
LEARNING -IN
CEMSORED PRODUCTION RULES SYSTEM

METHODOLOGY & IMPLEMENTATIQ~,

Dissertation Work Submitted to

Jawaharlal Nehru University

in partial fulfilment of the requirements for

the award of the Degree of
Master of Technology

in
Computer Science and Technology

by

R. SREENIVASAN

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES _,..
JAWAHARLAL NEHRU UNIVERSITY . -

NEW DELHI • 110 067
JANUARY 1991

To my parents and teachers

C E R T F I C A T E

This Dissertation titled

LEARNING IN CENSORED PRODUCTION RULES SYSTEM
Methodology & Implementation

has been done by Mr. R. SREENIVASAN, a bonafide student

of School of Computer and Systems Sciences, Jawaharlal

Nehru University, New Delhi.

This work is original and has not been submitted for

any degree or diploma in any other University or

Institute.

Prof. K.K. Bharadwaj

School of Computer and Systems Sciences

Jawaharlal Nehru University

New Delhi.

Prof. N.P. Mukherjee

Dean, School of Computer and Systems Sciences

Jawaharlal Nehru University

New Delhi.

A C K N 0 W L E D G E M E N T 8

I am grateful to my supervisor· Prof. K.K. Bharadwaj, who

got me interested in the field of learning and provided

sagacious directions. His keen interest, inspiring

guidance and constant encouragement through out the

course of this work will be unforgettable for me. I fail

to find words to express my gratitude to him for his

genial advice, considered suggestions and veracious

guidance that he gave benevolently.

I offer my sincere thanks to Mr Naveen Kr. Jain, Ph.D.

student who helped me during this work.

I am indebted to the Dean, Prof. N. P. Mukherjee for

all his help. I am very much thankful to all of my

teachers, friends and collegues for their constant

guidance, support and encouragement.

R. Sreenivasan

C 0 N T E N T S

Chapter one

Introduction

The Dissertation - An overview 1

Chapter two

Fundamental Learning Strategies ••••••••••••••••• 1
Variable Precision Logic........................ 2
Censored Production Rules ••••••••••••••••••••••• 3
Hierarchical Censored Production Rules ••••••• 5

Learning Strategies

Chapter three

Introduction •••••••••••••••••••••••••••..••••••••
Fundamental Learning Strategies •••

Direct Implanting_of kncwlsdge ••••• c •

Learning from Instruction ••••••••••••••
Learning by Deduction •••••••••••••••••• • ••••
Learning by Analogy .••••••••••••••••••••••
Inductive Learning ••••••••••••••••••••• • ••••

Learning from Examples ••••••••••••••••••••••
Learning from Observation •••••••••••••••••••

6
7
8
8
9

10
10
13
14

Knowledge Representation

Introduction ••••••••••••• . 16
Two-valued Logic • 16

Syllogistic Logic ••••••••••••••••••••••••••••• 16
Symbolic Logic . • • . . 17
Propositional Logic •• • •••••••••••••••••••• 17
Predicate Logic...... ••••••••••••••••• 18

Multivalue Logic........ ••••••••••••••••• 19
Nonmonotonic Loqic ...•.....•.••.....••....••••••• 19
Propositional Logic ••••••••••••••••••••• 20
Fuzzy Logic 21
.variable Precision Logic ••••••••••••••••••••••••• 21
Production Rules .••.•.•..••.••••••••••••..•.•.••• 23

censored Production Rules ••••••••••••••••••••• 26

Contents

Chapter four

Hierarchical Censored Production Rules and Learning

Chapter five

Hierarchical censored Production Rules ••••••••••• 27
Rule-tree • . • • 2 9

Learning in HCPRs •••••••••••••••••••••••••••••••• 33
Learning •••••••••••••••••••••••••••••••••••••• 33
Remembering most likely Lines of Action ••••••• 33
Learning by refining beliefs ••••••••••••• 34
Learning by Concept Formation ••••••••••••• 34

Horizontal Growth •••••••••• • ••••••••••• 35
Vertical Growth............ • ••••••••••• 36
Learning by Fusion ••••••••••••• 37
Learning by Fission ••••••••••••• 39

Implementation

Environment
Hardware • • • • • • • • • • • • • • . • • • • . • . • • • • • • • • • • • • 41
Operating System....... • ••••••••••• 44
Software • • . • • • 4 5

Software for Artificial Intelligence 45
LISP ••••••••••••••••

Knowledge Representation .••••••••••••
Production Rules •••••••••••

.............
Frames ••••••••••••••••••••••••••••••••••••

syntax of Frames .••.•....••.••••.••••••
A Session with the System ••••••••••••••••••••••••

46
48
49
49
50
52

conclusion .. 60

Appendix

Important procedures and Functions in the system •••••••• 61
Dos Quick Reference Card •••••••••••••••••••••••••••••••• 69
References ••••••••••••••••••••••••••••••••••••••.••••••• 71

Chapter One

In t1'iod uction

THE DISSERTATION - AN OVERVIEW

Introduction Learning is an important Cognitive process. It denotes

Fundamental
Learning
Strategies

changes in the system that are adaptive, in the sense

that they enable the system to do the same task or tasks

drawn from the same population more efficiently and more

effectively the next time.

The human ability to learn is truly remarkable though it

is a long, slow process because of the inefficiencies of

human information processing system in trying to extract

patterns of other kinds of information from complex

noisy situations and retaining those patterns in a

manner that makes them available for later use.

Imparting learning capabilities in machines is one of

the central goals of Artificial Intelligence. The

penchant for discovering tricks that manage to escape

the tediousness of human learning, however, provides a

strong motivation for research in machine learning.

Learning strategies are distinguished by the major type

of inference the learning system performs on the

information provided in order to derive the desired

knowledge. At one extreme, system performs no

inference, but directly accepts and uses the information

given to it. At the other extreme, the system performs

a complex, search-based inductive inference that on

occassions leads to discovery of new knowledge.

Learning in Censored Production Rules system Page 1

The dissertation - An overview
f' I' 1 . . .

l l .. :: . ~. .·

Variable
Precision
Logic

The following learning strategies are important points

along the above spectrum.

A. Direct implanting of knowledge

B. Learning by instruction

c. Learning by deduction

D. Learning by Analogy

E. Inductive learning

The order of these strategies reflects the increasing

complexity of the inference performed on the information

g1ven to a learning system in order to derive the

desired knowledge. Chapter 2 describes these strategies

in detail.

Knowledge-Base is a major component of any learning

system. It involves setting up of a correspondence

between symbolic reasoning system and the outside world.

The representation of knowledge should be comprehensible

and should aid in implementing inference and reasoning

process easily. In chapter 3 Knowledge representation

is discussed.

Variable precision logic is concerned with the problems

of reasoning with incomplete information and resource

constraints. R.S. Michlaski and P.H. Winston (1], are

the originators of this form of knowledge

representation.

Learning in Censored Production Rules system Page 2

The dissertation - An overview
• :' ~ ' • -~ • • • , • j

Censored
Production
Rules

It attempts to develop mechanisms for representing and

co~ducting reasoning that reflects different trade-offs

between certainty (andfor specificity) of decisions and

the computational resources needed to derive them.

Features

A. The representation enables rule repair mechanisms,

there by modifying tentative knowledge because of

changes in the real world.

B. It facilitates in giving precise or more certain

results depending on the time one could spare. It is

an extension of ordinary logic and enables logic-

based systems to exhibit variable precision in which

certainty varies while specificity stays constant.

Winston and Michalski [1] employed censored production

rules, which are production rules with exception to

implement such a logic system. Intuition is that the

censored production rules capture certain aspects of

common sense knowledge which are absent from ordinary

production rules. The system employing censored

production rules handles only certainty part of the

variable precision logic.

Learning in Censored Production Rules system Page 3

The dissertation - An overview

Ordinary production rule is of the form

IF < premise > THEN < action >.

Augmented production rule with exception is of the form

IF < premise > THEN < action > UNLESS < censor >.

where the censor is a disjunction of predicates; that

when satisfied blocks the rule. The censor is an

exception for the application of the rule.

This implementation enables to attain the said twin

objectives.

A. When the real world changes, its symbolic

representation can be changed by either generalising

or specializing the production rule through censor.

This leads to modifying the tentative database.

B. If a user cannot afford time, then the system can

ignore the censor part while applying the rule,

otherwise the censor part is looked into thereby

resulting in more certain answers.

To take into account the specificity part of precision,

we are employing hierarchical censored production rules

or simply HCPRs. These HCPRs are censored production

rules augmented with specificity and genarality

information.

Learning in Censored Production Rules System Page 4

Hierarchical
censored
Production
rules

The Project

The dissertation - An overview

In order to incorporate variable specificity [19,20] we

can augment the censored production rules with

specificity part, like

IF <Premise>

THEN <Action>

UNLESS <Censor>

SPECIFICALLY <Specificity>

GENERALLY <generality>

Hence the decisions from such systems can exhibit

variable specificity as well as variable certainty or

reflect a trade-off between the two. The generality

part of the rule aids in incorporating the learning

aspect in a system which enables dynamic modification of

the knowledge base. This forms the core of the

dissertation. Chapter 3 discusses the HCPR system and

learning process implemented in the system . .
The aim of this project is to implement the learning

process in censored production rules system from

specific cases and precedents and to modify those rules

incrementally to account for new facts. Then to extend

the learning process to hierarchical censored production

rules system. Chapter 4 discusses the implementation

aspects of HCPRs and learning in such a system. A

session with the system is also included.

Learning in Censored Production Rules system Page 5

Learning

Strategies

LEARNING STRATEGIES

Introduction Learning is no doubt central to human intelligence. This

ability permits us to adapt to the changing environment,

to ·develop a great variety of skills, and to acquire

expertise in almost an unlimited number of specific

domains.

Implanting learning capabilities in machines is one of

the central goals of Artificial Intelligence. With the

advent of expert systems, implementing some forms of

machine learning has become an urgent task, even if the

forms of such implementation are very limited.

The major component of an expert system is its knowledge

base, which is built through a cooperative effort

between a knowledge engineer and an expert in the given

domain of application. Such a system consists of

production rules or a semantic network which represents

knowledge and aid in implementing inference processes.

Encoding expert knowledge into a system is a time-

consuming, difficult process that is prone to error. For

this reason knowledge acquisition is a 'bottleneck' in

the development of expert systems. The process of

knowledge acquisition can be simplified by applying

interactive programming aids for developing and

debugging rule·bases. A long term solution, however, is

seen in the development of machine learning.

Learning in censored Production Rules system Page 6

Learning strategies
. ·~ . . ~:....._

Fundamental In this chapter some fundametal learning strategies are
Learning
strategies discussed - learning from instruction, learning by

deduction, learning by analogy and learning by

induction. Two basic types of learning by induction:

learning from examples and learning by observation are

discussed.

