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Preface 

Precipitation process is time concentric in nature and with recent anthropogenic warming, 

the spatial and temporal distribution of precipitation is changing over the Earth mainly 

with an increase in extreme climatic events. Understanding the occurrences of extreme 

climatic events and their changes is crucial for reducing the risk associated with extreme 

events, especially under recent warming. For conducting such studies related to the 

analysis and changes in precipitation and more importantly the extreme precipitation, 

researchers and practitioners need reliable precipitation dataset. So far various attempts 

have been made in understanding the relative strength and weakness of different gridded 

rainfall datasets, mainly focusing on how well these gauge based, satellite-derived and 

reanalysis datasets can represent the seasonal and monthly precipitation amount over 

India. However, little is known about their performance in capturing different 

characteristics of extreme rainfall and precipitation concentration over India. Therefore, 

through this work, one has attempted to comprehensively evaluate eleven different gridded 

rainfall datasets in representing different characteristics of extreme rainfall, Precipitation 

Concentration Index (PCI) and their trends over India during the study period of 1986 to 

2015.  

These eleven selected datasets fall into three categories: gauge-based (APHRODITE, CPC, 

GPCC), satellite-derived (CHIRPS, PERSIANN-CDR) and reanalysis (ERA-5, ERA-Interim, 

MERRA2, NCEP2, PGF and JRA-55) rainfall data are used for studying various 

characteristics of annual and extreme rainfall indices as well as PCI over India. For 

comparison, a purely gauge-based, high resolution (0.25° × 0.25°) daily gridded rainfall 

dataset, obtained from the India Meteorological Department (IMD) is used as the reference 

dataset. Thirteen extreme climate indices, defined by the World Meteorological 

Organization's Expert Team on Climate Change Detection and Indices (ETCCDI) and the 

IMD are used to capture the magnitude, frequency, and duration of extreme rainfall events 

over India. Analysis of precipitation concentration is done using the PCI. All these rainfall 

indices including the PCI is calculated over grid-cell for each rainfall datasets over 30 years 

and compared with the IMD dataset using various evaluation metrics. Consequently, this 

study conjectures that the gauge-based GPCC data showed the greatest agreement with the 

reference data (IMD) in representing extreme rainfall over India. The CHIRPS and ERA-5 

performed well in the satellite and reanalysis rainfall datasets group, respectively. Notably, 
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all of these selected datasets consistently underestimated extreme rainfall events over the 

northern Himalayan region. Results of PCI analysis suggest that the annual PCI is 

irregularly distributed over most parts of India, influenced by geographical factors such as 

latitude, longitude, and altitude. Significant increasing and decreasing trends in annual 

PCI can be observed over the North-Eastern and Western coasts of India, respectively. The 

gridded data inter-comparison results suggest that the gauge based APHRODITE and 

GPCC, satellite-derived CHIRPS, and the reanalysis dataset ERA5 better perform in 

capturing the temporal and spatial variation in PCI over India as compared to the IMD 

gridded dataset. 
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Chapter 1 

Introduction 

Precipitation is a key hydrological variable, associated with the circulation of moisture and 

heat over the Earth. Amount of precipitation, its spatio-temporal variability and 

seasonality have great influences in determining regional or global climate (Falkenmark 

and Rockström, 2006). Also, accurate measurement of precipitation over an extended period 

is a prerequisite factor for detecting trends in regional precipitation and to trace its possible 

linkages to global climate change (Faiz et al., 2018). Measurement of precipitation is not 

only necessary for understanding regional precipitation process but also crucial in 

designing engineering structures for managing water resources and to better combat 

frequent natural disasters i.e. floods and droughts. Besides, precipitation data arguably is 

also the most important meteorological input necessary to force and calibrate any climate 

and eco-hydrological models (Fallah and Orth. 2020; Pang et al., 2020) 

Extreme hydro-climatic events play a key role in shaping the natural environment around 

the world and sometimes pose significant risks to the inhabitants of that place. There is a 

growing interest among climate scientists on how anthropogenic climate change is affecting 

the risks associated with climate extreme and how they may change under non-stationary 

climate (Emori and Brown, 2005; Thornton et al., 2014; Forestieri et al., 2018). This concern 

is driven by the growing impacts of recent extreme weather and climate events on the 

ecosystem, economy and infrastructure around the world (Madsen et al., 2014; 

Ummenhofer and Meehl., 2017). Extreme precipitation events are associated with an array 

of atmospheric processes, such as strong vertical convection, presence of atmospheric rivers, 

monsoon, tropical and extratropical cyclones (Kunkel et al., 2013). Despite mounting shreds 

of evidence of an increase in the frequency and magnitude of extreme events and their 

associated impacts around the world, studies on extreme climate events often acknowledge 

the fact that a proper universal definition of an extreme climate event is lacking in the 

literature (Bailey and van de Pol, 2016). Therefore, various attempts have been made to 

define the ‗extreme climate events‘, mostly in a synthesized way (Van de Pol et al., 2017; 

Pendergrass, 2018; Dey et al., 2020). Existing definitions mainly tried to define ‗extreme 

climate events‘ either from a purely climatological perspective or related to the impacts of 

any particular climate event (Van de Pol et al., 2017). In general, the term extreme is used 
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to characterize a rare event of a certain magnitude or the impacts associated with it. In case 

of a climatic variable (e.g. precipitation, temperature), extreme can be defined by only 

considering the values which are located at the far ends of a variable‘s distribution that 

doesn‘t occur frequently. While considering impacts, defining extreme associated with a 

particular climate event becomes trickier as there is no unique way to assess the impacts 

quantitatively (Van de Pol et al., 2017). The Intergovernmental Panel on Climate Change 

(IPCC) defines extreme climate events based on rarity that is how uncommon an event is in 

a particular place and time (IPCC, 2014). The IPCC redefined this definition, stating that 

―the occurrence of a value of a weather or climate variable above (or below) a threshold 

value near the upper (or lower) ends of the range of observed values of the variable‖ (IPCC, 

2014). These events include a range of weather or climate events including, for example, 

heatwaves, cold waves, heavy rainfall, episodes of floods and drought and severe storms. 

The India Meteorological Department (IMD) uses an explicit method for defining extreme 

weather and climate events in India based on some fixed threshold values of the concerned 

climate variable (i.e. temperature, precipitation,  wind speed, etc.).  

Extreme precipitation event is defined as one in which accumulated rainfall amount over a 

specific period exceeds a particular threshold, either at a recording place or on average over 

a spatial domain. In practice, definition and identification of extreme precipitation events 

vary from place to place. The period considered for calculating accumulated precipitation 

varies from hour to days and the choice of threshold is also quite variable and needs expert 

judgments. Some studies use a percentile-based threshold, derived from the probability 

distribution of precipitation of selected period to consider the regional variation of 

precipitation characteristic. Choice of a fixed threshold is also popular due to its simplicity. 

For example, the IMD follows a nine-fold intensity-based rainfall classification scheme to 

identify extreme rainfall events (e.g. rainfall above 64.5mm/day as heavy rain) at any place 

over India. However, in practice, choice of fixed threshold-based event identification can be 

misleading especially when a single threshold value is applied over a large geographic 

region (Dey et al., 2020). This is even for pertinent in India since annual rainfall 

distribution varies from 300 mm to 10,000 mm in different parts of India. Depending on the 

location of the threshold value near the upper or lower tails of the probability density 

function (PDF), an extreme precipitation event can be identified as higher (located near the 

right tail of the PDF) or lower (located near the left tail of the PDF) extremes. For example, 
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identifying the number of consecutive rainfall days below 1mm threshold can be used to 

identify the maximum or average length of dry days over a region during a season, which 

can be used while assessing drought conditions and climate change related studies. 

Similarly, maximum 1day rainfall amount or rainfall amount above 99th percentile is 

higher extreme precipitation indices which can be used to study the contribution of extreme 

to total rainfall or the changes in rainfall amount associated with climate change over a 

region. Indices developed by the Expert Team on Climate Change Detection and Indices 

(ETCCDI) provides a list of extreme precipitation indices considering both of the (absolute 

and percentile) rainfall threshold which is very popular in climate change studies around 

the world (Panda et al., 2016. Hong and Ying et al., 2018). Also, ETCCDI recommended 

indices consider higher as well as lower precipitation thresholds for identifying extremes 

precipitation over a region. Therefore, there is a need to consider an array of extreme 

rainfall indices while carrying out analysis related to extreme rainfall or especially when 

assessing climate change-induced extreme rainfall change studies. 

Extreme precipitation is often associated with an array of natural disasters i.e. floods, 

landslides, etc. damaging agricultural crops and infrastructure around the world. Analysis 

of extreme precipitation events is therefore necessary for understanding the nature of 

precipitation extreme over a region as well as to build preparedness to manage these 

natural disasters. Extreme precipitation event is a key controlling variable of soil erosion, 

thus, controlling the fluvial sediment system. Study of extreme precipitation also helps in 

designing engineering structures i.e. dams, urban drainage system to better manage 

regional water resource. Given the recent changes in the frequency, magnitude and 

duration of extreme precipitation events, are also changing globally. In India, more than 

80% of the total annual precipitation comes from monsoon precipitation of which about 44% 

is associated with heavy rainfall events (Pattanaik and Rajeevan, 2010). Heavy rainfall and 

devastating floods are recurring hydro-climatic events in India, especially during the 

monsoon and post-monsoon seasons. According to the Central Water Commission (CWC, 

2018), heavy rainfall and floods alone caused an average economic damage equivalent to 

$7.6 billion per year to the Indian economy between 1953 and 2016. Therefore, there is a 

need for a detailed investigation to better characterize rainfall, focusing on extreme 

rainfall, in India.  
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In contrast to this, the low-intensity daily precipitation also has implication for water 

availability and occurrence of drought in a region. Occurrences of daily precipitation are 

discrete (rain or no rain) in nature and can be well represented by a negatively skewed 

exponential distribution (Brooks and Carruthers, 1953). The negative exponent implies that 

there are too many wet days with light rainfall and very few days with heavy rainfall. This 

time-compressed nature of precipitation event is common in many climatic regions around 

the world and explains the need for studying precipitation concentration (Martin‐Vide, 

2004; Cortesi et al., 2011). The low rainfall amounts are characteristics of arid and semi-

arid regions and often it leads to drought condition. It occurs even in regions of moderate to 

heavy rainfalls and thus results in droughts there too. Besides, the annual precipitation 

distribution also shows varying degrees of monthly and seasonal concentration in different 

parts of the World. For this purpose, various indices such as Precipitation Concentration 

Index (PCI)( Oliver, 1980), Seasonality Index (Walsh and Lawer, 1981), and Concentration 

Index (CI) (Martin-Vide, 2004) have been developed to study the time-concentric nature of 

precipitation events around the world. CI provides information about the contribution of 

heavy precipitation events to total precipitation where the seasonal or annual PCI can be 

used for understanding the long-term variability of total precipitation received on annual 

and seasonal scale. PCI can also be used indirectly to understand variation in precipitation 

in a place. A large number of recent studies have used the PCI to understand the regional 

variation in precipitation concentration in different parts of the world. For example in 

Bangladesh (Mondol et al., 2018), Nepal (Shrestha et al., 2019), China (Deng et al., 2018; 

Faiz et al., 2018b; Zhang et al., 2019; Lu et al., 2019), Italy (Bartolini et al., 2018), Sardinia 

(Caloiero et al., 2019) and in Greece (Tolika, 2019).  

Understanding the changes in extreme precipitation and precipitation concentration over a 

region is vital for understanding the impacts of climate change in regional precipitation. 

Such kind of analysis is not only helpful to answer recent questions regarding changes in 

precipitation associated with the rising concentration greenhouse gases in the atmosphere 

but also can help inform policymakers, planners, and to build awareness for managing 

recurring natural disaster i.g floods which are very common in India.  

1.1 Extreme precipitation and climate change 

According to the IPCC, the global mean surface temperature has increased by 0.89°C 

between 1901 and 2012 with significant regional differences, which mainly attributed to 
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anthropogenic warming (IPCC, 2013). Climate change has direct impacts on regional 

precipitation pattern, mainly through changes in precipitation amount, intensity and 

frequency of heavy rainfall events leading to catastrophic floods and droughts (Roxy et al., 

2017; Mal et al., 2018). Therefore, understanding the spatial and temporal distribution of 

precipitation is necessary for managing regional water resources, reliable hydrological 

predictions and building disaster preparedness, especially under a non-stationary climate 

(Wang et al., 2016; Marengo and Espinoza, 2016). The nature of extreme climatic events, 

such as extreme precipitation, drought, and heatwaves, is also changing in response to 

recent human-induced warming (Matthews et al., 2019; Perkins-Kirkpatrick and Lewis 

2020; Fischer and Knutti et al., 2015). Precipitation extremes have great socio-economic 

impacts as these extreme events often translate into devastating floods and landslides, 

which disrupt transportation networks, hinder agricultural production and result in human 

casualties. 

Seasonality of precipitation event is another key determinant in controlling freshwater flux 

over land surfaces. With an increase in global mean temperature, extreme precipitation 

events are expected to intensify over most parts of the globe (Kharin et al., 2013, Fischer 

and Knutti et al., 2015). This means, the amount of precipitation associated with a certain 

‗return period‘, such as once in 50 years event or once in 20 years event, is expected to 

increase (Tandon et al., 2018). The reason for the increasing and future expected increase 

in rainfall can be explained using Clausius-Clapyeron equation, which states that if the 

global surface temperature increases the saturation vapour pressure of the atmosphere will 

also increase, with a rate of 7% per degree of warming (Trenberth et al., 2011; Trenberth et 

al., 2003). As a result, the moisture-holding capacity of the atmosphere increases, which 

brings more rain during an extreme rainfall event. Due to energy constraints, global mean 

precipitation increases at a slower rate, by 1 - 3% per degree of warming (Allen and Ingram, 

2002). Studies based on observational precipitation record also indicate an increase in one 

day maximum rainfall by 6-10% per degree of warming over the land areas (Asadieh and 

Krakauer  2015; Westra et al., 2013). This mechanism is presented in weather and climate 

models to predict the changes in rainfall in future under different emission scenarios.  

1.2 Precipitation data sources 

Point-based measurements of precipitation are highly accurate, however, they are limited 

over much of the globe owing to the sparse distribution of gauge networks (Kidd et al., 
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2017) and can suffer from data quality issues (Viney and Bates 2004). The gridded and 

satellite-based data sets, which are continuous in space-time domains, could overcome the 

limitation poised by the point data. Various gridded precipitation datasets are now 

available with global or near-global coverage but the relative performance of this datasets 

varies with geographical space and time (Sun et al., 2018). Despite several limitations, 

gridded datasets are widely used in climate science for studying global/regional rainfall 

characteristics (Masunaga et al., 2020; Satgé et al., 2020), in climate change detection and 

attribution studies (Paik et al. 2020), event attribution studies (e.g. Wiel et al., 2017), and 

they are commonly used for climate model evaluation. Satellite-based rainfall retrieval is 

now providing ~40-year long records of precipitation over the globe making these datasets 

potentially suitable for climate change studies (Nguyen et al., 2018). Another popular 

choice is to use the reanalysis rainfall datasets as they provide a dynamically consistent 

record of several atmospheric variables around the globe. Reanalysis use models that 

simulate thermodynamic and dynamic processes to produce synthesized outputs by 

integrating irregular observations into the model domain (Sun et al., 2018).  

Precipitation is a key variable of the global hydrological cycle as it distributes mass and 

energy over the land surfaces and has a direct influence in controlling the subaerial 

processes. However, precipitation varies greatly over space, which poses a key challenge in 

measuring it satisfactorily over a large spatial domain. Based on measurement techniques 

and estimation methods, precipitation data sets are mainly grouped into three different 

categories i.e. gauge-based, satellite rainfall and reanalysis (Sun et al., 2018). At Earth‘s 

surface, precipitation is commonly measured using rain gauges (Tapiador et al., 2012). 

There are several types of rain gauges available, such as accumulation gauges, weighing 

gauges, tipping bucket gauges and optical gauges (Tapiador et al., 2012). Owing to the 

sparse distribution of rain gauges, it is necessary to assemble all gauge-based observations 

of precipitation to national and subsequently into one integrated global data set for large 

scale climatic study or related application.  

1.2.1 Gauge- based gridded data 

In-situ precipitation observations are often combined into gridded precipitation dataset 

using a suitable interpolation algorithm for better understanding of regional precipitation 

process (Pai et al., 2014). Several gridded precipitation datasets have been developed with 

different spatial and temporal coverage by using in-situ precipitation measurements 



7 
 

around the world. For example, the Climate Prediction Center (CPC), Global Precipitation 

Climatology Centre (GPCC), Climatic Research Unit (CRU), and the Asian Precipitation 

Highly Resolved Observational Data Integration Towards Evaluation of Water Resources 

(APHRODITE) gridded precipitation datasets are available at daily, and monthly temporal 

scale with a spatial resolution ranging from 0.25° to 1°. However, gauge based precipitation 

datasets have several drawbacks, such as too many missing data, incomplete spatial 

coverage and inadequacy over rugged terrain and ocean surfaces (Kidd et al., 2017). Gauge-

based gridded datasets aim to provide rainfall record over spatially homogeneous grid-cells 

by interpolating point-based rainfall measurements over a region.  

1.2.2 Satellite-based estimation 

Satellite has become an indispensable tool for monitoring the Earth‘s surface resources as 

well as atmospheric variables at regular interval from space. After the launch of first 

Television and IR Observation Satellite (TIROS) in April 1960, a growing interest in 

satellite meteorology enriched our understanding of atmospheric phenomena through 

imaging (Kidd, 2001). In the early stage of its development, images of clouds obtained from 

this satellite manually interpreted by comparing them with in-situ meteorological 

observations (Kidd, 2001). Since then, the number of satellites for observing Erath‘s 

atmospheric processes has increased and subsequently advanced our understanding of 

satellite meteorology. Based on sensor characteristics these satellites are classified into 

three categories (Michaelides et al., 2009; Prigent, 2010); Visible/IR (VIS/IR) sensors on low 

Earth orbit (LEO) and on geostationary (GEO) satellites, passive microwave (PMW) and 

active microwave sensors on LEO satellites.  

