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Abstract 

 This thesis uses support vector machines to solve pattern classification and regression 

issues in the context of machine learning (ML). The design, analysis, and implementation of 

new SVM variants for noisy datasets is the main contribution of this research. The goal is to 

create new ones with enhanced learning speed and better or comparable generalization 

performance on noisy samples. The efficacy of our proposed methodologies is demonstrated by 

experimental evidence on a variety of fascinating synthetic and real-world benchmark datasets. 

 The first chapter reviews prior work on SVM in the literature. The machine learning 

problem is introduced at the beginning of the chapter. ML is concerned with the study and 

development of learning algorithms that can learn from empirical data and produce prediction 

models with strong generalization capacity. Based on the availability of outputs, ML algorithms 

can be classified as supervised, unsupervised, or semi-supervised learning. The most prevalent 

tasks in the field of machine learning are classification and regression, hence supervised learning 

can be divided into two groups. SVM belongs to the category of supervised learning, which is 

the focus of this thesis. For classification and regression issues, SVM and neural networks are 

two of the most used machine learning techniques. The primary idea for training most ML 

algorithms, such as neural networks, is empirical risk minimization, which leads to overfitting. 

The structural risk minimization principle is utilized to solve this problem by determining the 

lowest upper bound on the projected risk. SVM is built on this same premise. Vapnik first 

proposed SVM for classification problems, and subsequently, by introducing the ε-insensitive 

loss, it was applied to regression problems, resulting in support vector regression (SVR). The 

twin SVM (TWSVM) and twin SVR (TSVR) are offered as ways to reduce the computational 

complexity of SVM and SVR training. Finally, the chapter concludes with a brief overview of 

variants of these models, such as SVM with pinball loss (Pin-SVM), v-SVM, twin parametric 

margin SVM (TPMSVM), Least Squares TWSVM (LS-TWSVM), Twin Bounded SVM (TBSVM), 

twin SVM with pinball loss (Pin-TSVM), Least Squares SVR (LS-SVR), v-SVR, ε-twin SVR (ε-

TSVR), Lagrangian TSVR (LTSVR), twin parametric insensitive SVR (TPISVR), parametric 

insensitive non-parallel SVR (PINSVR). 

  The mathematical formulation and method of solution for well-known SVM variations for 

classification and regression problems, such as SVM, Pin-SVM, TWSVM, TBSVM, LS-
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TWSVM, SVR and LS-SVR, are introduced in Chapter 2. SVM is a convex QPP that identifies 

the best separation hyperplane for a classification issue. Its objective function is made up of a 

regularization term that optimizes the margin between two classes and an empirical risk term 

that uses the hinge loss function to calculate the training error. The hyperplane must be at least 

one distance away from the training data points, according to the requirements. Pin-SVM is a 

classifier that is created by substituting the hinge loss function with a pinball loss function in the 

SVM to improve the SVM's noise insensitivity and resampling stability. TWSVM uses two 

smaller QPPs to locate two nonparallel hyperplanes, such as positive and negative hyperplanes. 

One of the QPP is solved to locate a positive hyperplane that is as close to class +1 data points 

as possible while being at least 1 distance from class -1 data points. Other QPPs are solved in 

the same way to discover a negative hyperplane that is as close to class -1 data points as possible 

and at least 1 distance from class +1 data points. TWSVM's learning pace is approximately four 

times faster as a result of SVM. The structural risk is implemented via a regularization term in 

the Twin Bounded Support Vector Machine, an upgraded version of TWSVM. This statistical 

learning theory technique can help you enhance your categorization performance. LS-TWSVM 

is generated by taking the square of the 2-norm of slack variables and transforming inequality 

constraints into equality constraints in TWSVM's primal QPPs, resulting in the solution of two 

systems of linear equations rather than a pair of QPPs as in TWSVM. SVR is a convex QPP 

whose solution determines a regression problem's regressor. Its objective function is made up of 

a regularization term that gauges regressor flatness and an empirical risk term that computes the 

training error using the ε-insensitive loss function, resulting in sparsity in the solution. Because 

of the limits, training data points must be crammed into the ε-tube as much as feasible. Instead 

of using an ε-insensitive loss, the LS-SVR uses a least square loss. In contrast to SVR, LS-SVR 

requires the solution of a system of linear equations rather than a QPP. In the spirit of TWSVM, 

TSVR solves two smaller QPPs rather to a single large QPP like that in SVR, resulting in a 

faster learning pace and high generalization ability. 

 In chapter 3, we presented a robust twin bounded support vector machine with pinball loss 

(Pin-TBSVM) for feature noise affected datasets. Pin-TBSVM is a non-parallel classifier where 

kernel generated surfaces were determined as the solutions of quadratic programming problems. 

Numerical tests on synthetic and benchmark datasets corrupted by noise are performed whose 

results are compared with a few popular classification learning algorithms. The comparative 

study confirms the effectiveness and suitability of our proposed methods. 

 In chapter 4, we present a −1L norm based twin bounded support vector machine with pinball 

loss for data categorization with the goal of obtaining an efficient robust learning model. 

Besides the benefit of less sensitivity to noise property of pinball loss, with the application of 
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−1L norm for within-class scatter minimization, the proposed method also enjoys robustness to 

outliers. As a novel approach of solving, by a simple reformulation of the primal problem 

considered, an equivalent pair of dual QPPs in m variables only is derived (L1-Pin-TBSVM), 

where m is the number of training vectors. In comparison with the twin bounded support vector 

machine (TBSVM), the duals of our proposed L1-Pin-TBSVM are free of inverse matrices and 

the non-linear duals can be obtained from their linear formulations directly by applying the 

kernel trick. Experiments on Crossplanes dataset where two or four outliers were introduced 

show that the proposed L1-Pin-TBSVM outperforms the other SVM methods in terms of 

accuracy, confirming its robustness to outliers. In addition, empirical findings based on a two-

moon synthetic dataset and several benchmark datasets with varying levels of noise clearly 

demonstrate improved generalization ability of L1-Pin-TBSVM at comparable training cost 

which further confirms its effectiveness and suitability. 

 In chapter 5, with the aim of having the integrated merits of −1L norm and pinball loss in 

achieving enhanced robustness to outliers and bringing noise insensitivity to feature noise, we 

presented a novel, efficient −1L norm based non-parallel support vector machine classifier with 

pinball loss (L1-Pin-NPSVM) where its associated optimization problem minimizes the scatter 

loss and the misclassification error by −1L norm and pinball loss respectively. The dual 

formulation of the proposed method solves a pair of QPPs free of inverse kernel matrices. Our 

formulation allows a unified framework for the linear and nonlinear kernels. The effectiveness 

of L1-Pin-NPSVM is evaluated on synthetic and UCI benchmark datasets having outliers and/or 

being contaminated by noise. The results confirm its superiority in terms of robustness to 

outliers and noise insensitivity. 

 In chapter 6, we proposed a novel robust Huber SVR (HSVR) formulation in primal 

where the regressor is made as flat as possible by introducing the regularization term in L1-

norm. Since the regularization term is non-smooth, it is proposed to replace it by smooth 

approximation functions and solve the problems by functional iterative method. Tests with both 

synthetic and real-world datasets confirm the suitability and effectiveness of the proposed robust 

model. 

 Chapter 7 summarises our research and identifies further research directions to be 

investigated. 
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Chapter 1 

 

1A Survey on Support Vector Machines (SVMs) 

1.1 Introduction 

 In recent years Machine Learning, a subfield of Artificial Intelligence (AI) has appeared 

as one of the most fascinating scientific research areas in Computer Science. It helps computers 

to learn from experience without being explicitly programmed to enhance their performance. It 

focused on building an automated system that can learn by itself which leads the machine to 

make data-driven choices. Machine learning models improve with the use, and the more data 

they have access to, more the effective they become. Since machine learning has shown great 

success in building models for many real-world applications, it has been utilized in a wide range 

of domains such as Computer vision, Speech recognition, text understanding and GAME AI 

(Hull & Taylor, 1998; Kodratoff & Michalski., 2014).  

 There are four types of machine learning algorithms: supervised, unsupervised, semi-

supervised, and reinforcement. The machine is taught by example in supervised learning 

methods. These models are made up of "input" and "output" data pairs, with the desired value 

labelled on the output. This category includes classification and regression tasks. In 

unsupervised learning models, the machine examines the input data, much of which is 

unlabelled and unstructured, and uses all relevant, accessible data to detect patterns and 

correlations. Unsupervised learning is similar to how humans see the world in many respects. To 

group things, we rely on intuition and experience. As we are exposed to more and more samples 

of something, our ability to categorize and identify it improves. The amount of data that is input 

and made available defines "experience" for machines. The third of four machine learning 

models is semi-supervised learning. All data would be structured and labelled before being 

entered into a system in an ideal world. However, because this is not possible, semi-supervised 

learning becomes a viable option when large amounts of unstructured data are available. Small 

amounts of labelled data are supplied to supplement unlabelled data sets in this approach. 

Essentially, the labelled data gives the system a head start and can enhance learning speed and 

accuracy significantly. A semi-supervised learning approach tells the machine to look for 

correlative qualities in the labelled data that could be applied to the unlabelled data. The fourth 

machine learning model is reinforcement learning. A set of permissible behaviours, rules, and 
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potential end states are fed into the reinforcement learning model. Machines can learn by 

example when the algorithm's desired aim is fixed or binary. When the desired output is 

variable, however, the system must learn through experience and reward. The "reward" in 

reinforcement learning models is numerical and is coded into the algorithm as something that 

the system tries to acquire. 

 Machine learning's primary challenge is that it must perform well on new, previously 

unseen inputs, not merely those on which our model was trained. Generalization is the ability to 

perform well on previously unseen inputs. Machine learning approaches for developing 

classification models are widely used in a wide range of fields. In the training of classification 

and non-linear regression models, methods such as support vector machines (SVMs) and 

artificial neural networks (ANNs) have proved their high dependability. 

 Support Vector Machine (SVM) proposed by Vapnik et al. in 1992 is one of the most 

effective supervised learning techniques derived from statistical learning theory. Although it was 

originally developed as a binary classification method, its applications have extended to both 

multi-class classifications and regression problems, as well as function approximation. SVM has 

turned out to be one of the best classifiers for a wide range of situations, it has strong theoretical 

foundations and excellent empirical successes. After its introduction, SVM has outperformed 

most other systems in a range of practical applications within a few years. They proved to be 

excellent tools in the way of analyzing data and recognizing patterns as well as regression 

analysis. They combine characteristics from statistical learning theory, machine learning, and 

optimization theory, and one of their vital aspects is kernel functions. Due to its formulation 

based on a novel paradigm vested in the structural risk minimization induction principle (SRM 

principle), SVM has been the most promising machine learning method. Instead of minimizing 

an objective function based on the training samples such as mean square error (MSE), the SVM 

attempts to minimize a bound on the generalization error (i.e., the error made by the learning 

machine on test data not used during training). This is the distinction that allows the SVM to 

have strong generalization, i.e., greater prediction on data that has never been seen before. As a 

result, an SVM tends to perform well when applied to data outside the training set.  It effectively 

avoids the local minimum and overfitting problem in classical machine learning methods such 

as neural networks (NNs), which perform Empirical Risk Minimization. Indeed, it has been 

reported that SVM-based approaches can significantly outperform competing methods in many 

applications. SVM achieves this advantage by focusing on the training examples that are most 

difficult to classify. These “borderline” training examples are called support vectors. SVM 

classification and regression problems have been mathematically proved to be optimization 

problems with a quadratic objective function and linear constraints, i.e., convex programming 
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problems with a unique solution. The fact that SVM's solution is sparse, i.e., only some of the 

samples contribute to the determination of the decision function, is a clear advantage. 

 The SVM takes a collection of input data and predicts the classes to which each input 

should belong. The data points are represented as points in space in this model, with the data 

points of the different categories separated by a distinct and larger separation. This model 

generates a hyperplane (or a series of hyperplanes) for classification and regression analysis. 

SVM finds an ideal hyperplane for a linearly separable two-class problem that optimizes the 

separation between the two classes and hence lowers the generalization error. The input data are 

projected into another high-dimensional feature space for nonlinearly separable cases, making 

the data separable in that space. The data in the new feature space is then classified using SVM. 

The SVM classifier's performance and efficiency are determined by the best tuning parameters, 

which are commonly determined using the cross-validation method. Large sets of ideal 

parameters are also challenging to handle due to the training duration. Many different forms of 

SVMs are being developed to lower computational difficulties. 

  In several disciplines such as bioinformatics, handwriting recognition, and the stock 

market, Support Vector Machine(SVM) has been effectively applied to real-world data analysis 

issues, typically yielding better (or comparable) results than ANN. SVM and its extensions are 

one class of the most successful machine learning methods that outperform most other learning 

techniques in pattern recognition and regression estimation problems of practical importance, 

such as text classification (Joachims, 1998), interstellar object detection (Beaumont et al., 2011), 

combustion engine detection (Rychetsky et al., 1999), object detection (Pang et al., 2014), face 

detection (Osuna et al., 1997),  financial time series forecasting (Mukherje et al, 1997; Tay & Cao, 

2001; Kim, 2003), content-based image retrieval (Yildizer et al., 2012) handwritten digit 

recognition (Burges & Scholkopf, 1997; Cortes & Vapnik, 1995), object recognition 

(Papageorgiou et al., 1998),  marketing (Ben-David & Lindenbaum, 1997), speech recognition 

(Schmidt & Herbert, 1996),  medical diagnosis (Tarassenko et al., 1995), manufacturing yield 

estimation (Stoneking, 1999), and so on. Due to the wide range of real-world applications, it is 

considered one of the benchmarks in the field of statistical learning and machine learning. 

The following are the key benefits of SVM: 

➢ SVM maximizes the margin of the decision boundary using quadratic optimization 

techniques which find the optimal hyperplane. It finds a unique solution to a quadratic 

programming problem (QPP). Because optimization takes place in convex space, a global 

minimum is obtained, unlike with neural networks, which might become trapped at local 

minima. This form distinguishes SVM from Neural Networks, which provide many 

solutions based on local minima, making them untrustworthy across various samples. 
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➢ The spirit of the Structural Risk Minimization (SRM) principle is used in SVMs. It 

provides a trade-off between hypothesis space complexity (the VC dimension of 

approximation functions) and the quality of fitting the training data in a broad model of 

capacity control (empirical error). It employs the SRM principle, which aims to strike a 

balance between preventing overfitting and minimizing empirical risk.  

➢ SVM can handle large feature spaces, therefore it's beneficial when there are more 

features than training samples. 

➢ When we have no notion what data we are dealing with, SVMs come in handy. Only if 

unknown parameters are well-chosen, does SVM generalizes new data well (in Gaussian 

kernel). This also means that choosing a proper value can ensure good performance even 

if the input is biased. Works well with even unstructured and semi-structured data like 

text, Images, and trees. 

➢ SVM's actual strength is the kernel technique. We can solve any complex problem with 

the right kernel function. Support vectors and the kernel function can be used to represent 

the resulting classifier. 

➢ It handles high-dimensional data relatively well. As a result, it works on a higher 

dimension. 

