
STUDY OF DEADLOCK DETECTION AND RESOLUTION

ALGORITHMS IN DISTRIBUTED DATABASE SYSTEMS

Dissertation submitted to the Jawahartal Nehru University
in partial fulfillment of the requirements

for the award of the Degree of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE

by

H. C. JOSHI

SCHOOL OF COMPUTER AND SYSTEM SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI110067
JANUARY 1991

CERTIFICATE

This work titled STUDY OF DEADLOCK DETECTION AND RESOLUTION

ALGORITHMS IN DISTRIBUTED DATABASE SYSTEMS has been carried

out by Mr. H.C.Joshi bonafide student of the School of Computer and System

Sciences, Jawaharlal Nehru University.

This work is original and has not been submitted so far in part or full for any

degree or diploma in any other University or Institute.

Candidate

Guid~<U Dean

SCSS,JNU SCSS,JNU

ACKNOWLEDGEMENTS

I thank my guide Dr. S. Bhalla for guiding me on this dissertation, constantly

encouraging me, providing a lot of research materials and friendly behaviour.

I thank the Dean and faculty of School of Computer ~and System Sciences .for

teaching me Computer Science.

I thank Dr. Sudhir Kaicker, the director of computer center and the staff in the

center for the facilities provided in the Computer Center.

I thank my friends Mr. Mahesh Prasad Baranwal and Mr. D.K. Lobiyal for their

help in editing the dissertation.

~·
/~

(H. C. Joshi)

January 1991

ABSTRACT

In distributed database systems deadlocks occur due to locking of data items by

executing transactions. A deadlock exists in the system if a cycle is detected in

transaction wait for graph (TWFG). However, due to communication delay, it

is difficult to construct a consistentt TWFG within the distributed systems

A number of deadlock detection algorithms have been suggested that detect!1

the existence of a deadlock within the distributed environment. A few dis

tributed deadlock detection algorithms are discussed and compared. Our com

parison of these algorithms is based on number of message required for

deadlock detection, inherent delays, data structures used in the algorithms and

limitations.

Modifications in the algorithms are suggested for deadlock resolution. We haye

· identified a deadlock avoidance algorithm that provides a matrix based ap

prmich to detect a deadlock as it occurs. This novel idea has further been studied.

A deadlock resolution technique is suggested by us. A new matrix based model

has been suggested for deadlock resolution.

CONTENTS

PAGE NO.

ABSTRACT

1. INTRODUCTION 1

1.1 Deadlock in databases 2

1.2 Database Deadlock Models 4

1.2.1 One Resource Model 4
1.2.2 AND Model 4
1.2.3 OR Model 5
1.2.4 AND-OR Model 5

1.3 Resource and Communication Deadlock 6

1.4 Locking 7

1.4.1 Two-Phase Locking 8

1.5 Deadlock Handling Approaches 9

1.5.1 Deadlock Prevention 10
1.5.2 Deadlock Avoidance 13
1.5.3 Deadlock Detection 13

1.6 Overview 14

2. DISTRIBUTED DEADLOCK DETECTION ALGORITHMS 16

2.1 TWFG Based Algorithms 17
2.1.1 Goldman's Algorithm 17

3.

4.

5.

6.

2.1.2 Isloor - Marshland's Algorithm
2.1.3 Menasce - Muntz's Algorithm
2.1.4 Obermarck Algorithm
2.1.5 Ho-Ramamurthy's Algorith~
2.1.6 Discussion

2.2 Non TWFG/Probe Based Algorithm

2.2.1 Chandy-Mishra's Algorithm
2.2.2 Sinha-Natarajan's Algorithm
2.2.3 Discussion

COMPARISON OF DEADLOCK DETECfiON
ALGORITHMS AND DEADLOCK RESOLUTION.

DEADLOCK RESOLUTION

4.1 Sinha-Natarajan's Algorithm

4.2 Ho-Ramamurthy Algorithm

4.3 Goldman's Algorithm

4.4 Deadlock Detection in TWFG Based Algorithms

MATRIX BASED DEADLOCK RESOLUTION MODEL

5.1 . Deadlock Detection

5.2 Edge Detection and Addition

5.3 The Proposed Deadlock Detection and
Resolution Algorithm

SUMMARY AND CONCLUSION

REFERENCES AND BIBLIOGRAPHY

18
19
22
24
26

28

29
30
39

41

48

48

51

52

53 .

56

57

58

59

61

64

1

CHAPTER I

INTRODUCfiON

Modern database systems are designed to support high degree of parallelism by

ensuring that as many processes are permitted to run as possible. The benefits

of such systems are two-fold; one, to maxillfize resource utilization and two, to

minimize CPU waiting time (overallY. The processes are local in the sense that

these utilizes only local resources (i.e. the databases). In case of distributed

database systems, processes make access to many databases and hold resource~s

for the period of exeCl.!tion of transaction . .It increases possibility of existence of

transactions, waiting for resources. In such an environment many processes refer

to databases at different physical locations.

Deadlock is not unique to database environment. In our day to day life, there

are many si~uation where deadlock occurs. Take the following (Fig 1.1) example

of road traffic. Cars are coming from ali directions (west to east, north to south

etc.). Cars are moving in a straight line only.

--~ -~ -~bJJ,___
fig 1.1 F r r J

It ! j
I I I
I I : \j. ..

--'l- <:---- ~ <':---~
Tl I r-

2

Cars going towards e.ast are blo~ked by cars going towards south which are

blocked by cars going towards west and so on. This is an example of a deadlock.

This deadlock cycle involves four crossings A, B, C and D. In fact this is example

of distributed deadlock. Where individual sites (crossings A, B, C and D) have

knowledge of local blockade, but no knowledge.

1.1 DEADLOCK IN DATABASE

The system is said to be in deadlock state if there exists a set of transac

tions, such that every transaction in the set is waiting for resources locked

by another transaction in the set. More precisely, let the set of waiting

transactions be (TO,Tl,T2, Tn). TO is waiting of some resource held

by Tl, Tl is waiting for a resource held by T2 and so on and finally In is

waiting for a resource held_ by TO. In this situation entire set of transac

tions is deadlock and can not proceed. The only solution of this deadlock

is to abort a transaction or rollback it to some previous stage.

The following four conditions must hold simultaneously for a process to.

be deadlocked [PET85].

3

i) Resources are shared in mutually exclusive fashion (at least one

exclusive lock must be on some data item or exclusive lock is ·

requested);

ii) Transactions hold a lock on data item and wait for a resource held

by other transactions;

iii) The resour~es are usually not taken away from transactions; and

iv) A cyclic wait condition exist.

However only fourth one is important in database systems. In databases

mutual exclusion must be ensured by designer. A process can not release

a resource without entering in shrinking phase, if two-phase locking is

used (no ·pre-emption) and it has to wait for another resource.

As far as pre-emption is concerned, it is applied when breaking of

deadlock is required either by partial or full rollback. However the

circular wait condition must eYits.

In distributed database environment, let us consider three sites Sl, S2,

and S3. Three transaction Tl, T2 and T3 are executing at site S 1, S2, and

S3 respectively. Resources rl, r2 and r3 are at site Sl, S2 and S3

respectively. In the beginning Tl holds lock on rl, T2 on r2 and T3 on

r3. There is no resource wait condition. Now, Tl requests for r2, T2 for

4

r3 and T3 for r1 in any order. None of transaction will get lock on

requested resource. This is a cyclic wait condition ((Tl - T2-T3-Tl)

No transaction can make any progress, unless an action e>f roll back. of

any one of transaction in the cycle.

l.Z DATABASE DEADLOCK MODELS

In database systems many types of deadlocks are possible depending

upon the processing environment. Edger Knapp, [EGR87] has discussed

deadlock models. The few relevant models are as follows.

1.2.1 One Resource Model

It is the simplest model. One transaction can make request for only one

resource at a time. So each transaction has at the most one outstanding

request at a time. The request for another resource can be made only

after previously requested resource is granted.

1.2.2 AND Model

A transaction can make request for many resources at a time. The

transaction remains blocked unt_il all the requested reso'urces are granted

5

to it. Existence of a cycle is sufficient for deadlock detection in AND

model.

1.2.3 OR Modd

A transaction can request many resources at a time, if any of requested

resource is granted, the transaction becomes active. The transaction

remains blockeq if none of requested resource is granted. This model

fits for replicated database with read only transactions. Existence of a

cycle is. not sufficient in OR model for existence of a deadlock.

