
·QUERY ·OPTIMIZATION
IN

EXTENDED DBMS

Dissertation submitted to .the Jawaharlal Nehru University

in partial fulfilment of the requirements

for the award of the Degree of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE & TECHNOLOGY

by

RISHI SHUKLA

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

.JAWAHARLAL NEHRU UNIVI:RSITY

NEW DELHI - 110 067

INDIA

JANUARY 1993

CERTIFICATE

This is to certify that the dissertation entitled

QUERY OPTIMIZATION IN EXTENDED DBMS, . being submitted by me to

Jawaharlal Nehru University in the partial fulfilment of the

requirements for the award of the degree of Master of Technology,

is a record of original work done by me under the supervision of

Dr P.C.Saxena,Associate Professor, School of Computer and Systems

Sciences, Jawaharlal Nehru University during the year 1992,

Monsoon Semester.

The examples_ taken and results reported in this

dissertation have not been submitted in part or full to any other

university or Institute for the award of any degree or

diploma,etc.

L9--"'7
PROF.R.G. Gup~
Dean, LJ1l1 i ~
School of Computer and
Systems Sciences,
J .N .U .,
New Delhi.

-....

(RISHI SHUKLA)

(o:tw~
Dr. P. c. Saxena
Associate Professor,
School of Computer and
Systems Sciences,
J. N .U.,
New Delhi

ACKNOWLEDGEMENT

I express my humble gratitude towards Dr. P.C. Saxena,

Associate Professor, School of,· Computer and Systems

Sciences, Jawaharlal Nehru University, New Delhi who was always

there to guide me to the safe exit in case of any crisis and was

all the way with me to boost my morale and to provide his

valuable guidance.

I am also highly thankful to Prof. R. G. Gupta, Dean,

School of Computer and Systems Sciences, who took great pains to

provide me with the environment and all the facilities required

for the successful completion of my project.

I also take this opportunity to thank all faculty and

. staff members as well as my friends who. have been directly or

indirectly helpful in eliminating a variety of problems

encountered by me in the course of completing this dissertation.

(RISBl: saom)

1.

2.

3.

4.

5.

6.

7.

CONTENTS

Preface

Introduction 1-6

1. 1 Extending Techniques : 3

1.2 Extended Optimization 3

1.3 Data Architecture 6

Logical Transformation and Decomposition 7-12

2.1 Logical Transformation 7

2.2 Decomposition 9

Subquery Sequences and Plan Formulation 13-23

3.1 Result Formulation 13

3.2 Sequential Query Plan (SQP) Formulation 19

The Hybrid Database Architecture for
Optimization

24-35

4.1 Hybrid Architecture 24

4.2 Implication of Hybrid Architecture 27

4.3 Extended Operators and Spatial Relations 31

4.4 Special Features of a Hybrid system 34

Query Processing and Optimization 36-43

5.1 Query Processing 36

5.2 Analysis of an Example 37

5.3 Description of Plan 1 38

5.4 Other Possibilities 40

Conclusion 44-46

References 47-51

PREFACE

The purpose of this dissertation is to introduce the

techniques for extending the existing DBMS for the applications

involving hybrid (spatial and aspatial) queries.Special systems

which are application specific have been developed for

Gis,CAD/CAM and IMAGE PROCESSING. Here a scheme has been proposed

which, in general, is applicable to any DBMS with little

variation in different systems.

CHAPTER 1 is the introductory chapter and introduces ·in

short, the overall strategy and approach for extending a system.

CHAPTER 2 discusses the first two stages involved in

the extending technique namely Logical Transformation and

Decomposition, ·examples of which have been shown to give more

insight of the system.

CHAPTER 3 deals with the process of plan formulation

for query processing and their execution. Special treatment has

been given to spatial and aspatial parts of the query.Different

algorithms for query processing have been dealt with.

CHAPTER 4 discusses tpe data architecture of a hybrid

system, different arrangements for storing spatial and aspatial

attributes of an object and how the link between the two

attributes is established for the quick q.uery processing 0

Operations such as the sp_extract and db~extract have been

discussed.

CHAPTER 5 discusses an example and the application of

different techniques at different stages, in particular at the

plan formulation stage.

The concluding chapter discusses the limitations and

performance of such systems.

Some of the systems with the similar techniques

have been found to be functioning successfully.

CHAPTER 1

INTRODUCTION

The query optimizer serves as the integral part of any

RDBMS(Relational Data Base Management system),its main task is to

select an efficient query evaluation plan for a given query.The

conventional optimizers in existing system are not suitable for

supporting CAD/CAM ,GIS, and IMAGE DATABASE. The current focus is

on design of extensible DBMS so that newly constructed

generalised DBMS can support unconventional applications

easily.Another approach which is widely advocated is to extend an

existing DBMS for new applications. In the latter case the

existing DBMS is supplemented by new indexing structure and

evaluation subsystem in order to process spatial queries. The

approach takes the adv~ntage of existing mature techniques for

aspatial query evaluation while providing·, at low cost, efficient

implementation of spatial indexing techniques for general

queries. The purpose of the dissertation is to describe an

optimization strategy based on this approach.

To extend a DBMS for hybrid applications involving

spatial queries it is necessary to augment the external language

and to provide a special processing subsystem to evaluate

predicates that cannot be efficiently processed by conventional

DBMS.For executing the hybrid queries efficiently it is necessary

to construct an extended optimizer which also supports new

indexing/file structures.Thus a hybrid system must provide a

1

storage and information processing architechture that integrates

both spatial and aspatial components of database.In such an

integrated system user is provided with a single query language

capable of expressing selection criteria including both aspatial

and spatial qualifications.

Let us take the example of finding all parks within ten

kilometers of the university named "JNU" in Delhi.

SELECT L.name L.usage

FROM Land-use L,Land-use U

WHERE U.usage = "university" AND

L.usage = "park"

AND Within(U.location,L.location,lO)

AND In_window(L.location,W)

The response to such queries depends on the ability of the

optimizer to find an efficient query evaluation plan. Without

considering how selection and projection may be performed there

are several global strategies to execute the above query(shown ln

implementation verification).A spatial index can be used to

reduce the number of parks entities that must be processed or

else each park must be examined in turn. If the university

relation is very large and no index exists then a different

method must be used .The aim is that an optimizer must be able to

make a choice among these schemes and select an efficient low

level operation.

2

The aim of this dissertation is to extend an existing DBMS

such that the spatial queries can be optimized as a whol~.But the

three issues must be investigated before extending a system.

First requirement is that of application domain, second is data

architecture needed to fulfil these requirements, third the

design should be prototype and should be capable of being built

on top of an existing extensible system. Extended operations have

been introduced to integrate homogenously both spatial and non

spatial operations.

