
AN OBJECT ORIENTED GRAPHICAL USER INTERFACE
FOR A BANKING SYSTEM

Dissertation submitted to the Jawaharlal Nehru University
in partial fulfilment of the requirements

for the award of the Degree of
MASTER OF TECHNOLOGY

m
COMPUTER SCIENCE

by
G.·yENUGOPAL

" J: I .. , .
..... .'

SCHOOL OF COMPUfER AND SYSTEMS SCJENCES
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI - 110067
INDIA

CERTIFICATE

This is to certify that the thesis entitled "An object oriented

Graphical User Interface for a Banking System" being submitted by me to

Jawaharlal Nehru University in partial fulfilment of t~e requirements for the award

of the degree of Master of Technology, is a record of original work done

by me under the supervision of Prof K. K. Nambiar, Professor, School of

Computer & Systems Sciences, Jawaharlal Nehru University, during the

Monsoon Semester 1993.

The results reported in this thesis have not submitted in part or

full to any other University or Institution for the award of any degree etc.

/C\1\
~/\ .

Prof. K. K. Bharadwaj
Dean, SC & SS
J.N.U, New Delhi
Pin 110067

Cf. v U\A.U_ -cyr.l__
G. VENUGOPAL

Prof. K. K.Nambiar
Professor, SC & SS
J.N.U, New Delhi
Pin 110067

ACKNOWLEDGEMENTS

I wish to acknowledge with a deep sense of gratitude the

guidance and inspiration offered by my supervisor Prof K. K. Nambiar. His

knowledge, analytical thinking power and erudite scholastic experience led me

to the completion of the thesis with a ·sense of satisfaction and

accomplishment. It would have been impossible for me to come out

successfully without his constant guidance and encouragement.

I extend my thanks to Prof R. G. Gupta and Prof K. K.

Bharadwaj for providing me the opportunity to undertake the project. I

would also like to thank the authorities of our school for providing me

the necessary facilities to complete my project.

I take this oppotunity to thank my brothers Dr. G. V. N. Appa Rao

and Dr. G. Hanumanta Rao for giving me the moral boost and support

during the hour of crisis. I would also like to thank all · my friends and

colleagues, in particular Pramod, Sujit and Venu for helping me during

the crucial moments of the project.

CONTENTS

Chapter 1 INTRODUCTION

Chapter 2 RESEARCH METHODOLGY

201 Object Oriented Concepts

20101 Object
201.2 Class
201.3 Inheritance

202 ObjectWindows Concepts

20201 Introduction
20202 Structure of an ObjectWindows Program
20203 ObjectWindows class hierarchy

Chapter 3 DESIGN AND IMPLEMENTATION

3 0 1 Hardware and Software Requirements

3 02 Product Activity

303 Bank Database Design

3.4 Bank Database Implementation

305 User Interface Design

3 0 5 01 Application Flow

306 Class Inheritance Structure

Chapter 4 SAMPLE SESSION

Chapter 5 CONCLUSION

Chapter 6 PROGRAM LISTING

BIBLIOGRAPHY

GLOSSARY

Chapter 1

Introduction

The development of a small prototype of an object oriented Graphical

User Interface (GUI) for a banking system is discussed in detail in this thesis. Computers

have given us the power to think in a graphic and intuitive fashion. As the state

of computing matured, users wanted programs that were visually appealing and

simple to use. Today we feel the consequences of this around

. that does not have a GUI looks archaic.

us -- any program

The pnmary means of interaction with computers until recently has

been through command-based interfaces. User gives a command, the system

responds. But users have to learn a large set of commands to get their job done.

In some systems, meaningful terms were used for command names to help the end

user. But in other systems the end user had to memorize arcane sequences of key

strokes to accomplish certain tasks. The mouse as a pointing device has simplified

activities such as procedure and command invocation and data movement within

the system.

Graphical User Interfaces are systems that allow creation and

manipulation of user interfaces employing windows, icons, dialog boxes, menus, list

boxes, bitmaps, buttons, check boxes, radio buttons, group boxes, combo boxes, edit

controls, scroll bars, mouse and keyboard event handling. GUis are the state-of-the

practice interfaces. Some people call them WIMP interface: Windows, Icons, Menus

and Pointers. Smalltalk MVC, Apple Macintosh Toolbox, Microsoft Windows, NeXT

NeXTStep and X-windows are some examples of GUis. With the introduction of

Microsoft Windows and Presentation Manager, the Microsoft had remarkbly

changed the landscape of user interfaces for personal computers. Direct

2

manupulation of computer using GUis is more intuitive than traditional command based

interfaces. In GUis the textual data Js not the only form of interaction. Icons

represent concepts such as file folders, waste baskets and printers. Icons symbolize

words and concepts commonly applied m different situations. Users perform their

day-to-day work on the computer by simply selecting .o~ moving icons and objects on

the screen. The GUis provide an Application Programining Interface (API) that

allows users to:

0 Create screen objects

0 Draw screen objects

0 Monitor mouse activations

Microsoft Windows offers many benefits to both users and

developers. Benefits to users include:

0 if you know how to use one windows application , you know
how to use them all.

0 no need to setup devices and drivers for each application.
Windows provides drivers to support various vendors peripherals.

0 multitasking: the ability to run many applications at once. you
can open and use any number of overlapped windows to display
information m any number of ways. Windows controls the
screen.

0 data interchange between different windows applications. You can
call a Paint brush picture into a Write document, you can transfer
data between your application and Clip board, etc.

0 access to more memory. Windows supports protected mode
on the 80286, 80386, and i486; it supports virtual memory on
the 80386 and i486.

3

l

Benefits to developers include:

0 device-independent graphics, so graphical applications run on
all standard display adapters.

0 inherent support for wide range of printers, monitors, and
pointing devices such as mice and track balls.

0 data interchange between different window applications.

0 more memory for large programs.

0 support for menus, icons, bitmaps; dialog boxes and more.

0 a powerful library of graphics routines.

A window is the pnmary input and output device of any

Microsoft Windows (or simply Windows) application. It is the only access to the

system display for the application. A window 1s a combination of a title

bar, a menu bar, scroll bars, borders, and other features that occupy a

rectangle on the system display. Although an application has exclusive rights

to a window created by it, the management of the window IS actually a

collabarative effort between the application and Windows. Windows maintains

the position and appearance of the window, manages standard window features

such as the border, scroll bars, and title, and cames out many tasks initiated

by the user that affect the window. The application has complete control over

the appearance of its window's client area. Each window of the application

must have a corresponding window JUnction. The window function rece1ves

window messages that it should respond accordingly. Every windows application

receives input through an application queue and its chief feature 1s the

message loop. The message loop retrieves input messages from the application

queue and dispatches them to the appropriate windows.

4

Object orientation comes to the rescue of programmer , by lightening

the burden of user-interface development. New interface concepts require the

development of complex software to display screen objects and handle their

events. Simple tasks such as displaying a featureless window requtre several

pages of code m a high level language such as C. Most of the GUis present

an object-oriented layer on top of Application Programming Interface (API) to

simplify design and the development of user interfaces. Examples of these layers

are Borland's ObjectWindows Library (OWL) for Mi~rosoft Windows, MacApp for

Macintosh Toolbox and WhitWater Group's Actor for Microsoft Windows.

The prototype of the banking system has

Microsoft Windows using Borland's ObjectWindows .

. Windows application development by providing:

been implemented m

ObjectWindows eases

0 a consistent , intuitive and simplified interface to Windows.

0 supplied behaviour for window management and message

processmg.

0 a basic framework for structuring a Windows application.

In this project we have taken the banking example as a small

prototype of a real world banking system. The facilities provided m our

Savings Bank system are:

0 Opening of a new account for a customer.

0 Depositing money to a customer's account.

0 Withdrawing money from a customer's account.

0 Transferring money from one account to another account.

0 Viewing a customer's account details.

5

0 Modifying a customer's address

0 Opening of a new branch for the bani<.

0 Calculation of interest for each account of the bank.

0 Viewing a branch's details.

Chapter 2 introduces the basic concepts of object orientation and

principles of writing ObjectWindows applications. It gives details on the

Borland's ObjectWindows Class library. It also gives the structure and memory

requirements of an ObjectWindows program. Chapter 3 gives the design and

implementation of the prototype of the GUI for the banking system developed.

Chapter 4 giVes a sample session with the program. Chapter 5 discusses

the future improvements that can be made to this prototype. Chapter 6 gives a

partial listing of the program. References used m the . project are given at the

end of the thesis. Also a glossary has been provided for the technical terms

used m the thesis. ·

Lack of time prevented us from implementing a full fledged

savmgs bank system. The future improvements that can be made to this

prototype are given in the Conclusions at the end of the thesis.

6

Chapter 2

Research Methodology

2.1 Object Oriented Concepts

Object Oriented Concepts offer the potential for significant

improvements in the software development process. The- object oriented approach builds

on the strengths of traditional technologies (i.e.. cohesion,.· coupling, modularity and

simplicity) and emphasizes on data abstraction,. encapsulation,. information hiding,

inheritance, polymorphism and reuse. Object orientation is based on encapsulating

code and data into a single unit • called an Object.

2.1.1 Object

Object is a well defined abstr.Ktion of a real world entity.

Objects are capsules of behaviour (functions) and state (data), \\>Dose internals are

hidden from other objects that use their services. Objects can be as small and

simple as character strings and icons and as large and eomplex as databases and

servers. In general an object has associated with it:

0 a set of instance variables that eontain the data for the

object.

0 a set of messages to which the object responds. Message

IS a call to a procedure. In an object oriented interface a message

ts issued when the user gestures by clicking on a Ok button, for

example.

0 a method is a procedure that performs servtces. Typically,

an object has one method for each operation or message it

supports. Methods are also called member functions.

8

An object implementation defines the format of data associated with

an object as well as how the methods arc to manipulate that data. Multiple

objects may share parts of an implementation. Although the objects share

executable code, each object typically has its own copy of the data (some data

might be shared). Since the only way that an external object can interact a

chosen object is through that object's public interface, i.e., the set of externally

known messages to which that chosen object responds, it is possible to modify

the methods and variables without affecting other objects. This property of

hiding the internal implementation of an object from· the external system by

binding together both data and messages of the object is called Encapsulation

or Information hiding. Encapsulation protects objects from inadvertent

modification of their data members. To modify a data member of the object ,

the user of the object must explicitly invoke a method that modifies the

data member of the object.

