase our intention. And precisely this the goal of natural language understanding

research.

We say a program understands a natural language if it behaves by taking a (predictably)

correct or acceptable action in response to the input. For example, we say a child demonstrates

understanding if it responds with the correct answer to a question. The action taken need not be

an external response. It may simply be the creation of some internal data structures as would

occur in learning some new facts. But in any case, the structures created should be meaningful

and correctly interact with the world model representation held by the program.

1.3 NATURAL LANGUAGE GENERATION

It is sometimes claimed that language generation is the exact inverse of language

understanding. While it is true the two processes have many differences, it is an

oversimplification to claim that they are exact opposites-[6].

The generation of natural language is as difticult as understanding it, inasmuch as a

system must not only decide what to say, but how the utterance should be stated. A generation

system must decide which form is better (active or passive), which words and structures best

express the intent, and when to say what. To produce expressions that are natural ·and close to

2

humans require more than rules of syntax, semantics, and discourse. In general, it requires that

a coherent plan be developed to carry out multiple goals. A great deal of sophistication goes into

the simplest types of' utterance when they are intended to convey different shades of meanings

and emotions. A participant in dialogue must reason about a hearer's understanding and his or

her knowledge and goals. During the dialogue, the system maintain proper focus and formulate

expressions that either query, explain, direct, lead or just follow the conversation as appropriate.

1.4 ISSUES INVOLVED NL GENERATION

Generation systems accept a representation of some set of linguistic goals and have to

produce a set of natural language sentences that realize those goals. The problem can be divided

into two main areas:

1. selecting from the knowledge representation the particular semantic content of the

sentences

2. transforming the semantic content into actual natural language sentences

The area of planning and plan-based representations of linguistic goals is relevant to the

first problem, and the mapping between the final representation, the logical form, and the

syntactic structure are relevant to the second[9].

Consider a situation where an agent Ram sold a car to another agent Shyam. The

information avail,able from a representation would, probably, include all the properties of Ram,

all the properties of Shyam, whatever is known about the car Ram is selling, plus information

about selling events in general, and this selling event in particular. How is a generation system

3

is to choose the infonnation that is relevant and should be included in a description of what

happened? The decision must be based in part of what the system thinks is necessary to identify

the key objects involved (for example. the hearer may not know Shyam by name, so the system

might describe Shyam in terms of his relationship to Ram, say as Ram's Boss), and what aspects

of the situation are important to convey (for example, possibly Ram asked a price that is much

more than the car is worth). This question, of course, cannot be decided independently of some

description of what linguistic goals the speaker has (for example, may be the speaker wants to

convince the hearer that Ram is a swindler, or maybe the speaker wants to show that Ram didn't

like his car, and so on).

Once the content has been decided, it must be realized in a set of sentences. This requires

significant knowledge about how different linguistic structures have different linguistic effects.

Even when the content can be realized in a single sentence, the situation is very complex. For

example the following sentences say nearly the same thing, and most understanding systems

would abstract away the differences between them during syntactic and semantic processing.

1. The man in the top hat dropped the bamboQ cane.

2. The man wearing the top hat dropped the bamboo cane.

3.- The bamboo cane was dropped by the man who was wearing the top hat.

- 4. The- man who dropped the bamboo cane was wearing a top hat:

All of these sentences have approximately the same meaning, and if one is true, then they

all are true. They each have slightly different effects, however. Sentences 1 and 4, for example,

use different infonnation to identify the man (the man in the top hat versus the man who dropped

4

the bamboo cane) and thus would have different effects when processed hy referential analysis.

So generation program would have to know which one of these is the appropriate description.

Thus a system should have sufficient information to determine the exact structural description

of the given situation to give rise to the required effect, voice etc.

1.5 PROBLEM DESCRIPTION

Sentence generation and analysis are two main issues in Natural Language Processing.

The generat!on of a sentence starts from the meaning the speaker intends to convey.

Semantically, the verb(i.e. dhatu) may he considered as the center of a sentence, and other words

are related to it either directly or indirectly. These relations are specified by karaka.

the meaning of the verb the possible karakas that go with it can be known. If these values are

stored with the verb, the rest of generation process can easily taken care of.

Sanskrit lacks a strict syntax, and he~ce the order of the words qmnot he easily predicted.

The constituent words can occur in any manner, whatsoever. For example, the verb may occur

as the first word, in certain constructions. Questions relating to concord, government and order

need to be considered for sentence generation.

In the present dissertation, it is proposed to generate Simple Sanskrit Sentences using

Verb and Karaka specifications. The target sentences shall be consisting of one tiganta pada

(finite vt:rbal form) and one or more subanta padas. The generation of a sentence is supported

by two lexicons, one for noun-forms and other for verb-forms. The input to the system is -dhatu

and pratipadikas. The form of the dhatu to be generated depends on /akara, purusha and vachan.

Similarly, the relation of the noun/s to the verb is governed by 'the case-markers, which in turn

5

come from karaka specifications.

This work is augmented and complemented by the related work, namely, ·sentence

analysis based on verb and karaka specifications'.

The present work does not consider adjectives, adverbs, participles, passive and complex

structures. The sentences generated contain minimum of two words and a maximum of seven

words.

6

CHAPTER II.,

PANINIAN GRAMMATICAL FRAMEWORK

Language is the most effective means of communication. It consists of innumerable

sentences. The grammar of a language is a formal specification of allowable structures of that

language. It provides a finite set of rules to describe infinite number of sentences.

Language processing through computers has given a new impetus for the study of various

aspects of language, particularly, grammar. In recent times, traditional grammars have given way

to computational grammars. The Paninian grammar, written some two thousand years back, is

greatly appreciated for its computational approach in describing Sanskrit language. It is discussed_

in greater detail below :

2.1 PANINIAN GRAMMAR :

The Astadhyayi, written by Panini[7], is a grammar of the Sanskrit language as it was

spoken by the Indo-Aryan tribe living on the Gangetic plain around the sixth centuary B.C.

The Astadhyayi is a grammar in the precise mathematical sense of the term as it provides

a set of rules whereby well- formed _Sanskrit sentences can be-generated.

It is a tribute to the Astadhyayi that, despite the rapid development of various linguistic

theories in the modern times, it has still remained a work of great lingui~tic interest. According

to a renowned American linguist/ it is monument of human intelligence'.