The knowledge acquisition process can be greatly

simplified if an expert system can learn decision rules

from examples of decisions made by human experts, or

from its own errors. This type of learning is called

learning from examples. Learning from examples is one of

the fundamental learning strategies. The strategies are

identified by viewing a learning system as an inference

system. Namely, they are distinguished by the major type

of inference the learning system performs on the

information provided, in order to derive the desired

knowledge. At one extreme, the system performs no

inference, but directly accepts and uses the information

given to it. At the other extreme, the system performs a

complex, search-based inductive inference that on

occasion leads to discovery of new knowledge.

Learning in Censored Production Rules System Page 7

Learning strategies

The following learning strategies [14,15] are important

points along the above spectrum

Direct This strategy requires little or no inference on the
Implanting of
Knowledge part of the learner. It includes rote learning, learning

Learning
from
Instruction

by imitation, learning by being constructed or by being

programmed. This strategy is widely used method for

providing knowledge to a computer system: we incorporate

knowledge into its hardware, we program it, and we build

databases for all kinds of applications. Although

building databases is not typically considered as

machine learning, it can be considered as a special case

of such a process. Some databases go beyond this

learning strategy, if they can perform some amount of

inference, usually mathematical or statistcal.

In this form of learning, also called learning by being

told, a learner selects and transforms the knowledge

from the input language to an internally-usable

representation and integrates it with prior knowledge

for effective retrieval and use. This is the most widely

used strategy of human learning: it includes learning

from teachers, books, publications, exhibits, displays

and similar sources. A machine version of this strategy

is a system capa?le of accepting instruction or advice

and applying the learned knowledge effectively to

different tasks.

Learning in Censored Production Rules System Page 8

Learning by
Deduction

Learning strategies

Simple versions of this strategy constitute the basic

method for providing knowledge to expert systems today.

A learning system that uses this strategy conducts

deductive (truth-preserving) inference on the knowledge

it possesses and knowledge supplied to it. This is done

in order to restructure given knowledge into more

useful or more effective forms, or to determine

important consequences of the knowledge. For example,

given a set of numbers 1,2,6,24,120,720, a learning

system might represent them in an equivalent, but

shorter form as n!, n = 1 .. 6. To do so, the system must,

of course know the concept of a factorial.

A form of deductive learning, called analytical or

explanation-based learning has recently become an active

research area. In analytical learning, the system is

already equipped with a description of the target

concept, but the description is expressed at the level

of abstraction too high to be directly usable. The

system uses the domain knowledge to determine or explain

why a given fact is an example of the concept. This

process takes a form of formal proof, and produces a new

concept description that is operational. This

typically means that the concept is reexpressed in terms

of properties used in the concept example.

Learning in Censored Production Rules System Page 9

Learning strategies
"'~! ' \ ',,r • ' , • • I

[," 1 ~ . ~

Learning by
Analogy

Inductive
Learning

The explanation-based learning is a useful technique,

applicable to many problems. In order to be used,

however, the system has to be equipped with a sufficient

amount of relevant domain knowledge. This domain

knowledge has to be inputed to the system somehow

either by handcrafting it into the system, or by

analogical or inductive learning.

This strategy involves transforming or extending

existing knowledge applicable in one domain to perform a

similar task in another domain. For example, the

learning-by-analogy strategy might be applied to learn

water skiing when a person already knows snow skiing.

Learning by analogy requires a greater amount of

inference on the part of the learner than does learning

from instruction. Relevant knowledge or skill must be

retrieved from the memory and appropriately transformed

to be applicable in a situation or to a new problem.

Inductive learning is a process of acquiring knowledge

by drawing inductive inferences from teacher- or

environmental-provided facts. This process involves

operations of generalizing, transforming, correcting and

refining knowledge representations in order to

accomodate given facts and satisfy various additional

criteria. An important property of inductive learning is

that knowledge acquired through it cannot, in princple,

Learning in censored Production Rules system Page 10

Inductive
Learning
cont'd ••

Learning strategi~s

except for special cases, be completely validated. This

is so because inductive inference prod~ces hypotheses

with a potentially infinite number of consequences,

while only a finite number of confirming tests can be

performed. Inductive inference is an underconstrained

problem. Given any set of facts or input premises, one

can potentially generate an infinite number of

hypotheses explaining these facts. In order to perform

inductive inference one thus needs some additional

knowledge (background knowledge) to constrain the

possibilities and guide the inference process toward one

or a few most plausible hypotheses. In general, this

background knowledge includes the goals of learning,

previously learned concepts, criteria for deciding the

preference among candidate hypotheses, the methods for

interpreting the observations, knowledge

representation language with corresponding inference

rules for manipulating representations in this language,

as well as the knowledge of the domain of inquiry.

There are two aspects of inductive inference: the

generation of plausible hypotheses, and their

confirmation. Only the first is of significance to

machine inductive learning. The second one is considered

of lesser importance, because it is assumed that the

generated hypotheses will be judged by human experts and

Learning in Censored Production Rules System Page 11

Learning strategies
·, ' . !1 '' ' . ". '· . . ' .

_t 1 A ~ ~ < ~ •

Inductive
Learning
Cont'd ..

tested by known methods of deductive inference and

statistical information.

The general paradigm of inductive inference is

Given

a. Premise statements, F, represent initial knowledge

b. A tentative inductive assertion

c. Background knowledge (BK) that defines goal of
'

inference, the preference criterion for ranking

plausible hypotheses, assumptions and constraints

imposed on the premise statements and the candidate

inductive assertions, and any other relevant general

or domain specific knowledge.

Find

an inductive assertion (hypothesis), H, that, together

with background knowledge BK, tautolagically implies the

premise statements.

An hypothesis together with background knowledge

tautologically-implies a set of facts, if the facts are

logical consequence of the hypothesis and background

knowledge, that is the implication H & BK => F holds

under all interpretations. Since for a given BK an

infinite number of assertions H can satisfy such an

implication, a preference criterion is a used to reduce

the choice to one hypothesis or a few most preferable

ones. Such a criterion m~y require, for instance, that

Learning in Censored Production Rules System Page 12

Learning strategies

the hypothesis be the shortest or the most economical

description of all given facts, among all candidate

descriptions. ·

The two important Inductive learning strategies

discussed are Learning from examples and learning by

Observation and Discovery.

Learning from Given a set of examples and counter-examples of ·a
Examples

concept, the learner induces a general concept

description. The amount of inference performed by the

learne~ is greater than in learning by deduction or

analogy, because the learner does not have prior

knowledge of the concept to be learned, or knowledge of

similar concept. Thus, it cannot create the desired

knowledge by deduction, or by analogy to what it

already knows. The desired knowledge must be created

anew by drawing inductive inference from available

examples or facts. Learning from examples, also called

concept acquisition, can be a one-step process or multi-

step process. In the former case, all examples are

presented at once. In the latter, examples are

introduced one-by-one or in small groups; the learner

forms one or more tentative hypotheses consistent with

the data at a given step·, and subsequently refines the

hypotheses after considering new examples. This strategy

is commonly used in human learning.

Learning in Censored Production Rules system Page 13

Learning strategies
' I • • ~ • • '>

> • ' ' • j,. • . • • ~ •

Learning by This 'learning without teacher' strategy includes a
Observation

variety of processes,· such as creating classifications

of given observations, discovering relatjonships and

laws governing a given system, or forming a theory to

explain a given phenomenon, or the learner is not

provided with a set of instances exemplifying a concept,

nor is given access to an oracle who can classify

internally-generated instances as positive or negatiye.

Also, rather than concentrating attention on a single

concept at a time, the learner may have to deal with

observations that represent several concepts. This adds

a new difficulty, namely solving the focus-of-attention

problem, which involved deciding how to manage the

available time and resources in acquiring several

concepts at once.

Learning from observation can be subclassified according

to the degree of interaction between the learner and the

external environment. ~0 basic cases can be

distinguished:

a. passive observation where the learner builds a

description of a given set of observations.

b. active experimentation, where the learner makes

changes in the given environment and observes. the

results of those changes. The changes may be random

or dynamically controled by some heuristic criteria.

Learning in Censored Production Rules system Page 14

These learning strategies were presented above in order

of increasing amounts of effort required from the

learner and decreasing amounts of effort required from

the teacher. This order thus reflects the increasing

difficulty of constructing a learning system capable of

given learning strategy.

Learning in Censored Production Rules System Page 15

Chapter three

Kno1\'~ledge

Representatio11

KNOWLEDGE REPRESENTATION

Introduction In order to solve the complex problems encountered in

Two-Valued
Logic

Syllogistic
Logic

artificial intelligence, one needs both a large amount

of knowledge and some mechanisms for manipulating that

knowledge to create solutions to new problems.

A variety of ways of representing knowledge have been

exploited in A.I. programs. Some of them, Two-valued

logic - syllogistic logic, symbolic logic, propositional

logic, predicate logic; multivalue logic, nonmonotonic

logic, probabilistic logic, fuzzy logic and variable

precision logic are discussed here.

It is a yes or no kind of logic, in which all classes

are assumed to have sharply defined boundaries. So

either an object is a member of a class or it is not a

member of a class. For example, dead or alive, male or

female and so forth are classes that have sharp

boundaries.

The first known logician was Aristotle (384-322 B.C.),

the great philosopher and natural scientist. He

developed much of the theory of what has come to be

called syllogistic or classical logic. Syllogistic logic

essentially deals with deriving the truth from a

philosophical argument. This type of logic is still used

because it is the basis for virtually all legal

argumentation. example

X --> Y; All Y --> Z hence X --> Z

Learning in·censored Production Rules system Page 16

Knowledge representation
[, • ; ' • •• • ~ j •• ~. ·- • ~. • 1'

Symbolic
Logic

In many ways, syllogistic logic is simply a

formalisation of common sense. However, because

syllogistic logic is based in natural language, it

suffers from the inherent flaws of a natural language.

Natural languages are often imprecise and can be

misunderstood. Also, people tend to hear or read

selectively, which can cause further confusion. This

lack of precision eventually led to the invention of

symbolic logic.

symbolic logic began with G.W. Leibniz (1646-1717), but

was forgotten when he died. The entire field was revived

by the person generally given credit for its invention,

George Boole (1815-1864). This type of logic is called

Boolean logic. Symbolic logic deals with the abstraction

of concepts into symbols and interconnection of these

symbols by certain operators. example -

IF (P is true) and (Q is false)

THEN (P or Q is true) and (P and Q is false)

There are two distinct but interlocking branches in

symbolic logic, the first is propositional logic and

other is predicate logic.

