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ABSTRACT 

In distributed systems the database 1s replicated 

over a number of sites. The transactions are concurrently 

executed in number of sites, where a transaction (a task) is 

divided into number of subtasks and may be ·carried· out 

concurrentl-y--at the sites where these are assigned-. ----!n such 

environment, the failure of nodes or links may lead to 

inconsistent updates to the database. 

The dissertation contributes in suggesting ~e~§ures 

for retaining consistancy in the event of the above 

mentioned failures. The node or link failures might lead to 
-~ ........ 

partitionirig of the network in which a set of nodes cannot 

communicate with rest of the nodes. Recovery from failures 

poses a large number of problems and a great amount of 

research work has been done in order to solve these. 

Recovery from partitions· is the area in which extensive 

research is going on. The recovery techni_ques studied in 

this dissertation have been designed to solve the problem of 

consistancy. This dissertation also gives a solution to 

recovery from multiple partitions using dynamic votin~ 

technique and thus increasing the availability of database. 
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C H A P T E R 1 

I N T R 0 D U C T I 0 N 



A distributed system is one in which the processors 

are distr.ibuted over large geographical area with each of 

the processors working autonomously without sharing any 

memory but communicating with the other processors in the 

system by messages. 

There is disagreement in defining what .a 

distributed system is? Tnis varies from multiprocessors, 

multicomputers, workstation LANs to interconnected WANs. 

Not only the memory distribution but also the type of 

communication between the processors determine the 

characteristics of a distributed system. This can vary by 

any degree from tightly coupled systems to loos~ly coupled 

systems. The degree of communication is measured in grain 

s.ize. The systems with large grain size communicate 

infrequently and spend much of their time in computation. 

The system with fine grain size communicate more frequently. 

The goal of the distributed system is to achieve speedup 

through parallelism in running an application. 

The difference between an ordinary computer system 

and distributed system is that the distributed system ha9 

got partial failure property. Even though part of the system 

fails (it can be single site to multiple site) the rest of 

the system must be in a position to continue with its work. 

This makes the distributed system attractive as the failure 

frequency or duration of failure is unpredictable. To 
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achieve partial failure property the data items should be 

replicated o~er distributed sites~running a~tonomously. 

The distributed system differs from other 

sequential systems in three issues: 

i) it· should be in a position to assign different parts of 

the program to different processors to use the processors 

optimally. 

ii) these set of processors working on some program segment 

should co-operate to exchange results and for 

synchronization. 

iii) implementing parti~l failure property. 

The properties (ii) and (iii) together pose the 

problem of globally consistent state of the system. The 

failure can be in node or communication. This can lead to 

network partitioning isolating set of nodes from rest of the 

nodes in the syst~m. Increasing demand for higher 

throughput and higher availability makes the distributed 

system attractive. 

replication results 

failure of one or 

But increasing the availability by 

in inconsistencies in the event of 

more nodes. This is because of 

complicated failure modes of multiprocessor configurations. 

To suppo_rt partial failure property failure of one node or 

communication failures should not stop the system. But a 

transaction involving set of nodes leads to inconsistent 

state of the system. This demands the execution of 
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operations in the transactions to be complete or the 

transaction should have no effect on the system at all. 

Such a transaction is called atomic transaction. We call an 

operation atomic if it satisfies both the properties of 

indivisibility and recoverability. ·A transaction is 

indivisible if· its intermediate states are transparent to 

the external world. An operation is recoverable if the 

failure of the transaction will force the system to get back 

its state before the operation is started and thus the 

operation has got no effect at all. The transaction outcome 

can.be one of the three instances given below: 

BEGIN 

action 

action 

action 

COMMIT 

Successful 
Transaction 

BEGIN 

action 

action 

action 

ABORT 

Aborted by 
Client 

BEGIN 

action 

action 

action 

ABORT ==> 

Aborted by 
Server 

The important properties of atomic actions as put. 

forth by Randell[RAND 78] are as follows: 

i) "An action is atomic if the process (processes) 

performing it is (are) not aware of the existence of any 

other active processes, and no other process is aware of the 
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activity of the process (processes) during the. time the 

process is (processes are) performing the action".· 

ii) "An action is atomic if the process (processes) 

performing it does(do) not communicate with other processes 

while the action is being performed". 

iii) "An action is atomic if the process ('processes) 

performing it can detect n6 state changes except those 

performed by itself(thernselves) and if it does (they do) not 

reveal its(their) state changes until the action is 

complete". 

( i v) "Actions ·are atomic if they can be considered so far 

as other processes are concerned, to be indivisible and 

instantaneous, such that the effects on the system are as if 

they were interleaved as opposed to concurrent". 

An atomic action can be achieved as follows: If a 

transaction contains an operation that tries to change an 

object, the changes are not applied to original object, but 

-·to a new copy of the object called version. If the entire 

transaction fails (or aborts), the new versions are simply 

discarded. If the transaction succeeds, it commits so that 

the new version becomes permanent. All objects modified by 

the transaction will retain this new version. It is not 

feasible to abort the transaction because of node failure or 

some other internal error. For this reason latest value of 

each object is placed in stable storage which has high 

chances of surviving processor crashes. 
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In distributed systems data items are replicated at 

various sites to increase the availability. This increases 

the reliability of database by making the database. to be 

resilient to the site failures. A-lso it decreases the 

. communication in the network when the data is present at the 

requester's site. But here· the user should see that the 

updates to the database is- made at all sites where the 

replica exists. But this has got a serious prol;>lem of 

inconsistency when the communcation fails. This may lead to 

conflicting . updates to the database. This problem will 

become more severe when the communication failure divides 

the system in to two partitions ( partition failure ) . This 

will update the replica of some data items at different 

partitions compromising the correctness of data. 

· In addition to the above complexities the problem 

still unsolved is the detection of the failure modes in the 

system. This includes the three anomalies which the system 

can not differentiate 

i) the node is down or 

ii) the communication channel to the node is down or 

iii) node and cpmmunication channels are fine but the delay 

is high. 

When partitioning occurs, the transactions may or 

may not be allowed to continue and new transactions can be 

allowed to enter the partition. If the transactions are 
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allowed then conflicting updates can be taken care of · by 

undoing the transaction and its effect by runn1ng 

compensating transaction which undo .the effect of 

transaction which is the cause of inconsistency of database. 

But this may not be suitable in certain-cases like banking 

system where money is withdrawn. If the transaction is 

suspended on partition then this decreases the availability. 

But the database will be consistent. This may not be 

acceptable in certain applications like: 

i) airline reservation where partition means losing 

customer or 

ii) in military Command and Control systems where 

availability is more important than correctness or 

consistency. 

Two strategies associated with partitioned 

recovery are optimistic - and pessimistic. In optimistic 

strategy there is a threat to the global consistency of the 

system as the system allows each partition to continue with 

its operation even when the partition occurs. The 

inconsistencies are resolved.at the recovery time when the 

two partitions merge. In the pessimistic strategy, 

inconsistencies never occur as care is taken to see that 

same data item can not be updated in both the partitions. 

The optimistic strategies include version vectors 

[chapter 4] , optimistic protocol [chapter 3] . Some of the 
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pessimistic strategies include primary copy [ALS~ 76, STON 

. 79] , _ tokens [MINO 82] , voting [ GIFF 79] , missing writes 

[EAGE 83] etc. 