The Paninian grammar is a descriptive grammar for Sanskrit language. It is a generative

7

grammar with computational approach in handling the linguistic data. In recent times, it has

attracted the attention of computer scientists working in NLP.

Sanskrit being an intlectional language with a relatively free word order, lays emphasis

on morphology i.e. the word formation, the Paninian grammar es..o;entially generates words, of

different types.

The major word formation types that the Paninian grammar generates are as follows :

1. Subanta formation (nominal intlection),

2. Tiganta formation (verbal conjugation),

3. Kridanta formation (primary derivatives),

4. Tadhhita formation (secondary derivatives),
•

5. Samasa formation (compound formation) and

6. Stripratyant formation (feminine base formation).

The aforesaid word-forms can be classitied either as inflectional or derivational. Subantas

and tigantas come under the first category, while the others. fall under the second category. The

intlectional morphology conceives words as role players in a sentence while the derivational

morphology involves the formation of various lexical items.

The subantas involve declension of nominal bases, and deal with case markings. The

tigantas deal with the-conjugation of verb roots in .differeQt tenses and moods. The krid~ntas

involve the derivation of a nominal base from a verb root . .Apart from the nouns, the krit suffixes

also generate participles, adjectives and so on. The taddhitas deal with the derivation of

secondary noun forms. Samasas is a word-compounding process in which simple. words whether

nouns, adjectives, numerals, verbs or indeclinables are combined with one another to form

compounds. Feminine basis in Sanskrit are formed hy adding stripratyayas to the nominal bases.

For the purposes nf the present work, only suhanta and tiKanta are considered.

There is no sharp distinction between morphology and syntax in Sanskrit grammar. As

mentioned earlier, the output of nominal and verbal morphology give us the syntactic units.

2.2 SANSKRIT· SYNTAX :

Sentence is the minimal meaningful unit of a language. The division of a sentence into

words and , of a word into base and suffixes is merely for the sake of grammatical analysis.

In Sanskrit , the verb plays a key role and is the semantic focus of a sentence. Thus, a

finite verbal form in Sanskrit contains information regarding tense/mood, number, person, voice

and so on. However, Sanskrit also allows purely nominal sentences.

The corner-stone of Sanskrit syntax is the notion of Karaka. Karaka is a conceptual notion

that mediates mapping between grammatical relations and case-suffixes.A syntactic unit is called

'pada' and Panini defines pada as :

sup-ting antam padam P.1.4.14.

'that which ends with a sup suffix (i.e. nominal suffix) or with a ting suffix (i.e.

verbal suffix) is called pada'.

Thus, a Sanskrit sentence may be conceived as made up of inflected nouns and conjugated
- -·

verbs.

2.3 KARAKA RELATIONS

- The karakas are expressed in terms of a case-ending. While a strict one-to-one

9

correspondence between a karaka and a case-suffix may not be established, it may. in general,

be stated that a particular case-suffix roughly corresponds to one karaka. A single case-suffix can

represent more than one karaka, and conversely, one and the same karaka may be represented

by more than one case suffix. There is no straight forward mapping from vibhakti to semantic

relation between noun groups and verbs. The rules of grammar provide a mapping from karaka

relations between the verb(s) and the nominals in a sentence. The karaka relations by themselves

do not give the semantics. They specify relations which mediate between vibhakti of nominals

and the verb form on one hand and semantic relations on the other. The various levels in the

Paninian model are as shown below :

Semantic Level
(What the speaker has in mind)

Ka_raka Level

Vibhakti Level

Surface Lt:vel (uttered sentence)

In all there are six types of karaka relations. What the karaka relations do specify with

respect to a verb, are six or so relations of nominals to that particular verb. These provide for a

mapping from karaka relations to semantic ~relations.-Thus the karakas provide the maximum

necessary information relative to a verb. For example, the karta karaka may get mapped to agent

. for one verb, and experience for another, etc.

Karaka theory inC!-lrporates two other insights.

I. Each and every verb refers to an activity or event that can be further sub-divided into

10

a complex of activities. Each of the sub-activities has its own semantic relations and

karaka relations.

Each of the sub-activities has its own semantic relations with associated objects. Thus,

for each of the sub-activities there will he appropriate karaka relations.

Even though the verb representing a main activity may be used in a sentence, the karaka

relations specified might correspond to a particular sub-activity. This will have obvious .

consequences for semantic relations.

2. Karaka relations also depend on the concept of Vivaksha refers to the speaker's

viewpoint or attitude towards the activity. A sentence is not a statement of an

objective activity hut of the objective activity coloured by the speaker's viewpoint.
(

(Vivaksha should not he confused with the speaker's intentions which cnme under

pragmatics.) Usually vivaksha affects the choice of verb form, which in turn affects

the karaka relations and vibhakti. For example, the objective activity of falling of the

leaf of a tree may he expressed as

vrksat parnam patati (The leaf falls from the tree)

and also

vrksasya parnam patati (The leaf of tree falls)

Karta karaka holds between that nominal and a v_erb in a sentence, whose referent is

swatantra or the most independent or autonomous out of all the karaka nominals that are

expressed by the speaker. However, it is with respect to the activity implied by the verb._

Every verb in a sentence refers to an activity. Sometimes the verb can be ambiguous, in

which case it may refer to several activities. When used in a sentence, it may refer to any one

11

of its possible activities. Karla of a verb in a sentence is nne which is the 'ashraya · or base of

the activity.

There are six types of karakas in Sanskrit. These are karta, karman, karana, sampradana,

apadana and adhikarana. Given below an: the definitions of the same :

1. KARTA : The most independent person /thing in the performance of an action.

2. KARMA : The object most desired (to be obtained) hy the agent of the action.

3. KARANA :The efficient means in the performance of an action.

4. SAMPRADANA :The recipient of the object of the action 'da' (to give).

5. APADANA :The static object in the action of separation.

6. ADHIKARANA : The substratum of the action performed.

We now give the rules in the Astadhyayi that relate these karakas with the case-suftixes

(vibhaktt). Only the most general rules are mentioned.

1. pratipadikartha-linga-parimana-vacanamatre prathama (?.2.3.46)

Where the sense is that of the Crude form or where there is the additional sense of gender

only, or measure only, the tirst case-affix is employed.

2. karmani dvitiya (P.2.3.2)

When the object is not denoted by the termination of the verb, &c. i.e. the verb does not agree

with it, the second case-aftix is added to .the word.

