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PREFACE 

The purpose of this dissertation is to introduce the 

techniques for extending the existing DBMS for the applications 

involving hybrid (spatial and aspatial) queries.Special systems 

which are application specific have been developed for 

Gis,CAD/CAM and IMAGE PROCESSING. Here a scheme has been proposed 

which, in general, is applicable to any DBMS with little 

variation in different systems. 

CHAPTER 1 is the introductory chapter and introduces ·in 

short, the overall strategy and approach for extending a system. 

CHAPTER 2 discusses the first two stages involved in 

the extending technique namely Logical Transformation and 

Decomposition, ·examples of which have been shown to give more 

insight of the system. 

CHAPTER 3 deals with the process of plan formulation 

for query processing and their execution. Special treatment has 

been given to spatial and aspatial parts of the query.Different 

algorithms for query processing have been dealt with. 

CHAPTER 4 discusses tpe data architecture of a hybrid 

system, different arrangements for storing spatial and aspatial 

attributes of an object and how the link between the two 

attributes is established for the quick q.uery processing 0 

Operations such as the sp_extract and db~extract have been 

discussed. 



CHAPTER 5 discusses an example and the application of 

different techniques at different stages, in particular at the 

plan formulation stage. 

The concluding chapter discusses the limitations and 

performance of such systems. 

Some of the systems with the similar techniques 

have been found to be functioning successfully. 



CHAPTER 1 

INTRODUCTION 

The query optimizer serves as the integral part of any 

RDBMS(Relational Data Base Management system),its main task is to 

select an efficient query evaluation plan for a given query.The 

conventional optimizers in existing system are not suitable for 

supporting CAD/CAM ,GIS, and IMAGE DATABASE. The current focus is 

on design of extensible DBMS so that newly constructed 

generalised DBMS can support unconventional applications 

easily.Another approach which is widely advocated is to extend an 

existing DBMS for new applications. In the latter case the 

existing DBMS is supplemented by new indexing structure and 

evaluation subsystem in order to process spatial queries. The 

approach takes the adv~ntage of existing mature techniques for 

aspatial query evaluation while providing·, at low cost, efficient 

implementation of spatial indexing techniques for general 

queries. The purpose of the dissertation is to describe an 

optimization strategy based on this approach. 

To extend a DBMS for hybrid applications involving 

spatial queries it is necessary to augment the external language 

and to provide a special processing subsystem to evaluate 

predicates that cannot be efficiently processed by conventional 

DBMS.For executing the hybrid queries efficiently it is necessary 

to construct an extended optimizer which also supports new 

indexing/file structures.Thus a hybrid system must provide a 
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storage and information processing architechture that integrates 

both spatial and aspatial components of database.In such an 

integrated system user is provided with a single query language 

capable of expressing selection criteria including both aspatial 

and spatial qualifications. 

Let us take the example of finding all parks within ten 

kilometers of the university named "JNU" in Delhi. 

SELECT L.name L.usage 

FROM Land-use L,Land-use U 

WHERE U.usage = "university" AND 

L.usage = "park" 

AND Within(U.location,L.location,lO) 

AND In_window(L.location,W) 

The response to such queries depends on the ability of the 

optimizer to find an efficient query evaluation plan. Without 

considering how selection and projection may be performed there 

are several global strategies to execute the above query(shown ln 

implementation verification).A spatial index can be used to 

reduce the number of parks entities that must be processed or 

else each park must be examined in turn. If the university 

relation is very large and no index exists then a different 

method must be used .The aim is that an optimizer must be able to 

make a choice among these schemes and select an efficient low 

level operation. 
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The aim of this dissertation is to extend an existing DBMS 

such that the spatial queries can be optimized as a whol~.But the 

three issues must be investigated before extending a system. 

First requirement is that of application domain, second is data 

architecture needed to fulfil these requirements, third the 

design should be prototype and should be capable of being built 

on top of an existing extensible system. Extended operations have 

been introduced to integrate homogenously both spatial and non

spatial operations. 

1.1 EXTENDING TECHNIQUES :

Overview of extended system :-

New applications involving hybrid queries require extra 

auxiliary indexing structure to facilitate the query retrieval 

based on the new relationships.These new indexing structures 

cannot be supported in a conventional DBMS as they require 

special subsystems which interfaces with the SQL backend through 

which it accesses the database, and performs necessary spatial 

oprations.On the top of these two processors, the SQL backend and 

special processor ,is an extended optimizer responsible for 

determining an efficient query evaluation plan. The architecture 

is shown in figure 

1.2 Extended optimization :-

Our main aim is to make use of existing SQL backend. To 

this end a query is broken into subqueries that are either 

totally spatial or aspatial so that totally aspatial subqueries 

3 
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can be executed by an existing SQL backend,and the spatial 

queries can be executed by the newly installed spatial processors 

that minimizes the overall query cost. The strategy consists of 

following four major steps. 

(l)LOGICAL TRANSFORMATION :-

As. part of the optimization, the query tree produced by 

parsing the initial query is rearranged such that the new 

representation is more amenable to efficient evaluation.Also to 

include conventional logical transformation a hybrid query tree 

must be restructured so that the spatial indexing can be used 

whenever possible. 

(2)DECOMPOSITION :-

The parsed tree produced by the stage one is partitioned 

into subtrees which are either totally spatial or aspatial.Each 

subtree represents a subquery which must be executed by the query 

processor.The aspatial subquery will be executed by the existing 

SQL backend and spatial subquery which cannot be processed by the 

SQL backend will be executed by the spatial processor. 

(3)PLAN FORMULATION AND SELECTION :-, 

From the set of subqueries obtained in the previous 

step,different orders(subquery plans or SQP) are formed.The best 

or the cheapest is selected among all subquery sequences. 
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(4)PLAN EXECUTION :-

From the chosen subquery sequences, SQL subqueries are 

passed to SQL backend and spatial subqueries are passed to 

spatial processor. 

The extended SQL includes predicates of the form 

geo_term,geo_op,geo_term, where geo_op is one of the spatial 

operators, example Intersect,Adjacent,Join,End at,Contains, 

Situated at,Within,Closest,and Farthest,the geo_op "Within"has 

been used later. 
Geo term is one of the following : 

(l)A geographic entity class (i.e a geo_obj as defined by table 

of variables name). 