1.2.4 . AND-OR Model

AND-OR model is generalization of AND model and OR modal. In this

model requests are made as combination of A1~D and OR. For example

request ((x or y) and z) orris possible. Existence of cycle not sufficient

for existence of a deadlock.

In distributed database environment a transactions make request for a

number of resources. So deadlock if occurs fits in the AND model. In

chapter II the deadlock detection algorithms deal with AND model.

6

1.3 RESOURCE AND COMMUNICATION DEADLOCK . .

Two type of deadlocks are described in the literature: communication

deadlocks and resource deadlocks. A deadlock is a situation in the system

in which each process is waiting for a resource held by another process

in the set. N processes in a set are said to form a deadlock if each process

in the set is waiting for a resource held by another process in the set. In

the resource deadlock resources are data object, records, files, databases
.

etc. A process can not proceed unless it acquires the requested resource.

In the deadlock situation no process releases a resource. In the com

munication deadlock resources are messages to be sent by processes in

. the set, each of which is. waiting to receive a message from another.

proc~ss which is part of deadlock cycle. If the processes are deadlocked

no process sends a message.

Deadlock appearing in database systems are different from what we

study in Operating S~stems. In database systems, database files are

considered as resources. There can not be multiple entries of resources .

...
A resource is unique even it is replicated. In distributed systems a write

lock (exclusive lock) must be achieved from each replicated site. How

ever in the Operating System environment, request for a tape drive is

.I

7

met just by allocating any tap drive to the process. If process requires a

write lock (exclusive lock) on a file X and many copies of file X are in

the system then by allocating any copy of X is not sufficient.

1.4 LOCKING

Resour.ce allocation to the transaction in the database system is based

on locking data items [KOR86]. Two types of lock a~e possible on data

items, shared lock (for reading the value of data items only) and exclusive

lock (for updating the data items). Locks are necessary for consistency

ofdatabase. The following example demonstrates the need of locking a

data item.

Let Tl and T2 are two transaction running in parallel in the system. Tl

. and T2 read a data item x. Tl increases its value by a, and new value x +a

· is written back. T2 increases its value b and new value x + b is written

back. Transaction Tl prints that it has increased its value by a and T2

prints that it has increased its value by b. User expects that final value

should be x +a+ b, but the final value will be either x +a or x + b

depending upon which transaction has written back the-value first. This

is because transaction are not running one after another. But running of ·

transaction one after another is not necessary. It is necessary that the

8

accesses to common data items should be serial. Multi-programming

systems are based on simple principle of serializability. If many processes

are: running concurrently, they may access many data items. The

sedalizability can be achieved by two phase-locking.

1.4.1 Two-Phase Locking

In two-phase locking a transaction has two phases, growing phase and

shrinking phase. Initially, a transaction remains in the growing phase,

acquires locks as per the requirement. Locks can be upgraded (read lock

to exclusive lock) but these can not be released in this phase. In the

second phase locks are either down graded (Exclusive lock to read lock)
'

or released. No fresh lock can be acquired by transaction in this phase.

Two-phase locking ensures serializability [KOR86].

In a single user single tasking system, a new process can start only when

a running process has been completed/aborted/terminated. In a multi-

. programming system, many processes may started simultaneously. But

the overall effect should be same as these process are executed serially

(in some order). So ensuringserializability is essential in multi-program

ming systems.

9

A resource lock is used to achieve serializability. If a process P wants a

resource X to read/update its value, it must get appropriate lock on it.

Once a resource X is locked by a process P, it can release the lock only

after completion/termination of process P. No process can get a lock on

X (the lock which is incompatible with earlier lock on X) before com

pletion/termination/abortion of process P. Two-phase locking is used in

the most of database systems.

Use of two-phase looking may result in a deadlocks. A resource remains

locked even after all the works regarding its use it over. Suppose a

transaction P locks a resource X which is a particular bank NC. The only

operation regarding NC X is, withdrawal of Rs. iOO/-, in the beginning.

The transaction completes all other remaining task in timet after making

entire period of execution of transaction P although no further operation

is required on X. Two-phase locking will keep resource X locked for

duration of execution of transaction T. Suppose any other transaction

requires resource X, it has to wait till completion of transaction T. So

there is a. possibility of a deadlock.

1.5 DEADLOCK HANDLING APPROACHES

There are three approaches to deal with this problem: deadlock preven

tion, deadlock avoidance and deadfock detection combined with

,_
I

(_

10

recovery [FER87]. First two approaches ensures that system never enters

in deadlock situation but the third one allows the system to enter

deadlock situation and recover from it. Deadlock prevention prevents a

deadlock by dictating the way request are made, but this puts the addi

tional restrictions on concurrency and on the throughput of the system

[PET 85]. Deadlock detection and deadlock avoidance technique pro

vide better concurrency. ·Waiting transactions (Waiting for a locked

resources) are reported. A cycle in TWFG (Transaction Wait For

Graph) is searched.

1.5.1 Deadlock Prevention

Deadlock prevention is a technique which ensures that there will not be

any deadlock, but it will. affect concurrency All the resource required by

the process are locked before the process actually starts. But there are

many problems in this technique other than the concurrency. Resources

may be databases, to acquire all the resources at one time the process

must lock all the resources which may be required by the process later

oh. But this will have three main problems [PET85]: first, there is no way

to findout the all resources which the process may use in its duratiop of

execution and mode (read/write mode) in which those must be acquired;

second, a tremendous waste of resources, which result in loss of concur-

11

rency. Starvation is another major problem. A transaction which needs

some popular data items has to wait indefinitely because at least one of

the data item in general will be locked by some other transaction; and

the transaction will have to wait for long time.

Another approach for preventing deadlock is to use pre-emption and

transaction rollback. Two different deadlock prevention scheme using

time stamped-have been proposed [PET85].

The wait-die scheme is based on non-pre-emptive rollback scheme. IfTi

(ith transaction) has requested a data item currently held by transaction

Tj and ij, then Ti will rollback itself, otherwise Ti will wait.

The second approach is called wound-wait scheme based on pre-emptive

technique. If Ti has requested some data item currently held by Tj; it

would initiate rollback ofTj (pre-emption) ifTj is younger then Ti (i.e.

i) otherwise it will wait.

In the both these techniques a transaction with smaller time stamp will

not be rolled back. After a transaction is rolled back, the value of time

stamp associated with transaction is preserved. So the transaction is not

12

rolled back again and again hence this technique removes any possibility

of starvation.

In distributed database management system the time-stamp technique

can be used as in [SIN 85]. A transaction entering in the system will have

two values assigned to it i.e. (t,s) where tis actual time of entering the

system and s is the identity of site where the transaction entered in the

system. The ordering of two transactions Tl(tl,sl), T2(t2,s2) is done as

follows: T1T2 if tlt2; or when tl =t2, T1T2 if sls2. The same technique
' ~ . '

can be used here. But few efforfs [FER87] have been made in this

direction, because prevention technique may increase rollback overhead

and system performance will go down.

The above two techniques look similar but th~se have remarkable dif

ference. In wait-die scheme, ifTi requests for a data item which is locked

by Tj and ti is an older transaction, it will wait. But ifTi is not older than

Tj, than it will be rolled back. Ti restarts and rolls back unlessTj releases

.the resource held (i.e. Tj completes) by it. However in· wait-wound an

older transaction never waits for younger one. Y ourtger one is allowed
'

to wait. So there are less number.of rollbacks.

I.
13

1.5.2 Deadlock Avoidance

Deadlock prevention algorithms prevent deadlocks by restricting how

requests can be made. A major drawback of this approach is that it reduce

system throughput. In deadlock avoidance technique resources are allo

cated to process. The maximum number of resource of each type are

declared in the beginning. A safe sequence is decided. In the safe

situation eash process can request the resource and resources are

granted to processes. If the resources are not available and system is in

safe stat~ processes wait. However there must be an algorithm to allocate

resources and declare unsafe situation. The unsafe situation if ignored

the processes may complete without trouble but there is no guarantee of

freedom from deadlock. This technique is used and may be useful in

Operating System environment. In the case of database systems, the

technique has been suggested by [FER87].

1.5.3 Deadlock Detection

Deadlock avoidance and deadlock prevention are conservative ap

proaches. If these approaches are used in a systems, it will reduce system

throughout drastically which can lead to a big loss in the case of large

systems. Deadlock detection approach is a risk taking approach. It allows

14

the system to enter deadlock situation, and th_en tries to recover from it.

The resources utilisation in this case is maximum.

Most of the efforts have-been made in this area. A lot of algorithms have

been proposed. The algorithms for deadlock detection in centralised

database system are simpler than that of distributed database systerris.