3. kartrkaranayos tritiya (P.2.3.18)

In denoting the agent or the instrument the third case- affix is employed.

4. chaturthi sampradane (P .2.3.13)

In denoting the sampradana-karaka the fourth affix or Dative is employ~d after the noun:

12

5. apadane pancami (P.2.3.2H)

When the Apadana-karaka is denoted , the fifth case- affix is employed.

6. saptamyaadhikarane ca (P.2.3.36)

The seventh case-affix is employed when the sense is that of location.

2.4 SENTENCE FORMATION BASED ON KARAKA:

Example 1: Let us say we want to construct a sentence ·Ram a reads a book'. Isolated words

ramah, pustakam, patathi are connected with the words in the sense of agent (Karta), object

(Karaman) and action (Kriya). In Ashatadyayi, derivation of words and their interrelation in a

sentence starts from meaning. The lexicon (dhatukosh) contains a list of verbal roots and

uriderived words pratipadika. The items are selected from the lexicon and the semantic relation

between them is decided. Nominals are assigned gender and number, and the verb a reference

of time.

If we choose the present tense (varthamana kala) verb· gets lat. In our case Ramah is the

agent, and book (pustaka) is the goal.

By 3.4.69, Lat expresses (1) agent or (2) goal or (3) the state (where the verb lacks goal). If

we choose Lat to represent the agent, after transformations the final yerb form is patathi. The

goal can be expressed by 2.3.2 accusative case, since it is not expressed yet (anabhihita), (by

2.3.2) we get pustakam (pustaka + am). Verb ending already expressed agent (by 3.1.68 karthari

shap); hence we cannot express i~ again. Now second or third case ending becomes applicable

(by 2.3.2 and 2.3.18). But since we have to only express gender and number (by 2.3.46), the

nominal stem gets the nominative case (su) and we form the word (rama + su) ramah.

13

agent

rama + su pata + thip

pustaka + am

goal

Final form is : rama(h) pustak(am) pata(thi).

2.5 ROLE OF MORPHOLOGY :

We shall now deal with morphology of Sanskrit, which is of prime consideration in sentence

generation.

2.5.1 Subanta

-A subanta is made up of a nominal base and a nominal suffix. The nominal base is called

pratipadika. There are 21 nominal suftixes in Sanskrit. There are 7 vibhaktis and 3 vachanas in

Sanskrit. The 21 nominal suftixes are arranged in 7 x 3 paradigm. The suffixes are listed as :

ekvachan dvivachan bahuvachan

vibhakti

prathama su au Jas

dvitiya am aut sas

tritiya taa bhyam bhis

chaturthi ne bhyam bhyas

panchami nas1 bhyam bhyas

14

shashti nas OS a am

saptami OS sup

2.5.2 Tiganta

This deals with the conjugation of verbs. Panini divides all the verh roots (dhatu) into ten

ganas. They are Bhavadi, Adadi, Divadi, Tudadi, Churadi, Tanadi, Rudhadi, Kriyadi, Kandvadi,

J uhotiyadi.

There are about 2000 dhatus in Sanskrit. The bhavadi gana is by far the largest one

comprising of almost 40% of all the dhatus. The transformation rules acting on verbal roots are

different for each gana and they are the same within a particular gana. The verbal root from a

specific gana can then be a parasmaipadi, atmanepadi or ubhaypadi. Knowledge of lakara (

which pertain to tense or mood of a verb) is required to specify a desired action[6]. Sanskrit has

ten lakaras namely /at, lit, lut etc .. Like English, we have thr~~ numbers or purushas in Sanskrit

namely uttamapurusha (first), madhyamapuru..r;;ha (second) and prathamapurusha (third). And

finally we need a purusha to form a tiganta pada.

15

CHAPTER III

l
SENTENCE GENERATION

3.1 SENTENCE REPRESENTATION

Panini doesn't formally define the tem1 vakya (sentence), but the word is used in Astadhyayi.

A sentence is a series of connected words. To express tHe connection between the words, Panini

uses different non-technical terms such as joining (1.4.59 yoga), syntactically connected (2.1.1

samaratha), wish or desire (3.2.114 sakanksha) and so on.

In Sanskrit, the relation which one word bears Ul another in a sentence is determined by its

grammatical form. No change occurs in the meaning of the sentence, how-so-ever the order of

the words be changed. Therefore, the mere order of word is nor of material importance, though

a perfect arbitrariness in that respect is not allowable. But in English and other languages,

deficient in inflection, order plays a vital role. If the order of words is changed, a corresponding

change in meaning takes plcice. Sanskrit Syntax also takes into account the meaning and use nf

participles, the various tenses and moods, etc. The usual order of words in a sentence is, first the

subject with its adjuncts, then the-object with its adjuncts, followed by the adverbs and lastly the

predicate.

In our system the sentence representation is done in the following manner.

-·

Every verb essentially represent an action and nouns represent the substantives that play a role

in bringing about this action. The noun-verb relation is specified in terms of karakas. The dh:atu

/6

lexicon contains the verbs along with the karakas it takes. Every verb takes some karakas

invariably (which are called anivarya karakas) and some optionally (which are called vaikalpika

karakas). Based on the karaka specifications the system takes the noun inputs. For example, if

the verb takes karma-karaka a corresponding noun is expected. The system contains a noun

lexicon wherein are stored its attributes.

Based on _the input information the sentence is generated. As mentioned above, the present

system is developed for generating simple sentences.

3.2 SEMANTIC BASIS OF SENTENCE GENERATION

The generation of a sentence starts with the meaning the speaker intends to convey .

Depen-ding on the meaning the speaker chooses the lexical elements and grammatical elements

(suffixes etc). The semantics of the sentence is also conditioned by the subjective element, in

-- terms of the speaker's view point of the world (called vivaksa in Sanskrit). Once these initial

elements are selected the rules of grammar operate on them. The processing takes place, which

includes morpho-phonemic changes and tinally the correct sentences are generated. This, in brief,

explai-ns the semantic basis of entire grammatical operations.

As in the case of grammar, in our system too, the lexical elements are either nouns or verbs.

The suffixes are sup suffixes (nominal suffixes) or ting suffixes (verbal suftixes). The primary,

secondary or compound suffixes (krit, tadhita and samasa.pratyayas) are not considered here.