A servtce or a message can have different implementations for

different objects, which can produce observably different behaviour, although there

is a common intent. A user can issue requests for the service (the requests

identify a common operation); an appropriate implementation 1s selected for

each request. The concept of an operation with mutiple implementations is

called Overloading. The selection of code to perform ·a service, called binding

1s based on the objects identified in the request. In object oriented

programmmg binding IS done at runtime, not at compiletime. In general an

object IS identified when the request 1s actually issued, so code could

9

be selected at that time. This 1s called Dynamic binding. Dynamic binding is

also called Late binding. Code selection 1s sometimes based on factors that are

known before execution, so code can be selected during program compilation

or linking. This is called Static binding. Static binding is also called Early

binding.

2.1.2 Class

Class 1s a set or collection of objects having common features.

Object is an instance of its class. Each object in the class share a common

definition, though they differ m the values assigned to instance variables.

Examples of classes in our user interface are BtreeEntry , OwnDate, TNewDialog

etc. The concept of classes is similiar to Abstract Data Types (ADTs). we

treat each class is itself an object and that object · includes a data member

containing the set of all instances of the class and implementation of a method

\ for the message new, which creates a new instance of the class. The advantages

01 \ class definitions are:

0 Allow better conceptualization of the real world and enhances

understandbility. Categorize objects based on common structure and

behaviour.

0 Enhance the robustness of the system by providing strong

type checking and thereby enhance the correctness of the programs.

0 Seperate the implementation from the specification , allow the

modification and enhancement of the implementation without

affecting the public interface. Maintenance of the object oriented

applications becomes easy due to the reusability of the classes.

10

• example:

structure {
int x;
int y;

} point;

class Circle {
int radius;
point center;

Circle ()
{

radius= 1;
center.x = 0;
center.y = 0;

}

void expand(int factor)
{

radius = radius * factor;
}

II
II

II

II
II
II

II

instance variable radius
instance variable center

constructor

initializing the radius to 1 unit.

initializing the center to origin (0,0)

method expand

void move(point dispacement) II method move
{

}
}

center. x = center.x + dispacement.x;
center. y = center.y + dispacement.y;

void main ()
{

}

Circle circlel;
circlel. expand(2);

II
II

circlet is an object of Circle
we are making radius to 2 units

The definition of a class Circle in c++ is as shown m the

example. The instance variables of class Circle are radius and center. The

member functions or methods of class Circle are expand and move which

change the instance variables radius and center. You cannot modify/access the

instance variables radius and center without usmg the member functions

expand and move from outside the class. The member function Circle whose

II

name IS same as that of the class name Circle is called constructor of the

class Circle. When an object of a class is created, constructor is automatically

executed. Constructors are mainly used for initialization of instance variables.

2.1.3 Inheritance

Inheritance 1s a mechanism for sharing the code or behaviour

common to a collection of classes. It factor.s shared properties of classes into

base classes and reuse them m the definition of derived classes without

modifying already specified

superclasses and subclasses

changes of class behaviour

classes. Base classes and derived classes are called

respectively. We can therefore specify incremental

m derived classes without modifying already

specified classes. Derived classes inherit the code and data of base classes, to

which they can add new data members and new member functions. The derived

classes can also refine the definition of the base class by replacing or refining

the individual methods or member functions. You could design a graphics -

object class, for example to define common behaviour for graphics objects with

the expectation that the definition of draw member function would be

replaced m each inheriting class that defines the specific graphics object.

Inheritance plays an important role m modelling of a system

because it can express relations among behaviours such as classification,

specialization, generalization, approximation and evolution. Inheritance

effect of copying and editing the textual definition of a class

g1ves the

to produce

a new definition, except that changes to old definition eventually propagate

12

to the new definition. Single Inheritance permits the incremental changes from

only one base class where as Multiple Inheritance supports the incremental

evolution of artifacts from several base classes.

• examples

A class called titled - window could be defined to inherit from

the class window. The titled - window class would add a definition for the

title data member and member functions to implement the operations get-

title (to return the title) and set-title (to change the title).

officer derk

Hg 21 ~ hierarchy for a tax office exanpe

Figure 2.1 shows the class hierarchy of a tax office example.

Both employees and customers are persons. So variables and methods like

name, address, change address etc that apply both to employees and

customers are associated with the person class. Variables and methods specific

. to employees like salary , Issue salary etc are associated with the employee

class. similiarly variables and methods specific to customers like work-phone-

l3

number, Is tax Paid are associated with the custom~r class. Person is the

superclass or base class for both customer and employee. Customer and

employee are derived classes or subclasses of person. Customer and employee

inherit the common properties from person class. Customers specialize the

properties of persons, and persons conversely generalize the properties of

customers. An object representing an officer contain all the variables of

classes officer, employee and person.

employee. Employee 1s a base class

arrows m the class hierarchy diagram

derived classes to base classes. This

Here officer 1s a derived class of

for officer, clerk and secretary. The

or inheritance diagram are from

1s because we have to look up to

the base class for the properties that are not present in the deived class.

2.2 ObjectWindows concepts

2.2.1 Introduction

ObjectWindows simplifies the development of Windows applications

by encapsulating the behaviours that Windows applications commonly perform.

ObjectWindows uses the object oriented features of Turbo c++ to hide the parts

of the Windows API, freeing you from the internals of Windows programming.

As a result, you can develop Windows programs with much less time and effort.

ObjectWindows provides the following helpful features:

0 encapsulation of window information

0 abstraction of many Windows API functions

0 automatic message response

14

Many Windows functions require a handle to a window to specify

which window they are to act upon, and these functions are usually called from

the member functions of a window object. The object holds the handle of its

associated window in its HWindow data member. So it can pass HWindow data

member as the handle, freeing you from having to specify that item eachtime.

The window handle is encapsulated within the object. Like this many of the

parameters for Windows functions are stored as data members of interface

objects. Thus member functions of window objects can use this data to supply

Windows functions with parameters.

ObjectWindows groups related function calls into single member

functions that · perform higher level tasks. This approach greatly reduces your

dependence on the hundreds of Windows API functions, it does not prevent you

from calling the API directly.

Windows provides default responses for many of the messages that

it sends to an application. When your control, dialog box, or window ignores an

incoming message by not defining the corresponding message response member

function, Object Windows automatically invokes · the default processing supplied by

Windows. The appropriate default processing for a control, dialog box, or window

is specified by its DefWndProc member function.

2.2.2 Structure of an ObjectWindows program

The first requirement of an ObjectWindows application is the

definition of an application class derived from base T Application class. By

convention the types (Classes and instances of classes) are usually prefixed by the

letter T, pointers to types by letters PT and references to types by letters

15

RT. An ObjectWindows applictication's mam program normally consists of just

three statements. The first statement of the WinMain (the starting point of a

Windows mam program) constructs the applicaton object by calling its

constructor. The constructor initializes the data members of the application object.

The second statement calls the application's Run member function. The third

statement returns the final status of the application that ObjectWindows stores in

Status data member. Run calls InitApplication and Initlnstance to perform

the first-instance and each instance initialization, respectively. InitMainWindow is

.then called to create a main window. Run then sets the application in motion

by calling MessageLoop to begin processing incoming Windows messages,

which directly affect the application's flow. MessageLoop calls member functions

that process particular incoming messages. For example MessageLoop calls

WMLButtonDown member function on receiving a WM_LButtonDown message (which

occurs when the user clicks the left mouse button). Message Loop is exactly that

message loop, which continues running until the application closes. The control of

an ObjectWindows application by member functions is shown in the figure 2.2.

Fig 2.2 Member function calls that
control an application's flow

16

Object r TStr~~-~~b~~]

.--, ____._l_-··· . -=c--r-------:~~-----..~3--
, Tldule_j .----~-TW--~~-·--lTObject1 : TSc<_olle<]

!--~~~pli~tio~] TDialog ·[___ ~indo~

TFileDialog
----------~-_)

[2tnputDialog

Figure 2.3 ObjectWindows class hierarchy

(Object Windows for c++ User's Guide pp 224)

17

2.2.3 ObjectWindows class hierarchy

ObjectWindows is a comprehensive set of classes that simplifies

the development of Windows programs with c++. You can derive new classes

from ObjectWindows classes using inheritance. The ObjectWindows class hierarchy

is shown m the Figure 2.3.

Object is the base class for all ObjectWindows derived classes.

TApplication which defines the behaviour of all

derived from TModule which itself is derived

QbjectWindows applications IS

from ·Object. TModule provide

support for window memory management and error- processing. TWindowsObject

IS an abstract class, derived from Object and Tstreamable, that defines the

fundamental behaviour shared by all ObjectWindows interface objects. Objects

. representing windows, dialog boxes and controls are called user interface objects

or simply interface objects. TWindowsObject provides member functions to

handle creation, message processing and destruction of window objects.

TWindow is a general purpose window class which can represent

mam, pop-up, or child windows of an application. Usually an ObjectWindows

application's main window class is derived from TWindow. TDialog serves as a

base class for derived classes that manage Windows dialog boxes. Dialog objects

serve to facilitate interactive groups of controls such as buttons, list boxes

and scroll bars. They are associated with dialog resources, They can be run

as modal or modeless dialog boxes. Member functions are provided to handle

communication between a dialog and its controls. TEditWindow defines a class

that allows text editing m a window. TFileWindow, derived from

TEditWindow, defines a class that allows loading and savmg text files in

addition to text editing in a window. TFileDialog defines a dialog that allows

the user to choose a file for any purpose, such as opening, editing or saving.

18

TlnputDialog, derived from TDialog, defines a dialog box for user input of a

single data item.

Control objects such as list boxes, buttons and edit controls,

provide a simple means of handling with different kinds of controls defined

by Windows. TContol 1s the base class for all control objects and it

defines member functions to handle creation and message processing for all

control objects. TButton, TCheckBox, TRadioButton, TListBox, TComboBox,

TStatic, TGroupBox are derived from TControl. TButton class represents push

button interface element in windows. TCheckBox arid TRadioButton classes handle

creation and state management of check boxes and radio buttons respectively.