➢ In practice, SVM models have greater generalizability, and the risk of over-fitting is less.  

➢ When classes are separable, SVM seems to be the best algorithm. 

➢ Only the support vectors affect the hyperplane, hence outliers have less impact. 

➢ They have two key advantages over newer algorithms like neural networks: higher speed 

and better performance with a limited number of samples (in the thousands) 

➢ There are only a few parameters to optimize in SVM. 

➢ They maximize the margin of the decision boundary using quadratic optimization 

techniques which find the optimal hyperplane.  

➢ SVM is memory efficient 

1.2 Support Vector Machine 

 By solving a QPP with linear inequality constraints, the SVM method determines a 

multidimensional hyperplane (Burges, 1998; Cristianini & Shawe-Taylor, 2000). It produces 

outstanding outcomes with a high degree of generalization. The fundamental disadvantage of 

SVM is that it has a high learning cost i.e., 𝜊(𝑚3), where 𝑚 is the number of training samples. 

This limits its applicability to minor and medium-sized issues. To overcome this flaw, Platt 
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(1998) proposed the Sequential Minimization Optimization (SMO) technique, which divides a 

large QPP into a sequence of smaller subproblems. Due to the usage of a single threshold value, 

the Platts model has a source of inefficiency. To address this issue, a new strategy was 

developed to improve the efficiency of the SMO algorithm (Keerthi et. al., 2001). For the 

problem of pattern classification and regression, SVMlight is a well-known version of Vapnik's 

SVM. It breaks down a major difficulty into a succession of smaller issues (Osuna et. al., 1997). 

This decomposition separates the data into working and non-working sets. It employs quick 

optimization methods based on the steepest feasible descent method for efficient working set 

selection (Joachims, 1999). The key benefit of this decomposition is that it can efficiently 

handle thousands of support vectors. Another novel method for classification and regression, 

known as LIBSVM, was proposed by Chang & Lin (2011). It is founded on the SMO concept, 

which was first suggested by Fan et al. (2005). It is now one of the most extensively used SVM 

implementations. Many SVM variations are supported by LIBSVM, including C-support vector 

classification (C-SVC) (Boser et al., 1992; Cortes and Vapnik, 1995), v-support vector 

classification (v -SVC) (Scholkopf et al., 2000), one class SVM (Scholkopf et al., 2001), epsilon 

SVR (ε-SVR) (Scholkopf et al., 2000), and v-support vector regression (Scholkopf et al. 2001). 

A novel form of SVMTorch proposed (Collobert & Bengio, 2001), which is similar to 

SVMLight proposed by Joachims (1999) for classification tasks, is introduced by introducing 

the idea of a decomposition algorithm. The key advantage is that it can handle large-scale 

problems quickly. 

1.2.1 Classification 

 Simplified dual and successive overrelaxation approaches to solve this dual problem have 

been developed for a basic reformulation of SVM derived by adding one-half of the square of 

the bias term in the regularization term (Mangasarian & Musicant, 1999). The linear equality 

restriction is removed in dual with this formulation, allowing one variable to be changed at a 

time. As a result, a very simple updating rule emerges. Mangasarian and Musicant (2001a) 

looked into the simplified dual formulation of 2-norm SVM and how to solve it using an active 

set technique. The 2-norm SVM is a modified SVM created by doubling the bias factor in the 

regularization term and measuring training loss in squared not linear. The 2-norm approach has 

the advantage of resulting in a simpler positive definite dual problem with simply non-negativity 

restrictions. They limit themselves to linear SVM and describe their solution using an active set 

technique that only requires matrix inversions that scale with the number of features rather than 

the size of the training dataset. For low-dimensional feature spaces, this results in a highly quick 

approach. 
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 An unconstrained optimization (implicit Lagrangian) issue for the dual of 2-norm linear 

SVM is proposed, as well as a simple linearly convergent iterative algorithm for solving it 

termed Lagrangian SVM (LSVM) is proposed by (Mangasarian & Musicant, 2001b). Because it 

involves the inversion of a matrix of order equal to the dimensions of the input space plus one at 

the start of the iteration, the LSVM approach can handle small to moderate datasets. For non-

linear kernel classification, the LSVM technique does not scale up to very big problems. For 

solving the unconstrained optimization problem for dual of 2-norm SVM, (Fung & 

Mangasarian, 2003) proposes a finite Newton approach that can handle huge datasets for both 

linear and non-linear classifications. In a novel SVM formulation termed smooth SVM (SSVM) 

and a fast Newton algorithm for solving it, a new unconstrained optimization problem is 

considered, and a smoothing technique is applied (Lee & Mangasarian, 2001). The reader is 

referred to for a study of implicit Lagrangian formulation related to the dual of 2-norm SVM and 

Newton method of solving it (Mangasarian & Solodov, 1993, Fung & Mangasarian, 2003). In 

(Fung & Mangasarian, 2001), a new approach known as the proximal support vector machine 

(PSVM) classifier is introduced, in which points are classified based on their proximity to one of 

two parallel planes that are pushed apart as far as feasible. Unlike SVM, which requires the 

solution of a QPP, PSVM just requires the solution of a system of linear equations. In order to 

extend the PSVM to fuzzy models, a fuzzy PSVM is presented (Jaydeva et al., 2004), in which 

each training point is assigned a fuzzy membership for approximating the two parallel planes 

that are kept as far apart as possible, and new points are classified based on their proximity to 

one of the two parallel planes. (Fung & Mangasarian, 2002) investigates a new method known 

as incremental SVM classification, which is capable of updating an existing linear classifier by 

both retiring old data and adding new data. 

 In (Sukeyns & Vandewalle, 1999) a basic reformulation of SVM called least squares 

SVM (LS-SVM) is introduced, which involves equality constraints rather than inequality 

constraints. Instead of using QPP as in SVM, LS-SVM solves a system of linear equations. LS-

SVM, on the other hand, is less robust, and its solution is not sparse, meaning that every training 

point contributes to the final result. Weighted LS-SVM is presented to overcome the sparsity 

problem in LS-SVM (Suykens et al., 2002a). Furthermore, for achieving sparsity in LS-SVM, 

(Cawley & Talbot, 2002) suggests enhanced sparse LS-SVM. 

 In (Schollkopf et al., 2000), a new extension of SVM called v-SVM is proposed, in which 

parameter v is employed in the objective function instead of the regularization parameter. The 

advantage of the v-SVM model is that it uses parameter v to adjust the number of support 

vectors and training mistakes. When the data contains heteroscedastic error structure, i.e., noise 

greatly relies on data location, a variation of v-SVM based on the parametric margin model, 
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entitled par- v -SVM, is proposed (Hao et al., 2008). In (Wang et al., 2014) we discuss a new 

fast technique based on proximal parametric margin-based support vector machines. 

 Unlike PSVM, which seeks proximal parallel planes, a multisurface proximal SVM 

proposed by Mangasarian & Wild (2006) determines non-parallel proximal planes by dropping 

the parallel condition on planes and requiring that data points of each class be proximal to one of 

them while being as far away from the other plane as possible. This leads to the solution of two 

generalized eigenvalue problems, the outcomes of which are eigenvectors that define the non-

parallel planes. 

 Instead of solving two generalized eigenvalue problems as in (Mangasarian & Wild, 

2006), Jaydeva et al. (2007) proposed a new nonparallel classifier called twin SVM (TWSVM), 

in which two nonparallel planes are constructed with one plane being close to data points of one 

class and the other being as far away as possible from data points of the other class. However, 

rather than solving a single huge QPP as in SVM, this results in TWSVM solving two smaller 

QPPs, which makes TWSVM's training speed four times faster. To include the SRM principle 

into TWSVM, Shao et al. (2011) suggested a twin bounded SVM (TBSVM), which solves dual 

problems using the SOR technique to speed up training and appears to be capable of dealing 

with large scale problems. In contrast to TBSVM, an improved twin SVM (ITSVM) suggested 

in (Tian et al., 2014) does not require the computation of inverse matrices before training, and 

linear ITSVM can be simply extended to nonlinear cases. Tian et al. (2013a) suggested a 

nonparallel support vector machine (NPSVM) that uses an ε-insensitive loss instead of the 

quadratic loss used in TWSVM, TBSVM, or ITSVM to solve the sparsity problem. In order to 

gain the benefit of solving two systems of linear equations, least-squares twin SVM (LSTSVM) 

was introduced by Kumar & Gopal (2009), in which equality constraints are assumed in two 

modified primal QPPs of TWSVM rather than solving a pair of dual QPPs with inequality 

constraints.  

 Peng (2010c) presented a v-twin support vector machine by adding new variables and 

parameters v that govern the number of support vectors and margin errors (v-TSVM). A unique 

twin parametric margin support vector machine (TPMSVM) is suggested in the spirit of 

TWSVM and analogous to par- v-SVM (Peng, 2011a). Shao et al (2013b), inspired by the work 

of TPMSVM, proposed least-squares TPMSVM (LSTPMSVM), which solves two fundamental 

problems and produces two systems of linear equations. Ye et al. (2012) introduced a novel 

weighted TWSVM with local information (WLTSVM) that exploits the similarity information 

within samples and considers only the penalty parameter in order to achieve higher or equivalent 

classification accuracy with low computational cost than TWSVM. 
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 In (Chen et al., 2011), the projection twin support vector machine (PTSVM) is a novel 

binary classifier that sets projection directions for each class, ensuring that projected samples of 

one class are well segregated from those of other classes in their respective space. Shao et al. 

(2012) introduced a fast least square projection TWSVM (LSPTSVM), in which a regularization 

term was included, and primal problems were handled by solving two systems of linear 

equations rather than the customary two dual problems. To overcome the PTSVM singularity 

problem, a formulation called projection TWSVM with regularization (RPTSVM) was 

developed by adding a regularization term to PTSVM (Shao et al., 2013a). 

An SVM classifier with pinball loss (Pin-SVM) was recently presented in order to tackle the 

noise sensitivity and instability to resampling difficulties in SVM (Huang et al., 2014b). Pin-

SVM is comparable to SVM in terms of computing complexity, noise insensitivity, and 

resampling stability. In (Huang et al., 2014a), the asymmetric least squares support vector 

machine (aLS-SVM) is investigated using squared pinball loss for classification. Xu et al. 

(2016) suggested a novel twin support vector machine with pinball loss based on the TPMSVM 

and pinball loss experiments (Pin-TSVM). When compared to Pin-SVM, Pin-TSVM is faster 

and achieves better results.  

1.2.2 Regression 

 Regression is a statistical model that attempts to find the underlying mathematical 

relationship between one dependent variable and a series of other changing variables, known as 

independent variables. Legendre and Gauss created the least square approach in the early 

nineteenth century, and it is one of the most extensively used techniques for regression 

problems. By reducing the sum of the squares of the vertical deviations from each data point to 

the line, it calculates the best-fit line for the observed data. When the input qualities are highly 

correlated, the least square approach suffers from autocorrelation and overfitting, and the result 

is an unstable solution. To eliminate the possibility of overfitting, Hoerl (1962) presented a 

novel method called ridge regression. By adding a regularisation element to the objective 

function, it improves generalization across unknown data, which is an improvement over the 

least square technique. This problem's solution is found by solving a system of linear equations. 

A dual version of ridge regression (Saunders et al., 1998; Gammerman et al., 2004) enables us 

to do non-linear regression by employing kernel functions to generate a linear regression 

function in a high-dimensional feature space. Kernel functions are used to represent the dot 

product in a feature space created by the ANOVA decomposition approach. See (Saunders et al., 

1998) for an extension to a fuzzy regression model with crisp inputs and Gaussian fuzzy outputs 

(Hong et al., 2004). 
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 SVMs were invented in the first place to solve classification challenges. However, there 

is a different type of challenge known as regression problems. Vapnik et al. (1997) proposed 

support vector regression (SVR) as an extension of support vector machine (SVM), which has 

demonstrated good generalization performance for time series prediction (Mukherjee et al., 

1997; Muller et al., 1999; Tay & Cao, 2001) and function approximation problems in fields such 

as civil engineering (Dibike et al., 2000), and drug discovery (Demiriz et al., 2001). SVR can be 

formulated as a quadratic programming problem (QPP) having a global optimal solution.  All of 

the main properties of the maximal margin algorithm, such as convexity, duality, sparseness, 

and kernel, are preserved in SVR. SVR introduces an ε-insensitive loss function and accepts 

training data as input, producing a model that ignores any training data that is close (within a 

threshold ε) to the model prediction, similar to SVM for classification. It is well-known that the 

error of misfit in SVR is measured using 𝜀 −insensitive function introduced by Vapnik (2000) 

as the loss function. This function has the property that only samples falling outside of the 

𝜀 −tube around the regression function are considered for computing the misfit error and these 

samples are the support vectors. 

 Smoothing approaches have been effectively utilized to solve a variety of mathematical 

programming issues, including support vector machine pattern categorization (Lee & 

Mangasarian, 2001). A smooth SVR (SSVR) was proposed by Lee et al. (2005) as an 

unconstrained smooth formulation of ε-insensitive SVR achieved by approximating the ε-

insensitive loss function with a smooth function. In (Balasundaram & Singh, 2010), an ɛ-

insensitive support vector regression is given as an unconstrained optimization problem whose 

solution is obtained by solving a system of linear equations using the Newton technique. For 

classification problems, (Mangasarian & Musicant, 2001b) proposes a novel method called 

Lagrangian SVM. Lagrangian ɛ-insensitive SVR formulation is given in based on Lagrangian 

SVM for regression problems (Balasundaram & Kapil, 2010). The main advantage of this 

method is that, rather than solving a quadratic optimization problem, this approach obtains its 

solution by taking the inverse of a matrix of order equal to the number of input samples at the 

start of the iteration. Balasundaram & Kapil (2011) developed an implicit Lagrangian SVR 

formulation whose solution is determined by a set of linear equations based on implicit 

Lagrangian SVM (Fung & Mangasarian, 2003) for classification. The active set SVM (ASVM) 

in (Mangasarian & Musicant, 2001a) method proposed for classification problems is extended to 

regression problems (Musicant & Fienberg, 2004). For an overview of SVM training 

implementation strategies see these papers (Abe, 2005; Schoelkopf & Smola, 2002; Steinwart & 

Christmann; 2008; Shawe-Taylor & Sun, 2011). The interested reader is directed to (Ji & Sun, 

2013; Sun, 2011; Xie & Sun, 2012) an interesting and challenging work on multitask learning 

and multiview learning methods as extensions of kernel-based approaches.  
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 In the spirit of TWSVM (Jayadeva et al., 2007), Peng (2010a) developed twin support 

vector regression (TSVR) for function approximation and regression. TSVR generates a pair of 

𝜺 −insensitive down-bound and up-bound functions such that (i) both the functions lie as close 

as possible to the training data; (ii) all the training data is required to lie above the down-bound 

function but below the up-bound function; (iii) for each training data, its distance from the 

down-bound function and similarly from the up-bound function should be at least 𝜀. This 

strategy results in solving a pair of smaller sized QPPs than solving a single QPP of large size as 

in the standard support vector regression (SVR) learning model (Peng 2010a). The advantage of 

this methodology is that the time complexity of TSVR becomes significantly smaller than SVR 

(Peng, 2010a). Primal TSVR(PTSVR) is formulated (Peng, 2010b) to increase the sparsity of 

TSVR by optimizing the pair of bound functions in the primal space using a quadratic function 

for approximating the non-differentiable loss function. 

