
COMPUTATIONAL LEXICON: Specification and Design

Dissertation submitted to .Jawaharlal Nehru University
in partial fulfilment of the requirements

for the award of the degree of
MASTER OF TECHNOLOGY

In

COMPUTER SCIENCE & TECHNOLOGY

By

SEYOUM MITIKU MERSHA

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JA WAHARLAL NEHRU UNIVERSITY

NEW DELHI - 110067
INDIA

CERTIFICATE

This is to certify that the dissertation entitled "COMPUTATIONAL LEXICON:

Specification and Design" being submitted by me to Jawahadal Neh.-u Univea·sity in partial

fulfilment of the requirements for the award of the degree of Master of Technology in

Computer Science and Technology is a record of original work done by me under the

supeiVision of Prof. G.V. Singh, School of Computer and Systems Sciences, during the

Monsoon Semester, 1993.

The results reported in this dissertation have not been submitted in part or full to any

other University or Institution for the award of any degree .

...

Prof. K.K Bharadwa?
Dean,
School of Computer &
Systems Sciences,
J.N. U., New Delhi,
INDIA.

(SEY UMMITIKUMERSHA)

...

ing~
School of C mputer &
Systems Sciem:es,
J.N.U., New Delhi,
INDIA.

ACKNOWLEDGEMENTS

This dissertation work has not been happened without the help of many persons. I take

this opportunity to express my gratitude to Prof. G.V. Singh for his valuable guidance, patience

and efforts in dealing with my various technical and personal problems during the completion

of this work.

I would like to thank Prof. K.K Bharadwaj, Dean, SC&SS, JNU and all the faculty members

of SC & SS, JNU for providing me adequate facilities and knowledge which helped me in

accomplishing this task.

I thank Department of Electronics (DoE), for using Computer facilities under the project

CASTLE (Computer Aided Sanskrit Teaching and Learning Environment) sponsored by DoE.

It is my pleasure to thank Mr. D. K. Lobiyal, Mr. Pramod Gupta, Mr. Amitav

Bhattacharjee, Mr. H. Nabil and Mr. Saad Ezzat, for their friendship and constant support while

I was doing this project.

I would like to extend my thanks to my Ethiopan friends in Delhi, Specially, to Mr. Haile

Eyesus Engida Eshet for his valuable suggestions in solving some of my linguistic difficulties.

Finally, I am extremely indebted to my wife Kidist Tadesse for her patience and moral

support during this work.

January, 1994

New Delhi

Seyoum Mitiku Mersha

TO MY MOTHER

ABSTRACT

This Thesis deals with the structuring of the computational lexicon, and its Software

Specitication and Design. It describes how the parts of speech and word features, for purely

syntactic parser, and the patterns of relationships between words and word concepts, for

syntactic and semantic analysis respectively, are represented in lexicon.

Under specification it sort out the problems and data tlow diagram for the processes into

and out of lexicon and its interfaces.

Under design it discuses the data definitions and module specification of the software in

pascal like pseudo code.

As any language has enormous number of vocabularies, storing each as a separate entry

will slow search activity. To enhance this the technique used is to store only morphemes

(morpheme is a minimal meaningful unit which can be used independently in a language, i.e. root

word).

Many words may share the same information. Storing information repeatedly along with

each word will cause unnecessary space consumption. To avoid this, the lexicon is organized

in such a way that the stored information can be shared between words.

A lexeme is considered as one word taken along with its grammatical attributes, semantic

attributes, conjugate list, computational words (derived words), relations, possible surface

realization, pronunciation and meaning of the word. Thus lexicon may be defined as a collection

of lexemes along with its interfaces such as recognizer, generator, and grammar.

Lexicon is organized in word basis of major word classes, as follows.

i. Noun and pronoun are taken as lexeme of NOUN frame.

ii. Some pronoun, adjective, quantifier, and article are taken as lexeme of ADJECTIVE

frame.

iii. Tensed verbs, tenseless verbs (infinitive) are taken as VERB frames.

iv. ADVERB frame contains adverb.

Other connectives, because of their individual properties or may be treated as part of the

gramm.ar, appear as a LITERAL in the lexicon.

Some words may be understood in more than one way. These elements will accordingly

be represented in lexicon with the same entry but different frames to their various senses.

The relationships between words are represented by tuples. These tuples are the two

words, as nodes, and the connection between them, as relational arc. Most of the feature of word

are stored in lexicon in attribute form, which may be encoded by taking its first character. Case

roles {Theta role) which represent the. relation between an action and an object in a sentence has

been encoded in the structure of lexicon under each verb as Required, Not Required or Optional.

During software design of lexicon the design approach, adopted is Structured design.

The main operations, which are considered to be applied on the Lexicon for the

correctness and building of the database are DELETE, UPDATE and STORE. RETRIEVE is

for looking to the content of the lexicon and RECOGNIZER is an interface between the users

(like parser), and the operations of Lexicon. It recognizes a word, if the word is in the Lexicon,

it provides a service along with other interfaces. EXTRACT_FEATURE is another interface,

which use RECOGNIZER, for providing the necessary information of the word.

TABLE OF CONTENTS

CONT.ENT

ch. 1 INTRODUCTION

ch. 2 SPECIFICATION AND STRUCTURE OF LEXICON

2.1 Specification of a Lexicon

2.2 Ambiguities in a Lexicon

2.3 Structure of a Lexicon

2.3.1 Grammatical Attributes

2.3.2 Conjugate List

2.3.3 Derived or· Computable words

2.3.4 Semantic Attributes

2.3.4.1 Noun

2.3.4.2 V crb

2.3.4.3 Adjective

2.3.4.4 Adverb

2.3.5 Relations

ch. 3 DESIGN METHODOLOGY

3.1 Data Flow Diagr·am and Structural Chart"

3.2 Data Detinition

3.3 Module Specification

PAGE

I

6

6

13

15

16

20

21

22

22

23

26

26

27

29

31

36

42

3.4 Detail Design 50

3.4.1 Main Module 50

3.4.2 Input Modules 52

3.4.3 Transform Modules 54

3.4.4 Output Modules 59

3.5 Interfaces 60

3.5.1 Recognizer 60

3.5.2 Extracting Features 62

3.5.3 Extracting Relations 64

ch. 4 CONCLUSION 67

BIBLIOGRAPHY 69

CHAPTER I

INTRODUCTION

Today there are many formal languages that the computer can understand (such as C,

C++, Prolog, etc ...) which serve for large class of problems. Though we already have such

facilities, people want to communicate with a Computer in Natural Language. The more pertinent

question is really, when is natural language, such as English, input to a computer is preferable?

Natural Language input is desirable, for example if it is necessary to use computer for

retrieval of information from a text in some language. If a computer could acceptthat particular

language input, much information now recorded only in the same language would be available

for computer use without need for human translation.

A computer that understood English would be more accessible to any speaker of English.

Especially for occasional use where it would not be worthwhile to train the user in specialized

language.

Programming languages are process oriented. They cannot describe a problem. They are

only a method for finding a solution to a problem. A Natural Language is convenient vehicle

for providing a description of the problem itself, leaving the choice of processing to the problem

solver accepting inputs.

" ... if one can learn how to make a computer understand a natural language it is big step

1

towards creating an artificially intelligent computer" [6].

The realization of Natural, or human language processing (NLP) system as opposed to

formal languages, to handle real world problems require the accumulation of a wide range of

knowledge formations and its management. Knowledge can be represented using an appropriate

data structure, which is referred as a lexicon.

Lexicon is quite essential and necessary for natural language processing systems, i.e.

parser, generator, translator, etc. It is because almost all the components of natural language

processing systems refer to lexicon in order to accomplish their task. A simple lexicon for NLP

systems may broadly contain syntactic, semantic and contextual knowledge.

Design of a lexicon is a complex activity and it involves, the data structure for the
""'.·----·

lexicon, the data to be stored in the lexicon, the size of lexicon and organization of the lexicon.

The problem of data structure depends on the data and the groups in which it is

categorized. At the same time the data structure should be flexible for later up gradation of the

system.

The decision about the contents of the lexicon depends ~n the requirements of the

application. The only necessary data should be stored in the lexicon and other information should

-
- be derived from the lexicon. In any natural language, infinite number of relations exist between

the objects, i.e. part_of, is_a, etc. It is not ahvays possible to store all these relations. The stored

data also depends on the grammatical framework used at syntactic and semantic level.

2

The size of lexicon is of very important consideration for its use and its storage. To

reduce the size of the lexicon, NLP in general and inflectional languages in particular store only

the free morphemes (root words) with the necessary morphological feature (bound morphemes).

Free morphemes is a minimal meaningful unit which can be used independently in a language.

A bound morpheme cannot be used independently but gives a meaningful word when combined

with a free morpheme. The variant forms of root words can be derived by using simple spelling

rules such as plurals can be formed by adding -s or -es in English language. But there are the

words of irregular form which can not be derived from its root. These words need to be stored.

Organization of lexicon is an important problem in the overall design of lexicon. It deals

with the management and use of the lexicon. The organization should be in such a manner that

the insertion, deletion, modification and searching of an entry is fast and easy. There are several

searching t~c~lliques available for fast and efficient accessing of the data. The selection of search

technique depends on the application.