Propositional It deals with the determination of truthfulness or
Logic

falseness of various propositions. A proposition is a

properly formed statement that is either true or false.

Learning in Censored Production Rules System Page 17

Knowledge Representation
. ', ... · .. ~ ""

Predicate
Logic

Although, propositional logic forms the basis for both

intelligence and computer languages, one cannot use it

by itself to represent human knowledge of the world,

because it lacks the ability to represent relationship

between objects, and it cannot be used on

classifications. This shortcoming leads to predicate

logic.

This is an extention of propositional logic. The basis

of predicate logic is predicate, which is essentially a

function that returns either a value of true or false

depending upon its argument.

example 1: The predicate Dog defined by Dog(X) takes the

value True if X=Rover False if X=Pussy

example 2: is hard (rock) ==> true

is hard (cotton) ==> false

In propositional logic these two predicates and

arguments become rock is hard cotton is not hard.

In predicate logic, it is possible to create a function

that determines the hardness of any object. The

predicate logic uses variables to generalise predicates

Man(X) ==> Not woman(X).

predicate logic uses two quantifiers, existential

(there-exists) and universal (for-all). example ~

All cats are animals <==> for-all X Cat(X) ==> animal(X)

Every boy has a bicycle <==> for-all X (BOY(X) ==>

there-exists Y (Bicycle(Y) and own(X, Y)))

Learning in Censored Production Rules system Page 18

Multi value
Logic

Knowledge Representation

A polish mathematician J Lukasiewiecz, first developed

the concept of multivalued logic during 1920s. In

multivalued logical systems, there are more' than two

truth values. There may be finite or infinite number of

truth values, i.e., an infinite number of degrees to

which a property may be possessed. In a three valued

system, for instance, something can be true, false, or

on the boundary.

Nonmonotonic A logic in which a conclusion stands no matter what new
Logic

axioms are added, is called monotonic logic. Traditional

system based upon predicate logic are monotonic in the

sense that the number of statements known to be true is

strictly increasing over time. Neither of new statements

added to the system or new theorem proved, will ever

cause a previously known or proven statement to become

invalid.

Monotonic systems are not very good at dealing with

incomplete information, changing situations, and

generation of assumptions in the process of solving

problems. Nonmonotonic logic [4] allows statements to

be deleted from, as well as added to, the database.

Among other things this allows the beliefs in one

statement to rest on a lack of belief in some other one.

Rarely does a system have at its disposal all the

information that would be useful. But often when such

Learning in Censored Production Rules System Page 19

Knowledge Representation
' • <":'> • ' • . • ,,

• ~ ' -.... • ,I

information is lacking, there are some sensible guesses

that can be made, as long as no contradictory evidence

is present. The construction of these guesses are known

as default reasoning. We know that~ne of a set of

things must be true and, in the absence of complete

information, we choose the most likely. Most people

like flowers. Most dogs have tails. The most common

complexion among swedes is blond. These examples

illustrate one common kind of default reasoning, which

may be called most probable choice.

Probabilistic Probobilistic logic makes it possible to represent
Logic

likely but uncertain inferences. There are three types

of situations in which it is tempting to use

probabilistic logic:

a. The relevant world 1s really random, for example, the

motion of electrons in atom or the distribution of

people who will fall ill during an epidemic.

b. The relevant world is not random given enough data

but our program will not always have access to that

much data, e.g., the likelihood of success of a drug

at combatting a disease in a particular patient.

c. The world appears to be random because we have not

described it at the right level, e.g. characters when

analysed as lines and archs appears to be less

randomly varying than when viewed as a collections of

dots.

Learning .in Censored Production Rules System Page 20

Knowledge Representation
" - . .

I • ' .-, -~ -.;; . . . •

Fuzzy Logic In 1965, Zadeh introduced the concept of a fuzzy set as

Variable
Precision
Logic

a model of a vague fact. In every day life we often deal

q~~: ''a

fiT\\ ,1 ~~
with imprecisely defined properties or

few tools", "a tall man", etc.
'\.,.. ~ - ... ,
\~'.':>><~of\\($·_,...
~ ... /

The key idea in fuzzy set theory is that an erement has

a degree of membership in a fuzzy set. Thus a

proposition need not be simply true or false, but may be

partly true to any degree. We usually assume that this

degree is a real number in the interval [0,1]. Consider

the fuzzy set 'tall'. The element are men and their

~ degree of member ship depend on their heights. For

example, a man who is 5 feet tall has degree o, a man

who is 7 feet tall might have degree 1 and men with

intermediate heights might have intermediate degree.

In 1986, Michalski and Winston in their paper [1],

introduced the censored production rules to exhibit

variable precision logic. Variable precision logic is

concerned with reasoning with incomplete information

and resource constraints. It offers mechanism to handle

trade-offs between the precision of inferences and the

computational efficiency of deriving them. You cannot

tell an ordinary logic-based reasoning system much about

how you want it to do its job.

Learning in Censored Production Rules System

b;s~+A.~~
6'g\ '3'06

~~'7
k

Page 21 J

You cannot give the following instructions, for example

a. Give me a reasonable answer immediately; if there is

enough time, tell me you are confident in the answer

or change your mind and give me another better answer

b. Give me a reasonable answer immediately, even if

somewhat general; if there is enough time, give me a

more specific answer.

c. Give me a highly certain answer only, even if

somewhat general; if there is enough time, give me a

more specific answer.

d. Give me a highly specific answer in the time allowed,

even if you are less confident about it; if the

allowed time is enough, tell whether you

confident in it.

are more

There may be various other requirements of this type,

which might arise in real life. So our reasoning system

should facilitate these requirements on real

problems.

life

A system that gives more specific answers,

time is what we call a variable specificity

given more

system. A

system that gives more certain answers given more time

is what we call a variable certainity system.

Learning in censored Production Rules system Page 22

Production
Rules

There can be various combinat~ons of the two systems,

reflecting the fact that specificity and certainty are

inversely related. Variable precision system is a

system that exhibits either variable. specificity or

variable certainity or some trade-off between the two.

A production rule is a situation-action couple, meaning

that whenever a certain situation is encountered, given

as the left side of the rule, the action given on the

right side is performed. It can be written in the form

'if premise then action.' The premise is a conjunction

of predictes representing certain situation and the

action is what is to be done when premise is satisfied.

Very often the action is the taking of some decision,

then rule becomes an implicative assertions of the form:

"Premise ===> decision"

But this is not always the case. Ther is no apriori

constraint on the form of the situation or of the

action. A system based on production rules will usually

have three components:

a. The rule base, set of production rules.

b. The fact base, definitions & data structures

containing known facts.

c. The interpreter of these facts and rules, which is

the mechanism that decides which rule to apply and

initiates the corresponding action.

Learning in Censored Production Rules system Page 23

Knowledge Representation

The facts and the rules have a syntax that is known to

the interpreter; the latter can therefore manipulate

these logically, deciding on their truth or otherwise,

in some· programs, deriving new facts from them or

suppressing certain facts. Consider this simple example:

Rule base:

Rl if B lays eggs and B flies then B is a bird

Fact base: Fl Buzo flies

F2 Buzo lays eggs

Fact base after the interpreter has scanned both facts

and rules Fl Buzo flies

F2 Buzo lays eggs

F3 Buzo is a bird (new fact derived)

A production rule lacks certain aspects of common sense

knowledge. Precision of inferences remains constant in

production rules system, since neither certainty nor

specificity can vary with resource constraints. The

production rules system is not suited to reasoning with

incomplete information and resource constraints. Also,

the production rules system of knowledge representation

is not natural to rule repair mechanism. Whenever, a

contradiction to a production rule is found, there are

various possibilities to handle it:

1. To consider the rule invalid, and ignore it in future

2. To continue to use the rule without change, realising

that it will result in error occasionally.

Learning in Censored Production Rules system Page 24

Knowledge Representation
~ • \ • ': ~· • ' ~ "' - • o ' I'

3. To modify the rule, so that the rule applies

correctly to all encountered situations.

4. To develop a new rule, substituting the new rule for

the old.

5. To remember the situations for which the rule does

not work, treating them as exceptions.

Action 1, is simple and prevents us from making errors.

It deprives us of the benefit of using the rule when it

does work. Action 2, preserves the benefit of using the

rule when it does work, but using it will lead to some

error. If modification to be made to a rule is small,

then action 3, is the better choice. But if this

modification is unclear or complicated, then action 4,

is the better choice. The last two actions lead to a

better and more precise rule, but require time and

effort. In science, where standards for precision are

high, one of these two actions is the usual choice.

If exceptions are few, then action 5, is a good choice.

It preserves the usefulness of the old rule, but

prevents making mistakes in situations recognised as

exceptions. Even when exceptions are more than few, it

is the best action to take particularly when it is not

clear how to make changes to the old rule or how to

create a new one. Production rules with exceptions are

called censored production rules.

Learning in Censored Production Rules system Page 25

Censored
Production
rules

Knowledge Representation

Winston (2] first introduced the concept of censored

production rules. Censored production rules are

production rules augmented with exceptions. It is of the

form: "If premise Then action Unless censor." The

censor is a logical condition (disjunction of

predicates) that when satisfied, blocks the rule. Thus a

censor can be viewed as a statement of exceptions to the

rule.

These forms of representation are more natural and

comprehensible than other equivalent logical forms. A

simple rule with exceptions may be better than a

complicated one without exceptions, particularly when

the exceptions occur only rarely. Also, if exceptions

are few, then to remember exceptions, using censored

production rule is a good choice.

Employing censored production rules as a vehicle to

implement variable precision logic exhibits only

variable certainity, whereas specificity stays constant.

So there should be some other better representation

schemes or some modification to the existing censored

production rules representation. We prefer latter,

because it would retain the advantages of censored

production rule, while exhibiting more intelligence. The

resulting r·ule will be called a hierarchical censored

production rule or simply HCPR.

Learning in Censored Production Rules System Page 26

Chapter four

·Hierarchical

Censored . -·

Pro-duction

Rules

a.nd

Learning

HIERARCHICAL CENSORED PRODUCTION RULES

Hierarchical In a system during problem solving, at any instance,
censored
Production if information about the applicable rules is provided
Rules

then the process will be fast, because the system need

not find them using exhaustive search of the whole rule

base. e.g. A query asked- 'can Buzo fly?'; the process

after finding that 'Buzo can fly', should look for the

next line of action to be taken by the system to get

more specific answer for 'can fly how high?' or 'can fly

how fast?' rather than search the rule base and coming

across irrelevant rules. These out of context rules

should be avoided, because they might require some

irrelevant information to be provided, which surely one

would not like. Intelligent systems should also be able

to discard most of the task irrelevant information

quickly, and should concentrate on main line of

reasoning and learning.