But in the distributed system, efforts are being made to find· out better

algorithms. A number of issues must be resolved. Some of these are

·communication problem, delays, no centralised memory and inconsis-

tentTWFG.

1.6 OVERVIEW

Issues related to distributed deadlocks is described in this chapter. More
. .

details about deadlock detection and recovery follows in the next few

chapters. Out.of two type of deadlocks (Resource deadlock and com

munication deadlock), only_resource deadlock has been chosen for study.

Deadlock environment, safety criterion (through,locking) and preserva-

tion of consistency are also discussed.

In this report, Chapter II deals with deadlock detection algorithms.

These algorithms are described briefly. In chapter III, a comparative

15

study has been made. In chapter IV deadlock resolution criteria is

discussed, Taking some representative algorithms into consideration. In

chapter V a deadlock resolution technique is discussed. A new matrix

based approach is described in detail in this chapter. Chapter VI covers

summary and conclusion.

16

CHAPTER II

DISTRIBUTED DEADLOCK DETECTION ALGORITHMS

Deadlock detection and resolution is an important problem in dis

tributed database management systems. A number of efforts have made

in this area, in the past. A deadlock is a result of holding locks on.

resources, by transactions during the period of their execution. The two

phase locking technique is used in the database environment to acquire

and release locks on data items. Locks on data items are released only

when transaction reaches to its final stage (i.e. in the shrinking phase).

The techniques of deadlock prevention and _deadlock avoidance, if ap

plied reduce concurrence, which is an undesirable result. A lot of work ·

has been done on deadlock detection, which allows better concurrence.

Deadlock problem is a part of concurrence control, when many transac

tions want an access to data items in a mutually exclusive fashion.

·In a distributed database _system the database is distributed over many

sites. These sites may be involved in a deadlock, which is harder to detect

because every site has local information. Information tran~fer among

sites is by sending messages. There are delays in message communica-

17

tion; and it is possible that the message may reach in an arbitrary order.

Thus, the sites may have an inconsistent view of the system.

Distributed deadlock detection algorithms are proposed by a number of

researchers. It i_s a preferred approach because the entire system does

not depend on a single site for deadlock detection. A few representative

algorithms are discussed in the following sections. Based on certain

features, algorithms are broadly divided into two major classes.

2.1 TWFG BASED ALGORITHMS

Algorithms of this class prepare/maintain T.WFG (Transaction Wait For

Graph) in some form or other. TWFG is updated periodically. The graph

is checked, for existence of a cycle after every update. Different data

structures are used by the algorithms for maintaining transaction related

information. All the algorithms of this class don't use TWFG directly.

Goldman's algorithm [GOL77] uses OBPL (ordered blocked Process

List), which is similar to TWFG.

2.1.1 Goldman's Algorithm [GOL77]

This is based on sending deadlock related information to other sites, so

that the other sites may detect the deadlock or send such information to

18

the next connected site. This algorithm does not prepare/maintain

TWFG (Transaction Wait For Graph) at any site. When the process for ...

deadlock detection starts, a transaction is picked up. A global OBPL

(Ordered Blocked Process List) is prepared as follows. A waiting process

PI is chosen, it is the first member of OBPL. It sends OBPL to the process

P2 which is holding a resource required by Pl. P2 sends OBPL to a

process P3 which is holding a lock in inconsistent mode on a resource

required by p2 and so on. If the last process is not blocked by any other

process, no action is taken. The deadlock is not detected but it does not

mean that no deadlock exists. If OBPL reaches a process already in

OBPL, this indicates existence of a deadlock.

2.1.2 Isloor-Marshland's Algorithms [ISL 78]

This method detects deadlock at the earliest possible instant. This is

based on the concept of reachable sets. A reachable set for the process

P is the set of the all the processes which can be reached frorri process P

in TWFG, which is a directed graph (this set does not contain P itself

unless we reach process P after starting from P). For every process, each

of the sites of the system prepares/maintains a system graph and a .

reachable set for each node. If it contains the process for which it is

. maintained then there is a deadlock. Whenever a resource is released or

there is a request for a resource, which is already locked by some othe1

transaction, the information is broadcasted to all the participating sites

2.1.3 Menasce Muntz Algorithms [MEN79]

In this algorithm only two ends ofTWFG are transmitted to concernec

sites. Each site maintains TWFG. On receiving information from othe1

sites, the cycle may be completed at a participating site, then the site

declares a deadlock. Any further activity in detection will remair

suspended unless the deadlock is resolved. 'fhe following definitions anc

data structures are used.·

a. Each site k has a data controller Sk which maintains TWFG (K)

as per protocol.

b. The arc T- >T'- in TWFG denotes that Tis waiting forT' to

release a resource (not necessarily required by T).

- c. A non blocked transaction is one which does not have an outgoing

edge.

d. A blocking set(T) of transaction T is set of all non-blocked

transactions which can be reached following T in TWGF. There

may be different blocking sets of a transaction Tin different sites.

e. The pair (T,T'-) is a blocking pair if T' is in blocking set(T).

-20

· f. Sorg(T) is the site where Tenters in the systems.

There are two rules of the communication protocol.

Rule 1. Site k receives a request- for resourc~ R for transaction T. Sk

can not grant the resource because it has been held by the

transactions S = (Tl, T2, T3, T4 Tn) in inconsistent mode.

Add an arc T- > T' in TWFG (k) (Transaction Wait For

Graph at site k) for each T' in S. If there is a cycle, it is a

deadlock. Else for each T' in blocking set oft, send blocking

pair (T,T') to originating site of transaction Tsorg(T) if sorg(T)

is not Sk and to sorg(T') if sorg(T') if sorg(T') is not Sk.

Rule 2. Ablockingpair(T,T') is received bysitek. Add an arcT- > T':

If a cycle exists it is a deadlock. Else ifT' is blocked and sorg(T)

is not Sk for each transaction T' in the blocking set(T) blocking

pair (T,T') to sorg(T') if sorg(T') is not Sk.

The protocol is incomplete in the sense that if does not tell what should

be done in the case of release of a blocked resource. However one more -

flaw was detected and corrected by Gligor and Shattuck [QLI80].

Gligor and Shattuck [GLI80] pointed- out that the communication

protocol defined in [MEN79] will work perfectly if there is no delay. If

21

there is delay in receiving the information the out of order graph up.dates

will take place and deadlocks will r.ot be detected.

Suppose Tl is waiting for a reply fro.m a remote site about a requested
..

resource. Meanwhile a request for a resource locked by Tl arrives, since

the resource can not be granted so two ends to graph will be sent to the

concerned site after adding edge to Tl. Suppose now Tl receives mes

sage tharthe requested resources is not granted, the edge will be added

but the earlier sent blocking pair will not be corrected. This will lead to

. non detection of a deadlock. The following corrections in t1f:iii~~·

are suggested.

following additional structures are introduced.

a. A potential blocking set(T) is a set of all non-blocked waiting

(waiting for reply from remote) transactions which can be

reached from Tin TWFG.

b. A pair (T,T') is said to be a potential blocking pair if T' is in

potential blocking set(T).

22

Rule 0:- When a transaction requests a non loc<;Il resource, it must be

marked as waiting. Rule 2 must be modified as follows.

· Rule 2 A blocking pair (T,T') is received. Add an arc T- > T' in

TWFG (k). If a cycle is formed, then a deadlock exists.

Rule 2.1 1fT' is blocked and sorg(T) in not Sk, then for each transaction

T" in blocking set(T), send blocking pair (T,T") to sorg(T") if

sorg(T") is not Sk.

Rule 2.2 If T is waiting and sorg (T) is Sk, then for each potential

blocking pair (T",T) send blocking pair (T",T') to sorg (T') if

sorg (T") is not Sk. Then discard the potential blocking pair

(T" ,T) and erase the waiting mark from T.

2.1.4 Obermarck Algorithms [OBR82]

In Obermarck algorithm a path (part of cycle) is transmitted to a site

where another part of cycle is expected. The algorithm perfor_rhs as per

fo_llowing rules.

23

1. · Each site maintains it's local TWFG. If a non-local resource is

requested, an agent representing the transaction is created at

requested site. The communication link between two is estab

lished.

2. If there e~ists a cycle in TWFG which includes transactions and

their agents, then there is a deadlock.

3. If there exists a cycle including external wait and ex~ernal request

(both a.re represented as EX irt the TWFG), the following action

is taken. This cycle is called potential wait cycle.