1.1 EXTENDING TECHNIQUES :

Overview of extended system :-

New applications involving hybrid queries require extra

auxiliary indexing structure to facilitate the query retrieval

based on the new relationships.These new indexing structures

cannot be supported in a conventional DBMS as they require

special subsystems which interfaces with the SQL backend through

which it accesses the database, and performs necessary spatial

oprations.On the top of these two processors, the SQL backend and

special processor ,is an extended optimizer responsible for

determining an efficient query evaluation plan. The architecture

is shown in figure

1.2 Extended optimization :-

Our main aim is to make use of existing SQL backend. To

this end a query is broken into subqueries that are either

totally spatial or aspatial so that totally aspatial subqueries

3

r
~~

HYBRID QUERY
front-end

Graphi
cal
~suits

I t
I
I

Relational
~suits

puti al
~suits

Parser

;
!
,~ .. rid parse tNe

i

' Exttndtd
OptiMiur

partialf !spatial query
results I 1

,.-----".....o.;QL ~e ,_._f.__ __ __,
Graphinl
Dispalg

, !)
9J'afh-Jca
lata

• Database

Spatial
PI'Ocessor

---- -,

L--J

A SystPM Arc~it~cture for A Hybrid <GIS> SysteM

fig. 1

Hybrid Que!'!~

pars~ trH
r----------- --------------,
I I

I l

I

I

I

I

I

Il<tenftd
Lo!Jical

Translorttation

parse tN>e

Jeco~posi tion

I

I

I

I

' I

I

'
I

'
I

I

I

Ixttnd~d 1
OptiMization 1 '

I I

I stratt!J!I tre~ 1
I

SQPs
GeMNtion

set of SQJ>s

SQPs
s~•~ction

'

'
I

I

' I
I

I

I

I I

L---~------- ---------·----J
sequence of query t~s

r-------------------- ---------------------,
'

Conventional
Querg

OptiMizatioR

Spatial
Querg

OptiMization
I

I I

L--J

An Extended OptiMization Strategy

fi9. 2

can be executed by an existing SQL backend,and the spatial

queries can be executed by the newly installed spatial processors

that minimizes the overall query cost. The strategy consists of

following four major steps.

(l)LOGICAL TRANSFORMATION :-

As. part of the optimization, the query tree produced by

parsing the initial query is rearranged such that the new

representation is more amenable to efficient evaluation.Also to

include conventional logical transformation a hybrid query tree

must be restructured so that the spatial indexing can be used

whenever possible.

(2)DECOMPOSITION :-

The parsed tree produced by the stage one is partitioned

into subtrees which are either totally spatial or aspatial.Each

subtree represents a subquery which must be executed by the query

processor.The aspatial subquery will be executed by the existing

SQL backend and spatial subquery which cannot be processed by the

SQL backend will be executed by the spatial processor.

(3)PLAN FORMULATION AND SELECTION :-,

From the set of subqueries obtained in the previous

step,different orders(subquery plans or SQP) are formed.The best

or the cheapest is selected among all subquery sequences.

4

(4)PLAN EXECUTION :-

From the chosen subquery sequences, SQL subqueries are

passed to SQL backend and spatial subqueries are passed to

spatial processor.

The extended SQL includes predicates of the form

geo_term,geo_op,geo_term, where geo_op is one of the spatial

operators, example Intersect,Adjacent,Join,End at,Contains,

Situated at,Within,Closest,and Farthest,the geo_op "Within"has

been used later.
Geo term is one of the following :

(l)A geographic entity class (i.e a geo_obj as defined by table

of variables name).

(2)A virtual geographic entity of the form

(a) Line joining geo_obj or

(b) geo_obj bounded by geo_obj and geo_obj

(3) A window definition (xl,, x2, Yl, Y2) where (xl, Yl) and (x2, Y2)

are top right and bottom left corner of the window, or a WINDOW

keyword that assumes the current window in which a skeleton map

is displayed as the co-ordinates.

Since SQL supports nested formulation of queries,

algorithms which transform a nested query to an equivalent

unnested query are an important component of SQL query

processor,as hybrid spatial predicates do not allow subqueries as

operands,the hybrid language introduces no new nesting complexity

as compared to SQL ,and so the existing SQL unnesting.algorithm

can be applied with only minor modifications to transform the

5

hybrid nested query into a set of partially ordered unnested

queries.The result of this unnesting is sequence of unnested

hybrid queries.Unnesting is considered as a preprocessing stage,

and the. optimization strategies that follow consider each

unnested query in isolation.Consequently the only scope for

optimization between the nested and unnested component occurs in

the unnesting phase. An existing SQL parser can be extended for

hybrid queries.For subsequent query transformation,it is highly

desirable that the structure used to represent a parsed hybrid

query allows a great degree of freedom for restructuring. The

internal nodes may have more than two children.

1.3 DATA ARCHITECTURE

Data architecture of a hybrid system is its very

important. part .In such architectures special provision for

storing spatial and aspatial data are needed.Their both spatial

and aspatial attributes are stored in different regions and a

proper link between the two is maintained for faster search.The

concept of forward and backward links which help in locating the

objects is also given,the two extract operators sp_extract and

db extract make possible the two links.The sp_extract finds the

spatial part from the given database tuples,and db extract does

the reverse.

6

CHAPTER 2

LOGICAL TRANSFORMATION AND DECOMPOSITION

2.1 Loqical Transformation

As in SQL, several hybrid queries with different

syntactic forms but with the same semantics may be formed. These

alternative syntactic forms may exhibit different potential for

execution optimization, and greatly increase the complexity of

the optimization procedures. One of the preprocesses involved in

query analysis is to convert all queries into some canonical

form, with the objective of reducing the syntactic variants

amongst semantically equivalent queries and yielding syntactic

forms that are most amenable to the optimization heuristics.

Assuming that a syntactically correct query is translated into a

parse tree, the predicate subtrees corresponding to the WHERE

clause are initially simplified.

It is important to make use of spatial indexes

whenever possible. Therefore, the representation of predicates in

the predicate tree must not cause an early cartesian product to

be formed when this product may inhibit the use of spatial

indexes.
Consider the following predicate

road is adjacent to park AND

(park.usage = "recreational" OR

road.name = "Africa Avenue")

7

If the OR predicate is executed first, the cross

product formed precludes the use of spatial indexes from the

spatial predicate. However the expression in the follow ins

equivalent form would not inhibit the use of spatial indexes on

both spatial predicates.

(road is adjacent to park AND

road.name = "Africa Avenue") OR

(road is adjacent to park AND

park.usage = "recreational").

In this example the restrictions may be used to

reduce the cost of evaluating the spatial expressions and no

cross product is involved.

Another objective of logical transformation is to

reduce the number of terms in an expression by identifying

identical terms. This objective can conflict with the logical

transformation. Allowing the use of spatial indexes is given

higher p~iority than reducing the number of terms. Thus the

transformation required on top of the existing conventional

logical transformations can be stated as follows:

AND(Pf (S1) , OR(P~ (S~), P3 (~))) ===>

OR (AND (P1s (S1) , Pl (~ }) , AND (P~ (S1) , P l (~)))

if [(s.n ~) OR (S.f\ s.,)] = true

8

1

0

0
Grouring or PredicJt~s.

Fig. 3

The above transformation is necessary,

irrespective of the predicate types of P2 and P3. The above

transformation has no effect on the following expression

park..usage = "recreational" AND

road.name = "Africa Avenue" AND

(park is adjacent to road OR

park is adjacent to railway)

For this expression, the spatial predicates are

not impeded from using spatial indexes and can be more

efficiently evaluated by using the partial results of the

restrictions. No transformation is necessary.

All aspatial predicates are grouped according to

the relations they reference.

2.2 Decompositi~n

The technique is used in query optimization to

decompose a query into simpler components to reduce the

complexity of optimization. In general, the simpler subqueries

are designed to reference fewer relations than the original

query. In our context, an unnested hybrid query is deco!llposed

into simpler subqueries that are either purely spatial or purely

aspatial to enable global ordering of subqueries such that the

overall evaluation cost is minimum.