Such a behaviour exhibited by system should be regarded

as "intelligent behaviour", since the availability of

information of applicable set of rules is evidence of

more complex reasoning process than a blind search

through all the possibilities. One of the criteria for

intelligence is the ability to deal with complexity.

Augmenting censored production rule with information of

rules, which should apply next to get more specific

decision results in Hierarchical Censored Production

Rule (HCPR) .

Learning in censored Production Rules System Page 27

HCPRs

HCPRs A HCPR is of the form

If <premise>

Then <action>

Unless <censor>

Specifically <specificity>

Generally <generality>

It is created by augmenting the censor production rules

with the specificity and generality information. The

specificity information to a rule is hint about a set of

rules in a rule-base, such that:

a. these rules are the most likely to be satisfied,

b. these rules are the most relevant to the current

state of the system and

c. the decisions from these rules are more specific than

the decision of the augmented rule.

The generality information to a rule is

a. to give the parent of the current rule in the rule tree.

b. to help 1n the process of learning in HCPR system by

providing a trace to the system in finding

the parent for the new rule.

We will employ a rule-tree as an underlying

representational and computational mechanism to handle

various trade-offs, Where, a rule-tree is a collection

of all related HCPRs for the same domain of problems.

Next section describes a rule-tree in detail.

Learning in Censored Production Rules system Page 28

RULE-TREE

HCPRs

A rule-tree is a collective and systematical

representation of all related HCPRs about a given

concept. A HCPR in a rule-tree is a quanta of knowledge

about a particular domain of problems. It is a quanta in

the sense that it cannot be further divided into two or

more simpler

concept of

systematically

rules, and is complete in itself. The

rule-tree, provides a mechanism to

handle the problems in a particular

domain of knowledge. Also, it provides an efficient

means to handle new information, which produce either a

contradiction or which cannot be explained on the basis

of the current knowl~dg~-base. A knowledge-base ~ay

contain one or more rule-tree each for different domains

The general concepts in a rule-tree are represented at

relatively low level of specificity (in the vicinity of

the root) and the specific concepts are represented at

relatively higher level of specificity (in the vicinity

of the leaves of the rule-tree) . So a rule-tree is a

systematic representation of HCPRs for similar domain of

problems. Any subtree of rule-tree cannot represent more

general concept than the rule-tree itself, or in other

words, its domain of problems is relatively restricted.

A general rule is one, on which one or more specialised

rules are dependent directly or indirectly. i.e., leaves

of a rule-tree represent the most specialised rules and

nodes other than leaves represent more general rules.

Learning in censored Production Rules System Page 29

HCPRs
• , 1 ,. • •' ~ ""' I

. ' .. - ~ '-.

Rule-tree
Cont'd ..

Rules dependent on same immediate general rule are

called sibling rules and the general rule is called the

parent rule. Eath rule has only one parent rule.

The advantages of rule-tree

a. The rule-tree offers mechanisms to handle various

trade offs

1. It offers mechanism to handle trade-offs between

the precision of inferences and computational

effeciency of deriving them.

2. It offers mechanism to handle trade-offs between

the certainity of conclusion and its specificity.

b. The representation using rule-tree facilitates

efficient use of memory.

c. The rule-tree provides an efficient mechanism to

discard most of the task irrelevant information

provided to an intelligent system. It considers task

relevant information only.

d. The specificity information provides a systematic way

to proceed for the conclusion. It discards a large

number of rules at each level of specificity of

conclusion, thus makes possible the most rapid

progress to a useful conclusion. So to find a

conclusion, inference engine is required to consider

only a small set of rules and hence, it is not

required to consider the whole knowledge-base.

Learning in Censored Production Rules System Page 30

Rule-tree
cont'd ..

HCPRs

e. The generality information coupled with specificity

information aids the process of learning in the

system. The system traverses through the rule-tree to

locate the parent of the entered new rule. There by

strengthening the rule-tree and dynamically updating

the rule-tree. The newly entered rule may be a

sibling of the tracked rule, parent of the tracked

rule or it may be sibling of one rule and parent of

another rule depending the rule's generality and

specificity characteristics.

So it is superior to other systems because it requests

information that has the greatest importance, given the

current state of the system. The general theory of

operation is that the system requests as its next piece

of information the one that will remove most of

uncertainity from the system.

Learning in censored Production Rules system Page 31

RULE-TREE FOR PLANE FIGURE

Plane figure

/
Convex

~
non convex

/~
polygon oval figure

\ elli~ \
Circle

irregular /egula~

equilateral square pentagon
triangle

The rule-tree in this figure is for the concept of

plane-figures. The root of the tree represents a general

concept of plane figure, and its subtree with root

convex represents less general concept of convex figure.

This subtree includes all the specialised rules relevant

to the general concept of convex figure, but no rule

about the concept of non-convex figures. This rule-tree

will infer a given figure is triangle only after it has

inferred that it is a plane figure, convex and polygon.

Learning in censored Production Rules System Page 32

LEARNING IN HCPRs
, 1 '\, , ' l

LEARNING

Remembering
most likely
Lines of
Action

t 1 it • '"*"" •

Learning is a continuous process and results in the

modification of the system to improve systems'

behaviour. The performance of the system increases with
.

time due to the dynamic modification of the knowledge-

base. Because of this fluidity of knowledge, the

representation of knowledge should aid modification of

knowledge-base.

The rule-trees in a HCPRs system have the capability of

continuous growth with time. A rule-tree will become

stronger (strength of implication) and richer in

knowledge as time passes. Like exception, specificity

informations m~y b~ incomplete or even absent in a HCPR

depending on, how much a system has learnt. Some of the

following learning schemes are implemented in this

project.

Specificity informations may be resequenced according to

how frequently a specific rule has been applied in the

past or in the order of decreasing importance. Such

that, information of rule, which is used most frequently

or most recently should come first 1n the specificity

information part of the rule. A HCPRs based reasoning

system should apply rules according to their order in

the specificity information, rather than the order in

which they are stored in the rule base. Similarly,

exception conditions may be stored in the order of their

cost-factor and likelihoods.

Learning in Censored Production Rules System Page 33

Learning
by refining
beliefs

Learning
by Concept
Formation

learning in HCPRs

Strength of implications and likelihoods of various

exceptions should be updated according to the past

experience of the system. This could be performed by

using the past-data of each HCPR, where the past-data

may include information of the type :

a. Number of times a HCPR has been employed successfully

b. Number of times a particular exception has blocked

the rule.

A concept corresponds roughly to an idea; a concept is

introduced into the system by way of definitions which

gives its relations to other concepts in the system.

One important use of concepts is to provide the

informational bases for classifying newly encountered

objects or events. A concept may be defined as ordered

information about the properties of one or more things

that enables any particular thing or class of things to

be differentiated from and also related to other things

or classes of things.

A system should have learning algorithms which may be

used to neutralise the errors in a concept due to over

generalisation, under generalisation, or misconception.

These issues of concept formation are described by

naming different operations on rule-tree appropriately.

Learning in Censored Production Rules system Page 34

Horizontal
Growth

Learning by Concept Formation

If a new rule to be added to a rule-tree does not

increase the maximum level of specificity then its

inclusion in the rule-tree will be called horizontal

growth, as shown in the figure.

A A

/\ /\
Al A2 Al A2

I I I
All All Al2

General Concept

Polygon

/ ~
Triangle Quadrilaterl Pentagon Triangle Quadrilaterl

Polygons

Horizontal growth of a hcpr-tree for

general concept and polygons

Learning in Censored Production Rules System Page 35

Vertical
Growth

Learning by Concept formation

If a new rule to be added to a rule-tree increases the

maximum level of specificity by one, then its inclusion

in the rule-tree will be called vertical growth, as

shown in the figure.

/A~
A

/~
Al A2 Al A2

/\ j 1\ I
All Al2 A21 All Al2 A21

I
Al21

General Concept

Plane figure Plane figure

/ ~ I \
Polygon oval

I·~
Polygon oval

I ~
Triangle Quadrilateral triangle Quadrilateral

Parallelogram

Plane figures

Vertical growth of a hcpr-tree for

general concept and plane figures

Learning in Censored Production Rules System Page 36

Learning by Concept formation - fusion
~ l ' ~ . .
~· ' . 'l j .l ~ ' ~ .

Learning
by Fusion

a. Consider two r~le-trees namely Rl and R2 which

represent two unrelated concepts "Al" and "A2"

initially. But, after some time it is observed that

these two concepts are related such that, they may be

combined to form a single concept, say C. A new rule-

tree is then formed to represent the general concept

C as root and rule-trees for decisions Rl and R2 as

its subtrees, as shown in the figure.

Al

/\
A2

1\ /\ +

All Al2 A21 A22 Al A2

/1 ~
- Rl - - R2 - All Al2 A21 A22

- R3 -
(a)

polygon oval figure plane figure

I \ + I \ ~ / ~
triangle pentagon ellipse circle polygon oval figure

/ \ I \
triangle pentagon ellipse circle

(b)

Fusion of two hcpr-trees for

(a) general concepts (b) polygon and oval figure

Learning in Censored Production Rules system Page 37

Learning
by fusion

Learning by Concept formation - fusion

b. A rule-tree R2 with an independent concept "Abl"

initially, may be a subconcept of another rule-tree

for concept Rl. So after suitable modifications a

relationship is established between the two rule-

trees, as shown in the Figure.

Aal Abl Aal

I\ + I \ /\
Aa2 Aa3 Ab2 Ab3 Aa2 Aa3

I I\,
Aa4 Aa4 Abl

- Rl - - R2 - /\
Ab2 Ab3

(a) - R3 -

idrilat\al +
plane figure

\
Parallelogram Trapezium oval

Triangle

Triangle Quadrilateral.

I \
Parallelogram Trapezium

(b)

Fusion of two hcpr-trees for

(a) general concepts (b) plane figure and quadrilateral

Learning in Censored Production Rules system Page 38

Learning by Concept Formation - fission

Learning by This process is employed to simplify a complex rule by
Vertical
Fission breaking it into two or more simpler rules related to

each other in hierarchy, as shown in the Figure. This

process is called vertical fission.

A A

I\ 1\
~1 A2 Bl A2

/\ ~ I
All Al2 ;\

All Al2

(a)

Plane figure plane figure

I \ I
polygon oval Convex figure

I \ I \
Triangle Quadrilateral Polygon oval

I \
Triangle Quadrilateral

(b)

Vertical fission of a hcpr for

(a) gener~ concept (b) plane figure

Learning in Censored Production Rules System Page 39

Learning by
Horizontal
Fission

Learning by Concept formation - fission

As the number of sibling rule·s crosses some critical

value, they may split under two or more intermediate

parent rules, as shown in Figure. Where, Bl and B2 are

two intermediate parent rules. This presses will be

called horizontal fission.