(2)A virtual geographic entity of the form 

(a) Line joining geo_obj or 

(b) geo_obj bounded by geo_obj and geo_obj 

( 3) A window definition (xl,, x2, Yl, Y2) where (xl, Yl) and (x2, Y2) 

are top right and bottom left corner of the window, or a WINDOW 

keyword that assumes the current window in which a skeleton map 

is displayed as the co-ordinates. 

Since SQL supports nested formulation of queries, 

algorithms which transform a nested query to an equivalent 

unnested query are an important component of SQL query 

processor,as hybrid spatial predicates do not allow subqueries as 

operands,the hybrid language introduces no new nesting complexity 

as compared to SQL ,and so the existing SQL unnesting.algorithm 

can be applied with only minor modifications to transform the 
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hybrid nested query into a set of partially ordered unnested 

queries.The result of this unnesting is sequence of unnested 

hybrid queries.Unnesting is considered as a preprocessing stage, 

and the. optimization strategies that follow consider each 

unnested query in isolation.Consequently the only scope for 

optimization between the nested and unnested component occurs in 

the unnesting phase. An existing SQL parser can be extended for 

hybrid queries.For subsequent query transformation,it is highly 

desirable that the structure used to represent a parsed hybrid 

query allows a great degree of freedom for restructuring. The 

internal nodes may have more than two children. 

1.3 DATA ARCHITECTURE 

Data architecture of a hybrid system is its very 

important. part .In such architectures special provision for 

storing spatial and aspatial data are needed.Their both spatial 

and aspatial attributes are stored in different regions and a 

proper link between the two is maintained for faster search.The 

concept of forward and backward links which help in locating the 

objects is also given,the two extract operators sp_extract and 

db extract make possible the two links.The sp_extract finds the 

spatial part from the given database tuples,and db extract does 

the reverse. 
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CHAPTER 2 

LOGICAL TRANSFORMATION AND DECOMPOSITION 

2.1 Loqical Transformation 

As in SQL, several hybrid queries with different 

syntactic forms but with the same semantics may be formed. These 

alternative syntactic forms may exhibit different potential for 

execution optimization, and greatly increase the complexity of 

the optimization procedures. One of the preprocesses involved in 

query analysis is to convert all queries into some canonical 

form, with the objective of reducing the syntactic variants 

amongst semantically equivalent queries and yielding syntactic 

forms that are most amenable to the optimization heuristics. 

Assuming that a syntactically correct query is translated into a 

parse tree, the predicate subtrees corresponding to the WHERE 

clause are initially simplified. 

It is important to make use of spatial indexes 

whenever possible. Therefore, the representation of predicates in 

the predicate tree must not cause an early cartesian product to 

be formed when this product may inhibit the use of spatial 

indexes. 
Consider the following predicate 

road is adjacent to park AND 

(park.usage = "recreational" OR 

road.name = "Africa Avenue") 
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If the OR predicate is executed first, the cross 

product formed precludes the use of spatial indexes from the 

spatial predicate. However the expression in the follow ins 

equivalent form would not inhibit the use of spatial indexes on 

both spatial predicates. 

(road is adjacent to park AND 

road.name = "Africa Avenue") OR 

(road is adjacent to park AND 

park.usage = "recreational"). 

In this example the restrictions may be used to 

reduce the cost of evaluating the spatial expressions and no 

cross product is involved. 

Another objective of logical transformation is to 

reduce the number of terms in an expression by identifying 

identical terms. This objective can conflict with the logical 

transformation. Allowing the use of spatial indexes is given 

higher p~iority than reducing the number of terms. Thus the 

transformation required on top of the existing conventional 

logical transformations can be stated as follows: 

AND(Pf (S1 ) , OR(P~ (S~), P3 (~))) ===> 

OR (AND ( P1s ( S1 ) , Pl ( ~ } ) , AND ( P~ ( S1 ) , P l ( ~ ) ) ) 

if [ ( s.n ~ ) OR ( S.f\ s., ) ] = true 

8 



1 

0 

0 
Grouring or PredicJt~s. 

Fig. 3 



The above transformation is necessary, 

irrespective of the predicate types of P2 and P3. The above 

transformation has no effect on the following expression 

park..usage = "recreational" AND 

road.name = "Africa Avenue" AND 

(park is adjacent to road OR 

park is adjacent to railway) 

For this expression, the spatial predicates are 

not impeded from using spatial indexes and can be more 

efficiently evaluated by using the partial results of the 

restrictions. No transformation is necessary. 

All aspatial predicates are grouped according to 

the relations they reference. 

2.2 Decompositi~n 

The technique is used in query optimization to 

decompose a query into simpler components to reduce the 

complexity of optimization. In general, the simpler subqueries 

are designed to reference fewer relations than the original 

query. In our context, an unnested hybrid query is deco!llposed 

into simpler subqueries that are either purely spatial or purely 

aspatial to enable global ordering of subqueries such that the 

overall evaluation cost is minimum. 

The temporary relation created by P: (Sa ) may 

affect the strategy employed in evaluating Pi ( s1 ) if ·both 

predicates reference some common relations. On the other hand, 

9 
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the partial result of an earlier execution of ~or ~will not 

affect the execution of P; irrespective of the relations in s3 and 

St. Hence P;, ~and OR(P3 , P4 ) should be detached as subqueries. 

P~ and P:- should form another two subqueries if s, or s~ 

intersected s 5 ; otherwise the conjunction of the two predicates 

would form the subquery. A more complicated decomposition polic~ 

would form P~ and ~ as two subqueries if S 1 or s~ intersected 

S1- , Ss and s, . However, this more complicated 

strategy would lead to severe increase in the cost of determining 

the optimal subquery sequence. Our strategy is to form subqueries 

1. for each spatial predicate. 

2. for each SQL predicate (which may be compound) that 

is related to a spatial predicate by a conjunction and references 

the relation (or relations) involved in spatial predicate. 

3. for the remaining SQL predicates in a logical 

expression, which do not satisfy condition 2. 

The decomposition scheme maps a hybrid expression 

log_ op (P1.---, P~ , ••• , Pee ) into a query expression log_ op ( E1 , E 

, ••• , E.,) where E; is either a query express ion or a query Q It: ( SJ . 

More precisely, it is a mapping of a predicate tree into a tree 

whose internal nodes are logical operators, and external nodes 

are queries (pointers to a corresponding query trees). We call 

the data structure formed by the decomposition algorithms the 

11 Strategy tree 11
• Fig. i•5 illustrates such a mapping. With such 
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representation, the dependency of the subqueries is captured 

without any ordering. 