My contribution in this dissertation is to find, 

how to recover from multiple partitions using dynamic 

voting. This is a pessimistic recovery mechanism.· Chapter 2 

is a survey of fault resilient design techniques. Chapter 3 

is a survey on optimistic recovery. It gives solutions to 

both transient and persistent failure recovery: Chapter 4 

discusses pessimistic recovery. It tries to increase 

availability in distributed systems · using dynamic voting 

while recovering from multiple partitions. Chapter 5 

focusses on current and further research in this area. 
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2.1 INTRODUCTION 

This chapter is the survey of various strategies 

used in providing fault resiliency in case of process 

failures. Checkpointing and rollback recovery techniques 

used in the event· of failure in distributed systems is -also 

considered. The name distributed system itself conveys that 

the recovery from- a failure is not only local t6 the failed 

node but also includes the whole system or a subset of the 

whole system which is affected by failure. 

Recovery in centralised sy$tem is rather clear as 

the failure is local to the failed node. Failure must have 

occurred either before or after the completion of the 

operation. The recovery in distributed system is two fold. 

In the first case data items are distributed over sites. In 

the second case the data items are also replicated oyer 

various nodes. 

The various recovery techniques outlined in this 

chapter are recovery blocks,conversation,exchange,N-version 
. 

programming and checkpointing and rollback recovery. 

2.2 RECOVERY BLOCKS 

The failure of a node or site can be due to 

internal or external errors. Internal errors are the errors 

in which the system can recover when the same set of 
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operations 

errors the 

are rerun or repeated. In case 

fallure is limited to the local 

of external 

node and it 

cannot be handled by the local node. It could be because of 

hardware or software. Here multiplicity of hardware or 

software is of no avail. So divers l.f ied hardware and 

software is used. In the following section we discuss how 

to recover from internal errors developed by Randell [RAND 

75]·and external errors by Kim [KIM 84]. 

The recovery block mechanism needs the program to 

be structured into set of blocks like subroutines, modules, 

procedures, functions etc. Each of these program units can 

be run on the primary as well as backup processes to recover 

from failures. The backup block becomes the recovery block 

in cas~ of failure of the primary block. 

2.2.1 Recovery from internal errors 

The recovery block consists of tryblocks. One of 

the tryblocks is a primary block and the rest are alternate 

blocks. Each of the try blocks consists of acceptance test 

which needs to be satisfied after the module is run in a 

block to determine the correctness of the execution. In 

case of failure of a block the system state is restored and 

the next alternate block is tried. If the acceptance test 

is passed then further try blocks are ignored. If all the 

alternate blocks fail then the whole recovery block is 

11 



regarded as failed. The recovery block structure is as 

follows:. 
BEGIN 

END 

{ PRIMARY BLOCK } 

(operations) 

while (acceptance-test-not-satisfied and 
alternates-exist) do 

begin 
restore the system state 
use alternate block for operations 

end 

if acceptance-test-satisfied then 

return(success) 

else return(failure) 

2.2.2 Recovery from external error 

External error recovery is done by distributed 

execution of recovery blocks. It is suitable for tolerating 

failures in both hardware and software components. · The 

recovery block here consists of tryblocks, one in local node 

and the rest in standby nodes. Acceptance test is used to 

check the correctness of result. In case of error the 

standby node contai~ing a tryblock is invoked. To gain time 

concurrently all the tryblocks can be initiated. Two 

schemes are considered. We assume that the tryblocks will 

not update global variables and for ease of explaining we 

consider only two tryblocks, primary and backup. 

12 



Scheme I 

The primary block and the standby block work on the 

same program module and at the end of the run the acceptance 

test is taken. If the primary block passes the acceptance 

test then its result will be directed to successor computing 

station else the alternate block will be notified of the 

failure of primary block. The alternate block after the 

acceptance test, on passing the test, passes the result to 

the successor computing station. In addition to logic 

acceptance test, time acceptance test is also used to put 

bounds on the time of execution of module in all of the 

tryblocks (see fig.2.1). 

PRECEDING COMPUTING STATION 

Primary node Backup 
node 

Input 
buffer 

Ace 
Test 

Acceptance 
------- Test 

(Time & Logic) (Time & Logic) 

SUCCESSOR COMPUTING STATION 

fig. 2.1 Scheme I 
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Scheme II 

In this scheme the primary and backup nodes will 

have two tryblocks each. _one is designated as primary and 

the other as backup block. In case of failure of primary 

node the roles of the primary and backup nodes are 

exchanged. Also in case of failure of any of the nodes the 

roles of its primary and ba~kup blocks will be chang~d. 

For example in fig. 2.2, the primary block in the 

primary and backup nodes are A and B respectively. The 

failure of primary node acceptance test causes the backup 

node to be new primary node and primary node to be new 

backup·node. The roles of A and B in primary are changed. 

Initial 
Primary Node 

Input 
buffer 

A 

PRECEDING COMPUTING STATION 

Acceptance 
Test 

B B 

Initial 
Backup node· 

A 

Acceptance 
Test 

(TIME & LOGIC} (TIME & LOGIC) 

SUCCESSOR COMPUTING STATION 

fig. 2.2 Scheme II 
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The failure of backup node causes the backup node to change 

the roles of its primary and backup blocks and it starts 

with its new primary block. The failure of backup node will 

have_no effect on the primary node functions. 

2.3 CONVERSATION AND EXCHANGE 

In the previous section of recovery blocks notion 

of interaction between the processes is not considered. 

This makes the system slow in case of failures either 

persistent or transient. The slowness is owing to starting 

of the system from the initial state in the event of failure 

of any of the process. In the strategy to be presented 

communicating processes start from some · intermediate state 

rather than from the initial state. This works well in case 

the failure is transient. This strategy convers~tion and. 

exchange is due to Randell [RAND 7 5) and Andrew [ ANDR 8 6) . · 

The process creates recovery points as it goes on. 

Whenever the process f~ils, it starts from a recovery poirtt. 

Since the processes are interacting, the rolling back of 

the failed process may force other process or set of 

processes to rollback to maintain the consistency of the 

system. This may. lead to uncontrolled rolling back of 

processes and the system starts from initial state 

compromising the idea to restore from some intermediate 

state. This is called the domino effect. The· reason is 

that the processes are dependent on each others progress as 

15 



they are involved in mess~ge passing. For example in figure 

2.3, if the process 1 fails then it will be backed up to 

recovery point 4. If process 2 faiLs it will be backed up 

to recovery point 3 and this forces process 1 to rollback to 

3 and this in turn force~ process 3 to rollback to recovery 

point 4. In case process 3 fails all the processes rollback 

to initial state due to domino effect. 

P1 P2 P3 
1 .... -1 

f- ---------- ·-
r-------------

--------------

2 

--- --- --- ---

t-------- -- ---

3 

,_ __ 
---------

1-----4 ---- ---

2 

1--

3 
1- ----------1--------------..... 

--4 ----

fig. 2.3 Domino Effect 

1 

2 

3 

4 

The set of· processes are said to be in 

conversation if they are communicating among themselves and 

not ~ith any other process outside this set. Any process 

needs to take recovery point on entering the conversation 

16 



and all the processes involved in conversation should 

terminate at the same time(fiq. 2.4). Failure of any of the 

process in the set will. cause all of them to rollback to 

their respective recovery points· taken on entering the 

conversation and start again. 

Pl P2 P3 

- - - _,- .... - --- - -

fig. ~.4 Conversation 

P4 

conversation 
boundary 

- -J 

acceptance 
test- -

The exchange is a restricted form of conversation. 