Bright and cold clouds are subjected to greater vertical convection. Using this principle, the 

cloud top temperature measured by IR sensors of VIS/IR satellite is used to estimate 

precipitation process. Probability and intensity of precipitation at ground level are then 

estimated applying different algorithm such as Griffth-Woodley algorithm (Griffith et al., 

1978). VIS/IR sensors have an advantage in measuring rainfall at a high spatial resolution 

over tropical areas with adequate temporal resolution. However, it should be noted not all 

cold and bright cloud form precipitation and the relation between cloud top temperature 

and precipitation is indirect. Unlike, VIS/IR sensors PMW sensor is sensitive to the droplet 

size of precipitation and can sense through cloud thus provides a unique opportunity to 

measure precipitation from space. Since the launch of Special Sensor Microwave/Imager 
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(SSM/I) in 1987 by NASA‘s WetNet project, precipitation retrieval based PMW sensors 

advanced significantly. Launch of PMW TRMM MW Imager in 1997, made great progress 

in depicting and analyzing rainfall patterns over tropical areas. After that, NOAA‘s 

advanced MW sounding unit (launched in July 1998) and the development of Advanced MW 

Scanning Radiometer for the Earth Observing System (AMSR-E) in 2002 with 

multichannel PMW radiometer to measure water-related geophysical parameters. PMW 

sensors are currently placed at LEO, therefore, have a poor temporal resolution (3h or less) 

compared to the rapid temporal sampling (30minuites or less) of the GEO based IR 

instruments. At the early phase of its development, precipitation is estimated by using 

simple regression-based methods between surface precipitation rate and estimated or 

measured brightness temperature by the PMW sensors. After that, however, other 

approaches, such as physical algorithm, probabilistic and iterative retrieval algorithm have 

been developed which improved the accuracy PMW estimates. To improve accuracy, data 

collected through VIS/IR and PMW sensors are often merged together to improve 

resolution, accuracy and coverage of precipitation products (Tapiador et al. 2004, 

Sorooshian et al. 2002). In 1997, precipitation measurement with active MW sensors 

started with the launch of TRMM. It is the first spaceborne precipitation radar which has 

improved the understanding of three-dimensional structures of precipitation events and its 

measurement accuracy over tropical regions. 

With the recent advancements in infrared (IR) and microwave (MW) sensors, and retrieval 

algorithms, satellite-based precipitation products fill the deficiencies associated with gauge 

based measurements by providing spatially homogeneous and temporally continuous 

records with near-global coverage of precipitation processes (Kidd and Levizzani, 2011; Sun 

et al., 2018). Satellite-based measurements are often merged with gauge based products to 

improve the accuracy of measured climatic variables and to maximize the benefits for 

climatological applications (Sun et al., 2018). Although, the performance of satellite 

estimates found to vary over geographical space and significant differences exists between 

different satellite rainfall products. 

1.2.3. Reanalysis 

Climate variables (i.e. precipitation, temperature, wind speed etc.) are also available from 

retrospective-analysis or reanalysis. Reanalysis products provide synthesized estimates of 

atmospheric variables by combining observation with model data over regular grid surface 
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and provide climate variables as multidimensional hierarchical outputs, with spatial 

homogeneity and continuous temporal coverage (Sun et al., 2018). In a reanalysis system, 

advance data assimilation algorithm is used to assimilate irregular observations into 

numerical weather forecast model that encompasses a range of physical and dynamical 

processes (Bosilovich et al., 2008; Saha et al., 2010). Thus, the quality of synthesized 

climatic variables from reanalysis systems depends on the complex interaction between 

observational input, chosen model and the parameterization scheme used. With improved 

understanding of the dynamical process of climate and increase in computational power of 

modern computers, reanalysis products are continuously being updated with improved 

modelling scheme (representing physical processes), new observational data sets from 

various sources to improve the quality of these forecasts (Sun et al., 2018; Hersbach et al., 

2020). Reanalysis products are being extensively used in climate research and other allied 

disciplines, primarily as a substitute of gauge based observations. Most commonly used 

reanalysis products are distributed by the National Centers for Environmental Prediction 

(NCEP) and the National Center for Atmospheric Research (NCEP-NCAR), European 

Centre for Medium-Range Weather Forecasts (ECMWF), National Aeronautics and Space 

Administration (NASA) and Japan Meteorological Association (JMA). These reanalysis 

systems use different sources of observational data, assimilation methods, models, and 

parameterization scheme and spatial resolution which affect their performance in 

reproducing the mean state of weather across different regions. These inter-differences 

among the reanalysis products provide a unique opportunity to assess their reliability in 

reproducing different climatic events across various spatial domain. 

1.3 Literature Review 

Studies focusing on extreme precipitation are essential as these events have large socio-

economic impacts. However, the analysis of extreme precipitation has remained sensitive to 

the choice of definitions of extreme precipitation. In most cases, absolute and percentile 

based thresholds of extreme rainfall events are used to study extreme precipitation. The 

IMD uses a six-tier intensity-based rainfall classification scheme for classifying daily 

rainfall events over India. Pattanaik and Rajeevan (2010) used this scheme for studying 

extreme rainfall over India during the monsoon season. Rajeevan et al., (2008) studied the 

changes in moderate (5 – 100mm/day), heavy (100 - 150mm/day) and very heavy 

(>150mm/day) rainfall events over India following the classification of Goswami et al., 
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(2006) and reported significant increases in the frequency of extreme rainfall events over 

India, associated with increasing sea surface temperature. However, a single absolute 

threshold of rainfall for identifying extreme events may not be useful to the whole of India, 

considering the significant variations in rainfall patterns and the differing levels of 

resilience and adaptation across the country. Percentile based identification of extreme 

precipitation event is more suitable in accounting for the spatial variability of extreme 

precipitation events, especially while conducting studies in regions with diverse climate 

regimes, like India. Another common choice is to use the ETCCDI recommended extreme 

precipitation indices, which have been developed with global and regional analyses in mind. 

The majority of extreme precipitation studies have used these ETCCDI indices for studying 

observed and future changes in extreme rainfall over India (Dash and Maity, 2019; 

Pradhan et al., 2019; Rai et al., 2020; Gupta and Jain, 2020; Sharma and Goyal, 2020).  

Studying the strength and weakness of different precipitation datasets for hydro-

climatological applications is interesting and at the same time essential in finding suitable 

datasets for large scale climate studies, especially when the study region is poorly 

monitored. Various attempts have been made on global as well as regional scale in finding 

suitable precipitation datasets for hydro-climatological studies. Some recent works are 

reviewed and cited in the following section. 

Li et al., (2018) assessed the performance of four precipitation datasets over western 

Himalaya and found that the APHRODITE and WRF simulated precipitation better 

matches with rain-gauge (Bhuntar gauge) data and performed well compared to ERA-

Interim and the coarser resolution gridded data from the IMD. Awange et al., (2016) 

evaluated six satellite precipitation products against GPCC dataset and found that the 

PERSIANN product is most suitable in capturing precipitation distribution over Africa. 

Paredes-Trejo et al., (2017) reported that satellite-derived CHIRPS estimates well correlate 

with observation over the North-Eastern parts of Brazil and better performs during we 

season. They also commented that the same data overestimated lower rainfall and 

underestimated higher rainfall (100mm/month) over the study area. Iqbal and Athar (2018) 

evaluated TRMM-TMPA satellite data over Pakistan and found that satellite-derived 

precipitation data overestimated precipitation compared to gauge-based data during the 

pre-monsoon and monsoon season, where it underestimated precipitation during post-
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monsoon and winter season. The study also found that the performance of TMPA data 

better performed over plain and medium elevation zones than higher-elevation areas. Also, 

higher agreement is observed areas on annual and monthly precipitation than estimating 

daily precipitation. Alexander et al. (2020) compared 22 daily precipitation products over 

global land areas by calculating 10 annual rainfall and extreme precipitation indices and 

reported that in-situ precipitation products are similar to each other where the reanalysis 

showed the largest variation. However, over the extra-tropical areas, the reanalysis 

precipitation products performed better than satellite datasets. Chen et al (2020) compared 

six precipitation products over global and regional scale using two extreme rainfall indices 

i.e maximum one day rainfall and annual rainfall above 95th percentile for the period of 

1979 – 2017. They found that the satellite-based PERSIANN-CDR performs better than 

reanalysis and merged datasets in capturing the temporal variability of the intensity and 

amount of precipitation extremes. However, the reanalysis and merged products 

underestimate the intensity of precipitation extremes over most areas and performed 

differently in various regions depending on the season. Kim et al (2019) compared seven 

gridded precipitation datasets over the Asian domain to assess their performance in 

capturing extreme precipitation in the summer monsoon season and found larger 

discrepancies over South East Asia including the maritime islands where smaller 

differences are observed over South Asia and East Asia. Besides, higher similarities among 

the precipitation datasets are observed over East Asia.  

There are also several gridded precipitation data comparison studies are available over 

India. For example, Rana et al (2015) analyzed seven gridded precipitation datasets 

obtained from three different sources (gauge-based, satellite and reanalysis) in capturing 

seasonal precipitation climatology over India. They reported that for the monsoon season 

(JJAS), the gauge-only (CPC) and satellite-derived precipitation products (GPCP, 3B42-V6, 

and 3B42-V7) capture the JJAS rainfall variability better than the reanalysis (CFSR and 

ERA-Interim) when compared to the APHRODITE where the performance of other six 

gridded datasets were less agreeable with respect to APHRODITE during the winter (DJF).  

Sunilkumar et al., (2015) compared five multi-satellite precipitation datasets for two 

contrasting monsoon season (southwest and northeast) over India with a coarse resolution 

(1°×1°) gridded rainfall datasets from the IMD and reported that overestimation of rainfall 

over the dry regions (northwest and southeast India) and underestimation over 
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mountainous regions (west coast and northeast India) was a general feature of the multi-

satellite precipitation products, whereas the bias was relatively small over the core 

monsoon zone. However, they found near similar values of the evaluation metrics for two 

contrasting monsoon season, implying that the performance of these datasets does not 

change with the season. Mondal et al., (2018) compared four multi-satellite precipitation 

estimates with a high resolution (0.25°×0.25°) gridded rainfall datasets obtained from the 

IMD to analyze their ability in representing monthly precipitation over 25 river basin of 

India for 1998 to 2015 and found that the TMPA precipitation product (in terms of 

accuracy) and PERSIANN (in terms of annual and monsoon trend) show a better agreement 

with IMD. All the datasets showed a higher variation of rainfall for the river basin located 

above 2000m in the northern parts of India. They also found that the trend patterns in 

annual and monsoon rainfall for TMPA, CMORPH, PERSIANN, and MSWEP matched 

with IMD data for some river basins located in the north, northwest, and central part of 

India. Ghodichore et al., (2018) compared six reanalysis datasets with the IMD gridded 

data to analyse the spatio-temporal variability of precipitation and temperature over India 

for 34 years and found that the MERRA-Land reanalysis has the best performance for 

precipitation over India where the ERA-interim and JRA-55 better performed for 

temperature than other reanalysis datasets. Chaudhary et al (2017) compared the gauge-

based CPC and APHRODITE datasets with the high-resolution IMD gridded dataset in 

accounting dry and wet spell characteristics over India. The study found that the CPC 

better resembles with the IMD in replicating spell characteristics while the APHRODITE 

significantly deviates with over-estimation of wet days and under-estimation of dry days 

over India due to the increase of rainfall intensity during dry periods. However, the 

datasets showed major differences over the Northern Himalayan parts (Jammu and 

Kashmir) in representing the spell characteristics. They also found that the trend patterns 

in dry and wet spells over different parts of India are also not consistent between these 

three datasets. Recently Mahato and Mishra (2019) showed that the recent generation 

ERA-5 reanalysis data from the ECMWF outperforms the other five reanalysis datasets 

(i.e. NCEP-CFSR, MERRA-2, ERA-Interim and JRA-55) for the monsoon season 

precipitation, Tmax,  evapotranspiration, and soil moisture over India when forced into a 

hydrological model.  
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Previous gridded data evaluation studies over India agree on the fact that the gauge-based, 

satellite and reanalysis datasets poorly performs over the Northern Himalayan. In a recent 

work, Jena et al., (2020) explored the ability of high-resolution IMD data and seven other 

satellite precipitation datasets in detecting cloudburst event over the northwestern parts of 

Himalaya. They found six out of eighteen cloudburst events are present in the IMD dataset 

over the Northwestern parts of Himalaya. The CHIRPS is found to give best rainfall 

estimate over the study region in monitoring cloudburst events than other satellite 

estimates when compared to the IMD datasets with an improved probability of detection 

values ranging from 60.5% to 78.6%. Gridded data comparison studies focusing on extreme 

precipitation over India is limited and well explored by considering a large subset of gauge, 

satellite, and reanalysis datasets. For example, Gupta et al., 2019 studied the ability of 

three satellite rainfall products (i.e. CHIRPS, Satellite Soil Moisture to Rain - 

SM2RAINASCAT and TRMM) in capturing extreme rainfall events over India. They 

reported that the TRMM and CHIRPS data well performed in representing extreme rainfall 

over various parts of India and with closer match with the IMD gridded data than 

SM2RAIN-ASCAT satellite-precipitations. 

Studying the concentration of precipitation over a region using the PCI to characterize the 

regional climate and to explore the role of teleconnection and climate change is also another 

popular choice. For example, Skander et al., 2014 used the PCI to study precipitation 

characteristics over Bangladesh during 1971 – 2010 and reported that a strong irregularity 

of precipitation concentration over the south-eastern region where PCI in the rest of the 

country is mostly irregularly distributed which is line with the findings of Mondol et al., 

(2018). Raziai (2014) using the GPCC dataset, studied the PCI over Iran during 1951 – 

2009 and reported irregular distribution of precipitation in the northern parts of Iran 

during all seasons. Khalili et al. (2016) noted that PCI on annual scale and during the rainy 

season (winter) over Iran is increasing in response to the decrease in precipitation over 

most parts of Iran. Shrestha et al., 2019 studied PCI in two river basins (Koshi and 

Kaligandaki) in Nepal and reported that substantial differences in monthly precipitation 

distribution in this two river basin and the PCI values showed irregular distribution at 

stations located in the southwestern region of Kaligandaki and the western region in Koshi 

basin, and concentrated within a few months, only during the monsoon where the uniform 

distribution of precipitation is found for the stations located in the central region. PCI on 
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annual and seasonal scale is extensively studied over China (Deng et al., 2018; Faiz et al., 

2018b; Huang et al., 2019; Zhang et al., 2019; Lu et al., 2019) some studies also explored 

the role of large scale teleconnection on PCI over China. Jiang et al., 2016 reported that 

PCI has a positive significant correlation with urbanization over China especially over the 

eastern parts where the population density is very high, signifying that anthropogenic 

activity has a role in modifying regional precipitation regime. Guo et al., 2020 reported a 

positive correlation of PCI with drought indices over china indicating that the usability of 

PCI as an auxiliary index for drought assessment studies. Bartolini et al., 2018 investigated 

the trends in PCI over Tuscany (central Italy) between 1955 and 2013 and found positive 

significant trend at some stations on spring and summer seasons where no significant 

trends are detected for the studied 35 stations on annual basis and during the winter 

season. Caloiero et al., 2019 studied the long-term behaviour of rainfall and PCI changes 

over the Sardinia, the second-largest island in the Mediterranean sea and found that the 

decreasing trend in annual rainfall over the island especially in the western dry areas 

during winter months resulting annual PCI to be decreased and shifted towards uniform 

PCI distribution. Tolika, 2019 investigated annual and seasonal distribution of PCI over 

Greece and reported moderate precipitation concentration with an increase in PCI values 

while moving to its southern parts. On seasonal scale, the author argued that the increase 

in PCI in winter is mainly due to the increasing trends of the December precipitation, 

contributing to the seasonal totals. Few studies are carried out in India focusing on the 

long-term variability of PCI despite the need for managing recurring climatic hazards like 

floods and droughts, especially under a changing climate. After analyzing 141 years (1871 

to 2012) of rainfall records Thomas and Prasannakumar (2016) reported that annual 

precipitation concentration is irregularly distributed over the Indian state of Kerala and is 

decreasing over time. Chatterjee et al., (2016) found that the PCI during the monsoon 

season is uniformly distributed over the Indian state of West Bengal throughout 1901 - 

2002. Nandargi and Aman (2017) studied annual and monsoon PCI over 34 meteorological 

subdivision of India and found no sub-division has a uniform distribution of PCI over India 

on annual scale. However, PCI during monsoon is uniformly distributed over NE and EC 

parts India. Besides, Zamani et al (2018) found an irregular distribution in annual and 

seasonal PCI over the Jharkhand state in India except for the summer monsoon season, 

which is similar to the findings of Valli et al 2014 for the same region. However, a 

comprehensive analysis of different characteristics of annual and seasonal PCI over India is 
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lacking. Also, the ability of various gridded rainfall datasets in capturing the spatio-

temporal variability PCI and its changes over India is never been explored. These are 

particularly important as recent changes in climate are affecting the regional distribution 

precipitation in various parts of the world. 

1.4 Research gaps 

Global or regional scale gridded precipitation datasets are not consistent with each other, 

primarily due to the differences in the number of observations used during preparation, 

resolution mismatch and interpolation algorithm applied to assimilate them. Hence, 

assessing the reliability of different precipitation products is imperative before using for 

any regional or global hydro-climatic applications. Previous gridded data inter-comparison 

studies mainly focused on the mean state of climate while assessing their reliability for 

climatological application (Rana et al. 2015; Fallah et al. 2019). Gridded datasets have also 

been compared for drought characterization (Zhan et al. 2016; Golian et al. 2019; Chen et 

al. 2019) and hydrological modelling (Bhattacharyya and Sanyal 2019; Kolluru et al. 2020) 

in different parts of the world. As extreme rainfall events are particularly important to 

erosional process, in triggering natural hazards and for designing hydrological structures, 

data inter-comparison studies should emphasize their ability in reproducing different 

characteristics of extreme precipitation events. Some recent analyses have assessed the 

reliability of these gridded datasets in capturing extreme precipitation characteristics on 

global (Alexander et al. 2020; Bador et al. 2020) and regional scale (Kim et al. 2019; 

Timmermans et al. 2019; Cavalcante et al., 2020). However, these studies are limited to the 

analysis of a small subset of available gridded datasets or have given lesser emphasis to 

extreme precipitation characteristics especially over India (Singh et al. 2019; Prakash 2019; 

Gupta et al., 2019). For example, Chaudhary et al. 2017 compared CPC and APHRODITE 

data over India and found that CPC better matches with the IMD gridded data in capturing 

dry and wet spell characteristics. Gupta et al., (2019) found that the TRMM and CHIRPS 

datasets performed well in capturing the intensity of extreme precipitation across most 

regions in India. 

India, the second-most populous country in the world is frequently affected by floods, which 

are mainly associated with extreme rainfall events i.e. the Mumbai flood in 2013, Chennai 

flood in 2015 and the recent devastating floods of Kerala that occurred in 2018 and 2019. 

About 44.2% of total monsoonal rainfall in India comes from heavy rainfall (above 
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35.5mm/day) events (Pattanaik and Rajeevan, 2010), mainly associated with the wet spells 

during monsoon, and modulated by Low-Pressure Systems (LPS) or monsoon depressions 

(Rajeevan et al. 2010; Hurley and Boos 2015). In data-sparse countries like India, few 

gridded data comparison studies have been carried out (Mondal et al 2018), and with a 

handful of studies emphasizing on extreme precipitation (Bharti et al. 2016; Gupta et al. 

2019). Owing to the variability of Indian summer monsoon rainfall and recurring 

occurrences of hydro-climatic extremes, it is important to evaluate the performance of 

gridded rainfall datasets in reproducing extreme rainfall characteristics over India. Also, 

previous gridded precipitation data inter-comparison studies in India have mainly assessed 

the reliability of satellite and reanalysis rainfall products based on mean precipitation 

amount (Rana et al., 2015; Kishore et al., 2016; Mondal et al., 2018), dry and wet spell 

characteristics (Sushama et al., 2014; Chaudhary et al., 2017), aridity index (Ramarao et 

al., 2019), but their reliability in capturing the spatio-temporal dynamics of PCI has never 

been explored.  

