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l!}t ro duction 

The t~chniques of counting in solving combinatorial 

problems involving determination of the mmber of trees or c;t 

the sets of a gtven type have been in use for. a long time. 

The fir~ ever. treatise on combinatorics - 1Disertatio de Arte 

Conibinatoria 1 is due to Leibnitz and dates back. to 1666. It 

deals essentially with the configuration which arises everytime 

when some objects are distributed according to some predetermined 

constraints. 

As increasingly complex configurations came up for 

considerations_. researchers became more and more interested in 

the actual counting process. The use of generating functions in 

this connection came to be recognised as highly useful .•.. The 

idea dates back to 1812 and is due to Laplace tl3]. In the 

present work this also has played an inportant role in our 

studies on generalized cat alan numbers and results related ~ to 

them. Catalan proposed these numbers first in [5] and many others 

have worked on them since then. Knuth for example has shmvn that 

the Catalan number en is exactly equal to the number of binary 

trees vdth n vertices. 

Chapter I includes basic defihitions and well known 

results which are used and elaborated upon in later chapters. In 

Chapter II the extended notions of Catalan numbers including 

the one suggested by Shapiro [2?] are discussed. Some of the · 

results related to this are e~tended next. And, finally, 

using a still more generalized form of Catalan number the 

results ar0 e.:xtended further in Chapter III. 



Chapter I 

Preliminaries and Background Ma~erial 

1.1 Generating Function and Combinatorial Identity 

Definition. A formal power series, 

C1.a.1) 

representing a sequence e.i J i ~ 
0 

where ~ is a real number 

for each i, is called the generating function of the sequence. 

The experiential generating function of the same sequence 

{ ~ ~ i> 0 is defined to be 

E(t) 

Generating functions have been usdf'Ul in unifying the 

discussions on polynomials. This fact is eVident from the 

works of Sheffer {}a], Brenke [3], Rainville [22], Huff [9}, 

Truesdell [30], Palas [20], Boas and Buck [2], Zeitlin [31] 

and Mi ttal [17, 18] and others. 

It is relevant to mention about the combinatorial 

identities at this juncture. These concern the enumeration 

of ways in which a given number of objects can be arranged 

according to specified rules. They arise naturally in the 

study of generating functions and recurrence relations. In 
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the present Hork they have been used extensively. 

1.2 Some Operational Formulae. 

Mit tal [15, 16, 1?] defined the operator Tk' where 

Tk = x (k + xD) 7 k is a constant and D is the differential 

operator. It is easily seen that 

(1 .. 2.1) 

where 

= ( I'-1- k) ( !'+ k+ 1) .... (r+k+n~l) 

and n is a positive integer. 

The following lemmas are due to Mi ttal. They have been 

used in this thesis in obtaining proofs of Touchard's result 

[29] and that of Gould [8] in the next section. They have also 

been used for deriving generating functions and recurrence 

relations for Generalized Catalan Number in chapter two and 

chapter three. 

1. Lemma 

(1. 2.3) 

2. Lennna 

1o ~ T~J xb f(x)5 = xb ( l-xt) -1/2 [~+ J-(l-4xt1 ,... b-~ 

r[l+ ~-4xt)]. (1.2.4) 
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3. J ~mma 

oo tn 
X J; !it T~;mlta f(x) + xf'(x)"<= (l+v)a f(x(l+v)) 

n=o • ) 

(1.2.5) 

where v = xt(l+v)m+l, a and m are constants and prime denotes 

differentiation with respect to x. 

4. Lemma 

vrhere v = xt( l+V)m and m is a constant. 

1.3 Catalan Numbers and Related Identities 

f r.x(l+v)] 

(1.2.6) 

While finding the nt'"'lber of ways of evaluating the 

product of n factors (in fixed order) by successive multipli

cations operating always on twoaijacent factors, Catalan [s] 

used the Catalan Number. 

Definition. A catalan number Cn is defined for non negative 

integral values of n by the rule 

(1.3.1) 

A large body of research material is now available on the 

subject - some 450 papers have already been published. The 
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bibliographies of Alter [1], Brown [4] and Gould [8] give 

an excellent account of the literature. Lois Comtet [1~} 

and E. Netto [19) have also solved the problem of Catalan. 

Touchard 129] in 1924 proved an interesting identity, 

involving the Catalan Numbers. We give here a different 

proof. 

Proposition; 

( 1.3. 2) 

Proof. Consider 

co xk z 
-k=o ... (k+l)! 

k c -
Tk+l t 1 f' 

in view <?f- T~ { xaJ = (a+k) n xa:+-n, we have 

co . "k 
"\' .,... jX~~ 
41 {k+l)! b:o 

k . co 2k 
Tk+ltlf = ~0 (k+~)! k! (k+J.) (k+2) •• ~ (k+l+k-l) 

' ~. ·, ·, 

and we have the result 

co k . k. . co -_k k 2 co k k 
"" -X T 11? "" xki T_) _ _._1 51{-. X .z,- Lk:' T) _ __,__3 S 1' • 
U {k+l). ~f k+ 1 5 ::;: u .t\.T t ) ,n...- \_ 1 

k=o • k=o k=o • · .-- _· 

' ~ . -
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Now ·11aking use of (1. 2. 4) in ( 1.3 .3), v.Je get 

00 
? .... 

k=o 

xk k r ? ( 2 -l/2 
(k+ 1)! Tk+l f.l > = 1-4x ) 

and hence 

~ xk k ~ 2 
(k+ 1)! T k+ 1 1.1 t = ------2. 

k=o 1 + ~l-4x J 

2x 2 
[1 - (- .JO.:¢] ] 

1+ ' 

( 1.3 .4) 

oo · n 
Now operating by Z ~ T~ on both sides of (1.3.4), and 

n=o • 

using (1.2.4), we get 

= (l-2x)-l r 2 2 ] 

1+ "c1- 4x ) 
( l-2x)2 

(1.3. 5) 

and hence, we get 

= ( 2. )2 
1+ "(l-4X) • 

(1.3. 6) 
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Again, considering the left hand side of (1.3.6) we se.e that 

oo 2n n oo xk k 
~ nT T 1 [ ~ ( k+ 1) t T k+ 1 l 1 J ] 

n=o • k=o 

00 00 
_]n ~n + 2k)l x*2k = ~ ~ 

n=o k=o nl k! k! (k+l) 

00 [nL2] 
2n-2k n' -:f!l = z ~ 

n=o k=o (n-2k)! k! k! (k+1) 

and hence we obtain 

00 

z 
n::o 

n oo 
LTnl-~ 
n! 1 k= -0 

00 [n/2] n ....n-2k C · n 
::: ~ ,Z (2k) ;::: k X . 

n=o k=o 

Again, since 

00 00 
1 ~ CIH-1 x? ( 2n+-2) n 

= ~ n+2 X 
n=o n=o n+-1 

00 xn 00 ~l 
= z n! (n+-2) n - ~ nr (nr4)n 

n=o n=o • 

00 00 
"<"'> 1 Tn c:: 1 2 "" 1 Tn ?1.? 