In exchange each of the process will be taking a recovery 

point on initiation. The set of processes are said to be in 

exchange now and they are allowed to terminate only when 

all the other processes in the excahange terminate. The 

17 



processes involved in the exchange are now allowed to 

discard their initial recovery points. The failure ot: any 

of the process forces all the processes in the exchange to 

rollback to their initial recovery points; 

2.4 N-VERSION APPROACH 

N-version approach is based on multiple computation 

technique used in hardware fault tolerance. It is designed 

by Algirdas (ALGI 85]·. Here diversified software(N

versi6ns) running on N different hardware units generates 

results. The results are checked with acceptance tests as 

used in recovery blocks. The difference between the 

recovery block and N-version approach is that in recovery 

block technique the acceptance test is for identical result 

from the tryblocks but in N-version programming since 

diversified software is used the results of a version. ~lso 

depends upon the local software design. So check will be 

for similar results, not for identical results. But the 

problem is of choosing incorrect result···when the similar 

errors outnumber the set of good results at a decision 

point. 

2.5 CHECKPOINTING AND ROLLBACK RECOVERY 

The conversation technique discussed places a 

restraint on the set of processes taking part in 

conversation to end the conversation at the same time. This 

causes extended delay in a process which finishes th~ task 

first. So this brings down the throughput of the system. 

18 



· Let a process send a message to some other process 

and the other process received the message. After some time 

the received proces~ fails and forgets the information 

regarding the receipt of message. Then the process which 

has sent the message should undo its actions and send the 

message again. This is called roll back. 

When a process fails I its state is lost and the 

whole· system (set of process involved in conversation) 

should start from beginning. But this is not acceptable as 

the transaction might have already t~ken considerable amount 

of time. So after some interval of time the status of the 

process is stored in non-volatile memory called stable 

storage. In the event of failure the process copies its 

state from its stable storage and starts from this point. 

This stored status of the system is called checkpoint. This 

checkpointing and rollback recovery technique is discussed 

by Richard [RICH 87]. 

In the checkpointing and rollback recovery 

technique presented here, when a process takes checkpoint it 

forces a minimal set of processes to take recovery point or 

checkpoint. Also rollback of a process gfter failure forces 

a minimal set of processes to rollback. This strategy is 

tolerant to failures at the time of recovery. Since the 

state of a process is dependent upon the state of other 

processes, any process is allowed to take checkpoint only 

19 



·when the system remains consistent in case of failure of any_ 

of the process. For example (fig. 2.5) when process 'p' 

sends a message to process 'q'. After receiving the message 

say process q takes a checkpoint. Now if process p fails, 

on repair it rolls back to its latest checkpoint and thus 

forgets about sending a message to q. This leads to 

inconsistency in the system. 

fail 
1? X > 

\ 
\ 

\m 
\ 

\ 
\ 

\ 
q "> 

fig. 2.5 Inconsistency 

In the second example (fig. 2 • 6) 1 say process p 

takes a checkpoint after sending the message and process q 

receives the message and fails after some time. The process 

q rolls back to its latest checkpoint which is taken before 

the message from p is received. So p has the knowledge of 

sending the.message whereas q does not have (lost messages). 

p 

q 

r-------------~---~1-----------------> 
. \ 

\ 

'm 
\ 

\ 
\ 

\ 

\ 

r-----------~----------~----------X--------> 

fail 

fig. 2.6 Lost· Messages 
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In this model two checkpoints are taken, one 

tentative and the other permanant. The tentative checkpoint 

can be revoked or changed into permanant checkpoint. To 

overcome inconsistencies a process is allowed to take 

checkpoint only when all the processes which have sent 

messages to process p since its last checkpoint(6alled ckpt-

cohorts of p) are checkpointed. Process p initially takes a 

temporary checkpoint and sends the request to all the 

cohorts of p. They
1

inturn 1 take temporary checkpoints and 

inform its own cohorts and so on. Once cohorts agree on 

checkp9inting, permanant checkpoint is taken by two way 

commit protocol. When a checkpointing process is going on 

the processes which take tentative checkpoints do not 

receive any messages. Also they cannot take another 

checkpoint or rollback to avoid cycles leading to deadlock. 

When a. process p takes a rollback it sends 

request for rollback of all the processes to which it has 

sent messages-after its latest checkpoi~t{called rback

cohorts of p) to rollback. The mechanism is similar to one 

used while taking checkpointing. When it receives positive 

response from all the co~orts then it will be ready to take 

rollback action. During recovery a pro~ess taking part in 

recovery is not allowed to send messages excepting the 

request for rollback 



In the event of negative response from a cohort or 

failure of a cohort the rollback 1s not allowed. This is 

needed to maintain the consistency of the system. 
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3.1 INTRODUCTION 

· The optimistic recovery technique is used when 

probability of failure is very low and failure latency is 

small. The overhead incurred using this technique is -small 

and its complexity increases linearly with increase in the 

number ·of failures. The computation will continue even when 

the sites fail. It can withstand single site or mul tisi te 

failures. There will be no synchronization among 

communication, cbmputation and checkpointing. But 

synchronization is needed when a failed process recovers and 

starts from recent stored state. He~e the set of processes 

whose states depend upon the failed process are also forced 

to backout and replay messages to start from unique maximum 

system state. A method which does not need synchronization 

but uses incarnation numbers to detect duplicated messages 

is discussed by [YEMI 85]. 

Checkpoi.nting and rollback recovery technique 

is used to achieve resiliency (see section 2. 5 } • Let a 

process p send 

the process q 

a message m to process q. 

fails and then loses 

After receiving m 

the knowledge of 

receiving message m. But process p still thinks that the 

message is received by process q. Here process p is called 

orphan process and the computations if any performed by p 

are . called orphans. Here we need to undo the actions of 

process p by forcing it to some earliar state that does 

not depend on the lost state. To undo the actions of p we 

24 



will restore the status of p to some earlier checkpoint from 

stab'!e storage and then replay the logged messages. The 

messages are said to be logged when the messages that the 

process received is stored in stable storage. Here, care is 

taken to see that ·the extent of roll back is restricted so 

that it will not lead to domino effect. 

We have seen that when process p sends a message to 

process q, process p becomes orphan when q fails and thus 

forgetting the receipt of message. The sender may keep on 

sending the same message until the receiver logs the 

message. But the number of messages are usually written to 

stable storage depending upon the size of buffer and in a 

single transfer. Writing each message on 

reduces the throughput. The intention is 

its receipt 

to allow the 

sender to continue with its actions after sending the 

message, no matter the receiver has logged the message or 

not and still be in a position to recover from failures 

[JOHN_90]. Also to see that, based ·on current checkpoint and 

logged messages, recover to unique maximum recoverable 

system state. This relinquishes the restriction to lQg all 

the received messages. 

This optimistic strategy will never limit the 

availability of· the system. In case. of single or multiple 

site failures, even a single copy of the data item will make 

the system to continue with its task. But this creates 
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inconsistencies when the network is partitioned. In each of 

the partitions data wi 1.1 be cons is tent. But as each 

partition is allowed access to data the global state [CHAN 
-

85) of the system will be inconsistent. When the 

partitions are to be merged these inconsistencies should be 

detected and restored. Two techniques, an optimistic 

protocol [DAVI 84) and version vector approach [·PARK 83] are 

discussed. 