PTSVR must solve a set of linear equations to identify the optimal solution in the primal space, r

esulting in increased learning speed. Peng (2012) introduced an efficient twin parametric 

insensitive SVR (TPISVR) that determines a pair of parametric insensitive down- and up-bound 

functions that are solved by two lower-sized QPPs. TPISVR is faster than SVR and works well 

with heteroscedastic noise. Yang et al. (2016) proposed a new parametric-insensitive non-

parallel SVR (PINSVR) that determines a pair of nonparallel proximal functions with a pair of 

different parametric-insensitive nonparallel proximal functions solved by two smaller sized 

QPPs, making it suitable for heteroscedastic noise structure. PINSVR was found to have 

equivalent regression performance to TPISVR, as well as improved bound estimations (Yang et 

al., 2016). 

 A new formulation of TSVR is provided in (Zhong et al., 2012) based on solving pair of 

linear programming problems instead of quadratic programming problems, with the use of 1-

norm distance instead of the square of 2-norm, resulting in higher generalization performance. 

In (Chen et al., 2012), a new SVR called smooth twin support vector regression (STSVR) was 

proposed, whose solution was obtained using the Newton-Armijo algorithm by slightly 

changing the formulation of TSVR as a pair of strongly convex unconstrained minimization 

problems in primal and employing smooth technique (Lee & Mangasarian, 2001b; Mangasarian, 

2002). Lagrangian TSVR (LTSVR) has been proposed as another TSVR version (Balasundaram 

& Tanveer, 2013a). Motivated by the work of implicit Lagrangian SVM for classification (Fung 

& Mangasarian, 2003) and STSVR, Balasundaram & Tanveer (2013b), introduce implicit 

Lagrangian smooth twin SVR (LSTSVR), whose solution is achieved using the Newton-Armijo 

algorithm (Lee and Mangasarian, 2001; Mangasarian, 2002).  

 The fact that 𝜺 −SVR (Scholkopf & Smola, 2002) is based on the SRM concept and 

contains both a regularisation term and an empirical risk term is a significant advantage. TSVR, 
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on the other hand, employs the empirical risk minimization (ERM) principle. The 𝜺 −twin 

support vector regression regressor is based on the SRM principle presented in (Shao et al., 

2013c), and it finds two proximal functions by solving two smaller sized QPPs using the 

successive overrelaxation (SOR) technique. In comparison to TSVR, 𝜺 −TSVR has 

demonstrated a significant improvement in generalization performance while requiring less 

training time. Even if the data points are in different locations in the input space, all training data 

points in TSVR get the same penalties. Because of their varying effects on the bound functions, 

it is fairer to assign distinct penalties to data points. Based on this approach, a weighted TSVR 

(Xu & Wang, 2012) is developed, in which different penalties are assigned to samples based on 

their locations in order to address the over-fitting problem and improve generalization ability. 

 A robust SVR is proposed by Chuang et al. (2002) to overcome the influence of outliers 

in the training dataset, in which a robust cost function, namely the tanh-estimator, is used 

instead of the 𝜺-insensitive loss function. Chen et al. (2017a) suggested a least absolute 

deviation based robust SVR, motivated by the great robustness of least absolute deviation to 

outliers. Huang et al. (2014a) proposed an asymmetric v-tube SVR as an extension of v-SVR 

(Scholkopf et al., 2000), in which an asymmetric loss is used to deal with outliers and 

parameters v and p control the fraction of training data points above and below the tube to 

improve the flexibility of the insensitive tube location. 

 The construction of robust regression models for noisy data samples or data samples 

having outliers is a challenging research problem. The loss function plays an important role in 

obtaining a robust regression model. The popular loss functions used in the literature are the (i). 

quadratic; (ii). absolute value; (iii). 𝜺 −insensitive functions. The quadratic function is smooth 

but is sensitive to samples having a large error of deviation. Though the absolute value and 

𝜺 −insensitive functions are less sensitive to noise, they are only continuous. Huber suggested a 

hybrid yet smooth loss function in which he combined robust linear treatment for large errors 

with quadratic treatment for minor errors (Huber, 1981). It has sparked a lot of discussion in the 

literature because, unlike the quadratic function, outliers with significant deviations are not 

overemphasized, and training points near the prediction function are penalized less than with 1 -

norm. See regression models with Huber loss function in dual solved by Newton method for 

more information (Smola, 1998; Madsen & Nielsen, 1990). The robust Huber error function is 

treated as a convex QPP in the primal space in conjunction with SVR (Zhu et al., 2008; 

Mangasarian & Musicant, 2000). The fundamental benefit of Huber is that it may be used to 

solve problems involving data that has been contaminated by noise. By considering the ε –

insensitive Huber function as a soft insensitive loss function, a novel Bayesian SVR is proposed 

by Chu et al.  (2004). Balasundaram and Meena (2018) introduced asymmetric Huber and 

asymmetric-insensitive Huber SVR formulations in which the loss functions are expressed as 
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the difference of C1 smooth, squared convex functions. These proposed formulations have the 

advantage of assuming simplified strongly convex quadratic forms in primal that were solved 

using a functional iterative approach. By introducing 𝜀 −insensitive Huber function in addition 

to Huber function, robust regression models in primal are constructed by Zhu et al. (2008). 

1.3 Organization of the Thesis 

 There are seven chapters in this thesis. The first chapter is devoted to a review of the 

literature on support vector machines (SVM). The mathematical formulations and methods of 

solution for well-known existing SVM variations for classification and regression problems are 

presented in the second chapter. The next four chapters present our research findings. The last 

chapter summarizes our research findings and suggests research directions for the future. 

Chapter 3 

 In this chapter, we presented a robust twin bounded support vector machine with pinball 

loss (Pin-TBSVM) for feature noise affected datasets. Pin-TBSVM is a non-parallel classifier 

where kernel generated surfaces were determined as the solutions to quadratic programming 

problems. Experimental results on several benchmark datasets show that the proposed method 

achieves improved accuracy performance than the popular traditional methods. Though Pin-

TBSVM is a simple and efficient learning method, it loses sparsity. An increase in the number 

of parameters is a concern and the selection of their optimal values is a practical problem which 

needs attention.  

Chapter 4 

  In this chapter with the aim of obtaining an efficient robust learning model, 𝐿1 −norm-

based twin bounded support vector machine with pinball loss for data classification is presented 

Besides the benefit of less sensitivity to noise property of pinball loss, with the application of 

𝐿1 −norm for within-class scatter minimization, the proposed method also enjoys robustness to 

outliers. As a novel approach to solving, by a simple reformulation of the primal problem 

considered, an equivalent pair of dual QPPs in m variables only is derived (L1-Pin-TBSVM), 

where m is the number of training vectors. In comparison with the twin bounded support vector 

machine (TBSVM), the duals of our proposed L1-Pin-TBSVM are free of inverse matrices and 

the non-linear duals can be obtained from their linear formulations directly by applying the 

kernel trick. Experiments on the Crossplanes dataset where two or four outliers were introduced 

show that the proposed L1-Pin-TBSVM outperforms the other SVM methods in terms of 

accuracy, confirming its robustness to outliers. In addition, numerous empirical results on the 

two-moon synthetic dataset and several benchmark datasets with varying levels of noise clearly 

demonstrate improved generalization ability of L1-Pin-TBSVM at comparable training cost 



 

30 

which further confirms its effectiveness and suitability where robustness is a problem of major 

concern. Though L1-Pin-TBSVM is a simple, efficient learning method, it loses sparsity.  

Chapter 5 

  In this chapter, we presented a novel, efficient 𝐿1 −norm-based nonparallel support 

vector machine classifier with pinball loss (L1-Pin-NPSVM) where its associated optimization 

problem minimizes the scatter loss and the misclassification error by 𝐿1 −norm and pinball loss 

respectively with the aim of having the integrated merits of 𝐿1 −norm and pinball loss in 

achieving enhanced robustness to outliers and bringing noise insensitivity to feature noise. The 

dual formulation of the proposed method solves a pair of QPPs free of inverse kernel matrices. 

Our formulation allows a unified framework for the linear and nonlinear kernels. The 

effectiveness of L1-Pin-NPSVM is evaluated on synthetic and UCI benchmark datasets having 

outliers and/or being contaminated by noise. The results confirm its superiority in terms of 

robustness to outliers and noise insensitivity. In summary, we can conclude that the proposed 

L1-Pin-NPSVM is an efficient method than the other machine-learning methods for real-world 

problems when robustness and noise insensitivity is of major concern.  

Chapter 6  

 Although the error of misfit measured using the epsilon insensitive function of Vapnik 

(Vapnik, 2000) leads to a robust regression model, this function is only continuous and therefore 

the application of popular numerical minimization methods of solving is difficult. In this 

chapter, the Huber function is used as the error function to measure the data misfit having both 

the robustness and differentiability properties. Our proposed formulation leads to solving an 

optimization problem whose solution was obtained by functional iterative methods. Tests with 

both synthetic and real-world data sets confirm the suitability and applicability of our proposed 

robust model. 

Chapter 7 

 This final chapter of the thesis summarizes our research findings and identifies future 

research directions to be pursued. 
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Chapter 2 

 

2Support Vector Machine Techniques 

2.1 Introduction 

 Over the last years, support vector machines (SVMs) proposed by Vapnik et al., in 1990 

have emerged as one of the most effective supervised machine learning methods for handling 

classification and regression problems. SVMs were originally designed to tackle two-class 

classification problems, but it was later reformulated and expanded to handle multiclass 

classification problems. (Guyon et al., 2002; Jayadeva et al., 2007; Demsar, 2006; Min & Lee, 

2005; Sjoberg et al., 1995; Kumar & Gopal, 2009; Cristianini & Shawe-Taylor). SVMs classify 

the data samples of two classes by generating a hyper-plane in input space that maximizes the 

separation between them. They have been widely studied and successfully applied in various 

pattern recognition areas of research, such as image processing, bioinformatics, and economics 

(Osuna et al., 1997; Guyon et al., 2002; Min & Lee, 2005). SVMs have gained great attention as 

a powerful method because of their solid mathematical foundation in statistical learning theory, 

and good generalization ability to solve nonlinear modelling and classification problems without 

suffering from many local minima. SVM has numerous advantages in comparison to other 

machine learning techniques like artificial neural networks (ANN) for example, it provides a 

global data classification solution. In contrast to other existing data classification algorithms, it 

generates a unique global hyper-plane to separate data samples of distinct classes rather than 

local boundaries. Because SVM is based on the Structural Risk Minimization (SRM) concept, it 

decreases risk during the training phase while also improving generalization. Because of its 

superior performance, SVM is one of the most widely used data mining classification 

techniques, with applications in a variety of fields including detection of disease, text 

categorization, software fault prediction, voice recognition, face recognition, bankruptcy 

prediction, intrusion detection, time series prediction, music emotion recognition, and so on. 

(Chen et al., 2011; Ubeyli, 2008; Sweilam et al., 2010; Lee & Kageura, 2007; Wang & Chiang, 

2009; Wang & Chiang, 2011; Wang & Chiang, 2007; Elish & Elish, 2008; Can et al., 2013; 

Ganapathiraju et al., 2004; Chandaka et al., 2009; Manikandan & Venkataramani, 2011; Jonsson 

et al., 2002; Guo et al., 2001; Shin et al., 2005; Min et al., 2006; Li et al., 2012; Horng et al, 

2011; Kuang et al., 2014; Kim, 2003; Han et al., 2009). 
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 In sections 2.2 and 2.3 of this chapter, support vector machines are presented as 

classification and regression techniques, respectively. SVM with hinge loss and SVM classifier 

with pinball loss (Pin-SVM) are discussed in subsections 2.2.1 and 2.2.2. In subsections 2.2.3, 

2.2.4, and 2.2.5, TWSVM and its regularized variants, twin bounded SVM (TBSVM) and Twin 

Support Vector machine with pinball loss, are discussed. L1-norm based least-squares TBSVM 

(L1-LSTBSVM) and Twin Parametric Margin Support Vector Machine (TPMSVM) are 

discussed in subsections 2.2.6 and 2.2.7. SVR and LS-SVR are discussed in subsections 2.3.1 

and 2.3.2. These classification and regression techniques mentioned in this chapter will be 

utilized as needed in the following chapters to compare our proposed methods. 

2.2 Classification Techniques 

 Suppose we have given a binary classification problem where each and every observation 

of the classification training data 

{(x1,y1),…,(xm, ym)}, xi
t = (xi1,…,xin)

t ∈ X ⊆Rn,  yi ∈ Y  = {-1, +1}  (2.1) 

selected from an unknown probability distribution p(x, y). Let H stand for a hypothesis set of 

linear decision functions that maps X  to Y, i.e. 

H = { f | f (x) = wtx + b},  w, x ∈ Rn, b ∈ R  (2.2) 

 The loss function is represented by the symbol L: Y × Y→R+ that provides a non-negative 

real value to any pair (𝑦𝑖 , �̃�𝑖) where �̃�𝑖  =  𝑓(𝒙𝑖) such as 0-1 loss, linear hinge loss, squared 

hinge loss, logistic loss, and pinball loss. Table 2.1 contains the definitions of these loss 

functions, and the Figure 2.1 depicts their graphs. The goal of classification is to discover a 

hypothesis f ∈
 
H that reduces the predicted risk or generalization error given by (Kecman, 2001). 

𝑅[𝑓] = 𝐸
𝒙~𝑝(𝒙,𝑦)

{𝐿(𝑦, 𝑓(𝒙))} = ∫ 𝐿(𝑦, 𝑓(𝒙))𝑝(𝒙, 𝑦)𝑑𝒙𝑑𝑦  (2.3) 

 

 

Figure 2.1 Various classification loss functions 
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Then, as a result of the classification task, a solution will emerge of the form 

g(x) = sign( f (x)) = sign(wtx + b)  (2.4) 

Table 2.1 Various loss functions for classification problem 

Loss function Equations 

Zero-one loss 𝐿0/1(𝑓(𝒙, 𝑦) = {
1 𝑦𝑓(𝒙) ≤ 0
0 otherwise  

Hinge loss 
(Bennett & Mangasaian, 1992) 

Lhinge(y, f (x)) = max(0, 1 – yf(x)) 

Squared Hinge loss Lhinge
2(y, f (x)) = max(0, 1 – yf(x))2

  
Logistic loss  
(Steinwart & Christmann, 2008) 

Llogistic(y, f (x)) = ln(1 + exp( – yf(x))) 

Pinball loss (Huang et al., 2014b) Lτ (y, f (x)) = max(yf(x), – τ yf(x))
 
 

 When dealing with a problem of binary classification, let the vectors of the positive (class 

+1) and negative classes (class -1) be arranged separately making the rows of matrices 𝐴 ∈

𝑅𝑚1×𝑛 and 𝐵 ∈ 𝑅𝑚2×𝑛 respectively. Finally, let 𝐶 = [𝐴; 𝐵] ∈  𝑅𝑚×𝑛  be the matrix of row 

vectors of the whole training set where m = m1 + m2 and xi
t = (xi1,…,xin)

t ∈ Rn

 
 is a row vector of 

matrix C that represents ith data point.  