A join R
1

.A = R~.A where one of the relations does 

not participate in any other predica.te and the target 1 ist 

(answer) is implicitly a restriction. Hence we regard such joins 

as a restriction in our decomposition algorithm. 

As an example of the decomposition strategy, the 

following contrived query (disregard its semantics) is provided 

to illustrate the power of the decomposition strategy. 

Q1 

Q2 

SELECT roa~.name,park.name 

·FROM road,region,park 

WHERE road.name I region.name AND 

road is adjacent to region AND 

park.name ':I "APPU PARK" AND 

( region.name = " JNU " OR 

region.name = "SOUTH DELHI") 

The subqueries formed are as below 

SELECT * 
FROM region, road 

WHERE road is adjacent to region 

SELECT * 
FROM region 

WHERE region.name = "JNU" OR 

region.name = "South Delhi" 
------------------------------------------------

11 



--------------------------------------------------
Q3 SELECT * 

FROM road, region 

WHERE road.name # region.name 

Q4 SELECT * 
FROM park 

WHERE park.name :/= "APPU PARK" 

The strategy tree for the above query is an 

internal node with an AND logical operator pointing to four 

offspring subqueries. Note· that Q1, Q2 and Q3, and Q4 are formed 

under conditions 1, 2 and 3 respectively. 

It should be noted that the decomposition 

algorithm only decomposes a query into multiple subqueries, it 

does not specify any order for the subqueries, and the strategy 

tree allows us to arrange the subqueries in any order we prefer 

so long as the final answer is correct. Hence the SELECT clause 

of subqueries cannot be defined until the full ordering is known. 

12 



CHAPTER 3 

SUBQUERY SEQUENCES AND PLAN FORMULATION 

3.1 Result Formulation 

Since a strategy tree is semantically equivalent 

to the predicate tree from which it originates, the subqueries in 

the strategy tree and their corresponding predicates in the 

original query tree exhi~it the same dependencies. While ordering 

the subqueries, the dependencies captured . by the strategy tree 

structure can be expressed by introduction of extra SQL queries 

AND/OR terms rewriting. The extra queries are used to merge 

multiple partial results (Temporary relations), while the 

technique of terms rewriting propagates the partial results of a 

query to another query. Three result rewri t·ing rules are 

introduced in the chapter to ensure the correctness of the final 

result. These conditions for which three rules are applied are 

mutually exclusive. 

If the subqueries that are connected by a 

conjunction, reference some common relations and executed 

independently, then the partial results must be merged by a 

natural join. However if a subquery( subquery Q) uses the partial 

result of other subquery (subquery Q ) then no natural join is 

required sine~ the result that is produced by Q also satisfies 

the selection in Q . 
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Result Rewriting rule 1 

Given an· expression and (Q 1 (S 1 )), Q<(S~) and the 

precondition s,n s:l =# cp. Let I = s,n ~and let c<;;: I. suppose Q 1 is 

evaluated before Q~, resulting in the partial result T1 , then for 

each R E C if c =I= 4> replace R by T1 in Qt and 

1. if C = 1, no further rewriting is necessary. 

2. if CCI, (C may be¢>) and supose T~is the temporary 

relation produced by Q~ and A,, ... , A~ are the common unqualified 

attributes in I, then the following SQL query (an equijoin) is 

introduced to merge the partial results : 

SELECT * 
FROM Ta ,T~ 

WHERE ~.A, = T~.A~AND 

~ .A~ = T~.AtAND 

T1 .An = T~ .An. 

Using a restricted instance of a base relation or a 

base relation with indexes is determined by the optimizer to 

minimize the processing cost. 

Q1 

Q2 

SELECT * 

FROM 

WHERE 

SELECT 

FROM 

WHERE 

* 
P(T~,Rj) 

P (T"t, Rj ) 

14 



T= 
~ 

SELECT 

FROM 

WHERE 

* 
R~ 

p (R£) 

-------------------------------------------------------------
Q3 SELECT * 

FROM ~~~b 

WHERE T.sc..·A, = ~\.A, AND T3"".A~= 'raa:.·A~ 

SELECT * 
FROM R· I 

WHERE p:t (Rj ) 

SELECT * 
FROM Ri ,Rj 

WHERE P1 (Ri,R;) 

Q1 can be thought of as first fetching a tuple of Rj if P~ 

is true, fetch all the tuples of Rasuch that F. is true. There the 

result projected is the final answer.This is operationally the 

same as q., except that Qa_ will have the partial result of Ri for 

which ~ is true and stored as the temporary relation 

T~Therefore,each tuple of T~and for all tuples of Rj ,the result 

is formed if P1 is true .Another way which is -similar to ~is 

firstly evaluating ~ and then ,based on the partial result ,& is 

evaluated. Alternatively P1 and P~ are evaluated independently, 

and a join of two temporary results on the common attributes is 

performed. This is expressed as ~Hence the three queries produce 

the same result. The evaluation of query can be visualized as 

15 



firstly forming the cartesian product of all the relations that 

are reflected, and evaluating the predicates. 

When two. conjuncted subqueries reference different 

relations ,the order of their evaluation is not important to cost 

saving.However ,the partial results must be propagated to become 

part of the final answer. Subquery Q-1- in fig.- is a case in 

point. The partial result of '4 must participate· in the final 

result. 

Result Rewriting Rule 2 

Suppose we are given an expression and (Q 1 (S1 ) ,Q~(S~)), 

a condition S1() ~ Suppose that Q1 is evaluated before ~ then put 

the temporary relation T1 produced by Q1 in the FROM clause of Q~. 

Consider the following examples. 

Q 4 : SELECT * 
FROM 

WHERE 

Q 5 : SELECT * 
FROM Rj ,R; ,T5 

WHERE P, (Ri I Rl) 

T 5 = SELECT * 
FROM Rt< 

WHERE p1. (Rt<) 

16 



Both pred,icates P~ can be evaluated 

independentely, and the answer is the cross product of P, and 

P~This is the same as forming the cross product of Rj ,~and R~and 

then retaining the tuples for which the ~ and ~ evaluate to true 

at the ,same time . For Q5 , P~ is evaluated first and the result is 

stored in ~Then for each tuple of ~and for each tuple of Rj ,the 

two tuples are merged if P1 is satisfied and the resultant 

relation is then crossed with T5 • As P1 and P~ can be evaluated 

independently,the sequence of evaluation is immaterial. 