3.2 RECOVERY FROM SITE FAILURES 

3.2.1 Determining system State 

The state of the process is defined in terms of the 

state of its dependencies i.e. the set of processes which 

can make this process an orphan. The state of the system is 

the collection of states of all the processes in the system. 

Here the state of the process is defined 1n terms 

of the number of messages it received. Each time the 

~recess receives a message the state interval of the process 

is incremented by one. So a p~ocess can send any number of 

messages during a state interval and it changes each time 

when it receives a message (see fig. 3 .1). The current 

state of a process will ·be its current state interval (or 

the count of number of messages it received). The process 

tags with each of the message sent by it, the current state 

interval. 
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state Interval = 0 

send mesg1 

send mesg2 

Rec mesg1 

state Interval 1 

send mesgp 

send mesgq 

Rec mesg2 

State Interval = 2 

Rec mesgi 

state Interval = i 

fig._ 3.1 Numbering State Intervals 

The dependency vector of process i (DVi) is the set 

of state intervals of all the processes on which the 

process i depends·. We call process i depends on some 
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process j when process i receives a message from process j. 

When a process dosen't receive any message from process j 

then the value corresponding to process j is kept at some 

minimum value(..l) at process i (see fig. 3.2)'. 

,dn > where, n denotes the 

number of processes in the system. 

Process 1 

Process 2 

Process 3 

Process 4 

0 

I 
I 

I 
I 

I 
I 

1 

l 
I 

0 I I ----·-· --~-------------------· 
\ 
\ 

\ 
\ 
\ 
\ 
\ 

2 -, > 

I 
I 

I. 
I 

I 
I 

I 

> 

0 \ 1 2 

----------~---~---~---------------> 
/ \ 

/ \ 
/ \ 

// \ 
/ \ 

/ \ 
/ \ 

0 / \ 1 
-----·/ ~-------> 

DV1 = < 2 0 ..L ..L > 

DV2 = < ..L 0 ..L ..L > 

DV3 = < ..L 0 2 0 > 

DV4 < ..L ..L 2 1 > 
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r 
2 0 ~ ~ 

~ 0 ~ ~ 

DVXX = 

l ~ 0 2 0 

~ ~ 2 1 

fig. 3.2 The System State 

The matrix DVxx determines the system state at some 

point in time. The dependency vect6r values determine only 

the receipt ·of messages not the logging of messages. The 

diagonal values in DVxx determine the current ~tate 

intervals of the corresponding prcessess. 

The dependency vectors are sent to the centralised 

controller. The centralised controller determines the whole 

state of the system (Dxxl from the information provided by 

the processes. The state of the system at an instant of 

time will be consistent state of the syst~m. When a proce~s 

fails and then recovers the system is forced back to this-

consistent system state and starts all over again so that it 

is equivalent to some failure free execution. The system 

state is said to be inconsistent if a message not yet sent 

by the system is received by a process. It can be due to 

failure of the sender and it rolls back on failure and 

forgets about sending the message. This is same as saying 

that the system state is inconsistent if for some process p 

the status of some·of the processes depends beyond the 
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process p'~ current state interval. This can be ensured 

from the dependency matrix. In each of the column the 

diagonal element (the_current state interval of the process) 

should not be less than any other value in that column so 

that the system is consistent. 

3.2.2 Checkpointing and Message Logging 

When a process receives a message it may place the 

message in stable storage so that in the event of failure of 

process it will retain some stable state and replay the 

messages from stable storage. This storing the messages in 

stable storage is called message logging. When ever a 

process receives a message it changes (or increments) its 

current state interval index. We can say that the message 

received started the new state interval index. The message 

received and the state interval index it started are both 

logged (logged (i,a)). Here i denotes process number and a 

- the new state int~rvai index, the message which started new 

state i. 

A state -interval a of a process is said to be 

stable if the process can be started from its checkpoint and 

the messages logged can be replayed so that it will get back 

to state interval a. We say stable(i,B) if for process i 

the state interval B is stable. Let us say process i's 

state interval p is checkpointed and r will be its stable 

state interval if 

¥ q p < q <= r [logged(i,q)] 
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Here the process will roll back to its state interval p in 

the checkpoint and starts replaying the messages from p+l to 

r and hence its state interval ~ill be r again. 

3.2.3 R~coverable system State 

The system state a is recoverable if the component 

processes can be backed to their latest checkpoint and then 

by replaying the logged messages the process can get back to 

state a as if some equivalent failure free execution is 

going on. So the system state D = (DxxJ is recoverable if 

in DXX' 

¥ i (Stable(i,Dii] 

The current recoverable state (CRS) is the state to 

which the whole system can be restored in the event of 

failures in the system. 

3.2.4 Finding Unique maximum System state 

The old recovery vector (R = axx) and the 

dependency vector are needed in-determining the new recovery 

vector. At first when the system starts, the re~overy 

vector of the system is initialised to zero vector. The 

recovery vector (RVi) of a process i can change when 

i) a new process state interval became stable ( p > aii) 

or 

ii) a checkpoint has been taken or 

iii) messages 

logged. 

received after effective checkpoint are 
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Now the system recovery;vector (R) is changed to 

reflect this new recovery vector value for process i by 

replacing its ith row by new recovery vector value. Now the 

new system recovery vector and'dependency vectors are 

checked to find new current recov~ry state (see fig. 3.3a 

and 3. 3b) . In the beginning the tecovery vectors of each 

process and the current recovery state are initialised to 

zero vectors. 

0 1 
Process 1 I~ > 

\ 
\ I 

\ I 

\ a; 
\ I 

\ I 
\ I 

0 \ 1 I 2 
Process ~-~ 

I 
2 • , > 

\ 
\ . I ,·, I 

'b I 
'· '\ I 

' I 

' I 
0 1\ I 

Process 3 ~-~ > 

fig. 3.3a The system state 

CRS = < 0 0 ,0 > 

1 1 .l. 0 0 0 

DV 0 2 1 R = 0 0 0 

j_ 1 1 0 0 0 
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So the maximum recoverable system state will be < 1 2 1 >. 

For thi~ same example I. will exp~ain what happens when the 
I 

same sequence of actions takes ptace. 

0 1 
Process 1 ~ -, > 

\ 
\ I 

\ I 
\ I 
\ I 

\ I 
\ 

I \ 
0 \ \ 1 . I 2 

Process 2 ~-tt: '- ! > 
'\ 

' I ' ' I 

' I 

' I 

' I 

' I 
0 1 \ I 

Process 3 ~ fi > 

Initially the current recovery state will be 

zero vector (CRS = < o o o >). When the message a is 

logged, it can't be inciuded in th~ CRS because process 2 

has not yet logged its first messag~ and hence the failure 

of process--2 makes it impossible fo~ process 1 to send the 

messag~ again since its recovery state is one. It defers 

this till process 2 makes its state interval 1 stable. 

Now say process ·2 takes ~heckpoint in state 

interval 2. Here also its stable state 2 is not included in 

the current recovery state. It defe~s this till message b 

becomes stable in process 3. 

If process 3 logs its received message b, it can be 

included in the current recovery;state. So the CRS 

becomes <0 0 1>. This makes the waiting process 2 to put its 
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recovery state into CRS making it 
I 

< 0 1 >. Process 1 
I 

eventually finds that the state intrerval~ 1 of p~ocess 2 is 

stable and hence the current recovery state is changed to < 

·1 2 1 >. Here the me§sages 1 and' 2 of process 2 are never 

logged. So this method relinqui~hes from the constraint 
I 

that all the messages received py a process should be 
' 

logged. For algorithm and other d~finitions see [DAVI 90]. 