= 2; fiT n+-2 L J - x u n! n+4 ~. J 
n=o • n=o 

- ~ [ 2 -1 ~ r. 2 ] 3 
= ( 1-4x) 1+ .JCJ..-4xl-x( l-4x) ""l+ J(1~4x') 
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(1.3.8) 

!t may be noted that we have made use of Lemma (1.2.4) 

in the derivation of (1.3.8). 

Now, from (1.3.6), (1.3. 7) and (1.3.8) we conclude that 

00 [n/2] 
z z 

n=o k=o 

n and hence canparing the coefficients of x , we finally get 

[n/2] 
2 ( 2nk ) 2n-2k C = C 

k= k n+-1 .. 
-0 

(1.3. 9) 

Other proofs are due to Riordan [23], Izbecki [10], 

Shapiro [26], Donaghey [6] and Touchard [29]. While proving 

Touchard's identity, Riordon [~] posed the problem : t,.rhat 

is the number of Catalan paranthesis of n factors with k 

nests?' and solved the problem by obtaining a generating 

function for Gn• The number of Catalan paranthesis turned 

out to be 

n 
C = l: ( n-1) 2n-2k C 

nk k=l 2k-2 k-1 
(1.3.10) 

In th~ year 19'76, Gould [8] established the following 

gen~ral identity 
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[nf2J ( ~k ) 2n-2 k A(k) = A(n) 
k=o 

( 1.3.11) 

where A(k) = ( 2~ ) ~ 

Subsequently he proved [8] a more general result 1r1hich 

contained (1.3.:9:>) and (1.3.11) as special cases. Here we 

give a different proof of the result. 

Proposition. 

[n~2] ( n ) ( 2kk ) 2n-2k R( k) = ( 2n+n2r) 
k=o 2k 

(1.3.12) 

where 

R(k) = 1 if r = 0 

Proof : 

= ( ~ 1) {nr 2) , .• , .. ,,(.IMd~) 

Clt+l) (k+2) ••• (k+r) 

Consider 

if ~ > .l •. -. ~ 

00 

1: 
n=o_ 

[~2] ( ~k ) ( 2~ ) R(k) 2n-2k xn 
k=o 

where r is a constant, we have 

k! (n+r)! 
---- 2n-2k x? 
n! (k+r) l 



00 

z; 
n::o 

[nL2.] (n+-r)! ( n 2~) k! 
2n-2k x? ).; 2k )( 

k=o n' (k+r)! • 

00 00 
~1! + 2k + r2 ~ ::: ~ J:: 2n ?2k 

n' k! (k + r) r · n=o k=o • 

00 00 

= ~ z 
n=o k=o 

1 (k+r+1) 2n xrH-2k 
n~ k! n+-k 

oo 2n n 2J r = Z f" T 12(1-4x/ 2 f- 2 . ] ' 
n=o n • r+ C '-1+ ovt1-'±x2"1 J 

- l 2r 
= ( 1-4x) 2 [ 2 ] 

1+ .J<1-4x) 
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( 1.3 .13) 

( 1.3.14) 

where ;pis a constant. Again it may be noted that \ve have 

used (1.2.4-) and (1.2.!) in deriving (1.3.]3) and (1.3.14). 

Using again (1.2.4), we get from (1.3.14) the result 

00 

n=o 

n 
X • 
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Comparing coefficients of xn on both sides, 'l.ve get 

[n/2] z 
k=o 

( n ) ( 2k ) R( k) 2n-2k 
2k k 

= 

where r is a constant. 

(1.3 .15) 

It is easy to see that for r = 0 the identity in the 

proposi tJon above reduces to ( 1.3 .let) 3.Ild for r = 1, reduces 

to ( 1.3. 9). 

Catalan sequence has been obtained while solving many 

other problems of combinatorics. Poly a [21] in 1954 posed 

and solved the problem of finding the number Dn of different 

ways of disecting a convex polygon of n sides by n-3 diagonals 

into n-2 triangles. He used the recurrence relation 

(1.3.16) 

Lafer and Long [12] showed that 

D = 1 (2n-~ 
- n n- 1 n-2 (1.3.17) 

and then Dn is same as Cn_2 • Lafer and Long [12] gave both 

inductive and deductive proofs of Polya' s problem. They 

showed that 
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D3 = 1 

D:4 = 1+ 1 

D5 ::: 1+ 2 + 2 

D6 = 1+ 3 + 5 + 5 (1.3.18) 

D7 = 1+ 4+ 9+ 14 + 14 

D8 = 1+ 5+ 14 + 28 + 42 + 42 
"' ..... 0 • w < ~ • ... ~ .. . .. . .. . " " .. 

It may be observed that the first two diagonals are 

Catalan sequences and are identical. 

A somewhat similar array was obtained by Finucan I)]. 

He defined 

= (1.3.19) 

(nr l) ( n+2) ••• (n+h-1) (n+h) 
= h! 

and obtained the following arr~. It is similar to that of 

Lafer and Long 1 s triangular array. 

0 1 2 3 4 5 6 7 

1 1 0 

2 1 1 0 

3 1 2 2 0 

4 1 3 5 5 0 (1.3 .20) 

5 1 4 9 l4 14 0 

6 1 5 14 28 42 42 0 

7 1 6 20 48 90 :132 :122 0 

• • • • • • . ... • • • • • • .... • • • ••• • • • 
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The first two diagonals in (1.3.20) are Catalan 

sequences again and the fourth is attributed to Cayley. No 

other diagonal is listed \vi th any combinatorial meaning, 

though the sequences (1,3,9, ••• ) .md (1,5,20, ••• ) occur in 

some problems on Laplace transform. 

In conclusion we may mention that D. Knuth ( [11] , p.388) 

proved that the number of ordered trees with n vertices is 

Cn-1" He also showed thnt en is the number of binary trees 

with n vertices. We give an outline of the proof of this 

below. 

Theorem. The total number of binary trees with n vertices 

equals en, the nth Catalan number. 

Proof. Let bn be the number of different binary trees '"i th n 

nodes. From the definition of binary trees, it is apparent 

that b
0 

= 1 and for n > o, the number of possibilities is 

the number of 1·mys to put binary trees with k nodes to the 

left of the root and another with n-1-k nodes to the right. 