The problems about the lexicon discussed so far pertain only to the design of a lexicon

for the NLP systems dealing with a single language. There are NLP systems such as translation

systems which may require a lexicon with the entries for multiple languages. These lexicons are

called multilingual lexicons. Multilingual lexicons take data from different languages so the

relationship among these data may change the grouping and classification of data. This in turn

brings the requirement of different data structure from that of a simple lexicon.

OVERVIEW OF CURRENT RESEARCH ON LEXICON

Issues that arises in building relational models of lexicon and the revit!w of current

3

research in the development of relational lexicon are discussed as follows.

The relational lexicon works at the level of individual words. Much of the information

in the knowledge base consists of proposition which can be expressed in the form of relational

arc. The lexeme is either an elementary lexical unit of the language, or one word taken in one

well-defined sense with one set of syntactic, semantic and morphological properties. Further the

lexical entry may contain :-

i. Attributes, with values assigned to them. The relevant attributes depend on

the part of speech of the word.

ii. A table of appropriate arguments (cases of verbs, appropriate noun classes

for adjectives, preposition, for nouns, etc.).

iii. Relational arcs to other words in lexicon.

The two types of relations; semantic relation and lexical relation play a great role in

structuring of relational lexicon. Semantic relations connect concepts while Lexical relations

connect words. Most models use combination of Lexical and Semantic relations. Some have

chosen to work with either. Those who are building memory models concentrates on semantic

. relations, while those building lexicons with words an~ phrases as entries need lexical relations

primarily. Oswald Warner has dealt with semantic in his process of building a language universal

model[l]. John Sowa is building canonical graphs as a part of a comprehensive memory model,

whose relation is primarily semantic[9]. On the other hand Melcuk and Calzolari are ·both involve

in lexicography, where their models stress lexical relations[!].

4

The part of speech and word features in traditional dictionaries are adequate for a purdy

syntactic parser. But semantic analysis requires a more detailed representation of patterns of

relationships between concepts.

Multiple word sense, syntactic ambiguity, implicit relationships, long range relationships

problems are separately unsolvable. But an integrated theory should determine how semantic

patterns for each word interact with syntax and context. Some of the proposed approach to such

an integration are "projection rule for combining, Markers, Katz, and Foder [1963]", "function

application, Montague [1974]", "tilling slots in templates, Wilk [1975]", "building graph

structure Schanc and Rusbeck [1981]", and "conceptual graph, an integrate of all others, Sow a

[1984]".

OBJECTIVES OF THE PROJECT

As already stated above, almost all the components of Natural Language Processing

systems depends on lexicon for their complete functioning. There is no standard method for

description of lexicon generation and management. This depends on the application it is used for.

All these problems draw the attention of r~searchers working in the area of NLP for the design

and development of a lexicon. This work attempts to design a flexible, application independent

lexicon which can later be used for any NLP application. This idea is based on the thought that

most NLP systems have some common requirements, i.e. syntactic .and semantic. This lexicon ·

is as a part of NLP work being done at School of computer and systems sciences, J.N.U.

5

CHAPTER II

SPECIFICATION AND STRUCTURE OF LEXICON

In a Lexicon only the necessary data shall be stored. The data to be stored in a lexicon

and its format in the data structure will be described under specification and structure of a

lexicon.

2.1 Specifications of Lexicon

Lexicon must provide us categorical information. For example our lexicon will have to

tell us that cat is a Noun, or that admit can be either a Noun or a Verb and so on and so forth.

However, categorical information which dictionary entries contain must be rather more detail

than is-assumed by the simple portion of major classes, like Noun, Verb, Adjective and so on.

If we consider the category Noun it has to be divided into a number of distinct subclasses. One

important distinction is between Proper and Common nouns. Proper nouns are generally names

of people(e.g. Ram), places(e.g. India), months(e.g. November), events(e.g. Deepawali), etc.

They differ from common nouns in that they are not usually premodified by Determiners like 'a'

and 'the' (one can not say a/the India), Whereas Common nouns are not restricted (e.g. a/the

cinema). Common nouns can be subdivided into two distinct sets, Count and Non-count nouns.

Nouns which can be used with singular determiner like a/one or a plural determiner like

two/three are known as Count Nouns, hence chair is a Count Noun, since we can say both 'a

6

chair' and 'two chairs'; but Nouns which can not be used as described above are Non Count or

Mass Nouns (hence furniture is non count/mass noun , since we do not say a furniture or two

furnitures). Also ·a singular mass Noun can be used without determiners, but not singular count

noun, (e.g. we need furniture, we can't say we need chair). A mass noun can be premodified by

·much' not 'many', whereas count noun can be premodified by 'many' not 'much' (e.g. much

furniture not many furniture, but many chairs). Thus our entry for 'cat' should have

cat:[+N,-V,+common,+count]. But, other s-yntactic information should also be included in lexical

entries. Let us try to examine the following structure of a sentence, John won't 1 Mary [5].

s

~
NP I VP

John won't V'

~
V NP

? Mary

(Where NP is noun phrase, VP is verb phrase,_ and I is Intlection constituent which can be filed

by the modal such as can/ could/ will/ would ...).

The lexicalisation principle in place of 1 allows us to insert any word specified as a verb,·

but as we see from the following: i.e. John won't defy/ invite/ hit/ harm/ help/ like Mary, are

7

acceptable, while John won't come/ go/ wait/ fall Mary are not acceptable. In fact some verbs

in English are transitive while some are intransitive. It is not possible to detect them from the

meaning of the verb, since pairs like wait and await seems to hav~ much the same meaning, yet

only the second in this context is transitive (i.e. we can say, we shall await your instructions, but

not I shall wait your instruction). There doesn't seem to be any way in which we can predict,

this kind of syntactic information. It should be included in Lexical Entry for each verb.

Verbs also Permit one or more preposition, such as the following:

i. I defer to your suggestion. We cant use at, on, by, with instead of to.

ii. John waited for taxi. We can't use to, after, from, instead of for.

iii. You must abide by my decision; at, on, to, from are not acceptable instead of by.

We have to specify in the lexical entry of each verb, which kind of preposition the verb

takes. e.g. 'rely' must be followed by preposition 'on'.

Another type of information which lexical entries for verb should contain is Thematic

information. In the sentence, John gave Mary the book, John bears theta role Agent to the verb

predicate gave, Mary bears the role Goal and the book bears the role Theme. Theta roles of verbs

also contribute for the well formed of a sentence. Theta roles represent the relations between an

action and objects in a sentence. Detail description of these roles are as follow:

i. Agent:- Instigator of some action. E.g. John killed Mary ..

ii. Object(patient):- Entity under going the effect of some action. E.g. Mary fell over.

iii. Experience:- Entity experiencing some psychological state. E.g. John was happy.

8

iv. Instrument:- By which something come about. E.g. John wounded Henry with

knife.

v. Source:- Entity from which something moves. E.g. John returned from Paris.

vi. Goal:- Entity towards which something moves. Kg. John passed the book to Mm·y.

vii. Locative:- P~ace where something is situated or take place. E.g. John hide the letter

under the bed.

The incorporating of Thematic Functions into our model of syntax allows us to capture

the similarity between different (but related) uses of the same lexical items. For example a verb

such as a roll can be used both in transitive structure (a: John rolled the ball down the hill), and

intransitively (b: The ball rolled down the hill). The italics expression clearly has a different

constituent structure status in the (a) and (b) sentences. The ball is the object of the verb rolled

in (a), but it is subject in (1:)· But in another sense the ball play the same role in both sentences

as an entity undergoing motion. We can capture this role-identity by saying that the ball has the

same thematic role in both sentences, which is the role THEME. The subject of murder is

AGENT, that of collapse is a THEME, that of receive is GOAL, that of contain is LOCATIVE,

and so on. Such role unpredictable to particular item has to be stored some where. It seems

that the obvious place to represent information about an argument of an item is in the Lexicon

entry under the concerned verb. That is the entry of murder will have additional information as

described earlier, i.e. AGENT REQUIRED, and THEME REQUIRI;:D.

The other information that must be stored along with the entry of a lexicon are the

9

relationships between words and Concepts. Those relations which connect concepts are semantic

relations, while those which connect words are Lexical relations. It is sometimes difficult to

distinguish between the two relations. Such relations are called Lexical Semant!c Relations (

semantico~ syntactic). There are intinitely many relations. But, as far as efficiency is concerned,

storing all in the lexicon may not be practical. Some major lexical and lexical-semantic relations

are to be selected according to the need of once goal, such as:-

PART-WHOLE relation: A relation which identifies something as being a segment or

a portion of something else. This relation is only applicable to the words belonging to Noun

class. In English it is often expressed by part of, the verb to have, and the possessive. E.g. A

vehicle has a motor, A petal is part of a flower, etc.

SYNONYM: A relation which signals equivalence between words. In English it often

appears as the verb to be. E.g. A bug is an insect (meaning the word 'bug' is just another word

for 'insect').

TAXONOMY: A relation showing a membership of an individual in a set or a group of

individual in a large group. In English it is often expressed by a verb 'to be' and 'is a kind or.

E.g. Ants and fleas are kind of insects. It shows some hierarchical behavior.