A A

/ '\ /\
Al A2 t:=:::> Al A2

/1~ /~
All Al2 Al3 Bl B2

I\ I
All A13 Al2

(a)

polygon

aqua~~ \~ht =
triangle

rectangle equilateral
triangle

polygon

I
irregular
polygon

I ri~t angle
triangle

equilateral rectangle
triangle

(b)

Horizontal fission of a hcpr-tree for

(a) general concept (b) polygon

Learning in Censored Production Rules system Page 40

Chapter fi v'e

Implementation

Environment - H a r d w a r e
. F ~· . . t

~ . ~ . . .

Computer
system
Used

The System used is IBM compatible BUSYBEE 386. It is a

32-bit Personal Computer. It is compact, powerful,

general purpose micro-computer which has been set to

suit most of the personal and ·business computing needs.

It is· based on INTEL 80386 32-bit microprocessor. A

large variety of popular application software packages

like Symphony, Lotus 1-2-3, Softword, dBASE, and

compilers for Fortran, Basic, Cobol, Pascal, C, LISP and

Prolog languages etc. run on this system in DOS

environment.

The system can also work in multiuser Xenix environment

and can support upto eight users. Various popular

packages can run in this environment.

The system has one floppy disk drive, one cartridge

drive and one hard disk drive. The hard disk provides

more storage capacity, greater efficiency and faster

data access than the floppy disk drive. The hard disk

has 300MB storage capacity and floppy disk has 1.2 MB

capacity.

It has RAM configuration of 8192 K bytes. It also has

a graphic adapter.

Learning in Censored Production Rules System Page 41

Environment - Hardware
' ,. ; 1',-,. •• 4~ • • • • • •

system The basic components of the system are as follows:
Configuration

The system Unit

This comprises of disk drive and microprocessor unit.

The microprocessor used is INTEL 80386 32-bit.

storage Devices

This has a floppy drive of 1.2MB capacity and one hard

disk with 300MB of disk storage capacity. In addition to

this there is a cartridge drive meant for back up of

softwares.

Video Display Unit

The system can display its output on a monochrome video

monitor. This is connected to the system through a power

cable.

Keyboard

The system has QWERTY keyboard. The keys are low

profile, full travel, sculptured type. The keyboard can

be inclined for typing comfort.

Graphics Adapter

The monochromejcolor graphics adapter is an add-on card

to which you connect your monochrome or color monitor.

The adapter supports two basic operation modules - text

and graphics. In the text mode, one can have eight pages

of 40 x 25 text or four pages of 80 x 25 text with

attributes such as Reverse Video, Blinking and

Highlighting. With the color monitor we can have upto 16

different foregrounds and 8 background colors.

Learning in Censored Production Rules system Page 42

Environment - Hardware

The text mode can display the 256-character set that

includes 16 special characters for games, 15 character

for editing, 96 ASCII set, 48 foreign language

characters, 16 Greek characters and 15 scientific

notations.

In the graphics mode, one can have a resolution of

640 x 200 pixels with monochrome monitor or 320 x 200

pixels with color monitor.

Printer

The printer used is EPSON FX - 105. This is fast,

reliable and easy to use. It has a number of print

modes. For fast draft printing, we can choose to print

at 160 characters per second. For higher quality

printing, using NLQ mode, the speed is reduced. This

printer can take either cut sheets or continuous

stationery. The appearance of the printer page is

controlled by the codes sent by the computer to the

printer. We can use codes ourselves to produce an

enormous range of special printing effects.

Learning in censored Production Rules system Page 43

OPERATING
SYSTEM

Environment - OS

An Operating system is a set of commands which help the

users to share a computer installation efficiently. An

operating system is silent partner when we are using the.

computer. It provides the interface between the hardware

and both· the user and other system software.

An Operating System (OS) is a piece of system software

most closely associated with the hardware. The OS is

unique to the microprocessor. For example, MS-DOS runs

on the microprocessor 80x86 family and will not run on

another microprocessor like zaooo unless major parts of

the OS are rewritten.

The operating system used is MS-DOS. Microsoft MS-DOS is

a disk operating system for INTEL chips based computers.

Through MS-DOS we communicate with the CPU, disk drives,

printer, and manage these resoursc~s to our advantage.

It enables us to create and keep track of files, link

and run programs, and access peripheral devices such as

printer and disk drives that are attached to our

computer. A whole range of softwares and compilers are

available under MS-DOS.

Learning in censored Production Rules System Page 44

Environment - s o f t w a r e
···~·.•· • II.

Software for
Artificial
Intelligence

Features

Artificial Intelligence, or AI, is the branch of

computer science concerned with making computers

"intelligent." This brings the fundamental difference

between traditional programming and AI programming [18].

In traditional programming, the program represents

knowledge. The programmer has thought out the procedures

and steps to solve a problem and the program therefore

knows how to solve it. In contrast, AI based

programming does not represent knowledge as part of the

program procedures. Instead, it keeps knowledge and

control separate and makes the program act as the

interpreter. This allows the user to modify or change

the knowledge domain and solve different problems

without having to change the program itself.

Language features that are particularly important in

building AI systems are -

* Good facilities for manipulating lists

* Pattern matching facilities, both to identify data and

determine control.

* Facilities for performing some kind of automatic

deduction and for storing a database of assertions

that provide the basis for deduction.

* Facilities for building knowledge structures, such as

Frames, so that related pieces of information can be

grouped together and accessed as a unit.

Learning in Censored Production Rules system Page 45

LISP

Environment - LISP

* Mechanisms by which the programmer can provide

additfonal knowledge that can be used to focus the

attention of the system where it is likely to be the

most profitable.

* Control structures that facilitate goal-directed

behavior in addition to the more conventional data-

directed processing.

* The ability to intermix procedures and declarative

data structures in whatever way best suits a

particular task.

LISP is by far the most important member of the AI

language family, in terms botn of the number of lines of

code written in it and its influence on the development

of other languages. LISP was first presented by McCarthy

as notation for defining mathematical functions. But

quickly became the favoured language for AI systems.

There are several reasons why LISP is a good language in

which to build AI systems [13] :

* Its principle data structure is the list, which is

very useful in representing much of the knowledge used

in AI programs.

* A collection of facts about an individual object can

easily be represented in the property list that is

associated with the atom representing the concept.·

The most natural control structure is recursion, which

is appropriate for many problem-solving tasks.

Learning in censored Production Rules system Page 46

LISP

Environment - LISP

* Bindings of most things occur at the last possible

moment. For example, list need not be of fixed size,

and the set of known properties can change

dramtically as a program executes.

* The fact that both data and procedures are represented

as lists makes it possible to integrate declarative

and procedural knowledge into a single structure such

as a property list. It also makes it possible for a

program to construct a procedure and then execute it.

* Most LISP systems run interactively. This facilitates

the development of all kinds of programs. It also

makes it possible to write truly interactive

programs. This is often very important in AI

application areas where the problems are too hard to

be solved by a program without human intervention.

There exist many dialects of LISP, varying on everything

from the names of standard functions and order of their

arguments to substantive issues involving the kinds of

features provided. The LISP used in this project is

Common Lisp.

Learning in Censored Production Rules system - Page 47

KNOWLEDGE REPRESENTATION - Frames

A representation is a convention that constitutes or

determines the relation between a representation and

that which it represents. Problem and Knowledge

representation is the key to a successful design of AI

software or any problem-solving techniques. The first

task in solving any problem is to map the real problem

into its representation, which can provide us with an

elegant solution. This process involves selecting an

appropriate data structure or medium for the

representation and an appropriate way to represent the

problem in the selected medium.

The choice of knowledge representation depends on the

functions one wishes to perform. Knowledge

representation is one of the most difficult parts of the

problem-solving process. It should be well thought out

and planned. No methodology exists for designing and

developing a representation of a problem at hand.

However, over the years, many approaches for

representing problems and knowledge have been devised.

But still representation has been left to the

imagination, creativity, and experience of the person

who attempts to tackle the problem.

The first step in designing and implementing a knowledge

representation mechanism is to select a medium for

storing relations among objects.

Learning in censored Production Rules system Page 48

Production
Rules

Frames

Production systems provide an excellent tool for

structuring AI programs. Production systems create an

environment or shell for applying production rules,or

alternatively, collections of production rules designed

to serve some specific purpose. Production rules also

are called •antecedent-consequent rules•, 'premise-

action pairs•. As discussed in the last chapter the

learning and reasoning process is implemented using

Hierarchical Censored Production Rules which are

'premise-action-censor-specificiy-generality rules •.

This representation is implemented using Frames.

The idea of frames was originally proposed by Marvin

Minsky in 1975 in his paper 'A Framework for

Representing Knowledge,• in Psychology of Computer

Vision, McGraw Hill, 1975. Minsky presents frames as

building blocks for understanding visual perception,

natural language dialogues, and other complex phenomena.

A frame is the data structure appropriate for

representing a stereotypical situation. Frames organize

knowledge into prototypical objects and stereotypical

events that are appropriate for specific situations.

Psychological evidence suggests that people use large

frames for encoding knowledge from their previous

experiences, or knowledge about commonly encountered

things, in order to analyze and explain a new situation

in their everyday cognitive activity.

Learning in Censored Production Rules System Page 49

Frames
'),-;,._';'·.· • • - • • • : :. •• •• - " • ~ l • • .. ' • ~

syntax of
Frames

([frame name)
([slotl name)

([Linkl name) value
([Link2 name] value

)
([slot2 name)

([Linkl name) value
([Link2 name] value

A frame consists of its name, followed by one or more

slots. Each slot can hold one or more links. Each link

has an associated value.

In the system, the HCPRules are represented as frames -

(rule-name (if

)
(then

)
(unless

)
(specific

)
(general
)

(antecedentl)
(antecedent2)

(consequent!)
(consequent2)

(censorl)
(censor2)

(specificityl)
{specificity2)

(generality)

Learning in Censored Production Rules System Page 50

Frames

All rules in the system are of this form. Each rule has

all these five slots if, then, unless,

general,but the links may be empty.

Example :

(fly? (if

)
(then

((>subject) is a (>type))
((<type) is a bird)

((< subject) can fly)

specific,

)
(unless ((< subject) is a special bird)

((<subject) is not well)
)
(specific

)
(general)

(fly high?)
(fly=fast?)

here the link for slot 'general' is empty, hence this

rule is the root of the HCPR rule-tree. At most there

can be only one link in general slot, because a rule can

be a sibling for only one rule. If the rule is a

terminal node in the rule-tree the specificity slot will

have no links. Same is the case for unless slot, if

there are no censors. The links for slots 'if' and

'then• cannot be empty, otherwise the rule becomes void.