TListBox handles creation of and selection from Windows list boxes and g1ves

member functions to manipulate items m a . list. TGroupBox provides member

functions to handle a group of selection boxes (check boxes and radio buttons) or

other controls. TStatic provides member functions that set, query and clear the

text of a static control. TEdit 1s derived from TStatic and it provides

extensive text processing capabilities for a windows edit control.

19

Chapter 3

Design and Implementation

3.1 Hardware and Software Requirements

The Banking system application has been implemented m

MS Windows environment using Borland c++ for Windows. The basic

hardware requirements for the Banking System . application are the same as

those of an ObjectWindows application:

0 a hard disk

0 2MB of memory or more

0 Windows - compatiable graphics display

0 Windows 3.0 or later in 386 enhanced mode

3.2 . Product Activity

The services provided in our Savings Bank system are:

0 Opening of a new account for a customer.

0 Depositing money to a customer's account.

0 Withdrawing money from a customer's account.

0 Transferring money from one account to another account.

0 Viewing a customer's account details.

0 Modifying a customer's address

0 Opening of a new branch for the bank.

0 Calculation of interest for each account of the bank.

0 Viewing a branch's details .

21

The design of the Graphical User Interface for the banking system

contains two parts. They are bank database design and user interface design. The

user interface developed uses the bank database that has been created for

aceessing and storing transaction data.

3.3 Bank Database Design

The bank database used for the implementation of the user

interface is a relational database with the relations Customer,

Branch and Transaction. The attributes of the relations are:

Customer: Name, Street, City, Pin

Deposit: AccountNumber, Name, BranchName, Balance, MinBalance

Branch: BranchName, BranchCity, Assets

Deposit,

Transaction: AccountNumber. Type. Date, Time, BranchName, Amount, Balance

Name, AccountNumber and BranchName are pnmary keys of

reations Customer, Deposit and Branch. AccountNumber together with Type, Date

and Time form the candidate key for the relation Transaction. The functional

dependencies assumed for the database design are:

Customer: Name -+ Street Name -+ City Name -+ Pin

Deposit:

Branch:

AccountNumber -+ Name

AccountNumber -+ Balance

Name -+ AccountNumber

Name -+ Balance

BranchName -+ BranchCity

22

AccountNumber -+ BranchName

AccountNumber -+ MinBalance

Name -+ BranchName

Name -+ MinBalance

BranchName -+ Assets

3.4 ·Bank Database Implementation

The Customer relation has been stored m CUSTOMER.$$$ file.

The Deposit relation has been stored in DEPOSIT.$$$ file. The Transaction

relation has been stored in TRANSAC.$$$ file.

We have used Borland Container Class Library's Btree class to

access the elements of the bank database. A BtreeEntry class which IS

derived from Sortable has been created. BtreeEntry Class is for storing two

related quantities (Key, Value). Given the Key you can have the Value corresponding to that

Key. We are using this association with Btree class for storing and accessing a key and

that Key's position in a file. BCustomer, BDeposit, BBranch, BATransac and

BBTransac are Btree objects. They have been used for accessing transaction

data. BCustomer Btree stores the association of customer name and its file position value

-in CUSTOMER.$$$ file. BDeposit Btree stores the association of account number and its

file position value in DEPOSIT.$$$ file. BBranch Btree stores the association of branch

name and its file position value in BRANCH.$$$ file. BATransac Btree stores the

association of account number and its file position value in TRANSAC.$$$ file. BBTransac

Btree stores the association of branch name and its file position value in TRANSAC.$$$

file. Also we have used OwnDate class derived from Date class so as

facilitate simple date manipulations.

23

3.5 ·User Interface Design

User

prompts

Figure 3.1

Commands
Updated
Account
Details

Bank
Database

Account
Details

Banking System Context Diagram

The user interface system interacts with both the database and

the user as shown in the banking system context diagram (Figure 3.1). User

interacts with the system by giving commands and transaction data. The

system responds to the input given by the user. The system reads account

details from the database and writes updated account details to the database.

The psuedo code for the message processing and the application

flow is given below. The psuedo code has been giVen to only those messages

the application itself manages. The other messages are processed by Windows

and we refer them by Default Windows Processing. Care has been

24

taken · that the psuedo code nammg conventions resemble the original source code

naming conventions for classes, functions and messages. Chapter 6 gives a partial

listing of the source code of the application.

3.5.1 Application flow

Start

End

Construct a TApplication object

Perform instance initialization

Construct a TMainWindow object

repeat

Process Messages for the application

until (message = WM QUIT)

Destruct TMain\Vindow and TApplication· objects

return status

3.5.1.1 Construct a TApplication object

Start

Initialize T Application object data members .

End

3.5.1.2 Perform instance initialization

Start

End

Perform first instance initialization

Perform each instance initialization

Process lnitMainWindow

25

3.5.1.3 Constuct TMainWindow object

Start

End

Load custom control library object

Assign menu to TMainWindow object

Build Customer Btree using customer log file

Build Deposit Btree using deposit ·log file

Build AccountTransaction Btree using Account transaction log file

Build BranchTransaction Btree usmg Branch transaction log file

3.5.1.4 Process messages for the application

Start

End

Case Active Object:

TMainWindow => Process main window messages

TNewDialog => Process new account dialog messages

TDepositDlg => Process deposit dialog messages

TWithdrawDlg => Process withraw dialog messages

T TranferDlg => Process money transfer dialog messages

TModifyDig => Process modify address dialog messages

TViewAccountDlg => Process customer account details dialog messages

TNewBranchDig => Process new branch dialog messages

TlnterestDig => Process interest rate dialog messages

TBranchDetailsDlg => Process branch details dialog messages

TlnputDialog

End Case

=> Process TlnputDialog messages

26

3.5.1.4.1 Process main window messages

Start

Case user selection

menu item New Account => Execute TNewDialog

menu item Deposit Money => Execute TDepositDig

menu item Withdraw Money => Execute TWithdrawDig

menu item Transfer Money => Execute TTransferDlg

menu item Modify Address => Process Modify Address

menu item View Account => Process View Account

menu item New Branch => Execute TNewBranchDig

menu item Interest => Process MonthlyUpdation

menu item Branch Details => Process BranchDetails

menu item Exit => Process Can Close

default => Default Windows processing

End Case

End

Figure 3.2 shows the message processmg for the

mam window. On receiving a message, the TMainWindow object executes

the corresponding member function. For example if the user selects New

Account menuitem, the application gets a CM NEW message from Windows

and New member function of the TMainWiridow is executed provided the

TMainWindow object ts active. If TMainWindow object is not active then no

action will be taken.

27

o-1_~ I New I ..
l

o-1 _D~POSIT I Deposit I I

o-1 :w_;THDRAW I Withdraw I .. I

~~SFER I MoneyTransfer I ..
I

o-I_~IEY I Modify Address I ..
I

TMainWindow
Object

o-~ VIEW I View Account I I

o-I_~CH I New Branch I I

CM VIEWBRANCH I BranchDetails I ..

CM~ST I MonthlyUpdation I .. I

Of_, EXIT I Can close I I

Figure 3.2 Message processing for main window

28

3.5.1.4.1.1 Execute TNewDialog

Start

End

Construct TNewDialog's child objects

Get new AccountNumber for the new account

Show New Account dialog and Prompt user

Case selection

Ok button: If (Valid Address & Valid InitiaiDeposit

else

& Valid Branch)

Store Address m Customer file

Set Minimum Balance to lnitiaiDeposit

Store Deposit details in Deposit file

Store Transaction details in Transaction file

Get BranchAssets from Branch file

BranchAssets = BranchAssets + InitaiiDeposit

Store back BranchAssets to Branch file

Update all Btree structures execept Branch Btree

Update AccountNumber in Bank file

Close TNewDialog and return to TMainWindow

Give error message

Endlf

Cancel button: Default Windows Processing

default: Default Windows Processing

End Case

29

3.5.1.4.1.2 Execute TDepositDig

Start

End

Construct TDepositDlg's child objects

Show Deposit dialog and prompt user

Case Selection

Ok button: If(Valid AccountNumber & Valid DepositAmount)

Get Balance from Deposit file

else

Balance = Balance + DepositAmount

Store back Balance in Deposit' file

Get BranchAssets from Branch file

BranchAssets = BranchAssets . + DepositAmount

Store back BranchAssets to Branch file

Store Transaction details in Transaction file

Update Transaction· Btree structures

Close TDepositDlg and return to TMainWindow

Give error message

Endlf

Cancel button:

default:

End Case

Default Windows Processing

Default Windows Processing

30

3.5.1.4.1.3 Execute TWithdrawDig

Start

End

Construct TWithdrawDig's child objects

Show Withdraw dialog and prompt user

Case Selection

Ok button: If (Valid Account Number & Valid WithdrawAmount)

else

Get Balance from Deposit file

Balance = Balance - WithdrawAmount

Store back Balance to Deposit file

Get Minimum Balance of the account

If (Balance < Minimum Balance)

Endif

Set Minimum Balance to Balance
\

Store back Minimum Balance to Deposit file

Get BranchAssets from Branch file

BranchAssets = BranchAssets - WithdrawAmount

Store back BranchAssets to Branch file

Store Transaction details in Transaction file

Update Transaction Btree structures

Close TWithdrawDig and return to TMainWindow

Give error message

Endlf

Cancel button: Default Windows Processing

default: Default Windows Processing

End Case

31

3.5. 1.4.1.4 Execute TTransferDig

Start

Construct TTransferDlg's child objects

Show Money Transfer dialog and prompt user

Case Selection

Ok button: If(Valid FromAccountNumber & Valid Transaction

Amount & Valid. ToAccountNumber)

Get ToBalance from Deposit file

ToBalance = ToBalance + TransactionAmount

Store back ToBalance in Deposit file

Get FromBalance from Deposit file

FromBalance = FromBalance - TransactionAmount

Store back FromBalance to Deposit file

Get Minimum Balance of Fromaccount

If(FromBalance < Minimum Balance)

Endlf

Set Minimum Balance to FromBalance

Store back Minimum Balance to Deposit file

Get FromBranchAssets from Branch file

FromBranchAssets = (FromBranchAssets -

TransactionAmount)