3.3 ROLE OF MORPHOLOGY IN SENTENCE GENERATION

In Sanskri~ the emphasis is on words rather than on sentences. A word can further be split

17

into two simpler elements, (1) a thing (i.e. pratipadika) or action (i.e. dhatu), and (2) the part

containing information connected with thing or action (karaka). The word, whether it is a noun

or a verb, that can be employed in the language is called pada (1.4.14). Ashtadhyayi provides

for introducing affixes after bases. Nominal bases can also be derived by aftixing suffixes called

krit, taddhita or samasa. Similarly, verbs can be derived by affixing san, kamyach suffixes etc

to the primary verbal roots.

In the previous chapter it was mentioned that the karaka relations (i.e. noun-verb-relations)

are represented by the vibhaktis (i.e. case endings). While a one-to-one mapping of the karaka

to vibhakti is not possible, it may be stated that each vibhakti roughly corresponds to one karaka.

In our system we have taken this approach for implementation.

Let us say we want to generate a sentence, Rama reads the book, Ramah pustakam pathati.

The various words are generated by morphological process. This sentence comprises the words

ramah, pustakam and pathati. W~ describe derivation of these forms below :

For the noun formation, let us take the word rama - a masculine name singular in number

(singular, dual, plural). Now the crude base (pratipadikam) is rama (either derived from the verb

ram or by the facf it is a meaningful string of sounds) by (1.2.45). To this base, we add affix

su (from sup 4.1.2) to denote the singular nominative case. After this, these two elements go

through transformations according to the rules _applicable at every state; this process is

summarized as follows:

3.3.1 Subanta (Noun Phrase)

The noun ramah is derived as follows :

18

By (1.2.45) Rama is a crude form or nominal base (pratipadikam). By (4.1.2 pratyayah, 4.1.3

paraschcha) the 21 case affixes sup come after the nominal base Rama. By (1.4.102) supah, the

sets of three is called singular, dual and plural. By (1.3.2) u in su is an ith. With (1.3.9) (1.1.60)

u is deleted. By (1.4.14) (Rama + s) is a pada. By (8.2.66) s at the end of the pada becomes

ru. Now u in ru is ith (by 1.3.2) and deleted (by 1.3.9 tasya lopah and 1.1.60 and adarshanam

lopah). By 1.4.110 and 8.3.15 it becomes visarjaneeya. Hence the form Ramah. The above

process may be conceived as.proceeding in the following steps. The numbers on the right side

correspond to the rule numbers of Astadhyayi.

rama + su P.4.12. I P.4.1.3

rama + s P.1.3.2 I P.1.3.9

rama + ru P.1.4.14 I P.8.2.66

rama + r P.1.3.2 I P.l.3.9

rama + h P.1.4.100 I P.R3.15

>ramah

Note: Only the important rules that go into the generative process is shown here. Several other

· rules such as interpretive (parihhasha) rules, evaluation of the rule hierarchies, are not shown

here. But it is enough here to note that the process is deterministic and has all the primitive rules

necessary.

Procedure for the word pustakam is similar to the example above, but suftix am (2nd case -
. .

accusative singular in number) is used.

pustaka +sup by 4.1.1, 3.1.1, 3.1.2 and 4.1.2. pustaka +am by 1.4.108 and 1.4.22 (accusative

singular) by 7.1.24 substitute am in place of su and am. -> pustakam by 6.1.107.

19

3.3.2 Tiganta (Verb Phrase)

Outline of the formation of verb pathati is as follows: The lexicon connected with Ashtadyayi

contains the list of verbal roots called dhatupata. The position of the root in the dhatupata and

the control characters (such as iths, and anudatta. svaritha accents on the vowels) associated with

these roots provide the necessary information about the morphological characteristics. For the

verbal roots selected, suftix L is introduced to convey time (present, past, future .. lat, lit..) and

agent. The suffix L is replaced by verb endings or participle affixes, is divided into two groups

called parasmaipadam and atmanepada. Each of these group contains nine endings to signify

person (prathama, madhyama, uttama) and number (single, dual and plural). By the end of

generative pocess, the verb will contain information about action, time, pe:snn, act_!ye or passive

and so on. Now, let us form the verb pathati (meaning- reads). The root is pathA (root #31R

in the dhatupata and will come under the first conjugation (bhvadhz) of total ten).

Here also only the important rules are listed.

pathA -> path (by 1.3.1 bhuvadayo dhatavah) it is a verbal root. Being upadesha (since it

is in dhatupata list of Panini), by 1.3.2 (Upadeshejanunasika ith) the nasal A is indicator and

deleted (by 1.3.9 thasya lopah and 1.1.60 adarshanam lopah).

The process of verbal conjugation is described below:

path + lat P.3.1.91 I P.3.2.123

path + Ia P.3.4.77

pa_th + tip P.3.4. 78

path+ ti P.1.3.3 I P.1.3.9

path + sap + ti P.3.1.68

20

path + a + ti P.l.3.4 I P.l.3.9

>path +a + ti

> pathati.

Thus with the suhanta and tiganta procedures, the sentences are generated.

3.4 COMPUTATIONAL LEXICON

Knowledge can he represented using an appropriate data structure, which· is referred to as

lexicon. Lexicon is quite essential and necessary for Natural Language Processing (NLP)

systems, i.e. parser, generator, translator, etc. It is hecause almost all the components of NLP

systems refer to lexicon in ord~r to accomplish their task. A si~ple lexicon for NLP systems

may contain syntactic, semantic and contextual knowledge.

The lexicon may he detined as a collection of lexemes along with their related attrihutes. A

lexeme is considered as one word taken along with its grammatical atifibutes, semantic-attributes,

conjugate list, computational words (derived words), relations, possihle surface realization,

. pronunciation and meaning of the word.

In our system we maintain two lexicons, one for verbal roots and other for noun-oases.

21

CHAPTER IV

IMPLEMENTATION

Prolog has been chosen as the vehicle for implementation. It provides backtracking and pattern

matching mechanisms which are very useful for Natural Language Processing Systems. Modular

programming approach has been adopted in the design and implementation of the software which

makes modifications and maintenance easier. The organization of the system is shown in fig 4.1.

The implementation comprises basically following major modules:

1. LEXICON

2. GENERATOR

3. MAIN MODULE

These modules are described in detail below.

4.1 LEXICON

-A language is contained in its lexicon. The system operates on verb (dhatu) and nominal

(pratipadika) data. Therefore, this module- consists of DHATUKOSH (for verb) and

PRATPADIKAKOSH (for nominals). Both are discussed below.

