
RECOVERY FROM MUlTIPlE PARTITIONS
USING DYNAMIC VOTING

IN
DISTRIBUTED SYSTEMS

Dissertation submitted

in partial fulfilment of the requirements

for the award of the Degree of

MASTER OF TECHNOLOGY

in

COMPU fER SCIENCE & TECI-INOLOGV

M. V SREENIVAS

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI-110067

JANUARY 1991

•.

C E R T I F I C A T E

· The work embodied in this dissertation has been

carried out at·the School of Computer and Systems Sciences,

Jawaharlal Nehru University, by me. This work is

original and has _not been submitted so far, in part or full,

for any degree or diploma of any university.

~-Jtl-V, ~v~
M.V. SREENIVAS

~ol. C.P.C. Nath,
Asst. Prof. ,
SC&SS, JNU.

Prof. N.P.

4~9'1

Dean,
JNU.

To my Esteemed Teachers

A C K N 0 W L E D G E M .E N T

I owe my sincere thanks to Col. C.P.C. Nath, who

introduced me to, and created a sense of confidence in me

for this . fascinating field of Distributed Systems. This

effort would not have succeeded without the valuable

discussions, encouragement to pursue my. thoughts in my own

way, apt criticism and excellent guidance.

I extend my thanks to Prof. N. P. Mukherjee, Dean,

SC&SS, for giving me an opportunity to take up this project.

I would like to acknowledge all the faculty members of the

school, especially Dr. Subhash Bhalla for patiently

listening to my talks, his excellent suggetions and for the

reference material provided by him. I also thank the staff

of School, who rendered their full cooperation in completing

this project work.

I am grateful to all my friends, who helped me a

lot without any hesitation, all through my project .work.

I also take this opportunity to thank library staff

of JNU and IIT, New Delhi, for their cooperation.

M.V. SREENIVAS

ABSTRACT

In distributed systems the database 1s replicated

over a number of sites. The transactions are concurrently

executed in number of sites, where a transaction (a task) is

divided into number of subtasks and may be ·carried· out

concurrentl-y--at the sites where these are assigned-. ----!n such

environment, the failure of nodes or links may lead to

inconsistent updates to the database.

The dissertation contributes in suggesting ~e~§ures

for retaining consistancy in the event of the above

mentioned failures. The node or link failures might lead to
-~

partitionirig of the network in which a set of nodes cannot

communicate with rest of the nodes. Recovery from failures

poses a large number of problems and a great amount of

research work has been done in order to solve these.

Recovery from partitions· is the area in which extensive

research is going on. The recovery techni_ques studied in

this dissertation have been designed to solve the problem of

consistancy. This dissertation also gives a solution to

recovery from multiple partitions using dynamic votin~

technique and thus increasing the availability of database.

C 0 N T E N T S

1. INTRODUCTION

2. FAULT RESILIENP DESIGN TECHNIQUES

2.1 INTRODUCTION

2.2 RECOVERY BLOCKS .

2.2.1 Recovery from Internal Errors .
2.2.2 Recovery from External Errors .

2.3 CONVERSATION AND EXCHANGE .

2.4 N-VERSION APPROACH

2.5 CHECKPOINTING AND ROLLBACK RECOVERY .

3. OPTIMISTIC RECOVERY IN DISTRIBUTED SYSTEMS

3.1 INTRODUCTION

3.2 RECOVERY FROM SITE FAILURES .

3.2.1
3.2.2
3.2.3
3.2.4

Determining System State
Checkpointing and ~Message Logging
Recoverable System State
Finding Unique Maximum System State .

3.3 RECOVERY FROM PARTITIONS

3.3.1 Version Vector Model ...
- 3.3.2 ~recedence Graph Model

3.4 CONCLUSION ·.

4. PESSIMISTIC RECOVERY IN DISTRIBUTED SYSTEMS

4 . 1 INTRODUC_TION

4.2 LOCK SERVER (LS)

4.2.1 Lock Server Selection and Services
4.2.2 Lock and Release Grants

4.3 CONSISTENCY FROM CRASHES

4.3.1 Logical Partition Recovery

1

9

10

10

11
12

15

18

18

23

24

26

26
30
31
31

35

36
39

41

42

43

43

45
46

47

48

4.4 RECOVERY FROM SINGLE NODE FAILURES 52

4.5 MERGING OF PARTITIONS . : . . . · . . . 53

4.6 RECOVERY FROM MULTIPLE PARTITIONS AND
DYNAMIC VOTING 55

4.6.1 To Determine Last Node(s) Failed 58

4.7 CONCLUSION 59

5. CURRENT AND FURTHER RESEARCH 60

REFERENCES 62

C H A P T E R 1

I N T R 0 D U C T I 0 N

A distributed system is one in which the processors

are distr.ibuted over large geographical area with each of

the processors working autonomously without sharing any

memory but communicating with the other processors in the

system by messages.

There is disagreement in defining what .a

distributed system is? Tnis varies from multiprocessors,

multicomputers, workstation LANs to interconnected WANs.

Not only the memory distribution but also the type of

communication between the processors determine the

characteristics of a distributed system. This can vary by

any degree from tightly coupled systems to loos~ly coupled

systems. The degree of communication is measured in grain

s.ize. The systems with large grain size communicate

infrequently and spend much of their time in computation.

The system with fine grain size communicate more frequently.

The goal of the distributed system is to achieve speedup

through parallelism in running an application.

The difference between an ordinary computer system

and distributed system is that the distributed system ha9

got partial failure property. Even though part of the system

fails (it can be single site to multiple site) the rest of

the system must be in a position to continue with its work.

This makes the distributed system attractive as the failure

frequency or duration of failure is unpredictable. To

2

achieve partial failure property the data items should be

replicated o~er distributed sites~running a~tonomously.

The distributed system differs from other

sequential systems in three issues:

i) it· should be in a position to assign different parts of

the program to different processors to use the processors

optimally.

ii) these set of processors working on some program segment

should co-operate to exchange results and for

synchronization.

iii) implementing parti~l failure property.

The properties (ii) and (iii) together pose the

problem of globally consistent state of the system. The

failure can be in node or communication. This can lead to

network partitioning isolating set of nodes from rest of the

nodes in the syst~m. Increasing demand for higher

throughput and higher availability makes the distributed

system attractive.

replication results

failure of one or

But increasing the availability by

in inconsistencies in the event of

more nodes. This is because of

complicated failure modes of multiprocessor configurations.

To suppo_rt partial failure property failure of one node or

communication failures should not stop the system. But a

transaction involving set of nodes leads to inconsistent

state of the system. This demands the execution of

3

operations in the transactions to be complete or the

transaction should have no effect on the system at all.

Such a transaction is called atomic transaction. We call an

operation atomic if it satisfies both the properties of

indivisibility and recoverability. ·A transaction is

indivisible if· its intermediate states are transparent to

the external world. An operation is recoverable if the

failure of the transaction will force the system to get back

its state before the operation is started and thus the

operation has got no effect at all. The transaction outcome

can.be one of the three instances given below:

BEGIN

action

action

action

COMMIT

Successful
Transaction

BEGIN

action

action

action

ABORT

Aborted by
Client

BEGIN

action

action

action

ABORT ==>

Aborted by
Server

The important properties of atomic actions as put.

forth by Randell[RAND 78] are as follows:

i) "An action is atomic if the process (processes)

performing it is (are) not aware of the existence of any

other active processes, and no other process is aware of the

4

activity of the process (processes) during the. time the

process is (processes are) performing the action".·

ii) "An action is atomic if the process (processes)

performing it does(do) not communicate with other processes

while the action is being performed".

iii) "An action is atomic if the process ('processes)

performing it can detect n6 state changes except those

performed by itself(thernselves) and if it does (they do) not

reveal its(their) state changes until the action is

complete".

(i v) "Actions ·are atomic if they can be considered so far

as other processes are concerned, to be indivisible and

instantaneous, such that the effects on the system are as if

they were interleaved as opposed to concurrent".

An atomic action can be achieved as follows: If a

transaction contains an operation that tries to change an

object, the changes are not applied to original object, but

-·to a new copy of the object called version. If the entire

transaction fails (or aborts), the new versions are simply

discarded. If the transaction succeeds, it commits so that

the new version becomes permanent. All objects modified by

the transaction will retain this new version. It is not

feasible to abort the transaction because of node failure or

some other internal error. For this reason latest value of

each object is placed in stable storage which has high

chances of surviving processor crashes.

5

In distributed systems data items are replicated at

various sites to increase the availability. This increases

the reliability of database by making the database. to be

resilient to the site failures. A-lso it decreases the

. communication in the network when the data is present at the

requester's site. But here· the user should see that the

updates to the database is- made at all sites where the

replica exists. But this has got a serious prol;>lem of

inconsistency when the communcation fails. This may lead to

conflicting . updates to the database. This problem will

become more severe when the communication failure divides

the system in to two partitions (partition failure) . This

will update the replica of some data items at different

partitions compromising the correctness of data.

· In addition to the above complexities the problem

still unsolved is the detection of the failure modes in the

system. This includes the three anomalies which the system

can not differentiate

i) the node is down or

ii) the communication channel to the node is down or

iii) node and cpmmunication channels are fine but the delay

is high.

When partitioning occurs, the transactions may or

may not be allowed to continue and new transactions can be

allowed to enter the partition. If the transactions are

6

allowed then conflicting updates can be taken care of · by

undoing the transaction and its effect by runn1ng

compensating transaction which undo .the effect of

transaction which is the cause of inconsistency of database.

But this may not be suitable in certain-cases like banking

system where money is withdrawn. If the transaction is

suspended on partition then this decreases the availability.