Two disjuncted subqueries that reference different set 

of relations must be made union capable and hence~ each partial 

result must be "crossed " with the relations that are not 

referenced by the subquery. 

Result Rewriting Rule 3 

, Given an expression OR (Q, (S1 )), ••••••• ,Qj( (SIC)) ,we let 

S= S1 U S~ U s3 l) s4 •• US., The FROM clause of Q i ( i=l. ..... k) is 

rewritten with the set S as the referenced relations.Suppose T is 

the temporary relation produced by Q ,then the result is formed 

by: 
Consider the following example 

Q7: SELECT * 
FROM 

WHERE P1(R(, R;) OR 

17 



-------------------------------------------------------
Q8: 

T8= . b 

Tea U Teb 

SELECT * 
FROM Ri,Ri,Rk. 

WHERE P, (Rj ,Ri) 

SELECT * 
FROM Rj , Ri, R". 

WHERE P~ ( R1 ,RI(). 

Q7 can be thought of as firstly forming the cartesian 

product of the relations and duplicating them as two temporary 

relations.Then evaluate ~ on one of the temporary relations and P~ 

on the other .The results obtained by both evaluations are then 

unioned to form the final answer. This is equivalent to Q8 . 

Notice that the first rewriting rule does not handle a 

general case like log_op(E, ............ ~,where Ei may be a 

subquery or an expression. Consider the example AND (Q 1 (R1 )), 

OR (Q~(R 1 ,Rt) ,Q3 ( R1 ))and suppose Q1 is the first to be evaluated. 

Suppose we chose to use the partial result of Q1 in evaluating Q~ 

but not Q"3 for some reason (like using indexes) . Then 3 natural. 

join between the results of the OR expression and the result of Q1 

is required . However, if both Q2 and Q3 use the partial result of 

Q1 then the partial result can be considered as being propagated 

to the OR expression and hence, no extra natural join is 

required. 
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The partial result relation of one subquery may be used 

as the substitute for a base relation of other subquery if the 

first common ancestor of both subquery i-s on the same node . In 

figure ,any of the partial result of <f. ,Q~,Qiand Q~may be used 

by ~ and Q: .A child of an AND node may use its brother's 

results.Suppose instead of Q' ,we have an AND node with two 

children subqueries. These two subqueries may then use partial 

results of each other and the partial result of Qj ( 1 'i '4) but not 

of Q}. 

3.2 Sequential Query Plan ( SQP ) Formulation 

For n subqueries n! distinct sequences of subquery 

plans can be formulated by the brute force method .Without 

pruning techniques, the optimizer would be unacceptably 

slow.Therefore,a rule based on heuristic strategy is required to 

reduce the number of SQP considered .Following the conventional 

DBMS , a rule based optimizer should employ certain "rules" or 
I 

"musts", to avoide the generation of sequences that are obviously 

ineffective,and heuristics to further prune the search space. 

The set of subqueries formed by the decomposition 

strategy is small. However, it is important not to consider any 

alternatives that are obviously ineffective.Heuristic techniques 

are used to generate SQP that are efficient.A relaxed heuristic 

uses less rules, hence produces more alternatives than those 

produced by the stricter heuristic which has more rules. A 

disadvantage of a stricter heuristics is that the likelihood of a 
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good alternative being rejected is higher. 

The following rules are proposed to reduce the subquery 

sequences being generated and thereby r~ducing the search space 

for finding the best sequence. 

Heuristic rule 1 : 

For an expression AND (Q,(S1 ), ••••• Qn(S11 }},if Sif~(S1 U~ 

Sc~1 USiw ••• SW then Q 1• (S; ) is executed just before the result is 

required. 

The execution of Q; does not offset any intermediate 

results of Qj for 1 ~ j '= n ( i=#:j) , therefore, the sequence of its 

execution is not important.To avoid rerecording of the partial 

result of Q{ which is not required till the formation of the 

final answer, the merging of the partial result can be postponed 

until n-2 siblings subqueries have been evaluated. One of the n-1 

queries, Qa (j~i),is not executed before the final answer through 

that query (as in result rewriting rule2~. 

The above rule is applicable for a general case in 

which there is more than one independent subquery. However, for 

each end node of the query tree,the decomposition strategy will 

produce at most one query for which the reference relations do 

not exist in the other conjected queries. 
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Heuristic Rule 2 : 

For the expression OR (Q 1 (S1 ), •••••• ,Q-n(S.,)) ,the order 

of execution of subqueries is immaterial to cost saving, 

hence,the queries may be executed in any specific order. 

Since the subqueries are independent ,that is, one does 

not depend upon the evaluation of the other, it is immaterial 

which query is executed first.The above rule states that sum of 

the cost in executing subqueries is invariant to the subqueries. 

However , if the OR expression is the part of the conjuncted 

expression,say AND (Q,1,QPII'f .... OR(Q 1 ,Q~ ..... )),then the queries in 

the disjunction may use the partial result of the conjuncted 

ancestor queries (Qpt ... Q~. The order of the execution of the 

OR query expression is important with respect to queries Q~ 

, ..... , and Qp,., so the whole disjunction is treated as a single 

entity. The following illustrate some of the subquery sequences 

of the example shown in fig. 

[ Q~ ,Q~,Q~,Q~(Q;, Q~)) 

[ Q~ ' ~ ' Q3 ' ( Ol ' Q& ) ' Q~ ) 

~ ,Q~, (~ ,~) ,Q~,Q~] 
01 s ClJ Q. 0.~ 

Q, ' ( Q 5' Qjj ) 'Q~' Q3 '\.!4] 

s C1. Q. a. .5 a, 
[ (Q5,Q,),Qa,Q3,Q-t,Q'J. 

While subqueries in [ ... )are conjuncted,' subqueries in 

( .. ) are disjuncted .For each OR node of the strategy tree, the 

decomposition strategy produces atleast one child node which 
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is an aspatial query although there may be a number of child 

nodes representing spatial queries. 

Heuristic Rule 3 : 

For an expression , AND (Q1, (S 1 ) , •••• Cdt (Sj) ,~Si) 

~SIC), .. QJS,)), suppose IS;t,andiSJI=l·, and S;,S~, S.c,then atleast 

one of the Qi or dj must be executed before Q5
K. 

The argument follows from the fact that the outer 

relation should be as small as possible to reduce the search. 