From the above ·method we ~can say that the current 
I 

recovery state never decreases and hence domino efect will 

be taken care. Also the calculation of CRS goes 

concurrently with the other pr~cesses and the unique 
I 

maximum system state is calculated at the earliest. By 
I 

broadcasting CRS to all the sites, the failure of the 

central controller can be made robust. For the selection of 
I 

cential controller election algbrithms are discussed in 
! 

[RAYN 88). 

3 • 3 RECOVERY FROM PARTITIONS 
I 

The data items are replicated to increase the 

availability- of data. This reduces the network load caused 
I 

by remote data accesses, improves the access time and 
I 

increases the raliability agains~ site failures. But this 

creates new problem due to ,communication failures, 

partitioning of network and lengthy communication delays. 

This can lead to conflicting updates in each of partition 

(communication delay can be considered as single node 

partition) compromising the consistency of the database. 
I 
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The optimistic re~overy strategy assumes that 

the failures rarely occur. So the data item~ are updated 

and are read in each of the partitions. Though the database 

will be consistent in each of the parititions but the global 

' 
system state will be inconsistent. 

I 
Two problems are 

' 
associated with the partitions~ one detection of partitions 

and-two recovery from inconsis~encies if any. The partition 

' 
can only be detected during r~covery phase as the each of 

the partitions will assume that the set of processes to 

which it could not communicate ':.tailed. Once the partitions 

are detected the inconsistenci~s if any are checked. To 

recover from inconsistencies the transactions need to be 

rolled back in both the partitions. Two strategies to 

recover from the partitions leading to inconsistencies are 

discussed. They are 

i) Version vector model and 

ii) Precedence graph model. 

3.3.1 Version vector~ 

This model is used -in the design of LOCUS operating 

' system [ POPE 83]. The version vectors only detect write-

write conflicts between the copie~ of same data item. Each 
'· 

copy of the logica·l data item maintains array of two fields. 

The size of the array is equal tq the number of copies of 

the logical data item. The field~ are a) the name of the 

site and b) number of times the file is updated in this 
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site. The conflicts due to . partition can be found by 

comparing the version vector values; once the partition is 

detected. Two partitions are said to be not in conflict if 

the vector in one of the partitions dominate the vector in 

other partition (see examples below). 

Partition 1. <A:1, B:2, C:4, D:3> NO CONFLICT 

Partition 2. <A:l, B:2, C:2, D:3~ Part.1 dominates part. 2 

Partition 1. <A:1, B:2, C:2, D:3> CONFLICT 

Partition 2. <A:1, B:2, C:3, D:4> Both part.1(C) and part. 
2(D) trying to dominate. 

Partition 1. <A:1, B:2, C:4, D:3> NO CONFLICT 

Partition 2. <A:1, B:2, C:3, D:4> Part. 3 dominates other 
two 

Partiti~n 3. <A:1, B:2, C:4, D:4> 

<A:O,B:2,C:O,D:O> 

.c ~ AB~:o,B:o,c:o,n:O> 

/ <A:O,B:O, 

<A:O,B:3,C:O,D:O> B <A:l,B:2, ACe 

C:O,D:O> 

c:o,o:o> 

D <A:O,B:O, 
C:O,D:O> 

<A:l,B:2, 
C:O,D:O> 

CONFLICT!!! 
(Both the partitions ACD and B trying to dominate) 

fig. 3.4 Recovery f~om partitions 
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The version vector -method :i,.s not automatic i.e. 

once the conflicts between the_ partitions is detected the 

·resolution is left to the database admini-~trator (see 

fig. 3. 4) • 

This version vector model will work only in case of 

single file transactions. The conflicts are not detected in 

case of multifile transactions. F-or example consider a bank 

in which a person can withdraw mon~y based on sum of his two 

account balances. The information regarding his balances 

are r~plicated at_ two sites A and B. The transactio~ and 

the version vector applicability are shown in fig. 3.5a and 

3.5b. Though only Rs. 300 "is in bdth accounts put together 

he could collect Rs. 450 and there is no conflict in the_ 

database detected by version vectors. 

SITE-A 

acctx.bal = Rs. 100 
-

accty. bal =- Rs. 200 

If acctx.bal+accty.bal>150 

then 
acctx.bal:=acctx.bal-150 

acctx.bal = Rs. -50 

accty.bal = Rs. 200 

SITE-B 

acctx.bal = Rs. 100 

accty.bal = Rs. 200 

If acctx .. bal+accty. bal>200 

then 
accty~bal:=accty.bal-200 

~cctx.bal = Rs. 100_ 

accty.bal Rs. 0 

fig. 3. Sa 
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acctx 

<A:o,s:o>A 

<A:l,B:O> A B <A:O,B:O> 

VA:l,B:O> 

NO CONFLICT!! 

~ccty A <A:O,B:O> 

<A:O,B:O> ~ <A:O,B:l> 

<A:O,B:l> AB 

NO CONFLICT!! 

fig. 3~5b Undetected-Inconsistencies 

3.3.2 Precedence Graph Model 

Precedence graphs · are- used to determine· the 

serialization between the sites [DAVI 82,84]. Precendence 

graph model to check serialization in a single site is given 

in [PAPA 79]. To construct the precedence graphs the read 

and write requests are logged in stable storage. Once a 

partition is detected the logged requests in-both the 

partitions are used to determine serializability. The 

conflicts between the partitions is detected by cycles in 

the precedence graph. ·The set of transactions Ti1 ,Ti2 ,Ti3 , 

, Tin determine set of n transactions in serial 

order in partition i. The interaction between the 

transactions are represented by edges in the precedence 

graph. T_he interactions are of three types: 

i> Data dependency_ ~dges 

transaction k reads the value of data item updated by 

·t 
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ii) Precedence edges T ik) Here the 

transaction i reads a data item before tansaction j writes 

it. 

iii) Interference edges (Tij-----~ 

tr~nsaction i reads the data item before the transaction k 

writes on to it in the other partition . 

. Here we assume- that the readset of transactions 

include the writeset. Also the write-write conflict can be 

represented by a pair of read-write conflicts. The 

conflicts between the transactions and the cycle in the 

precedence graph is shown in fig. 3.6 . 

Tll 
I 
I 
I 
I 
I .. 

T12 
I 
I 
I 
I 
I ... 

T13 

partition 1 partition 2 

a,b .T e,f 

a,b e 

b,c a,f 

c f 

c,d,e 

d 

fig. 3.6 Precedence graph showing conflict 

The precedence graph for a set of. partitions is 

acyclic iff resulting database is consistent [ DAVI 84 ] . 

If the precedence graph contain no cycles the last updated 
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' \ 

copy of each data item is the correct value. Resolving the 

inconsistenci~s include undoing the transactions until the 

resulting graph is acyclic. It might result in uncontrolled 

rolling back of transactions. The ttansactions connected by· 

precedence edges are not rolled. back ~ince th~y did not read 

the results·of the rolled-badk transactions. Also the 
' 

transactions are. rolled back opppsi te in direction to the 

execution of transactions. \ 
\ 
\ 

Rolling back of the tr~nsacti6ns may not be 

acceptable in some cases like bankirlg. 
\ 

Once the money has 

been lent to the customer the rolling back of transactions 
\ 

is not just updates to the database. ·._The precedence graph 
\ 

method is well suited 

i) when only small percentage of items were updated during 
I 

partitioning and \ 

ii) when writesets are very small for most of the 

transactions. 