But the database will be consistent. This may not be

acceptable in certain applications like:

i) airline reservation where partition means losing

customer or

ii) in military Command and Control systems where

availability is more important than correctness or

consistency.

Two strategies associated with partitioned

recovery are optimistic - and pessimistic. In optimistic

strategy there is a threat to the global consistency of the

system as the system allows each partition to continue with

its operation even when the partition occurs. The

inconsistencies are resolved.at the recovery time when the

two partitions merge. In the pessimistic strategy,

inconsistencies never occur as care is taken to see that

same data item can not be updated in both the partitions.

The optimistic strategies include version vectors

[chapter 4] , optimistic protocol [chapter 3] . Some of the

7

pessimistic strategies include primary copy [ALS~ 76, STON

. 79] , _ tokens [MINO 82] , voting [GIFF 79] , missing writes

[EAGE 83] etc.

My contribution in this dissertation is to find,

how to recover from multiple partitions using dynamic

voting. This is a pessimistic recovery mechanism.· Chapter 2

is a survey of fault resilient design techniques. Chapter 3

is a survey on optimistic recovery. It gives solutions to

both transient and persistent failure recovery: Chapter 4

discusses pessimistic recovery. It tries to increase

availability in distributed systems · using dynamic voting

while recovering from multiple partitions. Chapter 5

focusses on current and further research in this area.

8

C H A P T E R 2

FAULT RESILIENT DESIGN TECHNIQUES

2.1 INTRODUCTION

2.2 RECOVERY BLOCKS

2.3 CONVERSATION AND EXCHANGE

2.4 N-VERSION APPROACH

2.5 CHECKPOINTING AND ROLLBACK RECOVERY

2.1 INTRODUCTION

This chapter is the survey of various strategies

used in providing fault resiliency in case of process

failures. Checkpointing and rollback recovery techniques

used in the event· of failure in distributed systems is -also

considered. The name distributed system itself conveys that

the recovery from- a failure is not only local t6 the failed

node but also includes the whole system or a subset of the

whole system which is affected by failure.

Recovery in centralised sy$tem is rather clear as

the failure is local to the failed node. Failure must have

occurred either before or after the completion of the

operation. The recovery in distributed system is two fold.

In the first case data items are distributed over sites. In

the second case the data items are also replicated oyer

various nodes.

The various recovery techniques outlined in this

chapter are recovery blocks,conversation,exchange,N-version
.

programming and checkpointing and rollback recovery.

2.2 RECOVERY BLOCKS

The failure of a node or site can be due to

internal or external errors. Internal errors are the errors

in which the system can recover when the same set of

10

operations

errors the

are rerun or repeated. In case

fallure is limited to the local

of external

node and it

cannot be handled by the local node. It could be because of

hardware or software. Here multiplicity of hardware or

software is of no avail. So divers l.f ied hardware and

software is used. In the following section we discuss how

to recover from internal errors developed by Randell [RAND

75]·and external errors by Kim [KIM 84].

The recovery block mechanism needs the program to

be structured into set of blocks like subroutines, modules,

procedures, functions etc. Each of these program units can

be run on the primary as well as backup processes to recover

from failures. The backup block becomes the recovery block

in cas~ of failure of the primary block.

2.2.1 Recovery from internal errors

The recovery block consists of tryblocks. One of

the tryblocks is a primary block and the rest are alternate

blocks. Each of the try blocks consists of acceptance test

which needs to be satisfied after the module is run in a

block to determine the correctness of the execution. In

case of failure of a block the system state is restored and

the next alternate block is tried. If the acceptance test

is passed then further try blocks are ignored. If all the

alternate blocks fail then the whole recovery block is

11

regarded as failed. The recovery block structure is as

follows:.
BEGIN

END

{ PRIMARY BLOCK }

(operations)

while (acceptance-test-not-satisfied and
alternates-exist) do

begin
restore the system state
use alternate block for operations

end

if acceptance-test-satisfied then

return(success)

else return(failure)

2.2.2 Recovery from external error

External error recovery is done by distributed

execution of recovery blocks. It is suitable for tolerating

failures in both hardware and software components. · The

recovery block here consists of tryblocks, one in local node

and the rest in standby nodes. Acceptance test is used to

check the correctness of result. In case of error the

standby node contai~ing a tryblock is invoked. To gain time

concurrently all the tryblocks can be initiated. Two

schemes are considered. We assume that the tryblocks will

not update global variables and for ease of explaining we

consider only two tryblocks, primary and backup.

12

Scheme I

The primary block and the standby block work on the

same program module and at the end of the run the acceptance

test is taken. If the primary block passes the acceptance

test then its result will be directed to successor computing

station else the alternate block will be notified of the

failure of primary block. The alternate block after the

acceptance test, on passing the test, passes the result to

the successor computing station. In addition to logic

acceptance test, time acceptance test is also used to put

bounds on the time of execution of module in all of the

tryblocks (see fig.2.1).

PRECEDING COMPUTING STATION

Primary node Backup
node

Input
buffer

Ace
Test

Acceptance
------- Test

(Time & Logic) (Time & Logic)

SUCCESSOR COMPUTING STATION

fig. 2.1 Scheme I

13

Scheme II

In this scheme the primary and backup nodes will

have two tryblocks each. _one is designated as primary and

the other as backup block. In case of failure of primary

node the roles of the primary and backup nodes are

exchanged. Also in case of failure of any of the nodes the

roles of its primary and ba~kup blocks will be chang~d.

For example in fig. 2.2, the primary block in the

primary and backup nodes are A and B respectively. The

failure of primary node acceptance test causes the backup

node to be new primary node and primary node to be new

backup·node. The roles of A and B in primary are changed.

Initial
Primary Node

Input
buffer

A

PRECEDING COMPUTING STATION

Acceptance
Test

B B

Initial
Backup node·

A

Acceptance
Test

(TIME & LOGIC} (TIME & LOGIC)

SUCCESSOR COMPUTING STATION

fig. 2.2 Scheme II

14

The failure of backup node causes the backup node to change

the roles of its primary and backup blocks and it starts

with its new primary block. The failure of backup node will

have_no effect on the primary node functions.

2.3 CONVERSATION AND EXCHANGE

In the previous section of recovery blocks notion

of interaction between the processes is not considered.

This makes the system slow in case of failures either

persistent or transient. The slowness is owing to starting

of the system from the initial state in the event of failure

of any of the process. In the strategy to be presented

communicating processes start from some · intermediate state

rather than from the initial state. This works well in case

the failure is transient. This strategy convers~tion and.

exchange is due to Randell [RAND 7 5) and Andrew [ANDR 8 6) . ·

The process creates recovery points as it goes on.

Whenever the process f~ils, it starts from a recovery poirtt.

Since the processes are interacting, the rolling back of

the failed process may force other process or set of

processes to rollback to maintain the consistency of the

system. This may. lead to uncontrolled rolling back of

processes and the system starts from initial state

compromising the idea to restore from some intermediate

state. This is called the domino effect. The· reason is

that the processes are dependent on each others progress as

15

they are involved in mess~ge passing. For example in figure

2.3, if the process 1 fails then it will be backed up to

recovery point 4. If process 2 faiLs it will be backed up

to recovery point 3 and this forces process 1 to rollback to

3 and this in turn force~ process 3 to rollback to recovery

point 4. In case process 3 fails all the processes rollback

to initial state due to domino effect.

P1 P2 P3
1 -1

f- ---------- ·-
r-------------

2

--- --- --- ---

t-------- -- ---

3

,_ __

1-----4 ---- ---

2

1--

3
1- ----------1--------------.....

--4 ----

fig. 2.3 Domino Effect

1

2

3

4

The set of· processes are said to be in

conversation if they are communicating among themselves and

not ~ith any other process outside this set. Any process

needs to take recovery point on entering the conversation

16

and all the processes involved in conversation should

terminate at the same time(fiq. 2.4). Failure of any of the

process in the set will. cause all of them to rollback to

their respective recovery points· taken on entering the

conversation and start again.

Pl P2 P3

- - - _,- - --- - -

fig. ~.4 Conversation

P4

conversation
boundary

- -J

acceptance
test- -

The exchange is a restricted form of conversation.

In exchange each of the process will be taking a recovery

point on initiation. The set of processes are said to be in

exchange now and they are allowed to terminate only when

all the other processes in the excahange terminate. The

17

processes involved in the exchange are now allowed to

discard their initial recovery points. The failure ot: any

of the process forces all the processes in the exchange to

rollback to their initial recovery points;

2.4 N-VERSION APPROACH

N-version approach is based on multiple computation

technique used in hardware fault tolerance. It is designed

by Algirdas (ALGI 85]·. Here diversified software(N

versi6ns) running on N different hardware units generates

results. The results are checked with acceptance tests as

used in recovery blocks. The difference between the

recovery block and N-version approach is that in recovery

block technique the acceptance test is for identical result

from the tryblocks but in N-version programming since

diversified software is used the results of a version. ~lso

depends upon the local software design. So check will be

for similar results, not for identical results. But the

problem is of choosing incorrect result···when the similar

errors outnumber the set of good results at a decision

point.

2.5 CHECKPOINTING AND ROLLBACK RECOVERY

The conversation technique discussed places a

restraint on the set of processes taking part in

conversation to end the conversation at the same time. This

causes extended delay in a process which finishes th~ task

first. So this brings down the throughput of the system.

18

· Let a process send a message to some other process

and the other process received the message. After some time

the received proces~ fails and forgets the information

regarding the receipt of message. Then the process which

has sent the message should undo its actions and send the

message again. This is called roll back.