So 

(1.3 .21) 

From this it is clear that the generating function 

(1.3.22)' 

satisfies the equation 

z B(z) 2 = B(z) - 1 (1.3.23) 
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Solving the quadratic equation and using the fact 

that B(O) = 1, he obtained 

H(z) = .L ( 1 - ~ - 4z)) 2z / 

We now compare coefficients of zn in (1.3.2~) and obtain 

b = ( 1/2 ) ( .:.l) n 2 2Ilf- 1 
n n+l 

• (1.3.24) 



Chapter - II 

Extended Catalan Numbers 

The notion of catalan numbers which was introduced by 

Catalan in (:SJ was broadened later by Shapiro [27]. In a 

series of papers [25, 26, 27] he has. considered their properties 

in detail. The motivation for this consideration was graph 

theoretic. 

Definition. 

A finite sequence of pairs vk = ( ak' bk) , ~ ~ o, bh ~ 0 

is called a path if the following hold 

a) v 
0 

= (o, O) 

b). If vk = (ak,bk) then vk+l:::(l+ak, bk) or vk+l = (ak, }:f-bk) 

A path (v
0
,v1, ••• ,vn) is said to be of length nand 

n { } n the distance between [vi~i::O = (~,bi) i=o and 

n 
twi ~ n = ~(~,yi) ~ ._ is I ~-xnf. Two paths are scU-4 

J i=o l l 1-o 

to intersect if v1 = wi for some o < i < n. 

Remark~- It may be noted that <1n + bn = n = xn + Yn• Hence 

l<1n- ~~ =Ibn- Ynl and consequently the distance between 

the paths 5' vi? n and I w. S. ~ could be defined as I bn-Ynf· 
L .) i==o ( 1 ) 1=o 

One may observe that a pair of paths of length n at 

distance k can be extended to folir pairs of paths of length 

n+l: one pair at distance k+l,_ two pairs at distance k, and 

one pair at distance (k-1). IT- Bnk is the number o:f pairs o:f 
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non intersecting paths of length n and distance k then it is 

not difficult to derive the recurrence relation from the 

above observation. Then 

and Bno = o = Bn n+m' m ~ 1 are boundary conditions. 
' 

Shapiro [27] found 

Bnk = k ( 2n ) n n-k (2.1.1) 

1 ( 2n ) = 1 ( 2n ) For k ::: 1, Bnl ::: Cn = n n-1 n n+l 

where nand k are positive integers in above formula (2.1.1). 

Tabulation of Bnk yields the following triangular array which 

Shapiro [27] named as catalan triangle. 

1 2 3 4 5 6 

l 1 

2 2 1 

3 5 4 1 

4 14 14 6 1 (2.1.2) 

5 42 48 27 8 1 

6 132 165 110 44 10 1 

••• • •• . .. • • • • • • • • • ••• 
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In what follows we introduce the notion of extended 

Catalan number and extend the results of Shapiro [27]. 
(a) 

Definition. The extended cat alan number Bnk is defined by 

the rule 

B( a) = k+a (2TH-2a) 
nk n+a n-k 

(2.1.3) 

= (k+a) (2n+2a) (2nr2a-1L ••• ( ::m+2a+k+l) 
n+a (n-k)! 

(2.1.4) 

where n-k > o, n > o and a is a real number and a ~ -n 

For a = -n, we define 

Remarks. 

B(-n) 
nk = 2( k+ a) ( 2TH-2a-1) 

( n-k) ! 

= lim 
a-+-n 

B
( a) 
nk • 

••• (n+2a+k+l) 

J.. We may use the above definition to vlri te 

' B(a) = ~ = 1 ~· ·' ive may de.pJ.·ne B(a) - lJ.·m B.(a) = 1 
~-" 0 0 a .. c--- '· .1. 00 - 00 • 

a-+ o 

2. For a = o, B~) coincides with the notion of 

Cat alan Number introduced by Shapiro [~7J. 

3. For a= .5 and a= 1, B~~) coincides ,,ath the notion of 

Ballot numbers g( 2n,2m) and g( 2n+ 1, 2m+ 1) determined by 

Knuth [1:1] respectively where 
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~n 2m) 

n and m being positive integers,. 

We consider next arithmatic properties of the extended 

Catalan Numbers and the associated results are shmm to be 

direct extension of the results of Shapiro Q27]. 
n 

We shall evaluate Z 
k=l 

n 

B(a) 
nk • 

Proposition. z B(a) = (2n+2a-l) 
k=l nk n-1 

P~. Consider the power series 
oo n 
~ .Z B( a) xn 

n=l k=l nk 

00 00 
B{ a) xn!-k-1 = z z 

n=1 k=1 nrk-l,k 

00 00 
B( a) xll+k = z z 

n=o k=1 nt-k, k 

00 00 
k+a (2n+2k+2a) xn+-k :::: z z 

n~-k+a n n:::o k=1 

00 00 
1 [['gn+2}&+2a) 

= z z 2(k+a) IiT X 

n=o k=l rrnr2k+2at-1) 

nrk 

= 
00 

Z xk ( 1+v) 2k+ 2a where v = x ( l+v) 2 

k=1 

(2.1. 5) 

( 2.1. 6) 
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( l+v) 2a 
00 

xk( l+v)2k = z 
k=l 

,( l+V) 2a 
00 

vk = z 
k=1 

x ( 1+v) 2a:+ 2 
= 

(1-v) 

00 
1.. = X z T!2a+2 l 1 J 

n=o n! (2.1. 7) 

00 
1 ( n = X Z iiJ nt-2a:+2)n X 

n=o 

CQ 

( 2n+2a:+ 1) J!l = X 4 
n=o n 

00 = 2 c2rn-;a+1) xn+1 
n=o 

= 
00 z c2n+2a-1) n 

n-1 x • 
n=1 

(2. ii 8) 

Lemma ( 1. 2.5) and Lemma ( 1. 2.8) has been used above in 

deriving (2.1.6) and (2.1.7) respectively. 

Comparing the coefficients of xn in (a.l.8) we 

conclude 

~ B(a) 
k=1 nk 

= (2n+2a-1) 
n-1 • (2.1.9) 
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Remm,k •. Putting a = o in ( 2. 1. 9), we get 

(2.1.10) 

which is due to Shapiro [27] • 

Corollary. The generating function of B~k) is determined 

from 

P.J:oof. 

Proposition. 

00 

z 
n=o 

00 00 

= z z 
n=o k=o 

= (1+v)2a 
1-v ' 

1 -2 = (l-4x) 

2 2a-l 
( . ) 

l.w-(1-4x) 

2a-l 
[ 2 ] " 

1......J( l-4x) 

where Cn is the nth Catalan Number. 