1.5 Research objectives 

The core motivation for this study stems from the need to understand the ability of 

different gauges based, satellite and reanalysis rainfall products in capturing various 

characteristics of precipitation (i.e. extreme rainfall and precipitation concentration) over 

India. Given that floods and drought are recurring hydro-climatic events in India and cause 

huge damage to the country‘s economy, it is, therefore, necessary to focus our attention to 

understand the spatio-temporal occurrences of extreme hydro-climatic events for better 

monitoring and predicting these events and to reduce the socio-economic impacts. In 

addition to this, water management requires an understanding of existing tools and 

development of new data set and methodologies to detect extreme precipitation events, 

their characteristics (e.g. intensity, duration, spatial distribution and temporal changes) 

which better facilitate the nature of management strategies and disaster preparedness. In 

light of these factors, the primary objective of this study is to comprehensively assess the 

reliability of eleven different gauge-based, satellite-derived and reanalysis rainfall datasets 

in capturing various characteristics of extreme precipitation and precipitation concentration 

over India. 
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More specifically the objectives are to analyze: 

(1) the ability of gridded rainfall datasets in reproducing different characteristics of 

extreme rainfall and its trends over India. 

(2) the spatial and temporal variability of annual and seasonal PCI over India and 

explore the influence of geographical factors (i.e. latitude, longitude, and altitude) on 

the spatial distribution of PCI over India. 

(3) the ability of the datasets to capture different characteristics of annual and seasonal 

PCI and its trends over India. 

This is done by comparing the results obtained from the eleven datasets with a purely in-

situ based gridded rainfall datasets obtained from the India Meteorological Department 

(IMD).  
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Chapter 2 

Study area and datasets 

2.1 Study area 

In this study, we focus our attention to India, home to around 1.3 billion people where more 

than 55% of the total population is still dependent for their livelihood on the highly rainfall-

sensitive agricultural sector. India‘s food security, inland water resources, and the overall 

economy have remained sensitive to monsoon rainfall variability throughout the past 

(Gilmont et al., 2018). To analyze extreme rainfall events over India, smaller homogenous 

regions are identified based on physiographic divisions and spatial rainfall patterns over 

India (Fig. 2). These regions are Thar Dessert (TD), Northern Himalaya (NH), Ganga plain 

(GP), North-East (NE), Central India (CI), Eastern Peninsula (EP), Southern Peninsula 

(SP), Western Ghat (WG), West Coast (WC) and East coast (EC). A strong latitudinal 

rainfall gradient is observed in the distribution of annual average rainfall over India, which 

extends from the NE parts covering Meghalaya plateau to the Thar Desert of WI (Fig. 1B). 

Annual average rainfall over India increases from <200mm (Thar Dessert) to >6000mm 

(NE India) following the east to west rainfall gradient. Due to the strong influence of 

monsoon circulation, monthly precipitation in most of these regions reaches its peak during 

JJAS months with the arrival of South-West monsoon winds. An exception to this is 

observed in parts of Southern EC and SP region, where rainfall mostly occurs during post-

monsoon (SON) months with the reversal of the monsoon wind.  
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Fig. 2 (A) Elevation distribution along with major physiographic regions in India and (B) 

the right panel shows the distribution of annual average precipitation over India (derived 

from the IMD gridded dataset) during the study period (1986 – 2015). 

In India, extreme rainfall events are mainly associated with the wet spells during monsoon 

and modulated by the Low-Pressure Systems (LPS) or monsoon depressions (Rajeevan et al. 

2010; Hurley and Boos 2015). These LPS have an average frequency of 13-15 storms per 

season and an average lifespan of 3-6 days (Godbole, 1977; Hurley and Boos, 2015). Most of 

these LPS form in the Bay of Bengal (BOB) and propagates towards central India from 

southeast to northwest following the monsoon trough, and cause heavy rainfall across 

central India and Gangetic plain (Ajayamohan et al., 2010).  Revadekar et al. (2016) found 

that frequency of cyclonic disturbances and extreme rainfall of different thresholds are 

positively correlated over India. However, the strength of correlation decreases as extreme 

rainfall threshold increases. The study also concludes that LPS and disturbances that form 

over BOB play a dominant role in determining the distribution and occurrence of extreme 

rainfall events over India. Monsoon lows and depressions after moving northwards towards 

the Himalayas interact with extra-tropical disturbances under a strong orographic forcing 

and cause extreme rainfall events in parts of Pakistan, Northern-India and Nepal (Vellore 
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et al., 2016; Bohlinger et al., 2017; Priya et al, 2017; Hunt et al., 2018). The axis of monsoon 

trough periodically oscillates in north-south direction over the Gangetic plain, resulting 

regionally concentrated heavy rainfall events during monsoon. Additionally, in long-term, 

LPS activities are influenced by global teleconnection patterns. For instance, during El-

Niño conditions depressions are more likely to be formed and characterized with heavy rain 

events in the core-region compared to La Niña conditions (Hunt et al., 2016; Hunt et al., 

2016).  

Though there is no significant trend in average monsoon rainfall over India, a regionally 

significant trend exists especially in rainfall variability, spell characteristics and extreme 

precipitation events (Singh et al., 2019). With anthropogenic warming, sea surface 

temperature of the Indian Ocean (especially in the Western Equatorial part) has increased. 

This coupled with the slow northward propagation of monsoon intraseasonal oscillation 

(MISO) has diversely affected the regional precipitation pattern over India. For instance, 

daily rainfall variability over WI, CI and NE India has increased significantly (Sabeerali et 

al., 2014; Singh et al., 2019). In line with that, the frequency of short duration dry spell has 

increased in consistent with the slower progression of MISO towards the north (Singh, 

2013b). Although, there are no significant changes in the frequency of wet spells but 

progressively warming and wetter atmosphere have increased the intensity of short 

duration ( 4 - 7 days) wet spells over India (Singh, 2013a; Singh, et al., 2014; Pai et al., 

2016). This compensating effect may explain the phenomena of no detectable changes in 

mean annual precipitation over India. In response to climate change, occurrences of 

extreme rainfall events are increasing especially over central India and this increasing 

pattern is dominated by short-duration events (Dash et al., 2011; Vinnarasi & Dhanya, 

2016). Sagar et al. (2017), found that large rainstorms (~50,000 km2) lasting at least 2 days 

have doubled over past six decades over central India, where more intense but smaller 

rainstorms (>6250 km2) have tripled over this time (Roxy et al. 2017). Further, extreme 

rainfall events (>95th percentile) are increasing in intensity and frequency in most part 

northwestern, west-central, north-eastern and peninsular India but decreasing over east-

central and northern India (Krishnamurthy et al., 2009; Dash et al., 2011; Vittal et al., 

2013; Malik et al., 2016; Bisht et al., 2018; Mukherjee et al., 2018). 
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2.2 Data sets 

2.2.1 Gauge-based gridded data 

In this study, four gauge-based (IMD, APHRODITE, CPC and GPCC), two satellite-derived 

(CHIRPS, PERSIAN-CDR) and six reanalysis datasets (ERA5, ERA-Interim, MERRA2, 

NCEP2, PGF and JRAA-55) are used for calculating different extreme rainfall indices over 

India. A brief description of these datasets is presented in Table 2.1 and detailed 

descriptions are given below. 

Table 2.1 Description of gridded rainfall datasets used in this study. 

 

IMD Gridded data 

To evaluate the reliability of different satellite, reanalysis and gauge based gridded rainfall 

product over India, we considered the latest generation gridded rainfall product, developed 

by the IMD, as a benchmark dataset for inter-comparison. The gridded rainfall product is 

produced using the Shepard interpolation scheme (Shepard, 1968) and has a spatial 

Dataset Period Resolution Data source References 

IMD 1901-2015 (0.25° × 0.25°) Gauge-based Pai et al. (2014) 

APHRODITE 1951 – 2015 (0.25° × 0.25°) Gauge-based Yatagai et al. (2012) 

CPC -Unified 1979 - Present (0.5° ×  0.5°) Gauge-based Xie et al. (2007) 

GPCC_V2 1982 - 2016 (1° ×  1°) Gauge-based Schamm et al. (2014) 

CHIRPS  1981 - Present (0.25° × 0.25°) Satellite Funk et al. (2015) 

PERSIANN-CDR 

 

1983 - Present (0.25°× 0.25°) Satellite Ashouri et al. (2015) 

PGF 

 

1948 - 2016 (0.25° × 0.25°) Reanalysis Sheffield et al. (2006) 

NCEP-2 1979 - Present (1.875° × 1.875°) Reanalysis Kanamitsu et al. 

(2002) 

ERA-Interim 1979–present ( 0.75° × 0.75° Reanalysis Dee et al. (2011) 

ERA-5 1979–present (0.25°× 0.25°) Reanalysis Hersbach (2016) 

MERRA-2 1980 - Present (0.5° × 0.67°) Reanalysis Gelaro et al. (2017) 

JRA-55 1958-Present (0.5625° × 

0.5625°) 

Reanalysis Kobayashi et al. (2015) 
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resolution of 0.25°×0.25°. Daily rainfall records from 6329 hydro-meteorological stations, 

monitored by different agencies across India, are used for this purpose (Pai et al., 2014). 

However, the density of weather stations and their record lengths vary from time to time. 

This gridded rainfall product contains daily rainfall time series for a period of 115 years 

(1901 – 2015) covering whole India from 60° to 100°E and from 6° to 39°N. It is an improved 

version compared to the previous 1°×1° (Rajeevan et al., 2006) and 0.5°×0.5° (Rajeevan and 

Bhate, 2009) gridded rainfall products and well captures the orographic influence on 

precipitation (Pai et al., 2014). This data has been used in many previous studies for 

analyzing climatological extremes over India (Vinnarasi and Dhanya 2016; Deshpande et 

al., 2016). In this study, we used rainfall records of 30 years (1986 – 2015). 

APHRODITE 

The APHRODITE (Asian Precipitation-Highly Resolved Observational Data Integration 

Towards the Evaluation of the water resources) gridded precipitation product provides daily 

rainfall climatology over the monsoon dominated Asia at 0.25°×0.25° spatial resolution 

(Yatagai et al., 2012). Different versions of APHRODITE rainfall product are available with 

an updated time for different regions. The Shepard interpolation scheme (Shepard, 1968) 

and an angular based weighting function for elevation correction are used to produce this 

gridded rainfall product (Yatagai et al., 2012). It is purely a gauge based rainfall data set, 

developed by using observations from 5000 to 12000 rain gauges from different countries. 

The gridded data files are constructed by interpolating rain-gauge observations from 

different countries over the Asian domain (Yatagai et al., 2012). Here, the APHRODITE 

version V1101 (1986-1997) and the recently updated version of V1901 (1998 – 2015) from 

the APHRODITE-2 project are used to construct daily precipitation climatology over India 

for the study period 1986 – 2015. The APHRODITE is mainly limited to the Asian domain 

only. The quality of this data depends on the amount of gauge-data which varies over space 

and time. The distribution of rain-gauges in APHRODITE is quite uneven over India, 

especially over the EP and dry parts of WI. 

CPC 

The NOAA‘s (National Oceanic and Atmospheric Administration) Climate Prediction 

Centre (CPC) provides a unified gauge based gridded precipitation product at a resolution 
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of 0.5° × 0.5° (Chen et al., 2008). CPC data contains daily precipitation climatology over 

global land surface areas from 1979 to present. This gauge based data was constructed 

using around 2200 gauges observations spreading over East Asia (Xie et al., 2007). The 

Optimal Interpolation technique is used to represent the area-averaged daily precipitation 

field over each grid box considering the effects of topography (Xie et al., 2007). CPC is a 

land only product and its performance  

GPCC 

The GPCC provides gauged based gridded rainfall data set over the land surface based on 

data supplied from different institutions around the world. The product is derived using the 

block kriging interpolation method and provides daily precipitation from January 1982 to 

December 2018 at a spatial resolution of 1° × 1° (Schamm et al., 2015). Here the GPCC Full 

Data Daily (GPCC-FDD) product version (V2018) is used for this study. The GPCC-FDD 

product is particularly recommended for the analysis of daily extreme precipitation and 

related statistics than other categories of GPCC datasets 

(http://dx.doi.org/10.5676/DWD_GPCC/FD_D_V1_100).  

2.2.2 Satellite rainfall estimates 

 

PERSIANN-CDR 

PERSIANN-CDR is a satellite-based gridded rainfall product, developed by the Center for 

Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine 

(UCI) for the Climate Data Record (CDR) program of the National Oceanic and 

Atmospheric Administration (NOAA). Data from infrared (IR) and passive microwave 

measurement (PMW) from multiple Geostationary Earth Orbiting (GEO) and low Earth 

orbit satellites are combined using an Artificial Neural Network (ANN) to provide daily 

estimate of precipitation between the latitude band of 60°S to 60°N.  PERSIANN-CDR 

provides a continuous estimate of daily precipitation from 1983 onwards with consistency to 

study the changes in global and regional precipitation patterns and water cycle under 

climate change (Ashouri et al., 2015; Liu et al., 2017). PERSIANN-CDR is developed 

especially to address hydrological and climate issues. It provides long term precipitation 

record (over 35 years) which is not so common for satellite-rainfall datasets. The main 
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datasets for the construction of PERSIANN-CDR product include the infrared GridSat-BI 

satellite data, National Centers for Environmental Prediction (NCEP) Stage IV radar data, 

and the GPCP monthly precipitation data at 2.58. The PERSIANN-CDR product is first 

generated from the PERSIANN algorithm using GridSat-BI IR data as the primary 

satellite input. Then, the NCEP stage IV radar data are used to train the ANN and to 

create the nonlinear regression parameters for the ANN model. The satellite-gauge merged 

product – the GPCP gridded monthly data is then used to adjust the biases of the estimated 

rain rate by the ANN model. Lastly, the 3-hourly adjusted PERSIANN precipitation data 

are accumulated to a daily scale to produce the PERSIANN-CDR product. More details 

about the PERSIANN-CDR data can be found in Ashouri et al. (2015). The main limitations 

associated with this data are that it heavily relies on IR measurements and conversion of 

IR requires complex algorithm. Also, the data is available for quasi-global coverage (60°S to 

60°N). 

CHIRPS 

CHIRPS, developed by the Climate Hazards Group (CHG), is a satellite-based rainfall 

estimate providing long-term precipitation data at a spatial resolution of 0.05° between the 

latitude band of 50°S to 50°N from 1981 to present (Funk et al., 2015; 2014). CHIRP is 

firstly generated by merging the IR-derived precipitation with the Climate Hazards Group 

Precipitation Climatology (CHPclim) and is then blended with the ground station 

observations using a modified Inverse Distance Weighing (IDW) method (Funk et al., 2015) 

and called as CHIRPS (CHIRP with Stations). The updated CHIRPS version 2.0 is 

available on the CHG website (chg.geog.ucsb.edu/data/) from which daily precipitation data 

for 1986 – 2015 is obtained. The CHIRPS also provides quasi-global precipitation data and 

not a global product. In this study, the CHIRPS daily data at 0.25° spatial coverage is used 

between 1986 and 2015. 

2.2.3 Reanalysis rainfall products 

ERA-Interim 

ERA-Interim is a third-generation global atmospheric reanalysis, a successor of ERA-40 

product, with an improved atmospheric model and assimilation system, produced by the 

European Centre for Medium-range Weather Forecasts (ECMWF) providing data from 1979 

to present (Dee et al., 2011). It is developed to address several difficulties associated with 
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the data assimilation during the production of ERA-40. The observational datasets that 

come before 2002 are from the ERA-40 The improved four‐dimensional variational 

assimilation (4D‐Var) system is used in ERA-Interim instead of 3D-Var that used in ERA-

40 which improves its performance for hydro-meteorological applications including flood 

and drought monitoring and assessment (Misra et al., 2012; Seager & Henderson, 2013; 

Shah & Mishra, 2014). It has a spatial resolution of 0.75° × 0.75° 

ERA-5 

Era-5 is the most recent reanalysis product from the ECMWF, a successor of ERA-Interim 

and also provides data from January 1979 onwards. Compared to ERA-Interim, analysis 

based on 10-member ensemble 4D-Var, an upgraded radiative transfer model, improved 

bias correction method and observed sea surface temperature from second Hadley Centre 

sea surface temperature are included in ERA-5 (Urraca et al., 2018). This reanalysis 

product has a higher spatial resolution compared to ERA-Interim and used for various 

hydro-climatic researches (Albergel et al., 2018; Hwang et al., 2019; Mahto and Mishra 

2019; Olauson, 2018). ERA5 provide multidimensional atmospheric variables at very high 

spatial (0.25°) and temporal (1hr) resolution and better able to resolve tropospheric 

circulation as well as complex atmospheric phenomena like a hurricane than previous 

generation reanalysis products. 

MERRA2 

The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-

2), atmospheric reanalysis product provides hourly precipitation estimates generated on a 

0.5° × 0.625° latitude-longitude grid. MERRA2 is the newest reanalysis product by NASA‘s 

Global Modeling and Assimilation Office (GMAO) replacing the previous generation 

MERRA product. It uses the new version of the GEOS‐5 atmospheric model and includes 

more observational data, recent satellite observations and an improved assimilation model 

(Molod et al. 2015) to produce various meteorological variables. In MERRA2, precipitation 

over polar oceans is thought to be overestimated and also higher overestimation over the 

orographic belts in tropical latitudes.  
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PGF 

Princeton global forcing (PGF) is developed by the terrestrial hydrology research group at 

Princeton University by merging NCEP reanalysis data set with observational data from 

different sources, such as TRMM, CRU, GPCP and NASA SRB products (Sheffield et al. 

2006).  PGF provides daily precipitation rate over the entire globe at 0.25° spatial 

resolution from January 1948 to December 2016. The dataset is developed to provide 

various near-surface meteorological inputs require for driving land surface (and other 

terrestrial models) and also been utilized in various hydro-climatic studies around the 

world (El Kenawy and McCabe 2016; Sheffield et al. 2006). 

NCEP2 

The NCEP-2 of National Centers for Environmental Prediction (NCEP) is an updated and 

human-error-fixed version of NCEP-NCAR (R1), with similar input data and vertical 

resolutions (Kanamitsu et al. 2002, Chen et al. 2019). NCEP2 is based on a fully coupled 

ocean–land-atmosphere model and it uses numerical weather prediction techniques to 

assimilate and predict atmospheric states using a three-dimensional variational (3D-Var) 

assimilation scheme (Saha et al. 2010). The improvements in NCEP2 include an updated 

model with better physical parameterizations, assorted data assimilation errors were fixed 

and also additional data were included. However, the reanalysis is still first-generation and 

suffer from mainly quality issues like poor spatial and temporal resolution and relatively 

poor performance over the southern hemisphere. 