3a. If the transaction/agent which is waiting to get resource/reply has

lesser number in lexical ordering (lexical number is allotted when

transaction enters in the system) than the first transaction in the

string then

(i). Make a string starting with node EX and terminating with last

transaction which is waiting for a remote resource i.e. a cycle

EX-4-2-3-EX will become string EX-4-2-3.

24

(ii) Send t~is string to all sites for where last transaction in string is

waiting to receive resource, if lexical order of firs~ transaction in

the string lexical order of last transaction n the string.

3b. Receiving site updates TWFG in that site.

4. If there is a deadlock break this by arbitrary selection of the

victim. Broadcast this news to all the sites, which must be remem

bered by the sites till next iteration.

5. Discard the node (all the edges going out and coming in) which

has been selected as a victim.

2.1.5 Ho-Ratnamurthy Algorithm [HOR82]

Ho-Ramamurthy algorithm is distributed algorithm but it is closer to

centralised algorithms. This does not use TWFG but finally a graph is

made for detection of a deadlock. Two algorithms one phase/two phase

are described. Number of·messagewise and also timewise one phase

algorithm is better than two-phase algorithm. The algorithm works as

follows. Each site maintains two tables:

Resource.Status Table (RST)

25

It has entries for all local resource/indicating by which process the

resource is locked and all the other processes which are waiting for these

resource. The entry in RST is made at the time of allocation/denial of

resource.

Process Status Table (PST)

Is has entries for all local processes. The process status table indicates

the .l<?cked resources by the transaction and the resources for which. the

transaction is waiting. The·entry/updation in PST is made at the time a

request is made or resource lock is received by transaction.

Periodically detection of deadlock starts. A site is chosen as a control

site. Both the tables from each site are sent to the chosen site. Taking

common entries from both the tables the site makes a TWFG; if there is

a cycle within the TWFG, it indicates a deadlock. This site releases its

control and another site gets control. The main advantage of algorithm

is that it is simple to implement.

2.1.6 Discussion

26

Five algorithms of this class are discussed in this section. Goldman's

algorithm [GOL77] appears to be the first algorithm for distributed

deadlock detection. Some efforts in this area were made earlier, this ·

includes [ESA 76] and [PEE78].

Goldman's algorithm for deadlock detection is flawless. One of the plus

points of this algorithm is that there is no need to prepare TWFG and

maintain it. So the memory requirement for this algorithm is small. But

there are many disadvantages, such as, even if no cycle is detected there

is no guarantee that the deadlock does not exist. If in parallel many

processes start independently (for detecting a deadlock), some of them

may end up detecting the same deadlock. It is also' not an efficient

algorithm, the possibility of a deadlock can not be decided. So searching

for existence a cycle among transactions is started even if there is no

possibility of a deadlock, so a lot of CPU time will be wasted if this

algorithm is implemented for deadlock detection. The algorithm has

limitation that this can be used only for single resource model. No

deadlock situation can be decided unless all n-1 (n is total number of the

process in the system) processes are checked.

27

Another algorithm for deadlock detection in the distributed environ

ment is the Isloor Marshland's algorithm [ISL78]. This algorithm detects

deadlocks as fast as they occur in the system. Even if many sites fail the

system may still be able to detect deadlock. But there are some disad-

. vantages; because it requires a broadcast based communication network.

In the case of Menasce Muntz algorithm [MEN79] many issues are left

unresolved and unexplained. What action should be taken, when a.

resource is released, is not mentioned. Gligor and Shattuc~ [GLI80) have

suggested a small modification in the. protocol.

Obermarck algorithm [OBR82] is a path-pushing algorithm. Only poten

tial multisite cycles and victims are transferred, potential cycle is trans

mitted in one direction only. So it reduces message transfer to half.

Failure of sites also does not affect this algorithm.

There are certain disadvantages of this algorithm. The same deadlock

cycle may be detected by two sites which in turn may decide two different

victims. Hence for breaking a single deadlock two transactions will be

rolled back. Even with two different deadlock cycles, it is possible to

break both the cycles by just rolling back a single transaction; in this

28

algorithm there are no such possibilities. The algorithm is iterative

therefore it takes a lot of time to detect a deadlock.

Ho-Ramamurthy algorithm [HOR82] a (One phase algorithm) is broad

·cast based algorithm. It uses broadcast based communication heavily.

This aJgorithm detects distributed deadlock. Also all the sites share this

·responsibility periodically. But at a time only one site does the entire

effort of deadlock detection. In this way this algorithm is closer to

centralized deadlock detection algorithm. A flaw in the algorithm is

explained in [JAG83].

Only a few a algorithm are discussed in this section. These algorithm are

representative algorithms. Obermarck's algorithms, [OBR82] is the best

among TWFG based algorithms because it uses the least number of

messages in comparison of others. But there are certain drawbacks of

this algorithms. This is an ·iterative algorithm therefore it is slow algo

rithm.

2.2 NON TWFG/PROBE BASED ALGORITHM

The second class of algorithms is probe based· algorithm. Probe is a

special message which is send by one transaction to another. Probe

l

29

,.
travels from transaction to transaction unless either it is discarded or a

deadlock is detected. The size of a probe message and the condition for

discarding a message varies from algorithm to algorithm.

2.2.1 Chandy-Misra-Haas Algorithm

Chandy-Misra-Hass algorithm [CHA83] (which is a version of [CHA82],

is the first algorithm to use probe for deadlock detection. The other

algorithms, (HAA83] and [~NH85], are variations oft his algorith!Jl. Each

site has a copy of algorithm. A probe (x,y,z) is initiated for idle process ·

Tx which is waiting for a resource from process Ty, which in turn is

waiting for Tz. A probe message (x,y,z) is sent to controller of Tz by

controller of Ty. If z = x, this is a deadlock. The probe is discarded if Tz

is active. An example with intersite probe messages is shown in Fig 2.1.1

Sl s~ ~

~bt17....c_:::::l q-.. ----,,
·- -~i]·
''7T..(: .

~~ ~T4
""-·

fig. 2.1.1

(IJ ~) ')j
f?T5

----7~' ~J/V.__, - l (i 4,--n
.T+-

//'
54 //(J_19,1C:)

vi---~ --:::r/
TIC'..K I

·I .__ ____ I

30

T1 initiates probe. Controller Cl sends (1,4,7) to C2. C? discards (1,4,7)

and propagates (1,6,9) to C3.1n turn C3 sends (1,9,10) to C4 and C4 send

(1, 10,1) and deadlock is detected a-t that site.

2.2.2 Sinha-Natarajan Algorithm [SNH85]

Sinha-Natarajan's algorithm uses new data structures, probe and probe_

Q. No TWFG is used anywhere in the algorithm. Probes are transmitted

according to some rules; when a probe reaches its starting node a

deadlock is detected. Priority is simply seniority of transaction. An older

transaction has higher priority; in the case transactions are entered at the

same time, the site identity is taken as a 9ecisive factor. A transaction is

said to be facing antagonistic conflict when it is waiting for a lower

priority transaction. The following data structures anddefinitions are

used.

Antagonistic Conflict

When a higher priority transaction is waiti_ng for lower priority one for a

resource, this is called antagonistic conflict.

·• I,

31

Priority

Two sites T1 and T2 enter in the system at site S 1 and S2 respectively.

T1 enters at time t1 and T2 at t2. Then the priority of transaction is

defined as follows.

Probe

·priority(T1) > Priority (T2) if tl < t2

if t1 = t2 then

Priority (T1) >·Priority (T2) if S1 > S2

When there is an antagonistic conflict, the higher priority transact~on

sends a message (i,j); i is the identity of higher priority transaction and j

is identity of lower priority transaction. The message is called probe

message or probe sometimes.

Probe-Q

· Every incoming probe (if not discarded) is stored in Probe-Q, which may

be any data structure like array, linked list etc.

The actual protocol has following three rules:

1. A data manager initiates probes in one of the following situations.

32

a. If a locked r.esource is requested and requester > holder, then

data manager sends the probe to holder .

. b. When a holder releases a resource and it is allocated to a trans

action (say a new holder) the if more requests are pending s.t.

requester > holder (new), the data manager initiates probe. This ·

probe is sent to new holder. In the probe the following assign

ments are made.

junior = holder;

initiator = requester.

2. Each transaction maintains a probe-Q. A transaction sends the

probe to data manager, where it is waiting in one of the following

cases:

a. When transaction receives a probe is performs the following:

if junior > T then junior = T;

Save it into probe-Q;

1fT is in wait state send this probe to data manager

where it is waiting.

33

b. when a transaction goes to wait state after requesting a resource.

It sends a copy of all P.robes stored in probe-Q to data manager.