( 2.1. 11) 

(2.1.12) 

• 

(2.1. :12) 
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Proo·;. Consider 

00 n 
B(a) n-k z z X nk 

n=o k=o 

00 00 

= z z 2( k+ a) ( n~-2k+2a+ 1) n-1 -:C 
n=o k=o 

00 00 

::: z z 1L T~~k+2a+ 1 ~k+2a} n=o k=o ni 

00 

= z ( 1+v) 2k+2a (2.b 14) 
k=o 

.. 2 
which we get using lemma ( 1. 2. 5), where v = x( l+V) ; and a 

is a constant. 

Since v = x(1+v)
2 

1+V = 1+x( 1+V) 
2 

and we obtain the generating function of Catalan Numbers 
00 

C(x) = :Z C xn n 
n=o 

::: 

= 

::: 2 
l+ .J(l-4x) 

we can write now 

1+v = C(x) = - 2
------

l+ .J(l-4x) 

In view of (2.1.16) we see that 

( Riordon [23]) 

( Riordon [32]) 

(2.1.15) 

( 2.1.16) 

Tk- '3qq 



00 

z (1+v) 2k+2a 
k=o 

oo 2 2k+2a 
=Z ( ~ ) •. 

k=o 1+ ( l-4x) 

Earlier \ve also shmved (1.3.8) 

00 

z 
n=o 

n 
C l X = nt-

2 2 (- ..r . ) • 
1+ (l-4x) 

22 

(2.1.17) 

(2.1.18) 

Making use of (2.1.17) and (2.1.18) we get from (2.1.14) 

Remark. 

00 

= z 
k;=o 

Since for a = o, k = 1 we have 

where en is nth Catalan Number, v.re conclude, 

Z Z B(a) 
n=o k=o. nk 

00 n-k 
X = ,E 

k=o 

which is similar to Shapiro 1 s result (Rogers [24JL 

Proposition. 

( ) ~k+l (a) 
B a = z Cj Bn-· k 1 

nk j=l J, -

where j is a positive integer. 

(2.1.2d 

( 2.1. 21) 



Proof, Consider 

oo n n-k+1 
z .z z 

n=o k=o j=1 

00 00 

= z ~ 
n=o k=o 

n+1 
z 

j=1 

00 00 

= .z z 
n=o k=o 

n 
Z C B(a) Xh 

j=o j+1 nt-k-j-1,k--l 

00 00 00 ( ) 
- Z Z Z d B a ~j 

n=o k=o j = 0 j+ 1 nt- k-1, k-1 

00 

~ (2~+2) ~j 
00 00 

JC..;.1+a 
= 2 z z 

j=o J+~ . J+1 k=o nt-k-1+a n=o 

00 g_ xj 
00 co 

2(k-1+a) = z ( j+3) j-1 z z • T 
j=o J. n=o k=o nt 

00 
Tj-1 

00 00 

= 2 2 z z X -

23 

( 2nt-2k-2+2a) 
n 

xn 

(nr2k+2a-1)n-l ~ 

Tn-1. {2(k-1+a)} X j+3 j=o n=o k=o nr 11+ 2k+ 2·a-1 

00 

( 1+v)2 z (1+v)2k+2a-1 = (2.1.22) 
k=o 

where v = x(l+v) 2, a being a constant. Here Lermna (1.2.5) 

had been used for deriving (2.1.22) we have from (2.1.22), 

c; £ n-~+1 C B(a) ~-k 
n=o k=o j=1 j n-j,k-1 

00 
= z ( 1+v) 2k+2a ., 

. ' 

(2.1.23). 
k=o 
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Since we have already prov~d in ( 2.1.14) 

n-k 
X = 

00 

2 ( l+v) 2k+2a (2.1. 24) 
k=o • 

we have from (2.1.23) and (2.1.24) 

oo n n-k+1 ( ) 
Z Z Z C . B a. xn-k 

n=o k=o j=l J n-J,k-1 

= '; ~ B(a) xn-k 
nk ~ n=o k=o 

(2.1. 25) 

Now comparing the coefficients of xn-k in (2.1.25) on both 

sides we get 

B
(a) n-k+l (a) 
ID{ = .z CJ. Bn-J· k-1 

J=l ' 
(2.1. 26) 

Mmark. The result in (2.1.26) reduces to Shapiro's result 

[27] for a = o. We have from (2.1.26) for a = o, 

n-k+l (o) 
= .z Cj Bn-J· k-1 

J=1 ' • 

The above is equivalent to the follovling. 
I 

(2.1. 27) 

. (o) k ( 2n 
where Bnk = Bnk = n n- k ) • 

The identity in (2.1.2?) is due to Shapiro [2(]. 
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2.2 Recurrence Relations. 

Next we obtain a recurrence relation of the extended 

Cat~an Number. It is similar to the one determined by 

Shapiro [27]. 

(2. 2.1) 

where n > o. 

Proof. From (2.1. 6), we have 

oo n ( oo 
2 :Z Bnk)xn = 2 xk (l+v) 2k+ 2a (2.2.2) 

n=o k=o k=o 

. 2 
where a is a constant and v = x( l+V) 1 In a similar manner 

we can see that 

(2.2.3) 

00 £ B( a) .fl 00 
xk+l(l+v) 2k+2a+2 .z = 2 

n=o k=o n,k+l k=o 
(2.2.4) 

and 
00 

~ B(a) -£1 00 
xk+2 ( l+v) 2k+4+-2a 2 = ); 

n=o k=o n,k+2 k=o 
(2.2.5) 

where v = x(l+v) 2 and a is a constant. 

In view of (2.2.2), (2.2.4) a...tJ.d (2.2.5), 1ve conclude 

r; ~ rBnk(a) + 2B(a) + B(a) ]xn 
J..:1 nk+l nk+2 n=o k=o 

00 

= (l+v) 2 a Z 
k=o 
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00 2 2 
2 ( l+V) 2k+2 Xk r· l+x( l+V) J • 

- l+V k=o 
= (l+v)2a (2.2.6) 

And since v = x(l+v)
2

, wo have from (2.2.6) 

00 
n [-:...1 a) ( a) (a) J n 

z l; Bilk + 2Bn k+l + Bn k+2 X 
n=o k=o ' ' 

00 
= z ( l+v) 2k+2a+2 xk 

k=o 

(2.2.7) 

Comparing the coefficients of xn on both the sides of 

(2. 2. 7), the identity in ( 2. 2. 1) foll0\ifS. 

Remark. The result in (2.2.1) is ruQ extension of the result 

of Shapiro [27] and reduces to Shapiror s result if a = o 

and n > 1, 

k ( 2n) where Bnk = n n-k • 

In a similar manner we can derive the proof for 

following corollaries. 

Corollary 1. 

B( a) 
n+l,k+l 

= B ( a-1) + 2B ( a) + B ( a) 
n+l, k+l n, k+l n, k+2 o 

(2.2.8) 
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c oro"! lary a. 

B(a) = B(a) +2B(a+1) + B(a) 
111-27 k+2 n+1,k+1 n,k+1 nr1,k+3 o 

C or o1l ary .. 3. 