JRA-55 

JRA-55 is the second reanalysis product from the Japan Meteorological Agency (JMA) 

which is an improved version of the previous JRA-25 reanalysis. The JRA-55 has been 

extended to 55yeras to provide data from 1958 to present (Kobayashi et al., 2015). It uses a 

4D-VAR approach for data assimilation compared to 3D-Var used in JRA-25 and uses 

variational bias correction technique that improves its performance than JRA-25 (Ebita et 

al., 2011).  
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Chapter 3 

Methodology 

3.1 Pre-processing of gridded datasets 

The spatial resolution of these selected gridded rainfall datasets varies widely (from 0.25° 

to 1.875°) thus hindering direct comparison with the reference (IMD) dataset. Also, 

upscaling of fine resolution gridded data into relatively coarser spatial resolution reduces 

signal-to-noise ratio and introduce additional uncertainties by suppressing important 

climatological features (Yang et al., 2014). Therefore, all the datasets are re-gridded to a 

common (0.25° × 0.25°) grid using a bilinear interpolation technique (Chen et al., 2018), 

consistent with the IMD dataset for direct comparison. We acknowledge that this re-

gridding process from lower to higher resolution can affect extreme rainfall values but we 

also want to clarify that doing the reverse, that is re-gridding into lower resolution by 

increasing grid-size (through averaging) may dilute the spatial heterogeneity of extreme 

rainfall. Given the higher spatial variability of extreme rainfall, re-gridding into lower 

resolution often significantly dampens localized maxima (Herold et al., 2017), especially 

frequency or intensity of extreme rainfall (Kursinski and Zeng, 2006), which may have 

implications for regional flood forecasting and preparedness. Here only wet day rainfall is 

considered for the analysis of extreme and PCI where a wet is defined as a day with rainfall 

1≥ mm (Chaudhary et al., 2017; Sushma et al., 2014). 

3.2 Extreme rainfall indices 

Study of extreme rainfall is carried out in two ways, either by fitting parametric extreme 

value distribution to assess rare events or by using non-parametric methods of calculating 

indices for extreme rainfall events, solely based on empirical data analysis. Here we used 

the non-parametric approach by calculating thirteen extreme rainfall indices (Table 3.1) to 

encompass a wider range of the extreme and annual rainfall climatology over India, based 

on absolute and percentile based rainfall thresholds, to evaluate gridded rainfall datasets. 

Out of these thirteen indices, ten indices are selected from ETCCDI (for more details see 

http://etccdi.pacificclimate.org/indices_def.shtml) and have been widely used for detection, 

attribution and climate change projection studies around the world (Cavalcante et al., 2020; 

Dash and Maity, 2019; Kim et al., 2020; Schoof and Robeson, 2016; Srivastava et al., 2020). 

The other three indices, Heavy rain (HR) Very heavy rain (VHR) and extremely heavy rain 

http://etccdi.pacificclimate.org/indices_def.shtml
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(EHR) are selected from the IMD rainfall intensity classes 

(http://img.indiaonline.in/weather/Weather-Glossary.pdf ) and have direct linkages to floods 

and in triggering flash floods, landslides over India. Extreme indices; characterizing 

different magnitude (RX1day, RX5day, PRCPTOT, SDII, R95tp and R99tp), frequency 

(R10mm, R20mm, R64.5mm and R244.5mm) and duration (CDD, CWD) of annual extreme 

rainfall over India are calculated over each grid-cell for each gridded datasets, resulting in 

one value per year.  

Table 3.1 Description of extreme rainfall indices used in this study. 

* Indices as per IMD rainfall intensity classification. 

3.3 Precipitation Concentration Index (PCI) 

PCI is a useful index for accounting the heterogeneity of precipitation amount on annual 

scale and defined as the ratio between the sum of monthly squared precipitation to the 

square of annual precipitation. In this study, the PCI, proposed by Oliver (1980) and 

Category Index Indicator Name Description Unit 

 

 

 

 

 

Magnitude 

 

PRCPTOT Annual total wet day 

rainfall amount 

Annual total rainfall in wet days (>1 

mm/day) 

mm 

SDII Simple Daily Intensity 

Index 

Annual total wet day rainfall divided 

by the number of wet days 

mm/day 

RX1day Maximum 1-day 

rainfall 

Annual 1-day maximum rainfall mm 

RX5day Maximum 5-day 

rainfall 

Annual 5-day maximum rainfall mm 

R95tp Very wet days Annual rainfall above long-term 95th 

percentile 

mm 

R99tp Extremely wet days Annual rainfall above long-term 99th 

percentile 

mm 

 

 

 

 

 

Frequency 

 

 

 

R10mm number of 10mm or 

more rainfall days 

Annual count of days when daily 

rainfall ≥10mm 

days 

R20mm number of 20mm or 

more rainfall days 

Annual count of days when daily 

rainfall ≥20mm 

days 

R64.4mm* Heavy Rain (HR) number of days with rainfall above 

64.4mm 

days 

R124.4mm* Very Heavy Rain(VHR) number of days with rainfall above 

124.4mm 

 

R244.4mm* Extremely Heavy Rain 

(EHR) 

number of days with rainfall above 

244.4mm 

days 

 

Duration 

 

 

CDD Maximum length of 

dry spell 

Maximum number of consecutive days 

with daily rainfall ≤1mm 

days 

CWD Maximum length of 

wet spell 

Maximum number of consecutive days 

with daily rainfall ≥1mm 

days 

http://img.indiaonline.in/weather/Weather-Glossary.pdf
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further modified by De Luis et al., (1997), is used for the calculation of the annual PCI 

(APCI), as indicated in the equation (1)  

     
∑   

   
   

(∑   
  
   )

                                                          Equation (1) 

Where    represent the monthly precipitation in ith month. In addition, to account the 

seasonal variability of precipitation, the seasonal PCI (SPCI) for winter (JF), summer 

(MAM), monsoon (JJAS), and post-monsoon (OND) seasons were calculated using the 

equation (2). 
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                                                            Equation (2) 

We used C values of 16.667 for winter (January-February), 25 for summer (March-May), 

33.333 for Monsoon (June – September) and 25 for post-monsoon (October - December) 

seasons respectively. Following Oliver (1980) and Zamani et al., (2018), PCI values are 

classified in different concentration classes to represent spatial heterogeneity of PCI 

qualitatively. PCI values less than 10 represent a uniform distribution of precipitation, 

values between 11 to 15 represents moderate precipitation distribution. PCI values from 16 

to 20 irregular distribution and PCI values above 20 represent strong irregularity of 

precipitation distribution. In this study, only the rainy days (rainfall ≥ 1mm) are considered 

for the calculation of annual and seasonal PCI over India (Sushma et al., 2014; Chaudhary 

et al., 2017). The coefficient of variation (CV) of PCI is studied on an annual and seasonal 

scale. The relationship between PCI and average annual/seasonal precipitation is explored 

using Pearson‘s correlation coefficient (CC). Besides, the heterogeneity in the spatial 

distribution of average APCI values over India is investigated by calculating CC between 

the average APCI and geographical factors such as latitude, longitude and altitude. 

3.4 Evaluation metrics for data inter-comparison 

We aim to assess the performance of the gridded rainfall products with the IMD gridded 

data, using some basic model evaluation criterion to infer whether these datasets can 

reasonably reproduce the extreme rainfall climatology over India or not. Therefore, five 

model performance indices i.e. correlation coefficient (CC), index of agreement (d), present-

BIAS (PBIAS), mean-absolute-error (MAE) and root-mean-square-error (RMSE)  which are 



30 
 

frequently being used in hydro-climatic research (Moriasi et al., 2007) are calculated for 

each grid-cell between 1986 and 2015.  

Willmott (1984) defined the index of agreement (d) as the ratio of the mean square error 

and the potential error (which is the maximum possible or potential error that can be found 

for any pair set of observations) multiplied by N (number of observations) and then 

subtracted from 1. It varies from 0 to 1; higher value 1 reveals high agreement of the model 

with observed, whereas 0 indicates no agreement. The index of agreement (d) is calculated 

as follows 

     
∑ (        )

  
   

∑ (|     ̅ | |     ̅ |)  
   

     Equation (3) 

MAE is an important error matric, used to quantify the average magnitude of error 

between observed data (IMD) and model data (other gridded datasets) and is calculated by 

summing the magnitude of errors by the total number of observation that is n.  

    
 

 
 ∑ |       |

 
                                              Equation (4) 

PBIAS is used to measure the average tendency of model datasets to be larger or smaller 

than their observed counterpart (IMD), expressed in percentages. Positive PBIAS means 

overestimation where negative PBIAS means underestimation of rainfall by other gridded 

rainfall datasets, with a desirable value of 0, signifying perfect match between IMD and 

other gridded datasets. 

       
∑ (        )
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                                            Equation (5) 

Where Roi is the ith observation from IMD gridded data, Rsi is the corresponding ith rainfall 

from other gridded datasets considered in the present study,  ̅  is the observed mean of 

IMD data and n is the number of observations. 

The CC ranges from -1 to 1 and the d ranges from 0 to 1. For both of these two 

dimensionless indices, a positive 1 means a perfect fit/agreement between observations 

(IMD) and other gridded datasets. Where, the error indices i.e. RMSE, PBIAS, and MAE 

have a desirable value of zero, representing a perfect match between observations (IMD) 

and other datasets. Here only the spatial distribution of PBIAS over India is presented. We 
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then computed the median value of all evaluation metrics for each rainfall indices over 

India to facilitate an easier comparison between datasets.  

The relative performance of the gridded datasets in representing one particular extreme 

index over India is also evaluated by computing a Relative Skill Score (RSC) for each 

rainfall datasets. For this, the error indices (Eq. 6 to 8) are first normalized as they have 

different units and a wider theoretical range. Considering this, the error indices are 

normalized as follows; 

        
(|             | |               |)

(|               | |                |)
    Equation (6) 

      
(                         )

(                           )
     Equation (7) 

       
(                           )

(                             )
    Equation (8) 

Normalization thus would yield a value between zero and one, where zero means relatively 

better performance and a value of one represents poor performance among the selected 

datasets, for a particular extreme rainfall index. The results of these normalized error 

indices (RMSE, PBIAS, and MAE) and dimensionless indices (CC and d) are presented 

using ‗portrait diagrams‘ (Gleckler et al., 2008). Portrait diagram is a two-dimensional plot 

used here used to represent of median values of evaluation indices for each extreme rainfall 

index (rows) and each dataset (columns). Different colours in portrait diagram represent 

relative magnitude of error indices and dimensionless indices in different dataset.  

Finally, a relative skill score (RSC) is developed (Eq. 9) for each selected extreme rainfall 

indices using the dimensionless indices (i.e. CC and d) and the normalized values of error 

indices. We acknowledge that different approaches may be taken to combine error indices, 

or to present them separately. This RSC is defined as 

             (         )  (       )  (        )           Equation (9) 

Where i stands for the number of evaluation indices incorporated to calculate RSC. A value 

closer to -1 means poor or unsatisfactory performance and a value closer to   (here 5) means 

very good performance. The range of RSC depends on the number of indices selected for 

calculating it. Here, five indices are used; therefore, the RSC has a range of -1 to 5. The 
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RSC values are further used to rank these eleven datasets where a dataset with the highest 

RSC given a rank of 1 and the one with the lowest RSC got a rank value of 11, considering a 

particular extreme rainfall index.  

Apart from this, the probability density functions (PDFs) of average extreme rainfall from 

eleven other datasets are compared to the PDF of IMD to explore how well these datasets 

resembles the average spatial distribution of different rainfall indices over India. For this, 

long-term average values of extreme rainfall indices from all the grid cells over India are 

considered. Here, the PDFs are estimated using a nonparametric smoothing technique, the 

Kernel Density Estimator (KDEs) to reduce the sampling error associated with the choice of 

distribution functions. A Gaussian kernel is used to develop KDEs (Teegavarapu et al., 

2013). Also, the temporal variations in average extreme rainfall values over India in 

different datasets are compared using line graph.   

3.5 Trend analysis of PCI and Extreme indices 

Further, inter-comparison between different gridded rainfall datasets is made for analyzing 

its ability to capture the temporal variations in extreme rainfall and PCI over each grid 

cell. We estimated the trends in extreme rainfall indices using non-parametric Mann-

Kendall (MK) test (Mann 1945; Kendall 1948), the widely used test to analyze trend 

(Kundu and Mondal 2019; Ji et al., 2019; Zhong et al 2017) Xu et al. (2005) commented that 

while analyzing the trend in hydro-climatic variables such as trends in long-term rainfall, 

MK-test performs better than parametric tests. MK test is a nonparametric test, checks the 

existence of any monotonically increasing/decreasing trend against the null hypothesis of 

no trend.  The Mann-Kendall test statistics S is calculated as 

   ∑  

   

   

∑    (     )

 

     

 

Where, xj and xi are the sequential data values at times j and i, respectively, j > i; n is the 

length of the time-series and: 

   (     )   {
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The value of S indicates the direction of the trend.  A positive S value indicates an 

increasing trend where the negative value indicates a decreasing trend. For independent 

and identically distributed random variables, when n ≥ 8, the S statistic is nearly normally 

distributed, where the mean is zero and the Variance(S) is calculated as: 

    ( )   
 (   )(    )

  
 

The standardized test statistics Z is computed as follows. 
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Positive or negative values of Z indicate increasing or decreasing trends, respectively. 

Computed Z statistic is tasted against a significant level α to check whether it is 

statistically significant or not. When, |Z| > Z(α/2) it signifies that the time series exhibit a 

significant trend. In this study, the significance level (α) of 0.05, corresponding to a  Z(α/2) 

value of 1.96 is used.  

The magnitude of trend (Q) of selected indices, over grid cells is calculated using the Theil-

Sen‘s slope estimator (Sen, 1968) for N pairs of observations, using the following equation: 

   
(     )

(   )
             

Where, xj and xk are data values at time j and k (j > k) respectively. Median of n values of    

is the estimated Sen‘s slope which is computed using the following equation 

     {

 (   )                  

 (   )   (   )  

 
                  

 

 A positive (negative) value of slope indicates an upward (downward) trend, i.e. increasing 

(decreasing) values with time. One of the advantages of the Theil-Sen estimator is that it is 

not prone to the influence of extreme values. When a time series contains extreme values, 

linear regression methods are prone to their influences, resulting in overestimation or 
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underestimation of slope values. In contrast, as the Theil-Sen‘s estimator takes the median 

of a slope between two points in a time series as the true slope, thus unaffected by outliers. 
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Chapter 4 

Characteristics of extreme rainfall in different gridded datasets over India 

 

In this chapter, the analysis of extreme rainfall is presented. For more detail descriptions 

about the datasets and methodology please see chapter 2 and 3. First, all the gridded 

datasets are compared with the IMD dataset to see how well these datasets can capture the 

magnitude, frequency and duration based extreme rainfall indices over India. 

Subsequently, the overall performance of each gridded product in capturing extreme 

rainfall is explored using evaluation metrics and portrait plot. Finally, the results of trend 

analysis are presented and the results are discussed following this section. 

4. Results 

4.1 Extreme rainfall magnitude 

PRCPTOT 

According to the IMD data, annual average rainfall in wet days (PRCPTOT) over India 

ranges from 8599.5 mm (NE India) to 156 mm (WI) between 1986 and 2015, and have a 

median value of 968.6 mm over India. The spatial distribution of average PRCPTOT over 

India in the PERSIANN-CDR, JRA-55 and NCEP2 datasets is less comparable to the IMD 

(Fig. 4.1) than other datasets. The PRCPTOT over NH region is mostly underestimated by 

all the datasets. However, the JRA-55, ERA-Interim and ERA5 reanalysis product better 

capture the spatial distribution of PRCPTOT over NH. Notably, only the ERA-5 reanalysis 

data reproduces the areas of PRCPTOT above 1600 mm in parts of EP and EC region 

compared to other datasets. The ERA5 data overestimated PRCPTOT over the 

southwestern parts of NH. Satellite-derived PERSIANN-CDR overestimates PRCPTOT 

over the rain shadow zones of the WG, lower GP (West Bengal) and northern parts of the 

EC region compared to the IMD dataset. Positive PBIAS in PRCPTOT is observed in GPCC, 

PERSIANN-CDR, CHIRPS, ERA-Interim, ERA-5 and PGF datasets over WI, GP and parts 

of NE India and it is highest in the JRA-55 reanalysis data (Fig. 4.2). While the selected 

gridded datasets overestimate rainfall over the rain shadow zones of the WG and SP, the 

JRA-55 data underestimated rainfall over these areas. Also, the JRA55 data highly 

overestimated PRCPTOT over most parts of WI and GP. All the gridded datasets show 
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some degree of over/underestimation of PRCPTOT over different areas of India, while the 

gauge-based APHRODITE data mostly underestimated PRCPTOT amount over India with 

a highest negative median PBIAS value of -14.64% followed by NCEP2 (-10.62%), MERRA2 

(-8.8%) and CPC (-8.1%). Highest positive PBIAS in PRCPTOT is noted for PERSIANN-

CDR (13.16%) followed by the JRA-55 (12.89%) where the lowest PBIAS is noted for 

CHIRPS (0.26%), GPCC (-1.25%) and ERA5 (2.4%) datasets. 

 

Fig. 4.1. Average annual rainfall in wet days (PRCPTOT) during 1986 – 2015. 

 



37 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2. Average PRCPTOT (mm) over India (a) during 1986 – 2015. Percentage BIAS in 

PRCPTOT in different gridded datasets (b-l) in comparison to IMD. The probability density 

function (m) estimated from annual average values over India and variation of PRCPTOT 

rainfall during the study period (n) are shown in the lower panel.  
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Fig. 4.3. Spatial distribution of average annual SDII during 1986 – 2015. 

SDII 

Average simple daily intensity index (SDII) over India varies from 48.56 mm/day to 6.79 

mm/day with an all India median value of 13.11 mm/day (Fig. 4.3). Satellite-derived 

CHIRPS and gauge based GPCC data show relatively better agreement with the IMD in 

estimating mean daily rainfall intensity (SDII) over India (Fig. 4.4). The gauge based 

APHRODITE underestimated SDII values over most parts of India, mainly over the WI, CI, 

GP and parts of NE India compared to CPC and GPCC. PERSIANN-CDR, ERA-Interim, 

MERRA2 and NCEP2 highly deviated from the IMD data in representing the SDII over 

WG, CI, and WI and over the orographic belts of Himalaya.  
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Fig. 4.4. Average SDII (mm) over India (a) during 1986 – 2015. Percentage BIAS in SDII in 

different gridded datasets (b-l) compared to IMD. The probability density function (m) 

estimated from annual average values over India and variation of SDII rainfall during the 

study period (n) are shown in the lower panel. 

Over most parts of India, the ERA-Interim estimated average SDII values are below 8 

mm/day where the PGF reanalysis estimated average SDII values are well above 14 

mm/day for most parts India. These two datasets highly deviated from the IMD data in 

representing the spatial distribution of SDII over India. The JRA-55 estimated SDII values 
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over GP and parts of central NE are well above the values that are obtained from the IMD. 

While all other gridded rainfall datasets mainly underestimating SDII values, the PGF 

reanalysis data show positive PBIAS over most parts of India with all India median PBIAS 

of 39.33% (Fig. 4.4). APHRODITE, ERA-Interim, MERRA2, NCEP2 and JRA-55 

underestimated SDII with corresponding median PBIAS of -37.25%, -42.76%, -36.12%, -

35.35% and -24.49% respectively. Lower PBIAS values are observed in the CHIRPS (-

11.69%) and GPCC (-14.16%) datasets. 