When a process fails I its state is lost and the

whole· system (set of process involved in conversation)

should start from beginning. But this is not acceptable as

the transaction might have already t~ken considerable amount

of time. So after some interval of time the status of the

process is stored in non-volatile memory called stable

storage. In the event of failure the process copies its

state from its stable storage and starts from this point.

This stored status of the system is called checkpoint. This

checkpointing and rollback recovery technique is discussed

by Richard [RICH 87].

In the checkpointing and rollback recovery

technique presented here, when a process takes checkpoint it

forces a minimal set of processes to take recovery point or

checkpoint. Also rollback of a process gfter failure forces

a minimal set of processes to rollback. This strategy is

tolerant to failures at the time of recovery. Since the

state of a process is dependent upon the state of other

processes, any process is allowed to take checkpoint only

19

·when the system remains consistent in case of failure of any_

of the process. For example (fig. 2.5) when process 'p'

sends a message to process 'q'. After receiving the message

say process q takes a checkpoint. Now if process p fails,

on repair it rolls back to its latest checkpoint and thus

forgets about sending a message to q. This leads to

inconsistency in the system.

fail
1? X >

\
\

\m
\

\
\

\
q ">

fig. 2.5 Inconsistency

In the second example (fig. 2 • 6) 1 say process p

takes a checkpoint after sending the message and process q

receives the message and fails after some time. The process

q rolls back to its latest checkpoint which is taken before

the message from p is received. So p has the knowledge of

sending the.message whereas q does not have (lost messages).

p

q

r-------------~---~1----------------->
. \

\

'm
\

\
\

\

\

r-----------~----------~----------X-------->

fail

fig. 2.6 Lost· Messages

20

In this model two checkpoints are taken, one

tentative and the other permanant. The tentative checkpoint

can be revoked or changed into permanant checkpoint. To

overcome inconsistencies a process is allowed to take

checkpoint only when all the processes which have sent

messages to process p since its last checkpoint(6alled ckpt-

cohorts of p) are checkpointed. Process p initially takes a

temporary checkpoint and sends the request to all the

cohorts of p. They
1

inturn 1 take temporary checkpoints and

inform its own cohorts and so on. Once cohorts agree on

checkp9inting, permanant checkpoint is taken by two way

commit protocol. When a checkpointing process is going on

the processes which take tentative checkpoints do not

receive any messages. Also they cannot take another

checkpoint or rollback to avoid cycles leading to deadlock.

When a. process p takes a rollback it sends

request for rollback of all the processes to which it has

sent messages-after its latest checkpoi~t{called rback

cohorts of p) to rollback. The mechanism is similar to one

used while taking checkpointing. When it receives positive

response from all the co~orts then it will be ready to take

rollback action. During recovery a pro~ess taking part in

recovery is not allowed to send messages excepting the

request for rollback

In the event of negative response from a cohort or

failure of a cohort the rollback 1s not allowed. This is

needed to maintain the consistency of the system.

22

C H A P T E R 3

OPTIMISTIC RECOVERY IN DISTRIBUTED SYSTEMS

3.1 INTRODUCTION

3.2 RECOVERY FROM SITE FAILURES

3.3 RECOVERY FROM PARTITIONS

3.4 CONCLUSION

3.1 INTRODUCTION

· The optimistic recovery technique is used when

probability of failure is very low and failure latency is

small. The overhead incurred using this technique is -small

and its complexity increases linearly with increase in the

number ·of failures. The computation will continue even when

the sites fail. It can withstand single site or mul tisi te

failures. There will be no synchronization among

communication, cbmputation and checkpointing. But

synchronization is needed when a failed process recovers and

starts from recent stored state. He~e the set of processes

whose states depend upon the failed process are also forced

to backout and replay messages to start from unique maximum

system state. A method which does not need synchronization

but uses incarnation numbers to detect duplicated messages

is discussed by [YEMI 85].

Checkpoi.nting and rollback recovery technique

is used to achieve resiliency (see section 2. 5 } • Let a

process p send

the process q

a message m to process q.

fails and then loses

After receiving m

the knowledge of

receiving message m. But process p still thinks that the

message is received by process q. Here process p is called

orphan process and the computations if any performed by p

are . called orphans. Here we need to undo the actions of

process p by forcing it to some earliar state that does

not depend on the lost state. To undo the actions of p we

24

will restore the status of p to some earlier checkpoint from

stab'!e storage and then replay the logged messages. The

messages are said to be logged when the messages that the

process received is stored in stable storage. Here, care is

taken to see that ·the extent of roll back is restricted so

that it will not lead to domino effect.

We have seen that when process p sends a message to

process q, process p becomes orphan when q fails and thus

forgetting the receipt of message. The sender may keep on

sending the same message until the receiver logs the

message. But the number of messages are usually written to

stable storage depending upon the size of buffer and in a

single transfer. Writing each message on

reduces the throughput. The intention is

its receipt

to allow the

sender to continue with its actions after sending the

message, no matter the receiver has logged the message or

not and still be in a position to recover from failures

[JOHN_90]. Also to see that, based ·on current checkpoint and

logged messages, recover to unique maximum recoverable

system state. This relinquishes the restriction to lQg all

the received messages.

This optimistic strategy will never limit the

availability of· the system. In case. of single or multiple

site failures, even a single copy of the data item will make

the system to continue with its task. But this creates

25

inconsistencies when the network is partitioned. In each of

the partitions data wi 1.1 be cons is tent. But as each

partition is allowed access to data the global state [CHAN
-

85) of the system will be inconsistent. When the

partitions are to be merged these inconsistencies should be

detected and restored. Two techniques, an optimistic

protocol [DAVI 84) and version vector approach [·PARK 83] are

discussed.

3.2 RECOVERY FROM SITE FAILURES

3.2.1 Determining system State

The state of the process is defined in terms of the

state of its dependencies i.e. the set of processes which

can make this process an orphan. The state of the system is

the collection of states of all the processes in the system.

Here the state of the process is defined 1n terms

of the number of messages it received. Each time the

~recess receives a message the state interval of the process

is incremented by one. So a p~ocess can send any number of

messages during a state interval and it changes each time

when it receives a message (see fig. 3 .1). The current

state of a process will ·be its current state interval (or

the count of number of messages it received). The process

tags with each of the message sent by it, the current state

interval.

26

state Interval = 0

send mesg1

send mesg2

Rec mesg1

state Interval 1

send mesgp

send mesgq

Rec mesg2

State Interval = 2

Rec mesgi

state Interval = i

fig._ 3.1 Numbering State Intervals

The dependency vector of process i (DVi) is the set

of state intervals of all the processes on which the

process i depends·. We call process i depends on some

.27

process j when process i receives a message from process j.

When a process dosen't receive any message from process j

then the value corresponding to process j is kept at some

minimum value(..l) at process i (see fig. 3.2)'.

,dn > where, n denotes the

number of processes in the system.

Process 1

Process 2

Process 3

Process 4

0

I
I

I
I

I
I

1

l
I

0 I I ----·-· --~-------------------·
\
\

\
\
\
\
\

2 -, >

I
I

I.
I

I
I

I

>

0 \ 1 2

----------~---~---~--------------->
/ \

/ \
/ \

// \
/ \

/ \
/ \

0 / \ 1
-----·/ ~------->

DV1 = < 2 0 ..L ..L >

DV2 = < ..L 0 ..L ..L >

DV3 = < ..L 0 2 0 >

DV4 < ..L ..L 2 1 >

28

r
2 0 ~ ~

~ 0 ~ ~

DVXX =

l ~ 0 2 0

~ ~ 2 1

fig. 3.2 The System State

The matrix DVxx determines the system state at some

point in time. The dependency vect6r values determine only

the receipt ·of messages not the logging of messages. The

diagonal values in DVxx determine the current ~tate

intervals of the corresponding prcessess.

The dependency vectors are sent to the centralised

controller. The centralised controller determines the whole

state of the system (Dxxl from the information provided by

the processes. The state of the system at an instant of

time will be consistent state of the syst~m. When a proce~s

fails and then recovers the system is forced back to this-

consistent system state and starts all over again so that it

is equivalent to some failure free execution. The system

state is said to be inconsistent if a message not yet sent

by the system is received by a process. It can be due to

failure of the sender and it rolls back on failure and

forgets about sending the message. This is same as saying

that the system state is inconsistent if for some process p

the status of some·of the processes depends beyond the

29

process p'~ current state interval. This can be ensured

from the dependency matrix. In each of the column the

diagonal element (the_current state interval of the process)

should not be less than any other value in that column so

that the system is consistent.

3.2.2 Checkpointing and Message Logging

When a process receives a message it may place the

message in stable storage so that in the event of failure of

process it will retain some stable state and replay the

messages from stable storage. This storing the messages in

stable storage is called message logging. When ever a

process receives a message it changes (or increments) its

current state interval index. We can say that the message

received started the new state interval index. The message

received and the state interval index it started are both

logged (logged (i,a)). Here i denotes process number and a

- the new state int~rvai index, the message which started new

state i.

A state -interval a of a process is said to be

stable if the process can be started from its checkpoint and

the messages logged can be replayed so that it will get back

to state interval a. We say stable(i,B) if for process i

the state interval B is stable. Let us say process i's

state interval p is checkpointed and r will be its stable

state interval if

¥ q p < q <= r [logged(i,q)]

30

Here the process will roll back to its state interval p in

the checkpoint and starts replaying the messages from p+l to

r and hence its state interval ~ill be r again.

3.2.3 R~coverable system State

The system state a is recoverable if the component

processes can be backed to their latest checkpoint and then

by replaying the logged messages the process can get back to

state a as if some equivalent failure free execution is

going on. So the system state D = (DxxJ is recoverable if

in DXX'

¥ i (Stable(i,Dii]

The current recoverable state (CRS) is the state to

which the whole system can be restored in the event of

failures in the system.