Store back FromBranchAssets to Branch file

Get ToBranchAssets from Branch file

ToBranchAssets = ToBranchAssets + TransactionAmount

Store back ToBranchAssets to Branch file

Store Transaction details in Transaction file

Update Transaction Btree structures

32

End

Close TfransferDlg and return to TMainWindow

else

Give error message

Endif

Cancel button: Default Windows Processing

default Default Windows Processing

End Case

3.5.1.4.1.5 Process ModifyAddress

Start

Execute TlnputDialog to get AccountNumber input from user

If (Valid AccountNumber)

Get Customer Address from Customer file

Construct TModifyDlg's child objects

Show TModifyDig and prompt user to change

Case Selection

Ok button: If (Modified)

Store New Address m the Customer file

Update Customer Btree structure

Endif

Close TModifyDig and return to TMainWindow

Cancel button:

default:

End Case

Default Windows Processing

Default Windows Processing

33

End

else

Give error message

Endlf

3.5.1.4.1.6 Process View Account

Start

Execute TlnputDialog to get AccountNumber input from user

If (Valid AccountNumber)

Get Customer Address from Customer file

Get BranchName and Balance from Deposit file

Find the Number of transactions for the account

If (Number of Transactions > 20)

Set DisplayTransactionNumber to 20

else

Set DisplayTransactionNumber to Number ofTransactions

Endif

Get latest DispayTransactionNumber transactions for the account

Construct TViewAccountDlg's child objects

Show TViewAccountDig with Account Details and prompt user

Case Selection

Ok button: Close TViewAccountDig and return to TMainWindow

default: Default Windows Processing

End Case

34

End

else

Give error message

Endif

3.5.1.4.1. 7 Process MonthlyUpdation

Start

If (MonthEnd & Interest Not Yet Calculated)

Execute TlnputDialog to get lnterestRate input from user

If (Valid InterestRate)

Do for all Accounts

Get Minimum Balance of Account from Deposit file

Interest = MinBalance * lnterestRate I (12 * I 00)

Balance = Balance + Interest

Set Minimum Balance to Balance

Store back Balance and Minimum Balance to Deposit file

Get BranchAssets of Account's Branch from Branch · file

BranchAssets = BranchAssets + Interest

Store back BranchAssets to Branch file

Store transaction details in transaction file

Update Transaction Btree Structures

End Do

else

Give error message

Endlf

Close TinterestDlg and return to TMainWindow

35

End

else

Give error message

Endlf

3.5.1.4.1.8 Execute TNewBranchDig

Start

Construct TNewBranchDlg's child objects

Show New Branch dialog and Prompt user

Case selection

End

Ok button: If (Valid BranchName & Valid BranchCity)

Set BranchAssets to 0

Store BranchName, BranchCity and BranchAssets in Branch file

Close TNewDialog and return to TMainWindow

else

Give error message

Endlf

Cancel button: Default Windows Processing

default: Default Windows Processing

End Case

36

3.5.1.4.1.9 Process BranchDetails

Start

Execute TlnputDialog to get BranchName input from user

If (Valid BranchName)

Get BranchCity and BranchAssets from Branch file

Construct TBranchDetailsDig's child objects

Show TBranchDetailsDig with Branch Details and prompt user

Case Selection

Ok button: Close TBranchDetailsDig and return to TMainWindow

End

default: Default Windows Processing

End Case

else

Give error message·

Endlf

3.5.1.4.1.1 0 Process Can Close

Start

Store Customer Btree contents in Customer log file

Store Deposit Btree contents m Deposit log file

Store Branch Btree contents m Branch log file

Store AccountTransaction Btree Contents in AccountTransaction

Store BranchTransaction Btree Contents m Branch Transaction

End

37

log file

log file

3.6 -Class Inheritance Structure

The Figures 3 3 , 3.4 and 3 5 show the class inheritance structure

of the application. The TMainWindow class is derived from TWindow class.

TNewDialog, TDepositDlg, TWithdrawDig, TTransferDig, TViewAccountDlg,

TModifyDig, TNewBranchDig and TBranchDetailsDig classes are derived from

TDialog class. TlnterestDig class 1s derived from TlnputDialog class. The

OwnDate class IS derived from Date class. The BtreeEntry class IS

derived from Sortable class.

I TWindow

~~

irMainWindo\-1

Figure 3. 3 Inheritance Diagram for

Application's Main Window

38

I

TDepositDlg TViewAccountDlg TWit hdcawDlg

,, /
TNewDialog ... TDialog - TNewBcanchDlg .. --

/_ n

TModi fyDlg J TBcanchDetailsDlg TTcansfecDlg

Figure 3. 4 Inheritance Diagram for

Windows dialog boxes

Sortable TinputDialog Date

~~

BtreeEntry Tinterestolg ownoa.te

Figure 3.5 Inheritance diagram for BtreeEntry, OwnDate

and TlnputDialog classes

39

Chapter 4

Sample Session

The user can either run the Savings Bank application by double

clicking the Savings Bank icon or he can do it from Program Manager's

File/Run menu item by typing the application's path name.

The application's mam window (Figure 4.1) shows the mam

menu of the application. The Customer menu item provides the customer

services (such as opening of a new Account, Depositing Money to a customer's

account etc). The Branch menu item provides the branch services or internal

sevices for the bank (such as viewing branch details, interest calculation etc).

The user can close the application using fu'ste~xit.

rr·;iir--------. -------------1
~~ . SaVIO!JS Aank m~a1
~ustomer Branch ~ystem

Figure 4.1 The Main Window of the application

41

The user can see (Figure 4.2) the pulldown menu of the

Customer menu item by clicking on it or by ustng Alt + C sequence . He

can select one of the services provided by ustng up/down arrow keys or

by pressing the underlined letter of that servtce or by clicking on that

service. Also he can directly select the customer service required by presstng

the accelator key of that service from the main window itself.

Qeposit Money F3
Withdraw Money F4
Iransfer Money F6
Modify Address F7
Y:iew Account F5

Figure 4.2 The Main Window with the pulldown
menu of the Customer menu item

42

The !!,ranch menu item's pulldown menu is as shown m the

figure 4.3 which shows the branch services provided by the application to

the bank.

Shift-tf5

Figure 4.3 The Main Window with the pulldown
menu of the Branch menu item

43

When the user selects the New Account menuitem m the main

window, the New Account Dialog shown in Figure 4.4 appears on the screen.

Functionality:

Operation:

Validation:

Accepts customer's address, the branch name m which

customer wants to open his account and initial deposit.

Choices can be selected by pointer or Tabs

Checks for erroneous input

Name: Uniqueness of Name

Initial Deposit: Amount should be more than Rs 20.00

Branch: Branch should be present

Account Number: Read only

Figure 4.4 New Account Dialog

44

When the user selects the Deposit Money menuitem m the mam

window, the Deposit Dialog shown in Figure 4.5 appears on the screen.

Functionality: Accepts customer's Account Number and Deposit Amount

Operation: Choices can be selected by pointer or Tabs

Validation: Checks for erroneous input

Account Number: Account number should be present

Figure 4.5 Deposit Dialog

45

.'• .
:.~: -~- t

When the user selects the Withdraw Money menuitem in the mam

window, the Withdraw Dialog shown in Figure 4.6 appears on the screen.

Functionality: Accepts customer's Account Number and Withdraw Amount

Operation: Choices can be selected by pointer or Tabs

Validation: Checks for erroneous input

Account Number: Account number should be present

Amount: Sufficient Balance should be present

Figure 4.6 Withdraw Dialog

46

When the user selects the Tmnsfer Money menuitern m the rnarn

window, the Money Tmnsfer Dialog shown in Figure 4.7 appears on the

screen.

Functionality:

Operation:

Validation:

Accepts Account Numbers and Transfer Amount

Choices can be selected by pointer or Tabs

Checks for erroneous input

Account Number: Account numbers should be present

Amount: Sufficient Balance should be present in From Account

Figure 4. 7 Money Transfer Dialog

47

..:..

When the user selects the Modify Address menuitem m the mam

window, the Account Number Input Dialog shown in Figure 4.8 appears on

the screen.

Functionality: Accepts customers Account Number.

Operation: Choices can be selected by pointer or Tabs

Validation: Checks for erroneous input

Account Number: Account number should be present

· Account Number

Enter the Account Number:

110010

Figure 4. 8 Account Number Input Dialog

48

If Account Number is valid, the application gets the address

of the customer from the database and displays the address to modify on

the screen as shown figure 4.9

Functionality: Accept customer's address

Operation: Choices can be selected by pointer or Tabs

Validation: Checks for erroneous input

Name: Uniqueness of name, if name lS changed

Figure 4.9 Modify Address Dialog

49

When the user selects the View Account menuitem m the mam

window the Account Number Input Dialog shown in Figure 4.10 appears on

the screen.

Functionality: Accepts customer's Account Number.

Operation: Choices can be selected by pointer or Tabs

Validation: Checks for erroneous input

Account Number: Account number should be present

, Account Nu_mbev...-· · · · : ...

Enter the Acr.ount Number:

l"i0002

Figure 4.10 Account Number Dialog

If Account Number ts valid, the application gets customer's address

and account details from the database and displays them on the screen as

shown figure 4.11

Functionality: Display . Account Details.

Operation: Choices can be selected by pointer or cursor keys and tabs.

Validation: None.

50

mt · - - - -· · · VIEW- ACCOUNT -

Figure 4.11 View Account Dialog

51

... ·~ ~
-.. ~ ··~: -

When the user selects the New Branch rnenuitem m the rnam

wind<?w, the New Branch Dialog shown in Figure 4.12 appears on the

screen.

Functionality: Accepts Branch Name and Branch City

Operation: Choices can be selected by pointer or Tabs

Validation: Checks for erroneous input

Branch Name: Uniqueness of Branch Name

Figure 4.12 New Branch Dialog

52

When the user selects the Branch Details menuitem m the mam

window the Branch Name Input Dialog shown in Figure 4.13 appears on the

screen.

Functionality: Accepts Branch Name

Operation: Choices can be selected by pointer or Tabs

Validation: Checks for erroneous input

Branch Name: Branch Name should be present

Branch Name .

Enter the Branch Na111e:

lnT

Figure 4.13 Branch Input Dialog

53

If the Branch Name IS valid, the application gets branch details from

the database and displays them on the screen as shown figure 4.14

Functionality: Display Branch Details.

Operation: Responds to return key or mouse click on Ok button.

Validation: None.