The temporary relation created by P: (Sa) may

affect the strategy employed in evaluating Pi (s1) if ·both

predicates reference some common relations. On the other hand,

9

-·

sp_ep

log_op

A PHdicite TrH

Fig. 4

log_op

LOG_OP

A CorMspondint (fit • .C) StNttgg tr.t

Fit. 5

SPATIAL
PRDICAtl

the partial result of an earlier execution of ~or ~will not

affect the execution of P; irrespective of the relations in s3 and

St. Hence P;, ~and OR(P3 , P4) should be detached as subqueries.

P~ and P:- should form another two subqueries if s, or s~

intersected s 5 ; otherwise the conjunction of the two predicates

would form the subquery. A more complicated decomposition polic~

would form P~ and ~ as two subqueries if S 1 or s~ intersected

S1- , Ss and s, . However, this more complicated

strategy would lead to severe increase in the cost of determining

the optimal subquery sequence. Our strategy is to form subqueries

1. for each spatial predicate.

2. for each SQL predicate (which may be compound) that

is related to a spatial predicate by a conjunction and references

the relation (or relations) involved in spatial predicate.

3. for the remaining SQL predicates in a logical

expression, which do not satisfy condition 2.

The decomposition scheme maps a hybrid expression

log_ op (P1.---, P~ , ••• , Pee) into a query expression log_ op (E1 , E

, ••• , E.,) where E; is either a query express ion or a query Q It: (SJ .

More precisely, it is a mapping of a predicate tree into a tree

whose internal nodes are logical operators, and external nodes

are queries (pointers to a corresponding query trees). We call

the data structure formed by the decomposition algorithms the

11 Strategy tree 11
• Fig. i•5 illustrates such a mapping. With such

10

representation, the dependency of the subqueries is captured

without any ordering.

A join R
1

.A = R~.A where one of the relations does

not participate in any other predica.te and the target 1 ist

(answer) is implicitly a restriction. Hence we regard such joins

as a restriction in our decomposition algorithm.

As an example of the decomposition strategy, the

following contrived query (disregard its semantics) is provided

to illustrate the power of the decomposition strategy.

Q1

Q2

SELECT roa~.name,park.name

·FROM road,region,park

WHERE road.name I region.name AND

road is adjacent to region AND

park.name ':I "APPU PARK" AND

(region.name = " JNU " OR

region.name = "SOUTH DELHI")

The subqueries formed are as below

SELECT *
FROM region, road

WHERE road is adjacent to region

SELECT *
FROM region

WHERE region.name = "JNU" OR

region.name = "South Delhi"
--

11

--
Q3 SELECT *

FROM road, region

WHERE road.name # region.name

Q4 SELECT *
FROM park

WHERE park.name :/= "APPU PARK"

The strategy tree for the above query is an

internal node with an AND logical operator pointing to four

offspring subqueries. Note· that Q1, Q2 and Q3, and Q4 are formed

under conditions 1, 2 and 3 respectively.

It should be noted that the decomposition

algorithm only decomposes a query into multiple subqueries, it

does not specify any order for the subqueries, and the strategy

tree allows us to arrange the subqueries in any order we prefer

so long as the final answer is correct. Hence the SELECT clause

of subqueries cannot be defined until the full ordering is known.

12

CHAPTER 3

SUBQUERY SEQUENCES AND PLAN FORMULATION

3.1 Result Formulation

Since a strategy tree is semantically equivalent

to the predicate tree from which it originates, the subqueries in

the strategy tree and their corresponding predicates in the

original query tree exhi~it the same dependencies. While ordering

the subqueries, the dependencies captured . by the strategy tree

structure can be expressed by introduction of extra SQL queries

AND/OR terms rewriting. The extra queries are used to merge

multiple partial results (Temporary relations), while the

technique of terms rewriting propagates the partial results of a

query to another query. Three result rewri t·ing rules are

introduced in the chapter to ensure the correctness of the final

result. These conditions for which three rules are applied are

mutually exclusive.

If the subqueries that are connected by a

conjunction, reference some common relations and executed

independently, then the partial results must be merged by a

natural join. However if a subquery(subquery Q) uses the partial

result of other subquery (subquery Q) then no natural join is

required sine~ the result that is produced by Q also satisfies

the selection in Q .

13

Result Rewriting rule 1

Given an· expression and (Q 1 (S 1)), Q<(S~) and the

precondition s,n s:l =# cp. Let I = s,n ~and let c<;;: I. suppose Q 1 is

evaluated before Q~, resulting in the partial result T1 , then for

each R E C if c =I= 4> replace R by T1 in Qt and

1. if C = 1, no further rewriting is necessary.

2. if CCI, (C may be¢>) and supose T~is the temporary

relation produced by Q~ and A,, ... , A~ are the common unqualified

attributes in I, then the following SQL query (an equijoin) is

introduced to merge the partial results :

SELECT *
FROM Ta ,T~

WHERE ~.A, = T~.A~AND

~ .A~ = T~.AtAND

T1 .An = T~ .An.

Using a restricted instance of a base relation or a

base relation with indexes is determined by the optimizer to

minimize the processing cost.

Q1

Q2

SELECT *

FROM

WHERE

SELECT

FROM

WHERE

*
P(T~,Rj)

P (T"t, Rj)

14

T=
~

SELECT

FROM

WHERE

*
R~

p (R£)

Q3 SELECT *

FROM ~~~b

WHERE T.sc..·A, = ~\.A, AND T3"".A~= 'raa:.·A~

SELECT *
FROM R· I

WHERE p:t (Rj)

SELECT *
FROM Ri ,Rj

WHERE P1 (Ri,R;)

Q1 can be thought of as first fetching a tuple of Rj if P~

is true, fetch all the tuples of Rasuch that F. is true. There the

result projected is the final answer.This is operationally the

same as q., except that Qa_ will have the partial result of Ri for

which ~ is true and stored as the temporary relation

T~Therefore,each tuple of T~and for all tuples of Rj ,the result

is formed if P1 is true .Another way which is -similar to ~is

firstly evaluating ~ and then ,based on the partial result ,& is

evaluated. Alternatively P1 and P~ are evaluated independently,

and a join of two temporary results on the common attributes is

performed. This is expressed as ~Hence the three queries produce

the same result. The evaluation of query can be visualized as

15

firstly forming the cartesian product of all the relations that

are reflected, and evaluating the predicates.

When two. conjuncted subqueries reference different

relations ,the order of their evaluation is not important to cost

saving.However ,the partial results must be propagated to become

part of the final answer. Subquery Q-1- in fig.- is a case in

point. The partial result of '4 must participate· in the final

result.

Result Rewriting Rule 2

Suppose we are given an expression and (Q 1 (S1) ,Q~(S~)),

a condition S1() ~ Suppose that Q1 is evaluated before ~ then put

the temporary relation T1 produced by Q1 in the FROM clause of Q~.

Consider the following examples.

Q 4 : SELECT *
FROM

WHERE

Q 5 : SELECT *
FROM Rj ,R; ,T5

WHERE P, (Ri I Rl)

T 5 = SELECT *
FROM Rt<

WHERE p1. (Rt<)

16

Both pred,icates P~ can be evaluated

independentely, and the answer is the cross product of P, and

P~This is the same as forming the cross product of Rj ,~and R~and

then retaining the tuples for which the ~ and ~ evaluate to true

at the ,same time . For Q5 , P~ is evaluated first and the result is

stored in ~Then for each tuple of ~and for each tuple of Rj ,the

two tuples are merged if P1 is satisfied and the resultant

relation is then crossed with T5 • As P1 and P~ can be evaluated

independently,the sequence of evaluation is immaterial.