3.2.4 Finding Unique maximum System state

The old recovery vector (R = axx) and the

dependency vector are needed in-determining the new recovery

vector. At first when the system starts, the re~overy

vector of the system is initialised to zero vector. The

recovery vector (RVi) of a process i can change when

i) a new process state interval became stable (p > aii)

or

ii) a checkpoint has been taken or

iii) messages

logged.

received after effective checkpoint are

31

Now the system recovery;vector (R) is changed to

reflect this new recovery vector value for process i by

replacing its ith row by new recovery vector value. Now the

new system recovery vector and'dependency vectors are

checked to find new current recov~ry state (see fig. 3.3a

and 3. 3b) . In the beginning the tecovery vectors of each

process and the current recovery state are initialised to

zero vectors.

0 1
Process 1 I~ >

\
\ I

\ I

\ a;
\ I

\ I
\ I

0 \ 1 I 2
Process ~-~

I
2 • , >

\
\ . I ,·, I

'b I
'· '\ I

' I

' I
0 1\ I

Process 3 ~-~ >

fig. 3.3a The system state

CRS = < 0 0 ,0 >

1 1 .l. 0 0 0

DV 0 2 1 R = 0 0 0

j_ 1 1 0 0 0

32

33

So the maximum recoverable system state will be < 1 2 1 >.

For thi~ same example I. will exp~ain what happens when the
I

same sequence of actions takes ptace.

0 1
Process 1 ~ -, >

\
\ I

\ I
\ I
\ I

\ I
\

I \
0 \ \ 1 . I 2

Process 2 ~-tt: '- ! >
'\

' I ' ' I

' I

' I

' I

' I
0 1 \ I

Process 3 ~ fi >

Initially the current recovery state will be

zero vector (CRS = < o o o >). When the message a is

logged, it can't be inciuded in th~ CRS because process 2

has not yet logged its first messag~ and hence the failure

of process--2 makes it impossible fo~ process 1 to send the

messag~ again since its recovery state is one. It defers

this till process 2 makes its state interval 1 stable.

Now say process ·2 takes ~heckpoint in state

interval 2. Here also its stable state 2 is not included in

the current recovery state. It defe~s this till message b

becomes stable in process 3.

If process 3 logs its received message b, it can be

included in the current recovery;state. So the CRS

becomes <0 0 1>. This makes the waiting process 2 to put its

34 ..

recovery state into CRS making it
I

< 0 1 >. Process 1
I

eventually finds that the state intrerval~ 1 of p~ocess 2 is

stable and hence the current recovery state is changed to <

·1 2 1 >. Here the me§sages 1 and' 2 of process 2 are never

logged. So this method relinqui~hes from the constraint
I

that all the messages received py a process should be
'

logged. For algorithm and other d~finitions see [DAVI 90].

From the above ·method we ~can say that the current
I

recovery state never decreases and hence domino efect will

be taken care. Also the calculation of CRS goes

concurrently with the other pr~cesses and the unique
I

maximum system state is calculated at the earliest. By
I

broadcasting CRS to all the sites, the failure of the

central controller can be made robust. For the selection of
I

cential controller election algbrithms are discussed in
!

[RAYN 88).

3 • 3 RECOVERY FROM PARTITIONS
I

The data items are replicated to increase the

availability- of data. This reduces the network load caused
I

by remote data accesses, improves the access time and
I

increases the raliability agains~ site failures. But this

creates new problem due to ,communication failures,

partitioning of network and lengthy communication delays.

This can lead to conflicting updates in each of partition

(communication delay can be considered as single node

partition) compromising the consistency of the database.
I

35

The optimistic re~overy strategy assumes that

the failures rarely occur. So the data item~ are updated

and are read in each of the partitions. Though the database

will be consistent in each of the parititions but the global

'
system state will be inconsistent.

I
Two problems are

'
associated with the partitions~ one detection of partitions

and-two recovery from inconsis~encies if any. The partition

'
can only be detected during r~covery phase as the each of

the partitions will assume that the set of processes to

which it could not communicate ':.tailed. Once the partitions

are detected the inconsistenci~s if any are checked. To

recover from inconsistencies the transactions need to be

rolled back in both the partitions. Two strategies to

recover from the partitions leading to inconsistencies are

discussed. They are

i) Version vector model and

ii) Precedence graph model.

3.3.1 Version vector~

This model is used -in the design of LOCUS operating

' system [POPE 83]. The version vectors only detect write-

write conflicts between the copie~ of same data item. Each
'·

copy of the logica·l data item maintains array of two fields.

The size of the array is equal tq the number of copies of

the logical data item. The field~ are a) the name of the

site and b) number of times the file is updated in this

36

site. The conflicts due to . partition can be found by

comparing the version vector values; once the partition is

detected. Two partitions are said to be not in conflict if

the vector in one of the partitions dominate the vector in

other partition (see examples below).

Partition 1. <A:1, B:2, C:4, D:3> NO CONFLICT

Partition 2. <A:l, B:2, C:2, D:3~ Part.1 dominates part. 2

Partition 1. <A:1, B:2, C:2, D:3> CONFLICT

Partition 2. <A:1, B:2, C:3, D:4> Both part.1(C) and part.
2(D) trying to dominate.

Partition 1. <A:1, B:2, C:4, D:3> NO CONFLICT

Partition 2. <A:1, B:2, C:3, D:4> Part. 3 dominates other
two

Partiti~n 3. <A:1, B:2, C:4, D:4>

<A:O,B:2,C:O,D:O>

.c ~ AB~:o,B:o,c:o,n:O>

/ <A:O,B:O,

<A:O,B:3,C:O,D:O> B <A:l,B:2, ACe

C:O,D:O>

c:o,o:o>

D <A:O,B:O,
C:O,D:O>

<A:l,B:2,
C:O,D:O>

CONFLICT!!!
(Both the partitions ACD and B trying to dominate)

fig. 3.4 Recovery f~om partitions

37

The version vector -method :i,.s not automatic i.e.

once the conflicts between the_ partitions is detected the

·resolution is left to the database admini-~trator (see

fig. 3. 4) •

This version vector model will work only in case of

single file transactions. The conflicts are not detected in

case of multifile transactions. F-or example consider a bank

in which a person can withdraw mon~y based on sum of his two

account balances. The information regarding his balances

are r~plicated at_ two sites A and B. The transactio~ and

the version vector applicability are shown in fig. 3.5a and

3.5b. Though only Rs. 300 "is in bdth accounts put together

he could collect Rs. 450 and there is no conflict in the_

database detected by version vectors.

SITE-A

acctx.bal = Rs. 100
-

accty. bal =- Rs. 200

If acctx.bal+accty.bal>150

then
acctx.bal:=acctx.bal-150

acctx.bal = Rs. -50

accty.bal = Rs. 200

SITE-B

acctx.bal = Rs. 100

accty.bal = Rs. 200

If acctx .. bal+accty. bal>200

then
accty~bal:=accty.bal-200

~cctx.bal = Rs. 100_

accty.bal Rs. 0

fig. 3. Sa

38

acctx

<A:o,s:o>A

<A:l,B:O> A B <A:O,B:O>

VA:l,B:O>

NO CONFLICT!!

~ccty A <A:O,B:O>

<A:O,B:O> ~ <A:O,B:l>

<A:O,B:l> AB

NO CONFLICT!!

fig. 3~5b Undetected-Inconsistencies

3.3.2 Precedence Graph Model

Precedence graphs · are- used to determine· the

serialization between the sites [DAVI 82,84]. Precendence

graph model to check serialization in a single site is given

in [PAPA 79]. To construct the precedence graphs the read

and write requests are logged in stable storage. Once a

partition is detected the logged requests in-both the

partitions are used to determine serializability. The

conflicts between the partitions is detected by cycles in

the precedence graph. ·The set of transactions Ti1 ,Ti2 ,Ti3 ,

, Tin determine set of n transactions in serial

order in partition i. The interaction between the

transactions are represented by edges in the precedence

graph. T_he interactions are of three types:

i> Data dependency_ ~dges

transaction k reads the value of data item updated by

·t

39

ii) Precedence edges T ik) Here the

transaction i reads a data item before tansaction j writes

it.

iii) Interference edges (Tij-----~

tr~nsaction i reads the data item before the transaction k

writes on to it in the other partition .

. Here we assume- that the readset of transactions

include the writeset. Also the write-write conflict can be

represented by a pair of read-write conflicts. The

conflicts between the transactions and the cycle in the

precedence graph is shown in fig. 3.6 .

Tll
I
I
I
I
I ..

T12
I
I
I
I
I ...

T13

partition 1 partition 2

a,b .T e,f

a,b e

b,c a,f

c f

c,d,e

d

fig. 3.6 Precedence graph showing conflict

The precedence graph for a set of. partitions is

acyclic iff resulting database is consistent [DAVI 84] .

If the precedence graph contain no cycles the last updated

40

' \

copy of each data item is the correct value. Resolving the

inconsistenci~s include undoing the transactions until the

resulting graph is acyclic. It might result in uncontrolled

rolling back of transactions. The ttansactions connected by·

precedence edges are not rolled. back ~ince th~y did not read

the results·of the rolled-badk transactions. Also the
'

transactions are. rolled back opppsi te in direction to the

execution of transactions. \
\
\

Rolling back of the tr~nsacti6ns may not be

acceptable in some cases like bankirlg.
\

Once the money has

been lent to the customer the rolling back of transactions
\

is not just updates to the database. ·._The precedence graph
\

method is well suited

i) when only small percentage of items were updated during
I

partitioning and \

ii) when writesets are very small for most of the

transactions.