Generating SQP : 

During the generation of, different SQPs,it is necessary 

to minimize the number of SQPs, for which cost estimation is 

performed. A method for generating SQPs is proposed here. Thi 

method generates different plans lexicographically in such a way 

that all arrangements with common initial subsequences are 

generated consecutively. In this way ,the rejection of next few 

sequences with the same initial subsequence can be made without 

having to examine them. 

Following the heuristic rule 2 ,the maximum number of 

sequences that may be generated is{ } . . 
To specify tl'?-e order of execution , the strategy tree 

may be rearranged such that the depth first left to right 

traversal produces the desired order.Alternatively, an array that 

describes the ordering can be used. For example one of the 

sequences can be represented as follows: 
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[ ~~J otj o2J OJ'J ~~j 04'J os•J 06' J 
SQP<01A,Q2A,Q3A,<Q5 5,Q6A,), Q45> 



An entry consisting of a query is a logical operator 

and the parent index: (inner box:) . The first entry is always a 

logical operator and is followed by the children. The SQP can be 

obtained by recursively scanning the ~rr~y from left to right. 

Start from the first entry 1 its child entries are searched from 

left to right. When a child entry is a logical operator 1 the 

process is repeated from that point. For array in the fig. on 

reaching entry 4 the search for entries 6 and 7 starts.Searching 

for the remaining children of the first entry resumes when the 

searching of the children of the fourth entry is completed. 

While constructing an SQP 1 the attributes in the SELECT 

clause of the subqueries are required for further evaluation of 

the answer. 
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CHAPTER 4 

THE HYBRID DATABASE ARCHITECTURE 

FOR OPTIMIZATION 

4.1 HYBRID ARCHITECTURE 

For efficient working of a hybrid system which has been 

extended, the data structure architecture is important. In such 

systems proper link between the spatial and aspatial attributes 

of any object must be done for the fast operation and access of 

the query. Therefore, a discussion of database architecture for 

such hybrid system is done.Also,different operations which link 

aspatial and spatial attributes are given. 

Main Features Of Hybrid architecture 

In the typical spatial database environment,spatial 

objects are described by spatial as well as aspatial attributes. 

As an example, a road is described in a database by the 

coordinates of their end points(i.e spatial attributes). We make 

the following assumption about the way in which aspatial and 

spatial attributes describing an entity are linked. 

(1) Each data entry is represented by the most efficient form 

that suits the operational purpose,that is why spatial attributes 

are stored in the spatial data structures and not flattened in 

database record. 
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(2} Each set 1 say 0 1 0f homogeneous objects that are spatially 

related to each other is logically clustered in the database.O is 

also described by the schema that has two sets of attributes: R 

and s. R is· the set of aspatial attributes and s is the set of 

spatial attributes. 

All data instances of a spatial attribute over the set 

of homogeneous objects are stored in one spatial data structure 

sutaible for handling attribute's spatial type(e.g region 1 line 1 

or point ) . We refer to this as a map. A map is associated with 

each spatial attribute in the schema.A map is used as an index 

for spatial objects as well as a medium for performing aspatial 

operations(e.g. rotation and scaling for images 1 window 1 polygon 

intersection 1 area of a region 1 connected component 

retrieval 1 proximity query etc.). 

The instances of a spatial attribute are merely some 

spatial indexs that point to the spatial description of the 

objects stored inside the spatial data structures. On the other 

hand aspatial are stored in database relations.It is important to 

mention that the database relation is used in hybrid system only 

as a repository for clustering data instances of a spatial 

attributes.In other words the hybrid spatial database 

architecture does not depend heavily on the fact that relational 

or arelational system is being used. It is how spatial and 

aspatial data are linked between the spatial and aspatial 

repositories that is important.In the hybrid system the spatial 
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and aspatial description of an object are linked to each other by 

what we mean "spatial relations" .A spatial relation consists of 

two main components:a spatial and an aspatial repository.The 

spatia!' repository may consist of one or more spatial data 

structure while the aspatial repository is simply a relation. 

In particular, in a spatial relation, spatial and 

aspatial attribute values of an object are linked by two types of 

links:forward and backward links.A forward link maps the aspatial 

description of an object that is stored inside a tuple into the 

object's spatial description that is stored inside a spatial data 

structure. A backward link serves as a mapping in the opposite 

direction. i.e from spatial description of an object into its 

aspatial description. ·The description of a spatial object can 

point back, via backward links ,into more than one tuple in the 

relation. 

A forward link is stored inside the tuple . as the 

instance value of the attribute of the relatio,~. I-cs purpose is to 

index and uniquely identify a spatial object from among a set of 

related spatial objects in the same spatial data 

structure.Regardless of the type of the spatial attributes being 

indexed,the forward link index value is of fixed length and does 

not depend upon the size of spatial object being 

referenced.Backward links are stored inside the spatial data 

structure along with each spatial object description, or in a 

separate look-up table that maps the spatial description of an 
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object back to its aspatial description (i.e tuple) inside a 

database relation.A backward link can be implemented by storing 

the tuple identifier of the object's corresponding tuple. 

4.2 Implications Of Hybrid Architecture:-

The hybrid architecture structurally separates the 

spatial from the aspatial data.This has several implications on 

data manipulations and query processing.Here we demonstrate the 

implications that are related to insertion and deletion of 

objects, as well 

join.Later their 

We use 

as relational and spatial based selection and 

implementation is shown. 

the following notations.A set of homogeneous. 

objects 0 is represented by a relation R and data structures. We 

assume that 0' s schema has only one spatial attribute in 

it.Extending the description to more than one spatial attribute 

is easy. 

Insertion And Deletion:-

Performing insertion and deletion in hybrid system for 

spatial objects is simple.Basically ,if any object o is inserted 

into (or deleted from) the homogeneous set of objects 0, then o 

has to be inserted(deleted) as well.Finally forward and backward 

links are established between both components of o. 

Relational Based Selection: 

If some tuples are selected from relation R via a 

relational based selection to form a new relation R',then a new 

data structure S' is also formed to store the spatial aspect of 
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the selected object in R' .This is achieved by the 18 sp extract" 

operator,as shown below.sp extract extracts the spatial data from - . 