Two disjuncted subqueries that reference different set

of relations must be made union capable and hence~ each partial

result must be "crossed " with the relations that are not

referenced by the subquery.

Result Rewriting Rule 3

, Given an expression OR (Q, (S1)), ••••••• ,Qj((SIC)) ,we let

S= S1 U S~ U s3 l) s4 •• US., The FROM clause of Q i (i=l. k) is

rewritten with the set S as the referenced relations.Suppose T is

the temporary relation produced by Q ,then the result is formed

by:
Consider the following example

Q7: SELECT *
FROM

WHERE P1(R(, R;) OR

17

Q8:

T8= . b

Tea U Teb

SELECT *
FROM Ri,Ri,Rk.

WHERE P, (Rj ,Ri)

SELECT *
FROM Rj , Ri, R".

WHERE P~ (R1 ,RI().

Q7 can be thought of as firstly forming the cartesian

product of the relations and duplicating them as two temporary

relations.Then evaluate ~ on one of the temporary relations and P~

on the other .The results obtained by both evaluations are then

unioned to form the final answer. This is equivalent to Q8 .

Notice that the first rewriting rule does not handle a

general case like log_op(E, ~,where Ei may be a

subquery or an expression. Consider the example AND (Q 1 (R1)),

OR (Q~(R 1 ,Rt) ,Q3 (R1))and suppose Q1 is the first to be evaluated.

Suppose we chose to use the partial result of Q1 in evaluating Q~

but not Q"3 for some reason (like using indexes) . Then 3 natural.

join between the results of the OR expression and the result of Q1

is required . However, if both Q2 and Q3 use the partial result of

Q1 then the partial result can be considered as being propagated

to the OR expression and hence, no extra natural join is

required.

18

• 1

Usf of P~rti~J.J!sults

fig. 6

The partial result relation of one subquery may be used

as the substitute for a base relation of other subquery if the

first common ancestor of both subquery i-s on the same node . In

figure ,any of the partial result of <f. ,Q~,Qiand Q~may be used

by ~ and Q: .A child of an AND node may use its brother's

results.Suppose instead of Q' ,we have an AND node with two

children subqueries. These two subqueries may then use partial

results of each other and the partial result of Qj (1 'i '4) but not

of Q}.

3.2 Sequential Query Plan (SQP) Formulation

For n subqueries n! distinct sequences of subquery

plans can be formulated by the brute force method .Without

pruning techniques, the optimizer would be unacceptably

slow.Therefore,a rule based on heuristic strategy is required to

reduce the number of SQP considered .Following the conventional

DBMS , a rule based optimizer should employ certain "rules" or
I

"musts", to avoide the generation of sequences that are obviously

ineffective,and heuristics to further prune the search space.

The set of subqueries formed by the decomposition

strategy is small. However, it is important not to consider any

alternatives that are obviously ineffective.Heuristic techniques

are used to generate SQP that are efficient.A relaxed heuristic

uses less rules, hence produces more alternatives than those

produced by the stricter heuristic which has more rules. A

disadvantage of a stricter heuristics is that the likelihood of a

19

good alternative being rejected is higher.

The following rules are proposed to reduce the subquery

sequences being generated and thereby r~ducing the search space

for finding the best sequence.

Heuristic rule 1 :

For an expression AND (Q,(S1), ••••• Qn(S11 }},if Sif~(S1 U~

Sc~1 USiw ••• SW then Q 1• (S;) is executed just before the result is

required.

The execution of Q; does not offset any intermediate

results of Qj for 1 ~ j '= n (i=#:j) , therefore, the sequence of its

execution is not important.To avoid rerecording of the partial

result of Q{ which is not required till the formation of the

final answer, the merging of the partial result can be postponed

until n-2 siblings subqueries have been evaluated. One of the n-1

queries, Qa (j~i),is not executed before the final answer through

that query (as in result rewriting rule2~.

The above rule is applicable for a general case in

which there is more than one independent subquery. However, for

each end node of the query tree,the decomposition strategy will

produce at most one query for which the reference relations do

not exist in the other conjected queries.

20

Heuristic Rule 2 :

For the expression OR (Q 1 (S1), •••••• ,Q-n(S.,)) ,the order

of execution of subqueries is immaterial to cost saving,

hence,the queries may be executed in any specific order.

Since the subqueries are independent ,that is, one does

not depend upon the evaluation of the other, it is immaterial

which query is executed first.The above rule states that sum of

the cost in executing subqueries is invariant to the subqueries.

However , if the OR expression is the part of the conjuncted

expression,say AND (Q,1,QPII'f OR(Q 1 ,Q~)),then the queries in

the disjunction may use the partial result of the conjuncted

ancestor queries (Qpt ... Q~. The order of the execution of the

OR query expression is important with respect to queries Q~

, , and Qp,., so the whole disjunction is treated as a single

entity. The following illustrate some of the subquery sequences

of the example shown in fig.

[Q~ ,Q~,Q~,Q~(Q;, Q~))

[Q~ ' ~ ' Q3 ' (Ol ' Q&) ' Q~)

~ ,Q~, (~ ,~) ,Q~,Q~]
01 s ClJ Q. 0.~

Q, ' (Q 5' Qjj) 'Q~' Q3 '\.!4]

s C1. Q. a. .5 a,
[(Q5,Q,),Qa,Q3,Q-t,Q'J.

While subqueries in [...)are conjuncted,' subqueries in

(..) are disjuncted .For each OR node of the strategy tree, the

decomposition strategy produces atleast one child node which

21

is an aspatial query although there may be a number of child

nodes representing spatial queries.

Heuristic Rule 3 :

For an expression , AND (Q1, (S 1) , •••• Cdt (Sj) ,~Si)

~SIC), .. QJS,)), suppose IS;t,andiSJI=l·, and S;,S~, S.c,then atleast

one of the Qi or dj must be executed before Q5
K.

The argument follows from the fact that the outer

relation should be as small as possible to reduce the search.

Generating SQP :

During the generation of, different SQPs,it is necessary

to minimize the number of SQPs, for which cost estimation is

performed. A method for generating SQPs is proposed here. Thi

method generates different plans lexicographically in such a way

that all arrangements with common initial subsequences are

generated consecutively. In this way ,the rejection of next few

sequences with the same initial subsequence can be made without

having to examine them.

Following the heuristic rule 2 ,the maximum number of

sequences that may be generated is{ } . .
To specify tl'?-e order of execution , the strategy tree

may be rearranged such that the depth first left to right

traversal produces the desired order.Alternatively, an array that

describes the ordering can be used. For example one of the

sequences can be represented as follows:

22

[~~J otj o2J OJ'J ~~j 04'J os•J 06' J
SQP<01A,Q2A,Q3A,<Q5 5,Q6A,), Q45>

An entry consisting of a query is a logical operator

and the parent index: (inner box:) . The first entry is always a

logical operator and is followed by the children. The SQP can be

obtained by recursively scanning the ~rr~y from left to right.

Start from the first entry 1 its child entries are searched from

left to right. When a child entry is a logical operator 1 the

process is repeated from that point. For array in the fig. on

reaching entry 4 the search for entries 6 and 7 starts.Searching

for the remaining children of the first entry resumes when the

searching of the children of the fourth entry is completed.