 

Figure 2.2 Soft margin classifier in two dimensional space 

2.2.1 Support Vector Machine with Hinge Loss 

 In this section, we explain the classical SVM formulation. In the binary classification 

setting, let the set of training samples be {(𝒙𝑖, 𝑦𝑖)}𝑖=1,2,...,𝑚 such that 𝑦𝑖 ∈ {−1, +1} be the class 

label corresponding to the input 𝒙𝑖 ∈ 𝑅𝑛. Suppose we have two classes of observations that are 

linearly separable. Support vector machine aims at determining a separating hyperplane that 

separates the positive samples from the negative samples with largest margin. The margin of the 

hyperplane means the shortest distance between the positive and negative samples that are 

closest to the hyperplane.  

 we seek a linear SVM classifier to determine a hyperplane such that 
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f (x) = wtx + b = 0  (2.5) 

so that the margin between two classes is maximized and the training error is minimized. It can 

be expressed mathematically as a minimization problem with a regularization and empirical risk 

term as the objective function. By solving the following minimization problem, the unknown 

normal vector w in Rn and scalar threshold b may be determined.  

𝑚𝑖𝑛
(𝒘,𝑏)∈𝑅𝑛+1

 
1

2
||𝒘||2 + 𝑐 ∑ 𝐿ℎ𝑖𝑛𝑔𝑒(𝑦𝑖, 𝑓(𝒙𝑖))

𝑚

𝑖=1

  (2.6) 

Where the empirical risk is measured using the hinge loss and is defined as: 

𝐿ℎ𝑖𝑛𝑔𝑒(𝒙, 𝑦, 𝑓(𝒙)) = 𝑚𝑎𝑥{ 0,1 − 𝑦𝑓(𝒙)} and 𝑐 > 0 is a trade-off parameter. With the 

introduction of the vector of slack variables 𝝃 = (𝜉1, … , 𝜉𝑚)𝑡, SVM solves the primal problem. 

So the problem (2.6) can alternatively be stated as a QPP, as shown below. 

𝑚𝑖𝑛
(𝒘,𝑏,𝝃)∈𝑅𝑛+1+𝑚

 
1

2
||𝒘||2 + 𝑐 ∑ 𝜉𝑖

𝑚

𝑖=1
 

 subject to 𝑦𝑖(𝒘𝑡𝒙𝑖 + 𝑏) ≥ 1 − 𝜉𝑖,  𝜉𝑖 ≥ 0,  𝑖 = 1, … , 𝑚 

 (2.7) 

Due to measurement or data input errors, real-world training data is not flawless and contains 

noise. We introduce a slack variable ξi for each ith data point as a penalty to capture its deviation 

from its respective supporting hyperplane so that the supporting hyperplane is unconstrained by 

it, as shown in Figure 2.2, to reduce the impact of training data points, which are thought to be 

due to noise, on the size of margin. 

 Instead of solving the primal optimization problem (2.7), its dual problem is solved by 

introducing the vector of  Lagrangian multipliers α = [α1,…, αm]t  and β = [β1,…, βm]t  such that 

αi ≥ 0, βi ≥ 0  for all 𝑖 = 1,2, . . . , 𝑚, the Lagrangian function for (2.7) can be determined to be 

 𝐿(𝒘, 𝑏, 𝝃, 𝜶, 𝜷) =
1

2
||𝒘||2 + 𝑐 ∑ 𝜉𝑖 − ∑ 𝛼𝑖(𝑦𝑖(𝒘𝑡𝒙𝑖 + 𝑏) − 1 + 𝜉𝑖) − ∑ 𝛽𝑖𝜉𝑖

𝑚

𝑖=1

𝑚

𝑖=1

𝑚

𝑖=1

 

 

According to 

𝜕𝐿

𝜕𝒘
= 𝒘 − ∑ 𝛼𝑖𝑦𝑖𝒙𝑖 = 0, 

𝑚

𝑖=1

𝜕𝐿

𝜕𝑏
= ∑ 𝛼𝑖𝑦𝑖 = 0,  and 

𝜕𝐿

𝜕𝜉𝑖
= 𝑐 − 𝛼𝑖 − 𝛽𝑖, ∀𝑖 = 1, … , 𝑚

𝑚

𝑖=1

 

the dual problem of (2.7) can be found in the following way: 

 

𝑚𝑖𝑛
𝛼∈𝑅𝑚

 
1

2
∑ 𝛼𝑖𝛼𝑗

𝑚

𝑖,𝑗=1

𝑦𝑖𝑦𝑗(𝒙𝑖
𝑡𝒙𝑗) − ∑ 𝛼𝑖

𝑚

𝑖=1
 

subject to ∑ 𝑦𝑖𝛼𝑖 = 0,  0 ≤ 𝛼𝑖 ≤ 𝑐  for 𝑖 = 1, … , 𝑚

𝑚

𝑖=1

 

 (2.8) 

We obtain the optimal values for dual variables after optimizing the above QPP, and the 

separating hyperplane (2.5) becomes 
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𝑓(𝒙) = ∑ 𝛼𝑖𝑦𝑖(𝒙𝑖
𝑡 ⋅ 𝒙) + 𝑏

𝑚

𝑖=1

  (2.9) 

The set of support vectors S can be found using the KKT condition, and then b can be calculated 

as follows: (Abe, 2005) 

𝑏 =
1

|𝑆|
∑ (𝑦𝑗 − ∑ 𝛼𝑖𝑦𝑖(𝒙𝑖

𝑡 ⋅ 𝒙𝑗)

𝑚

𝑖=1

)

𝑗∈𝑆

 
 

(2.10) 

 The linear SVM decision function as (2.4) is given by 

𝑔(𝒙) = 𝑠𝑖𝑔𝑛(𝑓(𝒙)) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑖𝑦𝑖𝒙𝑖
𝑡𝒙 + 𝑏

𝑚

𝑖=1

) 
 

(2.11) 

 We've talked about a linear SVM that determines a linear separating hyperplane so far, 

however many real-world datasets are linearly inseparable, necessitating more expressive non-

linear functions than linear separating hyperplanes. Linear SVMs have the unique characteristic 

of being easily extended to non-linear SVMs (Boser et al., 1992). The strategy is as follows in 

principle. Through a nonlinear mapping function ϕ: X→F, all the training data points xi ∈ Rn are 

transferred from their input space X to a higher dimension dot product space called feature space 

F, as shown in Figure 2.3. (Boser et al.,1992; Scholkopf & Smola, 2002; Shawe-Taylor & 

Cristianini, 2004). The SVM then looks for a linear separating hyperplane in F with a maximum 

margin that corresponds to a nonlinear function in the input space. We can't be sure that the 

problem will be linearly separable in F, so we'll use slack variables to deal with the misclassified 

data points once more. 

 The nonlinear SVM can be simply calculated by solving the dual problem obtained by 

substituting ϕ(xi)
txj for the dot product (xi

t  xj) in the dual problem (2.8) of the linear SVM 

formulation. In F, the optimal separating hyperplane is given by the following equation (2.12) 

 
               Input space Feature space 

Figure 2.3 Mapping into a higher dimensional feature space (Courtesy: Shawe-Taylor & 

Cristianini, 2004). 

𝑓(𝒙) = 𝒘𝑡𝜙(𝒙) + 𝑏 = 0 (2.12) 
 

This can be calculated by solving the dual QPP given below 
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𝑚𝑖𝑛
𝛼∈𝑅𝑚

 
1

2
∑ 𝛼𝑖𝛼𝑗

𝑚

𝑖,𝑗=1

𝑦𝑖𝑦𝑗𝜙(𝒙𝑖)𝑡𝜙(𝒙𝑗) − ∑ 𝛼𝑖

𝑚

𝑖=1

 

subject to ∑ 𝑦𝑖𝛼𝑖 = 0,  0 ≤ 𝛼𝑖 ≤ 𝑐  for 𝑖 = 1, … , 𝑚

𝑚

𝑖=1

 

 

(2.13) 

If there is a "kernel function" k such that k(xi, xj) =  ϕ(xi)
t

 
xj, we can utilize it instead of knowing 

the function ϕ(  ) explicitly. The separating hyperplane in F, in this case, can be determined as 

follows: 

𝑓(𝒙) = ∑ 𝛼𝑖𝑦𝑖𝑘(𝒙𝑖 , 𝒙) + 𝑏

𝑚

𝑖=1

 
 

(2.14) 

and 

𝑏 =
1

|𝑆|
∑ (𝑦𝑖 − ∑ 𝛼𝑖𝑦𝑖𝑘(𝒙𝑖, 𝒙)

𝑚

𝑖=1

)

𝑗∈𝑆

 
 

(2.15) 

The following formula is used to calculate the nonlinear SVM decision function: 

𝑔(𝒙) = 𝑠𝑖𝑔𝑛(𝑓(𝒙)) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑖𝑦𝑖𝒌(𝒙𝑖 , 𝒙) + 𝑏

𝑚

𝑖=1

) (2.16)  

  A symmetric function k(⋅,⋅) is a kernel function if it meets the Mercer's condition 

(Cristianini & Shawe-Taylor, 2000), which asserts that for every function g(x), ∫ 𝑔 (x)2 dx < ∞ 

and the inequality ∫ 𝑘 (x,z) g(x) g(z) dx dz ≥ 0.  

The following are some of the most widely utilised kernels: 

a. Linear Kernel :  k(x1, x2) = x1
t
 ⋅ x2 

b. Polynomial kernel:  k(x1, x2) = (x1
t
 ⋅ x2 + 1)

d ,  d >1 

c. Gaussian/RBF kernel:  k(x1, x2) = exp(-μ ||x1 - x2||2),   μ > 0  

d. Sigmoidal kernel: k(x1, x2) =  tanh(a (x1
t
 ⋅ x2) + b) , a > 0, b > 0 

where x1, x2 ∈ Rn and d, μ, a, b are user defined kernel parameters.  

2.2.2 Support Vector Machine with Pinball Loss 

  Though SVM provides a sparse global solution, however, since it uses hinge loss to 

maximize the distance between the closest data points of the two classes, its resulting classifier 

is prone to feature noise and is unstable for re-sampling. As a significant approach to overcome 

this drawback, a robust SVM based on pinball loss (Pin-SVM) is proposed in (Haung et al., 

2014b) where for measuring the training error the pinball loss is considered and it is defined as 

(Haung et al., 2014b) 

𝐿𝜏(𝒙, 𝑦, 𝑓(𝒙)) = {
1 − 𝑦𝑓(𝒙),     1 − 𝑦𝑓(𝒙) ≥ 0,
−𝜏(1 − 𝑦𝑓(𝒙)),  1 − 𝑦𝑓(𝒙) < 0,

 
 

(2.17) 
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where 0 ≤ 𝜏 ≤ 1  is a parameter. Pinball loss is illustrated as a geometrical representation for a  

variety of values of 𝜏 is shown in Figure 2.4. 

 

Figure 2.4 Plots of pinball loss 

Note that 𝐿𝜏(𝒙, 𝑦, 𝑓(𝒙)) = 𝑚𝑎𝑥{ 0, (1 − 𝑦𝑓(𝒙))} + 𝜏 𝑚𝑎𝑥{ 0, −(1 − 𝑦𝑓(𝒙))}. Clearly, when 

𝜏 = 0 and 𝜏 = 1 imply the pinball loss becomes the hinge loss and absolute loss respectively. 

Thus, pinball can be regarded as a trade-off considering the hinge loss and −1L norm loss and it 

combines the advantages of both of them.  

 Following the problem formulation of hinge SVM, the linear pinball loss support vector 

machine (Pin-SVM) (Haung et al., 2014b) can be obtained in the form  

𝑚𝑖𝑛
(𝒘,𝑏,𝝃)∈𝑅𝑛+1+𝑚

 
1

2
||𝒘||2 + 𝑐 ∑ 𝜉𝑖

𝑚

𝑖=1

 
                        subject to         𝑦𝑖(𝒘𝑡𝒙𝑖 + 𝑏) ≥ 1 − 𝜉𝑖,    

             𝑦𝑖(𝒘𝑡𝒙𝑖 + 𝑏) ≤ 1 +
1

𝜏
𝜉𝑖,  𝑖 = 1, … , 𝑚. 

 

(2.18) 

By introducing Lagrange vectors α = (α1,…,αm)t

 
and β = (β1,…, βm)t

 
 the dual of (2.18) can be 

obtained as follows 

𝑚𝑖𝑛
(𝜶,𝜷)∈𝑅𝑚+𝑚

 
1

2
∑ 𝑦𝑖𝑦𝑗

𝑚

𝑖,𝑗=1

(𝐱𝑖
𝑡 𝐱𝑗)(𝛼𝑖– 𝛽𝑖)(𝛼𝑖– 𝛽𝑖) – ∑(𝛼𝑖– 𝛽𝑖)

𝑚

𝑖=1

 

           subject to     ∑(𝛼𝑖– 𝛽𝑖)𝑦𝑖

𝑚

𝑖=1

=  0,   

𝛼𝑖  +  
1

𝜏
𝛽

𝑖
 =  𝑐, 𝛼𝑖, 𝛽

𝑖
 ≥   0  for 𝑖 =  1, … 𝑚 

 

 

(2.19) 

We get the optimal values for Lagrangian vectors after optimizing (2.19), and then w and b can 

be calculated. For the linear situation, the Pin-SVM decision function is 

𝑔(𝐱)  =  𝑠𝑖𝑔𝑛(∑(

𝑚

𝑖=1

𝛼𝑖 – 𝛽𝑖 )(𝐱𝑖
𝑡 ⋅ 𝐱𝑖)  + 𝑏) 

 

(2.20) 

The dual problem for the nonlinear case can be obtained as (2.20), using the kernel technique. 
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𝑚𝑖𝑛
(𝜶,𝜷)∈𝑅𝑚+𝑚

 
1

2
∑ 𝑦𝑖𝑦𝑗

𝑚

𝑖,𝑗=1

𝑘(𝐱𝑖
𝑡 𝐱𝑗)(𝛼𝑖– 𝛽𝑖)(𝛼𝑖– 𝛽𝑖) – ∑(𝛼𝑖– 𝛽𝑖)

𝑚

𝑖=1

 

           subject to     ∑(𝛼𝑖– 𝛽𝑖)𝑦𝑖

𝑚

𝑖=1

=  0,   

𝛼𝑖  +  
1

𝜏
𝛽

𝑖
 =  𝑐, 𝛼𝑖, 𝛽

𝑖
 ≥   0  for 𝑖 =  1, … 𝑚 

 

(2.21) 

where k(⋅,⋅) is a kernel function of your choice. The decision function for nonlinear Pin-SVM 

can be obtained after the solution of (2.21) is known. Pin-SVM’s computational complexity is 

comparable to that of the SVM with hinge loss. It's easy to see how pinball loss penalizes all 

successfully recognized patterns, bringing them closer to the classifier. The major advantage of 

penalizing the correctly classified patterns is that with the increase in the value of 𝜏, the width of 

the margin increases and thereby insensitivity with respect to noise around the decision 

boundary will be achieved. For a more in-depth analysis on Pin-SVM, see (Haung et al., 2014b).  