Corollary_&_. 

and 

B ( a) _ B ( a+ 1) 
nr1, k+1 - n, k 

B(a) 
n,k 

2.3 Triangular Arrgys 

(2.2.9) 

(2.2.10) 

(2. 2.11) 

The extended notion of Catalan Numbers \vas used by 

Shapiro [27] in setting up a triangular form. For a particular 

value of k all the Catalan Numbers Bnk were arranged in one 

column as followsc 

1 2 

1 1 

2 

3 

4 

5 

6 

••• 

2 

5 

14 

42 

1 

4 

14 

48 

132 165 

• • • • • • 

3 

1 

6 

27 

110 

. . . 

4 

1 

8 

44 

• •• 

5 6 

( 2.3.1) 

1 

10 1 

• • • • • • 
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The notion of Catalan Numbers which we have used 

allows an extension of the above. 

From B(a) 
nk 

k+a (2n+2a = n;a n-k ) , one may obtain, the follm.Ting 

triangular arrays. 

For a = • 5, we have, 

""k 
n ' ' 0 1 2 3 4 5 

0 l 

1 1 1 

2 2 3 1 

3 5 9 5 1 (2.3.2) 

4 14 28 20 7 1 

5 42 90 75 35 9 1 

.. •· .... • • • ••• • • • • •• • •• 

It is evident that the Catalan Sequence appears in the 

first column while rest of the columns do not appear ot the 

Catalan Triangle developed by Shapiro [27]. 

For a = +, 1:te have 

--
0 1 2 3 4 5 

0 1 

1 2 1 

2 5 4 1 

3 14 14 6 1 (2.3.3) 

4 42 48 27 8 1 

5 132 165 110 44 10 1 .... • • • ••• • •• • • • • • • ••• 
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The at"ray (2.3.3) is sitnL .. ar to Cat alan _::riangle develop.;d 

by Shapiro [2'7] .. 

Bomar~. However the columns in (2.3.2) and (2.3.3) appear 

alternatingly in Triangular tableau developed for Dn by 

Lafer and Long [12] in diagonal form. A similar table of 

numbers was obtained by Finucan [7]. 

0 

1 

2 

3 

4 

vle compute below tho table (2.3.4) for a = - 4. 

0 1 2 3 4 5 6 7 8 

5 

6 

7 

8 

-1 

1 

0 

0 

0 

1 

2 

5 

(2.3.4) 

8 ... 

-1 

-1 -4 

-1 -6 -14 

.. ~ 

-2 

-5 

-14 

• •• 

1 

4 1 

0 14 14 6 1 

• • • • • • • • • • ••• • •• 

It is evident from (2.3.4) that the columns left to 

t Column of symmetryt (k = 4) are mirror images of the columns 

on the right of the 'column of syrmnetry.' The triangular array 

on the right of the 'colwnn of symmetry' is same as the 

C atala:.'11 Triangle developed by Shapiro [27]. 

For a = -5.5 vlG get the following triangular array. 

. .~ .. 
~ ! 
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. ...._. ~ ··, k 
n'-', 0 1 2 3 4 5 6 7 8 9 10 1~ ' 

0 

1 

2 

3 

4 

5 

6 -1 ,,1 
(2.3- 5) 

7 -1 -1 1 1 

8 -1 -3 -2 2 3 1 

9 -1 -5 -9 -5 5 9 5 1 

10 -1 -7 -20 -28 -14 14 28 20 7 1 

11 ·-1 -9 -35 -75 -so -42 

.. ·I· ... 
42 90 75 35 9 l 

• • • . .. . • • • • • • • • • • •• • •• • • • . ... • •• • • • 

. 1 t may be observed that the column (;';'"'responding to 

k = 6 and· higher values constitute the Cat alan triangle 

for a= .5. The colmnns corresponding ton= o,1,2, ••• ,S 

could be vi~Ned as mirror images of the columns of the 

Catalan Triangle mentioned for a = .s. 



Chapter III 

Enlarged Class of Extended Cat alan Numbers and 

Related Generalis at ions 

3.1 Further Extension of the notion of Catalan Numbers. 

vle saw in section (2.3) that tabulation of B~) for 

a= -4 and a= -5.5 yielded two different tables. All of 

the columns in either of the tables appear however as 

diagonals in the results of Lafer and Long [12] and 

Finucan [?] • 

We are thus motivated to define extended Catalan Numbers 

in a way so that the columns in both of the tables mentioned 

above appear in one single table, similar to that of Lafer 

and Long [12] and Finucan [?]. 

D~finition. An extended Catalan Number Bns is defined by the 

rule 

B s ( 2n- s) h , ... .. ns =2n:s- n were nand s are r,.J .. :~~J . .) positive 

integers and n-s ~ 0. 

Remark 1. For s = 1, Bn1 = 2*_ 1 <
2
::-

1
) 

= (2n-2)! 
nr (n-1) 1 

= cn-1 

where cn_1 is thee (n-J.fh Catalan~.,-
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2. Bnl = Bn2 = 0n-l' n > 2 w 

3. Bn+l 2 = 0 n ' n L 1 .. 
' 

4. one !IlaY define B
00 = 0 if necessary. 

Calculation with the number Bns yields the following table 

f<j 1 2 3 4 5 6 ? 

1 

2 1 1 

3 2 2 1 

4 5 5 3 1 (3 .1.2) 
'' 

5 14 14 9 4 1 

6 42 42 28 14 5 1 

? 132 132 90 48 20 6 1 
••• • • • .... • •• • • • • •• • • • . .. , 

The above triangular array is similar to that of Lafer 

and Long [12] and Finucan [?]. It can also be noticed that 

the colmnns in (2.3.2) and (2.3.3) appear alternatingly in 

above triangular array. 

Next we obtain the recurrence relation for the newly 

defined Catalan Number. 

Proposition. Bn+1 , s+l = Bns + Bnr1 , S+2 ) (3 .1.3) 

Proot:. Consider 

B _ B .. · . = s+1 (2n-s+~ _ .2t...? (2~s1) n+ 1, s+l rif.l, S+ 2 2n-S+ 1 n+ 1 2n-s .L~ 

• 



33 

= s+l (2n-s) l ... .§±]_ (n-s) (2n-s)!. 
n+l n! (n-s)! 11+-l 2n-s n: 

= ...1._ c2n-s) [(2n-s) (s+l)-(s+2) (n-s) l J 
2n-s n 11+-l · 

_ --1:... ( 2n-s ) [ (11+-l) s ] 
- 2n-s n 11+-1 

• (3 .1.4) 

We conclude from (3.1.4) 

B!lf- 1.7 s+ 1 = Bns + Bn+ 1, s+2 • 

Corollari,. 