While constructing an SQP 1 the attributes in the SELECT

clause of the subqueries are required for further evaluation of

the answer.

23

CHAPTER 4

THE HYBRID DATABASE ARCHITECTURE

FOR OPTIMIZATION

4.1 HYBRID ARCHITECTURE

For efficient working of a hybrid system which has been

extended, the data structure architecture is important. In such

systems proper link between the spatial and aspatial attributes

of any object must be done for the fast operation and access of

the query. Therefore, a discussion of database architecture for

such hybrid system is done.Also,different operations which link

aspatial and spatial attributes are given.

Main Features Of Hybrid architecture

In the typical spatial database environment,spatial

objects are described by spatial as well as aspatial attributes.

As an example, a road is described in a database by the

coordinates of their end points(i.e spatial attributes). We make

the following assumption about the way in which aspatial and

spatial attributes describing an entity are linked.

(1) Each data entry is represented by the most efficient form

that suits the operational purpose,that is why spatial attributes

are stored in the spatial data structures and not flattened in

database record.

24

(2} Each set 1 say 0 1 0f homogeneous objects that are spatially

related to each other is logically clustered in the database.O is

also described by the schema that has two sets of attributes: R

and s. R is· the set of aspatial attributes and s is the set of

spatial attributes.

All data instances of a spatial attribute over the set

of homogeneous objects are stored in one spatial data structure

sutaible for handling attribute's spatial type(e.g region 1 line 1

or point) . We refer to this as a map. A map is associated with

each spatial attribute in the schema.A map is used as an index

for spatial objects as well as a medium for performing aspatial

operations(e.g. rotation and scaling for images 1 window 1 polygon

intersection 1 area of a region 1 connected component

retrieval 1 proximity query etc.).

The instances of a spatial attribute are merely some

spatial indexs that point to the spatial description of the

objects stored inside the spatial data structures. On the other

hand aspatial are stored in database relations.It is important to

mention that the database relation is used in hybrid system only

as a repository for clustering data instances of a spatial

attributes.In other words the hybrid spatial database

architecture does not depend heavily on the fact that relational

or arelational system is being used. It is how spatial and

aspatial data are linked between the spatial and aspatial

repositories that is important.In the hybrid system the spatial

25

and aspatial description of an object are linked to each other by

what we mean "spatial relations" .A spatial relation consists of

two main components:a spatial and an aspatial repository.The

spatia!' repository may consist of one or more spatial data

structure while the aspatial repository is simply a relation.

In particular, in a spatial relation, spatial and

aspatial attribute values of an object are linked by two types of

links:forward and backward links.A forward link maps the aspatial

description of an object that is stored inside a tuple into the

object's spatial description that is stored inside a spatial data

structure. A backward link serves as a mapping in the opposite

direction. i.e from spatial description of an object into its

aspatial description. ·The description of a spatial object can

point back, via backward links ,into more than one tuple in the

relation.

A forward link is stored inside the tuple . as the

instance value of the attribute of the relatio,~. I-cs purpose is to

index and uniquely identify a spatial object from among a set of

related spatial objects in the same spatial data

structure.Regardless of the type of the spatial attributes being

indexed,the forward link index value is of fixed length and does

not depend upon the size of spatial object being

referenced.Backward links are stored inside the spatial data

structure along with each spatial object description, or in a

separate look-up table that maps the spatial description of an

26

object back to its aspatial description (i.e tuple) inside a

database relation.A backward link can be implemented by storing

the tuple identifier of the object's corresponding tuple.

4.2 Implications Of Hybrid Architecture:-

The hybrid architecture structurally separates the

spatial from the aspatial data.This has several implications on

data manipulations and query processing.Here we demonstrate the

implications that are related to insertion and deletion of

objects, as well

join.Later their

We use

as relational and spatial based selection and

implementation is shown.

the following notations.A set of homogeneous.

objects 0 is represented by a relation R and data structures. We

assume that 0' s schema has only one spatial attribute in

it.Extending the description to more than one spatial attribute

is easy.

Insertion And Deletion:-

Performing insertion and deletion in hybrid system for

spatial objects is simple.Basically ,if any object o is inserted

into (or deleted from) the homogeneous set of objects 0, then o

has to be inserted(deleted) as well.Finally forward and backward

links are established between both components of o.

Relational Based Selection:

If some tuples are selected from relation R via a

relational based selection to form a new relation R',then a new

data structure S' is also formed to store the spatial aspect of

27

the selected object in R' .This is achieved by the 18 sp extract"

operator,as shown below.sp extract extracts the spatial data from - .

S via the use of forward link from R to S.The extracted spatial

data is inserted into S'.Backward link of the selected objects in

S' have to be adjusted to point to the corresponding tuples in R'

rather than R.

sp_extract (Rl,S)

I* For all the tuples in Rl, retrieve their

description from S and stores it in a new

spatial data structure U.* I

begin

initialize U;

traverse Rl

for each tuple t in Rl do

begin

sid:= get t's spatial- id;

retrieve sid's spatial object o from S;

insert o into U;

end;

return U;

end;

28

Spatial -based selection

If some tuples are selected from data structure S via

spatial based selection to form a new data structureS', then a

new relation R' is also formed to store the corresponding tuples

(the non-spatial aspects} of the selected objects inS'. This

is achieved by db_extract operator(db denotes database

correlation of db extract tuples from R via the use of

backward link from S toR and insert them into R'. Forward links

of the selected object R' have to be adjusted to point to their

corresponding spatial entity in S' rather than s.

db extract (Sl ,R)

/* For all the spatial description

retrieve their tuples from R.

store it in R' * I

begin

initialise R';

traverse Sl;

for each description in Sl do

begin

db := get tuples;

retrieve db relation from R:

insert into R';

end;

in Sl

adjust R' for proper link to return;

end .

29

Relational and Spatial Joint

The standard relational

slightly different when performed

joint operation

on top of the

behaves

hybrid

data architecture. When we join the relation where one or both

of them have spatial attributes, we have to build new spatial

data structure to store the spatial information of the tuples

participating in the join operations. This involves the

execution of the operation sp_extract twice; one for each

spatial attributes, to store the object region that participated

in the relational join.

On the other hand, a spatial join on two spatial

relations, each having spatial attributes is performed as

follows; the spatial operation corresponding to the spatial join

is executed first. It identifies the matching pairs of spatial

object that will participate in the resulting spatial relation.

Two spatial data structures are created here,each of them stores

the qualifying spatial objects that originate from one of the two

input spatial relations. Two invocations of the operator

db extract are needed in order to build the resulting join

relation. We need to retrieve the tuples corresponding to the

qualifiying application· and object and each of the two input

spatial relations have to be retrieved. Then tuples of matching

spatial objects are merged and stored in the join relation. All

the operations involved in performing spatial or relational

select and join are encompassed in what we term extended operator.

30

4.3 Extended Operators and Spatial Relations :

We now address some implementation issues in hybrid

system. We saw that standard database operations such as joins

and selection as well as spatial operations need to be redefined

when viewed in the context of the hybrid data architecture. The

reason is that we must maintain consistency among separate but

related structures; mainly the relation describing the nonspatial

aspects of homogeneous objects and the spatial data structure

describing the spatial aspect of the objects.

Now we introduce the notion of extended operators as an

implementation tool that encapsulated spatial relation. We

redefine spatial and nonspatial operations using extended

operators . Extended operators provide a uniform inteiface that

masks the difference between spatial and nonspatial operations.