2.2.3 Twin Support Vector Machine 

 With the aim of reducing training costs, following the work on nonparallel SVM called 

Proximal SVM via Generalized Eigenvalues (GEPSVM) introduced in (Mangasarian & Wild, 

2006), twin SVM (TWSVM) for binary classification was proposed recently by Jayadeva et al., 

(2007). TWSVM seeks two nonparallel hyperplanes with the property that each one of them is 

as close as possible to inputs of one of the two classes and at the same time at least one unit 

distance away from the inputs of the other class. Despite its excellent generalization 

performance, learning by SVM is much more expensive when the size of the problem is large. 

However, since it solves two smaller sized QPPs leading to approximately four times faster 

learning speed than SVM, the TWSVM (Jayadeva et al., 2007). becomes a very popular method 

in the literature of machine learning.  

Let 𝑇 = {(𝒙1, +1), … , (𝒙𝑚1
, +1), (𝒙𝑚1+1, −1), … , (𝒙𝑚1+𝑚2

, −1) } be the set of training 

vectors considered. Let the vectors of the positive and negative classes be arranged separately 

making the rows of matrices 𝐴 ∈ 𝑅𝑚1×𝑛 and 𝐵 ∈ 𝑅𝑚2×𝑛 respectively. Finally, let 𝐶 = [𝐴; 𝐵] be 

the matrix of row vectors of the whole training set. 

The linear TWSVM seeks a pair of non-parallel hyperplanes of the form 

𝑓1(𝐱) =  𝐰𝟏
𝒕 𝐱 + 𝑏1  =  0  and  𝑓2(𝐱)  =  𝐰𝟐

𝒕 𝐱 +  𝑏2  =  0 
 

(2.22) 

TBSVM solves the pair of QPPs of the form below  

𝑚𝑖𝑛
(𝒘1,𝑏1,𝝃2)∈𝑅𝑛+1+𝑚2

  
1

2
||Aw1 + e1b1||2 + c1𝐞2

𝑡 ξ2 

                         subject to          – ( Bw1 + e2b1) + ξ2 ≥ e2,  ξ2 ≥ 0 

 

(2.23a) 

and  
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𝑚𝑖𝑛
(𝒘2,𝑏2,𝝃1)∈𝑅𝑛+1+𝑚1

  
1

2
||Bw2 + e2b2||2 + c2𝐞1

𝑡ξ1 

                         subject to  ( Aw2 + e1b2) + ξ1 ≥ e1,  ξ1 ≥ 0 

 

(2.23b) 

   

where for 𝑘 = 1,2, 𝑐𝑘, 𝑐𝑘+1 >  0  are regularization parameters, 𝝃𝑘 ∈ 𝑅𝑚𝑘  is a vector of 

slack variables, bk∈R, are unknowns and  𝒆𝑘 ∈ 𝑅𝑚𝑘 is the vector of ones. By solving their 

Lagrangian duals and applying KKT conditions, the solution of the pair of QPPs (2.23a) and 

(2.23b) can be derived indirectly. The dual of QPPs (2.23a) and (2.24b) can be obtained using 

the Lagrangian vectors u1∈Rm2 and u2∈Rm1. 

 

𝑚𝑖𝑛
𝒖1∈𝑅𝑚2

  
1

2
 𝐮1

𝑡 H(GtG)-1Htu1 –𝐞2
𝑡 u1 

                          subject to 0  ≤  u1  ≤  c1e2 

 

(2.24a) 

and  

𝑚𝑖𝑛
𝒖2∈𝑅𝑚1

  
1

2
 𝐮2

𝑡 G(HtH)-1Gtu2 –𝐞1
𝑡 u2 

                          subject to 0  ≤  u2  ≤  c2e1 

 

(2.24b) 

G = [A e1],  H = [B e2] 
 are augmented matrices, respectively. The augmented vectors [𝐰1

𝑡 b1]
t  

and  [𝐰2
𝑡 b2]

t

 
 can be generated as  

                              [𝐰1
𝑡 b1] = – (GtG)-1Htu1 and [𝐰2

𝑡 b2] = (HtH)-1Gtu2. 

The augmented vectors are generated after optimizing the dual QPPs (2.24a) and (2.24b), and 

then any new data point x∈Rn is allocated to class rk (r1 = +1, r2 = -1), based on its proximity to 

the non-parallel hyperplanes, i.e. 

𝑘 =  arg 𝑚𝑖𝑛
𝑘=1,2

| 𝐱𝑡𝐰𝑘  + 𝑏k | (2.25) 

where the perpendicular distance between the data point x and the hyperplane xt wk + bk is given 

by | xt wk + bk |. 

The nonlinear TWSVM looks for a pair of kernel generated surfaces to handle the linearly 

inseparable data of the form 

𝐾(𝐱𝑡 , 𝐶𝑡) 𝐰1 +  𝑏1  =  0  and  𝐾(𝐱𝑡, 𝐶𝑡) 𝐰2  + 𝑏2 =  0 (2.26) 

K(xt, C 
t) = (k(x, x1),…,k(x, xm)) is a row vector in Rm, and C = [A; B] ∈R(m1 + m2) × n. Solving the 

following QPPs obtains the kernel generated surfaces (2.26) 

𝑚𝑖𝑛
(𝒘1,𝑏1,𝝃2)∈𝑅𝑚+1+𝑚1

  
1

2
|| K(A, C 

t)w1 + e1b1||2 + c1𝐞2
𝑡 ξ2 

                         subject to          – (K(B, C 
t) w1 + e2b1) + ξ2 ≥ e2,  ξ2 ≥ 0 

 

(2.27a) 

and 

                           𝑚𝑖𝑛
(𝒘2,𝑏2,𝝃1)∈𝑅𝑚+1+𝑚1

  
1

2
|| K(B, C 

t)w2 + e2b2||2 + c2𝐞1
𝑡ξ1 

                          subject to  (K(A, C 
t)w2 + e1b2) + ξ1 ≥ e1,  ξ1 ≥ 0 

 

(2.27b) 

  

 

respectively, where w1, w2∈Rm and b1, b2∈R. 
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The duals of the given QPPs can be constructed using the Lagrangian vectors u1∈Rm2

 
and 

u2∈Rm1, respectively. 

𝑚𝑖𝑛
𝒖1∈𝑅𝑚2

  
1

2
 𝐮1

𝑡 H(GtG)-1Htu1 –𝐞2
𝑡 u1 

                          subject to    0  ≤  u1  ≤  c1e2 

 

(2.28a) 

and  

𝑚𝑖𝑛
𝒖2∈𝑅𝑚1

  
1

2
 𝐮2

𝑡 G(HtH)-1Gtu2 –𝐞1
𝑡 u2 

                          subject to    0  ≤  u2  ≤  c2e1 

 

(2.28b) 

In the above given equations G = [K(A, C t)  e1],  H = [K(B, C t)  e2]. The augmented vectors [𝐰1
𝑡 

b1]
t and [𝐰2

𝑡 b2]
t

 
 can be generated as 

  [𝐰1
𝑡 b1] = – (GtG)-1Htu1 and [𝐰2

𝑡 b2] = (HtH)-1Gtu2.  

After optimizing the above dual QPPs to obtain these augmented vectors, any new data point 

x∈Rn is allocated to class rk (r1 = +1, r2 = -1), based on its proximity to the kernel generated 

surfaces, i.e. 

𝑘 =  arg 𝑚𝑖𝑛
𝑘=1,2

| 𝐾(𝐱𝑡 , 𝐶𝑡)𝐰𝑘  + 𝑏k  | (2.29) 

2.2.4 Twin Bounded Support Vector Machine 

 Implementing the structural risk minimization principle as the backbone for obtaining 

better performance of the classifier, twin bounded SVM (TBSVM) is proposed in (Shao et al., 

2011) as an extension of TWSVM. The structural risk minimization concept is implemented by 

introducing the regularization term, which is a substantial advantage of  TBSVM over TWSVM. 

The following primal TBSVM formulation for linear case is obtained by adding the 

regularisation terms in TWSVM's primal QPPs (2.23a) and (2.23b)  

 𝑚𝑖𝑛
(𝒘1,𝑏1,𝝃2)∈𝑅𝑛+1+𝑚2

  
1

2
c3(||w1||2 + b1

2)+
1

2
||Aw1 + e1b1||2 + c1𝐞2

𝑡 ξ2 

                           

                          subject to  – ( Bw1 + e2b1) + ξ2 ≥ e2,  ξ2 ≥ 0 

  

 

(2.30a) 

 

 and 

𝑚𝑖𝑛
(𝒘2,𝑏2,𝝃1)∈𝑅𝑛+1+𝑚1

  
1

2
c4(||w2||2 + b2

2) +
1

2
||Bw2 + e2b2||2 + c2𝐞1

𝑡ξ1 

 

                          subject to  ( Aw2 + e1b2) + ξ1 ≥ e1,  ξ1 ≥ 0 

  

 

(2.30b) 

The dual of the abovementioned pair of QPPs (2.30a) and (2.30b) can be constructed using the 

Lagrangian vectors u1∈Rm2

 
and u2∈Rm1. 

                   𝑚𝑖𝑛
𝒖1∈𝑅𝑚2

  
1

2
 𝐮1

𝑡 H(GtG + c3I)-1Htu1 –𝐞2
𝑡 u1 

                           subject to    0  ≤  u1  ≤  c1e2 

 

(2.31a) 

and 
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                      𝑚𝑖𝑛
𝒖2∈𝑅𝑚1

  
1

2
 𝐮2

𝑡 G(HtH + c4I)-1Gtu2 –𝐞1
𝑡 u2 

                           subject to    0  ≤  u2  ≤  c2e1 

 

(2.31b) 

where G = [A  e1],  H = [B  e2] 
. The augmented vectors [𝐰1

𝑡 b1]
t and [𝐰2

𝑡 b2]
t can be obtained as 

  [𝐰1
𝑡 b1] = – (GtG + c3)-1Htu1 and [𝐰2

𝑡 b2] = (HtH + c4)-1Gtu2 

In a similar way, The kernel-produced surfaces (2.26) for TBSVM can be calculated using the 

following primal TBSVM formulation for nonlinear cases by adding the regularisation terms in 

primal QPPs (2.27a) and (2.27b) of TWSVM. 

 

                          𝑚𝑖𝑛
(𝒘1,𝑏1,𝝃2)∈𝑅𝑚+1+𝑚1

  
1

2
 c3(||w1||2 + b1

2)+
1

2
|| K(A, C 

t)w1 + e1b1||2 + c1𝐞2
𝑡 ξ2 

                           

                           subject to  – (K(B, C 
t) w1 + e2b1) + ξ2 ≥ e2,  ξ2 ≥ 0 

  

 

(2.32a) 

and 

                         𝑚𝑖𝑛
(𝒘2,𝑏2,𝝃1)∈𝑅𝑚+1+𝑚1

  
1

2
 c4(||w2||2 + b2

2) +
1

2
|| K(B, C 

t)w2 + e2b2||2 + c2𝐞1
𝑡ξ1 

 

                           subject to  (K(A, C 
t)w2 + e1b2) + ξ1 ≥ e1,  ξ1 ≥ 0 

  

 

(2.32b) 

 Asssuming G = [K(A, C t)  e1], and H = [K(B, C t)  e2]  
in  (2.32), the duals of (2.32a) and 

(2.32b) are equivalent to  (2.31a) and (2.31b) respectively. 

 Any new data point x∈Rn is allocated to class rk (r1 = +1, r2 = -1)
 
by (2.25) for linear case 

and (2.29) for nonlinear case once the augmented vectors [𝐰1
𝑡 b1]

t and [𝐰2
𝑡 b2]

t of TBSVM are 

known by optimising its dual QPPs. The reader is directed to TBSVM for more information 

(Shao et. al., 2011) 

2.2.5 Twin Support Vector Machine with Pinball Loss  

 Peng (2011a) suggested a twin parametric-margin SVM model (TPMSVM) based on 

TWSVM. wherein two nonparallel hyperplanes are obtained by solving two smaller sized QPPs 

similar to TWSVM. This model is suitable for the heteroscedastic noise that strongly depends on 

the input values. However, it employs the noise sensitive hinge loss function (Xu et.al, 2016). To 

further improve the generalization performance, by employing pinball loss in TPMSVM instead 

of hinge loss, Xu et al. (2016) proposed a novel Pin-TSVM model for datasets corrupted by 

noise. In this section, we briefly discuss Pin-TSVM formulation proposed in (Xu et.al, 2016).  

 Assume that matrix C  ∈  𝑅𝑚 × 𝑛
 represents training set of class +1 and class -1, i.e. 

containing m1 number of data points of class +1 represented by a matrix A = [ A1;…;Am1]∈

 𝑅𝑚1 × 𝑛
 and m2 number of  data points of class -1 represented by a matrix B ∈  𝑅𝑚2 × 𝑛 so that C 

= [A; B] and m = m1 + m2. 



 

42 

  Supposed that the training data is mapped in a feature space through a nonlinear mapping 

ϕ(⋅). Then, in the feature space nonlinear Pin-TSVM detects two nonparallel hyperplanes  

f1(x) = w1
tϕ(x) + b1 = 0  and  f2(x) = w2

tϕ(x) + b2 =  0 (2.33) 

which can be determined by solving the following QPPs 

𝑚𝑖𝑛
𝒘1,𝑏1,𝝃1

  
1

2
||w1||2 + 

𝑣1

𝑚2
 ( ϕ(B) w1+ b1e2) + 

𝑐1

𝑚1
e1

t ξ1 

  subject to   ϕ(A) w1+ b1e1 ≥  – ξ1 

  ϕ(A) w1+ b1e1 ≤ 
1

𝜏1
ξ1 

 

(2.34a) 

and  

𝑚𝑖𝑛
𝒘2,𝑏2,𝝃2

  
1

2
||w2||2 – 

𝑣2

𝑚1
 ( ϕ(A) w2+ b2e1) + 

𝑐2

𝑚2
e2

t ξ2 

  subject to  – (ϕ(B) w2+ b2e2) ≥ – ξ2 

    – (ϕ(B) w2+ b2e2) ≤ 
1

𝜏2
 ξ2 

 

(2.34b) 

where vi > 0,  ci > 0 : i = 1, 2  are user  defined  parameters; ξ1∈Rm1,  ξ2 ∈Rm2  are slack vectors; 

ϕ(A) = [ϕ(A1,) ;…; ϕ(Am1)]  and  ϕ(B) = [ϕ(B1,) ; … ; ϕ(Bm2)]. With the Lagrangian vectors α1, 

β1∈Rm1 and α2, β2∈Rm2, the duals of  (2.34a) and (2.34b) can be obtained, respectively, as  

𝑚𝑖𝑛
(𝜶1,𝜷1)∈𝑅𝑚1+𝑚1

  
1

2
 (α1 – β1)

t K(A, At) (α1 – β1) – 
𝑣1

𝑚2
e2

t K(B, At) (α1 – β1) 

  subject to  e1
t (α1 – β1) = v1 

  α1 + 
1

𝜏1
β1 = 

𝑐1

𝑚1
e1,     α1≥0,  β1≥0 

 

(2.35a) 

and 

𝑚𝑖𝑛
(𝜶2,𝜷2)∈𝑅𝑚2+𝑚2

  
1

2
 (α2 – β2)

t K(B, Bt ) (α2 – β2) – 
𝑣2

𝑚1
e1

t K(A, Bt )(α2 – β2) 

  subject to   e2
t (α2 – β2) = v2 

  α2 + 
1

𝜏2
β2  = 

𝑐2

𝑚2
e2,     α2≥0,  β2≥0 

 

(2.35b) 

where K(A, Bt ) ∈ 𝑅𝑚1 × 𝑚2; K(A, Bt ) = (k(Ai, B1),…, k(Ai, Bm2))  is the ith row vector of  K(A, Bt ); 

k(Ai, Bj) = ϕ(Ai) ϕ(Bj)
t and k(⋅)

 
is an appropriately chosen kernel function. For a detailed 

discussion on the problem formulation of Pin-TSVM, its method of solution and advantages, see 

(Xu et al, 2016). 