RX1day and RX5day 

Spatial distribution of average annual RX1day and RX5day rainfall amount in different 

datasets over India are shown in Fig. 4.5 and Fig. 4.6 respectively. The higher average 

RX1day and RX5day rainfall are concentrated over the orographic rainfall zones of 

Himalaya, NE India (Meghalaya Plateau), WG, parts of CI and EC regions. Most of the 

gridded datasets highly underrepresented the spatial pattern of RX1day and RX5day 

amounts, especially over EC and northern parts of the EC region, where the average 

RX1day and RX5day are above 100mm and 200mm respectively (Fig. 4.5 & Fig. 4.6). More 

specifically, the PERSIANN-CDR, ERA-Interim, MERRA2, NCEP2, PGF, JRA-55 

completely failed to replicate the spatial distribution average RX1day rainfall over India, 

especially over the high rainfall zones of WG, parts of CI and EP and over the orographic 

rainfall zones over India. Besides, the gauge-based APHRODITE dataset only able to 

represent the RX1day pattern over the WG, however the same data highly underestimated 

average RX1day rainfall over CI and EP and the orographic belts of Himalaya (Fig. 4.5). 

The spatial pattern of RX1day rainfall from other two gauge-based data, namely the CPC 

and GPCC are also not comparable to the IMD data except for some areas in the CI, EP and 

NE. Similar findings are noted for these datasets in the spatial distribution of average 

RX5day rainfall. Overall the performance of ERA5 reanalysis data is spatially comparable 

with the IMD data, compared to other datasets. Satellite estimated rainfall from CHIRPS 

better performed than PERSIANN-CDR especially over the high rainfall zones of WG (Fig. 

4.5 & Fig. 4.6).  

Notably, all of these datasets show dry bias (negative PBIAS) over the NH region for both 

RX1day and RX5day rainfall amount (Fig. 4.7 & Fig. 4.8). However, CPC, GPCC, CHIRPS, 

PERSIANN-CDR, ERA-5 and ERA-Interim exhibited wet bias (positive PBIAS) in some 
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parts of southern, western and southeastern parts of NH. However, the wet bias amount is 

higher for RX1day over these areas than the wet bias of RX5day rainfall.  

 

Fig. 4.5. Spatial distribution of average annual RX1day rainfall over India during 1986- 

2015. 
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Fig. 4.6 Spatial distribution of average annual RX5day rainfall over India during 1986- 

2015. 

In general, the selected datasets underestimated the RX1day and RX5day rainfall amount 

over most parts of India which can be seen in Fig. 4.7 and 4.8. Notably, the NCEP2 show 

the highest overestimation of RX1day and RX5day rainfall in the SP regions, similar to the 

overestimation of PRCPTOT over this area. Inter-comparison of PDF  (Fig. 4.7n & 4.8n) 

suggests that the ERA5 reanalysis data reasonably well reproduced the spatial pattern of 

average RX1day and RX5day rainfall amount over India. These PDFs are constructed using 

the average extreme rainfall amount from all grid cells over India to see how well the 

datasets can reproduce the occurrence of extreme rainfall over India. The same dataset also 

better captured the temporal variation in RX1day and RX5day rainfall over India (Fig. 4.7n 

& 4.8n). Higher overestimation of RX1day and RX5day over NH and NE parts of India is 
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observed in GPCC, CHIRPS, PERSIANN, ERA5, ERA-Interim and PGF datasets. Similar 

overestimation is observed in the JRA55 dataset over WI and GP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7 Average RX1day (mm) over India (a) during 1986 – 2015. Percentage BIAS in 

RX1day in different gridded datasets (b-l) compared to the IMD. The probability density 

function (m) estimated from annual average values over India and variation of RX1day 

rainfall during the study period (n) are shown in the lower panel. 
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Fig. 4.8 Average RX5day (mm) over India (a) during 1986 – 2015. Percentage BIAS in 

RX5day in different gridded datasets (b-l) compared to the IMD. The probability density 

function (m) estimated from annual average values over India and variation of RX5day 

rainfall during the study period (n) are shown in the lower panel. 

95th and 99th percentile rainfall 

In terms of the percentile-based threshold, the PGF, NCEP2, MERRA2. ERA-Interim and 

PERSIANN-CDR estimated rainfall thresholds are relatively lower (both for 95th and 99th 

percentile) over the NH and WG of India in comparison to the IMD data (Fig. 4.9 & Fig. 
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4.10). Similar underestimation of rainfall amount over most parts of NH is also noticed for 

other magnitude-based rainfall indices (i.e. PRCPTOT, SDII, RX1day and RX5day) mainly 

over the northern and north-eastern parts of NH region. Overall, the selected datasets 

underestimated 95th percentile rainfall amount in areas where the rainfall amount are very 

high, chiefly over the WG and NE (Meghalaya plateau). Except JRA 55 all other reanalysis 

datasets mostly underestimated the 95th and 99th percentile rainfall amount over the 

western sides of WG, while, in the satellite rainfall group the CHIRPS data better 

performed than PERSIANN-CDR over the same area. Among the gauge based datasets, the 

CPC and GPCC better reproduce the 95th and 99th percentile rainfall amount over India 

than the APHRODITE dataset (Fig. 4.9 & Fig. 4.10). However, the GPCC data found to 

overestimate 95th percentile rainfall amount over some areas of the EP. The PERSIANN-

CDR also overestimated 95th percentile rainfall threshold over the EP, GP, parts of CI and 

over the rain shadow zones of WG (Fig. 4.9). Among the reanalysis, a pattern of over and 

underestimation is noted for some datasets over certain areas. For example, the PGF 

dataset estimated 95th rainfall threshold over some parts of GP, EP and CI is between 

20mm – 30mm which is well above the IMD estimated thresholds. However, the same 

dataset underestimates 99th rainfall thresholds, especially in areas where the threshold is 

above 40mm/day. Estimated rainfall thresholds for 95th and 99th percentile rainfall from the 

JRA55 datasets over the GP are also higher than the IMD dataset. For both of these 

rainfall thresholds, an overall underestimation in the ERA-Interim, MERRA2 and NCEP2 

reanalysis datasets are observed over most parts of India. The ERA5 data better resembles 

with the IMD data. However, the dataset overestimated the rainfall threshold over parts of 

the NE and underestimates these rainfall thresholds over the western parts of the WG. 

Most of the datasets unable to represent the 99th percentile rainfall threshold over central 

India and EP, except the GPCC, CPC and ERA-5 dataset. Overall, the GPCC data closely 

approximates the spatial distribution of 95th and 99th rainfall amount better than the other 

gauge-based products (CPC and APHRODITE) while the ERA-5 and CHIRPS rainfall 

estimates are better than the other reanalysis and satellite-derived datasets, respectively. 

It should be noted that the NCEP2 estimated rainfall amounts are much higher for 99th 

percentile rainfall than 95th rainfall over the SP region.  
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Fig. 4.9. Spatial distribution of annual 95th percentile rainfall over India during 1986- 2015. 

Similar to 95th percentile threshold, PERSIANN-CDR and all other reanalysis (except 

JRA55) underestimated 99th percentile rainfall amount over the WG (Fig. 4.10). 

Underestimation of 99th rainfall threshold over the Meghalaya plateau is also observed in 

all of the datasets except GPCC and ERA5. However, the ERA5 data overestimated 99th 

rainfall amount over most parts of the GP, NE, EC and WG regions. 
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Fig. 4.10. Spatial distribution of annual 99th percentile rainfall over India during 1986- 

2015. 

R95tp and R99tp 

The datasets are compared based on their ability on capturing the rainfall amount falling 

above long term 95th and 99th percentile threshold, referred as R95tp and R99tp 

respectively (see methodology section for details). The spatial patterns of R95tp and R99tp 

in the IMD dataset are plotted in Fig. 4.11(a) and Fig. 4.12(a) and the respective PBIAS of 

other gridded datasets from the IMD are plotted in Fig. 4.11(b-l) and Fig. 4.12 (b-l). During 

the study period, the average R95tp over India varies between 155.1 mm in the WI dry 

regions and 4507.57 mm in the NE. Higher R95tp amount (>600 mm) is mainly 

concentrated over the NE, WG, parts of EP and GP (Fig. 4.11a). R99tp found to vary 
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between 90.72 mm in the WI dry regions and 1596.76 mm in the NE parts of India. Overall, 

the distribution of positive and negative PBIAS in 95tp and 99tp are similar to other 

extreme magnitude-based indices (i.e. RX1day, RX5day) over different regions of India. The 

analysis of PBIAS indicates that the percentage of dry bias is relatively higher for higher 

extreme indices (RX1day and R99tp) compared to relatively lower extreme indices (RX5day 

and R95tp). For example in areas where the dry bias are noted in APHRODITE, 

PERSIANN-CDR, ERA-Interim, NCEP2 MERRA2 and PGF is found to be higher for 

RX1day and R99tp than RX5day and R95tp. Opposite to that, the wet bias over parts of SP 

(in NCEP2), WG (PERSIANN-CDR) and over GP and WI (in JRA-55) is relatively lower for 

higher extreme indices (RX1day and R99tp) than relatively lower extreme indices (RX5day 

and R95tp). This emerging pattern of overestimation and underestimation of dry and wet 

bias of extreme rainfall indices can also be seen in the median PBIAS over India from Table 

4.1.  

Table 4.1 Median PBIAS in different gridded datasets (from the IMD) for magnitude based 

extreme indices. 

PBIAS R95tp R99tp RX5day RX1day 

APHRODITE -29.78 -35.91 -27.87 -37.71 

CPC -16.99 -22.22 -21.73 -23.19 

GPCC -8.08 -13.14 -13.18 -14.24 

CHIRPS -16.71 -31.33 -22.90 -35.18 

PERSIANN -12.14 -28.48 -18.07 -33.98 

ERA5 -17.07 -18.11 -9.17 -12.48 

ERA-Interim -57.49 -61.40 -36.93 -45.63 

MERRA2 -26.91 -35.35 -27.70 -38.37 

NCEP2 -34.15 -45.41 -33.26 -49.21 

PGF -11.60 -30.30 -14.37 -37.74 

JRA55 -18.55 -30.47 -18.97 -34.88 

The PDF plots suggest that the ERA-5, GPCC and CHIRPS better capture the spatial 

distribution of R95tp over India (Fig. 4.11m). APHRODITE, ERA-Interim and MERRA2 

underestimate R95tp and R99tp over most parts of India (Fig. 4.11 & Fig. 4.12). Consistent 
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negative PBIAS in these rainfall amounts are found over the NH for all of the datasets. The 

gridded datasets also underestimated the temporal variations of R95tp and R99tp over 

India, especially by the ERA-Interim, NCEP2, and JRA55 reanalysis products (Fig. 4.11n 

and Fig. 4.12n). Lowest median PBIAS over India for R95tp and R99tp is observed in the 

GPCC while for RX1day and RX5day ERA5 has the lowest median PBIAS (Table 4.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.11 Average R95tp (mm) over India (a) during 1986 – 2015. Percentage BIAS in R95tp 

in different gridded datasets (b-l) compared to the IMD. The probability density function 
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(m) estimated from annual average values over India and variation of R95tp rainfall during 

the study period (n) are shown in the lower panel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.12. Average R99tp (mm) over India (a) during 1986 – 2015. Percentage BIAS in 

R99tp in different gridded datasets (b-l) compared to the IMD. The probability density 

function (m) estimated from annual average values over India and variation of R99tp 

rainfall during the study period (n) are shown in the lower panel. 
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4.2 Frequency of extreme rainfall 

In this section, the gridded datasets are evaluated in terms of their ability in identifying 

frequency (occurrences) of extreme rainfall events based on rainfall thresholds of different 

magnitudes. As mentioned in the methodology section, in addition to the ETCCDI 

recommendations of frequency-based lower extreme indices (R10mm, R20mm), we also 

considered higher extremes indices i.e. heavy (>64.4mm/day), very heavy (>124.4mm/day) 

and extremely heavy (>244.4mm/day) rainfall days, as per the categorization of IMD (Table 

3.1). The last three indices are specifically important considering the spatial variation of 

extreme rainfall over India and their direct linkages in triggering natural hazards (i.e. 

floods, landslide) in different parts of India. The consideration of lower rainfall thresholds 

(R10mm and R20mm) can also enable us to better understand the distribution of rainfall 

biases with a particular gridded dataset.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.13. Spatial distribution of average R10mm (days/year) over India during 1986- 2015. 
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R10mm and R20mm  

Distribution of R10mm and R20mm closely follows the spatial distribution of PRCPTOT 

distribution over India where relatively larger number of R10mm (>50 days/year) and 

R20mm (>30 days/year) days can be found in areas (Fig. 4.13 & Fig. 4.14) where the 

average PRCPTOT is above 1200mm, mainly over the orographic belts of WG, NH, NE and 

in parts of EP. Over most parts of India, the average R10mm and R20mm are below 40 

days and 20 days respectively (Fig. 4.13 & Fig. 4.14). Comparatively, in the foothills of the 

Himalayas and some parts over the EP, EC and lower GP, average R10mm and R20mm are 

between 40 – 60 days and 25 – 35 days respectively. Over the WG and NE India, average 

R10mm and R20mm rainfall days are mostly above 60 and 35 days, respectively.  

It can be seen that the CHIRPS, PERSIANN-CDR, ERA-Interim, PGF and JRA-55 dataset 

overestimated the R10mm days over a vast area in the GP and EP when compared to the 

IMD (Fig. 4.15). However, this overestimation is higher (above 60%) in the PERSIANN-

CDR, ERA-Interim and JRA-55 dataset (Fig. 4.15) over these areas. Satellite derived 

PERSIANN-CDR and the NCEP2 reanalysis are unable to replicate spatial distribution of 

R10mm and R20mm over the WG and SP (Fig. 4.15 & Fig. 4.16). The ERA-Interim 

reanalysis exhibited negative PBIAS (-20% to -60%) for R10mm over SP and WI and it was 

much higher (above -60%) for R20mm in the same areas. Notably, the spatial distribution of 

R20mm in ERA-Interim highly deviated from the IMD data and it has performed worst 

compared to other datasets with the highest median PBIAS of -61.3%. Although the 

APHRODITE and CPC are gauge based dataset, they are less comparable to the IMD 

especially over the WI and SP and also failed to capture the spatial and temporal variation 

of R10mm & R20mm rainfall over India (Fig. 4.15m,n & Fig. 4.16m,n). However, the 

APHRODITE, ERA5 and JRA-55 better performed in the western sides of WG in 

replicating R10mm and R20mm days. CHIRPS, PERSIANN-CDR and PGF data 

overestimate R10mm days over most parts of India except some areas located in the WI, 

NH and NE. Higher concentration of positive PBIAS (above 50%) are noted in PERSIANN-

CDR (in SP), JRA-55 (WI, GP and NE), ERA-Interim (GP and NE) and NCEP2 (SP).  

Except for APHRODITE, CPC and MERRA2, all the datasets have positive median PBIAS 

in R10mm over India (Table 4.2). Conversely, except the PGF and PERSIANN-CDR, all 

other datasets exhibited negative PBIAS over India, implying that a general tendency of 
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underestimating high rainfall events is a salient feature of these datasets, especially with 

an increasing rainfall threshold. Overall the GPCC and MERRA2 relatively better capture 

the temporal variation of R10mm days where the performance of GPCC and CHIRPS for 

R20mm days is comparable with the IMD as evident from the better resemblances of PDFs 

(Fig. 4.16m). Beside, similar to the magnitude based indices, the datasets exhibited dry bias 

in replicating R10mm and R20mm rainfall days over most parts of NH. 

Table 4.2 Median PBIAS of gridded datasets from IMD data for selected frequency and 

duration based indices over India. 

PBIAS R10mm R20mm CDD CWD 

APHRODITE -10.44 -35.58 -11.65 70.53 

CPC -6.02 -16.45 -15.89 14.38 

GPCC 1.20 -3.22 -7.56 16.25 

CHIRPS 20.33 0.00 -21.29 9.50 

PERSIANN 30.05 10.99 -25.32 55.13 

ERA5 6.07 -22.04 -18.55 121.98 

ERA-interim 0.42 -61.35 -86.03 195.47 

MERRA2 -3.18 -28.07 -14.97 79.53 

NCEP2 2.33 -37.24 -14.69 109.98 

PGF 24.73 34.08 7.47 -29.35 

JRA 30.05 -1.23 -21.93 107.09 
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Fig. 4.14 Spatial distribution of average R20mm (days/year) over India during 1986- 2015. 
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Fig. 4.15 Average R10mm (days) over India (a) during 1986 – 2015. Percentage BIAS in 

R10mm in different gridded datasets (b-l) compared to the IMD. The probability density 

function (m) estimated from annual average values over India and variation of R10mm 

rainfall during the study period (n) are shown in the lower panel. 
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Fig. 4.16 Average R20mm (days) over India (a) during 1986 – 2015. Percentage BIAS in 

R20mm in different gridded datasets (b-l) compared to the IMD. The probability density 

function (m) estimated from annual average values over India and variation of R20mm 

rainfall during the study period (n) are shown in the lower panel. 



57 
 

4.3 Heavy, Very heavy and extremely heavy rainfall days 

Frequency of Heavy (>64.4 mm/day), very heavy (>124.4 mm/day) and extremely heavy 

(>244.4 mm/day) rainfall days during the study period (1986 – 2015) are shown in Fig. 4.17, 

Fig. 4.18 and Fig. 4.19 respectively. Occurrences of heavy rainfall (HR) and very heavy 

rainfall (VHR) events over India are mainly concentrated in the foothills of the Himalayas, 

western side of WG, EC, and over parts of the CI and EP region (Fig. 4.17 & Fig. 4.18). 

Strong orographic control is found to exist in the occurrences of extreme rainfall events over 

India. Moreover, Heavy and very Heavy rainfall events are less frequent over WI, SP and 

NH region, resulting in a lower annual rainfall amount in these areas. The selected gridded 

rainfall datasets mainly underestimate the heavy and very heavy rainfall days over India. 

In gauge-based datasets, the APHRODITE poorly performed in capturing the heavy rainfall 

days over India and has all India median PBIAS of -74.6%. In the satellite-based data, the 

PERSIANN-CDR better capture the heavy rainfall days over WI, CI, and GP but failed to 

capture the heavy rainfall in the orographic belts of the WG and NH. In contrast, the 

CHIRPS better capture heavy rainfall over orographic zones and even overestimate rainy 

days over these areas. Reanalysis datasets, MERRA2, NCEP2 PGF and JRA-55 highly 

underestimated heavy and very heavy rainfall over NH. The ERA-Interim data failed to 

capture heavy and very heavy rainfall days over WG and SP. The ERA-5 data better 

represent HR rainfall days and have relatively low median PBIAS (-37.9%) over India when 

compared to other satellite-reanalysis datasets. The GPCC outperformed other gridded 

datasets with a median PBIAS value of -28.6% over India. 