They also serve as a way to keep both the spatial and nonspatial

components of a spatial relation consistence.

We assume that we have a collection of homogeneous

objects 0 referred to by the pair < R,S>, where R is a relation

that stores the non-spatial attributes information of o and s is

a spatial data structure that stores the spatial attributes

information of O.Again ,we assume that the set 0 is described by

only one spatial attribute and hence has only one spatial data

structure associated with it.Relaxing this assumption is

easy. We use the notation "op" (U where U is either R or S or the

31

pair <R,S> (depending on the context) to indicate that operation

"op" is performed on U.

Extended operators are classified into relational and

spatial-based operators;x_op,. and x_oPs ,respectively (r for

relational and s for spatial). They are defined using the

operators sp_extract and db_extract, as building blocks in

addition to the corresponding un-extended operators.

The Extended Select Operator:

The extended select operatbr can be either spatial or

relational. The extended relational select ,referred to as x_o~,

takes as its arguments the pair <R, S> and returns the pair

<T,U> Relation T is formed by applying the un-extended

relational select oprator on R,i.e T =op~ (R).Next ,opera~or

sp_select is executed to form the resulting spatial data

structure U.The spatial object corresponding to the tuple in the

resulting relation T are stored into U. The spatial and non

spatial components of each resulting object are then linked.

The extended spatial select operator x_op behaves analogously.

First, the spatial select operator op is performed and the

selected spatial objects are then stored into a resulting spatial

data structure U.Operator db extract is then used to extract the

tuples, corresponding to the spatial objects stored in U, to

build an output relation.In summary,

x_opJ<R,S.>) = <opy(r) ,sp_extract(op~(r) ,S)>,

x_ops (<R,S>) = <db_extract(R,O~ (s)>.

32

The Extended Join Operation:

The extended relation join <R_g(S:,~> =x_op.,.,(< R,S1)>,

<R~ ,s!> >) (rj denotes relational join) first applies the

relational join operator· op.,;on R, and ~ This results in a join

relation R3 which has two spatial attri-butes R-as• and R!Sl, where s,

and ~ are the spatial attributes that originally belonged to R1

and R; respectively.Opertor sp_extract is executed twice, once

for each spatial attribute to build the corresponding data

structure s:and ~In summary,

x_op,.~(<R1 ,s1 >,<R~,S~>) .=<R3 , (s: ,S~)>,where

R3 = op (R 1 , R~) ,

I S1 = op_extract (S1 ,R3&),and

S~= sp_extract (S~,R3~).

The extended spatial join < R! , (s: , s~) > = x op,.
- $J

(<R., s,>, <R:a, , St >) (s; denotes spatial join) first applies the

spatial join operator on 5 1 and ~ This results in two data

structures, S 1
1

' Sa and s~ ~ s~ . sf and s~ represents the complete

description of the spatial object participating in the spatial

join from each side. In some cases o~~may result in just one data

structure, s;that carries some combined spatial information. We

also use an operator that we term as db_j_extract which

operates on the output spatial data struc~ure cs: and S~ or on ~

to produce the join relation, R3 . In summary,

33

X_ op
51

(< R1 , S1 >, <~, 8,i>) = <R~, (s; , ~) >, OR

= <R3 , S3 > , WHERE

(S ,s)= OPJ; (S ,s) ' AND

~ = db_j_extract(R1 ,~{s: ,s' }),OR

s' = op,. (s1 , s~) , AND 3 St

R.3 = db_j_extract(R1 ,~ ,~).

4.4 SPECIAL FEATURES OF A, HYBRID SYSTEM

In summary we can give the special features of a hybrid

system as follows:

A hybrid system features a dual architecture where

spatial data is stored separately from non spatial data. This

may not permit merging of spatial and non-spatial data into

common multiple attribute indexes. However, we believe that this

feature is to unncessary and of less practical use.

Spatial data is stored in disk-based spatial data

structures that apply some buffering mechanism and are suitable

for the type of data and required operations. This matches with

the fact that spatial data is voluminous. It also avoids the

need for down or up-loading of spatial data from an off-line

representation into on-line representation. Considering the large

size of spatial data the down- /up-loading approach seems

impractical.

34

We m~intain bi-directional links between the spatial

and non-spatial description of a spatial object. Although

maintaining these 1 inks imposes some overhead it provides

flexibility in browsing between the spatial and non-spatial side

of the system, thereby permitting operations to be performed in

any arbitrary order chosen by the optimizer . Maintaining only

uni-directional links imposes some restrictions on the optimizer

so that the optimizer is forced to favour one aspect of the data

over the other.

Since spatial data is stored in separate structures we

avoid the duplication of spatial data when the objects are

referenced more then once. Consider the relation reslting from

joining two relations each having one spatial attribute. If data

were stored in textual from inside a tuple, every time this tuple

participates in the join the textual description of the spatial

object needs to be duplicated as well.

we just duplicate the spatial index

However in hybrid system

referring to the spatial

description and riot the whole descriptiori.

35

CHAPTER 5

QUERY PROCESSING AND OPTIMIZATION

5.1 QUERY PROCESSING

Query processing stage is very important for the

optimization as they affect the optimization process to a great

extent.To illustrate this I will take an example and will show

the different SQP formed and how the selection of a plan can

affect the query processing.The use of extended operators has

been illustrated.

THE EXAMPLE

Let us take the example of finding all the parks

within ten kilometers of the university named "JNU"in Delhi.

The extended query will look like as follows:

SELECT L.name L.usage

FROM

WHERE

AND

AND

AND

AND

land-use L,land-use U

u.usage ="university"

U.name = "JNU"

L.usage = "park"

With_in(U.location,L.location,lO)

in_window(L.location,w)

36

5.2 ANALYSIS OF EXAMPLE

By using extended operators we have a homogeneous

interface. Otherwise, each extended operator results in a

relation a·nd one or more spatial data structure . This allows

permuting the operation in any desired order.Also,the flexibility

of hybrid system is demonstrated .

First logical transformation will make such

transformations which will make the circles to be drawn with

"JNU" as the center and not that the circles from different

parks will be checked for "JNU" to fall in it.Many othe:::

transformations will be made which will help in faster search.

The decomposition process will separate the spatial and

aspatial parts so that diffrent processes can effectively be

used and they may also be used in proper way to minimize the

search process at plan formulation and query processing stage.