3.4 CONCLUSION

This paper surveys the existing optimi_stic recovery

techniques. The message logging and checkpointing strategy

which a-lso determines maximum recoverable syst~:m state is

suitable when the failures are transient. ·When the failures

are persistent ·either version vectors or precedence graph

model can be used. But version vector model can be.used to

detect only write-write conflicts and can be used ~n~y with

single file transactions.

41

C H A P T E R 4

PESSIMISTIC RECOVERY IN DISTRIBUTED SYSTEMS

4.1 INTRODUCTION

4.2 LOCK SERVER

· 4.3 CONSISTENCY FROM CRASHES

4.4 RECOVERY FROM SINGLE NODE FAILURES

4.5 MERGING OF PARTITIONS

4.6 RECOVERY FROM MULTIPLE PARTITIONS AND DYNAMIC VOTING

4.7 CONCLUSION

4.1 INTRODUCTION

The availability of the database can be increased

by repli~ating the data at number of sites. But this poses

problems of consistency in the ' events of nodal or

communication failures which· makes a node inaccessible or

partition of. the network. ·The pessi~istic model tries to

maximise availability of data items by using dynamic voting

scheme but at the same time completely avoiding conflicting

updates in the partitions. Also to ensure the consistency

while updating the replicated data, the update needs to be

done concurrently avoiding conf~icting reads and writes.

This needs locking of the logical portion of the database in

all the sites wh~re it is replicated. For this a

centralized locking protocol with a decentralized recovery

technique is discussed[POPEK 80). The locking protocol

itself is robust to the failures and the system recovers

gracefully in the case o.f partition. The \-method to be

discussed tolerates single node failures, partition ~nd the

failure of .central controller. Maximum forward progress is

achieved in case of any of the above mentioned failures.

4.2 LOCK SERVER (LS)

The central lock server maintains. a lock table for

the entire logical partition. The logical partition

43

consists of nodes which can.communicate and have unique lock

server. Each entry in the +ock table is a tuple consisting ,

of the host which initiated . the request for the lock:, the

transaction or request sequence number and the part of the

logical database locked by th~ request.· Each host gives a
\ .

unique· number to the local\ request so· that the host
.

identifier and transaction number form the transaction or
'

request identifier (see fig. 4.1~.

host id. I tran·saction num.
\

' '
fig.~l. Transacti~n Identifier

\

J
In addition to Central Lodk Server (CLS) each of

the nodes will have its own local lock servers(LLS). These

local lock servers will contain information regarding data

items locked at the site. The need for the LLS is to make

the system resilient to the failur~s of CLS. In the event

of the failure of CLS the lock table can be reconstructed
-··

from the information at the local i.ock servers. The
\

selection of the new lock server is on · .. the basis of some

static priority assigned to nodes. This recovery mechanism

is called logical partition recovery ..

The lock ~ontroller contains t~e information

pertaining to the sites where the data is b~ing replicated

and the list of nodes which are in its logical partition(the

44

uplist) . The lock controller broadcasts these lists to all

the _sites(by piggibacking with outgoing· messages). Also

each site maintains the f~ilure list. This consists of list

of nodes which were in this partition and failed. These

three lists, locations whe're each data item is replicated,

uplist and_ failure list ~re maintained at each site in

nonvolatile memory to make ~he partition resilient to the

failures of tha central lock Berver.

4.2.1 Lock server - Selection and Services

The request to lock any data item is conveyed to

the lock server. The lock server checks the lock table to

determine whether the data item is already locked. If so

the request is rejected. If not, it sends lock request to

local lock servers of relevent sites containing replica of

data- item.- The lock server also maintains for each lock x,

Loc(x), the set of sites which are relevent to lock x or the

sites where replica of data items are locked by lock x[CHU

76] •

The· failure of lock server or partition of the

system ·causes the new logical partition t6 undergo logical
I

par~ition recovery. This includes the selection of new lock

server and release of the locks for data items which failed

majority voting.- The transaction in this casa is aborted in

partition.

45

Once the communication is reestablished between the

two partitions, the two lock controllers will communicate to

establish single logi~al partition called-merging of

partitions. In addition to the selection of combined .lock

server,the number of majority votes for data items common to

merged partitions is also changed accordingly.

4.2.2 Lock and Release Grants - Safe Talk Protocol

The requests from the external sources(application

programs) are delivered to the lock server by the host which

receives the request. These requests are for locking or

releasing the locks at relevent .sites where data item is

replicated. Locking and releasing of locks_ arbitrarily

leads to inconsistency. For this Safe Talk Protocol is used

by lock server for locking and releasing at sites in the

partition(see fig. 4.2).

Appl.
Program

----->

In case lock req.
append to lock table
In case release req.
remove from lock
table.

LS DESTINATION

~--------~-> Local
L(R)-list =

Request

(--~----1
" Ready to Update

lr'=':z..._--------~> In case lock req.
Confirm request append to local

lock table el.se
remove from LLT.

fig. 4. 2 Safe Talk Protocol

46

The. lock and release requests are placed in

temporary buffers, L-lists for locks and R-lists for

rea lease. Then the lock server sends the requests to the

relevent local lock servers and the remote sites also us·e

.temporary buffers. ·when the acknowledgement is received

from relevent nodes, the lock server places· the lock

requests (removes in case of release) from the temporary

buffers to the lock table and confirms the requests to local

lock servers. On receiving the confirm request the local

lock server commits the request by placing(removing) it in

local lock tables.

The failure of node is determined by some timeouts

and retransmissions at any .stage of the Safe Talk Protocol.

The communication failures leading to inaccessibility of

nodes is treated the same way as failure of nodes.

4.3 CONSISTENCY FROM CRASHES

In central server Loc(x) denotes the set of sites

where the lock x is effective. From the Safe talk Prqtocor

we can be sure that if x is a lock table entry in LS,then it

must be present in the .local lock servers at Loc(x). If x

is not present in the lock table of LS then it is not

present in the local lock tables of any·of Loc(x) or it is

present in the· release tables in Loc (x) . This determines

the consistency of the lock table.

The logical partition is internally consistent if

the lock table is consistent and there is only one lock

47

server tb the partition present at any time. The logical

partition_s are .mutually consistent if the lock· tables of

partitions will not conflict at any time.

The recovery from failur~ will be· consistent if the

failure occurs before the recovery is complete or after the

completion of the· recovery. We denote recovery point as

completion point.

CQmpletion Point

TERMINAL FAILUR~
(Before selection of new LS)

4.3.1 Logical Partition Recovery

TRANSPARENT FAILURE
(After selection of new LS)

When the lock server of a partition fails or the

logical partition is partitioned resulting in one of the

partitions being unable to communicate with the lock server,

a new lock server is selected. This is called Logical

Partition Recovery. The recovery from lock server crashes

has two phases i) Nomination phase ii) Lock table update

phase.

i) Nomination phase:

During the nomination ppase the lock server will be
·'

selected and· the lock and release tables ·are constructed

from the local lock(L) and release(R) tables, at tne local

lock servers at all sites of the partition. The process

which detects. the failure of LS is responsible for

nominating a new lock server. Some priority order called

·nomination order is used in selecting a site as LS. If a

48

node is.selected as lock server it is the responsibi~ity of . \

. the lock server to intimate other sites in the partition of

its"selection and creatio.n of lock and release lists. The

lock and release lists are circulated through entire
'.

partition to determine .globa~ L and R lists (see fig.· 4. 3) .

We assume that lock reqtiest is delivered by LS and
\
\ it reaches all the nodes 1n the partition. When LS

\
deliveres the release reques~, say due to communication

\

failure, it may not reach some ~f the nodes. At this point
\

of time, say LS fails and befdre selection of new LS the
\

communication is restored. so for the same data item some
\

of the nodes will contain lock-re~uest and some will contain

release requests leading to conflict. But sequence number

of requests(se~ fig. 4.1) are use~ here tci determine which

request is the latest.·

NEW LS DESTINATION

-----> Accept
Nomination

New L and R
lists

r----~-------------->

Nomination Accept ~

. ·,

<------~~----------~

fig. 4.3 Nomination Phase.

49

Update L and R
lists

II

II

II

ii) Lock table update phase:

During the nomination phase the L and R lists of

the central lock server, which ar-e initially empty ar_e_

constructed from the·L and R lists of the sites present in

the partition by passing the requ~st and tables to all the

sites in the partition in some o~der. The lock server

16cked
I

data items. This determines majoriti vote for all
\

identity
I

can be obtained by determining of nodes as L and R
\

lists pass through the sites. \\
During loCk table update ph~~e, the lock server

adds the release requests for data item~ which lost majority
\ .

due to partition to the R-list resulted from nomination
\
.\

phase and thus aborting the transaction\in that partition.

The Safe Talk Protocol is used in updatin~ ·the L a·nd R lists

of all the sites(see fig. 4.4). The lock\server d~termines

uplist and new majority needed for updat\~s after getting

Ready to Update response from the sites.

determine uplist
and new majority
vote

NEW LS DESTINATION

~--------------------------~----->
Update Table(attach L and R)

J~
<--------------------------------~
~,. Ready to Update

Resume· Normal Activity ,
(piggyback uplist and majority
vote)

fig. 4.4 Lock Table Update Phase

50

The failure of the lock server during recovery

causes restarting of the logical : partition recovery

mechanism. This logical partition recovery mechanism is in

the event of failure of the new lock server. We will see

that the new lock server is robust td the f~ilures. The

crash of new lock server can occur

i) before sending request to local lock serveis t~ update

lock tables.

ii) After sending update tables to locaL lock servers but

before getting ready to update response fr6m all the. sites.

iii) After all of the lock tables at the -local lock servers

are updated i.e. after issuing "Resume Normal Activity".