Learning in Censored Production Rules System Page 51

A SESSION WITH THE SYSTEM

The lisp interpreter is loaded from DOS prompt by typing

the command 'lisp'. Then LISP prompt Lisp> appears.

Now the system is loaded typing (load cprules) as -

Lisp > (load cprules)

(loading cprules ..•) appears on the screen. After loaded

type (cprules) for initating the system as -

Lisp > (cprules)

The main menu appears on the screen immediately -

Main Menu

1. Interrogate the system

2. Add a rule to the knowledge base

3. Modify a rule in the knowledge base

4. Remove a rule from the knowledge base

s. Add a fact to the data base

6. Modify a fact in the data base

7. Remove a fact from the data base

s. Periodic update of the system

9. Quit the menu

Enter the choice EE

The user may enter the choice as he wishes. We now go

through all the choices.

Learning in Censored Production Rules system Page 52

Choice 1. Interrogate the system

On choosing the option, the system immediately goes into

interactive mode as
.

(Enter the name of the subject)

(Buzo)

(What would you like to know about Buzo ?)

(Can Buzo fly?)

(Rule Fly? says Buzo can fly)

(Rule Fly_high? says Buzo can fly high)

(Rule Fly_ fast? says Buzo can fly very fast)

(Ok it is done)

~r~ss any key to continue ...
on pressing any key the main menu is again displayed.

The result of this interaction is the three obtained

facts about Buzo, even though the user wanted to know

only whether Buzo can fly. The last two conclusions

obtained by the sytem are due to the specificity part of

the rule which checks whether 'Buzo can fly' from the

available facts in the data base. This recursive process

of diving down the rule tree can be curbed by specifying

the certainty factor required for the result. This will

be checked with the certainty factors of the

consequents in the rules of the rule base which may be

entered when the rule was added to the knowledge base.

This helps the system to exhibit variable certainty and

variable specificity.

Learning in Censored Production Rules System Page 53

Another query -

(Enter the name of the subject)

(sweekums)

(what would you like to know about sweekums)

(can sweekums fly?)

(Rule fly? says sweekums cannot fly)

Press any key to continue •••

Here the censor in the rule has obstructed the rule

because data base has a fact which says 'sweekums is a

special bird' which obstructs the rule.

Similarly if no information on a subject exists in the

data base system gives the message

(Sorry, No information exists about Nancy)

(Enter if you know anything by choosing the choice)

Press any key to continue •••

By choosing the appropriate choice in the main menu,

information about Nancy can be added to the data base.

How the system works

* System takes subject and rule during interaction

* Searches for the rule in the knowledge base

* Substitutes the available values for variables in the
antecedents.

* Creates an associate list by binding the pattern
variables to the matched values.

* Checks whether censor blocks the rule by substituting
the values of variables in censors and matching facts

* If not blocked goes down the tree repeating the steps.

Learning in Censored Production Rules System Page 54

Choice 2

A Session with the system

Add a rule to the knowledqe base

On selecting the choice the system goes into interactive

mode -

(Enter the name of the rule to be added)

(fly_high?)

(Enter the Antecedents)
IF :
(({>subject) is a (>type)){{< type) is a bird)
{{<subject) has big wings))

(Enter the Consequents)
Then
{{{<subject) can fly high))

(Enter the Censors)
Unless
{)

(Enter the Specificity)
Specific
{)

(OK it is done)

added becomes) (The new rule you
(fly_high? (if

(then
(unless)

((>subject) has big wings))
((<subject) can fly high))

(specific (~ly very high?))
(general (fly?))) -

The rule displayed seems to be different from the one we

added, this is because of the learning process the

system undergoes. The system has traced the appropriate

location where the rule should lie and makes the

requisite changes in the Knowledge Base. This is

explained in the next page.

Learning in Censored Production Rules system ·Page 55

Choice 2
cont'd ••

'•' .~' "'"l:"'~~· .. :;"~'N)t_~ J;f
~"'-~·~•wu ,.J 1=,<;~ :J!W.~"'-'

A rule-tree Al existed in the knowledge base and the

rule A2 is added the system undergoes a learning process

and new rule-tree results as follows

A2 Al

1\ /""-
A2 Al2

/1""
All A21 A22 •

+

All Al2

I
A21 A22

Al3
Al3

This is discussed in the last chapter as fusion.

The rule-tree had a parent and child as following rules

(fly? (if

(then
(unless

((>subject} is a (>type}}
((<type} is a bird})
((< subject) can fly))
((<subject) is a special bird)
((< subject) is not well))

(specific (fly very high?))
(general)) - -

(fly_very_high? (if ((>subject) has big wings)
((<subject) has powerful wings)

(then ((<subject) can fly very high))
(unless ((<subject} is a heavy bird})
(specific (fly altitude?))
(general (fly?)))

After the new rule fly_hiqh? is added the three rules

look as follows due to the fusion the rule-tree

undergoes

(fly? (if ((> subject} is a (> type}}
((< type) is a bird}}

(then ((< subject) can fly))
(unless ((< subject} is a special bird)

((< subject) is not well) }
(specific (fly_high?}}
(general)}

Learning in Censored Production Rules System Page 56

(fly_high? (if
(then
(unle.ss)

((> subject) has big wings))
((< subject) can fly high))

(specific (fly very high?))
(general (fly?))) -

(fly_very_high? (if ((>subject) has powerful wings)
(then ((<subject) can fly very high))
(unless ((<subject) is a heavy bird))
(specific (fly altitude?))
(general (fly_high?)))

observe how the slots if, specific and general have been

changed during the fusion process.

How the system works

* System accepts the rule and looks out for a rule,
whose antecedents is the subset of that of the new
rule. If available, th~o the rule is a general form of
the new rule.

* The system searches for the root of the rule-tree
recursively with the help of the general slot of each
rule. When the recursion unwinds, the system
eleminates antecedents of the general rules from the
new rule and descends down the tree till it is at
starting node.

* The system go~s down the rule-tree from the starting
node with the help of specificity· information and by
comparing the antecedents of the rule at the node and
that of the new rule. If antecedent of the node is
subset then still dive down, else check whether other
wise. If true then the new rule is the parent of the
rule at the node. With help of the procedure fusion
the system rearranges the rule-tree. If both
possibilities are not valid then try for all other
specificities of the rule till a proper place is found
and do either·fusion or fission as the need may be, by
calling the appropriate procedures.

Learning in censored Production Rules system Page 57

Choice 3 Modify a· rule in the Knowledge Base

On choosing the option, the system enters interactive

mode -

(Enter the name of.the rule you want to modify)

(fly?)

(The rule fly? is)

(fly? (if

(then
(unless

((> subject)
((< _type) is
((< subject)
((< subject)
((< subject)

(specific (fly high?))
(general)) -

is a (>type))
a bird))
can fly))
is a special bird)
is not well))

(What do you want to modify in the rule fly?)

(unless}

(Enter the new value of unless for rule fly?)

(((<subject} is a special bird))

(The modified rule fly? is)

(fly? (if ((> subject) is a (> type))
((< type) is a bird))

(then ((< subject) can fly))
(unless ((< subject) is a special bird))
(specific (fly_high?))
(general))

(Ok it is done)

Press any key to continue ••

How the system works

* Takes the rule name, checks for existence, displays.

* Takes the slot, accesses the slot in the rule.

* Takes the new value and modifies the slot of the rule.

Learning in Censored Production Rules system Page 58

A Session with the system

Choice 4 Remove a rule from the knowledge base

On choosing this ru-le the system slips into interactive

mode ':"'"

(Enter the name of the rule you want to remove)

(fly?)

(ok it is done)

Press any key to continue ..

How the sytem works

* The system accepts the rule name, verifies existence.

* If present removes from the knowledge base.

Choices 5, 6 and 7 are for adding, modifying and

removing facts from the facts base. Choice 8 is for

periodic updation of data base and knowledge base. The

data base is updated through forward chaining of the

rules on the facts. The knowledge base is updated by

going through the Knowledge base recursively to

ascertain the position of each rule in the rule-tree and

effecting the relevant modification.

Learning in Censored Production Rules System Page 59

C 0 N C

A system should effect modification in the data base
and knowledge base when it comes-across a change in the
environment which is represented in the system. This
modification can be effected only when knowledge is
represented in an effective manner and only when the
system is able to percieve the change in the environment
and learn to adapt to the change.

Hence learning strategies must be incorporated in the
system. Various popular learning strategies are
discussed. In order to aid the process of learning,
knowledge is represented in an effective manner through
hierarchical censored production rules. It has the
ability to incorporate into the knowledge structure
additional information that can be used in the process
of learning and inference in promising manner.

The learning strategies that HCPR
are discussed. The learning by
implemented. Of these, fission
prospect.

system can support
concept formation is

and fusion hold good

The implementation of these two concepts, though
encouraging, could not be realised to the full extent
because of some limitations of the developed system. The
domain is small with only specific cases being
considered. However, based on the ideas developed here,
further improvement of the system would be possible, so
as to realise full potential of the HCPR representation
of the knowledge, in the process of learning.

Learning in Censored Production Rules system Page 60

Appendix

IMPORTANT PROCEDURES AND FUNCTIONS IN THE SYSTEM APPENDIX I

;procedure for initiating the system, loads the knowledge base and
;from the disk and displays the mainmenu, waits for the responce and
calls the appropriate procedure to carry out the task
;calls procedures enquire, addrule, changerule, removrule, addfact,

removefact, changefact, update
(DEFUN cprules ()

(init)
(setq facts (open file (fn) •:io))
(read facts facts)
(setq-rules (open_file (fn1) ':io))
(read rules rules)
(DO ((m (main menu) (main menu))

(s (select 9) (select 9))) -
((= s 9) (quit)) ;repeat until user quits

(COND ((= s 1) (enquire "KNOW ABOUT")) ; retrieve
((= s 2) (addrule)) add a new rule
((= s 3) (changerule)) ; change the rule
((= s 4) (removrule)) ; remove the rule
((= s 5) (addfact)) ; add a new fact
((= s 6) (changefact)) ; change fact
((= s 7) (removefact)) ; remove a fact

((= s 8) (update)) ; periodic update
)
(press_a key) ;wait
))

;procedure for displaying the main-menu of the system
;called from the procedure cprules
(DEFUN main menu ()

(clear-screen)
(set-cursor 1 29) (princ "-<< MAIN MENU >>-")
(set-cursor 5 20)
(princ "1. Interrogate the system")
(set-cursor 7 20)
(princ "2. Add a rule to the knowledge base")
(set-cursor 9 20)
(princ "3. Modify a rule in the knowledge base")
(set-cursor 11 20)
(princ "4. Remove a rule from the knowledge base")
(set-cursor 13 20)
(princ "5. add a fact to the data base")
(set-cursor 15 20)
(princ "6. Modify a fact in the data base")
(set-cursor 17 20)
(princ "7. Remove a fact from the data base")
(set-cursor 19 20)
(princ "8. Periodic update of the system")