2.2.6 L1-norm based least squares TBSVM (L1-LSTBSVM)   

 Although TBSVM achieves improved classification performance by implementing SRM 

principle and is faster than TWSVM, one needs to solve two QPPs (2.32a)-(2.32b) which is still 

computationally expensive. To address this problem, least-squares TBSVM based on 𝐿1 −norm 

(L1-LSTBSVM) has been proposed recently (Yan et al., 2018) where the inequality constraints 

of TBSVM are replaced by equalities and thereby system of linear equations is solved instead of 

QPPs. In addition to it, as an alternative to 𝐿2 −norm, 𝐿1 −norm is used for intra-class 

compactness so that enhanced robustness to outliers is achieved. 

 L1-LSTBSVM determines two non-parallel hyperplanes of the form 



 

43 

f1(x) = 𝒘1
𝑡 𝒙 + 𝑏1 = 0 and  f2(x) = 𝒘2

𝑡 𝒙 + 𝑏2 = 0 (2.36) 

by solving the following pair of optimization problems (Yan et al., 2018) 

𝑚𝑖𝑛
𝒘1,𝑏1,𝝃1,𝝃2

  
1

2
𝑐3(||𝒘1||2 + 𝑏1

2) + ||𝐴𝒘1 + 𝑏1𝒆1||1 + 
1

2
𝑐1𝝃2

𝑡 𝝃2 

 subject to                −(𝐵𝒘1 + 𝑏1𝒆2) + 𝝃2 = 𝒆2, 

(2.37a) 

and 

𝑚𝑖𝑛
𝒘2,𝑏2,𝜼1,𝜼2

  
1

2
𝑐4(||𝒘2||2 + 𝑏2

2) + ||𝐵𝒘2 + 𝑏2𝒆2||1 +
1

2
𝑐2𝜼1

𝑡 𝜼1 

                subject to                (𝐴𝒘2 + 𝑏2𝒆1) + 𝜼1 = 𝒆1, 

(2.37b)  

where ck > 0 and ck+1 > 0  are user defined parameters; 𝝃𝑘 , 𝜼𝑘 ∈ 𝑅𝑚𝑘 are slack vectors; 𝒆𝑘 ∈

𝑅𝑚𝑘 is the vector of ones and k = 1, 2. It is proposed to solve the above problems by an iterative 

algorithm (Yan et al., 2018). Though L1-LSTBSVM shows satisfactory performance in terms of 

accuracy and learning speed, its extension to non-linear kernel needs further study (Yan et al., 

2018). It is worth noting that the least-squares (LS) loss applied for misclassification is not 

robust to outliers and consequently we can say that L1-LSTBSVM is not high in robustness.   

2.2.7 Twin Parametric Margin Support Vector Machine (TPMSVM) 

 For the purpose of having the combined advantages of faster learning speed and flexible 

parametric-margin, motivated by the study of (Jayadeva et al, 2007) and parametric-margin 

𝜈 −support vector machine (par-𝜈 −SVM) (Hao, 2010), a novel twin parametric-margin support 

vector machine (TPMSVM) for classification was proposed in (Peng, 2011a). The non-parallel 

parametric-margin hyperplanes of TPMSVM are derived by solving a pair of QPPs of smaller 

size. With the non-linear mapping 𝜙(. )into a feature space, the non-parallel hyperplanes defined 

by  

𝑓1(𝒙) = 𝒘1
𝑡 𝜙(𝒙) + 𝑏1 = 0 and 𝑓2(𝒙) = 𝒘2

𝑡 𝜙(𝒙) + 𝑏2 = 0 (2.38) 

are obtained as the solutions of the following pair of optimization problems 

𝑚𝑖𝑛
𝒘1,𝑏1,𝜼1

  
1

2
||𝒘1||2 +

𝑣1

𝑚2
𝒆2

𝑡 (𝜙(𝐵)𝒘1 + 𝑏1𝒆2) +
𝑐1

𝑚1
𝒆1

𝑡 𝜼1 

       subject to   𝜙(𝐴)𝒘1 + 𝑏1𝒆1 ≥ 𝟎1 − 𝜼1,   

                      𝜼1 ≥ 𝟎1  

(2.39a) 

and 

𝑚𝑖𝑛
𝒘2,𝑏2,𝜼2

  
1

2
||𝒘2||2 −

𝑣2

𝑚1
𝒆1

𝑡 (𝜙(𝐴)𝒘2 + 𝑏2𝒆1) +
𝑐2

𝑚2
𝒆2

𝑡 𝜼2 

       subject to         −(𝜙(𝐵)𝒘2 + 𝑏2𝒆2) ≥ −𝜼2, 

(2.39b)  
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                 𝜼2 ≥ 𝟎2 

where 𝑣𝑘 > 0, 𝑐𝑘 > 0(𝑘 = 1,2) are user defined parameters; 𝜼1 ∈ 𝑅𝑚1 , 𝜼2 ∈ 𝑅𝑚2are vectors of 

slack variables and ϕ(A)=[ϕ(A1,);…; ϕ(Am1)] and ϕ(B)=[ϕ(B1,);…; ϕ(Bm2)] are matrices of row 

vectors ϕ(Ai) and ϕ(Bj). With the first term of the objective function, the structural risk is 

minimized. Minimization of the second term leads to negative (positive) class data points to be 

far away from the positive (negative) hyperplane (Peng, 2011a; Xu et al, 2016). Whereas in the 

third term, the positive (negative) class data points lying on the wrong side of the positive 

(negative) hyperplane are taken as misclassified data points and the sum of the misclassification 

error is minimized. TPMSVM solves for parametric-margin hyperplanes with flexible margins 

and thus it is suitable for data having heteroscedastic error structure. However, it loses sparsity. 

For more details on TPMSVM, see (Peng, 2011a). 

2.3 Regression Techniques 

 Suppose we have given a regression problem where each and every observation of the 

regression training data 

{(x1,y1),…,(xm, ym)}, xi
t = (xi1,…,xin)

t X Rn,  yiY R (2.40) 

selected from an unknown probability distribution p(x, y). Let H stand for a hypothesis set of 

linear decision functions that maps X  to Y, i.e. 

H = { f | f (x) = wtx + b},  w, xRn, bR (2.41) 

 The loss function is represented by the symbol L: Y × Y→R+ that provides a non-negative 

real value to any pair (𝑦𝑖 , �̃�𝑖) where �̃�𝑖  =  𝑓(𝒙𝑖) such as Laplacian loss, Gaussian loss, ε-

insensitive loss, quadratic ε-insensitive loss and Huber loss. Table 2.2 contains the definitions of 

these loss functions, and Figure 2.5 depicts their graphs. 

Table 2.2 Various loss functions for regression problem 

Loss function Equations 

Laplacian or Linear loss L1(y, f (x)) = | y - f(x) | 

Gaussian or Quadratic loss L2(y, f (x)) = (y - f(x))2

 

(Linear) ε-insensitive loss (Vapnik, 2000) Lε(y, f (x)) = max(0, | y - f(x) | - ε)  

Quadratic ε-insensitive loss (Gunn, 1998) L2
ε(y, f (x)) = max(0, | y - f(x) | - ε)2

   

Huber loss (Bernhard & Scholkopf, 2002) 𝐿𝐻(𝑦, 𝑓(𝒙)) = {
(𝑦 − 𝑓(𝒙))2,  if |𝑦 − 𝑓(𝒙)| ≤ 𝛾

2𝛾|𝑦 − 𝑓(𝒙)| − 𝛾2   otherwise  
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Figure 2.5 Various loss functions for regression 

 The goal of regression is to discover a hypothesis f ∈
 
H  that reduces the predicted risk or 

generalization error given by (Kecman, 2001). 

𝑅[𝑓] = 𝐸
𝒙~𝑝(𝒙,𝑦)

{𝐿(𝑦, 𝑓(𝒙))} = ∫ 𝐿(𝑦, 𝑓(𝒙))𝑝(𝒙, 𝑦)𝑑𝒙𝑑𝑦 (2.42) 

2.3.1 Support Vector Regression 

 The support vector machine has been used to solve regression problems, such as function 

approximation. It is a regression-oriented version of SVM that retains all of the key aspects of 

the maximal margin technique, such as duality, sparseness, kernel, and convexity. Vapnik 

proposed the Support Vector Regression (SVR) algorithm, which uses an ε-insensitive loss 

function (2000). 

 The linear SVR searches for a function f (x) = wt x + b that minimizes the training error 

while also being as flat as possible, i.e. ||w|| is made as small as possible, in order to discover an 

optimal regressor (approximation function) for the regression problem specified in section 2.3. 

In terms of mathematics, this entails 

𝑚𝑖𝑛
(𝒘,𝑏)∈𝑅𝑛+1

 
1

2
||𝐰||2  + 𝑐 ∑ 𝐿𝜀  (𝑦𝑖, 𝑓( 𝐱𝑖, 𝑦𝑖))

𝑚

𝑖=1

 (2.43) 

Lε (y, f (x)) = max(0, |y – f (x)| – ε) is is the ε-insensitive loss function, where c > 0 is a 

regularisation parameter. The problem (2.43) can also be expressed as follows: 

𝑚𝑖𝑛
𝒘,𝑏,𝝃1,𝝃2

 
1

2
||𝐰||2  + 𝑐 ∑(

𝑚

𝑖=1

𝜉1𝑖 + 𝜉2𝑖) 

 

                        subject to             yi  – (wt xi + b)  ≤  ε + ξ1i,  
     (wt xi + b) – yi  ≤  ε + ξ2i, 

     ξ1i, ξ2i ≥ 0, i = 1,…,m 

(2.44) 

where ξ1 = (ξ11,…, ξ1m)t and ξ2 = (ξ21,…, ξ2m) are vectors of slack variables. In a real-world 

situation, a function f that precisely approximates all pairs (xi, yi) may not exist, hence, similar to 

the soft margin classifier in subsection 2.2.1, we incorporated slack variables ξ1i, ξ2i for each pair 

(xi, yi) to capture their deviations out of ε-zone, as shown in Figure 2.6. 
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Figure 2.6  Geometrical interpretation of support vector regression with ε-insensitive loss 

 

 By considering the Lagrangian functions of the above QPP and then applying the Karush-

Kuhn-Tucker (KKT) conditions leads to its following dual form 

𝑚𝑖𝑛
𝒖1,𝒖2∈𝑅𝑚

 
1

2
∑ (𝑢1𝑖

𝑚

𝑖,𝑗=1

– 𝑢2𝑖) 𝐱𝑖
𝑡𝐱𝑗(𝑢1𝑗 – 𝑢2𝑗)  +  𝜀 ∑(𝑢1𝑖  + 𝑢2𝑖

𝑚

𝑖=1

) – ∑(

𝑚

𝑖=1

𝑦𝑖 (𝑢1𝑖– 𝑢2𝑖 ) 

subject to ∑(

𝑚

𝑖=1

𝑢1𝑖 – 𝑢2𝑖)  =  0 and 0 ≤  𝑢1𝑖, 𝑢2𝑖  ≤   𝑐, 𝑖 = 1, … , 𝑚 

(2.45) 

where u1 = (u11,…,u1m)t

 
and u2 = (u21,…,u2m)t

 
are vectors of Lagrangian multipliers.

 

As a result, f (x)  is stated using u1i and u2i. 

 

𝑓 (𝐱)  = ∑(𝑢1𝑖– 𝑢2𝑖)

𝑚

𝑖=1

𝐱𝑖
𝑡𝐱 + 𝑏 (2.46) 

KKT conditions can be used to find out 𝑏. 

The dual of SVR for nonlinear situations can be produced by applying the kernel method in 

(2.45). 