Now, first several different execution plans for thE

above query will be shown,next few possible optimization will be

shown which may occur.The following shorthand notations are used.

x_dbp :select L.name,L.usage (db-projection)

x_dbs 1 :U.usage = "university" (db-selection)

x_dbs~ :L.usage = "park" (db-selection)

x_spw1 :within (U.location, L.location, 10)

x_spw~:in_window (L.location,w)

37

Now consider the following different orders of query

execution which are called as the SQP (query execution plan)

query plan 1 :x_dbs1 ,x_dbS4 ,x_spw1 ,x_spw~,x_dbp

query plan 2 :x_db51 ,x_dbp ,x_sp .. ~ ,x_dbg_ ,x_sp"'11

query plan 3 x_spWl'X_db~ , x_db.s1 ,x_sp.,.., ,x_dbp

query plan 4 x_db~ ,x_sp,.~ ,x_db51 , x_sp~11 , x_ dbp

query plan 5 X_SP~a 1 X_db~ ,x_dbsl ,X_SPw1 ,x_dbp

5.3 DESCRIPTION OF PLAN 1

We describe query plan 1 in more detail.The execution

plans are presented using the most general forms of extended

operators as described previously in chapter3. Here more

clarification is done :

x db :U.usage = "university"

Relation land-use is searched (possibly through an index on

attribute usage) and the qualified tuples are selected. The

result of the selection operation is stored in a temporary

relation Ts 1 • s-extract traverses T51 and extracts from s the

spatial data structure storing instances of the attribute land-

use.Location of type region, the regions (universities)

corresponding to the tuples in relation. The extracted regions

are stored in a temporary spatial data structure Ss1• Notice that

the database selection is performed by the DBMS and the spatial

extract operation is performed by the spatial process.

x_dbsl: L.usage = "park"

38

This operation is executed in the same way as operation

x_dbs1 • It operates on the original relation land-use but outputs

a temporary relation.Tstand a temporary spatial data structureS~·

x_sp :within (T . location T. location, 10)

Given relation Ts1and Ts~ spatial data structures Ss1and s~

and a radius of expansion with value 10, the spatial operator

within first operates on Ss1 and s5tto generate the regions in SSt

that are within 10 units of distance from regions in Ss1 • The

result is another temporary spatial data structure ~3 • By using

the operator db_extract and ss~,the spatial join relation is built

consisting of tuples from T51 and Ts~ that are within the given

distance from each other. The result of the spatial join is

stored in temporary relation T53 that has two spatial attributes

location! and locationJ of type region corresponding to the data

structures Ss1 and Ss3 respectively. For referencing purposes

only, all the attributes joined from relation T51 are postfixed by

the letter 1 (e.g. usage!), while the attributes joined from

relation T2 are postfixed by the letter 3, (e.g. usage3).

x_spw~= in_window (~3 locationJ, W)

The spatial selection operation in_window perfo::::-ms the

window operation on s5~, the data structure corresponding to

spatial attributes location 3 .This results in yet another

temporary data structure s5.,.. The tuples in T53 corresponding to

39

the spatial objects in SS+(i.e. inside the window W) are then

extracted using operation db extract into the temporary relation

x_dbp: select T~. name3 ,T~, usage3

Attributes names3 and usage3 are projected from T~

resulting in relation T55 • Another attributes including their

corresponding spatial data structures, if any are deleted. Below

is shown a summary of the above execution plan.

X-db SJ (<U I s >)

x_dbs2 (<L ,s >)

> <Ts1 ,Ss1 >

> <Tst , S.s~ >

x_spw 1 <<Ts1,s51 >,< T~,SSl>,lO) == > <Ts~ ,s53 >

x _ spwl (<T5~, S.sy) -- > <T S4 , ~ >

x_dbp {<'l$~,ss?) -- > <T55 ,s5s>

5.4 OTHER POSSIBILITIES

Extended operators can be executed in any desirable

order because of their uniform interface. This gives us

flexibility in the sense that it enables us

optimization. In addition, once candidate

to perform query

execution plan

is selected for execution more optimization can take place. We

start with a general and complete execution plan of the query

using extended operators, then apply some transformation rules to

enhance the performance of the execution plan while still

producting the same correct results as the original execution

plan. In other words, depending on the context, we can select

40

less general and yet simpler forms of extended operators that are

necessary to execute the given query with better performance.

Below, we only list a range of these rules.

Rearranging the order of the above operations may

result in better performance. For example, in the above plan,

performing the spatial selection, in window before the spatial

join "within" could have resulted in better performance. Also,

performing the database projection earlier reduces the I/O

overhead. Query plan 2, given above, reflects both of these

enhancements.In this case, the spatial query optimizer stops

maintaining the spatial data structure of the dropped attributes

as early as possible. .This is also applicable when the user does

not select relational attributes in the select clause (e.g.

select road_coords from ..) Applying this rule to query plan 1

results in the query plan summarized in the below given

expressions Notice that relation U and L are projected at the

same time that the selection operation x db and x db are

performed on U and L, respectively.

X_ db51,p(<U ,s >) I
, Ss• > -- > <Ts,

x_ dbst,p(<L ,s >) -- >
I

<Ts~ ,Sn >

I I I
x _ dbw 1 (<T51 , s£,>, <TSl I SJi> I 10) -- > <Ts~ 'Ss3 >

I
<Tss ,; X-spWl (<TS.J, ~>) == > >

In addition, several optimization steps can be

performed within each operation sequence (application plan). As

an example, we can avoid the creation, writing, an subsequent

41

reading of several temporary relations and spatial data

structures (e.g. ~s built and stored but was deleted after the

projection step).

As another example, if we cascade two spatial

operations, we can defer the db_extract operator until both

spatial operators are performed. This means that we can build

the relational part at the end using one db_ extract operator.

This will save one execution of the db_extract operator as

illustrated by the following example. Suppose we wish to perform

the operation x_opsl(x_op51 (<R,S>)) where x_op51 and x_op5~are

extended spatial operators. One way to perform this operation is

as follows. Let s 1 be op5, (S) and Rl be db_extract (R s) Then,

x_op (x_op (<R ,s >)) ==<db extract (R1 ,op_s~(S,)},opst(S 1)>.

The above formula uses the standard definition of

extended operators. However, a better way to perform . the same

operation is to use R instead Rl, in the above formula. The

formula then is:

x_opsl.(x_op
51

(<R ,s >)) == <db_extract (R ,ops~ (S 1)) ,opSl. (S1) >.

The new formula is functionally equivalent to the

former one but is more efficient. It uses just one execution of

the db-extract operator. This optimization saves execution time

since it avoids creating, writing, and then reading an

intermediate temporary relation. Other possible optimization

42

strategies (e.g. instersecting spatial or tuple pointers, and

simplified versions of spatial operations) are also present and

we expect more domain specific rules to emerge if we begin the

implementation phase of hybrid system.

43

CHAPTER6

CONCLUSION

An optimization model for augmented SQL has been

proposed in this dissertation. Many of the techniques employed

'by the proposed extended optimizer are based on existing methods

used in current optimizer.
I

Although, the strategy is proposed

for a particular extension of SQL, we believe the same method can

be used for other languages that are based on SQL.

The major contribution of the dissertation is a global

optimization strategy for extension of SQL, which requires

additional indexing structures to materialize the additional

relationships. The proposed strategy does not require extensive

modifications of existing DBMSs. The optimization strategy

consists of the following modules: extended logical

transformation, decomposition, the generation of subquery

sequences, and the selection of the best subquery sequence.

Queries are transformed into logically equivalent queries that

are more efficient to evaluate. As the SQL backend is not capable

of evaluating the spatial components of the extended languages,

the decomposition breaks a query into several subqueries so that

the SQL backend can be used for SQL (UA) subqueries, and a

spatial processor for evaluating spatial selection criteria,

processes, spatial subqueries. With an unordered set of

subqueries, all plausible different arrangements of subqueries

44

are considered. This involves the generation of plans and the

heuristic pruning of the search space so that only plausible

plans are examined.

While such optimizer may not produce the .best strategy,

it can however produce a reasonable strategy. The approach is

simple. It will not involve a substantial increase in the costs.

The extension to the DBMS is minor: the SQL parser is modified to

parse a larger set of predicates and the extended optimizer is

built on top of the existing optimizer.