MAGNITUDE: If a Lexical function MAGNITUDE is applied on word voltage the

response could be high-(i.e. high voltage, but not great voltage) and incase the word height the

respond may be considerable (considerable height), etc.

10

Some of the Lexical Semantic Relation which are adopted from Chaffin and Hermand[l],

with illustrated examples are as follow:

CONTRAST:- .

i. Contrary:- old -- young, happy -- sad.

ii. Contradictory:- alive -- dead, male -- female

iii. Reverse:- attack -- defend, buy -- sell

iv. Directional:- front -- back, left -- right

v. Asymmetric_ contrary:- hot -- cool, dry -- moist

vi. Pseudo _antonym:- popular -- shy

SIMILAR:

i. Synonymity:- car<-->auto, buy -- purchase

ii. Dimensional_similar:- smile -- laugh

111. necessary _attribute:- bachelor -- unmarried

IV. Invited_attributes:- food -- tasty, cut -- knife

v. Action subordinate:- talk-- lecture, cook -- fry

CLASS INCLUSION:

i. Perceptual_subo:- animal -- horse, flower -- rose

ii. Functional subo:- furniture--chair, tool--hammer

111. State subo:- disease -- polio, emotion -- fear

iv. Active_subo:- game -- chess, crime -- theft

11

v. Geography sub:- state --California

vi. Place:- Germany -- Hamburg, Asia-- India

CASE RELATIONS:

i. Agent-Action:- artist -- paint, dog -- bark

ii. Agent-Object:- • baker -- bread, sculptor -- clay

iii. Agent-Instrument:- farmer-- tractor, soldier--gun

iv. Action-Recipient:- sit-- chair, hunt --pray

v. Action-Instrument:- cut -- knife, drink -- cup

PART-WHOLE:

i. Functional object:- engine -- car, tree -- leaf

ii. Collection:- forest -- tree, fleet -- ship

111. Group:- Choir -- singer, faculty -- professional

iv. Ingredient:- table -- wood, pizza -- cheese

v. Functional location:- kitchen -- stove

v1. Organization:- college -- admissions, army --corps

vii. measure:- mile -- yard, hour -- minute

Additional information to the parser, such as which type of grammar rule the word

satisfies, has to be stored in the lexicon. If we consider the adjective class it has subclasses which

may fall in one of the representation of grammar rules. One of the Sagers subclass AASP[7]

defined as an adjective is an AASP if it occurs only with (Non-SN) right adjunct to v OBJ (SN

12

an embodied or contained sentence). The representation is as follows:

N be Adj to V 0 BJ

E.g. John is able to go. but we cant say John is able that Bill walks. The words able,

fit, free, quick. etc. are in the subclass AASP. One word can be in two or more different

subclasses. These classes to which the word belong has to be kept in lexicon.

For reference purposes the meaning of the word along its pronunciation has to be kept in

lexicon. For example, Conjunction pronunciation is ken-junk'shen. Since it has different meanings

in different uses, all possible meanings has to be stored. The major operations on a lexicon are

either to build a lexicon database or require services from the lexicon. In building of lexicon the

operation involved are DELETE, STORE, and UPDATE. While RETRIEVE, RECOGNIZER,

GENERA TOR, etc. are used for data out of database. RETRIEVE is for look up of the database,

i.e., reading from the database. RECOGNIZER and GENERATOR are interfaces for recognizing

the word whether it is available in the database or not, if it is available they have to give the

word content to the user.

2.2 Ambiguity and Lexicon

Some of the sources of ambiguities m natural languages are polysomy, generality,

idiomatic expressions and homonym. Polysomy of a word is the most problem in semantic

description.

Many words in many sentences can be understood qui.te differently. It is difficult to give

13

semantic account of such phenomena in a description of a language.

The basic distinction between the content of a sentence and jts interpretation play crucial

role. The content of the sentence is the inherent semantic structure of a sentence. The

interpretation of a sentence is the various ways of which one and the same sentence can be

understood in each unique cause of language use.

To make the distinction between them the following should be noted.

i. The inherent meaning of a word, which its full specification, is in lexicon.

ii. The possible further specification of its inherent meaning in the context of

particular sentence

iii. The possible further specitication in the interpretation of a sentence in a

language use.

The word old is understood differently in an old man ('of relatively great age') and an

old shoe ('not new'). It is quite reasonable to conclude old has distinct senses, though of course

these senses are related. Polysomy is restricted to those words that have distinct but related

senses.

Some of the words that can be understood in more than one ways will be represented in

a lexicon with the same entry and corresponding distinct frames wit.h their various senses.

14

A second feature of word that may give rise to the ambiguity is Generality. For example

'I brought an animal from the Zoo' can be ambiguous in language since it may arouse curiosity

which animal he brought. 'To maintain child' is ambiguous between daughter and son. Finally

it should be noted that generality is relative notion. Animal is more general than monkey, but

·monkey is still unspecified with respect to the various kinds of monkeys available.

The third possible source of ambiguity (opposite to generality) is homonymous. A lexical

element is homonymous if its different senses have no relevant component in common. For

example, Bank 'of a river' and bank 'place to deposit money', swallow 'to engulf' and swallow

'kind of bird ' have nothing in common.

An Idiomatic expression can be viewed as an expression; the meaning of which can not be

described as a composition function of the meanings of its components and the structure. ldioll}s

are semantically highly irregular.

2.3 Structure of a Lexicon

The lexicon entry is taken to be a morpheme, which is a minimal meaningful unit

and can be used independently in a language. The lexeme is taken as a root word along

with its grammatical attributes, semantic attributes, conjugate list, case roles, derived words,

possible syntax surface realization of the word, a mark for relations, or and storage for

idioms and definition. Though the entry of a lexicon is a morpheme, word phrase like full

idioms has to be entered to the lexicon separately. Idiom is a phrase which can not be

15

constructed from its constituent words by general rules and such that no constituent

·word retains its full meaning. For reference purpose idioms will be stored under each constituent

words.

With each lexeme a frame and slot are associated. A frame may contain another frame

with in itself. They may be linked together by storing the address of one in the other. All the

frames are not structurally identical. One may belong to noun, verb, noun modifier, verb

modifier or literal frame~ Since, this lexicon is organized in word bases, words are grouped in

different part of speeches. The meaning of a sentence is usually influenced by noun, verb

and their modifiers. The grouping of words have been made under these four classes. Noun and

Pronoun are taken to be as part of noun class. Some of Possessive pronouns, Adjective,

qualifier, and article are taken as part of noun modifier class. Tensed verbs and Tenseless verbs

(infinitive) .~~~-taken as part of verb class. the verb modifier class contains adverb. Those

words which may not fall in none of these classes will be part of literal class. This frame may

be used only as indication for existence of such word in the lexicon. The content of a

lexeme: the Grammatical Attribute, Conjugate List, Derived or Computable words, Semantic

Attribute, and relation are described in detail

as follows.

2.3.1 Grammatical Attributes:-

The grammatical attributes of the particular lexeme-depends on the part of speech (P.O.S)

of the root word fall. It's description is given below according to the four classes, NOUN,

16

VERB, ADJECTIVE, and ADVERB.

_1. In case the 'word is NOUN, The Lexeme consists of P.O.S., Common or Proper Noun,

Gender, Person, and Number. Gender tells whether the word stands for masculine, feminine

or neutral. Person is for first person, second person, third person and neutral. Where Number

is for singular or plural.

The structural representation is as follows:-

WORD(

(P.O.S, GENDER, PERSON, NUMBER))

Eg. city(

(noun, neutral, neutral, singular))

2. If the word is in VERB class its lexeme consist of Tense, Aspect, Voice, and Mood.

i. Aspect is the form of the verb indicating the type of a character of the action In

English Perfect or Imperfect, while Hindi verb has numerous aspects.

a. Terminating aspects; represent act as a whole. e.g. lead sinks (general act) and

I see him coming (particular act).

b. Progressive aspect: action as progressing, e.g. . several books are lying on

the table. etc.

ii. Voice: The form of the verb indicating relations of the subject to the action.

17

a. Active voice :- Indicates subject does/become something. e.g. I saw Ram,

Ram goes, The boy is ill.

b.'Passive voice :- Represents th~ subject as acted upon, thus the grammatical

subject is not logical subject but logical object. e.g. The enemy was killed.

I was called. It is said that..

iii. Mood:- Verb indicating the manner of the action. Hindi has three moods, namely,

Imperative, Indicative, and subjective.

iv. Tenses: We consider simple tense, present tense, past tense, future tense, and etc ...

In english, a verb will not be modified according to the gender, person, and number.

For example, in the phrases, 'He goes' and 'She goes', goes is a simple tense and has

entertained both masculine and feminine. I left ... , he left .. , left is a past tense which has

been used for both first and second person. In Hindi, a verb is modified according to the

Gender, Number,and Person of either the subject or the object, or it has reference only

to the actions. Hindi verbs have three constructions.

a. Subjective construction:- The verb has the same Number, Gender, Person as

a logical subject.

b. Objective constructions:- The verb has the same Gender, Number, and Person

as its logical object (the person or thing to whom the action is directed.).

c. Neutral:- the verb agrees neither with the subject nor with the object in person,

gender, and number, but is always placed in third person singular masculine.