Figure 4.14 Branch Details Dialog

54

When the user selects the Interest menuitem m the main window,

the Interest Rate Input Dialog shown in Figure 4.15 appears on the screen

provided the Date is the last day of the month and the Time is past 6 pm.

Functionality: Accepts Interest Rate

Operation: Choices can be selected by pointer or Tabs · and default interest

rate is 5. 00/o

Validation: Checks for erroneous input

Interest Rate

Enter the Interest Rete:

Figure 4.15 Interest Rate Dialog

55

Chapter 5

Conclusion

The design and implementation of a prototype of an object

oriented GUI for a banking system has been studied m this thesis. The power

of object orientation makes the design of the prototype straight forward. The

improvements that can be made to this application without changing the basic

structure of the user interface are many.

The maJor improvements that can· be made to this prototype to

make it a real world banking system are:

0 Authorization can be provided by glVlng the users a useriD

and a password. Security to the bank database can be provided by

giving different VIews for different users thereby restricting the

users to access only certain services provided by the bank system.

0 The prototype presented supports single user only. It can be

changed to a distributed banking system so that multiple

transactions can be processed at the same time. This prototype

program needs little changes to accomplish this task. This is

because the Windows file management functions have been used m

this program for accessing the database , which allow data sharing.

Shared .locks and excusive locks can ·be put to transaction data.

Also Windows allows running multiple instances of the same

application at the same time.

0 The services provided by this application for the same

structure of the database, can be extended with little work. This can

be done by adding new message response functions

TMainWindow and the code to handle the functions.

57

to

0 A full fledged help

GUI application.

0 The database structure

changes to the GUI application

banking system.

Lack of time prevented us

interface for the banking system.

58

facility can be added to this

can also be changed with little

so as to handle a real world

from simplifying even further the user

Chapter 6

Program Listing

The project file of the application contains files main.cpp, new.cpp,

newb.cpp, depositcpp, withdraw.cpp, transfer.cpp, month.cpp, modify.cpp, view.cpp,

bdetails.cpp, owndate.cpp, project.rc and stand~rd.def. The header files of

the application are project.h, owndate.h and wconsth. we are giving a

listing of the main program file main.cpp , the project's header file projecth

and module definition file standard.def which will give a brief outline of the

application.

The main.cpp file contains WinMain and member functions for

TMainWindow and TMainApp classes. The projecth file contains class

declarations for all window classes and BtreeEntry class. The files new.cpp,

newb.cpp, depositcpp, withdraw.cpp, transfer.cpp, month.cpp, modify.cpp, view.cpp,

bdetai/s.cpp and owndate.cpp contain member functions for TNewDialog,

TNewBranchDig, TDepositDig, TWithdrawDig, TTransferDig, TlnterestDig, TModifyDig,

TViewAccountDig, TBranchDetailsDig and OwnDate classes respectively. The

projectrc file the resource data for main menu, dialog boxes and accelarators.

The standard.def file contains the memory stack and memory heap requirements

of the application.

60

6.1 Application's Main Program (MAIN.CPP)

#include "project.h" II header file of the application

I*
BCustomer B-Tree stores the association of customer name and its

file pointer value in CUSTOMER.$$$ file. BDeposit Btree stores the

association of account number and its file pointer value in DEPOSIT.$$$

file. BBranch Btree stores the association of branch name and its

file pointer value in BRANCH.$$$ file. BATransac Btree stores the

association of account number and its file pointer value in TRANSAC.$$$

file. BBTransac Btree stores the association of branch name and its

file pointer value in TRANSAC.$$$ file.
*I .

Btree BCustomer(S), BDeposit(S), BBranch(S), BATransac(S), BBTransac(S);
long GlobaiCustomerPos, GlobaiDepositPos, GlobaiBranchPos;
char srate(6];

r
setstring function pads the string s with blanks until the

length of the string becomes (c-1).
*I
void setstring(char *s, int c)
{
int len,nblank,i;
h~n = str1en(s)+1;
nblank=c-len;
for(i=1 ;i<=nblank;i++)strcat(s," ");

}

61

I*--* I
I* TMainWindow implementations: *I
1*--*I

I*
TMainWindow's constructor assigns the application menu, it

loads the Borland's custom control library. It builds the

Btrees from the LOG files.
*I
TMainWindow::TMainWindow(PTWindowsObject Parent,LPSTR A Title)

: TWindow(Parent, A Title)
{

OFSTRUCT of;
int chandle, dhandle, bhandle, athandle, bthandle;
char spos[POSLEN], Name[MAXNAMELEN], AccountNumber[ACCOUNTLEN],

Branch[MAXBLEN];

AssignMenu(200);
BWCCMod = Loadlibrary("BWCC.DLL j;

chandle = OpenFile('customer.log", &of, OF _READ);
while(!eof(chandle))
{
_lread(chandle, Name, MAXNAMELEN);
_lread(chandle, spos, POSLEN);
BCustomer.add(*(Association*) new BtreeEntry(Name, spos));

}
_lclose(chandle);

dhandle = OpenFilef'deposit.log", &of, OF _READ);
while(!eof(dhandle))
{
_lread(dhandle, AccoontNumber, ACCOUNTLEN);
_lread(dhandle, spos, POSLEN);
BDeposit.add(*(Association*) new BtreeEntry(AccountNumber, spos));

}
_lclose(dhandle);

bhandle = OpenFile('branch.log", &of, OF _READ);
while(!eof(bhandle))
{
_lread(bhandle, Branch, MAXBLEN);
_lread(bhandle, spos, POSLEN);
BBranch.add{ *(Association*) new BtreeEntry(Branch, spos));

}
_lclose(bhandle);

62

}

athandle = OpenFile("atransac.log", &of, OF _READ);
while(!eof(athandle))
{
_lread(athandle, AccountNumber, ACCOUNTLEN);
_lread(athandle, spos, POSLEN);
BATransac.add(*(Association*) new BtreeEntry(AccountNumber, spos));

}
_lclose(athandle);

bthandle = OpenFile("btransac.log", &of, OF _READ);
while(!eof(bthandle))
{
_lread(bthandle, Branch, MAXBLEN);
_lread(bthandle, spos, POSLEN);
BBTransac.add(*(Association*) new BtreeEntry(Branch, spos));

}
_lclose(bthandle);

II Defining MainWindow class name
LPSTR TMainWindow::GetCiassNameO
{
return APPNAME;

}

I*
Defining WndCiass of the application's main window. The main

window features are inherited from TWindow class except that the

Icon we use is different.
*I
void TMainWindow::GetWindowCiass(WNDCLASS&_AWndCiass)
{

TWindow::GetWindowCiass(AWndCiass);

AWndCiass.hlcon = Loadlcon(GetApplicationQ->hlnstance,APPNAME);
}

I*
CanCiose member function saves the Btree data into LOG files

just before the application is closed and it returns TRUE.
*I

BOOL TMainWindow::CanCioseO
{

OFSTRUCT of;
int chandle, dhandle, bhandle, thandle, tahandle;

63

int citems, ditems, bitems, titems, taitems;

String& Name(*new String("')), spos(*new String(""));
String& AccountNumber(*new String("')}, Branch(*new String(""));

citems = BCustomer.getltemslnContainerO;
chandle = OpenFilef'customer.log", &of, OF _READWRITE I OF _CREATE);
for(int i=O; i < citems; i++)
{
Name = ((BtreeEntry&) (BCustomer[i])). keyO;
spos = ((BtreeEntry&) (BCustomer[i])). valueO;
_lwrite(chandle,Name,MAXNAMELEN);
_lwrite(chandle,spos,POSLEN);
}
_lclose(chandle};

ditems = BDeposit.getltemslnContainerO;
dhandle = OpenFile("deposit.log", &of, OF _READWRITE I OF _CREATE);
for(int j=O; j < ditems; j++)
{
AccountNumber = ((BtreeEntry&} (BDepositO]) }. keyO;
spos = ((BtreeEntry&} (BDepositOJ)). valueQ;
_lwrite(dhandle, AccountNumber, ACCOUNTLEN);
_lwrite(dhandle,spos,POSLEN};
}
_lclose{dhandle};

bitems = BBranch.getltemslnContainerO;
bhandle = OpenFile"("branch.log", &of, OF _READWRITE I OF _CREATE);
for(int k=O; k < bitems; k++)
{
Branch = ((BtreeEntry&} (BBranch[k])). keyO;
spos = ((BtreeEntry&} (BBranch[k]) }. valueO;
_lwrite(bhandle, Branch, MAXBLEN};
_twrite(bhandle,spos,POSLEN);
}
_tclose(bhandle};

titems = BBTransac.getltemslnContainerO;
thandle = OpenFile("btransac.log", &of, OF _READWRITE I oi= _CREATE);
for(int 1=0; I< titems; I++)
{
Branch = ((BtreeEntry&) (BBTransac[l]) }. keyQ;
spos = ((BtreeEntry&} (BBTransac[l]) }. valueO;
_lwrite(thandle, Branch, MAXBLEN);
_lwrite(thandle,spos,POSLEN);
}
_lclose(thandle);

64

taitems = BATransac.getltemslnContainerQ;
tahandle = OpenFile("atransac.log", &of, OF _WRITE I OF _CREATE);
for(int m=O; m < taitems; m++)
{
AccountNumber = ((BtreeEntry&) (BATransac[m])). keyQ;
spos = ((BtreeEntry&) (BATransac[m])). valueQ;
_lwrite(tahandle, AccountNumber, ACCOUNTLEN);
_lwrite(tahandle,spos,POSLEN);
}
.. Jclose(tahandle);

delete &Name;
delete &AccountNumber;
delete &spos;
delete &Branch;

return TRUE;
}

r
The destructor frees the instance of the Borland's custom

contol library object loaded for the application
*I
TMainWindow::-TMainWindowO
{

Freelibrary((HINSTANCE) BWCCMod);
}

I*
New member function executes TNewDialog, which helps

to open a new account for the customer in the bank.
*I
void TMainWindow::New(RTMessage)
{

GetModuleQ->ExecDialog(new TNewDialog(this,"NEWACCOUNT"));
}

I*
NewBranch member function executes TNewBranchDialog, which

helps to open a new branch for the bank.
*I
void TMainWindow::NewBranch(RTMessage)
{