(set-cursor 21 20)
(princ "9. Quit the menu")

'main-menu

Learning in Censored Production Rules System Page 61

I
I
I

APPENDIX I
iliiiilii

;A section of the procedure addrule which uses the procedures position
;to locate the appropriate location for th~ rule, modifies rule-tree
;using fission and fusion procedures
;called from the procedure cprules

(SETQ alter (position ifspos adrul))
(COND ((= (LENGTH alter) 1) (SETQ rules (CONS newrule rules)))

((EQUAL (LAST alter) '()) (RPLACD (ASSOC if newrule)
(CAR alter))

(RPLACD (ASSOC general newrule)
(LIST (CADR alter)))

(SETQ rules (CONS newrule rules))
(fusion (CADR alter) (LIST adrul)))

(T (RPLACD (ASSOC if newrule) (CAR alter))
(RPLACD (ASSOC general newrule) (LIST (CADR alter)))

(RPLACD (LAST (ASSOC specific newrule)) (CDDR alter))
(SETQ rules (CONS newrule rules))

(fission (CADR alter) (LIST adrul) (CADDR alter))) ;T
)
(PRINT '(The new knowledge base is))
(PRINT (ASSOC adrul rules))
(ok)

;This procedure finds out the node to which the incoming rule is to be
;attached and also modifies the rule-tree appropriately
;calls the procedures go root and locate
;called from the procedures addrule and update
(DEFUN position (ifs adrul)

(DO ((rulesearch rules {CDR rulesearch))
(check 1))

((NULL rulesearch) (LIST ifs))
(SETQ rule if {CDR (CADAR rulesearch)))

{COND ((subsetp rule if ifs)
(PRINT (SETQ ifs new (go root (CAAR rulesearch) ifs)))
(SETQ result (locate (CAAR rulesearch) ifs new adrul))

(return_from result)

)
)

)

;Procedure for locating the root of the rule tree of which rule is a
;node, recursively moves up using the generality information in a rule
;called from the procedure position and go root (recursive)
(DEFUN go root (rule name ifsr) -

(SETQ gen {CDADDR (CDDDR (ASSOC rule name rules))))
(COND ((NULL gen) (SETQ check '2)) -

((EQUAL check 1) (go root (CAAR gen) ifsr))
((EQUAL check 2) (SETQ ifsr (SET-DIFFERENCE ifsr

(CDR (CADR (ASSOC rule name rules))))))

- Learning in Censored Production Rules system Page 62

;procedure for locating the parent of the incoming rule, this dives
;down the rule tree till finds the appropriate location for the rule
;called from position and locate (recursive) ·
(DEFUN locate (rule name ifsr adrul)

(SETQ specy (CDADR-(CDDDR (ASSOC rule name rules))))
' (COND ((NULL specy) (LIST ifsr (LIST rule_name) I ()))

(T (DO ((rule use specy (CDR rule use)))
((NULL rule use) (LIST ifsr (LIST rule name) I()))
(SETQ rul if (CDR(CADR(ASSOC(CAAR rule-use) rules))))

(COND ((SUBSETP rul if ifsr) (SET-DIFFERENCE ifsr rul_if)
(locate (CAAR rule use) ifsr adrul))

((SUBSETP ifsr rul if) -
(RPLACD (ASSOC 1 if (ASSOC(CAAR rule use) rules))
(SET-DIFFERENCE rul if ifsr)) -
(RETURN-FROM (LIST Ifsr (CADR(ASSOC 'general

(ASSOC (CAAR rul use) rules)))
(LIST rule_name)})

;procedure for reorganizing the knowledge by modifying the rule-tree
;combines two trees to form on rule integrated rule tree
;called from thr procedures addrule and update
(DEFUN fusion (parent sibling)

(COND ((membert sibling (CDR (ASSOC 'specific
(ASSOC (car parent) rules)))))

(T (RPLACD (LAST (ASSOC 'specific
(ASSOC (CAR parent) rules))) (LIST sibling)))

;procedure for reorganizaing the knowledge by modifying the rule-tree
;This simplifies the rule-tree by breaking and constructing
;Called from the procedures addrule and update
(DEFUN fission (parent inter sibling)

(SETQ parspecy (ASSOC 'specific (ASSOC (CAR parent) rules)))
(SETQ intspecy (ASSOC 'specific (ASSOC (CAR inter) rules)))
(IF (membert sibling parspecy)

(RPLACD parspecy (DELETE sibling (CDR parspecy) EQUAL)}
)
(IF (NOT (membert sibling intspecy))

(RPLACD (LAST intspecy) (LIST sibling))
)
(IF (NOT (membert inter parspecy))

(RPLACD (LAST parspecy) (LIST inter))

· Learning in Censored Production Rules System Page 63

APPENDIX I

;main function for pattern matching
;employs functions : pattern-variable pattern-indicator
, pull-value shove-gr shove-pl
; restriction-indicator restriction-variable
;called from filter-assertions
(defun match (pattern datum assignments)

(cond ((AND (NULL pattern) (NULL .datum)) ;succeeded
(COND ((NULL assignments) T)

(T assignments)))
((OR (NULL pattern) (NULL datum)) NIL)
((OR (EQUAL (CAR pattern) '?)

(EQUAL (CAR pattern) (CAR datum)))
(match (CDR pattern) (CDR datum) assignments))

((EQUAL (CAR pattern) '+) .
(OR (match (CDR pattern) (CDR datum) assignments)

(match pattern (CDR datum) assignments)))
((ATOM (CAR pattern)) NIL)
((EQUAL (pattern-indicator (CAR pattern)) '>)

(match (CDR pattern) (CDR datum)
(shove-gr (pattern-variable (CAR pattern))

(CAR datum)
assignments)))

((EQUAL (pattern-indicator (CAR pattern)) '<)
(match (CONS (pull-value (pattern-variable (CAR pattern))

assignments) (CDR pattern))
datum
assignments))
((EQUAL (pattern-indicator (CAR pattern)) '+)

(LET ((new-assignments (shove-pl (pattern-variavle

(CAR datum)
assignments)))

(CAR pattern))

(OR (match (CDR pattern) (CDR datum) new-assignments)
(match pattern (CDR datum) new-assignments))))

((AND (EQUAL (pattern-indicator (CAR pattern))
'restrict)

(EQUAL (restriction-indicator (CAR pattern)) '?)
(test (restriction-predicates (CAR pattern)) (CAR datum)))

(match (CDR pattern) (CDR datum) assignments))))

;procedure to create a new stream of associaton list by matching each
;antecedent with the assertions
;uses : match, add-to-stream
;called from filter-a-list-stream
(DEFUN filter-assertions (pattern initial-a-list)

(DO((assertions assertions (CDR assertions))
(a-list-stream (make-empty-stream)))

((NULL assertions) a-List-stream)
(LET ((new-a-list (match pattern (CAR assertions) initial-a-list)))
(COND (new-a-list (SETQ a-list-stream

(add-to-stream new-a-list a-list-stream)))))))

Learning in Censored Production Rules system Page 64

procedures and functions APPENDIX I

;procedure for combining the association list streams received from
; the procedure filter-assertions.
;uses filter-assertions first-of-stream rest-of-stream combine-streams
;called from cascade-thru-patterns
(DEFUN filter-a-list-stream (pattern a-list-stream)

(COND ((empty-stream-p a-list-stream) (make-empty-stream))
(T (combine-streams

(filter-assertions pattern (first-of-stream a-list-stream))
(filter-a-list-stream pattern (rest-of-stream a-list-stream))

))))

;procedure for going through all the antecedents
;usesfilter-a-list-stream
;called from use-rule
;feeds the antecedents in reverse order to filter-a-list-stream
;recursively and then revinds to give the required stream
(DEFUN cascade-thru-patterns (patterns a-list-stream)

(COND ((NULL patterns) a-list-stream)
(T (filter-a-list-stream {CAR patterns)
(cascade-thru-patterns (CDR patterns)

a-list-stream)))))

;procedure for replacing the variables with their
;consequents
;usespattern-variable replace-variables
;called from spread-thru-action
(DEFUN replace-variables (conseq a-list)

(COND ((ATOM conseq) conseq)
((EQUAL (CAR conseq) '<)

(CADR (ASSOC (pattern-variable conseq) a-list)))
(T (CONS (replace-variables (CAR conseq) a-list)
(replace-variables (CDR conseq) a-list)))))

values in

;procedure
;an assoc
;resulting
;stream

for replacing pattern-variables in the set of conseqs using
list from the obtained action stream tries to add the
assertions to the data and contributes to a new action

;uses procedures replace-variables
;called from procedure feed-to-actions
(DEFUN spread-thru-conseqs (rule-name conseqs cen-list a-list)

(DO ((conseqs conseqs (CDR conseqs)) ;consider one by one
(conseq-stream (make-empty-stream)))

((NULL conseqs) conseq-stream) ;termination
(LET ((conseq (replace-variables (CAR conseqs) a-list)))

(COND ((APPLY 'OR cen-list) (TERPRI)
(PRINT '(RULE ,rule-name says ,@conseq is false)))

(T (remember conseq) (TERPRI)
(PRINT '(RULE , rule-name says ., @conseq))

(SETQ conseq-stream

)))))
(add-to-stream conseq conseq-stream))

Learning in Censored Production Rules System Pag_e 65

procedures and functions APPENDIX I
, ,.~""'~"""';§i""':.:~~~!"'!.,~~jN~:·;;r:!'_~_.:':',::!_,!:! __ '!!!.~.: -:::::~'!:::#l~:::!,·,':!M:,_.::r.~_::!:l·_;l"'_~:::::;,'==,~.iiflll'j~-=-_!l!:«=i:::!_, .. m· mml!lllll!IIM~i@4lllliilll!:.:m __ :m_, m_. liifiHiti\llt

;procedure for replactng all pattern-variables using the stream of
;assoc lists passes the consequent stubs along with a assoc list from
the stream to the procedure spread-thru-conseqs
;uses spread-thru-conseqs
;called from use-rule
(DEFUN fe~d-to-conseqs (rule-n~e conseqs censor-list a-list-stream)

(COND ((empty-stream-p a-list-stream) (make-empty-stream))
(T (combine-streams (spread-thru-conseqs rule-name
conseqs
(first-of-stream censor-list)
(first-of-stream a-list-stream)

(feed-to-conseqs rule-name
conseqs
(rest-of-stream censor-list)
(rest-of-stream a-list-stream))))))

;procedure for extracting the decision it calls feed-to-conseqs
handing over the previously obtained stream of assoc list from the
procedure cascade-thru- patterns. The decision stream is empty and
use-rule will return NIL if there are no ways to match the antecedents
to the data or if there are some ways but those ways lead to no new
assertions
;calls procedures cascade-thru-patterns feed-to-conseqs
;called from procedure forward-chain
(DEFUN use-rule (rule a-list)

(LET* ((rule-name (CAR rule)) ;xtracting rule name
(ifs (REVERSE (CDR (CADR rule))))
(thens (CDR (CADDR rule)))
(unles (CDR (CADDDR rule)))
(specy (CDADR (CDDDR rule))}
(gen (CDADDR (CDDDR rule)))
(a-list-stream (cascade-thru-patterns

ifs
a-list))

(cen-stream (feed-to-censors unles a-list-stream))
(decision-stream (feed-to-conseqs rule-name thens

cen-stream a-list-stream))
(speci-stream (feed-to-specifs specy cen-stream a-list-stream

decision-stream))
) ; *
(NOT (empty-stream-p decision-stream))))

;procedure for forward chaining. steps thru the rule list until it
;find a rule;that produces a new assertion whereupon it starts over at
;the beginning of the rule list. Stops as soon as it fails to find a
;new assertion with any rule in ;the entire list
;calls procedure us~-rule

(DEFUN forward-chain ()
(DO ((rules-to-try rules (CDR rules-to-try))

(progress-made NIL)) cont'd ...