4.1~1. DHATUKOSH

This module has a verb database and procedures which operate on it. The database is used by

almost all the procedures in the module. So the entry structure and an efticient retrieval

22

LEXICON

DIIATUKOSH

IIRirE READ

WRITE READ

MAIN
MODULE

~--- --------------------------------------- -• G EN ERA T 0 Rl .,

PRATIPADIK

KOSH

!..__ ____ ___,

DELETE MODIFY

DELETE MODIFY

TIGAHTA

PROC[J)IJ RE

SUBAHTA
PROCEDURE

Fig. 4.1 SysteM Organization

23

mechanism is vital. An entry in the lexicon comprises a key and other attributes. The key is the

basis of search in the database. To locate a particular entry. the key must he unique. The key in

our database is dhatu (verbal root). The other attributes associated with dhatu entry are -

1. Anyaroop (i.e. the second form of the dhatu, if any)

2. Lakara-samooha (Tensegroup sarvadhatuka/ardhadhatuka)

3. Gana (each dhatu corresponds to one of the ten ganas)

4. Pada (parasmaipadi, atmainaepadi, ubhaypadi)

5. Anivarya karaka soochi (karakas the dhatu must require)

6. Vaikalpika karaka soochi (karakasoptionally required by the dhatu)

The module has two operational modes, (1) Maintenance mode and {2) Pr~)cessing mode. The

full strength of the module is available through maintenance mode. In processing mode only read

and write operations are available. Below we describe the functioning of DHATUKOSH in

maintenance mode.

When the module is run the MAIN MENU of the program appears on the monitor with four

options available to the user (Fig A.l). They are WRITE, READ, DELETE and MODIFY. The

user can select any option or optionally may come nut nf the system by pressing ESC key.

Each option is associated with procedure denoted by the option name. They are described

below.

4.1.1.1 Write

The purpose of this procedure is to write new entries for the verb and its associated attributes

in the verb database. If the lexicon does not already exist, it is created anew. When a user sdects

24

the WRITE option from the MAIN MENU, this procedure gets activated. The operations involved

in this procedure are shown in the tlowchart Fig 4.2.1

First the user is prompted to input dhatu from the keyboard, as in Fig A.2.1. The user enters

a dhatu . The dhatu is s~arched in database the verb database; if the dhatu is present in the

database an appropriate message is displayed to the user (Fig A.2.2). If the dhatu is not present

the user is asked to input anyaroop (the other form of the verb); if any (Fig A.4). If a non-null

string is input for the anyaroop, the user is asked to select lakara-samooha (the tensegroup in

which the verb has different form) from a pop-up submenu (Fig A.2.4). If the verb does not have

an anyaroop, the user just presses Return key and the pop-up submenu does not appear. After

this, the user is required to select a gana from the gana submenu (Fig.A.2.5). Having selected a

gana, selection of pada is required. The user may select the desired pada from a pop-up menu

(Fig A.2.6).

Now, the anivarya (mandatory) karakas the dhatu must require, have to he selected. The user_

may select a list of anivarya karakas from a list of karakas displayed on the monitor as in Fig

A.2.7. The vaikalpik karakas now may he selected by the user (Fig A.2.8). It should he noted

here, that those karakas which were marked to be anivarya karakas for the dhatu are not available

in selection of vaikalpik karaka. Suppose, we take a hypothetical case of dhatu which take-s all

the six karakas invariably, th_en the fig A.2.8 doesn't appear at al~. After selection of vaikalpik

karakas, all the inputs necessary for a database entry are available and ready to be stored.

Suppose, the dhatu entered to the system is already in the database (possibly with different . ·

attributes) then the user is given a second chance and a confirmation is asked from the· user

before overwriting the existing entry.

25

Enter

Iensegroup

StoN
in

Database

Yes

EXIT

Yts

If the user presse::s ESC during input/sde::ction while:: in WRITE option, the curre::nt input is

..
abandoned and the:: screen goe::s hack to the:: Fig A.2.1 scree::n. He::re:: it should he noted that no

check is maintaine::d for the corre::ctness of input dhatu. It is assumed that the user knows the

. correct dhatu and its attributes. It is possible to enter nonsensical dhatu such as "7!agfgf9" in the::

database. Probably the user authorized to invoke this option will he a privileged one.

4.1.1.2 Read

When the user selects the READ option from the MAIN MENU, this proce::dure is invoked.
- ·-

The user is asked to enter a dhatu (Fig A.2.1). The input dhatu string is taken as key for search

in the database, If a match is found for the dhatu string input, the entry is displayed (Fig A.3.1).

On failure to find the input string in the database, an appropriate message is tlashed on the scre::en

(Fig A.3.2)

The sequence of operations possible through this proce::dure:: is shown in the tlowchart

Fig.4.2.2.

4.1.1.3 Delete

This procedure is called on the selection of DELETE option. The user is required to input the::

_dhatu, for which the entry from the database is to be deleted (Fig A.2.1). If_the dhatu input is

found to exist in the database, the:: corresponding entry is deleted. For a nonexisting dhatu, the::

user gets an appropriate message (Fig A.3.2).

The flowchart for this prt)cedure depicts its working as in fig 4.2.3.

27

START

Dhatu

Ho

Search

Yes

Display

Attributes

Yes

Ho

EXIT

Dhatu not
in Lexicon

Fig. 4.2.2 : Flow chart ror READ procedure

28

START

Dhatu

Ho

Starch

Yts

llflete

Dhatu

Ito

EXIT

Dhatu not
in Lexicon

Fig. 4.2.3 : Flow chart for DELETE procedure

29

4.1.1.4 Modify

If the user wishes to change a few attributes of a dhatu in the database, he/she may select the

MODIFY option from the MAINMENU. Changing all the attributes is .equivalent to writing a

new entry, WRITE option is a better choice for doing it. On selecting MODIFY, this procedure

is invoked. The operations involved in this procedure are shown by a flowchart in Fig.4.2.4. The

user inputs the dhatu, the entry of which is to be modified. The input string is search in the

database. If the string is not found in the database, a message is displayed on the screen

(Fig.A.3.2). Alternatively, if the input dhatu matches a key attribute in the database, all the

attribut.es of the dhatu are retrieved and displayed. The user is asked to select attributes to be

modified from the pop-up submenus. The selected attributes are then given new ':_aluss, all

through menus, and finally the entry gets modified as desired.