Extremely heavy rainfall (EHR) events (>244.5mm) are very rare over India but have 

relatively greater impacts in damaging infrastructure and crops. ERA-Interim, MERRA2 

and JRA-55 reanalysis and the PERSIANN-CDR satellite data completely failed to identify 

EHR events over India (Fig. 4.19). Only the ERA-5 reanalysis data could partially identify 

some EHR days over WI, CI and EP. However, the same data is unable to capture the EHR 

days over WG region. In contrast, NCEP2 data overestimate EHR events over the WG and 

SP regions, which is a prominent feature of this dataset over this area. Similar 

overestimation is also found in the CHIRPS data over the WG region. 
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Fig. 4.17 Total number of heavy rainfall days occurred between 1986 and 2015. 
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Fig. 4.18 Total number of Very heavy rainfall days occurred between 1986 and 2015. 
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Fig. 4.19 Spatial distribution of extremely heavy rainfall (HER) days over India during 

1986- 2015. 

4.4 Duration based extreme Indices 

Higher number of CDD (>160days) are found over the arid and semi-arid areas of WI, and 

lower CDD (<40 days) are observed over the NE and NH parts of India (Fig. 4.20). Lower 

CDD in the NH is due to the intermittent rainfall-snowfall occurrences, once in fortnight, 

during monsoon-winter continuum, influenced by the monsoon and western disturbances. 

Compared to the IMD dataset, the PGF reanalysis shows a relatively large number of CDD 

(>200 days) over the WI. Notably, the ERA-Interim underestimated CDD days with too 

many wet days, resulting in frequent breaks in CDD and have a median PBIAS of -86.03% 

over India (Fig. 4.22m). Gauge-based GPCC and the PGF reanalysis data better capture the 

spatial as well as temporal variation in CDD over India (Fig. 4.22m&n) and have a median 
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PBIAS value of -7.56% and 7.47% respectively. CHIRPS show good agreement with the 

reference (IMD) dataset in representing CDD over the WI. Spatial distribution of 

positive/negative PBIAS is similar in gauge-based (APHRODITE, CPC and GPCC), satellite 

(CHIRPS) and reanalysis (MERRA2 and PGF) datasets over the NH. Other satellite 

(PERSIANN-CDR) and reanalysis (ERA-5, ERA-Interim, NCEP2 and JRA-55) datasets 

mainly underestimated CDD over the same region (NH). Overall, the analyzed gridded 

products underestimate CDD over most parts of India, except the PGF data. 

In contrast to CDD, higher CWD is found over the higher rainfall receiving zones (the WG 

and NE parts) and lower CWD values are observed over the dry-regions of WI surrounding 

the TD (Fig. 4.21). Satellite-derived PERSIANN-CDR, CHIRPS; and reanalysis based 

NCEP2 and PGF rainfall datasets are inadequate in capturing the CWD (>45 days) over 

the WG (Fig. 4.21) and mainly underestimated the CWD over this region (Fig. 4.21). 

Negative PBIAS over the NH is observed for the gauge-based (APHRODITE, CPC and 

GPCC), satellite (CHIRPS) and reanalysis (MERRA2 and PGF) datasets. Except for the 

PGF (with a median bias of -29.3%), all other rainfall datasets overestimated CWD over 

India. Overall, satellite-derived CHIRPS and gauge-based CPC and GPCC data are in 

higher agreement with the IMD data in capturing temporal variations (Fig.4.23n) of CWD 

over India. Estimated PDFs from these three datasets (CHIRPS, CPC and GPCC) are also 

close to the PDF of IMD. However, these datasets overestimated CWD over India with 

corresponding median bias of 9.5%, 14.37% and 16.2% respectively.    
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Fig. 4.20. Spatial distribution of average annual consecutive dry days (CDDs) over India 

during 1986- 2015. 
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Fig. 4.21 Spatial distribution of average annual consecutive wet days (CWDs) over India 

during 1986- 2015. 
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Fig. 4.22. Average CDD (days) over India (a) during 1986 – 2015. Percentage BIAS in CDD 

in different gridded datasets (b-l) from IMD. The probability density function (m) estimated 

from annual average values over India and variation of CDD rainfall during the study 

period (n) are shown in the lower panel. 
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Fig. 4.23. Average CWD (mm) over India (a) during 1986 – 2015. Percentage BIAS in CWD 

in different gridded datasets (b-l) from IMD. The probability density function (m) estimated 

from annual average values over India and variation of CWD rainfall during the study 

period (n) are shown in the lower panel. 
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4.5 Comparison based on different evaluation metrics 

As evident from previous results obtained in this study, the performance of these datasets 

in representing the spatial distribution of average annual extreme rainfall differs widely 

over India. Relative performance of the gridded datasets in reproducing the spatial 

distribution of extreme indices over India is compared using the Taylor diagram (Fig. 4.24). 

Although APHRODITE showed the highest correlation (above 0.75) with the IMD data in 

representing the spatial occurrences of magnitude based extreme rainfall indices over India 

(Fig. 4.24a-f), it is unable to capture the spatial variations of extreme rainfall as evident 

from relatively lower standard deviation (SD) compared to the IMD datasets. On the other 

hand, the GPCC CHIRPS and ERA5 better captured the spatial variation and closely match 

with the SD of the IMD dataset. NCEP2 data show the lowest correlation and higher RMSE 

in all of the six magnitude-based extreme indices and have the worst performance followed 

by the ERA-Interim dataset. In addition, the GPCC data also showed good performance for 

R10mm and R20mm rainfall days (Fig. 4.24g-h). Besides, ERA-5 better matches the SD of 

IMD in representing heavy rainfall (HR) days over India but has a larger RMSE as it 

overestimates the HR amount. 

GPCC and CPC better captured the spatial distribution of CWD over India with CC of 0.8 

and 0.6 respectively (Fig. 4.24l). The SD of GPCC (8.6 days) and CPC (7.3 days) nearer to 

the SD of IMD dataset of 9.4 days for CWD. However, ERA-Interim and PGF derived CDD 

distributions over India poorly match with the IMD results (Fig. 4.24k). The CPC and the 

PERSIANN-CDR performed worst among the gauge-based and satellite rainfall group, 

respectively. Except for CPC, ERA-Interim and PGF, all other datasets have a higher 

spatial correlation (above 0.8) with the IMD in representing CWD over India. Interestingly, 

the ERA-5 reanalysis data better approximates the spatial variability than the gauge-based 

APHRODITE and GPCC data with an SD of 27.8 compared to the IMD derived SD of 29.1 

for CDD over India (Fig. 4.24k). 
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Fig. 4.24. Relative performance of individual datasets in capturing different characteristics 

of extreme indices over India. 
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Finally, the normalized values of different evaluation indices (described in the methodology 

section) are used to compare the datasets while assessing their suitability in representing 

different rainfall indices over India. The results are presented using ‗Portrait diagrams‘ 

(Fig. 4.25). The gauge-based datasets have relatively lower normalized error values 

whereas it is relatively higher for the reanalysis dataset. The ERA-Interim and NCEP2 

data show higher error in representing extreme rainfall characteristics over India. Gauge 

based GPCC exhibited the lowest PBIAS for R95tp, R99tp and HR while the PBIAS in 

PRCPTOT, SDII, R20mm and CWD is lowest in the CHIRPS datasets. The ERA-5 

reanalysis better captures annual one day and five-day maximum rainfall. Besides, lowest 

median normalized RMSE and MAE are found in the gauge-based APHRODITE and GPCC 

datasets. The correlation coefficient (CC) and index-of-agreement (d) shows a similar 

pattern of agreement between IMD and other gridded products. 

It is evident from the portrait plot (Fig. 4.25 a-e) that the datasets do not perform 

consistently well for all the extreme indices over India and also the relative performance of 

these gridded products vary with the choice of extreme indices. Therefore, a relative skill 

score (RSC) is obtained by combining the evaluation metrics (see methodology section for 

details) for the datasets in representing a particular category of rainfall index over India 

(Fig. 4.25f). The GPCC data obtained the highest score in representing eight out of eleven 

(excluding the HRE) extreme indices over India (see Table 4.3 for corresponding rank). The 

APHRODITE data shows the highest score for R99tp, R10mm and CDD. In the satellite 

rainfall group, CHIRPS performed well in capturing frequency and duration based indices 

over India while PERSIANN-CDR data has comparatively better efficiency in representing 

the magnitude of extreme rainfall over India, except for PRCPTOT and SDII which is better 

captured by the CHIRPS. In the reanalysis group, ERA-5 and MERRA2 performed better 

than other rainfall datasets. Overall, the NCEP2 and ERA-Interim show the worst 

performance among the selected gridded datasets in agreeing with the IMD data. Since the 

rainfall distribution and seasonal concentration varies significantly over India, the results 

of RSC can be impacted. 
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Fig. 4.25 Portrait diagram showing the normalized values of median PBIAS (a), RMSE (b), 

MAE (c); all India median correlation-coefficient (d), index-of-agreement (e) and relative 

skill score (f) of different gridded products over India.   
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Table 4.3 Ranking of gridded datasets in capturing extreme rainfall over India. 

 

4.6 Comparison based on trends in extreme rainfall 

Trend in extreme rainfall indices (using MK test) and its magnitude (using Sen‘s slope) are 

estimated to compare the gridded datasets with the IMD at 5% significant level over India. 

Trend in PRCPTOT and SDII 

Spatial patterns of increasing and decreasing trends of PRCPTOT and SDII are similar in 

the IMD dataset over India (Fig. 4.26 & Fig. 4.27). Significantly increasing trend at 5% 

level (hereafter only significant trend) in PRCPTOT are observed over WI, WG, SP and 

parts of EP covering 6.6% of area where SDII is significantly decreasing mostly over west 

central parts  and eastern parts of India. Upward trend in PRCPTOT are also observed 

mostly over these regions covering 39.4% of total geographical area. Decreasing trends in 

PRCPTOT are observed over NE, NH, GP and some parts of SP region covering 41.64% of 

which 11.98% of area show significant downward trend. However, the selected datasets 

failed to capture the significant negative trends over the western parts of NH which is 

evident in the IMD dataset. Higher overestimation (underestimation) of significant trend 

areas is observed for the NCEP2 and JRA-55 (PGF) datasets. Almost all of the selected 

datasets showed significant increasing trend over the western parts of India, however, the 

magnitude of trend varies across datasets. PERSIANN-CDR overestimated significant 

Datasets PRCPTOT SDII RX5day RX1day R95tp R99tp HR VHR R10mm R20mm CWD CDD 

APHRODITE 3 7 2 2 3 1 4 5 1 6 5 1 

CPC 6 4 5 3 4 3 3 1 3 3 2 5 

GPCC 1 1 1 1 1 2 1 2 2 1 1 2 

CHIRPS 2 2 6 8 5 7 8 9 8 2 3 9 

PERSIANN 9 3 3 5 2 4 6 7 10 4 6 10 

ERA5 4 6 4 4 6 5 2 3 5 5 9 4 

ERA-Interim 8 10 10 10 11 11 10 4 6 11 11 11 

MERRA2 7 8 9 7 8 6 5 6 4 7 7 3 

NCEP2 10 9 11 11 10 10 11 11 7 9 10 6 

PGF 5 11 7 9 7 9 9 10 9 10 4 7 

JRA-55 11 5 8 6 9 8 7 8 11 8 8 8 
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negative trend areas over GP, NE and WG and SP and positive trend areas in the WI. 

Among the gauge based datasets the CPC performed worse than APHRODITE and GPCC,  

by highly over estimating trend magnitude and significant trend zones in PRCPTOT and 

SDII over southern parts of NH, GP, NE, EP and WI. The MERRA2 and CPC exhibited 

similar pattern of trend and areas of significant trend over India (Fig. 4.26). The estimated 

significant trend zones from the ERA-Interim NCEP2 and JRA-55 largely deviate from the 

IMD (Fig. 4.26). Overestimation of significant positive trend in the WI and SP is not in 

agreement with the IMD.  

 

Fig. 4.26. Trend in PRCPTOT during 1986 – 2015 over India. Black-dots showing grid-cells 

with significant trend at 5% level. 
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Fig. 4.27 Trend in SDII rainfall during 1986 – 2015 over India. Black-dots showing grid-

cells with significant trend at 5% level. 

The PERSIANN-CDR show significant increase in SDII over WG, SP, NH, GP and parts of 

NE. Similar to PRCPTOT, the NCEP2 indicates significant increase in SDII over CI and 

parts of EP and significant decrease in SDII over SP. Significant increase in SDII over the 

WI is also observed in the CPC, GPCC, CHIRPS, ERA5, MERRA2 and PGF datasets, 

similar to the IMD dataset. 
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Trend in RX1day and RX5day 

RX1day and RX5day rainfall has significantly increased in parts of WI, EP, NE and south-

eastern Parts of NH during the study period, covering 4.9 % area and 3.4% area 

respectively. Significant decreasing trend, covering 7.1% (RX1day) and 10.4% (RX5day) of 

India are prominent over NH, GP, NE and parts of SP (Fig. 4.28 & Fig. 4.29). The ERA-5 

reanalysis and gauge-based GPCC data better resemble the significant trend areas in 

comparison to the IMD dataset. The PERSIANN-CDR and NCEP2 data noticeably 

overestimated significant areas of positive and negative trend over India, respectively. 

Fig. 4.28 Trend in RX1day rainfall during 1986 – 2015 over India. Black-dots showing grid-

cells with significant trend at 5% level.   
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Fig. 4.29 Trend in RX5day rainfall during 1986 – 2015 over India. Black-dots showing grid-

cells with significant trend at 5% level.   
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Fig. 4.30 The trend in R95tp during 1986 – 2015 over India. Black-dots showing grid-cells 

with a significant trend at the 5% level.   

Trend in R95tp and R99tp 

The pattern of over/underestimation of trend is also similar both in R95tp (Fig. 4.30) and 

PRCPTOT (Fig. 4.31), indicating that the changes in total precipitation are mostly 

contributed as increase/decrease in extreme rainfall (R95tp). ERA5 data was found to better 

reproduce the trend pattern in R95tp over India, except over SP and GP, compared to other 

datasets. The CHIRPS estimated trend in R99tp closely resembles the spatial pattern as 

derived from the IMD with ERA5 being the next best performing data set. PERSIANN-CDR 

underestimated trend magnitude in R95tp and R99tp over orographic belts of WG and 
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Himalaya (Fig. 4.30 & Fig. 4.31). NCEP2 failed to reproduce the spatial pattern of R95tp 

and R99tp over CI and SP, with consistent over and underestimation of increasing and 

decreasing trends of extreme rainfall over these regions, respectively. 

 

Fig. 4.31 Trend in R99tp rainfall during 1986 – 2015 over India. Black-dots showing grid-

cells with significant trend at 5% level. 
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Trend in CDD and CWD 

 

Fig. 4.32. Trend in CWD during 1986 – 2015 over India. Black-dots showing grid-cells with 

significant trend at 5% level. 

CWD has not changed significantly over most parts of India in the IMD datasets, The grids 

of significant trend are mostly dispersed over India, while it is mostly grouped in other 

gridded datasets (Fig. 4.32). Significant negative trend in CWD is mostly observed over the 

eastern parts of NH, NE and parts of EP and GP. A decreasing trend in CWD is found in 

the WG and foothills of Himalaya. The gauge-based APHRODITE performed more poorly 

than CPC and GPCC. Satellite-derived CHIRPS and PERSIANN-CDR overestimated 

significant positive trend areas over southern India. The higher mismatch is observed over 

NE, EP, and WI for ERA-Interim, APHRODITE, PERSIANN-CDR and NCEP2 datasets. 
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Trends of CWD estimated from the ERA-5 reanalysis better resembles IMD than other 

reanalysis products. The gauge based datasets better captured the trend pattern in CDD 

compared to other gridded datasets (Fig. 4.33). The APHRODITE better matches with IMD 

in representing CDD trends, except for the NH region. The JRA-55 highly overestimated 

trend magnitude of CDD in the SP region with a value of 2 days/year. APHRODITE, CPC 

and GPCC data showed a decreasing trend over NH and foot-hills of Himalaya which is in 

contrast to the IMD. 

 

Fig. 4.33. Trend in CDD during 1986 – 2015 over India. Black-dots showing grid-cells with 

significant trend at 5% level. 
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Fig 4.34. Trend in R10mm rainfall during 1986 – 2015 over India. Black-dots showing grid-

cells with significant trend at 5% level.  

Trend in R10mm and R20mm 

Significant decreasing trends in R10mm (Fig. 4.34) and R20mm (Fig. 4.35) rainfall days are 

observed mostly over NH, GP and NE India whereas increasing trends are found over the 

WG region of India. ERA-5 better captures the decreasing trend areas over NH and NE, 

however, slightly overestimated areas of significant increasing trend that are observed over 

EP and WI. In contrast, CPC, MERRA2, NCEP2 exhibited opposite trend pattern to the 

IMD in the foothills of Himalaya, NE and GP. Besides, the estimated magnitude of negative 

trend over these regions is also higher in JRA-55 (R10mm) and PERSIANN-CDR (R20mm) 

datasets. NCEP2 showed positive trends in R10mm and R20mm over CI, EP and SP which 
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is contrast to the negative trend found in IMD data. JRA-55 (NCEP2) data highly 

overestimated negative (positive) trend areas R10mm rainfall days over India.  

 

Fig. 4.35. Trend in R20mm rainfall during 1986 – 2015 over India. Black-dots showing grid-

cells with significant trend at 5% level. 

The gridded datasets largely deviated in estimating trends in extreme rainfall amount and 

rainfall days, especially areas of significant increase or decrease in reference to the IMD 

dataset. Higher inconsistency is noted for the PERSIANN-CDR, NCEP2, and JRA-55 

datasets. Besides, the gauge-based CPC and MERRA2 reanalysis data exhibited similar 

pattern of trend magnitude and significant trend zones over various parts of India. 
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4.7 Discussion 

From the above analysis, it is evident that the relative performance of gridded rainfall 

datasets varies over India and with the choice of extreme rainfall indices. Relative 

performance of the selected gridded rainfall datasets varied markedly in capturing extreme 

rainfall characteristics over India. Overall, the selected datasets underestimated the 

magnitude of extreme rainfall (RX1day, RX5day, R95tp and R99tp) over India.  Among the 

gauge-based gridded datasets GPCC shows the best agreement with the IMD dataset ahead 

of APHRODITE and CPC. This is because of the differences in gauge-records used in these 

datasets during construction: GPCC has a higher station density and a homogenous spatial 

coverage over India (especially in CI and EP region) compared to APHRODITE and CPC 

(Rana et al., 2015; Schneider et al., 2014). Therefore, GPCC obtained the highest-ranking 

score for most of the extreme indices and also better preserve the spatial variation rainfall 

extreme over India. Another source of uncertainty may be due to the differences in 

interpolation techniques used to construct these datasets. The Sheremap interpolation 

technique used by GPCC and APHRODITE is found to more robust over complex terrain 

than the optimal interpolation technique used in CPC (Ahmed et al., 2019; Salman et al., 

2019). However, the gauge based datasets failed to capture extreme rainfall dynamics over 

orographic belts, mainly in the eastern parts of the NH. This is mainly due to the mere 

absence of gauge records in these gridded datasets in this region during construction (Pai et 

al., 2014). 