S via the use of forward link from R to S.The extracted spatial 

data is inserted into S'.Backward link of the selected objects in 

S' have to be adjusted to point to the corresponding tuples in R' 

rather than R. 

sp_extract (Rl,S) 

I* For all the tuples in Rl, retrieve their 

description from S and stores it in a new 

spatial data structure U.* I 

begin 

initialize U; 

traverse Rl 

for each tuple t in Rl do 

begin 

sid:= get t's spatial- id; 

retrieve sid's spatial object o from S; 

insert o into U; 

end; 

return U; 

end; 
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Spatial -based selection 

If some tuples are selected from data structure S via 

spatial based selection to form a new data structureS', then a 

new relation R' is also formed to store the corresponding tuples 

(the non-spatial aspects} of the selected objects inS'. This 

is achieved by db_extract operator( db denotes database 

correlation of db extract tuples from R via the use of 

backward link from S toR and insert them into R'. Forward links 

of the selected object R' have to be adjusted to point to their 

corresponding spatial entity in S' rather than s. 

db extract (Sl ,R) 

/* For all the spatial description 

retrieve their tuples from R. 

store it in R' * I 

begin 

initialise R'; 

traverse Sl; 

for each description in Sl do 

begin 

db := get tuples; 

retrieve db relation from R: 

insert into R'; 

end; 

in Sl 

adjust R' for proper link to return; 

end . 
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Relational and Spatial Joint 

The standard relational 

slightly different when performed 

joint operation 

on top of the 

behaves 

hybrid 

data architecture. When we join the relation where one or both 

of them have spatial attributes, we have to build new spatial 

data structure to store the spatial information of the tuples 

participating in the join operations. This involves the 

execution of the operation sp_extract twice; one for each 

spatial attributes, to store the object region that participated 

in the relational join. 

On the other hand, a spatial join on two spatial 

relations, each having spatial attributes is performed as 

follows; the spatial operation corresponding to the spatial join 

is executed first. It identifies the matching pairs of spatial 

object that will participate in the resulting spatial relation. 

Two spatial data structures are created here,each of them stores 

the qualifying spatial objects that originate from one of the two 

input spatial relations. Two invocations of the operator 

db extract are needed in order to build the resulting join 

relation. We need to retrieve the tuples corresponding to the 

qualifiying application· and object and each of the two input 

spatial relations have to be retrieved. Then tuples of matching 

spatial objects are merged and stored in the join relation. All 

the operations involved in performing spatial or relational 

select and join are encompassed in what we term extended operator. 
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4.3 Extended Operators and Spatial Relations : 

We now address some implementation issues in hybrid 

system. We saw that standard database operations such as joins 

and selection as well as spatial operations need to be redefined 

when viewed in the context of the hybrid data architecture. The 

reason is that we must maintain consistency among separate but 

related structures; mainly the relation describing the nonspatial 

aspects of homogeneous objects and the spatial data structure 

describing the spatial aspect of the objects. 

Now we introduce the notion of extended operators as an 

implementation tool that encapsulated spatial relation. We 

redefine spatial and nonspatial operations using extended 

operators . Extended operators provide a uniform inteiface that 

masks the difference between spatial and nonspatial operations. 

They also serve as a way to keep both the spatial and nonspatial 

components of a spatial relation consistence. 

We assume that we have a collection of homogeneous 

objects 0 referred to by the pair < R,S>, where R is a relation 

that stores the non-spatial attributes information of o and s is 

a spatial data structure that stores the spatial attributes 

information of O.Again ,we assume that the set 0 is described by 

only one spatial attribute and hence has only one spatial data 

structure associated with it.Relaxing this assumption is 

easy. We use the notation "op" (U where U is either R or S or the 
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pair <R,S> (depending on the context) to indicate that operation 

"op" is performed on U. 

Extended operators are classified into relational and 

spatial-based operators;x_op,. and x_oPs ,respectively (r for 

relational and s for spatial). They are defined using the 

operators sp_extract and db_extract, as building blocks in 

addition to the corresponding un-extended operators. 

The Extended Select Operator: 

The extended select operatbr can be either spatial or 

relational. The extended relational select ,referred to as x_o~, 

takes as its arguments the pair <R, S> and returns the pair 

<T,U> Relation T is formed by applying the un-extended 

relational select oprator on R,i.e T =op~ (R).Next ,opera~or 

sp_select is executed to form the resulting spatial data 

structure U.The spatial object corresponding to the tuple in the 

resulting relation T are stored into U. The spatial and non

spatial components of each resulting object are then linked. 

The extended spatial select operator x_op behaves analogously. 

First, the spatial select operator op is performed and the 

selected spatial objects are then stored into a resulting spatial 

data structure U.Operator db extract is then used to extract the 

tuples, corresponding to the spatial objects stored in U, to 

build an output relation.In summary, 

x_opJ<R,S.>) = <opy(r) ,sp_extract(op~(r) ,S)>, 

x_ops (<R,S>) = <db_extract(R,O~ (s)>. 
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The Extended Join Operation: 

The extended relation join <R_g(S:,~> =x_op.,.,(< R,S1 )>, 

<R~ ,s!> >) (rj denotes relational join) first applies the 

relational join operator· op.,;on R, and ~ This results in a join 

relation R3 which has two spatial attri-butes R-as• and R!Sl, where s, 

and ~ are the spatial attributes that originally belonged to R1 

and R; respectively.Opertor sp_extract is executed twice, once 

for each spatial attribute to build the corresponding data 

structure s:and ~In summary, 

x_op,.~(<R1 ,s1 >,<R~,S~>) .=<R3 , (s: ,S~)>,where 

R3 = op ( R 1 , R~ ) , 

I S1 = op_extract (S1 ,R3&),and 

S~= sp_extract (S~,R3~). 

The extended spatial join < R! , ( s: , s~ ) > = x op,. 
- $J 

( <R., s,>, <R:a, , St >) ( s; denotes spatial join) first applies the 

spatial join operator on 5 1 and ~ This results in two data 

structures, S 1
1

' Sa and s~ ~ s~ . sf and s~ represents the complete 

description of the spatial object participating in the spatial 

join from each side. In some cases o~~may result in just one data 

structure, s;that carries some combined spatial information. We 

also use an operator that we term as db_j_extract which 

operates on the output spatial data struc~ure cs: and S~ or on ~ 

to produce the join relation, R3 . In summary, 
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X_ op
51 

( < R1 , S1 >, <~, 8,i>) = <R~, ( s; , ~ ) >, OR 

= <R3 , S3 > , WHERE 

(S ,s )= OPJ; (S ,s ) ' AND 

~ = db_j_extract(R1 ,~{s: ,s' }),OR 

s' = op,. ( s1 , s~) , AND 3 St 

R.3 = db_j_extract(R1 ,~ ,~). 