𝑚𝑖𝑛
𝒖1,𝒖2∈𝑅𝑚

 
1

2
∑ (𝑢1𝑖

𝑚

𝑖,𝑗=1

– 𝑢2𝑖) 𝑘(𝐱𝑖
𝑡 , 𝐱𝑗)(𝑢1𝑗 – 𝑢2𝑗)  

+  𝜀 ∑(𝑢1𝑖  + 𝑢2𝑖

𝑚

𝑖=1

) – ∑(

𝑚

𝑖=1

𝑦𝑖 (𝑢1𝑖– 𝑢2𝑖 ) 

subject to ∑(

𝑚

𝑖=1

𝑢1𝑖 – 𝑢2𝑖)  =  0 and 0 ≤  𝑢1𝑖, 𝑢2𝑖  ≤   𝑐, 𝑖 = 1, … , 𝑚 

 

(2.47) 

where k(⋅,⋅) is the kernel function of choice. For nonlinear SVR, the regression function f(x) is 

(Cristianini & Shawe-Taylor, 2000; Vapnik, 2000) 

𝑓 (𝐱)  = ∑(𝑢1𝑖– 𝑢2𝑖)

𝑚

𝑖=1

𝑘(𝐱𝑖, 𝐱) + 𝑏 (2.48) 
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2.3.2 Least Squares Support Vector Regression 

 In this part, we look at least squares SVR (LS-SVR), a simple reformulation of SVR 

(Suykens, 2000; Suykens et al., 2002b) for nonlinear cases. Instead of using an ε-insensitive 

loss, the LS-SVR uses a least square loss. Rather than solving a QPP as in SVR, LS-SVR needs 

to solve a system of linear equations deriving from KKT conditions. The equality restrictions are 

dealt with using LS-SVR, which is given by 

𝑚𝑖𝑛
(𝒘,𝑏,𝝃)∈𝑅𝑛+1+𝑚

  
1

2
‖𝐰‖2 + 𝑐 ∑ 𝜉𝑖

2

𝑚

𝑖=1

 

subject to yi  = (wtϕ( xi ) + b) + ξi,   i = 1,…,m 

(2.49) 

where ϕ(⋅) denotes a mapping to a higher-dimensional feature space, c > 0 denotes a 

regularisation parameter, and ξ = (ξ1,…, ξm)t denotes a vector of slack variables. After that, the 

Lagrangian with u = (u1,…, um)t of (2.49) is built as 

𝐿(𝐰, 𝑏, 𝐮, 𝛏) =  
1

2
‖𝐰‖2 +

𝑐

2
∑ 𝜉𝑖

2

𝑚

𝑖=1

+ ∑ 𝑢𝑖

𝑚

𝑖=1

(𝑦𝑖– (𝐰𝑡𝜙( 𝐱𝑖 ) +  𝑏)– 𝜉𝑖) (2.50) 

According to  

∂𝐿/ ∂𝐰 =  𝐰– ∑ 𝑢𝑖

𝑚

𝑖=1

𝜙(𝐱𝑖) = 0, ∂𝐿/ ∂𝑏 = ∑ 𝑢𝑖

𝑚

𝑖=1

= 0, ∂𝐿/ ∂𝜉𝑖 =  𝑐𝜉𝑖 −  𝑢𝑖 =  0, ∂𝐿/ ∂𝑢𝑖

= 𝑦𝑖  – 𝐰𝑡𝜙(𝐱𝑖) –  𝑏 – 𝜉𝑖 = 0, 

after removing w and b, the KKT system is derived as follows: 

  

[
0 𝒆𝑡

𝒆 𝐼/𝐶 + 𝐾
] [

𝑏
𝒖

] = [
0
𝒚

] 

where y = (y1,…ym)t, e is a vector of ones of length m, I  is an identity matrix of order m and K is 

a kernel matrix of order m whose (i, j)-th entry is Kij = k(xi, xj). In this case, the nonlinear 

prediction function can be obtained to be 

𝑓(𝒙) = ∑ 𝑢𝑖

𝑚

𝑖=1

𝑘(𝒙𝑖, 𝒙) + 𝑏 (2.51) 
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Chapter 3 

 

3On Twin Bounded Support Vector Machine with Pinball 

Loss 

3.1 Introduction 

 Since the support vector machine (SVM) has been proposed by Vapnik (Vapnik, 

2000), it has emerged as a powerful machine learning tool for classification and regression 

owing to its theoretical analysis and excellent generalization performance in many fields of 

importance and applications such as face recognition, text categorization, bioinformatics (Guyon 

et al., 2002;  Joachims,1998; Kim et al., 2010 ). The basic idea of SVM for classification is in 

finding an optimal decision boundary via maximizing the margin between the positive and 

negative classes of input pattern vectors (Vapnik, 2000). SVM is formulated as a convex 

quadratic programming problem (QPP) consisting of a regularization term and hinge loss based 

misclassification term (Vapnik, 2000). 

 Instead of constructing two parallel hyperplanes as in SVM, the concept of applying 

two non-parallel hyperplanes for determining the classifier was proposed firstly in (Mangasarian 

& Wild, 2006) leading to solving a pair of generalized eigenvalue problems. In (Jayadeva et. al., 

2007), the authors proposed twin support vector machine (TWSVM) where two non-parallel 

hyperplanes were obtained by solving two smaller sized QPPs in comparison to SVM and as its 

enhanced version, which incorporates by the structural risk minimization concept, twin bounded 

SVM (TBSVM) was proposed in (Shao et al., 2011). 

 It is well-known that the decision boundary of SVM is determined by the misclassified 

input vectors known as support vectors (SVs) which leads to sparsity. As a consequence, SVs 

contaminated by feature noise will make the learned classifier corrupted and hence unreliable. 

This suggests that SVM is prone to noise and further unstable for re-sampling (Huang et al., 

2014). In light of this, Huang et al. (2014) proposed pinball loss as a robust classification loss. 

As pinball is based on quantile distance, instead of maximizing the shortest distance between the 

classes, maximizing the quantile distance leads to novel Pin-SVM formulation having 

insensitivity to noise and stability of re-sampling (Huang et al., 2014). Also, pinball loss 

penalizes the patterns that are correctly classified and thereby brings them closer to the classifier 

resulting in low within-class scatter which is a preferred property of any reliable classifier. 

Though Pin-SVM possesses the above nice properties, it was noted that it lacks its sparseness. In 

order to attain it, ε-insensitive zone Pin-SVM is a new method that has been proposed also in 
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(Huang et al., 2014). As an optimal choice of the parameter ε, a modified (𝜀1, 𝜀2) − insensitive 

zone Pin-SVM is studied in (Rastogi et al., 2018). For the purpose of research an extension of 

pinball loss in place of hinge loss on twin parametric-margin support vector machine 

(TPMSVM) (Peng, 2011) for data classification, the interested reader is referred to (Xu et al., 

2016). For the work on SVM with truncated pinball loss, can be found here (Yang & Dong, 

2018). 

 In this chapter, inspired from the works of Pin-SVM and TBSVM, with the 

introduction of pinball loss for misclassification, we present a novel pinball loss based twin 

bounded support vector machine (Pin-TBSVM) having regularization term, scatter and 

misclassification loss term to enhance noise robustness. Pin-TBSVM is a non-parallel classifier 

where two kernel generated surfaces are constructed by solving quadratic programming 

problems (QPPs). Results of experiments on fourteen benchmark datasets reveal that the 

proposed method attains improved accuracy performance than the popular traditional methods 

considered for comparison clearly indicating the advantage of the proposed approach.        

 This chapter is organized as follows. Section 3.2 presents the proposed pinball 

TBSVM is formulated as two QPPs whose solutions are obtained by solving their duals. 

Numerical tests on (i) synthetic datasets with different types of noise/outliers; (ii) benchmark 

datasets with Gaussian noise, are performed in Section 3.3 while Section 3.4 concludes the 

paper. 

3.2 Pinball Loss Twin Bounded Support Vector Machine (Pin-TBSVM)  

 With the objective of obtaining a robust classifier for noisy data, inspired by the 

research on Pin-SVM (Huang et al., 2014) and the problem formulation of TBSVM for hinge 

loss, we propose Pin-TBSVM as an extension of TBSVM for pinball loss in this section. 

3.2.1 Linear Pin-TBSVM 

 The linear Pin-TBSVM seeks two non-parallel hyperplanes in 𝑅𝑛 of the form  

𝑓1(𝒙) = 𝒘1
𝑡 𝒙 + 𝑏1 = 0 and 𝑓2(𝒙) = 𝒘2

𝑡 𝒙 + 𝑏2 = 0 

in which 𝒘1, 𝒘2 ∈ 𝑅𝑛 and 𝑏1, 𝑏2 ∈ 𝑅 are unknowns. 

      Following the problem formulation of TBSVM wherein replacing the hinge loss 

function by the pinball loss function, linear Pin-TBSVM is obtained leading to solving the 

following pair of optimization problems 

𝑚𝑖𝑛
𝒘𝟏,𝑏𝟏

  
1

2
𝑐3(‖𝒘1‖2 + 𝑏1

2) +
1

2
‖𝐴𝒘1 + 𝑏1𝒆1‖2 + 𝑐1 ∑ 𝐿𝜏1

(𝒙𝑗, 𝑦𝑗, 𝑓1(𝒙𝑗))

𝑚1+𝑚2

𝑗=𝑚1+1

 

and 
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𝑚𝑖𝑛
𝒘2,𝑏2

  
1

2
𝑐4(‖𝒘2‖2 + 𝑏2

2) +
1

2
‖𝐵𝒘2 + 𝑏2𝒆2‖2 + 𝑐2 ∑ 𝐿𝜏2

(𝒙𝑖, 𝑦𝑖 , 𝑓2(𝒙𝑖))

𝑚1

i=1

 

Or equivalently as QPPs 

𝑚𝑖𝑛
𝐰1,𝑏1,𝛏2

   
1

2
𝑐3(||𝐰1||2 + 𝑏1

2) +
1

2
||𝐴𝐰1 + 𝑏1𝐞1||2 + 𝑐1𝐞2

𝑡 𝛏2 

subject to − (𝐵𝐰1 + 𝑏1𝐞2) ≥ 𝐞2 − 𝛏2, −(𝐵𝐰1 + 𝑏1𝐞2) ≤ 𝐞2 +
1

𝜏1
𝛏2, 

(3.1a) 

 

and 

𝑚𝑖𝑛
𝐰2,𝑏2,𝛏1

   
1

2
𝑐4(||𝐰2||2 + 𝑏2

2) +
1

2
||𝐵𝐰2 + 𝑏2𝐞2||2 + 𝑐2𝐞1

𝑡 𝛏1 

subject to 𝐴𝐰2 + 𝑏2𝐞1 ≥ 𝐞1 − 𝛏1, 𝐴𝐰2 + 𝑏2𝐞1 ≤ 𝐞1 +
1

𝜏2
𝛏1, 

(3.1b) 

 

where for 𝑘 = 1,2, 𝑐𝑘 , 𝑐𝑘+1 are regularization parameters, 𝝃𝑘 ∈ 𝑅𝑚𝑘 is a vector of slack 

variables, 𝒆𝑘 ∈ 𝑅𝑚𝑘 are the vector of ones and the parameter 0 ≤ 𝜏𝑘 ≤ 1. 

 One can notice that in the second term the intra-class compactness is minimized in 2-

norm while, pinball is utilized for inter-class separation in the third term. 

Remark 3.1 When 𝜏1 = 𝜏2 = 0, the second constraints of (3.1) become 𝝃𝑘 ≥ 𝟎 and the problem 

reduces to TBSVM. 

Remark 3.2 It is interesting to observe that when 𝜏1 = 𝜏2 = 1, problem (3.1) becomes 

𝑚𝑖𝑛
𝐰1,𝑏1𝛏1,𝛏2

   
1

2
𝑐3(||𝐰1||2 + 𝑏1

2) +
1

2
||𝛏1||2 + 𝑐1‖𝛏2‖1 

 

subject to 𝐴𝐰1 + 𝑏1𝐞1 = 𝛏1, (𝐵𝐰1 + 𝑏1𝐞2) + 𝐞2 = 𝛏2, 

                     

and 

𝑚𝑖𝑛
𝒘2,𝑏2,𝜼1,𝜼2

  
1

2
𝑐4(‖𝒘2‖2 + 𝑏2

2) +
1

2
‖𝜼2‖2 + 𝑐2‖𝜼1‖1 

 

subject to 𝐵𝒘2 + 𝑏2𝒆2 = 𝜼2, 𝐴𝐰2 + 𝑏2𝐞1 − 𝐞1 = 𝜼1 

                       

 This is a special case of the general framework of non-parallel SVM formulation of 

(Mehrkanoon et al., 2014) using least-squares loss and 𝐿1 − norm loss and therefore it can be 

called as 𝐿𝑆 − 𝐿1 loss non-parallel SVM. 

 By taking 𝒛𝑘 = [
𝒘𝑘

𝑏𝑘
] ∈ 𝑅𝑛+1 and the augmented matrices 𝐺 = [𝐴 𝒆1] ∈ 𝑅𝑚1×(𝑛+1) 

and 𝐻 = [𝐵 𝒆2] ∈ 𝑅𝑚2×(𝑛+1), problems (3.1a) and (3.1b) can be rewritten as  
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𝑚𝑖𝑛
𝐳1,𝛏2

   
1

2
𝑐3||𝐳1||2 +

1

2
||𝐺𝐳1||2 + 𝑐1𝐞2

𝑡 𝛏2 

subject to 𝐻𝐳1 ≤ 𝝃2 − 𝒆2, −𝐻𝒛1 ≤ 𝒆2 +
1

𝜏1
𝝃2 

(3.2a) 

 

and 

 

𝑚𝑖𝑛
𝐳2,𝛏1

   
1

2
𝑐4‖𝐳2‖2 +

1

2
||𝐻𝐳2||2 + 𝑐2𝐞1

𝑡 𝛏1 

subject to − 𝐺𝐳2 ≤ 𝝃1 − 𝒆1, G𝐳𝟐 ≤ 𝐞1 +
1

𝜏2
𝛏1   

(3.2b) 

 

 The primal problems (3.2a) and (3.2b) will be solved by constructing their duals.  

Consider (3.2a), with the introduction of Lagrange multipliers 𝒖2, 𝒗2 in 𝑅𝑚2 , the Lagrangian 

function corresponding to (3.2a) becomes   

𝐿1(𝒛1, 𝝃2, 𝒖2, 𝒗2) =
1

2
𝑐3𝒛1

𝑡 𝒛1 +
1

2
𝒛1

𝑡 𝐺𝑡𝐺𝒛1 + 𝒖2
𝑡 (𝐻𝒛1 − 𝝃2 + 𝒆2) 

+𝒗2
𝑡 (−𝐻𝒛1 − 𝒆2 −

1

𝜏1
𝝃2) 

(3.3) 

Using the Karush-Kuhn-Tucker (KKT) necessary optimality conditions  

𝜕𝐿1/𝜕𝒛1 = 𝟎 ⇒ (𝑐3𝐼 + 𝐺𝑡𝐺)𝒛1 = −𝐻𝑡(𝒖2 − 𝒗2),  𝜕𝐿1/𝜕𝝃2 = 𝟎 ⇒ 𝒖2 +
𝒗2

𝜏1
= 𝑐1𝒆2 

and eliminating the primary variables 𝒛1, 𝝃2 in (3.3), the dual of (3.2a) becomes 

𝑚𝑖𝑛
𝒖2,𝒗2∈𝑅𝑚2

1

2
(𝒖2 − 𝒗2)𝑡𝐻(𝑐3𝐼 + 𝐺𝑡𝐺)−1𝐻𝑡(𝒖2 − 𝒗2) − 𝒆2

𝑡 (𝒖2 − 𝒗2) 

subject to 𝒖2 + 𝒗2/𝜏1 = 𝑐1𝒆2 and 𝒖2 ≥ 𝟎, 𝒗2 ≥ 𝟎 

(3.4) 

 

Since  𝒖2 + 𝒗2/𝜏1 = 𝑐1𝒆2, we have 𝒖2 = 𝑐1𝒆2 − 𝒗2/𝜏1 ≥ 𝟎 and 𝒖2 − 𝒗2 = 𝑐1𝒆2 − (1 +

1/𝜏1)𝒗2.  

Putting this results in (3.4) and further taking 𝑄1 = 𝐻(𝑐3𝐼 + 𝐺𝑡𝐺)−1𝐻𝑡, problem (3.4) becomes  

𝑚𝑖𝑛
𝒗2∈𝑅𝑚2

1

2
(1 + 1/𝜏1)𝒗2

𝑡 𝑄1𝒗2 − 𝒆2
𝑡 (2𝑐1𝑄1 − 𝐼)𝒗2 

subject to 𝟎 ≤ 𝒗2 ≤ 𝑐1𝜏1𝒆2. 