3. When DM receives a copy of probes it does the following: if

holder > initiater then discard it; else if holder < initiater the

. send it to holder; Else (when initiater =:= holder) report deadlock.

Alok Choudhary et. al. [AL089]-have pointed out flaws with the algo

rithm. It does not detect all existing deadlocks, and sometimes deadlocks

detected are false deadlock. These drawba-cks are discussed below.

Undetected Deadlock

The·error can best be explained by an example. The situation is as drawn

below in Fig. 2.2.1 initially.

_.. ~~
./ ./ if'

. fig 2.2.1 f. '),., 2
Ig"-·"-·

/ ':\:.3

Tlg_.;; ~E-~~+4

fig. 2.2.3

34

DM (xl) initiates probe (Tl,TS) that propagates toTS, from there it will

be passed to DM (x2) and so on. Finally it will reach T3 and stop there.

The probe (Tl,TS) will be stored in the transactions TS, T4 and T3 in

their probe-Qs. Now let T3 abort and T2 get a lock on x3. The situation

now will be the same as in Fig 2.2.2. Now, let us assume that T2 requests

for a locked resource by Tl (Fig. 2.2.3), the probe-Q of T2 is empty so

no probe will be sent to Tl. T2 is also not facing antagonistic conflict.

But this is a deadlock cycle which will never be detected.

False Deadlocks Due to External Probes

This algorithm also detects false deadlocks. Let the situation be like in

Fig 2.3.1.

T(Tl

i r
fig. 2.3.1 fig.2.3.2 fig.2.3.3

35

Transaction Tl has locked data itemxl (which is not shown in the figure,

because this data item is not requested by any other transaction), T2 has

locked x4 and T4 has locked x2 and x3. In addition Tl has requested x3,

T2 has requested x2 and T4 has requested x4. A probe (Tl,T4) will be

initiated by Tl and subsequently will be stored in probe-Q ofT4 and T2.

The deadlock T4·--T2--T4 will be. detected and T4 will rolled back

as a victim. The clean message will be sent within the cycle and finally it

-will reach the initiator T2, where itwill be dis~arded. After T4 aborts Tl

and T2, both get the requested resource.and become active. Now let us
. ·-

assume T2 makes a request for the resource held by Tl. Th_~ probe

(Tl,T4) is already in probe-Q of transaction T2; this probe will be

transferred to Tl which will detect deadlock. By Fig. 2.3.3 it is clear that

this is not a deadlock situation.

False Deadlocks Due to Old Information

Consider the situation if as in Fig. 2.4.1, there is deadlock between T2

and T4. Transaction Tl,T2,T3 and T5 are waiting directly or transitively

on T4. The probe (Tl,T5) initiated by Tl will be stored in the probe-Q

ofT4andT2.AfterdetectionofdeadlockT4-T2--T4, T4will be rolled

back and clean message will be sent. T2's probe-Q will have probe

message (Tl;T5}.

T3-~

I

:;:..--c:,-- 9~--7 1 -z

r~v T'3 ':z 36
/I' T3

?'-3 '):_3 I ~~

I I .:>cs I I
I

f5
I

f5
I
I ~5 T5

t 'XI ~,

·I I
Tt Tl Tl

fig. 2.4.1 . fig.2.4.2 2.4.3

The wait for relationship is shown in 2.4.2, after resolution x3 is granted_

to T3 and x4; Now let us assume, T2 requests for some data item x5locked

by Tl (Fig 2.4.3). It is clear from Fig 3.3 that there is no cycle but DM

(x5) will declare a deadlock because it will receive probe (Tl,T5). Clearly

this is a false deadlock. The modified algorithm has been suggested as

follows [AW89]:

·1. A data manager initiates, propagates, or reinitiates probes in one

of the following situation:

a. Ifa lock_ed resource is requested and requester > holder,_ then

data manager sends the probe to the holder.

37

b. When the holder releases a resource and it is allocated to a

transaction (say new holder) then if more requests are pending

s.t. requester > holder (new), this probe is sent to the new holder.

In the probe the following assignments are made.

junior = holder;

initiator = requester.

c. When a transaction is completed or aborted it releases its locks.

The data manager associated with each released data item assigns

the lock for the data item to some transaction waiting for aata.

Each data manager then requests each the remaining transactions

waiting on the new lock to send its probe-Qs to itself. After

receiving Probe-Q data manager forwards probes to new holder

for which initiator > new holder.

2. Each transaction maintains a probe-Q. A transaction sends the

probe to data manager, where it is waiting in one of the following

cases.

a. When transaction receives a probe it performs the following:

If junior > T then j = T;

Save it into probe-Q;

38

If T is in wait state send this probe to data manager w~ere it is

waiting.

b. When a transaction goes to wait state after requesting a resource,

it sends a copy of all probes stored in probe-Q to data manager.

c. If a transaction is waiting and receives a request for its Probe-Q

from a date manager where it is waiting, it sends a copy of its

Probe-Q to the data manager.

3. When DM receives a copy of probes it does the following:

If holder > initiater then discard it;

else if holder < initiater then send it to holder.

Else (when initiater = holder) report deadlock.

In Sinha-Nataraja11 algorithm [SNH8~] in the best case the total number

of message transferred is 2*(n-1) and-in the worst case it is n(n-1). The

minimum priority transaction (the_youngest one) is taken as the victim

to be rolled back. Only once probe is sent from one antagonistic conflict.

The probe messages ar~ stored in probe-Q of every transaction wherever

39

it reaches, and used later on whenever the transaction makes a request

. for a locked resource.

2.2.3 Discussion

Sinha-Natarajan algorithm [SNH85] is best among probe the based

~lgorithms, it passes the minimum number of messages. The message

sent earlier is also used later on.

Many other algorithms [NAT86],[MAR88], [HAA83], [ELA86a] and

[BDL86] are not discussed here. These algorithms are similar to algo

rithms discussed in this chapter.

A number of corrections have been suggested in deadlock detection

algorithms. [MEN79], [HOR82], [OBR83], [SNH85] are modified. Some

of these algorithms have been proved correct using intuitive logic. This

is because there no formal method for proving an algorithm correct.

Generating a proof is also difficult because a deadlock cycle may be

formed in many ways. However a cycle of length two is most probable

[Gra,l981]. Delays create more severe problems~ Because of arbitrary

40

delays the order of receiving_ messages is lost. An old edge deletion

message may reach late, which may lead to a false deadlock.

The main problem in developing efficient deadlock detection algorithm

for distributed system is lack of global memory. The sites are distributed;

so the transaction wait for response. The wait is uncertain in the sense

that the transaction does not know, that whether the resource will be

allocated or not. The wait state (wait for response) can change at any

time to either active, or blocked state. This is the cause of error in the

most of the algorithms.

41.

CHAPTER III

COMPARISON OF DEADLOCK DETECTION ALGORITHMS

AND DEADLOCK RESOLUTION

A few selected algorithms for deadlock detection in distributed database sys

tems have been discussed in the previous chapter. The algorithms have many

common features and these differ in many ways. Sinha-Natarajan algorithm

[SNH85], Chandy-Misra algorithm [CHA83] and Menasce-Muntz algorithm ·

[MEN79] detect _a deadlock and but f\lll deadlock cycle is not reported. It is

insufficient information for selecting a victim for roll back purpose. H0wever

[SNH85] reports a deadlock with lowest priority transaction in the deadlock

.. cycle, whi~h is selected as the victim. Algorithms also differ in terms of the

messages are transferred, maintenance of TWFG at each site, size of message

(information). data structure used. Based on these factors the algorithms are

classified broadly in two groups, latter in this chapter.

A better way of comparison of different algorithms is by listing out all the

components viz delays, number of messages, data structure and type .of com

munication used in algorithms. Delay imposed by algorithms affects the efficien

cy of a deadlock detection algorithm. Number of messages increase the cost of

communication between sites. Use of complex data structures require. more

42

memory and processor time for the algorithm. Such a comparison is shown in

table 3.1. It is not possible to compute exact number of messages in some case~,

so upper bound is given in those cases.

Goldman's algorithm [GOL77] has limitation that transaction may have at the

most one outstanding request. It detects deadlock by passing messages to

transactions. Such messages are discarded many times, before a deadlock is

detected. If deadlock exists in -the system and involves n sites, if there are m

transaction in the deadlock, the deadlock will be detected before m.n messages

are sent. But this does not includes the number of messages- sent before

existence of deadlock. Deadlock does not occur very frequently in database.

Goldman's algorithm if implemented will always try to detect a deadlock

without any such possibility, and a number of messages will be sent and dis-
,

carded. So the communication line will heavily be used without any result.