In case (i) logical partition recov,ery is restarted

as there will be no change to L and R lists. In case (iii)

the lists are updated completely and LPR is restarted. In

case (ii) as we are using the Safe Talk Protocol the updated

tables are kept in temporary buffers and Unless Resume

Normal Activity -is- issued, the local tables c.an not anyway

use the information. This needs just logical partition

recovery mechanism to be started again without any loss of

consistency.

Let us see how the failures of nodes can be taken

care of. The transparent failure of any node can be during

nomination phase or lock table updat~ phase. During

nomination phase the failure causes the node to be removed

51

from the uplist and added to the failure list. · During lock

table update· phase qS we are using Sa.fe Talk Protocol the

failure will cause changes in the up and failure lists and

also the majority is reduced-by one for the replicated data

items in the failed partition.

4. 4 "RECOVERY FROM SINGLE NODE FAILURES

The failure of a node forces the lock server to

remove its identity from the partition. When the failed

node is recovered, it sends a message to lock server to

include it in the partition through any of the nodes that it

.could communicate. The lock controller sends part of the

database for which this node maintains a replicated copy so-

as to preserve consistency of the datab~se. In addition to

this it sends L and R lists and any outstanding lock or

release requests.

In case the logical partition is ·itself undergoing

logical partition recovery then the recovering node becomes
-

a partition on its _own nominating itself as lock server to

the single node partition. It initialises its L and R lists

to empty. When the LPR is completed it will undergo Logical

Partition Merge with the partition (see sec. 4'. 5) •

The failure of .a recovering node

restores the state of the partition to the previous state.

During recovery,if_the LS of the partition fails then single

node recovery mechanism is started all over again.

52

4.5 MERGING OF PARTITIONS

When partition occurs new lock server will be

chosen at the partition which does not have access to lock

server. When com_munica~ion is reestablished between the

partitions, a .combined lock server is chosen and the tables

are updated from the information present· at the two lock

controllers. This is called' Merging of Partitions.

Partitions are always merged pairwise.

partitions has got two.phases:

The merging of

i) Detection of communication betwe~n the partitions and

ii) Merge of partitions.

During the first phase central lock server at any

of the partitions is responsible for detection of

communication between the partitions. It will try to send

messages, after each timeout, to·the nodes which are in the

f~ilure list to determine whether they a~e up. One of the

partition is denoted as primary and the other secondary.

The selection of primary is on the basis of some priority

information or on the. basis of which of the two partitions

detects the communication between the partitions first.

Then the transaction common to both t~e partitions are

aborted at. both partitions to enable consistency of

information replicat~d in both partitions. For this uplists

of both partitions are exchanged.

53

. During the merge phase the data items are exchanged

to enable both the partitions to contain latest values of

data as maximum voting would have allowed only one partition

to update replicated data items. The uplist of the merged

partition. will be the union of the uplists of the two

. partitions. The lock server which, is primary will be the

lock server for the combined partition. The updates to

tables, data i terns and new majority vote are done by Safe

Talk Protocol with piggybacked updates to enable both sites

to finish the recovery at the earliest.

Either the primary or secondary lock servers can

fail during detection phase or merge phase. If it is during

detection phase the merge process is aborted and the

partition chooses new server. If it is during the merge

phase then also the partition which lost the lock server

will undergo the selection of new lock server after aborting

the merge. If updates to data items are made it will not

cause any conflicts as Safe Talk Protocol is used. Because

the partit-ion again will loose the majority to update and

this makes the data i tern inaccessible. s·o updates will be

reflected at all nodes in the partition unless a failure of

node within partition, which we qlready proved is robust in

single node recovery. Once the selection of new lock server

is completed the merge is restarted.

54

4.6 RECOVERY FROM MULTIPLE PARTITIONS & DYNAMIC VOTiNG

When. partition .occurs(either single node or

multinode). the partition .uses majority voting[THOM 76] to

determine which partition is allowed_ to have access to data

item. But this reduces the availability when multiple

partitions occurs.

This dissertation contributes in increasing the

availability of data items in th'e event of multiple

partitions by using dynamic voting technique. This is a

refinement of the techniques suggested -by researchers like

Barbara, D., and Garcia-Molina, H. [BARB 86), Jajod,ia,

s., and Mutchler, D.[JAJO 87].

A
II(6 1 6) III(~~6)

IV (4 I 6)
LM

. LOST

V(2,6)
LM

MAJORITY
(LM)

fig. 4.Sa STATIC VOTING

I(10,6)

H(6,0(4,6)
LM

UPDATE •
MAJORITY.

II(6,4)

A
IV(4,4) V(2,4)

UPDATE
MAJORITY

VI(4,3)

.•

LM

fig. 4.5b DYNAMIC VOTING

fig.- 4.5 The tuple (x,y), x denotes number of sites
where the data item is replicated, y denotes number
of votes needed to access the data i tern. New level
denotes partition.

55

To increase availability, ·it is needed to

dynamically reduce the number of votes required to access a

data item when a node failure or partition failure occurs.

For example when a partition occurs the partition which gets

majority vote will be· having right to access data item.

Once it further partitions it is possible that no partition

can access the data item (fig. 4.5a).

This method allows access to replicated data even

when only one node in which data replicated is up but under

certain conditions as follow·s:

i) partition occurs only pairwise

ii) partition of already partitioned network will occur

only after the partition detects the partition and some

table management is done and

iii) In the event of parition divides the nodes into exactly·

two halves then some priority of the nodes' shall be taken to

decide upon which parition gets the right 'to aecess the data

item.

The problem with this method is that when two

partitions merge, even though they retain: majority vote for

some data item, they are not allowed to access the data item

as.some parititions(even ·though it is a single node) will be

having majority to access the data item:. For example in

fig. 4.5b if paritions V and III merge, six replicas of data

item will be available in the merged p9rition , but they

56

should not be allowed to acce~s . the data i tern. The

partition gets right to access the data item only when it

merges with a parition having right to the access data item ..

The above solution gives ris.e to another problem ..

Assume that a node having right tp access a data item fails.

In the partition in which it is pres~nt majOrity vote and

uplists are update.d and it continues with updates. When the

failed node recovers, it individually has got the right to

access data item or in case it merges ·with some partition

. which is not having the right to access data item will get

the right resulting in the conflicting updates to the data

items. For this reason when the node recovers it should

check its uplist to determine ~ .. Jhether it is the only node in

the partition before it failed or not. If not, it will lose

majorit~ otherwise it retains the right.

But the above implementation has got one more

problem~ In the parititon which is having majority vote to

access a data item, all the nodes fail at a time. Here each

node ~uring recovery will disqualify itself. from accessing

the data item and hence the data item cannot :b~ accessed any

longer. But one of the solutions is to wait till all the

nodes in which the data item is replicated to be recovered

and by looking into the uplists we can determine the last

set of nodes that have failed concurrently. But this is not

a feasible solution. Another solution which determines the

57

the last set of node (s) which failed (concurrently) is

discussed in the next section ..

4.6.1 To Determine Last set of Node(s) Failed

We assuine that some data item ··x is replicated in

'n'- nodes and each node maintains up and failure. lists~ ·The

uplist (failurelist) of a node 1 i 1 gives the set of nodes

that are up(d?wn as far as the node knows. Each time

when some node 'i' recovers, we remove from set S (initially

s = n) the nodes which failed before 'i'. This will be done

until set s is a subset of set of recovered nodes. Now this

S gives the set of nodes which have failed concurrently ·(se~

fig. 4. 6) .

1-10 !(10,6)

/
II(9,5) 1-2,4-10 3 FAILED

U.L. 1-10
F.L. NIL

U.L. 1-2,4-10
F.L. 3

III(S,3) 1-2,4-6 IV(4,5) 7-10
U.L. 7-10
F.L. 1-6

4 FAILED
U.L. 1-2,4-6
F.L. 3,7-10

U.L. 1-2,4-6
F.L. 3,7-10

(LOST MAJORITY)

1-2, S-6 V(4,3)
U.L. 1-2,5-6
F.L. 3-4,7-10

fig. 4.6 Up and Failure Lists on Partition{n=lO)

58

Now say ·all the nodes of partition V failed

concurrently with right to access the data item and up and

failur~ lists. Also failed nodes 3 and 4 have right to have

access to data item. Now we will see how to determine the

last node(s) to fail. We wiil continue removing nodes from

set. S(initialized ton, the set of nodes.where d~ta item X

is replicated) until s is a subset of recovered nodes (R) .

When this condition is satisfied, S gives the last .set of

nodes failed.

RECOVERED NODES CANDIDATES FOR LAST NODES

R = 0 s = 1 to 10

R = 4 s = (S - (F. L. qf 4))
= 1 to 2 , 4 to 6.

R = 4,2 s = 1 to 2, 5 to 6

R = 4,2,3 s = 1 to 2 , 5 to 6

R = 4,2,3,1 s = 1 to 2, 5 to 6

R = 4,2,3,1,5 s = 1 to 2, 5 to 6
.

R = 4,2,3,1,5,6 s = 1 to-2, 5 to 6

··uere s is a subset of R. So the last set of nodes

to fail are 1,2,5 and 6.

4.7 CONCLUSION

This model is an extention to the existing dynamic

voting models (BARB 86, JAJO 87]. These models either needs

atleast four sites to determine the majority or uses hybrid

model to switch back to static voting when the number of

sites in the model becomes less than four.

59

CHA-PTER. 5

CURRENT AND FURTHER RESEARCH

Further research in recovery in distributed systems

is expected in the-fbllowing-directions:

1) Performance tradeoffs between various strategies of

recovery (pessimistic and optimistic) .

2) Detecting partition in the network.

3) Dealing with nested transactions both in pessimistic and

optimistic cases.