The various forms discussed above Aspect, Voice, Mood, and Tense are not always

18

independent of each other, or distinctly and individually recognizable in each verb. A single

----·

verb often represents several forms. Since most of them can be obtained at the procedure level

only Tense will be considered at structural level.

The structural representation is as follows:-

WORD(

(P.O.S, TENSE [GENDER, PERSON, NUMBER]))

where [] stands for optional

_3. If a word is an ADJECTIVE:- It consists of part of speech, person, gender, and number. Part

of speech indicate Adjective or Determiner or Possessive pronoun.

The structural representation is as follows:-

WORD(

(P.O.S, [GENDER, PERSON, NUMBER]))

where [] stands for optional

_ 4. If the word is an ADVERB:- It contains only part of speech in the grammatical attributes.

The structural representation is as follows:-

WORD(

(P.O.S))

19

where [] stands for optional

2.3.2 Conjugate List:

Conjugate list is a storage place for those words which may be obtained hy

morphological processes. These words are mainly inflected form of the root word. Both

inflected and root word represent the same concept. The word in the conjugate list shares the

same semantic attributes and relational forms with their root word. In case of grammatical

attributes they may or may not have their own value specification corresponding to their entry.

Some irregular forms (those words which can not be obtained by morphological processes),

such as went, will be stored under conjugate list of 'GO' and as separate entry 'WENT', in the

lexicon with indication to 'GO'. This enable one to get past tense of go from the entry 'GO' and

access information stored under 'GO' through entry 'WENT', to avoid redundancy.

representation of conjugate list;

WORD(

(wordl([tense],[gender,number,person]),

wordN([tense],[gender,number,person]))).

[] shows optional.

For example, city (cities (neutral, plural, neutral)), Where as go (goes (simple tense), going

(continuous tense), went (past tense)).

20

As far as modifiers are concerned, in English a word like beautiful is used for feminine

while handsome is for masculine.In adverb grammatical attributes are not needed.

2.3.3 Derived or Computable Words:-

These words are like the words in conjugate list and are obtained by some morphological

processes, but they have different senses to that of their root word. They will have distinct frames

for their features and attributes storage. They share nothing with their root word. Derived word

may have one of the lexeme frames depending to its part of ~peech. Therefqre in the structure

point of view at the Root word frame level the derived word, its part of speech and the address

of its attributes storage place has to be specified. ·"

Some words may have two or more different senses with in the same category, or even

may lie in two different categories. All are candidate to be the root word. But the one which

comes first will be the root frame and the rest will be in the derived words frames. During

implementation there has to be a mechanism which specify the existence of such duplicates of

words in different senses.

Their representation format is as follows:

WORD(

((wordl, pos, frame reference), ... ,

(wordN, pos, frame reference)))

E.g. city(citizen, noun, .24311.), -where .24311. is
-~-. tA-..~

' ·l'l (\\ . -· address of citizen frame for citizen feature and attributes.
' ~ . · :·.,.~

...
21

2.3.4 Semantic Attributes:-

Some features and properties of a word are stored in attributes form for word concept

-
analysis. Such information are considered as semantic attributes. For the different classes, Noun,

Verb, Noun modifier, and Verb modifier, some fixed attributes slots are selected according to

their class.

2.3.4.1. Noun semantic attributes:-

The following can be the semantic attributes of noun class:

i. Concrete or Abstract: It tells whether the word stands for concrete or abstract. E.g.

Animal and house are concretes. While idea and stress are abstracts.

ii. Animate or Inanimate: If the word stands for an abstract concept, this entry will be

unnecessary. For general case, since we can consider such words as inanimate concepts

we may use the slot for both abstract and concrete. E.g. dog is animate and table is

inanimate.

iii. Human, Non-human mammals, Bird, or Insects: e.g. man is human, cow is

nonhuman mammal, while robin is a bird and an ant is an insect.

iv. Self mobile or Non-self mobile: E.g. Robot is self mobile, and File is not.

v. Location: Whether the thing that the word represent is in Air, Water, Earth, or

Nowhere. E.g. Moon is on air, Fish is in water, Man is on the earth, and thought is

nowhere.

vi. Countable or Mass: The count I mass distinction in language-reflects the difference

between discrete and continuous whole. E.g. Pen, hole, are countable, while water is

22

indicated by volume.

vii. Color: blue, white, red, etc. E.g. Sky is blue and Blood is red.

viii. Range or Point: A point of time is represented by second, while Range of time by

day.

ix. Measurement: The .entity the word represent may be measured in Count, Weight,

Height, Volume, Temperature. Where temperature can be described in actual value, high,

low, and medium.

2.3.4.2 Verb Semantic Attributes:-

Types of verbs are classified into action, state and process. In our semantic attributes we

organize them into Basic Acts, Semantic Features, and Case Roles.

_1 Basic Acts: We categorize basic acts into Human part act, sense act, and state act. These

acts will be further subdivided into Human Part Act, Sense Act and State of Act.

i. Human Part Act is divide into Hold, Move, Speak, Ingest and Excrete. E.g. Hold:

grasp, throw; Move: crawl, walk, run; Speak: talk, whisper, say; Ingest: eat, drink;

Excrete: vomit, bleed, sweat.

ii. Sense Act is divided into Contact, Experience and Recall. E.g. Contact: see,

hear, touch; Experience: feel, consider; Recall: remember;

iii. State of Act is divided into Appear, Be, Die, Transfer, State of Change and Build.

For example, Appear: emerge, born; Be: is, are; Die: perish, dry; Transfer: give, take,

bring; State of Change: win, fail, grow; Build: make, create;

23

There could be some un-categorized acts. One or more basic acts may be correspond

to a verb in a lexicon. In the structure the number of subdivision could be left open so that

it is flexible -for addition of newly recognized acts. Basic act categorization of verh is

useful in finding the semantic relationship between object and processes.

2. Semantic Features:

i. Transitive, Intransitive, or Ditransitive:: Transitive verb takes a direct object, while

intransitive doesn't. E.g. My brother is ill(intransitive). The king appointed Mohan a

minister(transitive). Some verbs may be used as both cases. E.g. 'to play a game' is

transitive, while 'to play' is intransitive. Ditransitive verb take an indirect object and a

direct object. E.g. To give a book to Mohan.

ii. Action Center (Agent, Object, or Instrument): It tells whether the action depends

around the agent, object, or some combination of them. For example, Agent: speak,

Object: pick, and Instrument: cut.

iii. Action Movement (Positive, Localized, or Still): The movement involved in action

is either positive, localized or there is no movement. E.g. Help is positive movement.

Dance is localized movement. Whereas think is still movement.

iv. Direction (Up, Down, Forward, Backward, Left, Right, Around, Along,

Centralized, or, No direction): The direction involved in action is specified in discrete

categories. E.g. Up: climb; Down: slip; Forward: walk; B.ackward: return; move can

be used as example for forward, backward ,left, and right. Along: cooperate, -spin can he

for centralized or no direction.

24

v. Distance (Near or Away): The action causes the whole system to be moved near

or away from the present location. E.g. Near: Join, Away: depart.

vii. Action With (Love, Anger, Compulsion, or No emotion): E.g. Love: kiss;

Anger: rebuke; Compulsion: shut-up, NO EMOTION: sleep.

vi. Reason (Internal, or External): Whether the action is occurred due to the internal

reasons or on the instigation of the external agency. E.g. Internal: eat; External: push.

vii. Purpose (Attract, Protect, React, Recreate, Necessity): E.g. Attract: laugh,

Protect: define, React: excite, Recreate: build, Necessity: sweat.

3. Case Roles: Theta role represent the relation between an action and an object in a

sentence.

i. Expected Case Roles specify requirement of Agent, Object, Instrument, or/and

Goal, as Required, Optional, or not allowed, for a particular verb. E.g. for verb

'get', Agent, Object and Instrument are Required, while Source, Goal, and Locus

are Optional.

ii. Expected Preposition (or Postposition in Hindi), for subject, object, etc.

E.g. In English verb 'rely' expects preposition 'on', while 'get' expects

preposition 'from' for the case 'source'.

iii. Agent to Object Status Relation: Small, Big, or EquaL whether the Agent

is small, big, or equal in abstraction or physical relationship ..

iv. Expected Features(Agent,Object): Whether the required Agent or Object for a

parti"cular verb is inanimate, human, animal, bird, or insect. E.g. 'get' expects human as

25

Agent and Object.

v. Expected Forms of(Agent, Object, or Instrument): Liquid, Solid(hard, soft, or

powder), ·oas, Fire, or Ether.

2.3.4.3 Adjective Semantic Features:-

_1. Quality (Appearance, Behavior and Motion):

i. Appearance(High, medium, or Low): E.g. High: beautiful, Medium: good, Low:

ugly.

ii. Behavior (High, Medium, Low, or Zero), E.g. High: smart, Medium: active, Low:

lazy, Zero: dull.

c. Motion (High, Medium, Low, or Zero): E.g. High: very fast, Medium: fast, Low:

slow, Zero: still.

2. Quantity: Measurement(Number, Length, Volume, Weight, temperature, Pressure) as

complete, high, medium, low, zero or value.