Among the satellite rainfall datasets, CHIRPS performs better than PERSIANN-CDR in 

reproducing extreme rainfall behaviour over India. Similar finding for CHIRPS is also 

reported by Gupta et al., (2019) in reproducing extreme rainfall over India. Inadequate 

representation of extreme rainfall over the WG and foothills of Himalaya is another 

limitation of satellite-derived rainfall as the remotely-sensed precipitation measurements 

failed to detect orographic rainfall resulting from atmosphere-mountain interactions (Gupta 

et al., 2019). Additionally, the decrease in reflective sensitivity of satellite estimates over 

rugged terrain can also contribute to this bias. PERSIANN-CDR uses Infrared (IR) 

measurements of cloud top temperature and its relationship with precipitation rates for 

providing daily precipitation estimates. To avoid large unrealistic estimates of 

precipitation, maximum estimates are capped in PERSIANN-CDR system by setting an 

arbitrary limit which can explain underestimation in extreme precipitation. Another 
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constrain is that the training of artificial neural network relies solely on the IR 

measurement and a high-resolution data which is limited over the continental United 

States only. On the other hand, the CHIRPS precipitation estimates are derived by 

subsuming data from multiple sources (gauge-based, IR measurements, T3B42 and CFS2). 

Besides, the CHIRPS uses gauge-based GPCC data for calibration, while, the PERSIANN-

CDR estimates are calibrated using the GPCP satellite-derived precipitation product. 

However, these two datasets are inadequate in representing the spatial pattern of extreme 

rainfall trends over India. The PERSIANN-CDR and CHIRPS are mainly developed to 

provide temporally homogeneous precipitation records rather than best instantaneous 

estimates of precipitation rates. 

The reanalysis datasets showed the largest discrepancies among other precipitation 

products when compared with the IMD dataset. NCEP2 showed very high positive PBIAS 

over the SP region which is in line with the findings of Ghodichore et al (2018). Systematic 

positive PBIAS in representing extreme rainfall by NCEP2 is reported in previous data 

comparison studies (Huang et al. 2016; Chen et al. 2019). Overestimation of extreme 

rainfall over the GP in JRA-55 may be due to the spin-down problem which simulates 

excessive precipitation at the start at the forecast (Kobayashi et al., 2015). Overestimation 

(underestimation) of CWD (CDD) is highest in ERA-Interim datasets and may be due to the 

presence of too many wet days with little rainfall (Belo‐Pereira et al 2011; Zhu 2017). The 

PGF reanalysis highly overestimated SDII, CWD and underestimated CDD over India 

which may be due to the presence of too little wet days in the dataset. Subdued monsoon 

season precipitation over India in ERA-Interim is also reported by Kim et al. (2019). The 

ERA-Interim data highly underestimates the R20mm rainfall days over India. Kim et al. 

(2019) also reported similar findings over the same region where the ERA-Interim 

estimated rainfall days above 30mm/day is near zero over most parts of India. Performance 

of MERRA-2 is comparatively better than the ERA-Interim, NCEP2 and JRA-55 reanalysis, 

especially in capturing heavy rainfall amount and frequency of R10mm and CDD days over 

India. Mahato and Mishra et al. 2019 also find similar results while analyzing extreme 

monsoon season precipitation over in India. An improved precipitation correction algorithm 

and incorporation of merged gauge-satellite data may be the reason for that (Reichle et al. 

2017). Being the fifth generation reanalysis product, the ERA-5 shows improvements with 

the sophisticated data assimilation methods and has benefited from improvements in model 
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physics and core development of forecast models (Nogueira, 2020). As discussed above, the 

difference in grid-resolution also reduces the performance of reanalysis datasets in 

reproducing extreme rainfall. However, the dataset failed to capture CDD and CWD over 

India. 

Grid-resolution of the gridded datasets has a substantial effect in representing extreme 

rainfall. Plotting of the overall scores of datasets against their base resolutions (Fig. 4.36) 

reveal that high-resolution datasets performed better than relatively lower resolution 

datasets. The effects of resolution-dependent are more prominent among the reanalysis 

datasets. Degradation of relative skill score in representing higher extremes (RX1day, 99tp 

and R20mm) is higher than lower extremes (RX5day, 95tp and R10mm). Choice of higher 

threshold i.e. 99tp and R20mm reveals greater dependence on grid-resolution as they lie on 

the higher end of the PDF therefore difficult to capture by relatively low-resolution 

datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.36 Overall score of each rainfall datasets over India vs. grid-resolution of the gridded 

datasets in selected extreme rainfall indices. 
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4.8 Conclusion 

 

Understanding extreme precipitation characteristics is crucial as they can have great 

societal impacts especially under recent warming. Gridded rainfall datasets for studying 

extreme rainfall are quite an attractive choice as they provide daily precipitation estimates 

at a high spatial resolution over most parts of the globe. However, their performance must 

first be assessed before use in hydro-climatological studies. In this study, we assessed the 

performance of eleven daily gridded rainfall datasets in terms of their suitability for 

characterizing extreme rainfall and its trends over India. The gauge based GPCC better 

captures extreme rainfall over India than the other datasets. In the satellite-reanalysis 

group, CHIRPS and ERA-5 outperformed other datasets. Duration based indices are better 

captured by the gauge-based datasets than the satellite and reanalysis datasets. Spatial-

resolution may have some effects while representing spatial occurrences of extreme rainfall 

over India. We found that reanalysis datasets are more resolution sensitive, as the higher 

resolution gridded datasets (i.e.ERA5) better captured the extreme characteristics than 

low-resolution reanalysis datasets (ERA-Interim and NCEP2). However, the gridded 

datasets failed miserably in capturing trends in different rainfall indices over India. Given 

the recent warming of the atmosphere and increasing frequency and magnitude of extreme 

precipitation observed in parts of the world, it is important to accurately monitor these 

events as they have great societal impact. Moreover, some of the gridded datasets used in 

this study are often used to validate global and regional climate models for climate change 

impact assessment studies and the underestimation of extreme rainfall which is inherent in 

these datasets may introduce larger uncertainties in climate change studies, especially 

those with an emphasis on extreme precipitation. Therefore, we argue that assessment of 

the relative performance of gridded datasets over the region of interest is a prerequisite 

before conducting any research on changing extreme rainfall characteristics in a warming 

world. This study also provides some useful insights into the performance of gridded 

rainfall products over India.    
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Chapter 5 

Evaluation of gridded precipitation datasets for characterizing 

precipitation concentration index (PCI) over India. 

 

In this chapter, the analysis of PCI is presented. First, the annual and seasonal distribution 

of PCI over India is studied based on the IMD gridded dataset. Then the role of 

geographical factors (i.e. latitude, longitude and elevation) in the spatial distribution of PCI 

over India is explored. Following that the gridded data comparisons results are presented 

and discussed.  

5.1. Spatial pattern of annual and seasonal PCI over India 

The average APCI over India exhibits a strong irregular distribution (APCI> 20) of 

precipitation with a mean value of 24.66. Average SPCI over India during winter, summer, 

monsoon and post-monsoon seasons were 13.96, 16.82, 11.45 and 19.32 respectively 

indicating moderate distribution of precipitation during winter and monsoon season and 

irregular precipitation distribution during summer and post-monsoon. On annual scale, 

highest irregularity (APCI value of 52.1) is observed in Northern parts of WI covering the 

areas surrounding the TD. This part receives the lowest amount of rainfall compared to 

other regions of India and has a more uneven distribution of annual precipitation, falling 

mainly in few months of the year. In contrast, the lowest APCI value (12.64) is found over 

the western part of NH. According to De Luis et al., (2011) APCI value less than 16.7 

indicates that the total precipitation is concentrated in half of the period (six months) and 

are found over parts of NH (associated with winter snowfall and monsoon precipitation); 

NE, southern parts of SP and south-western parts of WG (Fig. 5.1A). During the Monsoon 

season, uniform to moderate distribution of precipitation concentration (PCI < 15) mainly 

prevails over India, because of the south-west monsoon wind which brings maximum 

amount of rainfall over Indian landmass compared to other seasons.   
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Fig. 5.1. Precipitation Concentration Index (A) and its coefficient of variation (B) over India 

(1986 – 2015). 

Spatial distribution of average PCI values over India and its coefficient of variation (CV) 

are presented in Fig. 5.1B. Annual average PCI values are moderately distributed over 

parts of NE and NH during this study period (1986 – 2015). Irregular distribution (15 < PCI 

> 20) prevails in the contiguous region of the Bay of Bengal and SP region. During the 

winter, a uniform distribution of PCI is found over parts of NH which may be attributed to 

the winter snowfall activities over this region (Bhutiyani et al., 2010). During the monsoon 

season, uniform distributions of PCI prevail over the Indian state of West Bengal (Fig. 

5.1A) which is consistent with the study conducted by Chatterjee et al., (2016). Besides, 

Thomas and Prasannakumar (2016) found that annual precipitation concentration is 

irregularly distributed over the Indian state of Kerala which is in line with the present 

study. 

An East-West gradient in the distribution in APCI exists from NE to the WI, with a 

continuous increase from the NE parts to the TD, indicating that PCI is inversely related to 
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precipitation amount (Fig. 5.1A). To verify this, we calculated Pearson‘s product-moment 

correlation between average precipitation and average PCI over India on annual and 

seasonal scale. They are negatively correlated at 95% level of significance on both annual 

and seasonal scale. On an annual scale, a weak but significant negative correlation (r = -

0.42) exists between these two variables. Seasonally, the highest negative correlation (r = -

0.76) is found during winter, followed by summer, post-monsoon and monsoon seasons with 

respective r values of-0.71 -0.70 and -0.49 respectively. 

Higher variation (CV) of APCI (Fig. 5.1B) is found over the eastern part of the NH, parts of 

GP and in the dry regions of WI. On an annual scale, the WC, NE, EP, EI and parts of the 

CI and SP are characterized with lesser variability of PCI (Fig. 5.1B). Seasonally, only 

during monsoon season, during which maximum rainfall occurs over the Indian landmass, 

a uniform to moderate PCI prevails over a major part of the country. Monsoon season is 

also marked with a lesser variation of PCI, except some parts of WI, NH and the southern 

tip of India. 

5.2 Correlation of PCI with geographical factors 

Geographical factors such as latitude, longitude and altitude are the main controlling 

factors in influencing on the distribution of precipitation over global land surfaces. Average 

APCI values are found to be positively correlated with latitude, indicating that the 

heterogeneity of APCI over India generally increases (from South-North) with latitude 

(Table 5.1). However, average APCI over India is found to be negatively correlated (P > 

0.01) with longitude and elevation with a corresponding correlation coefficient of -0.59 and -

0.33. The Indian landmass/subcontinent is dominated by the monsoon circulation system, 

having two branches, also has a northerly course during monsoon season, which contributes 

over 80% of the annual rainfall (Gadgil, 2018). These influences are evident as we can find 

a significant positive correlation between latitude and average APCI over India. A similar 

finding is also reported by Zhang et al (2018) over China. Longitudinal decrease of APCI 

from the WI to the NE is mainly due to the coupling effects of the direction of the south-

west monsoon wind, orographic influences and large scale atmospheric circulations that 

prevails over India. The decrease in APCI with altitude is supported by the process of 

orographic lifting and subsequent increase in precipitation amount with altitude which are 

common over the western and southern parts of the WG and NH. 
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Table 5.1 Pearson‘s correlation coefficient of the APCI with latitude, longitude and altitude 

over India for the period of 1986 – 2015. 

 Latitude Longitude Altitude 

APCI 0.057* -0.587* -0.334* 

* significant at 1% level. 

5.3 APCI in different precipitation datasets 

Based on IMD gridded dataset, maximum, mean and minimum APCI over India during the 

study period (1986 – 2015) are 12.6, 24.6 and 52.1 respectively. All of the selected gridded 

datasets underestimate the minimum APCI value, except the GPCC gridded data, with a 

minimum value of 12.8. Similar to GPCC data, the PGF reanalysis product also closely 

approximates the minimum APCI value over India, with a value of 12.4. The mean APCI 

value is also underestimated by all of the gridded precipitation datasets considered in this 

study when compared to IMD data (Fig. 5.2). Most of these datasets well captured the 

spatial variability of APCI distribution, especially over the EC, and eastern part of CI, 

except the NCEP2 reanalysis data where large deviations are observed near the northern 

parts of the EC. However, the spatial distribution of APCI values over the NH and NE 

India are under/overestimated by most of these datasets. This deviation is caused by the 

undulating terrain, which introduces additional uncertainties in the satellite/reanalysis 

derived rainfall products since they failed to capture orographic variations in precipitation 

distribution. According to the IMD gridded dataset, about 8.52%, 24.10% and 67.38% of the 

geographical area are under moderate, irregular and highly irregular precipitation 

distribution, respectively. Among the selected gridded datasets, the GPCC and PGF 

reanalysis results were spatially comparable with IMD data (Fig. 5.3A). 
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 Fig. 5.2. Spatial variability of average APCI values across different gridded precipitation 

products over India (1986- 2015).  
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Fig. 5.3. Inter-comparison of different gridded precipitation dataset based on spatial 

coverage area (%) under different PCI categories on annual (A) and seasonal scale (B-E) 

over India. 

5.4 Seasonal PCI on different precipitation datasets 

5.4.1 Winter season 

 

According to the IMD gridded dataset, about 76.34% and 21.62% of the area (Fig. 5.3B) 

during the winter season are under moderate and irregular precipitation distribution 

respectively. Uniform to moderate PCI distribution are observed over the NH, GP, NE and 

parts of SP regions of India (Fig. 5.4A). Irregular distribution of precipitation concentration 
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is found over the WC, north western parts, and central parts of the SP. Compared to the 

IMD dataset, almost all the gridded precipitation products well captured the spatial 

distribution of PCI during the winter season (Fig. 5.4A). However, the satellite-derived 

CHIRPS rainfall data highly overestimates uniform rainfall distribution over India and 

perform worst compared to the PERSIANN-CDR satellite-derived product. This may be due 

to the difference in calibration datasets used to construct the satellite rainfall products or 

estimating fog/smog, which is common during winter months in north India, as 

precipitation. The CHIRPS is developed using the Tropical Rainfall Measuring Mission 

Multi-satellite Precipitation Analysis version 7 (TMPA 3B42 v7) datasets (Funk et al., 

2015) whereas the PERSIANN-CDR data is developed using Gridded satellite infrared data 

(GridSat-B1) and calibrated against the GPCP rainfall product (Ashouri et al., 2015). The 

accuracy of CHIRPS estimate depends on correct differentiation of clouds from smog and 

other atmospheric pollutants which are very common in Northern India. Also, the CPC, 

MERRA2 and JRA-55 datasets are unable to capture the uniform PCI distribution over 

parts of NH.  

5.4.2 Summer season 

 

Compared to the winter season, increased irregularity of precipitation during summer is 

observed over India(Fig. 5.4B), especially due to an increase in highly irregular distribution 

(PCI > 20)  in the WI. Pockets of uniformly distributed PCI values were observed over the 

northern parts of NE India in the IMD dataset, which was also observed in the 

APHRODITE, GPCC, CHIRPS, ERA5 and ERA-Interim datasets. However, ERA5, ERA-

Interim and NCEP2 reanalysis datasets overestimated summer PCI values over parts of 

NH. Besides, the reanalysis datasets (except PGF) and the satellite-derived PERSIANN-

CDR data are unable to capture the highly irregular distribution of PCI  in parts of WI (Fig. 

5.4B). Gauge based GPCC data better represent the summer PCI over India as revealed by 

their spatial coverage when compared to the IMD dataset (Fig. 5.3C). Based on IMD 

gridded data, about 36.7% and 42.5% of the total geographical area are under moderate and 

irregular PCI classes, whereas, the GPCC data shows about 43.2% and 40.3% area under 

moderate and irregular PCI classes respectively (Fig. 5.3C). Besides, the PGF and CHIRPS 

can well capture the dynamics of summer PCI values compared to other reanalysis and 

satellite datasets (Fig. 5.4B).   
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Fig. 5.4 Average winter (A) and summer (B) seasons PCI based on different gridded 

precipitation datasets over India (1986 – 2015).  
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5.4.3 Monsoon Season  

During the monsoon season, uniform and moderate precipitation concentration prevail over 

India (Fig. 5.5A) covering about 20.7% and 73.9% of the area respectively (Fig. 5.3D). 

Uniform precipitation concentration (PCI < 10) mainly concentrated in the windward side 

of the WG, NE and the northern parts of the EC, and mainly associated with the south-west 

monsoon wind, which brings maximum proportion of annual rainfall over India. Gauge-

based gridded datasets better perform in capturing the spatial dynamics of PCI during the 

monsoon period compared to reanalysis and satellite precipitation datasets. Most of these 

datasets, especially PERSIANN-CDR, CHIRPS, ERA-Interim, MERRA2, PGF and JRA-55 

underestimate monsoon PCI values over large parts of the SP region. This indicates that 

these datasets are unable to capture the rainfall patterns, mainly by overestimating 

monsoonal precipitation over the rain shadow zones of the WG, which has also been 

discussed in previous studies (Ghodichore et al., 2018; Mondal et al., 2018). 

5.4.4 Post-monsoon 

According to the IMD dataset, during the post-monsoon season, irregular and highly 

irregular  PCI distribution prevail over major parts of India, covering 49.8% and 37.5% of 

the area respectively (Fig. 5.5B). About 12.6% of area are found to be under moderate PCI 

distribution and mainly covers the SP and parts of western parts of NH (Fig. 5.5B). This 

pattern closely follows the rainfall distribution during the post-monsoon period over India 

and the snowfall activity that prevails over the NH. The eastern part of the SP region 

receives significant rainfall during the post-monsoon season, associated with the North-

East monsoon wind and explains the moderate PCI distribution over this region. Highly 

irregular concentration of precipitation is observed over the GP, CI and WI. Rest of the 

country, which covers the eastern part of NH, parts of the EP and SP region are 

characterized with irregular distribution of precipitation. 
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Fig. 5.5 Average monsoon (A) and Post-Monsoon (B) seasons PCI based on different gridded 

precipitation datasets over India (1986 – 2015). 
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Gauge based APHRODITE, CPC, GPCC; the PGF and JRA-55 reanalysis data aptly 

captured the uniform PCI areas during the post-monsoon season. However, CHIRPS, ERA-

5, ERA-Interim and NCEP2 overestimated area under uniform PCI distribution (PCI >10), 

especially over the high elevation areas of NH. It is noted that most of the gridded datasets 

can reasonably capture the spatial distribution of moderate PCI distribution over India 

during the post-monsoon season, especially over the SP and EC regions. In contrast, few of 

them i.e. the gauge based GPCC, satellite-derived CHIRPS and NCEP2 and PGF reanalysis 

datasets appropriately captured the spatial distribution of highly irregular over the GP and 

WI during post-monsoon season. 