The algorithm proposed by Isloor and Marshland [IS078] maintains reachable

sets for each transaction. Each site also maintains TWFG. A message is trans

ferred whenever a resource is acquired/released updates- TWFG. But this

algorithm requires a broadcast based network. However this algorithm does not

introduce any delay. A deadlock if one exists is reported immediately.

43

The Menasce-Muntz algorithm [MEN79] (modified by Gligor and Shattuck

[GLI80]) sends only two ends of graph to concerned sites. This infact reduces

communication of unnecessary detail. The cycle detected at any site is not the

actualcycle which exists in the system but it is a curtailed cycle. It also does not

support deadlock resolution. All the transactions involved a in deadlock cycle

are not known. So deadlock is resolved by arbitrary aborting a transaction in the

reported cycle.

COMPARISON TABLE

Message. Inherent Data Limitation

S. Name of Communi- Delay in No. of Structures and

No Algorithm cation Processing Message Used Applicability

Type Size

1. Goldman's Mess- Small Delay in n to m.n OBPL Process May

Algorithm age (vari- ·Creation Have Only

based able) and send One

ingOBPL Outstanding

Request

2. Isloor Broad- Small No Delay r(n-1) Reachable Requires Broadcast

Marshland's cast (vari- set, TWFG Based Communi-

Algorithm Based able) cation System

contd ...

44

Message Inherent Data Limitation

s. Name of Communi- Delay in No. of Structures and

No Algorithm cation Processing Message Used Applicability

Type Size

3. Menasce Mess- Small DelayBeca- TWFG

Muntz's. age (cons- use a Mess- m(n-1) Blocking

Algorithm based tant) age Creates Pair

a New Message

4: Obermarck's Broad- Medium Delay Impo- Requires Broadcast

Algorithm cast (Vari- sed by algo. Based Communi- ·

Based able) next Messa- Less Than TWFG cation System.

ge Must be n(n-1)/2 Strings

Transferred

Only After

First Iteration

is Over

5. Ho Broad- Large Control 2(n-1) RST Requires Broadcast

Ramamurthy cast (Vari- Site Waits PST Based Communi-

Algorithms Based able) to Receive cation System.

Tables

6. Sinha Probe Small Delay in 2(m-1) Probe Identifies

Natatajan Based (Cons- Communi- to Probe-0 a victim

algorithm tant) cation m(m-1) for rollback

Probe

---------·--·-·

._..,.. ..

m = Number of Processes in Deadlock Cycle

n = Number of Sites in Deadlock Cycle

45

r = Total Number of Updates in TWFG Before Deadlock is Detected.

PST = PROCESS STATUS TABLE

RST = RESOURCESTATUSTABLE

The algorithm proposed by Ho and Ramamurthy [HOR82] is a broadcast based

algorithm. Responsibility of deadlock detection is shared by all sites, in turns.

The algorithm requires a number of messages to be broadcasted, without

knowing any possibility of a deadlock. If communication cost between sites is

ignored, this is a good algorithm, as it is simple to implement. It uses consistent

information for preparation of a TWFG

Obermarck's algorithm [OBR82] is also a broadcast based algorithm. This

·algorithm maintains TWFG at each site. A string of waiting transactions is sent

to concerned site if there is a possibility of a multisite cycle. The string of waiting

transactions is sent to only one direction, in order to reduce number of messages

to be sent to half. The algorithm is iterative algorithm and can not detect a

deadlock immediately, as processing introduces delays in message transfer.

The algorithm proposed by Sinha and Natarajan uses a special message called

probe (a small, fixed size message). A probe message is transmitted only when

46

there is a possibility that no other probe message can detect a deadlock. Rfobes

are also stored in probe-0. Stored probes are used later on. So this algorithm

cuts down un-necessary message communication. Probe also carries a possible

victim in the case a de_adlock is detected.

Probe based algorithms use minim~m resou-rces of the system for deadlock

detection because· no data structurl!s like TWFG and tables are maintained.

Sinha-Natarajan's algorithm also resolves deadlockby rolling back minimum

priority transaction.

In Goldman's algorithm creation and updation (sending to other sites) ofOBPL

is uncertain, frequent creation and updation of OBPL increases communication

cost. The number of messages (n to m.n) is not an exact bound, the bounds are

correct only when deadlock exists. In Isloor-Marshland number of messages

transferred are also uncertain, it depends on number of updations in TWFG.

47

than are in Menasce-Muntz algorithm, but there is delay in detection of dead

locks as the algorithm is iterative. Being a broadcast based algorithm it is not

suitable for all the environments. 1-fo-Ramamurthy algorithm seems good by

number of messages, but every site gets control periodically. A number of

messages are received by control sites but can not be used later on. It is an
. .

efficient algorithm with high communication cost. Sinha-Natarajan's algorithm,

requires minimum number of messages among all six algorithms. These mes-

sages are stored and used Iater on. It also indicates the victim transaction in the

case of deadlock is detected. It is the best algorithm. ·

CHAPTER IV

DEADLOCK RESOLUTION

48

In the past, many techniques have been suggested for deadlock detection in

distributed systems. Many algorithms have been further modified after studies.

Once a deadlock cycle has -been detected, the deadlock must be broken. A

deadlock can be broken by rolling back any transaction in deadlock. cycle. The

selection of a good victim transaction for breaking the deadlock cycle is called

deadlock resolution. Considering in the _roll back of a transaction, the main

criterion is that processing overhead should b~ minirymm. Some ·of the factors

which decide the cost of roll back are, CPU time, database resources and user's

time. It is possible to consider these factors for rollback of a transaction. Few

algorithms take up resolution of a deadlock and selection of victim in the post

detection stage. The algorithms are discussed below with suggestion of selection

of a victim to be rolled back.

4.1 SINHA-NATARAJAN ALGORITHM [SNH85]

This algorithm talks about deadlock resolution. Every transaction is

given a priority number as it enters in the systems. A probe travels in the

chairi of processes keeping record of junior the minimum priority trans

action among travelled processes. When it reaches back to originating

49

process, a·deadlock is detected. The junior which is minimum priority

transaction among .all the transactions in deadlock cycle, is chosen as

victim transaction.

However, there is a problem~ The priority is assigned at time when

transaction enters in ~he systems. Minimum priority only indicates that

the transaction is the most recently entered transaction among all dead-
.

locked transactions. Being the most recently ente'red transaction is not

sufficient criterion for selection of victim. An old transaction may get

blocked irrimediately as it ~nters in the system. The most rec_~ntly entered

one may be the transaction which has executed for longest time among

all the transactions. If this is the case the most recently used transaction

should not be taken as victim. The following criterion may be chosen to

select a victim.

The probe message should be a triplet (initiator, junior, weight). The

weight oftransactions is taken to decide the best victim transaction. The

selection of the junior must be based on the weight. The weight can be

calculated as follows

weight of junior = Cl * Priority of junior

+ C2 * Total CPU time taken by junior +
C3 * The number of resources held by junior;

Cl + C2 + C3 = 1 Equation 1.

50

. '

The priority of transactions is calculated as in [SNH85]. The CPU time

of execution of a transaction is either calculated by DBMS or taken from

Operating Systems' utilities. Resources held by transaction are known

by checking lock information of the transaction. If weights of two trans

actions are same than priority is taken in consideration._

Cl, C2, C3 are weight factors. The value of each factors can be decided

as according which part is more important. The following change in the

algorithm (complete protocol is described in chapter II) is sufficient for

implementation.

Rule 2(a).When a transaction T receives a probe (initiator,

junior, weight) it performs following.

if weight of junior > weight ofT

then junior = T

rest part of algorithm is same.

CPU time must be taken in consideration, only a process which has been

executed very short time must be aborted. Resources held is necessary

to take in consideration because transactions wait for resources (in the

case that resources are locked by other transactions in incompatible

mode) before acquiring them.

51

4.2 HO-AAMAMURTHYALGORITHM [HOR82]

In this algorithm each site maintains two tables. Periodically each site

becomes control site. Control site asks to each site to send its table . It

waits till all the tables are received. The common entries in the both the

tables are used for constructing TWFG. If a cycle is found inT:WFG it

is a deadlock.

Algorithm does not mention how to resolve the deadlock. The modifica

tion will give the criterion to select a victim. The following modifications

are sufficient for deadlock resolution. ·

Each proces~ table keeps following additional information about trans-

action.

i). Time when transaction entered in the system

ii). CPU time for each process. Every time a process goes to its wait

state, process status table is updated. The priority of two proces

ses (p1,t1) and (p2,t2) (tl and t2 are entry time of two process

respectively); is calculated as follows

P(pl) > P(p2) if t1 < t2

or

iftl = t2 then P(pl) > P(p2) ifsl > s2;

Sl and S2 are site identity values.