4.4 SPECIAL FEATURES OF A, HYBRID SYSTEM 

In summary we can give the special features of a hybrid 

system as follows: 

A hybrid system features a dual architecture where 

spatial data is stored separately from non spatial data. This 

may not permit merging of spatial and non-spatial data into 

common multiple attribute indexes. However, we believe that this 

feature is to unncessary and of less practical use. 

Spatial data is stored in disk-based spatial data 

structures that apply some buffering mechanism and are suitable 

for the type of data and required operations. This matches with 

the fact that spatial data is voluminous. It also avoids the 

need for down or up-loading of spatial data from an off-line 

representation into on-line representation. Considering the large 

size of spatial data the down- /up-loading approach seems 

impractical. 
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We m~intain bi-directional links between the spatial 

and non-spatial description of a spatial object. Although 

maintaining these 1 inks imposes some overhead it provides 

flexibility in browsing between the spatial and non-spatial side 

of the system, thereby permitting operations to be performed in 

any arbitrary order chosen by the optimizer . Maintaining only 

uni-directional links imposes some restrictions on the optimizer 

so that the optimizer is forced to favour one aspect of the data 

over the other. 

Since spatial data is stored in separate structures we 

avoid the duplication of spatial data when the objects are 

referenced more then once. Consider the relation reslting from 

joining two relations each having one spatial attribute. If data 

were stored in textual from inside a tuple, every time this tuple 

participates in the join the textual description of the spatial 

object needs to be duplicated as well. 

we just duplicate the spatial index 

However in hybrid system 

referring to the spatial 

description and riot the whole descriptiori. 
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CHAPTER 5 

QUERY PROCESSING AND OPTIMIZATION 

5.1 QUERY PROCESSING 

Query processing stage is very important for the 

optimization as they affect the optimization process to a great 

extent.To illustrate this I will take an example and will show 

the different SQP formed and how the selection of a plan can 

affect the query processing.The use of extended operators has 

been illustrated. 

THE EXAMPLE 

Let us take the example of finding all the parks 

within ten kilometers of the university named "JNU"in Delhi. 

The extended query will look like as follows: 

SELECT L.name L.usage 

FROM 

WHERE 

AND 

AND 

AND 

AND 

land-use L,land-use U 

u.usage ="university" 

U.name = "JNU" 

L.usage = "park" 

With_in(U.location,L.location,lO) 

in_window(L.location,w) 
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5.2 ANALYSIS OF EXAMPLE 

By using extended operators we have a homogeneous 

interface. Otherwise, each extended operator results in a 

relation a·nd one or more spatial data structure . This allows 

permuting the operation in any desired order.Also,the flexibility 

of hybrid system is demonstrated . 

First logical transformation will make such 

transformations which will make the circles to be drawn with 

"JNU" as the center and not that the circles from different 

parks will be checked for "JNU" to fall in it.Many othe:::

transformations will be made which will help in faster search. 

The decomposition process will separate the spatial and 

aspatial parts so that diffrent processes can effectively be 

used and they may also be used in proper way to minimize the 

search process at plan formulation and query processing stage. 

Now, first several different execution plans for thE 

above query will be shown,next few possible optimization will be 

shown which may occur.The following shorthand notations are used. 

x_dbp :select L.name,L.usage (db-projection) 

x_dbs 1 :U.usage = "university" (db-selection) 

x_dbs~ :L.usage = "park" (db-selection) 

x_spw1 :within (U.location, L.location, 10) 

x_spw~:in_window (L.location,w) 
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Now consider the following different orders of query 

execution which are called as the SQP (query execution plan) 

query plan 1 :x_dbs1 ,x_dbS4 ,x_spw1 ,x_spw~,x_dbp 

query plan 2 :x_db51 ,x_dbp ,x_sp .. ~ ,x_dbg_ ,x_sp"'11 

query plan 3 x_spWl'X_db~ , x_db.s1 ,x_sp.,.., ,x_dbp 

query plan 4 x_db~ ,x_sp,.~ ,x_db51 , x_sp~11 , x_ dbp 

query plan 5 X_SP~a 1 X_db~ ,x_dbsl ,X_SPw1 ,x_dbp 

5.3 DESCRIPTION OF PLAN 1 

We describe query plan 1 in more detail.The execution 

plans are presented using the most general forms of extended 

operators as described previously in chapter3. Here more 

clarification is done : 

x db :U.usage = "university" 

Relation land-use is searched (possibly through an index on 

attribute usage) and the qualified tuples are selected. The 

result of the selection operation is stored in a temporary 

relation Ts 1 • s-extract traverses T51 and extracts from s the 

spatial data structure storing instances of the attribute land-

use.Location of type region, the regions (universities) 

corresponding to the tuples in relation. The extracted regions 

are stored in a temporary spatial data structure Ss1• Notice that 

the database selection is performed by the DBMS and the spatial 

extract operation is performed by the spatial process. 

x_dbsl: L.usage = "park" 
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This operation is executed in the same way as operation 

x_dbs1 • It operates on the original relation land-use but outputs 

a temporary relation.Tstand a temporary spatial data structureS~· 

x_sp :within (T . location T. location, 10) 

Given relation Ts1and Ts~ spatial data structures Ss1and s~ 

and a radius of expansion with value 10, the spatial operator 

within first operates on Ss1 and s5tto generate the regions in SSt 

that are within 10 units of distance from regions in Ss1 • The 

result is another temporary spatial data structure ~3 • By using 

the operator db_extract and ss~,the spatial join relation is built 

consisting of tuples from T51 and Ts~ that are within the given 

distance from each other. The result of the spatial join is 

stored in temporary relation T53 that has two spatial attributes 

location! and locationJ of type region corresponding to the data 

structures Ss1 and Ss3 respectively. For referencing purposes 

only, all the attributes joined from relation T51 are postfixed by 

the letter 1 (e.g. usage!), while the attributes joined from 

relation T2 are postfixed by the letter 3, (e.g. usage3). 

x_spw~= in_window (~3 locationJ, W) 

The spatial selection operation in_window perfo::::-ms the 

window operation on s5~, the data structure corresponding to 

spatial attributes location 3 .This results in yet another 

temporary data structure s5.,.. The tuples in T53 corresponding to 
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the spatial objects in SS+( i.e. inside the window W) are then 

extracted using operation db extract into the temporary relation 

x_dbp: select T~. name3 ,T~, usage3 

Attributes names3 and usage3 are projected from T~ 

resulting in relation T55 • Another attributes including their 

corresponding spatial data structures, if any are deleted. Below 

is shown a summary of the above execution plan. 