_3. Belongs to(Noun, First person, Second person, Third person pronoun). E.g. First person

pronoun: mine, second person pronoun: your, Third person pronoun: theirs

2.3.4.4 Adverb Semantic Features:

The semantic of adverb is explained under Manner, Time qualifier and Place

qualifier.

_1. Manner (High, Medium, Low): E.g. Medium: well, High: v~ry, Low: badly,

-=_2. Time Qualifier (Complete, High, Low, Medium, Zero, Value): E.g. Low: slowly, Zero:

instantly, Value: 5 seconds

26

_3. Place Qualifier (Complete, High, Low, Medium, Zero, Value): E.g. Medium: far, Low:

near, Zero: on spot, Value: 5 meters away _ 4. Attribute Qualifier (Complete, High, Low,

Medium, Zero):· E.g. Complete: all, High: mostly, Medium: yery, Low: few, Zero: nowhere

2.3.5 Relations:

The following which are illustrated by example are the strategies used to converted

recognized relations into the network.

1. For equivalent relation 'R'(i.e. reflexive, symmetric and transitive), a connection

can be made so that a closed path can be obtained considering the words as nodes.

E.g.l. IfWO,Wl,W2 are words and WO R WI, WO R W2, and Wl R W2, then, the data

representation of this relation will be as Fig. la.

Fig. 1.

a. WO:R<address of Wl>, Wl:R<address of W2>, W2:R<address of WO>

[WO -1------>[Wl -]------>[W2 1

1 I

(Synonymity lies in such representation).

b. If 'R' is transitive and not symmetric the path will be without circuit. In such case

the data representation will be as follows.

WO:R<address of Wl>, Wl:R<address of W2:R<null>

[WO -1------->[Wl -1-------->[W21

(Taxonomy lies in such representation)

27

c. If 'R' is symmetric not transitive, and if a word has one to many relation then the

relation network is as follows. If R relates WO to Wl, W2 and W3, then

WO:R<address of Wl,W2,W3>, Wl:R<address of WO>, W2:R<address of WO>

[WO -1-------------->[Wl 1

t ~
[-1-------------->[W2 1

t . \
[-1-------------->[WJ 1

t \
(Antonyms are part of such representation)

Some relations may have the combination of the above representations.

28

CHAPTER III

DESIGN METHODOLOGY

Design methodology is guideline to aid the designer during design process. The two

Design processes are Structured Design and Object-Oriented design. The structured design is an

approach which concentrates on the functional aspects of the problem and is based on the

concept of Functional Abstraction, while Object-Oriented approach is based on the concept of

Data Abstraction[2].

Structured Design Methodology (SDM) views every software system as having some

inputs which are converted into the desired outputs by the software system. The software is

viewed as a transformation function that transforms the given inpu_t~__into the desired outputs. In

this work the goal is to produce design for lexicon software system that consist of many modules.

These modules are INPUT, OUTPUT, TRANSFORMATION, and COORDINATE MODULES.

Their pictorial representation are as follows:

A * r. X I I
Data to
uper _ordinate *

),
(IHPIIT) tRAitS FORM

'I hta tro ..
Suptr_prdinatt I . J

(OUtPUT)

In Design Methodology there are Four activities involved.

1. Restating all the problems in the Data Flow Graph* (DFG). The DFG shows the major

transforms that tne software will have, ~nd how the data will tlow through different transforms.

2. If once the DFG is ready, the riext step is to identify the highest abstract level of input and

output. The Most Abstract Input (MAl) data elements are those which can be recognized by

starting from the physical inputs and traveling towards the outputs in.the data tlow graph, until

the data elements are reached that can no longer be considered as incoming data element.

Similarly we identify the Most Abstract Output(MAO), by starting from the outputs in the data

tlow and traveling towards the input. These are the data elements, most removed from the actual

outputs but still be considered as outgoing.

3. Set MAIN module which is a coordinate module. Those modules to the left of MAl are

INPUT modules, between MAl and MAO are transform modules, and to the right of MAO are

OUTPUTS modules.

4. Since each of the above specified modules may have a lot of processing to do, we simplify

by factoring each to different modules that distribute the task of the module.

* DFD description and the diagram is to be show11 i11 the 11ext page.

30

3.1 Data Flow Diagram and Structure Chart

Data Flow Diagrams(DFD) are commonly used during problem analysis. DFDS are very

useful in understanding a system and can be effectively used for partitioning during analysis. A

DFD shows the flow of data through a system. The system may be an organization, a software

system or hardware, etc. It shows the movement of data through the different transformations or

processes in the system. The processes are shown by named circles, and data flows are

represented by named arrows entering or leaving the circles. A named oval rectangle is used for

representing a source or sink (originator or consumer of data).

In Structured Design Methodology, the design is represented by Structure Charts. The

structure of a program is made up of the modules of that program together with the

interconnections between modules. Every computer program has a structure, and given a program

its structure can be determined. The Structure Chart of a program is a graphic representation of

its structure. In the Structure Chart the modules are represented in oval like box. An arrt)W from

module A to another module B represents that module A invokes module B. B is called

subordinate module of module A, and A is called super ordinate module of module B. The arrow

which is received by B is an input and the parameter returned by B is an output of module B.

Fig.l, represents the Data Flow Diagram for the system while Fig.II (fig.l to 6) represent the

Structure Chart of the System.

31

DATA FLOW DIAGRAM OF THE S~STEM

FIG. I CDFD>

pNPUT MODULES

key /'"'\ lexeMe
iY---t/ GET _LEXEM~:------+

~lexeMe

lexeMe

The processes which are Marked as A, B, C, D, E, F, G and H will be

converted into MOdules in the state chart or the systeM. The following are

soMe or the possible data flow path using the above bubbles.

i. For RETRIEVAL <READING) the Data flow will be as follows:

[A ... C ... D ... E ... Gl
ii. for DELETE the Data flow is as follows:

rA .. c .. El
iii. for UPDATE the data flow will be as follow:

iv. For STORE the data flow is as follow:

[A .. B ... Fl

32

1 OUTPUT MODULES

key

attributes

STRUCTUR~L CHART FOR THE S~STEM

FIG. II. MAIH MODULI coordinates the Data Flow between IHPUT, TRfiHSFORM and OUTPUT MODULES.

The pictorial representation is as follow.

IIAIH
I *

!a .b
* l \ \h b.a·,bl bl b \ I

~ *
* *

COLLICT _I HPUTS (GET _LIXEME) MODIFY PROCESSES OUTPUT

a is l<ey, word.

a is l<ey record, b is for lexeMe, and b is lexeMeS attributes.

* b in collect_input is only when the systeM is used for storeing inforMation.

FIG. 1. The tasl< of COLLICT_IHPUTS is divided into sub tasl<s to different MOdules

as follows.

!word
l<ey record
lexeMe record

*

33

FIG. 2. The task or MORPHOLOGY MODULE is distributed to difrernt

subordinate MOdules, as shown below.

* I I

* l key record

*

word I I flag
I I key

FIG. 3.

*

The task or GET_LEXEME MODULE is distributed aMong other

MOdules, as shown below.

key record * llexeMf record

*

34

FIG. 5.

FIG. 4. Broken lines which connect the MOdules indicates only one sub task will be perforMed in

o~e processe tiMe. *

,,,, .. "''" J 1 ... ,, .. ,,,

H_lexeMe

*

*

. ,_,,,!. 1

* ~\,
J ' ' A_lexeM A_attr. \

~ *' \ .
\ ', \ \ *
~ \AD_attr.

H_attr. *
U_attr.

AD_lexeM \

' ~REAK_L~EME_A)

FIG. 6.
* key, 1 exe111e record j

word attributes

lexe~~e MOdified * 1
""" J * I"'" """

MODIFY

key record I
I

lexe~~e record)(

35

*

3.2 Data Definition

All the contents, which have to be kept in the structure of lexicon are encoded and have

the following form of data definition.

Word is a letter, or groups of letters, which represent a unit of a language. Key is a

morpheme which is taken as a root word.

a. word, key: string

Key _rec is a record which contains a key, the root word part of speech and its entry

number in the key file.

b. TYPE Key rec =RECORD

pos: CHAR

key: string

ref_no: integer

END

N_gramm_attr is a record which contains categorization and sub-categorizations of a key

word in NOUN frame.

c. TYPE N_gramm_attr = RECORD

class, {pos:< Noun/ Pronoun>}

common _proper, { <Common/ Proper> }

person,

gender,

{<First/ Second/ Third>}

{<Masculine/ Feminine>}

number : CHAR; {<Singular/ Plural>}

END

36

N_semantic is a record for semantic representation of NOUN frame which has been

described Linder the structure of lexicon.

d. TYPE N_semantic =RECORD

cone_ abst, {<Concrete/ Abstract>}

anim_inan, {<Animate/ Inanimate>}

human_nonM,{ <Human/non_h_Mammal/Bird/lnsect>}

self_mobile, { <+/ ->}

location, {<Air/ Earth/ Water/ Nowhere>}

countable _mass, {<Count/ Mass>}

range _point, {<Range/ Point>}

measurement : CHAR;{ <Count, Weight/ Height/

Volume/ temperature(H/ L/ M>}

END

N_conjugate list contains, those words which can be obtained by morphological processes

and share the same semantic attributes with that of their root word, and their grammatical

categories.

e. TYPE N_conjugate_list =ARRAY string of

RECORD

w rd: word

person,

gender,

number : CHAR;

END

37

R tion is a list of recognized relations along with record of addresses of words to which

a particular word under consideration is related.