GetModuleQ->ExecDialog(new TNewBranchDig(this, "NEWBRANCH"));
}

65

I*
Deposit member function executes TDepositDig, which helps

to deposit money to a customer's account.
*I
void TMainWindow: :Deposit(RTMessage)
{

GetModuleO->ExecDialog(new TDepositDig(this, "DEPOSIT"));
}

I*
Withdraw member function executes TWithdrawDig, which helps

to withdraw money from a customer's account.
*I
void TMainWindow::Withdraw(RTMessage)
{

GetModuleQ->ExecDialog(new TWithdrawDig(this, "WITHDRAW'));
}

I*
MoneyTransfer member function executes TTransferDig, which

helps to transfer money between two customer accounts.
*I
void TMainWindow::MoneyTransfer(RTMessage)
{

GetModuleO->ExecDialog(new TTransferDig(this, "MONEYTRANSFER"));
}

I*
Modify Address member function helps to modify a customer's

address. ModifyAddress checks the given accountnumber for the

presence in BDeposit Btree. If the given account number is valid,

it executes TModifyDig.
*I
void TMainWindow::ModifyAddress(RTMessage)
{

long pos;
int hHandle;
OFSTRUCT of;

char spos[POSLEN], AccountNumber(ACCOUNTLEN];
char Name[MAXNAMELEN], SGiobaiCustomerPos[POSLEN];

sprintf(AccountNumber, "");

PTinputDialog =new TlnputDialog(this,"Account Number'',

66

"Enter the Account Number:", AccountNumber,sizeof AccountNumber);
if(GetModuleQ->ExecDialog(PTinputDialog) == lOOK)

{
setstring(AccountNumber, ACCOUNTLEN);
BtreeEntry AccountEntry(AccountNumber,"");
int memberaccount = BDeposit.hasMember(AccountEntry);
if(memberaccount) II if valid account number
{
strcpy(spos, ((BtreeEntry&) (BDeposit. findMember(AccountEntry))). valueQ);
pos = atol(spos);
GlobaiDepositPos = pos;
hHandle = OpenFile('DEPOSIT.$$$", &of, OF _READ);
_llseek(hHandle, (GiobaiDepositPos + ACCOUNTLEN), 0);
_lread(hHandle, Name, MAXNAMELEN);
_lclose(hHandle);

BtreeEntry NameEntry(Name, "");
. strcpy(SGiobaiCustomerPos, ((BtreeEntry&)

(BCustomer.findMember(NameEntry))). valueQ);
GlobaiCustomerPos = atoi(SGiobaiCustomerPos);

}

PTModifyDig = new TModifyDig(this, "MODIFYCUSTOMERINFO");
GetApplicationQ->MakeWindow(PTModifyDig);
ShowWindow(PTModifyDig->HWindow, SW_SHOW); .

}
else II Not a valid account Number
{
MessageBox(HWindow, "This Account Number does not exist", "Input Error", MB_OK);

}
}

I*
View Account member function helps to view a customer's account

details: his address, his account number, his balance , his branch

name and his transactions. ViewAccount checks the given accountnumber

for its presence in BDeposit Btree. If the given account number is

valid, it stores the latest twenty transactions in ListBoxData

datamember and it executes TViewAccountDig.
*I
void TMainWindow::ViewAccount(RTMessage)
{

OFSTRUCT of;
BOOL There;
long pos, items, ReaiRank, AccountRank, nrank, itype;

67

int hHandle, tHandle, TrNumber = 1, flag = 1, loop1, i,j,k;
long Max, A[TRANDISPLAY], Value;
char spos[POSLEN], Type[TTYPELEN], SType[10], AccountNumber[ACCOUNTLEN];
char Name[MAXNAMELEN), SGiobaiCustomerPos[POSLEN], SAmount[MAXDEPLEN]; .
int D, M, H, Mi, S;
char sd[3], sm[3], sy[S], sh[3], smi[3), ss[3], str[60);
char SBalance[MAXDEPLEN];

sprintf(AccountNumber, "'1;

PTinputDialog = new TlnputDialog(this,"Account Number'',
" Enter the Account Number:", AccountNumber,sizeof AccountNumber);

if(GetModuleQ->ExecDialog(PTinputDialog) == IDOK)

{
setstring(AccountNumber, ACCOUNTLEN);
BtreeEntry AccountEntry(AccountNumber, "");
int memberaccount = BDeposit.hasMember(AccountEntry);
if(memberaccount)
{
strcpy(spos, ((BtreeEntry&) (BDeposit.findMember(AccountEntry))). valueO);
pos = atol(spos);
GlobaiDepositPos = pos;

hHandle = OpenFilef'DEPOSIT.$$$", &of, OF _READ);
_llseek(hHandle, (GiobaiDepositPos + ACCOUNTLEN), 0);
_lread(hHandle, Name, MAXNAMELEN);
_lctose(hHandle);

BtreeEntry NameEntry(Name, "");
strcpy(SGiobaiCustomerPos, ((BtreeEntry&)

(BCustomer.findMember(NameEntry))). valueQ);
GlobaiCustomerPos = atoi(SGiobaiCustomerPos);

CustomerList = new TListBoxDataQ;

AccountRank = BATransac.rank((BtreeEntry&)AccountEntry);
items = BA Transac.getltemslnContainerQ;
nrank = AccountRank;

while ((flag) && (nrank < (items-1)))
{
nrank = nrank + 1;
flag = ((BtreeEntry&) (BATransac[nrank])).isEquai(AccountEntry);
if(flag)TrNumber = TrNumber + 1;

}

flag= 1;
nrank = AccountRank;

68

while((flag) && (nrank > 0))
{ .

nrank--;
flag = ((BtreeEntry&) (BATransac(nrank])).isEquai(AccountEntry);
if(flag)TrNumber = TrNumber + 1;

}

if(nrank>O)ReaiRank= nrank+1;
else ReaiRank=nrank; ·

if(TrNumber <= TRANDISPLA Y)loop1 = TrNumber;
.else loop1 = TRANDISPLA Y;

for(int 1=0; I< TRANDISPLAY; I++) A[l] = -1;

long p;
for(i=O; i < loop1; i++)
{
Max= -5;
for(j=O; j < TrNumber; j++)
{
k=O;
p = ReaiRank + j;
Value= atoi(((BtreeEntry&)(BATransac[p])).valueQ);
There = FALSE;
while((k < i) && (!There))
{

if(Value == A[k])There = TRUE;
k++;

}
if(!There)
{

if(Value > Max)Max = Value;
}

. } II end of FOR loop
A[i] =Max;

}

tHandle = OpenFile("TRANSAC.$$$", &of, OF _READ);

for(int n=O ; n< loop1 ; n++)
{
_llseek(tHandle, A[n], 0);
_llseek(tHandle, (ACCOUNTLEN + MAXBLEN), 1);
_lread(tHandle, Type, TTYPELEN);
_lread(tHandle, SAmount, MAXDEPLEN);
_lread(tHandle, SBalance, MAXDEPLEN);
_lread(tHandle, sd, DMHMISLEN);
_lread(tHandle, sm, DMHMISLEN);
_lread(tHandle, sy, YEARLEN);

. _lread(tHandle, sh, DMHMISLEN);
_lread(tHandle, smi, DMHMISLEN);
_lread(tHandle, ss, DMHMISLEN);

69

D = atoi(sd};
M = atoi(sm);
H = atoi(sh);
Mi= atoi(smi);
S = atoi(ss);

itype = atoi(Type);
switch (itype)
{
case 1: strcpy(SType,"Open");

setstring(SType,7);
break; ·

case 2: strcpy(SType,"Cr'');
setstring(SType,7);·
break;

case 3: strcpy(SType,"Db");
setstring(SType,7);
break;

case 4: strcpy(SType,"intr");
setstring(SType,7);
break;

case 5: strcpy(SType,"Ciose'1;
setstri ng (SType, 7);
break;

case 6: strcpy(SType,"From");
setstring(SType,7);
break;

case 7: strcpy(SType,"To");
setstring(SType,7);
break;

default: ;
}

strcpy(str,"");
if(D < 10)
{
strcat(str, "0");
stmcat(str, sd, 1);

}
else strcat(str, sd);
strcat(str, "f');
if(M < 10)
{
strcat(str, "0");
stmcat(str, sm, 1);

}
else strcat(str, sm);
strcat(str, "f');
strcat(str, sy);
strcat(str," ");

70

}

if(li < 10)
{
strcat(str, "0");
stmcat(str, sh, 1);

}
else strcat(str, sh);
strcat(str, ":");
if(Mi < 10)
{
strcat(str,"O");
stmcat(str, smi, 1);

}
else strcat(str, smi);

· strcat(str, ":j;

if(S < 10)
{
strcat(str, "0");
strncat(str,ss, 1);

}
else strcat(str, ss);
strcat(str," ");
strcat(str, SType);
strcat(str," j;
strcat(str, SAmount);
strcat(str," ");
strcat(str, SBalance);

if(n == O)Customerlist -> AddString(str, TRUE);
else Customerlist -> AddString(str);

}
_lclose(tHandle);

·PTViewAccountDig = new TViewAccountDig(this, "VIEWACCOUNT");
GetApplicationO->MakeWindow(PTViewAccountDig);
ShowWindow(PTViewAccountDig->HWindow, SW"-SHOW);

delete Customerlist;
}
else
{
MessageBox(HWindow," Invalid Account Number Input", "Input Error'', MB_OK);

}
}

71

Branchdetails member function helps to view a given branch's

details: branch name, branch city and branch assets. BranchDetails

function checks the given branch name for the presence in

BBranch Btree. If the given branch name is valid, it executes

TBranchDetailsDig.
·*I

void TMainWindow::BranchDetails(RTMessage)
{

long pas;

char spos[POSLEN], Branch[MAXBLEN];

sprintf(Branch, "");

PTinputDialog =new TlnputDialog(this,"Branch Name",
" Enter the Branch Name:", Branch,sizeof Branch);

if(GetModuieO->ExecDialog(PTinputDialog) == lOOK)

{
setstring(Branch, MAXBLEN);
BtreeEntry BranchEntry(Branch,"j;
int memberbranch = BBranch.hasMember(BranchEntry);
if(memberbranch)
{
strcpy(spos, ((BtreeEntry&) (BBranch.findMember(BranchEntry))).valueQ);
pas = atol(spos);
GlobaiBranchPos = pas;