The control gets back to MAIN MENU on pressing ESC during the oprerations under this

option.

4.1.2. PRATIPADIKAKOSH

This module has a nominal-database and procedures which operate on the database. The

nominal-database is used by all the procedures in the module. The k~y in our nominal-database

is_pratipadika (nominal base). The other attributes associated with pratipadikaentry are :

1. Varga (sanjna, sarvnama, sankhyavachaka)
... -- -

2. Linga (stri, puns, napunsaka)

Like DHATUKOSAH, the module has two operational m_odes, (1) Maintenance mode and (2)

Processing mode. The full slrength of the mbdule is available through maintenance mode. In

Fig. 4.2.4

Search

Yes

Display

Attributes

Modity the

Attribute

Ho

Yes ·

EXIT

Flow chart for MODIFY procedure

31

processing mode only read and write operations are available. Below the functioning of

PRATIPADIKAKOSH in maintenance mode is descrihed.

When the module is run the MAIN MENU of the program appears on the monitor (Fig A. I).

As is evident from the figure, four options are availahle to the user. They are WRITE, READ,

DELETE and MODIFY. The user can select any option or -:may come out of the system by

pressing ESCkey.

With each option is associated a procedure of the same name. Functioning of these procedures

is quite similar to that of the Read, Write, Delate and Modify procedures in DHATUKOSH

module. One by one we describe these procedures below.

4.1.2.1 Write

The purpose of this procedure is to write new entries for the pratipadika and its associated

attributes in the nominal- database:. If the database tiJe does not already exist, it is created anew.

When a user selects the WRITE option from the MAIN MENU, this procedure gets activated.

Flowchart in Fig 4.3.1 shows the working of this procedure.

First the user is prompted to input dhatu from keyboard. The user enters a pratipadika . The

pratipadika is searched in the database. If the search is unsuccessful, a message is tlashed on ~he

screen. Otherwise, the user is required to select a varga from~ the varga submenu. After a varga

is selected, a selection of linga, for the already input pratipadika is required.

Again, similar to ·write Procedure of DHATUKOSH, it should be noted that no check is

maintained for the correctness of input pratipadika. It is assumed that the user km1ws the correct

pratipadika and its attributes:

32

Store
in

Databan

Inter

Gender

Ho

Inter

Varga

Yes

Yes

Yes

Ho

Display
Pratipad1k I

it's attributes

EXIT

Fig. 4.3.1 : Flow Chart for WRITE procedure

4.1.2.2 Read

When the user select'i the READ option from the MAIN MENU, the main module calls this

procedure. The user is asked to enter string for a pratipadika. The input string is taken as key for

search in the nominal-database. If a match is found for the pratipadika string input, the entry is

displayed. On failure to find tht: input s!_ring in ~e data~ase, an_ approprj{lte message is tlashed

on the screen.

The sequence of operations possible through this procedure is shown in the flowchart in Fig.

4.3.2.

4.1.2.3 Delete

If the user selects DELETE option, this procedure is called by the main module. The user is

required to input the pratipadika, for which the entry from the databases is to be deleted. If the

pratipadika input is found in the database, the corresponding entry is deleted. For a nonexisting

pratipadika, the user gets an appropriate message from the system.

The flowchart for this procedure depicts its working as in fig 4.3.3.

4.1.2.4 Modify

The flow chart for functioning of this procedure is given in Fig. 4}.4.

To change a few attributes of a pratipadika in the lexicon, the user may select the Modify
- .

option from the MAIN MENU. Changing all the attributes is equivalent to writing a ne~ entry.

On selecting Modify option this procedure is called by the main module. The user inputs the

pratipadika, the entry of which is to be modified. The input string is searched in the database.

34

START

Pratipadik

Ho

Search

Yes

Display

Attributes

Yes

Ho

EXIT

Pratipadik not

in Lexicon

Fig. 4.3.2 : Flow chart for READ procedure

35

START

Pratipadik

Ho

Search

Yes

Dtlttf

Pratipadik

Yes

No

EXIT

Pratipadik not

in Lexicon

Fig. 4.3.3 : Flow chart for DELETE procedure

36

Fig. 4.3.4

Srarch

Yrs

Displa!l

Rttributrs

Modih thP

Attributr

Ho

Yrs

EXIT

Flow chart for MODIFV procedure

37

If the string is not found in the database, a message is displayed to the user. Alternatively, if the

input pratipadika matches a key attribute in the datab<L'ie, all the attributes of the pratipadika are

retrieved and displayed). The user is asked to select attributes to be modified from the pop-up

submenus. The selected attributes are then given new values, all through menus, and_ finally the

entry gets modified as desired.

4.2 GENERATOR

The purpose of this module is to generate padas. This module takes its necessary inputs from

the LEXICON module. The GENERATOR module has two procedur~s - SUBANTA (for

generating subanta padas) and TIGANTA (for generating the tiganta pada) which are described

below.

4.2.1 Subanta

The input parameters passed to this procedure are: pratipadika, varga, linga, vibhakti and

vachan. The output of the procedure is a subanta pada.

A pada consists of two parts, a base part and a suftix part. There are a total of 21 suffixes.

In the formation of final pada, the pratipadika and suffix undergo changes according to the rules

of the grammar implemented- in this module. These changes depend on the varga, linga and the

pratipadik ending. This gives a changed base form and then the changed base form and suffix

are then combined according to the sandhi rules implemented in SANDHI procedure to produce

a finished subanta pada.

38

4.2.2 Tiganta. ··

Dhatu, lakara, purusha and vachana values are passed as input parameters to this procedure

from the main module. The output of the procedure is a tinished tiganta pada.

A pada consists of two parts, a base part and a suftix part. There are a total of 18 suftixes.

In the formation of final pada the dhatu and suffix undergo changes according to the rules nf

grammar coded in this module. These changes depend on the lakara, and gana. According to the

gana of a dhatu an appropriate vikaran is selected from the lexicon. Combining of vikaran and

again with dhatu brings changes in the base (dhatu) form. This changed base form and suffix

are then combined according to sandhi rules to produce a tinished tiganta pada.

4.3 MAIN MODULE

In the very beginning when the program is run, the main module checks for the existence of

the verb-database and nominal~ database files. If these files are not already existing they are

created afresh, before proceeding further. The program then does initial set up of screen and the

system is ready for the generation process.