X-db SJ ( <U I s >) 

x_dbs2 (<L ,s >) 

> <Ts1 ,Ss1 > 

> <Tst , S.s~ > 

x_spw 1 <<Ts1,s51 >,< T~,SSl>,lO) == > <Ts~ ,s53 > 

x _ spwl ( <T5~, S.sy) -- > <T S4 , ~ > 

x_dbp {<'l$~,ss?) -- > <T55 ,s5s> 

5.4 OTHER POSSIBILITIES 

Extended operators can be executed in any desirable 

order because of their uniform interface. This gives us 

flexibility in the sense that it enables us 

optimization. In addition, once candidate 

to perform query 

execution plan 

is selected for execution more optimization can take place. We 

start with a general and complete execution plan of the query 

using extended operators, then apply some transformation rules to 

enhance the performance of the execution plan while still 

producting the same correct results as the original execution 

plan. In other words, depending on the context, we can select 
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less general and yet simpler forms of extended operators that are 

necessary to execute the given query with better performance. 

Below, we only list a range of these rules. 

Rearranging the order of the above operations may 

result in better performance. For example, in the above plan, 

performing the spatial selection, in window before the spatial 

join "within" could have resulted in better performance. Also, 

performing the database projection earlier reduces the I/O 

overhead. Query plan 2, given above, reflects both of these 

enhancements.In this case, the spatial query optimizer stops 

maintaining the spatial data structure of the dropped attributes 

as early as possible. .This is also applicable when the user does 

not select relational attributes in the select clause (e.g. 

select road_coords from .. ) Applying this rule to query plan 1 

results in the query plan summarized in the below given 

expressions Notice that relation U and L are projected at the 

same time that the selection operation x db and x db are 

performed on U and L, respectively. 

X_ db51,p( <U ,s >) I 
, Ss• > -- > <Ts, 

x_ dbst,p( <L ,s >) -- > 
I 

<Ts~ ,Sn > 

I I I 
x _ dbw 1 ( <T51 , s£,>, <TSl I SJi> I 10) -- > <Ts~ 'Ss3 > 

I 
<Tss ,; X-spWl ( <TS.J, ~>) == > > 

In addition, several optimization steps can be 

performed within each operation sequence (application plan). As 

an example, we can avoid the creation, writing, an subsequent 
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reading of several temporary relations and spatial data 

structures (e.g. ~s built and stored but was deleted after the 

projection step). 

As another example, if we cascade two spatial 

operations, we can defer the db_extract operator until both 

spatial operators are performed. This means that we can build 

the relational part at the end using one db_ extract operator. 

This will save one execution of the db_extract operator as 

illustrated by the following example. Suppose we wish to perform 

the operation x_opsl(x_op51 (<R,S>)) where x_op51 and x_op5~are 

extended spatial operators. One way to perform this operation is 

as follows. Let s 1 be op5, (S) and Rl be db_extract (R s ) Then, 

x_op (x_op (<R ,s >)) ==<db extract (R1 ,op_s~(S,)},opst(S 1 )>. 

The above formula uses the standard definition of 

extended operators. However, a better way to perform . the same 

operation is to use R instead Rl, in the above formula. The 

formula then is: 

x_opsl.(x_op
51

(<R ,s >)) == <db_extract (R ,ops~ (S 1 )) ,opSl. (S1 ) >. 

The new formula is functionally equivalent to the 

former one but is more efficient. It uses just one execution of 

the db-extract operator. This optimization saves execution time 

since it avoids creating, writing, and then reading an 

intermediate temporary relation. Other possible optimization 
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strategies (e.g. instersecting spatial or tuple pointers, and 

simplified versions of spatial operations) are also present and 

we expect more domain specific rules to emerge if we begin the 

implementation phase of hybrid system. 
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CHAPTER6 

CONCLUSION 

An optimization model for augmented SQL has been 

proposed in this dissertation. Many of the techniques employed 

'by the proposed extended optimizer are based on existing methods 

used in current optimizer. 
I 

Although, the strategy is proposed 

for a particular extension of SQL, we believe the same method can 

be used for other languages that are based on SQL. 

The major contribution of the dissertation is a global 

optimization strategy for extension of SQL, which requires 

additional indexing structures to materialize the additional 

relationships. The proposed strategy does not require extensive 

modifications of existing DBMSs. The optimization strategy 

consists of the following modules: extended logical 

transformation, decomposition, the generation of subquery 

sequences, and the selection of the best subquery sequence. 

Queries are transformed into logically equivalent queries that 

are more efficient to evaluate. As the SQL backend is not capable 

of evaluating the spatial components of the extended languages, 

the decomposition breaks a query into several subqueries so that 

the SQL backend can be used for SQL (UA) subqueries, and a 

spatial processor for evaluating spatial selection criteria, 

processes, spatial subqueries. With an unordered set of 

subqueries, all plausible different arrangements of subqueries 
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are considered. This involves the generation of plans and the 

heuristic pruning of the search space so that only plausible 

plans are examined. 

While such optimizer may not produce the .best strategy, 

it can however produce a reasonable strategy. The approach is 

simple. It will not involve a substantial increase in the costs. 

The extension to the DBMS is minor: the SQL parser is modified to 

parse a larger set of predicates and the extended optimizer is 

built on top of the existing optimizer. 

The implemention confirmed that the rewriting rules are 

correct and that for each hybrid query, all sequences produced by 

the decomposition algorithm and SQP formulation algorithm gave 

the same answer. Simple queries that involve three result 

rewriting rules were used for the test . The results obtained by 

different SQPs were exactly the same. 

The major limitation with the extended optimization 

model is that we must be able to access tpe existing DBMS at more 

than the user's level. The unnested aspatial subqueries formed 

by the decomposition strategy are syntatically and semantically 

correct. It would ba very inefficient to submit each query 

indiviadually and then make use of the temporary results as part 

of the execution strategy. We need to control the buffer 

management and to access temporary storage without having to 
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submit the decomposed unnested aspatial queries at the user' l: 

level. Using SQL queries with INTO clauses introduces more 

problems than just creating temporary tables, expensive rereadins 

operations are also required. 
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