ProQ:f .. In Bn+ 1,s+ 1 = Bns + Bn+ 1,s+2 we substitute s = 1,2,. •• n-1 

and obtain the follm..ring: . 

obtain 

. Bnt-1,2 = Bn1 + Bh+1,3 

BTH-1, 3 = Bn2 + Bil+ 1, 4 

• • • • 0 • • • • • • • • • • • • • • • • 

• • • • • •. • • • • • • • • • • 0 • • • • 

. . . . . . . . . . . . . . . . . . . . . 

(1) 

ca> 

Adding all these n equations after cancellation we 
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n-1 

Bn+12 = )' B 1 ~ · ns + 
' s=l 

n-1 
= Z Bns + Bnn 

s=l 

n 
= ~ B 

s=1 ns 

once again 

Bn+1 2 = 2 ( 2n) en~ 2ll = 
' 

n+1 

Thus we conclude 

~roposi tion. 

The generating function for Bns :ts given by 

00 s=n 4x Z Z B xn = ns 
( 1.pJ( 1-4x) 2 n=l s=1 

(3.1. I7) 

Proof: 

00 s=n 00 00 

z z Bns 
xn = z z B xn+s 

n=1 s=l n=o s=1 n+s' s 

00 00 

= 2 l; s (2n+s) xn+s 
n=o s=l 

2l1+S Il+S 

00 00 

= z .z s ( n+ s+ 1) xn+ 5 

n=o s=l !iT n-1 



00 00 

= i; 2:: 
n=o s=l 

00 
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s+l 
!..._ Tn-1 ~ 2 

n! n+s+l (. s) 

= Z (l+v) s xs 
s=l 

by lemma(l.2.5) 

(3.}.18) 
2 and from the fact that v = x(l+v) • 

oo s=n oo 
Thus 7 2:: 2:: B xn = 2 ( l+v) s x 5 

n=1 s=l ns s=l 

;I'roposi tion. 

oo s=n 
z z 

n=.l. s=.l 

B n-s 
ns x 

00 s = ~ __J!__ 
s=l (l+v) 5 

00 

= z ( 
s=o 

v 

= l+V 
v 

1 -'j;V 

= v 

= x(l+v) 2 

= _4.;:X:.:..--- • 

(1+ ..f(l-4x) 2) 

(3. L 19) 

oo . n 1 s/2 2:: C X~~- ) n .. 
n::::..l 

The proof is similar to that of ( 2.1. J,i),_ and is .. ~hel)efore 

omitted. 
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The number Bns admits immediate genoralization • 

.Analogous to B~k), we next define B~~), an extension of the 

notion of Catala....'l'l Numbers v.rhich has just been introduced. 

Definition. The extended Catalan NumbGr B~;) is defined 

by the rule 

.(a) S+ a (2n-s-a ) 
B = --ns 2n-s..-a n (3 .1.ao) 

wherG a is a constant. 

The proofs of the propositions 1-rhlch follmv are easy 

and are similar to those given for analogous results 

established earlier. These are therefore omitted. 

l. Proposi ti,on. ( a) = B ( a) + gC a) 
Bn+ 1, s+ 1 ns n~-1, s+2 .. 

2. rroposi tion. 

00 00 
Z Z B( a) 

n::l s=l ns 

3. Proposition. 

a 
( 2 ) 

1+ .fQ.-4J¢ 

4x 

( l+ ;Jfi-4x) 2 

00 

= z 
s=o 

oo S+a 
n2 ( z cn-l x ) .. 

n=l 

(3. 1..3.1) 

• 

(3 .1. 3:2) 

(3.1 .. :13) 

We now tabulate the following triangular array for 

a= ,...g. 



-, s 
n 

1 

2 

3 

4 

5 

6 

7 

• • • 
' \ 
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1 2 3 4 5 6 7 8 9 10 11 12 l3 14 15 

-1 0 1 

-1 -1 0 1 1 

-1 -2 '.:02 0 2 2 1 
' 

...;1·-3' -5 ..i.5 0 5 5 3 i 

·1 -4 -:-9 -·14 -.14 0 14 14 9 4 1 

-1 -5 -14 -28 -'-12 -42 0 42 42 ~'8 14 5 1 

-1 -6 -26 -48 -90 ~lB2 ;_J32 0 m lB2 90 48 20 6'. 1 

• •• • • • • • • • • • • • • • • • • •• • • • • •• • •• • •• • •• ••• . ._ . ·• • e 

(3.1 .. 14) 

The columns in left of 'column of synnnetry' (for s = 8) 

appears to be mirror image of the columns on right side of 

it. ~he columns on right of the 'column of symmetry' is 

similar to the array defined by Lafer and Long and Finucan. 

We next obtain further extension of th8 results already 

8stablished in chapter II. It is relevant to mention that 

Rogers [24] developed the folloi,ring notlon for defining 

Catalan sequence. 

Ct(n) 1 ( t+l) n 
= fnt-1 ~ n ) n ~ o, t ~ 0' (3 .1 .. 3:.5) 

Ct(n) cle~rly represents an extension of the idea of 

Crt• For t ::: 1, C l (n) = Cn• These sequences occur in vlide 

variety of combinatorial problems. Rogers [24] further 



define 

t+1 
== z 

r==o 

and concluded that 

t+1 ( n ) Bt (n-1, m-1+r) 

( m+1 ctCn+l)) 
Bt-l n,m) == n+I n-m 

38 

(3 •, 1. a.6). 

To generalize further th8 result of Rogers (3.1J.6), >" 

1~e define below the number B~k' a) which subsequently genei'~liz~s 
the result of Shapiro (2.1.1) as vmll as the notion of 

. (a) 
extended C.J.talan number Bnk which 1-1e intrGduc:ed in chapter Il 

Definition. The generalized Catalan Number B~k' a) is. given 

by the rule 

B(p, a) == k+a (pn + pa} 
nk n+a n- k (3 .1. 2.7) 

where n and k aru positive integers and p and a are constants• 

Remarks. 

1. Generalized Catalan number is an extension of the notion 

of B~). It reduces to B~) for p == 2, 

= 

( 2nr2a ) 
n-k 

(See ( 2, 1. 3) ) • 
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2. = k+ 1 ( ( p+ 1) n ) 
nrl n-k (3.1.18) 

= Bt_ 1Cn,m) ,l..rhich is due to R0gers as menti0ned 

above. 

3. For p = 2 and.a = 0 

B(2,0) = ~ ( 2n )· 
nk n n!!!k · 

=. Bnk' the extended Catalan numbers introduced by 

Shapiro [27]. 

4. For k = 1, a = o and p = 2. 

7 Cn, the Catalan number as given by 

Catalan [s]. 