The system prompts the user to give a dhatu (Fig A.4.1). The user entt:rs the dhatu string

through the keyboard (Fig A.4.2). The dhatu entered is searched in the verb database. The dhatu

may either be already present in the verb database or it may not exist in there. This process is

performed, essentially, by calling READ procedure of the DHATUKOSH module. In the tirst

case, the dhatu entry_ is displayed on the screen. In second case, the WRITE procedure is called

in its processing mode to insert the dhatu entry in the verb database. Next, the user is required

to select a purusha from a pop-up submenu (Fig A.4.3). Lakara now has to be sdected by the

39

user from a submenu (Fig A.4.4).

The system proceeds further for taking pratipadikas for each karaka associated with the dhatu

(Fig A.4.5). The pratipadika is checked in the nominal database by the READ procedure l'f

PRATIPADIKAKOSH in processing mode. If the pratipadika is present in the nominal-database,

its attributes, linga and varga are retrieved. Otherwise, to insert the pratipadika entry in the

nominal database, the WRITE procedure ofPRATIPADIKAKOSH module in its processing mode

is called. The user is then required to select vachan for the given pratipadika (Fig A.4.6). The

system now asks pratipadikas for remaining karakas (Fig A.4.7).1t may be mentioned here that

while inputting pratipadika for anivarya (mandatory) karkas the user is forced to give non-null

string. For vaikalpika karkas null-string is acceptable and for the null-string the user is not

required to select a vachan. With this all the inputs for a se_ntence generation are over.

-
Throughout the above process the user can come out to the main screen (Fig A.4.1) by pressing

ESC.

Before calling Subanta and Tiganta procedures, the main module finds the vachan for

karta-karaka and this vachan shall be passed to the Tiganta procedure as one of the parameter.

Another task which remains now is to tlnd vibhaktis for each pratipadika. This vibhakti shall be

needed in the formation of subanta pada for the given pratipadika.

The generator module then calls Subanta procedure for each input pratipadika passing. With

this, only thing left for a sentt:nce is the tiganta pada.

The generator now calls Tiganta prpcedure. This module is only once for a sentence. The

Tiganta gets dhatu, gana, pada, lakara, purusha and vachan as its _inpul parameters. The Tiganta

procedure gives a tiganta pada as its output.

40

Since our sentences are nothing but a string l)f one tiganta pada and one or more subanta pada,

the sentence is ready and is displayed on the screen (Fig A.4.X).

A tlowchart showing the process of sentence generations is given in Fig 4.4. The input

specitications and the results of the system are given in Appendix.

41

CONSULT
DHATU.LEX

RETRIEVE ALL
ATTRIBUTES
FROM DHATU.LE

CREATE I OPEN
DHATU.LEX

AND PRATJ.LEX

~· ,-------:-0

SEARCH
PRATIPADIKA
I H PRAT I. LEX

HO

•

NO

Fig. 4.4 <cont ••)

FIND VACHAH

OF KARTA KARAKA

SUBAHTA PADA

FORMATION

TIGANTA PADA

FORMATION

fig. 4.4 (cont •.)

CHAPTER V

CONCLUSION

The present work is a modest attempt to develop a .synthesizer to generate simple Sanskrit

sentence based on Paninian Grammatical Framework. The system provides a user friendly

environment and is menu driven. The implementation is done in Prolog language because of its

in-built backtracking and pattern matching mechanism.

Though a vibhakti can denote more than one karaka and vice versa but because of the time

limitation, only one-to-one mapping between karaka and vibhakti has been considered here. In

addition to this, the present system does not account for sentences with adjectives, adverbs,

participle and passive voice. No hierarchy of nouns is considered. Further, issues relating to

semantics and pragmatics are needed to he considered.

Thus, there is enormous scope for future expansion. Once the system is completely developed

it can he used in various areas of Natural Language Processing, such as teaching/learning, text

understanding machine translation, database interfaces, text generation, etc.

The present work is augmented by the related work, namely, sentence analysis based on verb

and karaka specifications. The system is developed in such a manner that it can be used for

teaching/learning purposes.

Sample input Specifications to the system and the output produced are given in .appendix.

46

BIBLIOGRAPHY

BIBLIOGRAPHY

[1] Allen, James. Natural Language Understanding.

Menlo Park, CA: Benjamin/Cummings, 1987.

[2] Harris, Mary Dee. Introduction to NLP.

Reston : Reston Publishing Company, 1985.

[3] Katre, Sumitra M. Astadhyayi of Panini.

Delhi : Motilal Banarsidas, 1989.

[4] Kiparsky, P. Some Theoretical Problems in Panini's Grammar.

Poona : Bhandarkar Oriental Research Institute, 1982.

- [5] Mishkoff, Henry, C. Understanding Artificial Intelligence.

Delhi : BPB Publications, 1986~

[6] Patterson, Dan W. Introduction to Artiticial Intelligence and Expert Systems;

New Delhi : Prentice-Hall of India, 1992.

47

[7] Rich, Elaine. Artiticial Intelligence.

New York: McGraw Hill, 19X3.

[8) Sager, Naomi. Natural L·mguage Information Processing.

Reading, Mass: Addison-Wesley, 1981.

[9] Singh, G.V., et. al., The Word-Morphology of Sanskrit, Sinha, R.M.K. (ed.), Proceedings

of Computer Processing of Asian Language (CPAL-2).

New Delhi : Tata McGraw-Hill, 1992.

[10] Syseca, A G. Prolog for NLP.

John Wiley & Sons, 1985.

[11] Vasu, S C. The Siddhanta Kaumudi of Bhattoji Diksita.

Delhi : Motilal Banarsidas, 1982.

[12) Winograd, T. Language as a Cognitive Process, Volume I : Syntax

Reading, Massachusetts_: Addison-Wesley,- 1983.