·~

f. TYPE R tion = ARRAY OF RECORD

relation number: INTEGER

rell, ... rel_max : addresses

END

N_lexeme is a record which represent the NOUN frame which has been discussed under

structure of a lexicon. surface realization tells which grammatical rule should be inferred.

g. TYPE N lexeme = RECORD { NOUN FRAME }

root_ word :key

gra_n : N_gramm_att

sem n : N semantic - -

con_n : N_conjugate_list

rei n : R tion - -

drw n : derived words

sur_n : INTEGER {surface_realization }

mean : ARRAY OF string

END

Similar way of data definition has been followed for the rest frames.

V _gramm_att is a record for grammatical attributes of VERB frame.

h. TYPE V _gramm_att = RECORD

reg_ur, { < Regular/ Irregular> }

aspet,i, { < Perfect/ Imperfect> }

tense, {<Simple/ Past/ Future>}

38

gender, { in case of english, not needed}

number, { in case of english, not needed}

person: CHAR;{ in case of english not needed}

END

i. TYPE basic acts= RECORD

human, {<Hold/Move/Speak/Ingest/Excrete>}

sense,{ <Contact/Experience/Recall>}

state _act:CHAR; {<Appear/ Be/ Die/ Transfer/

state_ of_ Change/builD>}

END

j. TYPE semantic feature= RECORD

tran_intr, {<Transitive/ Intransitive>}

AOM_beneficiary, {<Agent/ Object/ Mutual>}

continue, {<Continuous/Sudden/Intermittent>}

action _place, {<Air/ Earth/ Water>}

action_ center, {Agent/ Object/ Instrument}

action_aim, { Individual/ Societal}

AO_speed, { Hig~/ Medium,I...ow/ Zero}

action_ movement, {Positive/Localized/Still}

direction,

distance_caused, {<Near/ Away>}

action_with,{ <Love/Anger/Compulsion/ - >}

reason, {<External/Internal>}

purpose: CHAR; {<Attract/ Protect/ React/

39

rEcreate/ Necessity>}

END

k. TYPE expected_case_role =RECORD

object_RON, {Required/ Optional/ Not required}

agent_RON, {Required/ Optional/ Not required}

instrumen_RON,{ Required/ Optional/ Not required}

subject_RON, {Required/ Optional/ Not required}

agent _to_ object, {Small/ Big/ Equal}

agent_ expect, {Inanimate/ Ani mal/ Bird/ Insect}

Object_ expect, {Inanimate/ Animal/ Bird/ Insect}

agent _forms, {Hard/ Soft/ Powder}

object_forms, {Hard/ Soft/ Powder}

instrument_forms: CHAR; {Hard/ Soft/ Powder}

expected _preposition :string

END

I. TYPE V _conjugate= ARRAY OF string of record

tense, number, gender,

person : CHAR;

END

m. TYPE V lexeme =RECORD {VERB FRAME}

root_word :key

gra_v : V _gramm_att

sem v : V semantic feature - - -

bas n : basic act - -

40

role : expected_ case _role

con_v: V _conjugate

ret· n : Relation

drw v : derived words - -

sur_v : INTEGER {surface_realization }

mean : ARRAY OF string

END

n. TYPE quality: record

appearance, { High/ Medium, Low/ }

behavior, { High/ Medium, Low/ Zero}

in_motion, { High/ Medium, Low/ Zero}

END

Quantity, quality, and a_lexeme are for ADJECfiVE frame.

o. TYPE quantity: record

measurement,{ Number/ Length/ Weight/ Volume/

Temperature/ Pressure}

measu_value: CHAR,{High/ Medium/ Low/ Zero/

Complete/ Value}

END

p. TYPE A lexeme = RECORD { ADJECTIVE FRAME }

root 1: string

pos:CHAR, {Adjective/ Determiner}

qual :quality,

meas: measure,

41

belong_to: CHAR, {Noun/ First person/ second

person!fhird person pronoun}

con_A : A_conjugate

rei A : Relation

diW A : derived words

sur_A : INTEGER {surface_realization }

mean: string

END

q. TYPE AD Iexeme : RECORD

manner

time _qualifier

place_qualifier

attribute_ qualifier

con_Ad : conjugate

rei Ad : Relation

diW Ad : derived words

sur_Ad : INTEGER {surface_realization }

mean: string

END

3.3 Module Specifications

-
Specifications of modules which has been shown in the structural charts are given below.

42

0: MAIN -
INPUTS: KEY _FILE, LEXEME_FILE, SUF _PREFIX_FILE

OUTPUTS: NONE

SUBORDINATES: COLLECf INPUTS

MORPHOLOGY

GET LEXEME

MODIFY

PROCESSES

OUTPUT

. PURPOSE: It coordinates the data flow of Input, Transform and output modules.

1. COLLECT INPUTS

INPUTS: FROM KEY BOARD

OUTPUTS: WORD, KEY RECORD

SUBORDINATES: GET_KEY_WORD

GET KEY LEX REC - - -

PURPOSE: It collects inputs from the terminal or key board for its super-ordinate module.

2. MORPHOLOGY

INPUTS: WORD, KEY

OUTPUTS: KEY RECORD

SUBORDINATES: CHECK_IN_KEY

FORM_KEY

PURPOSE: Given a word as an input it will make out the possible key word for the lexicon

entry. It looks for a word in a lexicon, if not found it modify the word until the word is found

43

or no further modification is possible.

3. GET LEXEME - -
INPUTS: KEY RECORD

OUTPUTS: LEXEME RECORD

SUBORDINATE: BREAK KEY RECORD - -

EXTRACT LEXEME

PURPOSE: Takes key record as an input, it will produce the appropriate modified or

unmoditied lexeme as an output.

4. PROCESSES

INPUTS: LEXEME RECORD

OUTPUTS: INDIVIDUAL ATTRIBUTES OF LEXEME

SUBORDINATES: BREAK LEX N - -

BREAK LEX V - -

BREAK LEX A - -

BREAK LEX AD - -

PURPOSE: It gives the individual attributes of lexeme for different applications.

5. MODIFY

INPUTS: LEXEME

OUTPUTS: LEXEME

SUBORDINATES:

PURPOSE: Accept lexeme record to be moditied and make necessary changes.

44

6. OUTPUT

INPUTS: KEY_RECORD,LEXEME_RECORD

OUTPUTS:NONE I printed output

SUBORDINATES: STORE KEY •LEX - -

DELETE KEY REC - -

DISPLAY

PURPOSE: Update lexeme and key file, and provides printed information.

1.1 GET KEY WORD - -
INPUTS: FRAME TERMINAL BOARD

OUTPUTS: KEY, WORD

SUBORDINATES: NONE

PURPOSE: collect input from the terminal to form string

1.2 GET KEY LEXEME RECORD - - -
INPUTS: KEY

OUTPUTS:LEXEME_RECORD, KEY_RECORD

SUBORDINATES: COLLECT ATTRIBUTES

MAKE RECORD KEY - -

PURPOSE: collects attributes of key into lexeme

2.1 CHECK_IN_KEY _FILE

INPUTS: WORD

OUTPUTS: FLAG

SUBORDINATES: GET_KEY_FILES

CONFORM_EXISTENCE .

PURPOSE: Produce Checks whether the word exist in key file or not.

45

2.2 FORM KEY

INPUTS: WORD, SUFFIX, PREFIX

OUTPUTS: KEY

SUBORDINATES:GET SUF PREFIX FILE - - -

MAKE_OUT_KEY

PURPOSE: It ,produces the possible key from a word as lexicon entry .

3.1 BREAK_:_KEY _RECORD

INPUTS: KEY RECORD

OUTPUTS: POS, REF.NO

SUBORDINATES:NONE

PURPOSE: Produces part of speech and reference number from key record so that we

can extract the lexeme record.

3.2 EXTRACT LEXEME

INPUTS: POS, REF.NO

OUTPUTS: LEXEME RECORD

SUBORDINATES:

PURPOSE: From the set of lexeme it extracts the lexeme which is referenced by the

given key word

4.1 BREAK_LEXEME_N

INPUTS: N LEXEME RECORD

OUTPUTS: ATTRIBUTES

SUBORDINATES:NONE-

PURPOSE: It pflSses attributes of noun class to the main for application purpose.

46

4.2 BREAK_LEXEME_ V

INPUTS: V LEXEME RECORD

·~

OUTPUTS: ATTRIBUTES

SUBORDINATES:NONE

PURPOSE: It passes attributes of verb class to the main for application purpose.

4.3 BREAK LEXEME A - -
INPUTS: A LEXEME RECORD

OUTPUTS: ATTRIBUTES

SUBORDINATES:NONE

PURPOSE: It passes attributes of adjective class to the main for application purpose.