3.4 CONCLUSION 

This paper surveys the existing optimi_stic recovery 

techniques. The message logging and checkpointing strategy 

which a-lso determines maximum recoverable syst~:m state is 

suitable when the failures are transient. ·When the failures 

are persistent ·either version vectors or precedence graph 

model can be used. But version vector model can be.used to 

detect only write-write conflicts and can be used ~n~y with 

single file transactions. 
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C H A P T E R 4 

PESSIMISTIC RECOVERY IN DISTRIBUTED SYSTEMS 

4.1 INTRODUCTION 

4.2 LOCK SERVER 

· 4.3 CONSISTENCY FROM CRASHES 

4.4 RECOVERY FROM SINGLE NODE FAILURES 

4.5 MERGING OF PARTITIONS 

4.6 RECOVERY FROM MULTIPLE PARTITIONS AND DYNAMIC VOTING 

4.7 CONCLUSION 



4.1 INTRODUCTION 

The availability of the database can be increased 

by repli~ating the data at number of sites. But this poses 

problems of consistency in the ' events of nodal or 

communication failures which· makes a node inaccessible or 

partition of. the network. ·The pessi~istic model tries to 

maximise availability of data items by using dynamic voting 

scheme but at the same time completely avoiding conflicting 

updates in the partitions. Also to ensure the consistency 

while updating the replicated data, the update needs to be 

done concurrently avoiding conf~icting reads and writes. 

This needs locking of the logical portion of the database in 

all the sites wh~re it is replicated. For this a 

centralized locking protocol with a decentralized recovery 

technique is discussed[POPEK 80). The locking protocol 

itself is robust to the failures and the system recovers 

gracefully in the case o.f partition. The \-method to be 

discussed tolerates single node failures, partition ~nd the 

failure of .central controller. Maximum forward progress is 

achieved in case of any of the above mentioned failures. 

4.2 LOCK SERVER (LS) 

The central lock server maintains. a lock table for 

the entire logical partition. The logical partition 
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consists of nodes which can.communicate and have unique lock 

server. Each entry in the +ock table is a tuple consisting , 

of the host which initiated . the request for the lock:, the 

transaction or request sequence number and the part of the 

logical database locked by th~ request.· Each host gives a 
\ . 

unique· number to the local\ request so· that the host 
. 

identifier and transaction number form the transaction or 
' 

request identifier (see fig. 4.1~. 

host id. I tran·saction num. 
\ 

' ' 
fig.~l. Transacti~n Identifier 

\ 

J 
In addition to Central Lodk Server (CLS) each of 

the nodes will have its own local lock servers(LLS). These 

local lock servers will contain information regarding data 

items locked at the site. The need for the LLS is to make 

the system resilient to the failur~s of CLS. In the event 

of the failure of CLS the lock table can be reconstructed 
-·· 

from the information at the local i.ock servers. The 
\ 

selection of the new lock server is on · .. the basis of some 

static priority assigned to nodes. This recovery mechanism 

is called logical partition recovery .. 

The lock ~ontroller contains t~e information 

pertaining to the sites where the data is b~ing replicated 

and the list of nodes which are in its logical partition(the 
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uplist) . The lock controller broadcasts these lists to all 

the _sites(by piggibacking with outgoing· messages). Also 

each site maintains the f~ilure list. This consists of list 

of nodes which were in this partition and failed. These 

three lists, locations whe're each data item is replicated, 

uplist and_ failure list ~re maintained at each site in 

nonvolatile memory to make ~he partition resilient to the 

failures of tha central lock Berver. 

4.2.1 Lock server - Selection and Services 

The request to lock any data item is conveyed to 

the lock server. The lock server checks the lock table to 

determine whether the data item is already locked. If so 

the request is rejected. If not, it sends lock request to 

local lock servers of relevent sites containing replica of 

data- item.- The lock server also maintains for each lock x, 

Loc(x), the set of sites which are relevent to lock x or the 

sites where replica of data items are locked by lock x[CHU 

76] • 

The· failure of lock server or partition of the 

system ·causes the new logical partition t6 undergo logical 
I 

par~ition recovery. This includes the selection of new lock 

server and release of the locks for data items which failed 

majority voting.- The transaction in this casa is aborted in 

partition. 
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Once the communication is reestablished between the 

two partitions, the two lock controllers will communicate to 

establish single logi~al partition called-merging of 

partitions. In addition to the selection of combined .lock 

server,the number of majority votes for data items common to 

merged partitions is also changed accordingly. 

4.2.2 Lock and Release Grants - Safe Talk Protocol 

The requests from the external sources(application 

programs) are delivered to the lock server by the host which 

receives the request. These requests are for locking or 

releasing the locks at relevent .sites where data item is 

replicated. Locking and releasing of locks_ arbitrarily 

leads to inconsistency. For this Safe Talk Protocol is used 

by lock server for locking and releasing at sites in the 

partition(see fig. 4.2). 

Appl. 
Program 

-----> 

In case lock req. 
append to lock table 
In case release req. 
remove from lock 
table. 

LS DESTINATION 

~--------~-> Local 
L(R)-list = 

Request 

(--~----1 
" Ready to Update 

lr'=':z..._--------~> In case lock req. 
Confirm request append to local 

lock table el.se 
remove from LLT. 

fig. 4. 2 Safe Talk Protocol 
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The. lock and release requests are placed in 

temporary buffers, L-lists for locks and R-lists for 

rea lease. Then the lock server sends the requests to the 

relevent local lock servers and the remote sites also us·e 

.temporary buffers. ·when the acknowledgement is received 

from relevent nodes, the lock server places· the lock 

requests (removes in case of release) from the temporary 

buffers to the lock table and confirms the requests to local 

lock servers. On receiving the confirm request the local 

lock server commits the request by placing(removing) it in 

local lock tables. 

The failure of node is determined by some timeouts 

and retransmissions at any .stage of the Safe Talk Protocol. 

The communication failures leading to inaccessibility of 

nodes is treated the same way as failure of nodes. 

4.3 CONSISTENCY FROM CRASHES 

In central server Loc(x) denotes the set of sites 

where the lock x is effective. From the Safe talk Prqtocor 

we can be sure that if x is a lock table entry in LS,then it 

must be present in the .local lock servers at Loc(x). If x 

is not present in the lock table of LS then it is not 

present in the local lock tables of any·of Loc(x) or it is 

present in the· release tables in Loc (x) . This determines 

the consistency of the lock table. 

The logical partition is internally consistent if 

the lock table is consistent and there is only one lock 
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server tb the partition present at any time. The logical 

partition_s are .mutually consistent if the lock· tables of 

partitions will not conflict at any time. 

The recovery from failur~ will be· consistent if the 

failure occurs before the recovery is complete or after the 

completion of the· recovery. We denote recovery point as 

completion point. 

CQmpletion Point 

TERMINAL FAILUR~ 
(Before selection of new LS) 

4.3.1 Logical Partition Recovery 

TRANSPARENT FAILURE 
(After selection of new LS) 

When the lock server of a partition fails or the 

logical partition is partitioned resulting in one of the 

partitions being unable to communicate with the lock server, 

a new lock server is selected. This is called Logical 

Partition Recovery. The recovery from lock server crashes 

has two phases i) Nomination phase ii) Lock table update 

phase. 

i) Nomination phase: 

During the nomination ppase the lock server will be 
·' 

selected and· the lock and release tables ·are constructed 

from the local lock(L) and release(R) tables, at tne local 

lock servers at all sites of the partition. The process 

which detects. the failure of LS is responsible for 

nominating a new lock server. Some priority order called 

·nomination order is used in selecting a site as LS. If a 
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node is.selected as lock server it is the responsibi~ity of . \ 

. the lock server to intimate other sites in the partition of 

its"selection and creatio.n of lock and release lists. The 

lock and release lists are circulated through entire 
'. 

partition to determine .globa~ L and R lists (see fig.· 4. 3) . 