52

Weight of each process is calculated when cycle is formed as follows.

Weight calculation is necessary only for the processes in the cycle.

Weight of a process = Cl *Priority of Transaction

+ C2 * CPU Time

+ C3 * Resource held.

' .
Resources held can be obtained from any of tne tables. The victim is a

process of with least w~ight. When weight of two transactions is same

and it is minimum also, then their priority can be taken to decide victim.

A lower priority transaction is rolled back.

4.3 GOLDMAN'S ALGORITHM [GOL77]

Goldman's algorithm which is based on transfer of OBPL, can also be.

modified to resolve a deadlock. The proposed suggestions are as follows.

Each Transaction when enters in the system is given a priority number.

Pl and P2 are two processes entered in the system at time tl and t2

respectively, their priorities are

iftl < t2 P(Pl) > P(P2)

or

Iftl =t2 then ifsl > s2

53

-
then P(Pl) > P(P2).

Each process keeps record of resources held by it and total CPU time.

Then the weight of process is calculated as follows.

Weight = Cl * Priority of Transaction

+ C2 * CPU Time

+ C3 * Resources Held.

When OBPL completes a cycle, deadlock exists. OBPL takes with it the

· process identity, priority, CPU time and resources held. At the time when .

a cycle is detected, weights of different processes are calculated and

minimum weight process is taken as victim. In the case when the weight

of two transaction is same minimum weight; then minimum priority

transaction out of these two is rolled back.

4.4 DEADLOCK DETECTION IN 1WFG BASED ALGORITHMS

Two algorithms were proposed for deadlock detection in early SO's.

These algorithms work satisfactory after a slight modification. The main

overhead of TWFG algorithms is graph remains partially replicated in

different sites. Deadlock is detected at any site where cycle is found in

the graph, but the cycle is not always the full cycle. (in [MEN79] the cy~le

54

is subcycle of full deadlock cycle). The problem in selecting a good

candidate for rollback (victim) is that, each site where the cycle is stored

must have the necessary detail required for deadlock resolution.

A simple solution to this problem is that, each time a transaction requests .

a resource, the details of cost calculation parameters must be sent with

· the request. This may increase communication cost of algorithm. Cost
...

parc,tmeters need to be stored with TWFG. The parameters are sent

much before than they are required and must be stored only when

process waits .. Each. time when a part of TWFG is transferred all the .
.

parameters can also be transferred. As the deadlo~k cycle is detected the

cost ofrollback is calculated to know minimum cost transaction. The cost

can be calculated using following formula.

Cost = Cl * Priority of transaction + C2 * CPU time

+ C3 * Resources held by transaction.

where Cl + C2'+ C3 = l.. Equation 1.

Priority of transaction is decided at the time of its entering in system. It

is calculated as it was calculated in previous sections.

55

Cl, C2 and C3 are weight factors. The value of weight factors is assigned, .

according to which part is JT!Ore important, which may vary as per

requirement. Equation 1 puts restrictions on the values, so it make

assignment of values easy. However Cl, C2 and C3 are all positive.

Priority of transaction is basically age of transaction.

In the case weight of two transaction is same then decision can be taken

based on priority of transaction.

56

CHAPTERV

MATRIX BASED DEADLOCK RESOLUTION MODEL

Efficiency of any system depends upon how efficiently the resources within the

system are utilized .. In a computer system, memory, processor, peripherals,

communication system and databases constitute the resources .. computer system

is tightly connected in such a way that inefficient use of one resource leads to

inefficient use of other resources. For example if deadlock exists in the system

because of resource allocation graph is cyclic, it halts the processes. The proces

ses hold many resources. If deadlock detection algorithm is not efficient, it
. . .

results in the loss of throughput of the system.

A deadlock can be broken by aborting any transaction in the deadlock cycle. But
. .

aborting any transaction in the deadlock cycle is not an elegant way to resolve

the· deadlock. Deadlock resolution is technique of selection of a victim transac

tion (to be rolled back either full or partial). The selection of victim transaction

is done, keeping in the view, the minimum waste of the system resources.

Few algorithms are discussed in chapter II. Comparative study is also done in

chapter III. These algorithms perform properly within their limitations. The

deadlock avoidance technique is taken in this chapter for study. The algorithm

uses an elegant representation of transactions waiting for resource. The matrix

57

representation ofTWFG is used. The deadlock avoidance technique is modified

by us for deadlock detection and resolution, later in this chapter.

5.1 .DEADLOCK DETECTION

Ferenc Belik [FER87] has presented a matrix based deadlock avoidance

technique. T\YFG is presented in a matrix form. If there are m processes

and n resources in the system, the path matr.ix Pg(the matrix which

represents aTWFG) is mx n matrix

~ 0 1 3 0 2

Fig 5.1

0 0 2 0 1

Pa= 0 0 0 0 0

0 J. 4 0 2

0 0 1 0 0

A matrix corresponding to TWFG is shown in the fig. 5.1. An entry (i,j)

in the matrix represents number of paths from process pi to process pj

iri TWFG. A deadlock in the system is known even before its existence

58

. .

as follows. For a request, by process pi for the resource rj, the entry U,i)

· in Pg is checked if the entry U.i) in Pg is nonzero entry, the request leads

to a deadlock situation.

5.2 EDGE DELETION AND ADDITION

The matrix Pg is regularly updated, for every request/release of a

resource. For any update of the matrix, outer product is required. An

entry (i,j) represents the nmriber of path from process pi to process pj.

The outer product is calculated as follows. J'o delete an edge (2,5) in the

matrix shown in fig 5.1, the following calculation are done.

P(2,5) = (Pg[-,2] + V2[-])X(Pg[5,-] + V5[-]T

Where

Pg [-,2]: Column 2 in Pg

V2[-] :Vector of unity

Pg[5,-]: Row 5 in Pg

V5[-] :Vector of Unity

P(2,5) : Number of paths passing through (2,5)

11 0 0 0 1 0 1

0 1 0 0 1 0 1

0 + 0 * ((00100) +(00001)) = 0 0 0 0 0

1 . 0 0 0 1 0 1

0 0 0 0 0 0 0
I I

59

The outer product matrix is subtracted from the matrix (Pg) to get

resultant matrix after deletion of the edge. To add an edge (i,j), the entry

(j,i) in the path matrix Pg is checked. If this entry is zero the outer product

is calculated. The outer product matrix-is added to get resultant matrix

5.3 THE. PROPOSED DEADLOCK DETECTION AND RESOLUTION

ALGORITHM

The matrix based approach proposed by Ferenc Belik detect a possible

deadlock. The transactions involved in the deadlock are not known. To

select a victim transaction, to resolve deadlock, the knowledge of the set

of transaction involved in the deadlock is a must. The proposed algorithm

use two matrices for deadlock detection and resolution. The first matrix

is a path matrix. It is similar to the path matrix used by Ferenc Belik.

Deadlock is detected just by checking (j,i) entry in the path matrix for

any request (i,j) (process pi request for a resource held by process pj).

The path matrix is also maintained in the similar fashion. The edge ·matrix

represents only requested edges.

5.3.1 The Algorithm

This algorithm detects deadlock cycle when existence of deadlock is

reported. There may be more than one deadlock cycle. The algorithm

60

detects all of them. A victim transaction is selected for rollback. When a

request for adding an edge (i,j) arises and the entry U.i) in the path matrix

is nonzero, it is a deadlock situation.

Step 1. Set @ = j. Send a list containing only j to step 2.

Step 2. Make then copies of the received list (n: total number of non-zero

. entries in the @throw). Include first non zero entry to first list, second

non zero entry to second list and so on. Send these list to step 3. Pass a

signal to step 3

Step 3. For each received list check if last entry in the received list is send

this lis~ to step 5, else after receiving signal from step 2, set @ = last

entry in· the list and send these list (one list at one signal) to step 2.

Step 4. Stop.

Step S. The received list is a deadlock cycle. Calculate row and column

total in the edge matrix for each transaction in the list. Rollback a

transaction for which the sum of these two is maximum. The tie can be

broken by rolling back a transaction which has higher column total

among two.

CHAPTER VI

SUMMARY AND CONCLUSIONS

61

A study of deadlocks in the distributed database system has been done. A

_chapterwise summary of this report is as follows.