4.4 BREAK_LEXEME_Ad

INPUTS: Ad LEXEME RECORD

OUTPUTS: ATTRIBUTES

SUBORDINATES:NONE

PURPOSE: It passes attributes of adverb class to the main for application purpose.

6.1 STORE KEY LEXEME - -
INPUTS: KEY_RECORD,LEXEME_RECORD

OUTPUTS: NONE

SUBORDINATES: NONE

PURPOSE: It include the lexeme and key record into t~eir corresponding tiles.

6.2 DELETE KEY

INPUTS: KEY RECORD

OUTPUTS: NONE

SUBORDINATES: NONE

47

PURPOSE: it remove the key record from the key file. The removal of corresponding

lexeme record will be done only when

considerable number of key are deleted.

6.3 DISPLAY

INPUTS: LEXEME ATTRIBUTES

OUTPUTS: decoded information on screen

SUBORDINATES: NONE

PURPOSE: It decodes the attributes and displays the information on the screen.

1.2.1. MAKE REC KEY - -
INPUTS: KEY,POS,KEY _NO.

OUTPUTS:KEY RECORD

SUBORDINATES:NONE

PURPOSE: It attaches entry number, length of the record lexeme to the key that may

help for referencing it later on.

1.2.2 COLLECT ATTR

INPUTS: KEY RECORD

OUTPUTS: LEXEME RECORD

SUBORDINATES: GET P 0 S

MAKE_FRAME_ACCE

PURPOSE: Accepts the key word and gives the key record and lexeme record for

the storage purpose in the database in the corresponding files.

2.1.1. GET KEY FILE - -
INPUTS: KEY _RECORDS from key file

OUTPUTS: B+tree I KEY LIST

48

SUBORDINATES: NONE

PURPOSE: from key file, it forms list of key records orB+ tree depending on the search

strategy adopted:

2.1.2. CONFORM EXISTENCE

INPUTS: WORD, B+ tree/ KEY_LIST LEXEME, ATTRIBUTES

OUTPUTS: FLAG

SUBORDINATES:NONE

PURPOSE: It checks whether the word is in key list or in B+ tree or not.

2.2.1. GET SUF PREFIX FILE - - -
INPUTS: SUFFIX,PREFIX FILE

OUTPUTS: LIST OF SUFFIX,PREFIX

SUBORDINATES: NONE

PURPOSE: From suftix prefix file, it Extract the record entry number, which helps to

remove it from the key file.

2.2.2. MAKE_OUT_KEY

INPUTS: WORD, list of SUFFIX, PREFIX

OUTPUTS: KEY

SUBORDINATES: NONE

PURPOSE: By removing suffix and/or prefix, by breaking

compound words, etc. it forms possible key word or words.

1.2.2.1 GET P 0 S -- -
INPUTS: KEY RECORD

49

OUTPUTS: P.O.S {part of speech}

SUBORDINATES: NONE

PURPOSE: It provide the part of speech of the key word.

1.2.2.2 MAKE FRAME ACCE

INPUTS: P.O.S, attributes

OUTPUTS:LEXEME. RECORD

SUBORDINATES: NONE

PURPOSE: It provide the frame for accepting the attributes. After collecting the necessary

attributes it provide the lexeme

3.4 Detailed Design

Once a module is precisely specified, the internal logic for a module that will implement

the given specification c:tn be decided. Formal and tnformal ways are used to specify the

modules. The Functionality of the modules most of the time are specified in Natural language,

in some places pseudo code of formal language are used. The purpose of Detailed Design is to

avoid confusion, if the coding is not done by the designer.

3.4.1 Main Module

This module is the core of the lexicon software. It manages the flow of data to I from

Input modules, Transform modules and Output modules. Its pseudo.code will be as follows:

PROC MAINO

BEGIN (* main *)

OPEN(key file)

50

OPEN(Iexeme file)

OPEN(suf_prefix file)

PRINT "uPDATE

dELETE

rETRIEVE

sTORE"

READ "option_l"

COLLECf INPUTS

MORPHOLOGY

IF key exist THEN

BEGIN

IF option_l = r THEN

BEGIN

GET LEXEME

PROCESSES

OUTPUT

END

ELSE IF option_l = d THEN

OUTPUT

ELSE IF option_! = s THEN

(* report it is already in the Iile *)

ELSE IF option_l = u THEN

BEGIN

GET LEXEME

51

file is read till the end is reached. Each of the process

in the file may be involved in a number of message passing

transactions either sending data to another process or

receiving data from other processes. The QUEUE GENERATOR

analyses each of the process and for every process it makes

queues listing all the transaction names encountered in the
-

process, and their characteristics i.e. whether it is a

sending operation or a receiving operation and if it is a

sending operation then the identity of the receiver. However

the identity of the receiving process is not stored which

will be explained later.

In the previous chapter various features of the

Concurrent c language has been discussed. It can be seen

there, that the Concurrent c program consists of three main

sections. One is the process specification section, where

various attributes of the process is described, among these

are the parameters that the process will take, the

\

transaction in which it will enter, the processes to which it

will send data. As seen in the examples given there that in

the process specification section no identity of the sending

process is given when a process is receiving any transaction.

So, in developing the queues in QUEUE GENERATOR for receiving

process only the transaction details have been included.

Similarly it can be seen that the sending process doesnot

have the transaction name, the specification of it consists

of only the identity of the receiving process. Analysing the

process body of the Concurrent c program it can be seen that

58

_1. PROC COLLECT INPUTS

BEGIN

IF t1ption_2 <> i

GET KEY WORD - -

IF option_l = s THEN

GET KEY LEXEME RECORD - - -

END

2. PROC GET KEY LEXEME RECORD - - -
BEGIN

MAKE KEY RECORD - -

COLLECf LEXEME

END

3. PROC GET KEY WORD - -

BEGIN

(* collect input from terminal and form string *)

END

4. PROC MAKE KEY RECORD - -
BEGIN

(* pack key, pos, entry number of key, length of

the record lexeme, if variable record is used *)

END

_5. PROC COLLECT_LEXEME

BEGIN

GET POS

53

MAKE FRAME ACCEPT - -

END

6. PROC GET POS

BEGIN

READ inputs from terminal by setting queries

END

8. PROC MAKE FRAME ACCEPT - -
BEGIN

create node according to pos and accept inputs

END

3.4.3 Transform Modules

Transform module as its name implies transform data into some other form. Most of the

computational modules fall in this category. The pseudo codes for this is as follows:

1. PROC MORPHOLOGY

BEGIN

REPEAT

CHECK IN KEY

IF NOT flag THEN

FORM KEY

UNTIL key is found or no further

modification is possible

END

54

2. PROC CHECK IN KEY

BEGIN

GET KEY FILE - -

CONFORM EXISTENCE EXTRACT - -

END

3. PROC GET KEY FILE - -

BEGIN

form b+ tree

END

4. PROC CONFORM EXISTENCE EXTRACT - - .

BEGIN

IF key in b+ tree THEN

BEGIN tlag <-- T

extract key -record

END

ELSE tlag <-- F

END

5. PROC FORM KEY

BEGIN

IF NOT tlag THEN

BEGIN

GET SUF PREFIX - -

MAKE OUT KEY - -

END

END

55

6. PROC GET SUF PREFIX - -
BEGIN

(* get list of suffix and prefix L1 and L2

respectively *) ·

END

7. PROC MAKE OUT KEY - -
BEGIN

(* make suffix ~)r pretix of the word *)

IF suftix word IN Ll THEN

key <--- word - suftix + x

(* e.g. x= 'y' if suftix removed is

"ies", etc. *)

ELSE IF prdix_word IN L2 THEN

key <--- word - prefix

ELSE IF(* compound word break and check both

words in lexicon *)

ELSE (* report failure *)

END

8. PROC GET LEXEME

BEGIN

BREAK KEY RECORD - -

EXTRACf LEXEME

END

56

9. PROC BREAK KEY RECORD - -
BEGIN

(*'break key _record into part of speech, key

entry number, length of lexeme record and key,

if variable record is used *)

END

10. PROC MAKE FRAME ACCEPT - -

BEGIN

(* calculate actual address and retrieve the

record into the appropriate pos frame *)

END

11. PROC PROCESSES

BEGIN

CASE pos OF

noun: N BREAK LEXEME - -

verb: V _BREAK_LEXEME

adjective: A_BREAK_LEXEME

adverb: AD BREAK LEXEME - -

END

12. PROC N_BREAK_LEXEME

BEGIN

RETURN (* grammatical record,

semantic record,

morphological list,

57

END

relations addresses, and

derived words record (pos, address

<ind length of record) *)

13. PROC V _BREAK_LEXEME

BEGIN

RETURN (* grammatical record,

END

basic acts,

semantic record,

conjugate list,

relations addresses,

derived words record (pos, address and

length of record) *)

14. PROC A_BREAK_LEXEME

BEGIN

RETURN (* quality record,

END

quantity record,

morphological list,

relations addresses, and

derived words record (pos,

address and length of record) *)

58

15. PROC AD_BREAK_LEXEME

BEGIN

RETURN (* semantic record,

morphological list,

relations addresses, and

derived words record (pos,

address and length of record) *)

END

3.4.4 Output Modules

These modules obtain information from their super ordinate module and then pass it on

to their subordinate. They are typically used for outputing data to the environment. The Output

modules take the output produced and prepare it for better presentation or make appropriate

changes.

l. PROC OUTPUT

BEGIN

IF option_l = 's' THEN

STORE KEY LEX RECORD - - -

ELSE option_l = 'd' THEN

DELETE KEY RECORD - -

ELSE option_l = 'r' THEN

DISPlAY

END

2. PROC STORE KEY LEX - -
59

BEGIN

(* include key record into key file Iexeme

recorded into Iexeme tile *)

END

3. PROC DELETE KEY RECORD - -

BEGIN

(* remove key from b+ tree and the key file

release the space occupied by key and

lexeme to the system *)

END

4. PROC DISPLAY

BEGIN

(* decode all attributes of the word and display on screen *)

END

3.5 Interfaces

Interfaces facilitate a working environment between the user of the software, such as

Parser, and the Lexicon. Some of the interfaces which have to be design during the

implementation of the Design of Lexicon has been given as Recognizer, Feature Extractor, and

Extracting Relation.