We assume that lock reqtiest is delivered by LS and 
\ 
\ it reaches all the nodes 1n the partition. When LS 

\ 
deliveres the release reques~, say due to communication 

\ 

failure, it may not reach some ~f the nodes. At this point 
\ 

of time, say LS fails and befdre selection of new LS the 
\ 

communication is restored. so for the same data item some 
\ 

of the nodes will contain lock-re~uest and some will contain 

release requests leading to conflict. But sequence number 

of requests(se~ fig. 4.1) are use~ here tci determine which 

request is the latest.· 

NEW LS DESTINATION 

-----> Accept 
Nomination 

New L and R 
lists 

r----~--------------> 

Nomination Accept ~ 

. ·, 

<------~~----------~ 

fig. 4.3 Nomination Phase. 
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ii) Lock table update phase: 

During the nomination phase the L and R lists of 

the central lock server, which ar-e initially empty ar_e_ 

constructed from the·L and R lists of the sites present in 

the partition by passing the requ~st and tables to all the 

sites in the partition in some o~der. The lock server 

16cked 
I 

data items. This determines majoriti vote for all 
\ 

identity 
I 

can be obtained by determining of nodes as L and R 
\ 

lists pass through the sites. \\ 
During loCk table update ph~~e, the lock server 

adds the release requests for data item~ which lost majority 
\ . 

due to partition to the R-list resulted from nomination 
\ 
.\ 

phase and thus aborting the transaction\in that partition. 

The Safe Talk Protocol is used in updatin~ ·the L a·nd R lists 

of all the sites(see fig. 4.4). The lock\server d~termines 

uplist and new majority needed for updat\~s after getting 

Ready to Update response from the sites. 

determine uplist 
and new majority 
vote 

NEW LS DESTINATION 

~--------------------------~-----> 
Update Table(attach L and R) 

J~ 
<--------------------------------~ 
~,. Ready to Update 

Resume· Normal Activity , 
(piggyback uplist and majority 
vote) 

fig. 4.4 Lock Table Update Phase 
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The failure of the lock server during recovery 

causes restarting of the logical : partition recovery 

mechanism. This logical partition recovery mechanism is in 

the event of failure of the new lock server. We will see 

that the new lock server is robust td the f~ilures. The 

crash of new lock server can occur 

i) before sending request to local lock serveis t~ update 

lock tables. 

ii) After sending update tables to locaL lock servers but 

before getting ready to update response fr6m all the. sites. 

iii) After all of the lock tables at the -local lock servers 

are updated i.e. after issuing "Resume Normal Activity". 

In case ( i) logical partition recov,ery is restarted 

as there will be no change to L and R lists. In case (iii) 

the lists are updated completely and LPR is restarted. In 

case (ii) as we are using the Safe Talk Protocol the updated 

tables are kept in temporary buffers and Unless Resume 

Normal Activity -is- issued, the local tables c.an not anyway 

use the information. This needs just logical partition 

recovery mechanism to be started again without any loss of 

consistency. 

Let us see how the failures of nodes can be taken 

care of. The transparent failure of any node can be during 

nomination phase or lock table updat~ phase. During 

nomination phase the failure causes the node to be removed 
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from the uplist and added to the failure list. · During lock 

table update· phase qS we are using Sa.fe Talk Protocol the 

failure will cause changes in the up and failure lists and 

also the majority is reduced-by one for the replicated data 

items in the failed partition. 

4. 4 "RECOVERY FROM SINGLE NODE FAILURES 

The failure of a node forces the lock server to 

remove its identity from the partition. When the failed 

node is recovered, it sends a message to lock server to 

include it in the partition through any of the nodes that it 

.could communicate. The lock controller sends part of the 

database for which this node maintains a replicated copy so-

as to preserve consistency of the datab~se. In addition to 

this it sends L and R lists and any outstanding lock or 

release requests. 

In case the logical partition is ·itself undergoing 

logical partition recovery then the recovering node becomes 
-

a partition on its _own nominating itself as lock server to 

the single node partition. It initialises its L and R lists 

to empty. When the LPR is completed it will undergo Logical 

Partition Merge with the partition (see sec. 4'. 5) • 

The failure of .a recovering node 

restores the state of the partition to the previous state. 

During recovery,if_the LS of the partition fails then single 

node recovery mechanism is started all over again. 
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4.5 MERGING OF PARTITIONS 

When partition occurs new lock server will be 

chosen at the partition which does not have access to lock 

server. When com_munica~ion is reestablished between the 

partitions, a .combined lock server is chosen and the tables 

are updated from the information present· at the two lock 

controllers. This is called' Merging of Partitions. 

Partitions are always merged pairwise. 

partitions has got two.phases: 

The merging of 

i) Detection of communication betwe~n the partitions and 

ii) Merge of partitions. 

During the first phase central lock server at any 

of the partitions is responsible for detection of 

communication between the partitions. It will try to send 

messages, after each timeout, to·the nodes which are in the 

f~ilure list to determine whether they a~e up. One of the 

partition is denoted as primary and the other secondary. 

The selection of primary is on the basis of some priority 

information or on the. basis of which of the two partitions 

detects the communication between the partitions first. 

Then the transaction common to both t~e partitions are 

aborted at. both partitions to enable consistency of 

information replicat~d in both partitions. For this uplists 

of both partitions are exchanged. 
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. During the merge phase the data items are exchanged 

to enable both the partitions to contain latest values of 

data as maximum voting would have allowed only one partition 

to update replicated data items. The uplist of the merged 

partition. will be the union of the uplists of the two 

. partitions. The lock server which, is primary will be the 

lock server for the combined partition. The updates to 

tables, data i terns and new majority vote are done by Safe 

Talk Protocol with piggybacked updates to enable both sites 

to finish the recovery at the earliest. 

Either the primary or secondary lock servers can 

fail during detection phase or merge phase. If it is during 

detection phase the merge process is aborted and the 

partition chooses new server. If it is during the merge 

phase then also the partition which lost the lock server 

will undergo the selection of new lock server after aborting 

the merge. If updates to data items are made it will not 

cause any conflicts as Safe Talk Protocol is used. Because 

the partit-ion again will loose the majority to update and 

this makes the data i tern inaccessible. s·o updates will be 

reflected at all nodes in the partition unless a failure of 

node within partition, which we qlready proved is robust in 

single node recovery. Once the selection of new lock server 

is completed the merge is restarted. 
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4.6 RECOVERY FROM MULTIPLE PARTITIONS & DYNAMIC VOTiNG 

When. partition .occurs(either single node or 

multinode). the partition .uses majority voting[THOM 76] to 

determine which partition is allowed_ to have access to data 

item. But this reduces the availability when multiple 

partitions occurs. 