4) Cost effective way of implementing fail-stop processors.

5) Rather than having single centralized server(although it

is robust to the crashes), with the number of -sites

increasing in the system the load on centralised server

increases. The solution is to divide the sites into groups

so that each group will have it own group server. There

will be a server sitting on top of the group server. But

the . problem is how to divide the system intelligently so

that for transactions generated in a group the most probable

sites to be accessed should be present in that group.

6) considerations of heuristics to determine majority of- a·

p~rtition in assymetric networks which are not totally

connected and in which some links are more reliable than

others.

Recently two papers came out with extentions to the

existing models. One is Bhargava's (BHAR 90) paper on

increasing availability using tokens so that each partition

is authorised to have atleast one operation on a data item.

The other is by Jajodia [JAJO 90], which uses dynamic voting

algorithm in determining the majority.

61

R E .F E R E N C E S

[ALGI 85)

[ALSB 76]

[ANDE 83]

[BARB 86]

[BHAR 90]

ALGIRDAS AVIZIENIS, The N-ve~sion Approach to
Fault Tolerant Software, IEEE Transactions .on
Software Engineering, Vol. SE-11, No. 12, Dec.
1985, pp. 1491- 1501.
Divsersified hardware, software and repetitive
computation to check the correctness of result and
hence by achieving the fault tolerance in
distributed sy_stems is· the motivation behind th.is
paper.

ALSBERG, P.A., AND. DAY, J.D., A ·principle for
Resilient Sharing of Distributed Resources. In
proc. of the 2nd international conference on
software engineering, Oct. 1976, IEEE Computer
Society, pp. 627-644.

ANDERSON ·THOMAS AND JOHN C. KNIGHT, A Framework
for Software Fault Tolerance in Realtime .systems,
IEEE Transactions on ·Software Engineeri.ng, Vol.
SE-9, No. 3, May 1983, pp. 355-364.
This paper gives a software fault tolerant scheme
for realtime systems. It introducecs new concept
"The Exchange" mechanism which is a restricted
form of conversation. This also classifies
various errors like Internal error, external
error, pervasive error, persistent error and

· transienY error.

BARBARA, D., GARACIA-MOLINA, H., AND SPAUSTER, A., _ -
Protocolk for Dynamic Voting Reassignment, In
Proceedings of the IEEE Conference on Distributed
Computing, ACM, New York, 1986, .pp. 195-205.

BHARGAVA, B., AND LIAN,- S.R., Typed Token Approach
for Database - Processing During Network
Partitioning, Conference on Management of Data
(COMAD 90), Dec. 12-14, 1990, New Delhi, India,
(ed.) Naveen Prakash, Tata McGraw~Hill Publication
Company Limited, pp. 162-194. .
This model is designed . to see that each . of the
partitions authorized to have atleast one
operation in the event of multiple partitions.

63

[CHAN .85]

[CHU 76]

[COUL 88]

[DAVI· 84 J

This is done· by redistributing the tokens when
partition is anticipated and thus increasing the
availability of the database.

CHANDI K. MANI AND LAMPORT LESLIE, Distributed
Snapshots: Determining Global States of
Distributed Systems, ACM Transactions on Computer
Systems, Vol. 3, No. 1, Feb. 1985, pp. 63-75.
Determining the global state of the system has got
many advantages like avoiding deadlocks, taking
checkpoi ts which are free of domino effect,
duplicate messages and inconsistencies in the
syste·m etc. Algorithm with informal proof for
determining global system state is being discussed
in this paper. ·

CHU, W.W., Performance of File Directory Systems
for Databases ·in Star and Distributed Networks.
Proc. National Computer Conference, 1976, pp. 577-
587.

COLOURIS F GEORGE, AND JEAN DOLLIMORE, Distributed
Systems(Concepts and Design), Addison-Wesley
Publishing Company, 1988.
This text focuses on design of distributed systems
and gives the design of Grapavine system developed
and designed at Xerox Palo Alto .Research centre.
This also gives an account on load balancing,
performance evaluation and distributed system
management.

DAVIDSON B SUSAN, Optimism and Consistency in
Partitioned Distributed Database System, ACM
Transactions on Database Systems, Vol. 9, No. 3,
Sept. 1984, pp. 456-481.
This is an optimistic protocol. It uses incidence
and other edges to determine cycles in the graph
on the merging of the partitions. The conflicting
updates are represented by cycles in the graph.
In addition to this it describes how to backout
and the selection of transactions for backout so
that optimal recovery takes place and at low cost.
Finally it gives how this model suits the

64

[DAVI 90]

[EAGE 83]

[ENSL 78l

[FRED 84]

applications like baking systems, airline
reservation ~ystem and periodic updating systeltl.s
like weather forecasts etc.

DAVID B JOHNSON AND WILLY ZWAENEPOEL, Recovery in
Distributed Systems Using Optimistic Message
Logging and Checkpointing, Journal Df Algorittims,
11, Sept. 1990, pp. 462-491.
The pr ill).ary concern of this paper is how to
overcome domino effect and to find ·the maximum
recoverable system state concurrent to the .process
execution and to see that this system state never
decreases i.e. in the event of failure the system
state will never go beyond this recoverable system
state. Taking into account existing checkpoint at
the same time avoiding logging of messages in the
event of checkpoint how to find the maximum
recoverable system state is the main idea behind
this paper. It uses a centralized protocol to
determine maximum recoverable system state.
Synchronization is needed during recovery.

EAGER, D., AND SEVCIK, K.C., Achieving Robustness
in Distributed Database System. ACM Transactions
on Database Systems, Sept. 1983, pp. 354-387.

ENSLOW H PHILIP, Jr. , What is "Distributed" Data
Processing System ? IEEE computer, Jan. 1978,
pp-; 13-21.
This paper introduces distributed systems and its
properties which lies in varying degrees. These
include multiplicity of resources, distribution of
resources, highlevel operating systems,
transperancy of complex system and autonomy and
cooperation.

FRED B. SCHNEIDER; Byzantine Generals in Action :
Implementing Fail-Stop Processors, ACM
Transactions on Computer Systems, Vol. 2, No. 2,
May 1984, pp. 145-154.
This fail-stop mechanism uses (2k +1) replicas as
against (k+1) replicas needed to k· resilient
database to overcome from Byzantine faults by

65

[GARC-82)

[GARC 85)

[GIFF 79]

masking. The idea is not to induce uncertainities
in the system, detection of failure of other nodes
and using stable storage to avoid conflicting
updates leading to inconsistencies.

GARCIA-MOLINA HECTOR, Reliability Issues for Fully
Replicated Distributed Databases, IEEE Computer,·
Sept. 1982, pp. 34-42.
This paper discusses reliability issues and
problem associated with fully replicated databases
and the solutions. The whole problem is solved
using seven design steps. Also the cos·t involved
with these design considerations.

GARCIA-MOLINA HECTOR, SUSAN B DAVIDSON AND DALE
SKEEN, Consistency in . Partitioned Networks, ACM
Computing Surveys, Vol. 17, No. 3, Sept. 1985, pp.
341-369.
Tradeoff between correctness and availability is
discusses with examples. It surveys the various
strategies, pessimistic and optimistic rec.overy
techniques in the event of partition. The
optimistic strategies discussed are version
vectors, optimistic protocol. The pessimistic
strategies include primary site copy, tokens,
voting, missing writes, accessible copies and
class conflict analysis. A combined strategy
(optimistic + pessimistic) also discussed.

GIFFORD, D.K., Weighted vo-ting for_ Replicated
-- Data. In proc. of 7th symposium on operating

system principles, ACM, New York, Dec. 1979, pp.
150-162.

[GOOD 81]
GOODMAN,NATHAN AND PHILIP B BERNSTEIN, Concurrency
Control in Distributed Database Systems, ACM
Computing Surveys, Vol. 13, No. 2, June 1981.
This is a survey paper on concurrency control in
distributed systems. It examines throughly the
serializability problem, two-phase protocol,
primary copy, voting, Centralized two-phase
locking, timestamp ord~ring, multiversion
timestamp ordering, conservative time stamp
ordering etc. ·

66

[GOOD 84]

[JAJO 87]

(JAJO 90]

[KENN 85]

GOODMAN 1 NATHAN AND- PHILIPA BERNSTEIN, An Algorithm
for Concurrency control and Recovery in Replicated
Distributed Databases, ACM Transactions on
-Database Systems, Vol. 9, No. 4, Dec. 1984, pp.
596-615.
This paper gives concurrency control algorithm in
replicated environment which is robust to the
failu~e~ of the nodes. The idea is to increase
the availability by making the object item
available to the extent that atleast one copy is
available. Care is taken to see that this last
copy is not· obsolete. It will not work in the
event of partitions in the network.

JAJODIA, S., AND MUTCHLER, D., Dynamic Voting. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, ACM, New York,
19 8 7 1 PP • 2 2 7-2 3 8 • .

JAJODIA
1

SUSHIL AND DAVID MUTCHLER, Dynamic Voting
Algorithms for Maintaining the Consistency of a
~eplicated Databa~e, ACM Transactions on Database
Systems, Vol. 15, No. 2, June 1990, pp. 230-280.
This paper giv~s two models .for i~proving
availability in distributed systems. In the first
model only site failures are consider~d and in the
second model only link failures are· considered.
Two algorithms considered are dynamic voting and
dynamic linear voting~

KENNETH P. BIRMAN, THOMAS A. JOSEPH, THOMAS
RAEUCHLE AND AMR E.L. ABBADI, Implementing Fault
Tolerant Distributed Objects, IEEE Transactions on
Software Engineering, Vol. SE-11, No. 6, June
1985, pp. 502-508.
This.paper gives how to build a k-resilient system
(i.e. which withstands the failure of k nodes) to
make the system tolerant to the failures·of nodes.
It uses checkpointing to retain the status of the
system. This need to be synchronized while taking
the checkpoint. It also discusses optimization
while taking checkpoints and how to cope with
total system failures.