Notion of G?.;neralized C:1.talan Number includes also that 

of' the Ballot numbers (Knuth [11] , p. 532). For p = 2, a = ~5 
and p = 2, a = 1 respectively t yields the Ballot nUMbers. 

Our next aim is to establish a combinatorial identJ.ty 

involving the genora.lized Catalan Number and 1...rhich is a1~0 

an extension of Shapiro's result [27] vie shall rely largely 

on tho lemmas due to Mi ttal [15, 16;11]. 



~oposi ti on. 

n 
z 

k=o 

where p and a are constants. 
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(3 .1. !1.9) 

Proof, Consider tho follmving pmver series for obtaining 

the generating function of the Generalized C ::~.tal an Number 

B~k' a) in order to prove (3 .1.19). 

co co k xn+k. 
= ~ z (p-1) nr p(k+a).((p-l)n+-pk+pa+-l)n-1 

n=o k=o 

00 co 
= z z 

n=o k=o 

where v = x(l+v)P, p and a are constants. 

Lermna (1,2.5) has been used in the last step. 

Now in view of v = x( 1+v) P, \ve have 

(3.1.,2,0) 

=· ~ (l+v)pk+pa (p-l)k xk- ~ (p-l)kt1 xk+l (l.+v)Pk+pat-p 

k=o 1-(p-1) v k=o (1-(p-l)v 



00 00 

= z i:: 
n=o k=o 
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k 
( p-1) k L Tn '· 1 ) 

n! (p-1) nt-pk+pa Z ~ 

00 00 

- z z 
n=o k=o 

kt-1 
(p-1) kt-1 ~! - TCp-1) nt-pk+pC%4-p ~ 1 ~ 

(3.1.3.1) 

Now substituting (3. 1. 2~ ~n ('3 .1.2.0) and using lemma 

( 1. 2. 6) again, vle get 

00 

z 
n:::o 

= (1+v)pa [ c; (p-l)k xk (1+v)pk 
( l-(p-1)v) k=o 

1- (p-1)x(l+v)P J (,.., . 1 •';) 
'-., t..) r~ .4. ·, ..... ~--~~ 

(3 .. 1. 22.) 

where v = x( l+V) P ~ using lemma ( 1. 2. 6), vle have from (3 .1.1.12) 

n - ~ 
T(p-1) rn-pa \_ 1 ) 

00 = z ~ (pn+pa-1) 
n n=o 

(3.1.23) 

Comparing the coefficients of xn on both the sides of 

(3. 1.23), we get 

= (3.1.24) 
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co..rtl< ~ tou.~-o.. 
Remark 1. The result in (3. 1. ~) 1v generalization of 

the result (2.1*6). For p 

n 
z 

k=o 
= 

= 2
1 
B~,a) gives 

c2n+2a-l) 
n 

which we pave proved in chapter II. 

2. The result (3 .1.2!t) is generalization of Shapiro's 

result, for a= 0 and p = 2, we get Shapiro's identity. 

For a = o, p = 2 we hav8 from (3. 1. Zt!-) 

n z ~ ( 2n ) xn = c2n-1) = .l2c2nn) 
k n n-k n 

=o 

which is due to Shapiro [27]. 

3.2 T-arY trees and generalized Catalan Numbers. 

We investigate the relationship of t-ary trees 1.-ri th 

generalized Catalan Numbers in the fo11m,ving. Knuth [11] 

proved that the number Hn of t-ary trees \vi th n nodes is 

given by :an = ----1=-- ( ( 1+t) n) = - 1 (2n ) 
1+tn n (t-1)n+l n 

n are integers. 

00 

Lemma 1. .E , ~ xn = ( 1+v) 
n=o 

1...rhere t and. 

(3. 2.1) 

\<There v = x(1+v)P, p is a positive integer. 

Consider 
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DO 
1 ( l+tn)! J{l = z l+tn n! ((t-l)n+l) I 

n=o • 

DO 
1 lTtn+l) 

xn = .I: nr IT<t-1) n+2) n=o • 

DO 
1 ~ T(:t:l)n+2 i l} = nrx 

n=o • 

= ( l+v), by lerrnna (1. 2. 5) and 

where v = x(l+v)t and since p is also a positive integer, 

t can be 

Lemma. 2 

replaced by p and the next follm-rs. 

oo n 
z crn- 1 x = 

n=o 

00 

( 2 C xn) 2 

n=o · n 

Proof. Consider 

00 00 

l: C xn = ~ 
nt-1 n=o n=o 

00 

= .z 
n=o 

DO 

= z 
n=o 

2 f<2nr2) 
-;:;'T' -
n. Tint-3) 

!r' n-1 ~ n. X Tn+-2+1 2 

= (l+V) 2 

2 
where v = x( l+V) • 

~ 

Lemma (1.2.5) has been used again in last step. 

Consider again 
00 00 

C n ~ 21 (n2n ) xn z nx = ......... 
n:::o n=o 

(3.2.2) 



where v 

00 

= 2.: 
n=o 

00 

= z 
n=o 

= (l+V) 

2 = x(l+v) • 

We now conclude from (3.2.2) and (3.2.3) 

00 
n 

Z C X = 
n=o * 1 

( 
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(3.2 .. 3) 

(3. 2.4) 

oo n ( ) . k oo . oo ) ,,. 
Proposition. Z ~ .Bnk' a -:;(1- = ~ ( z ~~ PA=+pa. 

n=o k=o k=o . n=o 

(3.2.5) 

Proof. In order to prove the proposition, we consider 

00 n gfP, a) n-k z z X nk 
n=o k=o 

00 00 J(pn+pk+pa) n 
= z ~ p(k+a) 

n=o k=o n! f((p-l)rY+pk+pa+l) x 

00 
= Z ( l+v) pk+pa (3. 2. 6) 

k=o 

where v = x( l+v) P, a and p are constants. 

Using lemma (3.2.1) '"e get from (3.2.6), 

. ~ , z B-~' a) ~n-k . = z 2 Hnxn pk+pa oo n , oo ( oo ) 

n=o k=o k=o n=o 
which proves inturn the above proposition., 
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Remark. The result in (3.2.7) is generalization of the 

result (2.1.13). For p = 2, (3.2.7) yields 

oo n ( oo oo z L: Bnk2, a) xn-k = L: ( z _1._ ( 2n) xn) 2k+2a 
n+-1 n n=o k=o k==o n:::o 

00 00 ~ 2k+2a 
= L: ( L: en ) 

k:::o n:::o 

00 00 

::: z ( Z C xn)k+a (3.2.8) 
k=o n:::o nt-l 

We have used ~(~~2;.4i-:) in deriving (3.2.8). l!Je conclude 

from ( 0~2.8) that 

00 n B(2, a) n-k 00 00 n 1 k+a 
L:: z X ::: L: ( .z c - ) 

nk n x 
n=o k==o k:::o n:::l 

-
which we established in Chapter II •. For a = 0, this result 

further reduces to that of Shapiro [2(]. 