3.5.1 Recognizer

A word is considered to be in a lexicon if it is found in the key file and one of the

60

following condition is fultilled. If a word found in key tile is the same as key word then this

is named as surface level check up (i.e. morphological process/es has not been done on the

word). If the word is either in Conjugate List or Derived word, then this is named as deep level

check up.

The pseudo code for recognizer is as follows:

BEGIN (recognizer)

word <-- GET WORD

key <-- MORPHOLOGY

IF key in b+ tree THEN

BEGIN

force <-- false

lexeme <-- GET_LEXEME (key)

WHILE NOT force DO

BEGIN

IF (key =word)

OR (word in lexeme.conjugate)

OR (word in lexeme.derived_word)

THEN)3EGIN

flag <-- true (* indicate existence *)

force <-- true

END

ELSE IF lexeme.derived word subset word THEN

lexeme <--extract(* address of derived_ word *)

ELSE BEGIN

61

force <-- true

tlag <~- false

END

END

ELSE tlag <-- false

END (*recognizer*)

3.5.2 Extract feature

Generation of word attributes goes along with recognizer. If ·a word is recognized by the

lexicon it is possible to extract its attributes along with the process. The extracted attributes can

be used directly by the user with or without decoding.

The pseudo code is as follows:-

BEG_IN (* extract features *)

word <-- GET WORD

key <-- MORPHOLOGY

IF key in b+ tree THEN

BEGIN

force <-- false

lexeme <--GET LEXEME (key) . - .

WHILE NOT force DO

BEGIN

IF key= word THEN

BEGIN

tlag <-- true (* indicate existence *)

62

force <-- true

END

IF (word in lexeme.conjugate) THEN

BEGIN

flag <-- true (* indicate existence *)

force <-- true

lexeme:grammatical <-- conjugate.grammatical

END

IF (word in lexeme.derived_word) THEN

BEGIN

END

ELSE

flag<-- true(* indicate existence *)

force <-- true

lexeme <-- (* extract lexeme of

derived word *)

IF (lexeme.derived_word subset word)

THEN BEGIN

lexeme <--(extract address of derived_ word)

lexeme.grammatical<--lexeme.conjugate.grammatical .

flag <-- true (* indicate existence *)

force <-- true

END

'ELSE BEGIN

63

force <-- true

tlag <-- false

END.

END

ELSE flag <-- false

END

END (* extract feature *)

3.5.3 Extracting Relations

Representation assumption:

1. relation between two words is represented by a marked link between two

nodes of the word and the relation that represent a syntax or the concepts. For

example: RAIN --- [MAGNITUDE] ---> HEAVY, heavy rain, but not large

rain. MAN --- [ISA] ---> ANIMAL

2. For any pair of words there is only one link for a distinct relation.

3. There are limited number of different relations, but their exact number is left

open.

Processing assumption:

1. Relation between words are identified by searching the network from one

or both nodes representing the two words.

2. According tt1 the nature of the relations, even though the path joining the

two nodes is obtained search may continue till a circuit is obtained. Such .a

relations are considered to he equivalent relations (i.e. retlexive, symmetric and

transitive).

64

The algorithm enables one to find synonyms of already stored

word by applying SYNONYMS relation mark. The assumption taken is

synonyms relation is transitive.

BEGIN (*synonyms *)

word <-- GET WORD

key <-- MORPHOLOGY

IF key in b+ tree THEN

BEGIN

lexeme <-- GET_LEXEME (key)

ref lexl <-- address of lexeme

flag <-- false

WHILE NOT flag DO

BEGIN

IF word = key THEN

BEGIN

hold <-- hold + lexeme.key

ref_rel <-- lexeme.relation_syn

IF ref rei = ref lexl THEN - -

force <-- true

ELSE lexeme <-- extract (ref_rel)

END

ELSE

IF word in lexeme.conjugate THEN

key<-- word

65

ELSE

IF word in lexeme.derived word THEN

. BEGIN

ref lex2 <-- address of lexeme.derived word - -

lexeme <-- extract (ref_lex)

WHILE ref lexl <> ref lex2 DO - -

BEGIN

hold <-- hold + lexeme.key

ref_lex2 <-- lexeme.relation_syn

lexeme <-- extract (ref_rel2)

END

force <- true

END

END

ELSE force <-- true

END (* synonyms *)

66

CHAPTER IV

CONCLUSION

The Lexicon which has been designed is independent of any particular application. While

designing the lexicon English language is taken as a core language. But this does not put any

restriction for using this design on any other language. different from English. Most of the

structure features are applicable to all Natural Languages. For some languages slight and

appropriate modification may be needed. The intention of this work is to make the design of

Lexicon one and the same for all Natural Languages. Those parts which may or may not be

needed in some languages have been kept as optional.

For complete analysis of Natural Language Process (NLP), all the components of it have

to act together. Much work have been done on the other part of NLP, in School Of Computer

and Systems Sciences, JNU, using Prolog Language as a tool. While designing software for

lexicon working tool is considered to be Prolog language or C, for simplicity of interface. For

this reason the Structured Design is adopted than object oriented approach.

A file which is a collection of records has a great role in implementation of lexicon. As

a primary memory is limited in size and volatile in nature, in our design we have assumed Btree

mechanism for file organization. The assumption taken while designing is the two files, key

record file and lexeme record file reside in secondary storage. When the system is in use a B+

67

tree will be formed with the contents of the key record file, which help us for accessing the data

from lexeme record file.

Since different senses of a word are stored in the lexicon, the user has to try for different

possibilities during the application to resolve the sense ambiguity.

This Lexicon Design is for single language (Mono-lingual). But it may help in designing

multi-Lingual Lexicons with a little additional efforts. This modifications and implementation of

the Design will be future expansion of this work.

As it is indicated above to design general purpose lexicon, the characteristic of different

natural Languages have to be studied. Incorporating some missing features for the completeness

of the work is also its future expansion.

68

BIBLOGRAPHY

1. Evens, M. Walton, Relational Model Of The Lexicon, Cambridge

University Press, 1982.

2. Jalote, Pankaj, An Integrated Approach to Software Engineering.

Narosa publishing house; 1991.

3. Harris, Marry Dee, Introduction to Natural Language Processing,

Reston, A Prentice-Hall Company, 1985.

4. Minisk, Marvin, Semantic Information Processing, the MIT Press,

1982.

5. Radford, Andrew, Transformational Grammar, Cambridge University

Press, 1988.

6. Rich, Elaine, Artificial Intelligence, McGraw-Hill, New York, 1983.

7. Sager, Noami, Natural Language Information Processing,

Addison-welsey Publishing Company, 1981.

8. Sinha R.M.K. (ed.), Commputer Processing Of Asian Languages,

1983.

9. Sowa, John F., 1983. Conceptual Structures, Information processing

In Mind And Machine, Addison-Welsey Publishing Company.

69

	TH51500001
	TH51500002
	TH51500003
	TH51500004
	TH51500005
	TH51500006
	TH51500007
	TH51500008
	TH51500009
	TH51500010
	TH51500011
	TH51500012
	TH51500013
	TH51500014
	TH51500015
	TH51500016
	TH51500017
	TH51500018
	TH51500019
	TH51500020
	TH51500021
	TH51500022
	TH51500023
	TH51500024
	TH51500025
	TH51500026
	TH51500027
	TH51500028
	TH51500029
	TH51500030
	TH51500031
	TH51500032
	TH51500033
	TH51500034
	TH51500035
	TH51500036
	TH51500037
	TH51500038
	TH51500039
	TH51500040
	TH51500041
	TH51500042
	TH51500043
	TH51500044
	TH51500045
	TH51500046
	TH51500047
	TH51500048
	TH51500049
	TH51500050
	TH51500051
	TH51500052
	TH51500053
	TH51500054
	TH51500055
	TH51500056
	TH51500057
	TH51500058
	TH51500059
	TH51500060
	TH51500061
	TH51500062
	TH51500063
	TH51500064
	TH51500065
	TH51500066
	TH51500067
	TH51500068
	TH51500069
	TH51500070
	TH51500071
	TH51500072
	TH51500073
	TH51500074
	TH51500075
	TH51500076
	TH51500077
	TH51500078