67

[KIM 84]

[KOHL 81]

[KOO 87]

[LAMP 78]

KIM K.H., Distributed Execution of Recove~y Blocks
:An Approach-to Uniform Treatment of Hardware and
Software Faults, IEEE, Proceedings of 4th
International Conference on Distributed Computing
Systems, May 1984, pp. 52~-532.

Recovery Block strategy for software and hardware
fault tolerance is presented. Three schemes of
increasing complexities and with ·more effective
tolerances are given.

KOHLER WALTER H., A Survey of Techniques for
synchronization and Recovery in Decentralized
Computer Systems, ACM Computing Surveys, Vol. 13,
No. 2, June 1981.
This paper surveys the various solutions for
recovery and attaining co-ncurrency in
decentralized systems. The concurrency control
mechanism chosen are locking, time stamps,
permits, tokens and conflict analysis. Recovery
techniques and atomic actions and their usage are
clearly explained.

KOO RICHARD AND SAM TOUEG, Checkpointing and
Rollback Recovery in Distributed Systems, IEEE
Transactions on Software Engineering, Vol. SE-13,
No. 1, Jan. 1987, pp. 23-30.
This· paper gives an .algorithm to store the status
of the system(checkpointihg) and restoring the
status of the system when inconsistencies are
dete-cted. The algorithm proposed is robust to the
failures of system either partial or complete.
The checkpointing forces minimal number of
processes to take checkpointing to make this
globally consistent.

LAMPORT L, Time, Clocks and the Order_ing of Events
in a Distributed System, Communications of the
ACM, 21, 7, July 1978, pp. 558-565.
It is shown that the ordering of events (happens
before relation) forms partial order and which can
be implemented by counters. It also descusses on
how to synchronize the physical clocks for event
synchronization.

68

[MINO .82.]

[PAPA 79]

[PARK 83]

[POPE 80]

MINOURA, T., AND WIEDERHOLD, G., Resilient
External True Copy Token Scheme for Distributed
Database System, IEEE Transactions on Software
Engineering, May 1982, pp. 173-189.

PAPADIMITRIOU, C.H., Serializability of Concurrent
Database Updates, Journal of ACM, 26, 4 ~ Oct.
1979, pp. 631-653.
It is shown that serialization of the·interleved
transaction is NP - complete. It is also shown
that the concurrency control protocols existing
currently· generates special classes of schedulers
which can determine the order of events.

PARKER D SCOTT., POPEK G. J., GERARD RUDIS IN 1

Detection of Mutual Inconsistency in Distributed
systems, IEEE Transactions on Software
Engineering, Vol. SE-9, No. 3, May 1983, pp. 240-
247.
The idea behind this paper is to increase the
availability in Distributed systems. This makes
database to be updated even when the partition
occurs. It uses version vectors to detect
inconsistency after the partitions merge. It is a
simple mechanism and makes it unnecessary to store
all the. operations on the object when the network
is partitiqned. It works only for transactions
accessing a single file and it may fail_to detect
inconsistency when the -transa-ction accessess
multiple files.

POPEK, G.J., DANIEL A. MENASCE AND RICHARD R.
MUNTZ, A Locking Protocol for Resource
Coordination in Distributed Databases, ACM Trans.
on Database Systems, VolA 5, No. 2, June 1980, pp.
103-138.
This paper gives solution for how to update
replicated database ·using locks by the t~ansaction
coordinators at each site. A centralized
controller which is robust to the node crash and
recovery which is distributed is proposed. Also
the recovery is to maximum unique state. It is a

69

[RAND 75] .

[RAYN 88]

[SKEE 85]

[STON 76]

pessimistic recovery mechanism and it works only
when all the sites where replica of data is
present are up and are in the.same partition. An
informal proof for this centralized lock·ing and
distributed recovery mechanism is given.

RANDELL
1

BRIAN, System Structure for Software
Fault-Tolerance~ IEEE Transactions on Software
Engineering, Vol. SE-1, No. 2, June 1975, pp. 220-
232.
This paper gives detailed report on ·recovery
blocks and conversation schemes, the fault
resilient design techniques.

RAYNAL MICHEL, Distributed Algorithms and
Protocols, Translated from French by Jack Howlett,
John Wiley and Sons, 1988, ISBN 0 471 91754 0.
Various algorithms in diversified areas in
distributed systems like deadlock detection and
resolution algorithms, termination algorithm,
election and mutual exclusion algorithms, avoiding
Byzantine quarrel algorithms are discussed.

SKEEN, DALE, Determining Last Process to Fail, ACM
Transactions on Computer Systems, Vol. 3, No. 1,
Feb. 1985, pp. 15-30.
This paper discusses how to determine the .last
process or last set of processes which failed so
as to get th~ information of which process has got
latest information of certain data ~item. This is
n~eded when a process continues with its execution
(updation)- when the other process fail. To
determine this each ~recess will maintain up and
failure lists of other processes. It is assumed
that ·when a process fails it will inform other
processes of its failure.

STONEBRAKER, M. I AND NEOHOLD, E. I

Data Version of INGRES, MEMO
Electronics Res. Lab, Univ. of·
Berkeley, Sept. 1976.

70

A Distributed
ERL, M612 I

California,

[SUNI 85]

(SOVB 89]

SUNIL, K.S., BARBARA BLAUSTEIN AND CHARLES. W.
KAUFMAN, System. Architecture for Partition
Tolerant Distributed Databases·, IEEE Transactions
on Computers,· Vol. C-34, No. 12, Dec. 1985, pp.
1158-1163.
This _protocol uses time stamps to det~_rmine the
latest copy of the data ite~. This works well ·in
cases where integrity of the data· is not
important. Threat to integrity of data occur-s due
to fai-lures or partitions in the system. It
assumes full replication in the system and will
not work in· the event of nodes joining or dropping
from the system.

SVOBODOVA ~IBA, Attaining Resilience in
Distributed system, (ed.) Anderson T.,
Dependability of Resilient Computers, BSP
Professional Books, 1989, pp. 98-124.
This paper explores various failure modes in
distributed system and the inconsistencies that
the~e failures lead to. The concept of atomic
action is explained in detail. Achieving
atomicity using Timestamp ordering, Commit
protocols(like two-phase commit protocol)" are also
explained. The concept of nested atomic actions,
replicated objects and partitioning problems are

. discussed.

A Solution to Update Problem for
Databases Which Uses Distributed
Rep. 3340. Bolt B~ranek. and Newman,

THOMAS, R.H., A Majority Consensus Approach to
Concurrency c~:mtrol for Multiple Copy Databases,
A~M Transactions on Database Systems, Vol. 4, No.
2, June 1979, pp. 180-209.
This protocol assumes that the database is totally
replicated at all the sites. Each of the replica
of database is associated with a controller.
Also the replicas are associated with timestamps
to distinguish from fresh and obsolete
informations in the event of failures. Each
request is resolved by voting by the controllers

71

[TYRR 86]

[YEMI 85]

and checking the time stamp.
time stamp is needed.

So a centralized

TYRRELL, ANDREW M., AND DAVID J. HOLDING,Design of
Reliable software in Distributed Systems Using.
Con~ersafion Scheme, IEEE Transactions on Software
Engineering, Vol. SE-12, No. 9, Sept. 1986, pp.
921-928.
This paper gives how the status of the· system can
be represented ~sing petrinet model. It gives.how
to detect the conversat~on, the beginning and
ending· of the conversation between a set o.f
processors. The assumption here ·made is that the
system can be expressed as a set of communicating
sequential processes.

YEMINI SHAULA AND ROBERT E. STROM, Optimistic
Recovery in Distributed Systems, ACM Transactions
on Computer Systems, Vol. 3, No. 3, Aug. 1985, pp.
204-226.
This paper discussess · an optimistic recovery
mechanism in which communication, checkpointing
and computation goes asynchronously. It uses
session sequence numbers to determine whether the
sender or receiver failed. It also uses
incarnation· numbers to determine whether the
message is duplicate or not. Obsolutely no
synchronization during recovery or at any time
needed.

72

	TH36530001
	TH36530002
	TH36530003
	TH36530004
	TH36530005
	TH36530006
	TH36530007
	TH36530008
	TH36530009
	TH36530010
	TH36530011
	TH36530012
	TH36530013
	TH36530014
	TH36530015
	TH36530016
	TH36530017
	TH36530018
	TH36530019
	TH36530020
	TH36530021
	TH36530022
	TH36530023
	TH36530024
	TH36530025
	TH36530026
	TH36530027
	TH36530028
	TH36530029
	TH36530030
	TH36530031
	TH36530032
	TH36530033
	TH36530034
	TH36530035
	TH36530036
	TH36530037
	TH36530038
	TH36530039
	TH36530040
	TH36530041
	TH36530042
	TH36530043
	TH36530044
	TH36530045
	TH36530046
	TH36530047
	TH36530048
	TH36530049
	TH36530050
	TH36530051
	TH36530052
	TH36530053
	TH36530054
	TH36530055
	TH36530056
	TH36530057
	TH36530058
	TH36530059
	TH36530060
	TH36530061
	TH36530062
	TH36530063
	TH36530064
	TH36530065
	TH36530066
	TH36530067
	TH36530068
	TH36530069
	TH36530070
	TH36530071
	TH36530072
	TH36530073
	TH36530074
	TH36530075
	TH36530076
	TH36530077
	TH36530078
	TH36530079