B I B 1 I 0 G R A P H Y 

1. Alter, R. 

Some remarks and results on Catalan Numbers. 

Proceedings Southeastern Conference on 

Combinatorics, Graph Theory and Computing. 

2. Boas, R.P. and Buck, R.C. 

Polynomials defined by generating relations. 

Amer. Hath. Nonthly, 63, 1956, 626-632. 

3. Brenke, W.C. 

On generating functions of Polynomial Systems. 

Arner. Math. Honthly, 52, 1945, 29?-301. 

4. Brown, W.G. 

Historical Note on recurrent combinatorial 

Problem, Amer. Math. Monthly, ?2, 1965,937-9??. 

5. Catalan, E. 

Note sur une equation aux differences finies, 

J. Math. Pures Appl, ( 1), 3, 1836. 

6. Donaghey, R-

Restricted Plane tree Representation of Motzkin 

Catalan Equations, Jr. of Comb. Theory (B), 22, 

114-121, 19??. 

?. Finucan, H. 

Some elementary aspects of Catalan Numbers, 

Combinatorial Math.iv, Proceeding of Fourth 

Australian Conf., Aug. 2?-29, 19?5, 41-45. 



4? 

8. Gould, H. vJ. 

Generalization of a formula of Touchard for 

Catalan Numbers. Journal of Combinatorial Theory, 

Series A 23, 19?7, 351-353. 

9., Huff, ~v.N. and Rainville, E.D. 

On Sheffer A-type of polynomial generated 

by ¢(t)f(xt); Proc. Amer.Math.Soc.,3,1952,298-299 

10. Izbicki, H • 
•• 
Uber unterbaumes eiries Baumes Monatshefte. 

F. Math. 74 7 1970, 50.;.62. 

11. Knuth, D. 

The art of Computer Programming, Vol.I, 

1rJorld student Service Edition, 1975. 

12. Lafer, P. and Long, c. T. 

A Combinatorial Problem, The American Hath., 

Monthly, 69, 1962, 876. 

1!. Laplace, Ivl. Le l"iarquide. 

Theorie Analytique des Probabilities; Paris 

1820 

14. Lois, Comtet. 

Analyse combinatoire, Paris, 1970 : Tame 

Premier, 64 • 

15. Mittal, H.B. 

Some Generating Functions, Separata da revista 

da Faculdade de ciencias de Lisboa 2.a Serie-

0 A - Vol. XIII ~ Fasc. 1. , 1970, 43-54. 



48 

16.. Mi ttal, H.B. 

Unusual generating relation for Polynomial sets 

Jr. fur die reine und angewandte Mathematik, 

Sonderdruck aus Band 271, Sei te 122 bis 138,1974.. 

17. Mittal, H .. B. 

Polynomial defined by Generating relations 

Transaction of the .A.mer. Hath., Soc., 168, 

June 1972, 73-84. 

18. Mittal, H.B. 

19. Netto, E. 

Bilinear and Bilateral Generating Relations. 

Amer. Journal of Math., 99 No.1,1972,23-55. 

Lehrbuch der Combinatoric Chelsea, N.Y.l958,192. 

20. Palas, F.J. 

The polynomial generated by f(t) expjp(x)u(t)l; 

. Oklahoma Thesis, 1955. 

21. Polya, G. 

Mathematics and Plausible Reasoning, vol, I, 

Princeton Univ. Press, 1954, 102 (Problems 7,8,9). 

22. Rainville, E.D. 

23. Ri or don, J. 

Certain Generating function and associated 

polynomials.Amer.Math. Monthly,52,1945,239-250. 

A note on Catalan Paranthesis. Arner. Math,. 

Monthly; vol. 80, 1973, 904-906. 



49 

24. Rogers, D.G. 

Pascal Triangle,Catal.an Triangle and Renewal 

Arrays, Discrete Maths, 22, 19?8,301-3191 

25. Shapiro, L.tv. 

Catalan Numbers and Total Information Numbers. 

Proc. 6th S.E.Conf .Comb. ,Graph Theory and 

Computing,, 19?5, 531-539. 

26. Shapiro, L. 'tv. 
A short proof of an identity of Touchard1s 

concerning Catalan Numbers. Jour. of' Canb. 

Theory, 20 No.3, Hay 19?6. 

27. Shapiro, L.w. 

A Catalan Triangle,Discrete Maths.14,19?6,83-90~ 

28. Sheffer, I.M. 

Some properties of Polynomial sets of' type zero. 

Duke Math. J. s, 1939, 590-622. 

29. Touchard, J. 

Sur Certaines Equations Fonctionnelles. Proc~ 

Int. Math. Congress, Toronto, vol.l, 1924, 

465-4?2 ( 1928) • 

30. Truesdell, c. 
An essay toward cn unified theory of special 

functions, Princeton, 1948. 

31. Zeitlin, D. 

On generating functions and a formula of 
Choudhari, Amer.Math.Month. ?4, 196?, 1056-1062. 

32. Riordon, J. 

Combinatorial Identities, 

John Wiley & Sons Inc. New York. 1968 



ABSTRACT 

Catalan NQJnber has been used in finding J;_pe number of 

binary tree e by Knuth [ 11 J. 

~he purpose of this thesis is to extend the standard 

nCltion of Catalan Number and to -generalise 

ot Shapiro · [27] and Rogers t 24). 

The principal results are given below : 

some ~sults 

/ 

1. 
(a) 

k +a 2n + 2a ) where--a is a constant~&Dd Bnk s ( 
n +a n-k 

.:s. 

n 
~: 1) L. -- B(a) 

• ( 2n_ + 2g- .. -1 ) 
k = 1 nk n- 1 

OQ 
~ ~ 

~ ii) 2: B(a) -yp-k L { L 0 :g;ll-1 )k+a 
n=O k:O nk = k=O ll=1 n 

111} B(a) (a) 
n+1, k+1 •Bnk 

s 
2n- s 

( 

2B(a) 
+ n, &+1 

2n- s 
n 

) 

(a) 
+ Bn, k+2 • 

Where n and s are positive integers and n-s ~ 0 ·and - . 

ii) i!: 
s = 1 

(p, a) 
Bnk = k +a 

:n -!- a 
( pn + pa ) 

n-k . 

where p and a are constants and 

1) t: (p - 1 )k B(p,a) 

kaO nk 

ii) ~ (p,a) r: -C!Ic. ~-k z:.. Bnk 
n=O k:O 

= { pn+pa-1 ) 
n 

c.::;_ ~ 

= z_ ( 2:. Hn 

k=O naO 

7fl)p~pe 

where Hn is the number o:r t-ary trees with n nodes. 
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