5.5 Comparison of PCI among different datasets 

To check the temporal consistency of different precipitation products, the Pearson‘s 

product-moment correlation coefficient (CC) of APCI has been calculated for each 

precipitation products by comparing them with the IMD gridded data across India 

(Fig.5.6A). The APHRODITE showed a higher degree of co-linearity over India, followed by 

the  GPCC and PERSIANN-CDR data, with corresponding median CC value of 0.73,  0.58 

and 0.57 respectively over India (Table 5.2). In general, the gauge-based gridded datasets 

exhibit a higher degree of co-linearity compared to satellite and reanalysis products. All the 

selected gridded precipitation products show very low CC (<0.25) over parts of NH, GP and 

western parts of NH. In addition, NCEP2 performs worst among the satellite/reanalysis 

datasets, with a low correlation value of 0.27 over India (Table 5.2). Calculated correlation 

values over India on different temporal scale (Fig. 5.7) also suggest that the APHRODITE 

and GPCC have better agreement with the IMD dataset in capturing the spatial dynamics 

of PCI over India during the study period. On seasonal scale, the overall performance of the 

gridded precipitation datasets was relatively higher during the post-monsoon season (Fig. 

5.7. 2d). However, performance of NCEP2 data is worst (both on annual and seasonal scale) 

as revealed by consistently lower CC value during most of the year.  
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Fig. 5.6 Correlation coefficient (CC), Mean Absolute Error (MAE) and PBIAS of APCI 

between IMD and other gridded product over India (1986 – 2015). Lower panel (D) shows 

the probability density function (PDF) of CC, MAE and PBIAS for individual gridded 

datasets. 
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Table 5.2 Mean absolute error (MAE), correlation coefficient (CC) and percent bias (PBIAS) 

for APCI of different precipitation datasets compared to the IMD gridded dataset over 

India.  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Fig. 5.7 Correlations between IMD and other gridded dataset on annual and seasonal scale 

over India (1986 – 2015). 

Data Set    MAE     CC PBIAS 

APHRODITE 2.60 0.73 -5.78 

CPC 3.73 0.52 -6.79 

GPCC 3.27 0.58 -3.33 

CHIRPS 3.54 0.49 -6.46 

PERSIANN 3.61 0.57 -9.49 

ERA5 3.76 0.49 -5.68 

ERA-Interim 4.28 0.42 -11.61 

MERRA2 3.71 0.54 -8.25 

NCEP2 5.07 0.27 -7.21 

PGF 3.86 0.40 -4.92 

JRA55 4.48 0.39 -13.98 
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Higher MAE  values are mainly found over the dry areas of West India (WI) and NH and in 

some pockets over the rain shadow zone of WG (Fig. 5.6B). Most of these precipitation 

products show a lower MAE over NE India and parts of CI and EP. APHRODITE, GPCC, 

CHIRPS, PGF and ERA5 data better captured the APCI over CI, SP and parts of EC when 

compared to other gridded precipitation datasets. APHRODITE showed the lowest median 

MAE over India (2.60), followed by  GPCC (3.27) and CHIRPS (3.5), where the NCEP2 

showed highest median MAE of 5.07 over India (Table 5.2).  

Spatial distribution of PBIAS indicates that most of the gridded precipitation datasets 

inadequately represents the precipitation concentration over the rain shadow zone as well 

as in low rainfall areas over India (Fig. 5.6C). Overall, underestimation/overestimation of 

PCI values is mainly found in the dry regions of WI, NH and in the rain shadow zone of 

WG. Most of these gridded datasets underestimate rainfall amounts over the mountain and 

dry areas of India, resulting in negative PBIAS. In contrast, NCEP2, highly overestimated 

rainfall over the SP and parts of the EC region, southern parts of NE those results in a 

large underestimation of PCI over these areas, which is also highlighted in Ghodichore et 

al., (2018). However, most of the gridded precipitation datasets well captured the APCI in 

areas where annual rainfall is above 1400mm/yr. The gauge based GPCC product better 

performed when compared to other gridded datasets as revealed by the respective median 

PBIAS  of -3.33% over India which is followed by the PGF (-4.92%) and CHIRPS (-6.45%) 

rainfall data (Table 5.2). The PDF plot of CC, PBIAS and MAE (Fig. 5.6D) also confirms 

that the gauge based APHRODITE has better agreement with the IMD where the NCEP2 

reanalysis data performed worst among these datasets.  

The performance of selected gridded precipitation products in capturing the spatial 

distribution of annual and seasonal PCI over India is further evaluated using the Taylor 

diagram (Fig. 5.8). On annual scale, the APHRODITE product better performed in 

capturing the APCI values over India. During monsoon season, the performance of 

APHRODITE, CPC and MERRA2 is better compared to other gridded datasets. The GPCC 

data better performs during the post-monsoon season. Besides, during summer and winter 

gauge based APHRODITE, GPCC and the ERA-5 reanalysis product well captured the PCI 

dynamics over India. 
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In general, the gauge based APHRODITE, GPCC and the satellite-derived CHIRPS 

datasets are found to better capture the spatial and temporal variability of APCI over India 

when compared with the IMD gridded datasets. Prakash (2019) also reported that the 

CHIRPS rainfall product better approximates monthly precipitation climatology over India 

compared to other satellite based rainfall datasets. Similarly, the gauge based 

APHRODITE and GPCC products are also found to better capture daily/monthly 

precipitation over India (Prakash et al., 2015; Rana et al., 2015) which is in line with the 

present study.  However, majority of the selected precipitation datasets are unable to 

capture the PCI dynamics over orographic rainfall zones such as the WG and NH as 

revealed by the error matrices (Fig. 5.6 B & C).  

 

 

 

 

 

 

Fig. 5.8 Taylor diagrams for the 

annual and seasonal PCI over 

India from eleven precipitation 

datasets compared to the IMD 

gridded data for the period 1986-

2015. Standard deviation is on 

the radial axis, correlation is on 

the angular axis and semi-circle 

lines indicate RMSD.  
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5.6 Trends in APCI over India 

According to the IMD gridded dataset, about 61.61% of area showed negative trend in APCI 

and covers most of the GP, WC, SP and WI implying that APCI is declining in these areas 

(Fig. 5.9). Pockets of significantly negative trend zones, which comprises about 4.2% of the 

area, are found in the WC, SP, WI and in parts of CI and EP. The highest decreasing trend 

in APCI is observed over the WI. Decreasing PCI (> -0.5/ year) coupled with the wetter 

climate in the future (Kumar et al., 2013) may reduce the higher irregular nature of APCI 

over this region. 

The positive trend of APCI covers about 38.39% of the area and are mainly concentrated in 

the NE, northern parts of the EC and NH region (Fig. 5.9). Besides, the increasing trends in 

APCI are also observed in parts of the CI, SP and WI (over the Aravalli Range). 

Significantly increasing trend (at 95% significant level) of APCI is found in areas of the EC, 

NE, and NH covering about 3.6% of geographical area. Therefore, proper regional water 

management practices are needed to be developed to cope up with the negative impacts 

associated with the increasing irregularity of precipitation on the hilly and coastal areas of 

India.  

Based on the IMD dataset, the median APCI trend value over India is about -0.30/10 year. 

Lowest and highest median Sen‘s slope value in APCI are found in the ERA5 and CPC 

datasets with a corresponding value of -0.18/10year and -0.44/10 year respectively. The 

PERSIANN-CDR and the GPCC  better approximate the median slope value over India 

with a corresponding value of -0.30/10year and -0.33/10year respectively. 

The spatial pattern of increasing/decreasing trends in APCI can be explained by the 

increasing/decreasing trends in annual precipitation and trends in heavy precipitation 

amount over the respective areas. We already have explained that PCI is inversely related 

to precipitation amount therefore changes in annual precipitation amount can affect the 

PCI values. The decreasing trend in precipitation over the NE and SP region is reported by 

many previous studies (Mondal et al., 2018; Mondal et al., 2015; Kumar et al., 2010) which 

may increase the APCI over these regions. While decreasing trend in APCI over parts of the 

GP, WI and SP is in line with the increasing trends in annual precipitation as reported by 

previous studies (Mondal et al., 2018; Kumar et al., 2010). 



101 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.9 Trend in APCI over India during 1986 – 2015 based on different gridded 

precipitation datasets. Grid cells with significant trends (at 95% significance level) are 

represented in black dots. 

APHRODITE, GPCC, ERA5, ERA-Interim and PGF datasets well captured the negative 

trend areas over the WI. However, estimated significant trend magnitude by these datasets 

differs from the reference (IMD) dataset (Fig. 5.9). Furthermore, most of the precipitation 

products overestimated areas significantly negative trend zone over CI, with exception to 

the APHRODITE, PGF and JRA-55 datasets. Similar overestimation of negative trend 

areas in APCI over the NH is observed for most of the selected gridded precipitation 

products, except the ERA-5, ERA-Interim and NCEP2 reanalysis datasets. In comparison to 

the IMD and other gridded precipitation datasets, the GPCC data contrastingly shows a 

zone of significant positive trend in APCI over the western parts of the NH. This may be 

attributed to the quality of data used (i.e. no of gauging stations, record length) in this 
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gauge based gridded dataset over this region. Among the reanalysis and satellite rainfall 

products respectively, ERA5 and CHIRPS better perform in capturing positive trend areas 

over India (Fig.5.10) with a corresponding value of 37.61% and 35.62% respectively when 

compared to their IMD data-based counterparts of 38.39% area. The APHRODITE data 

better performs among the gauge-based gridded precipitation products, with a positive 

trend area of 39.24% (Fig.5.10) which closely approximates the IMD gridded data-based 

area. Notably, the JRA-55 reanalysis data highly overestimate positive APCI trends areas 

over India, covering about 75.5% of total grid-cells of which 17.8% are significant at 95% 

level. 

 

 

 

 

 

 

 

 

 

Fig. 5.10 Percentage of area under positive (P) and negative (N) APCI trends over India 

among different gridded precipitation datasets during 1986-2015. P/N with * marks means 

significant at 95% level. 

 

5.7 Trend in SPCI over India 

A significant increasing trend during the winter season is observed over parts of the SP, 

EC, EP and NE (Fig. 5.11A). Pockets of significantly decreasing trends during winter are 

found to be located on the WI. The gauge based and reanalysis products better captured the 

spatial pattern of increasing and decreasing trends during winter. According to the IMD 
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gridded datasets, increasing SPCI trend area over India during the summer season is 

higher as compared to the winter season (Fig. 5.11B). The APHRODITE better captures the 

spatial pattern of trends in summer PCI over India followed by the ERA-5 and CPC 

datasets. However, the NCEP2 and PERSIANN-CDR data highly overestimate significant 

negative trend areas mostly over the WI. 

According to the IMD gridded dataset, SPCI during monsoon season is significantly 

increasing over the flood-prone areas of Assam valley (NE India) and in the northern part 

of the EC (Fig. 5.12A). A significant decreasing trend during monsoon is found over parts of 

the SP, WI and NH. Besides, a large part of the GP and southern part of NE India exhibit 

significant increasing trend during the post-monsoon period and is consistent across the 

gridded datasets (Fig. 5.12B). This may be due to the decreasing precipitation amount 

during the post-monsoon season over these areas as reported by Mondal et al., 2018 and 

Bisht et al., 2018. 
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Fig. 5.11 Trend in winter (A) and summer (B) PCI over India during 1986 – 2015 based on 

different gridded precipitation datasets. Grid cells with significant trends (at 95% 

significance level) are represented in black marks. 
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Fig. 5.12 Trend in monsoon (A) and post-monsoon (B) seasons PCI over India during 1986 – 

2015 based on different gridded precipitation datasets. Grid cells with significant trends (at 

95% significance level) are represented in black marks. 
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5.8 Conclusion 

Understanding the spatio-temporal variations in precipitation concentration is of utmost 

importance for managing water resource, irrigation planning, hydropower development, 

flood management, and reducing the risk of soil erosion. This study, analyzed different 

characteristics of annual and seasonal PCI over India (1986 – 2015) based on the IMD 

gridded precipitation dataset and compared the results with eleven other gridded datasets. 

The IMD gridded data analysis indicated that the precipitation concentration in India is 

highly irregular, with an average APCI value of 24.6 during the study period. On the 

annual scale, About 67.38%, 24.10%, and 8.52% of the total geographical area of India are 

under highly irregular, irregular, and moderate precipitation distributions, respectively. 

This indicates that the uniform precipitation distribution is absent over India. It is more 

important to note that in spite of India‘s tropical location, especially in the southern part, 

the precipitation is seasonally concentrated. The southern part of the peninsular region 

should have experienced conventional precipitation throughout the year since it is located 

within 10° N latitude. However, the topographical characteristics and the prevailing wind 

system over the region control the current precipitation pattern which is distributed 

between moderate to highly irregular concentration classes. On the other hand, the very 

high concentrations of precipitations are found in the north-western part of the country 

surrounding the TD. In general, the entire EP and the NE of India reported moderate to 

irregular precipitation concentration. Uniform to moderate precipitation distribution 

prevails over the country only during the monsoon, covering about 20.71% and 73.88% of 

the area respectively. Uniform precipitation distribution is found over NE India, lower GP, 

northern parts of EC and southern WG. It is also to be noted that North-West Himalaya 

receives uniform precipitation during the winter season. This region is under the influence 

of westerlies (regionally called western disturbances) during this part of the year. The 

westerlies bring regular precipitation to the region during the winter season.  

The APCI decreased over India with a magnitude of -0.30/10 year during 1986-2015. This 

indicates that the irregularity of precipitation is marginally decreasing, which is in tune 

with the reported increase in precipitation in different parts of India (Mondal et al., 2018; 

Kumar et al., 2010). The amount of precipitation and average PCI, across spatial and 

temporal scale over India, is negatively related as evident from significant negative 

correlation coefficient. This means, higher the amount of precipitation lower will be the 
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concentration of precipitation, as the precipitation amount increases PCI moves towards 

uniform distribution. The reported increase in precipitation in certain regions of India 

indicates that precipitation in India is moving towards lesser concentrations.  

Calculated PCI from eleven other gridded datasets are compared against their IMD 

counterparts using model evaluation indices (i.e. CC, MAE, and PBIAS), PDF, and Taylor 

diagram. Among the gridded datasets analyzed in this study, the gauge based APHRODITE 

and GPCC data effectively capture the spatial pattern of annual and seasonal PCI over 

India in comparison with the reference IMD gridded dataset. Besides, the CHIRPS and 

PGF better-performed as compared to other selected satellite and reanalysis rainfall 

datasets respectively. Least agreement is found in the satellite-derived PERSIANN-CDR 

and NCEP-2 reanalysis datasets. Performance of individual gridded precipitation products 

is poor in data-sparse regions, especially over complex topography like Himalaya. This may 

introduce additional uncertainties while analyzing the reliability of reference (IMD) and 

other gridded datasets. Therefore, the strength of these gridded data sets can be enhanced 

by putting additional gauge derived information along with suitable interpolation algorithm 

that may reduce input data uncertainties. All the evaluation indices (i.e. CC, MAE PDF and 

Taylor diagram) are in agreement to indicate that the APHRODITE closely approximate 

PCI values estimated from IMD since APHRODITE is a purely a gauge based dataset 

where the NCEP2 reanalysis showed the least agreement with the IMD dataset. 

The analysis helped to understand different characteristics of precipitation concentration 

over India. The results of this study are of considerable importance in taking effective 

decisions in taking water and soil conservation measures, disaster preparedness and 

reducing the risk associated with drought and floods. It also aids in selecting suitable 

gridded precipitation datasets while analyzing precipitation characteristics over India.  
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Chapter 6 

Conclusion 

6.1 General conclusion 

The study explored the feasibility of eleven different precipitation products for studying 

different characteristics of annual extreme precipitation and precipitation concentration 

over India in comparison to a high resolution gridded rainfall dataset obtained from the 

IMD. 

In general, the study found that the relative performance of the gridded datasets tends to 

vary in different parts of India and also with the choice of indices, used for comparing the 

datasets. A general drawback of these gridded datasets is that mostly all the datasets are 

unable to capture the extreme precipitation climatology over northern Himalaya, indicating 

the influence of orography on capturing extreme rainfall. In the gauge-based gridded 

datasets, the GPCC better performed in representing extreme whereas the APHRODITE 

better captures PCI over India while compared to IMD dataset. The ERA-5 reanalysis data 

better performed in the reanalysis group and the CHIRPS data better performed than 

PERSIANN-CDR among satellite rainfall data in representing extreme precipitation and 

PCI over India. The NCEP2 reanalysis performed worst among the all selected datasets 

especially over southern India and highly overestimated rainfall which is line with other 

recent studies (Ghodichore et al., 2018). Besides, the selected datasets are inconsistent with 

each other in representing trends in extreme and annual rainfall indices as well as PCI 

over India. However, commenting on the robustness and ability of satellite and reanalysis 

rainfall products requires further investigation. Overall, a tendency of underestimating 

higher extreme rainfall indices,  located far right end of the PDF of daily rainfall (i.e. 

RX1day and R99tp) is a general feature of these datasets. This underestimation decreases 

with lower rainfall thresholds (i.e. RX5day, R95tp) and finally, these datasets overestimate 

the lower rainfall days (R10mm and R20mm). Therefore, a pattern of underestimation of 

extreme excess rainfall and overestimation of lower rainfall amount is a common attribute 

of the gridded datasets. 

Regional variation in topography also found to have impacts on the spatial distribution of 

bias in extreme rainfall. Higher concentration of PBIAS over WG, NH signifies that the 
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datasets underestimate extreme rainfall over the orographic belts. Similar findings are also 

reported by Bharti et al., (2016); Kim et al., (2019) over NH and WG. 

Besides, the spatial resolution of the gridded datasets has a substantial effect in 

representing extreme rainfall over India. The effects of resolution-dependent are more 

prominent among the reanalysis datasets. Degradation of relative skill score in 

representing higher extremes (RX1day, 99tp and R20mm) is higher than lower extremes 

(RX5day, 95tp and R10mm). Choice of higher threshold i.e. RX1day and 99tp reveals 

greater dependence on grid-resolution as they lie on the higher end of the PDF, therefore 

difficult to capture by relatively low-resolution datasets. 

Nonetheless, the best approach in doing gridded precipitation data would be considering all 

gridded products and extracting maximum possible information from them while 

commenting on their relative strength and weakness for hydro-climatological studies. 

6.2 Limitations and suggestion for further work 

Consideration of lower extreme events, which stems from the deficiencies of precipitation 

are also equally important given the recurrent and chronic drought events in different parts 

of India. Besides, the selection of a study period spanning a minimum of 30-year also limits 

the inclusion of recent satellite precipitation products which may give some useful insights 

about the recent developments in satellite rainfall retrieval. To facilitate grid to grid 

comparison of the selected gridded datasets with the IMD data, all the datasets are re-

gridded into a common 0.25° grid size which can introduce additional uncertainties in these 

daily precipitation values. Therefore, one can address this limitation of gridded data 

comparison. Investigating the choice of resampling technique and the choice of grid 

resolution of the different rainfall characteristics can also help future work in this direction.  

 The outcome of this work will benefit the data users, model developers, and researchers in 

the field of hydrology and climatology in understanding the relevant precipitation 

characteristics over different parts of India as well as about the relative strength and 

weakness of these gridded precipitation products used in this study while selecting their 

own. 
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