PTBranchDetailsDig =new TBranchDetailsDig(this, "BRANCHDETAILS");
GetApplicationO->MakeWindow(PTBranchDetailsDig);
ShowWindow(PTBranchDetailsDig->HWindow, SW_SHOW);
}
else
{
MessageBox(HWindow, "Invalid Branch", "Input Error", MB_OK);

}
}

72

I*
lsMonthEnd member function returns TRUE on the last day of

the month after 6 pm if that month's interests for the c:lccounts

are not yet calculated. Otherwise it returns FALSE.
*I
BOOL TMainWindow::lsMonthEndQ
{
OwnDate now, tomorrow;
Time time;
char sm[DMHMISLEN];
int handle, M, M1;

· OFSTRUCT of;
M = now.MonthQ;

tomorrow = now + 1 ;

if(tomorrow.DayQ != 1)
{
MessageBox(HWindow, "Today is not the last day of the month", "Input Error",MB_OK);
return FALSE;

};

if(time.hourO < 18) II 18 hours railway time or 6 pm
{
MessageBox(HWindow, "You can calculate interest only after 6 pm", "Input Error'',MB_OK);
return FALSE;

};

handle= OpenFile("BANK", &of, OF _READ);
_llseek(handle, ACCOUNTLEN, 0);
_lread(handle, sm, DMHMISLEN);
_lclose(handle);

. M1 = atoi(sm);
if(M != M1)
{
MessageBox(HWindow, "Interest is already calculated for this month", "Input

Error'',MB_OK);
return FALSE;

};

if(M == 12)M = 1;
else M++;

itoa(M, sm, 1 0);
setstring(sm, DMHMISLEN);

73

handle= OpenFile("BANK", &of, OF _WRITE);
_llseek(handle, ACCOUNTLEN, 0);
_lwrite(handle, sm, DMHMISLEN);
_lclose(handle);

return TRUE;
}

I*
MonthlyUpdation member function helps calculating interest for

each account of the savings bank for the given interest on the

last day of the month after 6 pm.
*I
void TMainWindow::MonthlyUpdation(RTMessage)
{

if(lsMonthEndO)
{
sprintf(srate, "5.0');
PTinterestDig =new TlnterestDig(this,"lnterest Rate",
" Enter the Interest Rate:", srate,sizeof srate);

GetModuleQ->ExecDialog(PTinterestDig);
}

}

I*
CMExit member function closes the application.

*I
void TMainWindow::CMExit(RTMessage Msg)
{

TWindowsObject::CMExit(Msg);
}

1*------------------------------*1
I* TMainApp implementations: *I
I*---*I

I*
Construct the TMainApp's Main Window of type TMainWindow

*I
void TMainApp::lnitMainWindowO
{

Main Window= new TMainWindow(NULL, "Savings Bank");
}

74

I*
lnitlnstance member function load menu accelarators for each

instance of the application.
*I
void TMainApp::lnitlnstanceO
{

T Application:: lnitl nstanceO;
HAccTable = LoadAccelerators(hlnstance, "SHORTCUTSj;

}

II The application's Main program
int PASCAL WinMain(HINSTANCE hlnstance, HINSTANCE hPrevlnstance,

LPSTR lpCrndline, int nCmdShow)
{

TMainApp MainApp("MainApplication", hlnstance, hPrevlnstance,
lpCmdline, nCrndShow);

MainApp.RunQ; II handles the message loop
return MainApp.Status; II returns the status of the application

}

75

6.2 Application's Header file (Project.h)

#include <owl.h>
#include <dialog.h>
#include <edith>
#include <bwcc.h>
#include <inputdia.h>
#include <listbox.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <btree.h>
#include <strng.h>
#include <assoc.h>
#include <math.h>
#include <fcntl.h>
#include <io.h>
#include <ltime.h>
#include "owndate.h"
#include "wconst.h"

II for the Object Window Library
II for TDialog class

II for TEdit class
II for Borland's custom control class library
II for TlnputDialog class

II for TListBox class
II for sprintf
II for strlen, strcpy and strcat
II for atoi, atol and ltoa
II for isdigit and isalpha
II for Btree class
II for String class
II for association

II for constants such as O_RDWR
II for open, read, write etc
II for Time class
II for OwnDate class

II for the IDs of the Dialog Boxes

#define MAXNAMELEN 32 II Maximum Customer Name string length
.#define MAXSTRLEN 20 II Maximum Street Name string length
#define MAXCITYLEN 20 II Maximum City Name string length
#define PINLEN 8 II Pin Code string length 6
#define ACCOUNTLEN 7 II Account Number string length 5
#define MAXBLEN 20 II Maximum Branch Name string length
#define MAXDEPLEN 12 II Maximum Deposit possible 1 0 lakh Rs.
#define MAXWDLEN 12 II Maximum Withdraw possible 10 lakh Rs.
#define MAXBCLEN 20 II Maximum BranchCity string length
#define MAXBALEN 15 II Maximum Assets possible 100 Crore Rs.
#define DMHMISLEN 3 II string length for day, month, hour, min & sec
#define YEARLEN 5 II string length for year
#define TTYPELEN 2 II string length for Transaction type
#define CRECORDLEN 80 II CUSTOMER.$$$ file's record length
#define DRECORDLEN 83 II DEPOSIT.$$$ file's record length
#define BRECORDLEN 55 II BRANCH.$$$ file's record length
#define TRECORDLEN 73 II TRANSAC.$$$ file's record length
#define POSLEN 12 II File position's string length
#define TRANDISPLA Y 20 II No. of transactions displayed for customer view
#define APPNAME "BANK"

void setstring(char *s, int c);

76

I*
BtreeEntry Class is for storing two related quatities(Key, Value).
Given the Key you can have the Value corresponding to that Key. We are
using this association with Btree structure for storing and accessing
a key and that Key's position in a file. ·

*I
class BtreeEntry: public Sortable
{

String& aKey;
String& aValue;

public:

enum {BtreeEntryCiass = _firstUserCiass};

BtreeEntry(char* name,char* value) II BtreeEntry class's constructor
: aKey(*new String(name)),
aValue(*new String(value)) {}

BtreeEntryO II BtreeEntry class's constructor
: aKey(*new String("")),

aValue(*new String("")) {}

classType isAO canst
{ return BtreeEntryCiass; }

char _FAR *narneOfO canst
{ return "BtreeEntry"; }

I*
checks if two BtreeEntry objects are equal based on the key

*I
int isEqual(const Object& e) canst
{return keyO == ((BtreeEntry&)(Association&)e).keyO;}

int isLessThan(const Object& e) canst
{ return keyO < ((BtreeEntry&)(Association&)e).keyQ; }

hashValueType hashValueO canst
{ return aKey.hashValueO; }

void printOn(ostream& os) canst
{ os << aKey << ":" << aValue; }

String& keyO canst {return aKey;}

String& valueO {return aValue;}

-BtreeEntryO {delete &aKey; delete &aValue;}
};

77

I*
TModi.fyDig class is for a dialog for modifying the address at a customer.
Declaring TModifyDig as a descendant of TDialog .
*I
class TModifyDig : public TDialog {
public:

char Name[MAXNAMELEN];
char Street[MAXSTRLEN];
char City[MAXCITYLEN];
char Pin[PINLEN);
char NewName[MAXNAMELEN];
PTEdit PNameEdit, PStreetEdit, PCityEdit, PPinEdit;
TModifyDig(PTWindowsObject AParent, LPSTR name);
void WMinitDialog(RTMessage Msg)= [WM_FIRST + WM_INITDIALOG];
virtual BOOL CanCioseQ;

private:

};

I*

. void FiiiBuffersQ;
BOOL lsAddressModifiedQ;
BOOL lsNameModifiedQ;
BOOL ValidName(char*);
BOOL ValidStreet(char*);
BOOL ValidCity(charj;
BOOL ValidPin(charj;

TNewDialog class is for a dialog for the customer to open a new bank account.
Declaring TNewDialog as a descendant of TDialog .
*I
class TNewDialog : public TDialog {
public:

char Name[MAXNAMELEN];
char Street[MAXSTRLEN];
char City[MAXCITYLEN];
char Pin[PINLEN];
char BranchName[MAXBLEN];
char Deposit[MAXDEPLEN];
char AccountNumber[ACCOUNTLEN];
TNewDialog(PTWindowsObject AParent, LPSTR name);
void WMinitoialog(RTMessage Msg)= [WM_FIRST + WM_INITDIALOG];
virtual BOOL CanCioseQ;

private:

};

void FiiiBuffersQ;
BOOL ValidName(char*);
BOOL ValidStreet(char*);
BOOL ValidCity(char*);
BOOL ValidPin(charj;
BOOL ValidBranch(char*);
BOOL ValidDeposit(char*);

78

I*
TNewBranchDig class is for a dialog for the bank to open a new branch.
Declaring TNewBranchDialog as a descendant of TDialog .
*I
class TNewBranchDig : public TDialog {
public:

char BranchName[MAXBLEN];
char BranchCity[MAXBCLEN];
char BranchAsset{MAXBALENJ;
TNewBranchDig(PTWindowsObject AParent, LPSTR name);
virtual BOOL CanCioseQ;

private:

};

I*

void FiiiBuffersQ;
BOOL ValidBranchName(char*);
BOOL ValidBranchCity(char*);

TBranchDetailsDig class is for a dialog for viewing Branch Details.
Declaring TBranchDetailsDig as a descendant of TDialog .
*I
class TBranchDetailsDig : public TDialog {
public:

char BranchName{MAXBLENJ;
char BranchCity(MAXBCLENJ;
char BranchAsset(MAXBALEN];
TBranchDetailsDig(PTWindowsObject AParent, LPSTR name);
void WMinitDialog(RTMessage Msg) = [WM_FIRST + WM_INITDIALOGJ;

~ .

r
TDepositDig class is for a dialog for the customer to deposit money

into his account.
Declaring TDepositDig as a descendent of TDialog ·

*I
class TDepositDig : public TDialog {

·public:
char AccountNumber[ACCOUNTLEN];
char Deposit{MAXDEPLEN];
char Branch{MAXBLEN];
TDepositDig(PTWindowsObject AParent, LPSTR name);
virtual BOOL CanCioseQ;

protected:

};

void FiiiBuffersO;
BOOL ValidAccount(char*);
BOOL ValidDeposit(char*);

79

I*
TWithdrawDig class is for a dialog for the customer to withdraw money

from his account.
Declaring TWithdrawDig as a descendent of TDialog

*I
class TWithdrawDig : public TDialog {
public:

char AccountNumber{ACCOUNTLEN];
char Withdraw[MAXWDLEN];
char Branch[MAXBLEN];
TWithdrawDig(PTWindowsObject AParent, LPSTR name);
virtual BOOL CanCioseQ;

protected:

};

-/*

void FiiiBuffersQ;
BOOL ValidAccount(char*);
BOOL ValidWithdraw{char*);

TTransferDig class is for a dialog for the customer to deposit money
into his account.
Declaring TTransferDig as a descendent of TDialog

*I
class TTransferDig : public TDialog {
public:

char FromAccountNumberfACCOUNTLEN];
char ToAccountNumber{ACCOUNTLEN];
char Deposit[MAXDEPLEN];
TTransferDig(PTWindowsObject AParent, LPSTR name);
virtual BOOL CanCioseQ;

protected:
void FiiiBuffersQ;
BOOL ValidAccount{char*);
BOOL ValidMoneyTransfer(char*);

};

I*
TViewAccountDig class is for a dialog for viewing Customer Details.
Declaring TViewAccountDig as a descendant of TDialog .
*I
. class TViewAccountDig : public TDialog {
public:

char Name[MAXNAMELEN);
char Street[MAXSTRLEN];
char City[MAXCITYLEN];
char Pin[PINLEN];
char AccountNumberfACCOUNTLEN];
char BranchName[MAXBLEN];
char Balance[MAXDEPLEN];
PTListBox CustomerUstBox;
PTStatic PName, PStreet, PCity, PPin, PAccount, PBranch, PBalance;
TViewAccountDig(PTWindowsObject AParent, LPSTR name);
void WMinitDialog(RTMessage Msg) = [WM_FIRST + WM_INITDIALOG];

80

};

class TlnterestDig : public TlnputDialog {
public:

};

char SRate(6];
TlnterestDig(PTWindowsObject, LPSTR, LPSTR, LPSTR, WORD);
BOOL ValidRate(char*);
BOOL CanCioseQ;

I* Declare TMainWindow, a TWindow descendant *I
class TMainWindow : public TWindow {
public:

};

HANDLE BWCCMod;
TModifyDig *PTModifyDig;
TBranchDetailsDig *PTBranchDetailsDig;
TlnputDialog *PTinputDialog;
TlnterestDig *PTinterestDig;
TViewAccountDig *PTViewAccountDig;
PTListBoxData CustomerList;

TMainWindow(PTWindowsObject AParent, LPSTR A Title);
- TMainWindowQ;
.LPSTR GetCiassNameQ;
virtual void GetWindowCiass(WNDCLASS&);
virtual void New(RTMessage Msg) = [CM_FIRST + CM_NEW];
virtual void NewBranch(RTMessage Msg) = (CM_FIRST + CM_NEWBRANCH];
virtual void Deposit(RTMessage Msg) = [CM_FIRST + CM_DEPOSIT];
virtual void Withdraw(RTMessage Msg) = [CM_FIRST + CM_WITHDRAW];
virtual void ModifyAddress(RTMessage Msg) = (CM_FIRST + CM_MODIFY);
virtual void MoneyTransfer(RTMessage Msg) = [CM_FIRST + CM_ TRANSFER];
virtual void BranchDetails(RTMessage Msg) = [CM_FIRST + CM-'-VIEWBRANCH];
virtual void ViewAccount(RTMessage Msg) = (CM_FIRST + CM_ VIEW];
virtual void.MonthlyUpdation(RTMessage Msg) = [CM_FIRST + CM_INTEREST];
viftual void CMExit(RTMessage Msg) = [CM_FIRST + CM_EXIT];
virtual BOOL lsMonthEndQ;
virtual BOOL CanCioseQ;

I* Declare TMainApp, a T Application descendant *I
class TMainApp : public T Application {
public:

};

TMainApp(LPSTR name, HINSTANCE hlnstance, HINSTANCE hPrevlnstance,
LPSTR lpCmdLine, int nCmdShow)
: TApplication(name, hlnstance, hPrevlnstance, lpCmdLine, nCmdShow) O;

virtual void lnitMainWindowQ;
virtual void lnitlnstanceQ;

81

6.3 ·Application's Module definition file (standard.def)

NAME BankApp

DESCRIPTION "Savings Bank"

STUB "WINSTUB.EXE" II Gives message " Program Runs under Windows only "

II if you run it outside the Windows environment

EXETYPE WINDOWS

CODE PRELOAD MOVEABLE DISCARDABLE II For the Windows to manage

DATA PRELOAD MOVEABLE MULTIPLE

HEAPSIZE 8192

STACKSIZE 5120

82

II memory of the application

l.

2.

3.

4.

Bibliography

"ObjectWindows ~or c++ User's Guide", Borland International Inc.

"Microsoft Windows Software Development Kit Guide to Programming",

Microsoft Corporation.

Alan Synder, "The essence of Objects: Concepts and Terms". IEEE

Software January, 1993.

"A Structured approach to Object- Oriented Design", Addendum to

the proceedings OOPSLA'91, pp 21-43.

5. Bjame Stroustroup, "The c++ Programmirig Languge". Addison Wesley

Publishing Company, 1991.

6. Brian W. Kernighan and Dennis M. Ritchie, "The C Progranuning

Language". Printice Hall of India Private Limited. 1991

7. Gary Syck. "ObjectWindows How- To", Galgotia Publications Private

Limited, 1993.

8. Henry F. Korth and Abraham Silberschatz, "Database System Concepts",

McGraw-Hill Computer Science Series, 1991.

9. James Conger, "Windows API Bible", Galgotia Publications Private

Limited, 1993.

10. Jim Conger, "Windows Programming Primer Plus", Galgotia Publications

Private Limited, 1993.

11. Louis Fernandes, Yogesh Sheth and Anish Kurup, "Borland c++ 3.0 for

Windows 3.1 Programming with ObjectWindows", BPB Publications,

1993.

12. Nambiar K. K., "Some Analytic Tools of Database Design of Relational

Database Systems", Proc. 6th Conference on Very Large Databases,

Montreal(1980) , IEEE 1980.

83

13. Pankaj Jalote, "An Integrated Approach to Software Engineering",

Narosa Publishing House, 1991.

14. Peter Wegner, "Dimensions of Object- Oriented Modelling", IEEE Computer

October 1992, pp 12-20.

15. Robert Lafore, "Object Oriented Programming in Turbo c++ ", Galgotia

Publications Private Limited, 1992.

16. Setrag Khoshafian and Razmik Abnous, "Object Orientation Concepts,

Language, Database, User Interfaces", John Wiley & Sons Inc., 1990.

17. Stanley B. Lippman, "C++ Primer", Addison Wesley Publishing Company,

1991.

18. Stevens A. L., "C Database Development", BPB Publications, 1989.

84

Glossary

Abstraction: Abstraction is a tool that permits the designer to consider a
component' s external behaviour without worrying about its internal details.

Object: Object is an abstraction of a real world entity. The objects can be a dialog, an
aeroplane etc for example.

Class: Class is a collection of objects

Data member: Variables in a class are called data members.Synonym for data
member is instance variable.

Method: Procedures defined for a class are called methods. synonym for method· is
member function.

Base class: Base class is a class from which new classes are derived.

Derived class: Derived class is a class derived from· a base class.

Inheritance: Inheritance is a concept which allows an object to inherit the
attributes of another object.

Muliple Inheritance: Multiple Inheritance is Inheritance of attributes from multiple
objects.

·Encapsulation: Encapsulation is hiding of internals of an object. Synonyms
for Encapsulation are data hiding and information hiding.

Window: When the screen is split into several independent regions, each region is
called a window.

Icon: Icon is a small graphic image that represents an application when that
application's main window is minimized.

Menu: A menu is a list commands that the user can view and choose from.

Mouse: A mouse is a pointing device, which allows users to point at different
parts of the screen.

Button: A button is a small labelled window and it cause an action to take
place when the user selects it.

Dialog box: Dialog box is a window that application uses to interact with the
user.

List box: List box is a window which is used to display a list of strings and one

85

or m<,>re strings can be selected from the window.

Edit contol: Edit control is a window which aHows users to edit, display or
modify text.

Static control: Static contol is a window which allows users to display text.

Accelarator: Accelarator is a keyboard shortcut to a menu command.

Resource: Resource is a read only data stored in an application's executable file
that Windows reads from disk on command. They are used to manage windows
and user - defined objects like menus, bitmaps, dialog boxes, icons and
· accelarators.

86

	TH51570001
	TH51570002
	TH51570003
	TH51570004
	TH51570005
	TH51570006
	TH51570007
	TH51570008
	TH51570009
	TH51570010
	TH51570011
	TH51570012
	TH51570013
	TH51570014
	TH51570015
	TH51570016
	TH51570017
	TH51570018
	TH51570019
	TH51570020
	TH51570021
	TH51570022
	TH51570023
	TH51570024
	TH51570025
	TH51570026
	TH51570027
	TH51570028
	TH51570029
	TH51570030
	TH51570031
	TH51570032
	TH51570033
	TH51570034
	TH51570035
	TH51570036
	TH51570037
	TH51570038
	TH51570039
	TH51570040
	TH51570041
	TH51570042
	TH51570043
	TH51570044
	TH51570045
	TH51570046
	TH51570047
	TH51570048
	TH51570049
	TH51570050
	TH51570051
	TH51570052
	TH51570053
	TH51570054
	TH51570055
	TH51570056
	TH51570057
	TH51570058
	TH51570059
	TH51570060
	TH51570061
	TH51570062
	TH51570063
	TH51570064
	TH51570065
	TH51570066
	TH51570067
	TH51570068
	TH51570069
	TH51570070
	TH51570071
	TH51570072
	TH51570073
	TH51570074
	TH51570075
	TH51570076
	TH51570077
	TH51570078
	TH51570079
	TH51570080
	TH51570081
	TH51570082
	TH51570083
	TH51570084
	TH51570085
	TH51570086
	TH51570087
	TH51570088
	TH51570089
	TH51570090