This dissertation contributes in increasing the 

availability of data items in th'e event of multiple 

partitions by using dynamic voting technique. This is a 

refinement of the techniques suggested -by researchers like 

Barbara, D., and Garcia-Molina, H. [BARB 86), Jajod,ia, 

s., and Mutchler, D.[JAJO 87]. 
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fig.- 4.5 The tuple (x,y), x denotes number of sites 
where the data item is replicated, y denotes number 
of votes needed to access the data i tern. New level 
denotes partition. 
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To increase availability, ·it is needed to 

dynamically reduce the number of votes required to access a 

data item when a node failure or partition failure occurs. 

For example when a partition occurs the partition which gets 

majority vote will be· having right to access data item. 

Once it further partitions it is possible that no partition 

can access the data item (fig. 4.5a). 

This method allows access to replicated data even 

when only one node in which data replicated is up but under 

certain conditions as follow·s: 

i) partition occurs only pairwise 

ii) partition of already partitioned network will occur 

only after the partition detects the partition and some 

table management is done and 

iii) In the event of parition divides the nodes into exactly· 

two halves then some priority of the nodes' shall be taken to 

decide upon which parition gets the right 'to aecess the data 

item. 

The problem with this method is that when two 

partitions merge, even though they retain: majority vote for 

some data item, they are not allowed to access the data item 

as.some parititions(even ·though it is a single node) will be 

having majority to access the data item:. For example in 

fig. 4.5b if paritions V and III merge, six replicas of data 

item will be available in the merged p9rition , but they 
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should not be allowed to acce~s . the data i tern. The 

partition gets right to access the data item only when it 

merges with a parition having right to the access data item .. 

The above solution gives ris.e to another problem .. 

Assume that a node having right tp access a data item fails. 

In the partition in which it is pres~nt majOrity vote and 

uplists are update.d and it continues with updates. When the 

failed node recovers, it individually has got the right to 

access data item or in case it merges ·with some partition 

. which is not having the right to access data item will get 

the right resulting in the conflicting updates to the data 

items. For this reason when the node recovers it should 

check its uplist to determine ~ .. Jhether it is the only node in 

the partition before it failed or not. If not, it will lose 

majorit~ otherwise it retains the right. 

But the above implementation has got one more 

problem~ In the parititon which is having majority vote to 

access a data item, all the nodes fail at a time. Here each 

node ~uring recovery will disqualify itself. from accessing 

the data item and hence the data item cannot :b~ accessed any 

longer. But one of the solutions is to wait till all the 

nodes in which the data item is replicated to be recovered 

and by looking into the uplists we can determine the last 

set of nodes that have failed concurrently. But this is not 

a feasible solution. Another solution which determines the 
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the last set of node (s) which failed (concurrently) is 

discussed in the next section .. 

4.6.1 To Determine Last set of Node(s) Failed 

We assuine that some data item ··x is replicated in 

'n'- nodes and each node maintains up and failure. lists~ ·The 

uplist (failurelist) of a node 1 i 1 gives the set of nodes 

that are up( d?wn as far as the node knows. Each time 

when some node 'i' recovers, we remove from set S (initially 

s = n) the nodes which failed before 'i'. This will be done 

until set s is a subset of set of recovered nodes. Now this 

S gives the set of nodes which have failed concurrently ·(se~ 

fig. 4. 6) . 

1-10 !(10,6) 

/ 
II(9,5) 1-2,4-10 3 FAILED 

U.L. 1-10 
F.L. NIL 

U.L. 1-2,4-10 
F.L. 3 

III(S,3) 1-2,4-6 IV(4,5) 7-10 
U.L. 7-10 
F.L. 1-6 

4 FAILED 
U.L. 1-2,4-6 
F.L. 3,7-10 

U.L. 1-2,4-6 
F.L. 3,7-10 

(LOST MAJORITY) 

1-2, S-6 V(4,3) 
U.L. 1-2,5-6 
F.L. 3-4,7-10 

fig. 4.6 Up and Failure Lists on Partition{n=lO) 
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Now say ·all the nodes of partition V failed 

concurrently with right to access the data item and up and 

failur~ lists. Also failed nodes 3 and 4 have right to have 

access to data item. Now we will see how to determine the 

last node(s) to fail. We wiil continue removing nodes from 

set. S(initialized ton, the set of nodes.where d~ta item X 

is replicated) until s is a subset of recovered nodes (R) . 

When this condition is satisfied, S gives the last .set of 

nodes failed. 

RECOVERED NODES CANDIDATES FOR LAST NODES 

R = 0 s = 1 to 10 

R = 4 s = (S - (F. L. qf 4)) 
= 1 to 2 , 4 to 6. 

R = 4,2 s = 1 to 2, 5 to 6 

R = 4,2,3 s = 1 to 2 , 5 to 6 

R = 4,2,3,1 s = 1 to 2, 5 to 6 

R = 4,2,3,1,5 s = 1 to 2, 5 to 6 
. 

R = 4,2,3,1,5,6 s = 1 to-2, 5 to 6 

··uere s is a subset of R. So the last set of nodes 

to fail are 1,2,5 and 6. 

4.7 CONCLUSION 

This model is an extention to the existing dynamic 

voting models (BARB 86, JAJO 87]. These models either needs 

atleast four sites to determine the majority or uses hybrid 

model to switch back to static voting when the number of 

sites in the model becomes less than four. 
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CHA-PTER. 5 

CURRENT AND FURTHER RESEARCH 



Further research in recovery in distributed systems 

is expected in the-fbllowing-directions: 

1) Performance tradeoffs between various strategies of 

recovery (pessimistic and optimistic) . 

2) Detecting partition in the network. 

3) Dealing with nested transactions both in pessimistic and 

optimistic cases. 

4) Cost effective way of implementing fail-stop processors. 

5) Rather than having single centralized server(although it 

is robust to the crashes), with the number of -sites 

increasing in the system the load on centralised server 

increases. The solution is to divide the sites into groups 

so that each group will have it own group server. There 

will be a server sitting on top of the group server. But 

the . problem is how to divide the system intelligently so 

that for transactions generated in a group the most probable 

sites to be accessed should be present in that group. 

6) considerations of heuristics to determine majority of- a· 

p~rtition in assymetric networks which are not totally 

connected and in which some links are more reliable than 

others. 

Recently two papers came out with extentions to the 

existing models. One is Bhargava's (BHAR 90) paper on 

increasing availability using tokens so that each partition 

is authorised to have atleast one operation on a data item. 

The other is by Jajodia [JAJO 90], which uses dynamic voting 

algorithm in determining the majority. 
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So a centralized 

TYRRELL, ANDREW M., AND DAVID J. HOLDING,Design of 
Reliable software in Distributed Systems Using. 
Con~ersafion Scheme, IEEE Transactions on Software 
Engineering, Vol. SE-12, No. 9, Sept. 1986, pp. 
921-928. 
This paper gives how the status of the· system can 
be represented ~sing petrinet model. It gives.how 
to detect the conversat~on, the beginning and 
ending· of the conversation between a set o.f 
processors. The assumption here ·made is that the 
system can be expressed as a set of communicating 
sequential processes. 

YEMINI SHAULA AND ROBERT E. STROM, Optimistic 
Recovery in Distributed Systems, ACM Transactions 
on Computer Systems, Vol. 3, No. 3, Aug. 1985, pp. 
204-226. 
This paper discussess · an optimistic recovery 
mechanism in which communication, checkpointing 
and computation goes asynchronously. It uses 
session sequence numbers to determine whether the 
sender or receiver failed. It also uses 
incarnation· numbers to determine whether the 
message is duplicate or not. Obsolutely no 
synchronization during recovery or at any time 
needed. 
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