48

APPENDIX

A· I

1AIN MENU­
·~-!!1...,
Q&f

~.;)q"'i

qf~4J-=J

r=========================~~~ ===========================;

.--------------------------- ~~I
::.:.~;~-<~ $ ~ Esc ~~~e

A· 0. • I

r===========================~~ ~

.---------------~~~~

I~

r================~.t=r';j. a~~~

r-:::~ ~ •:·klhl../. -

,,..,_,~tlt<j-~>
3:~J1...lkjCf:-

I

I
I

.----------------------------- ~~~!
~ ;._
~·.:.T:! :-: -:_y-·:

F=========================~~~l ======~================~~

I

~ .I
~~ ~ ~ r;· #l::r ~ m F11F~ ~~ awtt _

.------------------------------- H~~;

rr===============================~~ ~~~~

~=m:t
::il~ ~ = ~
~=~JT¥
ntJT = ~12
~ = O..(~tlo<!l
~ ~51-..!.:.t~ = ["~"]
·l:f;~-l·.:t·- ilh!-.,:~: = l "P,P,i·~-4 10

1 ":?.JI:lreR" 1 "·:f;-{Dj" 1 "·:f:.4" 1 "~~~o::f;.'{D!" J

r
:...::: '-·

A. 3.·1

r=====================~~~======================~

~----------~ ----------~
lm:{ ~k}:J:~!il it [q{JJ0\1--t ~ "$,.

r----------------- P.I!~!
!01·if~,:~ ~ f.:W' Esc ~

~-------------------~
~ $ ~ Esc~

A ·3·3

.C,....A.. -
r=======================~~~~-~~~~~~

t:irr : -r--~ -

.------------------------- ~~!

gh7l~l
~
;:gf,S1-5h[(;il}

-1:- . -

R2f>~<-1 $ m Esc <'!~!~

A·~-4

c.pi:

I

I I
~ ,---,....------------ ' ~!

~·:t)l.~i $ m Esc ~

'.ll ti;r_lfe·:t; = :m:r
Rn = g_f~:1Jl

I
I
II
~

II
R

~--------------~11
~

.---------------- 1··,.::,~1

r ~ t. S C Ct~P.,:

!
!

I

I
I

L----------~-----------------------~1

~
i-7!-{! = 0!.;·-:'"i-il

= .. :~~!

/

I .
I ;
I H

! ~
I ~
I II
I fl
! ~

l ~
I U

I I I 1i

I ~ L_ ______________ _____. II

___jl

~
.------------------ i~G~·

~ ~
r-,·.:.~;\._:.; ·~·:

r--------------------------~~~~ ~~~~

r-----------------------------h~i
E:::X: -!.1ct)i<:-i

A· 4·1

r-----------------------------~ ~

~:m:r
l1DT = ~
oa = 'J'<rnoe~
:::-J~.;;~~J~= a
~)R-c-_j<lf> ~= ::::JP;:j~""l /~.'~ .. ~I :._~.J

Enter-~<J'""i Esc-A!3b!<·l F'gUp

A· 4·3

...:,, --
~m 'l ~r~
Ptm:1' g-<''~
~ ':i~'Ei

FgDn t

r------------------------~ ~

~:m:t
nor=~
w.; = Q'(~Qi!!
~~=~
~ ~= •w·::u~.,,~,~ .. ~ .. ~.l

.---------------------------~
Ent.er·-~·t<""l E~~-~ -~-1_. tri~~ ... ~-1 PgUp

A· 4 ·4-

~­

~
;:;cy
~
~
e:R
~
~
~fa-~
~

PgDn t

---!

r-----------------------------~ ~

~"'9 : ~
nor=~
~ = q:;_:;;::flqJl
3]1?1"'!!-rl ~= ~
~~~~-~~~ <Fl-.!•.lt>= '&41GI""i,:3ll.l!Gh,~,~.31fu.::h-.{D! 
~$~~: 

r--------------------------------~d~l 
En t.e r· --,~A=-4 Esc -t:':iut>\-'·1 

A·4·5 

f 



r-------------~ ~ 

~:rot 
nor=~ 
~ = Q'l~Q~ 
31~a1J ~= ~ 
~ ~= '&lJ;l~., ·' 2JQlGR' ~, ~' 3N:T 
~fu~~: ~ 
itlR ~ f1q ·.:i~""l : 

,---------------------------~~1 
Esc-f.?i·::t;i..:-1 

A· 4 ·6 

t 



r-------------------------------- d!*~ x~~~ 

~:m:r 
nor=~ 
qc; = o~.~q4l 
~~=~ 
0!a.:;<5h ~= ~4lel"'1,~ .. ~ .. ~ .. ~~J 
(lh<:'lt~~~: ~ 
~ $ ~· ~ : Qi!f;(;l~""'i 

::::1P:lel"'1 $ m ~~~ : ~ 
:?~_.!-~-:..~~ $ ~ ~ : r.plf'><:r~"'1 

:rm.:r 
Wba~""'i 

•::f;-i.Ci fu f:1tJ ~ ~~·~;.:::., 
~lcr>2 $ ~ a~"'1 : q.,..~~"'1 

;p.j fu ~ =ll.;.~ : ;:m:z 
~~~-~ ;$ 127 -:d""'i : 

~------------------------~
Enter-w.:R Esc-A·.:t:~.;:-1

A·4·7

PgUp

~-­

QI3fx'.l'~~

~

PgDn t

r-----------~-------------~~

.----------------------------~~~~
[:"" r· _£:..,-:VJ.:U
· ·.:.··-· ' ·~·· ... f

A· 4·R

	TH51610001
	TH51610002
	TH51610003
	TH51610004
	TH51610005
	TH51610006
	TH51610007
	TH51610008
	TH51610009
	TH51610010
	TH51610011
	TH51610012
	TH51610013
	TH51610014
	TH51610015
	TH51610016
	TH51610017
	TH51610018
	TH51610019
	TH51610020
	TH51610021
	TH51610022
	TH51610023
	TH51610024
	TH51610025
	TH51610026
	TH51610027
	TH51610028
	TH51610029
	TH51610030
	TH51610031
	TH51610032
	TH51610033
	TH51610034
	TH51610035
	TH51610036
	TH51610037
	TH51610038
	TH51610039
	TH51610040
	TH51610041
	TH51610042
	TH51610043
	TH51610044
	TH51610045
	TH51610046
	TH51610047
	TH51610048
	TH51610049
	TH51610050
	TH51610051
	TH51610052
	TH51610053
	TH51610054
	TH51610055
	TH51610056
	TH51610057
	TH51610058
	TH51610059
	TH51610060
	TH51610061
	TH51610062
	TH51610063
	TH51610064
	TH51610065
	TH51610066
	TH51610067
	TH51610068
	TH51610069
	TH51610070
	TH51610071
	TH51610072
	TH51610073
	TH51610074
	TH51610075
	TH51610076
	TH51610077
	TH51610078
	TH51610079
	TH51610080
	TH51610081