The implemention confirmed that the rewriting rules are

correct and that for each hybrid query, all sequences produced by

the decomposition algorithm and SQP formulation algorithm gave

the same answer. Simple queries that involve three result

rewriting rules were used for the test . The results obtained by

different SQPs were exactly the same.

The major limitation with the extended optimization

model is that we must be able to access tpe existing DBMS at more

than the user's level. The unnested aspatial subqueries formed

by the decomposition strategy are syntatically and semantically

correct. It would ba very inefficient to submit each query

indiviadually and then make use of the temporary results as part

of the execution strategy. We need to control the buffer

management and to access temporary storage without having to

45

submit the decomposed unnested aspatial queries at the user' l:

level. Using SQL queries with INTO clauses introduces more

problems than just creating temporary tables, expensive rereadins

operations are also required.

46

REFERENCES

1. Aho, A. V. and Ullman, J. D. 1979. "Universality of data

retrieval languages". In proceedings of the 6th ACM

Symposium ·on Principles of Programming Languages (San

Antonio, Tex., Jan. 29-31). ACM, New York, pp. 110-120.

2. ANSI/X3/SPARC 1975. Study Group on DBMS Interim Report.

SIGMOD FDT Bull. 7,2,1975.

3. Bancilhon, F. 1978. "On the completeness of query

language for relational database". In proceedings of the

7th Symposium on Mathematical Foundations of Computer

Science. Springer-Verlag, Berlin and New York, pp. 112-

123.

4. Chandra, A. K. and Hare!, D. 1980. "Computable queries

for relational databases". In proceedings of the 11th ACM

Symposium on Theory of Computing (Atlanta, Ga., Apr. 30-

May 2) . ACM, New York, pp. 303-318.

5. Chandra, A. K. and Hare!, D. 1980. "Structure and

Complexity of relational queries". In Proceedings of 21st

IEEE Symposium on Theory of Computing (Syracuse, N. Y.,

Oct.). IEEE, New York, pp. 333-347.

6. Chang, C. L. and Lee, R. c. T. 1973. Symbolic Logic and

Mechanical Theorem Proving. Academic Press, New York.

47

7. Codd, E. F. 1970. " A relational model of data for large

shared data banks". In Communication of the ACM, Vol. 13,

No. 6, pp. 377-387.

8. Codd, E. F. 1979. "Extending the relational database

model to capture more meaning". In ACM Transaction on
I

Databases system, Vol. 4, No. 4, pp. 397-434.

9. Cooper, E. c. 1980. "On the expressive power of query

languages for relational databases". In Technical Reports

14-80, Computer Science Deptt., Harvard Univ., Cambridge,

Mass.

10. Dahl, V. 1982. "On databases systems development through

logic". In ACM Transaction on Database systems, Vol. 7,

No. 1, pp. 102-123.

11. Date, C. J. 1977. "An Introduction to Database Systems".

Addison-Wesley, Reading, Mass.

12. Enderton, H. B. 1972. "A Mathematical Introduction to

Logic". Academic Press, New York.

13. Hammer, M. T. and Zdonik 1 s. P. 1 Jr. 1980. "Knowledge

based query processing". In Proceedings of the 6th

International Conference on Very Large Databases.

48

14. King, J. J. , 1981, "QUIST : A system for semantic query

optimization in relation. databases". In Proceedings of

the 7th International Conference on Very Large Databases

(Cannes, France, Sept. 9-11). IEEE, New York, pp. 510-

517.

15. Kowalski, R. 1974. "Predicate logic as a programming

language". In DCL memo #7 5, Deptt. of Computational

Logic, Edinburgh University, Edinburgh.

16. Kowalski, R. 1981. "Logic as a database language". In

Proceedings of the Advanced Seminar on Theoretical Issues

in Databases (Centraro, Italy, Sept.) .

. 17. Kuhns, J. L. 1967. "Answering questions by computers --A

logical study". In Rand Memo RM 5428 PR, Rand Corp. Santa

Monica, California.

18. McSkimin, J. and Minker, J. 1977. "The use of a semantic

network in a deductive question answering system". In

Proceedings of the 5th Inter~ational Joint Conference on

Artificial Intelligence (Cambridge, Mass., Aug.), pp. 50-

58.

19. Ooi, B. C. 1988. "Efficient

Geographic Information System".

11th IEEE.

49

Query processing for

In Proceedings of the

20. Ooi, B. C. and McDonell, K. J. 1987. "Spatial kd tree and

indexing mechanism for Spatial Databases". In

Proceedings of 11th IEEE.

21. Pirotte, A. 1978. "High level database query languages".

2 2.

In Logic and Databases . Plenum, N.Y., pp. 409-436.

Prade, H.

database

and Testema le, c.

relational algebra

(1984).

for the

"Generalizing

treatment of

incomplete or uncertain information and vague queries".

Inform. Sci. 34, 1984, pp. 115-143.

23. Raju, K.V.S.V.N. and Majumdar, A.K. (1988). "Fuzzy

functional dependencies and Lossless Join decomposition".

ACM Trans. Database Syst. 13, 2, (June, 1988), pp. 129-

166.

24. Saxena, P.C. and Tripathy, R.C. "Cancellation law and a

complete axiomatization of functional dependencies in

database relations". Computer and Artificial

Intelligence, 8(4), (1989), pp. 347-356.

25. Vassiliou, Y. (1980). "Functional dependencies and

incomplete information". In Proceedings of 6th

International Conf. on Very Large Databases, IEEE Comput.

Soc., Los Angeles, 1986, pp. 260-269.

50

26. Wong, E. and Youssfi, K. ,1976. "Decomposition of a

strategy for query processing", ACM Transactions on

Database System. 31 YAO. s. B. 1979, "Optimization of

query evaluation algorithms",ACM Transactions on Database

Systems 4,2 pp. 133-155.

27. Zadeh, L.A. "Fuzzy sets", Inform. and Control, 8, 1965,

pp. 338-353.

28. Zadeh, L.A. "Fuzzy sets as a basis

possibility". Fuzzy sets and Systems 1,

28.

of theory

1, 1978, pp.

of

3-

29. Zadeh, L.A. "PRUF : A meaning representation language for

natural languages". Internat. J. Man-Machine Studies 10,

1978, pp. 395-460.

30. Zaniolo, C. (1984). "Database relations with null

values". J. Comput. System Sc. 28, pp. 142-160.

51

	TH45280001
	TH45280002
	TH45280003
	TH45280004
	TH45280005
	TH45280006
	TH45280007
	TH45280008
	TH45280009
	TH45280010
	TH45280011
	TH45280012
	TH45280013
	TH45280014
	TH45280015
	TH45280016
	TH45280017
	TH45280018
	TH45280019
	TH45280020
	TH45280021
	TH45280022
	TH45280023
	TH45280024
	TH45280025
	TH45280026
	TH45280027
	TH45280028
	TH45280029
	TH45280030
	TH45280031
	TH45280032
	TH45280033
	TH45280034
	TH45280035
	TH45280036
	TH45280037
	TH45280038
	TH45280039
	TH45280040
	TH45280041
	TH45280042
	TH45280043
	TH45280044
	TH45280045
	TH45280046
	TH45280047
	TH45280048
	TH45280049
	TH45280050
	TH45280051
	TH45280052
	TH45280053
	TH45280054
	TH45280055
	TH45280056
	TH45280057
	TH45280058
	TH45280059
	TH45280060
	TH45280061
	TH45280062
	TH45280063
	TH45280064