Learning in Censored Production Rules System Page 66

((NULL rules-to-try) progress-made)
(COND ((use-rule (CAR rules-to-try)

(add-to-stream NIL (make-empty-stream)))
(SETQ rules-to-try rules)
(setq progress-made T)))))

;procedure for
;subject

ans~ering user queries; takes the rule name

;associated to answer the queries
(DEFUN ans-query (rule-name subject) .

and

(COND ((empty-stream-p subject) (PRINT '(give subject name)))
(T (LET* ((ex-rule (ASSOC rule-name rules)) ;fetch first

(mod-rule (APPEND (LIST (CAR ex-rule))

the

(LIST (APPEND (LIST 'if) (LIST (replace-variables-specy

))))

(CADR (CADR ex-rule))
(LIST (LIST •subject subject})))
(CDDR (CADR ex-rule})))
(CDDR ex-rule))))
(use-rule mod-rule (LIST (LIST (LIST 'subject subject))))

;procedure for replacing pattern-variables in the set of censors using
;an assoc list and checking the existence of the censor in the
;assertions the obtained value T or NIL is stored in the censor
;stream as a list
;uses procedures replace-variables
;called from procedure feed-to-censors

(DEFUN spread-thru-censors (censors a-list)
(DO ((censors censors (CDR censors)) ;consider one by one

(censor-stream (make-empty-stream)))
((NULL censors) (LIST censor-stream)) ;termination

(LET ((censor (replace-variables (CAR censors) a-list)))
(SETQ censor-stream

(add-to-stream (membert censor assertions) censor-stream)))))

;procedure for replacing all pattern-variables using the stream of
;assoc lists passes the censor stubs along with a assoc list from the
;stream to the
;procedure spread-thru-censors
;uses spread-thru-censors
;called from use-rule
(DEFUN feed-to-censors (censors a-list-stream)

(COND ((empty-stream-p a-list-stream) (make-empty-stream)) ;nil
(T (combine-streams (spread-thru-censors

censors
(first~of-stream a-list-stream))

(feed-to-censors
censors

(rest-of-stream a-list-stream))))))

Learning in Censored Production Rules system Page 67

;procedure for replacing the variables with their values in
;specificity rules or when some query is asked by the user
;usespattern-variable replace-variables-specy
;called from feed-to-specifs
(DEFUN replace-variables-specy (specy-if a-list)

(COND ((ATOM specy-if) specy-if)
((EQUAL (CAR specy-if) '>)

(COND ((EQUAL (pattern-variable specy-if) 'subject)
(CADR (ASSOC (pattern-variable specy-if) a-list)))

(T specy-if)))
(T (CONS (replace-variables-specy (CAR specy-if) a-list)

(replace-variables-specy (CDR specy-if) a-list)))))

;procedure for eliminating those elements from the assoc-list which do
not give positive decision due to censors by checking those elements
of censlist which yield value T
;uses first-of-stream rest-of-stream make-empty-stream
streams eliminate-cens
;called from feed-to-specifs
(DEFUN eliminate-cens (cens-list a-list)

combine-

(COND ((empty-stream-p a-list) (make-empty-stream)) /
(T (combine-streams (COND ((APPLY 'OR (first-of-stream cens-list))

(mak~-empty-stream));if cens remov ·
(T (list (first-of-stream a-list))))

(eliminate-cens (rest-of-stream cens-list)
(rest-of-stream a-list))))));recur

;procedure for manipulating the specificity part of the active-rule
;takes the indicated parameters, checks for empty decilist, eliminates
;those elements from a-list which are unnecessary(censors) then there
;are two loops for each of the elements in a-list and each of the rule
;in the specificity part of the parent rule
;uses empty-stream-p make-empty-stream eliminate-cens replace-
; variables-specy ·
;called from use-rule
(DEFUN feed-to-specifs (specy cens-list a-list deci-list)

(COND ((empty-stream-p deci-list) make-empty-stream)
(T ((SETQ a-list-new (eliminate-cens cens-list a-list))

(DO ((a-listl a-list-new (CDR a-listl))
(specy-list (make-empty-stream)))
((NULL a-listl) specy-list)
(DO ((rulel specy (CDR rulel)))

((NULL rulel) specy-list)
(LET* ((ex-rule (ASSOC (CAAR rulel) rules))

(mod-rule (APPEND (LIST (CAR ex-rule))
(LIST (APPEND (LIST 'if)

(LIST (replace-variables-specy
(CADR (CADR ex-rule)) (CAR a-ltstl))) .

(CDDR (CADR ex-rule)))) (CDDR ex-rule))))
(SETQ specy-list (APPEND specy-list (use-rule

mod-rule (LIST (CAR a-listl)))))
)))))));calling use-rule with specificity rule

Learning in Censored Production Rules System Page 68

CD

CHKDSK/F

COPY

DEL

DIR

DISKCOPY

FORMAT

MD

REN

RD

TYPE

Change directory

Check status of files on disk

Copy files

Delete files

Directory of files

Copy a diskette

Format a diskette

Make a directory

Rename a file

Remove a directory

Display contents of a file

Learning in Censored Production Rules system Page 69

R E F E R E N C E S

[1]

[2]

(3]

[4]

[5]

(6]

(7]

[8]

(9]

(10]

(11]

[12]

f13]

(14]

Michalski, R.S.
Winston, P.H.

Winston, P.H.

Mccarthy, J.

McDermott, D.
Doyle, J.

McCarthy, J.

Bonnet, A.

Becker, J.M.

Reinke, R.
Michalski, R.S.

Nguyen, H.T.

Winston, ,P.H.

Steel, G. Jr.

Bibel, w.
Jorrand, Ph.

Elaine Rich

Michalski
Carbonell
Mitchell

APPENDIX III

Variable Precision Logic,
Artificial Intelligence 29 (1986) 121-146

Artificial Intelligence
Addison-wesley (1984)

Circumscription - A form of nonmonotonic
reasoning
Artificial Intelligence 13 (1980) 27-39

Nonmonotonic logic I
Artificial Intelligence 13 (1980) 41-72

"Programs with common sense,"
semantic information Processing
MIT Press, Cambridge Mass. {1968)

in

Artificial Intelligence
Performance

Promise . and

PHI UK. Ltd. (1985)

Inductive learning of decision rules
with exceptions Methodology and
experimentation, MSc thesis,
Department of Computer Science,
University of Illinoi Urbana, IL. (1985)

Incremental learning of concepts
description, Machine Intelligence 11
Oxford University Press, Oxford. (1986)

Fuzzy Sets and applications
papers by L.A. Zadeh,
John Wiley & Sons, (1987)

LISP
Addison-wesly. (1984)

Common Lisp : The language
DEC, USA.

selected

Fundamental of Artificial Intelligence
Springer Verlag. (1986)

Artificial Intelligence
McGraw Hill (1983)

Machine Learning
Springer-~erlag (1985)

Learning in Censored Production Rules system Page 70

(15] Leonard Bole
(E.d.)

(16] Bratko, I.
Lavrac, V.
(E. d.)

(17] Stuart Savory
(E.d.)

[18] Bahrami, A.

[19] Jain N. K.

(20) Bharadwaj, K. K.
Jain N. K.

Computational models of learning
Springer-verlag (1987)

Progress in machine learning

references

Sigma Press, Sussex, England (1987)

Artificial Intelligence and Expert Systems
John wiley & Sons

Designing Artificial Intelligenc based
software,
John wiley & Sons and Sigma Press (1988)

Variable Precision Logic :
Heirarchical Censored Production Rules
System, M.Tech Dissertation,
School of Computer and Systems Sciences
Jawahrlal ~ehru University
New Delhi. (1989)

"Hierarchical Censored Production Rules
(HCPRs) System"
(under rev1s1on : Journal of Data &
Knowledge Engineering)

Learning in Censored Production Rules system Page 71

	TH36370001
	TH36370002
	TH36370003
	TH36370004
	TH36370005
	TH36370006
	TH36370007
	TH36370008
	TH36370009
	TH36370010
	TH36370011
	TH36370012
	TH36370013
	TH36370014
	TH36370015
	TH36370016
	TH36370017
	TH36370018
	TH36370019
	TH36370020
	TH36370021
	TH36370022
	TH36370023
	TH36370024
	TH36370025
	TH36370026
	TH36370027
	TH36370028
	TH36370029
	TH36370030
	TH36370031
	TH36370032
	TH36370033
	TH36370034
	TH36370035
	TH36370036
	TH36370037
	TH36370038
	TH36370039
	TH36370040
	TH36370041
	TH36370042
	TH36370043
	TH36370044
	TH36370045
	TH36370046
	TH36370047
	TH36370048
	TH36370049
	TH36370050
	TH36370051
	TH36370052
	TH36370053
	TH36370054
	TH36370055
	TH36370056
	TH36370057
	TH36370058
	TH36370059
	TH36370060
	TH36370061
	TH36370062
	TH36370063
	TH36370064
	TH36370065
	TH36370066
	TH36370067
	TH36370068
	TH36370069
	TH36370070
	TH36370071
	TH36370072
	TH36370073
	TH36370074
	TH36370075
	TH36370076
	TH36370077
	TH36370078
	TH36370079
	TH36370080
	TH36370081
	TH36370082
	TH36370083