Chapter I deals with the issue of deadlock. A deadlocks in distributed database

environment is defined with example. Deadlock in database environment dif

fers from deadlock in Operating System environment. Different deadlock

-model are discussed with their applicab_ility in different environments. Three

approaches of dealing with deadlock problems are discussed.

In the chapter II following algorithms are discussed [GOL77], [ISL78],

[MEN79], [HOR82], [OBR82], [CHA83] and [SNH85]. The later development,

modification and other research work on algorithms is also discussed.

In chapter III the main points (number of messages transferred, data structures

used in the algorithm, delays and communication type required by the algo

rithms of some of algorithms are presented in tabular form. A comparative study

is also done.

62

In chapter IV small modifications in some of algorithms has been suggested to

make algorithm efficient for deadlock resolution. The issue of deadlock resolu

tion· is left to implementor in the most of algorithms.

In chapter V a new matrix based algorithm for deadlock detection and resolu

tion is presen_ted.

A number of issues related to deadlock detection remain untouched. There is

no formal method td'prove the correctness of the algorithm. The informal proofs

of correctness giyen for some of algorithm, have been later found incorrect

[GLI80] and [AL089].

There is no formal method for performance analysis of algorithms [MUK89].

The comparison of algorithm has been done based on number of messages

required by the deadlock detection process. But there is a message transfer even

before existence of deadlock. The number of messages are not sufficient for

comparison of algorithm.

The issue of deadlock resolution in the post detection stage has not received

much attention of researchers. The persistence of a deadlock for longer period

affects the system throughput. The selection of a victim transaction has been left

untouched in some of algorithms. In the case of others a simple criterion is taken

63

to select a victim, which many times does not take into consideration all the

relevant factors.

•

[BDL86]

[CH089]

64

REFERENCES AND BIBLIOGRAPHY

D.Z. Badal, "The Distributed Deadlock Detection Algorithm",

ACM Transaction on Computer System, Nov 1986, pp. 320-327.

A.L. Choudhary et. al., "A Modified Priority Based AJgori thm. for

Distributed Deadlock Detection and Resolution", IEEE Trans

action of Software Engineering, Jan 1899 pp. 10-17.

[CHA83] K.M. Chandy et. al., "Distributed Deadlock Detection" ACM

Transaction on Computer Systems, May 1983, pp. 144-156.

[EGR87] Edger Knapp, "Deadlock Detection in Distributed Database

System", ACM Computing Survey, Dec. 1987, pp303-328.

[ELA86a] Ahmed K. Elmagarmid et. al., "Deadlock Detection Algorithm

in Distributed Database Systems", Proceeding International

Conference on DATA ENGINEERING 1986, pp. 556-564.

65

[ELA86b] A.K. Elmagarmid, "A survey of Distributed Deadlock Detection

Algorithms", SIGMOD Record, 15 (3), 1986.

[ELA88] A.K. Elmagarmid et. al., "A Distributed Deadlock Detection and

Resolution Algorithm and its Correctness", IEEE Transaction on

Software Engineering, Oct 1988, pp. 1443-1452.

[ESA 76] K.P. Eswaran et. al., "The Notion of Consistency and Predicate

Locks in a Database Systems", Communications of ACM, Nov.

1976, pp. 624,.633.

TFER87] Ferenc Belik, "A Distributed Deadlock Avoidance Technique",

Lecture Notes in Computer SCience, Number 312, pp.144-154.

[Gli, 1980] V.D. Gligor and S.H. Shattuck, "On Deadlock Detection in

Distributed Systems". IEEE Transaction in Software Engineer

ing, Sept 1980, ·pp. 435-440.

[GOL77] B. Goldman, "Deadlock Detection in Computer Networks"

Tech. Report MIT/LCS/TR-185, MIT Cambridge, Mas

sachusetts, Sept 1977.

[GRA81]

[HAS83]

[HOR82]

[HSU86]

[IS080]

[JAG83]

66

J. Gray et. al. "A Straw Man Analysis of The Probability of

Waiting and Deadlock in Database Systems", IBM Research

1981.

LM. Hass and C. Mohan, "A Distributed Deadlock Detection

Algorithm for Resource Based System", Research Report, IBM

Research Laboratory, San Jose California, 198J.

G.S. Ho and C.V. Rarnarnurthy, "Protocol for Deadlock Detec

tion in Distributed Database Systems", IEEE Transaction on

Software Engineering, Nov 1982; pp. 554-557.

Meichun Hsu and Arvola Chan, "Partitioned Two Phase Lock

ing" ACM Transaction- on Database Systems, Dec. 1986 pp.

431-446.

Sreekanth S. Isloor and T. Antony Marshland, "The Deadlock

Problem: An Overview", Computer, Sept. 1980, pp. 58-78.

J.R. Jagannathan and R. Vasudevan, "Comment on Protocol for

Deadlock Detection in Distributed Database System", IEEE

Transaction on Software Engineering, May 1983.

[KOR86]

[LAM78]

[MEN79]

[MEN80]

[MAR88]

[MUK89]

67

H.F. Korth and A. Silverschatz, "Database System Concepts",

McGraw Hill Book Company, New Delhi, 1986.

L.Lamport, "Time, Clock and Ordering of Events in Distributed

Systems", Communication_of ~CM, 'pp. 558-565, July 1978.

D.E. Menasce _and R. R. Muntz, "Locking and Deadlock Detec

tion in Distributed Databases", IEEE Transaction on Software

Engineering, May 1979; pp. 195-202.

Daniel A. Menasce, "A Locking Protocol for Resource Coordi-na

tion in Distributed Databases", ACM Transaction on Database

Systems, March 1980, pp. 103-137.

Marina Roesler and Walter A. Burkhard, "Deadlock Resolution

and Semantic Lock Models in Object-Oriented Distributed sys

tems" ACM SIGMOD 1988, pp. 361-370.

Mukesh Singhal, "Deadlock Detection in Distributed Systems",

Computer, Nov 1989, pp. 37-48.

[NAT86]

[OBR82]

- [PEE78]

[PET85]

[RIE79]

[SNH85]

68

N.Natarajan, "Distributed Scheme for Detecting. Communica

tion Deadlocks", IEEE Transaction on Software Engineering,

April1986, pp. 531-537.

R Obermarck, "Distributed Deadlock Detection Algorithm",

ACM Transaction on Database Systems, June 1982, pp. 18.7-210.

R Peebles and E. Manning, "System Architecture for Distributed

Database Management, Computer, June 1978, pp. 40-47.

J.L. Peterson and A. Silverschatz, "Operating System Concepts",

Addition Wesley Publishing Company, Reading, Massachusetts,

1885.

Daniel R. Ries and Michael R. Stonebraker, "Locking

Granularity Revisited", ACM Transaction on Database Systems,

June, 1979, pp. 210-227.

M.K. Sinha and N. Natarajan, "A Priority Based Distributed

Deadlock Detection Algorithm", IEEE Transaction on Software

Engineering, Jan 1985, pp. 67-80.

[TAY85]

[TRA82]

69

Y. C. Tay et. al., "LOcking Performance in Centralized Database"

ACM Transaction on Database Systems, Dec. 1985, pp. 415-462.

Irvin L. Traiger et. al., "Transactiop and Consistency in Dis

tributed Database Systems", ACM Transaction on Database Sys

tems, Sept.1982, pp. 323-342.

	TH36360001
	TH36360002
	TH36360003
	TH36360004
	TH36360005
	TH36360006
	TH36360007
	TH36360008
	TH36360009
	TH36360010
	TH36360011
	TH36360012
	TH36360013
	TH36360014
	TH36360015
	TH36360016
	TH36360017
	TH36360018
	TH36360019
	TH36360020
	TH36360021
	TH36360022
	TH36360023
	TH36360024
	TH36360025
	TH36360026
	TH36360027
	TH36360028
	TH36360029
	TH36360030
	TH36360031
	TH36360032
	TH36360033
	TH36360034
	TH36360035
	TH36360036
	TH36360037
	TH36360038
	TH36360039
	TH36360040
	TH36360041
	TH36360042
	TH36360043
	TH36360044
	TH36360045
	TH36360046
	TH36360047
	TH36360048
	TH36360049
	TH36360050
	TH36360051
	TH36360052
	TH36360053
	TH36360054
	TH36360055
	TH36360056
	TH36360057
	TH36360058
	TH36360059
	TH36360060
	TH36360061
	TH36360062
	TH36360063
	TH36360064
	TH36360065
	TH36360066
	TH36360067
	TH36360068
	TH36360069
	TH36360070
	TH36360071
	TH36360072
	TH36360073
	TH36360074
	TH36360075