(3.5a) 

 

Similarly, by introducing Lagrange multipliers 𝒖1, 𝒗1 in 𝑅𝑚1 , the dual of (3.2b) becomes 

𝑚𝑖𝑛
𝒗1∈𝑅𝑚1

1

2
(1 + 1/𝜏2)𝒗1

𝑡 𝑄2𝒗1 − 𝒆1
𝑡 (2𝑐2𝑄2 − 𝐼)𝒗1 

subject to 𝟎 ≤ 𝒗1 ≤ 𝑐2𝜏2𝒆1, 

(3.5b) 
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 satisfying the necessary optimality conditions (𝑐4𝐼 + 𝐻𝑡𝐻)𝒛2 = 𝐺𝑡(𝒖1 − 𝒗1) and 𝒖1 −

𝒗1 = 𝑐2𝒆1 − (1 + 1/𝜏2)𝒗1 where 𝑄2 = 𝐺(𝑐4𝐼 + 𝐻𝑡𝐻)−1𝐺𝑡. 

Remark 3.3. In the derivation of our formulation (3.5), it is assumed that (𝜏1, 𝜏2) ≠ (0,0).  

Using the solutions of (3.5a) and (3.5b), one can obtain 

[
𝒘1

𝑏1
] = (𝑐3𝐼 + 𝐺𝑡𝐺)−1𝐻𝑡((1 + 1/𝜏1)𝒗2 − 𝑐1𝒆2), 

[
𝒘2

𝑏2
] = (𝑐4𝐼 + 𝐻𝑡𝐻)−1𝐺𝑡(𝑐2𝒆1 − (1 + 1/𝜏2)𝒗1)  

(3.6) 

 

and accordingly, the linear Pin-TBSVM's decision function is provided by 

𝑓(𝒙) = 𝑠𝑖𝑔𝑛 (
 𝒘1

𝑡 𝒙 + 𝑏1

||𝒘1||
+

𝒘2
𝑡 𝒙 + 𝑏2

||𝒘2||
). 

3.2.2 Non-linear Pin-TBSVM 

 The Pin-TBSVM for the linear case can be extended to non-linear problem by 

seeking two kernel generated surfaces of the form 𝑓1(𝒙)  =   𝐾(𝒙𝒕, 𝐶𝑡)𝒘1  +  𝑏1 =

 0 𝑎𝑛𝑑 𝑓2 (𝒙)  =   𝐾(𝒙𝒕, 𝐶𝑡)𝒘2  + 𝑏2 =  0. They are obtained by solving the pair of 

QPPs 

𝑚𝑖𝑛
𝒘1,𝑏1,𝝃2

   
1

2
𝑐3(||𝒘1||2 + 𝑏1

2) +
1

2
||𝐾(𝐴, 𝐶𝑡)𝒘1 + 𝑏1𝒆1||2 + 𝑐1𝒆2

𝑡 𝝃2 

subject to − (𝐾(𝐵, 𝐶𝑡)𝒘1 + 𝑏1𝒆2) ≥ 𝒆2 − 𝝃2, 

−(𝐾(𝐵, 𝐶𝑡)𝒘1 + 𝑏1𝒆2) ≤ 𝒆2 +
1

𝜏1
𝝃2, 

and 

𝑚𝑖𝑛
𝒘2,𝑏2,𝝃1

   
1

2
𝑐4(||𝒘2||2 + 𝑏2

2) +
1

2
||𝐾(𝐵, 𝐶𝑡)𝒘2 + 𝑏2𝒆2||2 + 𝑐2𝒆1

𝑡 𝝃1 

subject to 𝐾(𝐴, 𝐶𝑡)𝒘2 + 𝑏2𝒆1 ≥ 𝒆1 − 𝝃1, 

𝐾(𝐴, 𝐶𝑡)𝒘2 + 𝑏2𝒆1 ≤ 𝒆1 +
1

𝜏2
𝝃1. 

By defining 𝐺 = [𝐾(𝐴, 𝐶𝑡) 𝒆1] ∈ 𝑅𝑚1×(𝑚+1) and 𝐻 = [𝐾(𝐵, 𝐶𝑡) 𝒆2] ∈

𝑅𝑚2×(𝑚+1)and proceeding as in the linear problem, a pair of dual problems of the form 

(3.5a), (3.5b) is solved. Finally, we obtain the decision function   

𝑓(𝒙) = 𝑠𝑖𝑔𝑛 (
 𝐾(𝒙𝑡, 𝐶𝑡)𝒘1 + 𝑏1

||𝒘1||
+

𝐾(𝒙𝑡, 𝐶𝑡)𝒘2 + 𝑏2

||𝒘2||
)  
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where the unknowns 𝒘𝑘 and 𝑏𝑘 are given by (3.6). 

 Notice that Pin-TBSVM requires the computation of the inverse of the matrices 

(𝑐3𝐼 + 𝐺𝑡𝐺) and (𝑐4𝐼 + 𝐻𝑡𝐻). However, using Sherman-Morrison-Woodbury (SMW) 

identity, we get (𝑐3𝐼 + 𝐺𝑡𝐺)−1 = (𝐼 − 𝐺𝑡(𝑐3𝐼 + 𝐺𝐺𝑡)−1𝐺)/𝑐3 and similarly (𝑐4𝐼 +

𝐻𝑡𝐻)−1 = (𝐼 − 𝐻𝑡(𝑐4𝐼 + 𝐻𝐻𝑡)−1𝐻)/𝑐4. This requires the inverse of matrices (𝑐3𝐼 +

𝐺𝐺𝑡) and (𝑐4𝐼 + 𝐻𝐻𝑡) of lower orders 𝑚1 and 𝑚2 than the original matrices of larger 

order (m+1).   

3.3 Experimental Results 

 In this section, we compare the performance of our proposed Pin-TBSVM with SVM, 

TBSVM and Pin-SVM on 14 popular benchmark datasets from the UCI machine learning 

repository available at http://www.ics.uci.edu/~mlearn. All computations were performed using 

MATLAB R2015a on a PC running on Windows 10 OS with 64 bit, 3.40 GHz Intel®core™ i7 

processor with 8 GB of RAM. We solved QPPs using the MOSEK optimization toolbox for 

MATLAB available at http://www.mosek.com. The popular Gaussian kernel 𝑘(𝒙, 𝒛) =

𝑒𝑥𝑝( −||𝒙 − 𝒛||2 2𝜎2⁄ ) is considered where 𝜎 > 0 is a parameter. The optimal parameter values 

are determined by a tenfold cross-validation methodology where the penalty parameters 

𝑐1, 𝑐2, 𝑐3, 𝑐4 and the kernel parameter 𝜎 assume values from the set {2𝑖| i = -9, -8, -7,…,9} 

whereas 𝜏1, 𝜏2 vary from {0.1, 0.2, 0.5, 1}. In fact, by randomly splitting the dataset into ten 

equal parts or folds and taking one of the folds as the validation set and the rest for training, the 

parameters showing the highest averaged accuracy are selected and they are used to determine 

the classifier using the full training set. To ease the computational cost, we assumed 𝑐1 =

 𝑐3, 𝑐2 = 𝑐4, v1 = v2 and 𝜏 = 𝜏1 = 𝜏2.    

 We test the effectiveness of Pin-TBSVM in terms of classification accuracy and training 

time by performing experiments on the datasets under noiseless and noisy settings. For all the 

datasets considered, their feature values are normalized to lie in [0, 1]. As noise setting, we let 

each feature value be corrupted by Gaussian noise with zero-mean in which noise variance to 

feature variance ratio (r) is defined to be r=0 (i.e., noise-free), r=0.05 and r=0.1 (Huang et al., 

2014). The same noise contaminated both training and test vectors.  

 The experimental results showing the accuracy of Gaussian kernel are presented in Table 

3.1. In most of the cases, in terms of classification accuracy performance of Pin-TBSVM is 

better than SVM, TBSVM and Pin-SVM. In fact, the highest accuracy was yielded by the 

proposed method in 33 times out of 42 cases (14 datasets x 3 noise levels). This indicates the 

superiority of Pin-TBSVM. In general, the precision of a system reduces as the degree of noise 

rises. In addition, algorithms were ranked for each dataset so that rank 1 is assigned for the 

http://www.ics.uci.edu/~mlearn
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Table 3.1 Accuracy comparison of Pin-TBSVM with SVM, TBSVM and Pin-SVM on real-world 

benchmark datasets with noise level r.  Gaussian kernel was employed. 

Dataset 

(Total size) 

Level 

of noise 

SVM 

Time 

(Rank) 

TBSVM 

Time 

(Rank) 

Pin-SVM 

Time 

(Rank) 

Pin-

TBSVM 

Time 

(Rank) 

Cleveland 

(297×13) 

r=0 

84.50±8.07 

0.1334 

(3) 

85.51±6.54 

0.0742 

(1) 

84.25±8.55 

0.1428 

(4) 

85.16±7.30 

0.1997 

(2) 

r=0.05 

84.30±6.41 

0.1321 

(3) 

84.20±6.37 

0.0758 

(4) 

84.34±6.57 

0.1444 

(2) 

84.51±7.04 

0.1430 

(1) 

r=0.1 

83.86±7.94 

0.1343 

(3) 

83.80±7.87 

0.0739 

(4) 

84.88±5.97 

0.1439 

(2) 

85.52±5.91 

0.1430 

(1) 

Breast-

cancer 

(683×9) 

r=0 

97.26±1.16 

0.8155 

(4) 

97.51±1.22 

0.6568 

(3) 

97.95±1.57 

1.1370 

(2) 

98.24±1.15 

0.7259 

(1) 

r=0.05 

97.51±1.95 

0.8110 

(1.5) 

97.51±1.32 

0.6366 

(1.5) 

97.06±1.95 

1.1362 

(4) 

97.37±2.14 

0.6679 

(3) 

r=0.1 

96.92±1.28 

0.8092 

(3.5) 

96.92±1.12 

0.6577 

(3.5) 

97.36±1.93 

1.1374 

(2) 

97.95 ±1.95 

0.6256 

(1) 

WPBC 

(194×33) 

r=0 

82.47±9.02 

0.0708 

(1) 

81.80±9.99 

0.0500 

(2) 

81.75±7.88 

0.0767 

(3) 

78.02±13.68 

0.0921 

(4) 

r=0.05 

80.89±9.56 

0.0699 

(4) 

80.94±9.89 

0.0499 

(3) 

81.80±9.81 

0.0747 

(2) 

82.94 ±5.63 

0.0937 

(1) 
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r=0.1 

79.44±6.72 

0.0678 

(4) 

80.36±7.65 

0.0497 

(3) 

80.44±5.81 

0.0704 

(2) 

81.5±8.93 

0.0872 

(1) 

Sonar 

(208×60) 

r=0 

90.45±5.22 

0.0717 

(4) 

90.87±4.87 

0.0593 

(2) 

90.80±5.30 

0.0740 

(3) 

91.83±5.52 

0.1073 

(1) 

r=0.05 

89.44±6.63 

0.0713 

(4) 

89.50±5.31 

0.0570 

(3) 

89.62±6.30 

0.0749 

(2) 

91.33±7.72 

0.0849 

(1) 

r=0.1 

88.47±7.62 

0.0718 

(3.5) 

88.47±7.01 

0.0597 

(3.5) 

88.58±6.70 

0.0741 

(2) 

89.5±6.63 

0.0925 

(1) 

Heart 

statlog 

(270×13) 

r=0 

84.41±4.43 

0.1153 

(4) 

84.44±5.00 

0.0867 

(3) 

84.81±4.93 

0.1168 

(1.5) 

84.81±3.24 

0.1418 

(1.5) 

r=0.05 

84.07±5.53 

0.1149 

(4) 

84.20±6.22 

0.0870 

(3) 

84.55±10.39 

0.1180 

(2) 

85.55±4.43 

0.1144 

(1) 

r=0.1 

83.44±7.36 

0.1142 

(3.5) 

83.44±7.48 

0.0866 

(3.5) 

83.54±5.46 

0.1165 

(2) 

83.70±3.98 

0.1207 

(1) 

 

 

Australian 

Credit 

(690×14) 

 

r=0 

 

86.52±3.05 

0.8146 

(4) 

 

87.82±2.96 

0.4741 

(2) 

 

87.10±2.98 

0.9605 

(3) 

 

88.69±3.97 

0.7576 

(1) 

r=0.05 

86.08±2.99 

0.8144 

(4) 

86.25±2.98 

0.4493 

(3) 

86.45±3.43 

0.9901 

(2) 

86.95±4.42 

0.6373 

(1) 

r=0.1 
86.95±3.97 

0.8076 

86.85±3.64 

0.4868 

87.00±2.97 

0.9695 

87.97±3.13 

0.6502 
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(3) (4) (2) (1) 

Votes 

(435×16) 

r=0 

96.79±3.59 

0.2907 

(2) 

96.20±2.48 

0.1351 

(4) 

96.32±2.98 

0.2915 

(3) 

97.47±1.98 

0.3411 

(1) 

r=0.05 

96.52±2.46 

0.2847 

(2) 

95.51±2.43 

0.1386 

(3) 

96.50±3.07 

0.2900 

(4) 

97.70±1.53 

0.2959 

(1) 

r=0.1 

96.09±2.50 

0.2834 

(3) 

95.08±1.88 

0.1382 

(4) 

96.18±1.55 

0.2869 

(2) 

96.98±2.90 

0.2737 

(1) 

Haberman 

(306×3) 

r=0 

75.09±9.99 

0.1591 

(4) 

75.78±7.62 

0.1190 

(3) 

75.81±7.54 

0.2552 

(2) 

76.75±9.15 

0.1740 

(1) 

r=0.05 

74.79±8.20 

0.1574 

(4) 

74.99±6.43 

0.1079 

(3) 

75.17±7.41 

0.2544 

(2) 

76.75±10.28 

0.1519 

(1) 

r=0.1 

73.88±7.36 

0.1568 

(3) 

73.92±5.67 

0.1099 

(2) 

74.20±6.54 

0.2513 

(1) 

73.81±9.91 

0.1544 

(4) 

Ionosphere 

(351×33) 

r=0 

93.30±2.70 

0.2110 

(3) 

92.87±2.03 

0.1108 

(4) 

94.59±1.33 

0.2265 

(1) 

94.03±5.59 

0.2223 

(2) 

r=0.05 

91.75±5.74 

0.2101 

(4) 

92.17±2.10 

0.1118 

(3) 

92.87±2.03 

0.2206 

(2) 

93.75±5.62 

0.2134 

(1) 

r=0.1 

90.15±4.71 

0.2010 

(4) 

90.92±3.46 

0.1142 

(3) 

91.46±5.85 

0.2148 

(2) 

91.75±7.98 

0.2098 

(1) 

WDBC r=0 
98.06±2.10 

0.5907 

98.08±2.34 

0.5252 

97.98±3.78 

1.0744 

99.47±0.84 

0.5579 
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(569×30) (3) (2) (4) (1) 

r=0.05 

97.64±1.43 

0.5871 

(3) 

97.71±1.69 

0.4484 

(2) 

97.78±1.69 

1.1068 

(1) 

96.48 ±1.65 

0.5087 

(4) 

r=0.1 

97.07±1.93 

0.5850 

(3) 

96.62±1.98 

0.4415 

(4) 

97.20±1.86 

1.0717 

(2) 

98.06±1.53 

0.4722 

(1) 

Transfusion 

(748×4) 

r=0 

79.81±2.64 

1.1665 

(4) 

80.05±2.70 

0.7954 

(3) 

80.10±2.80 

2.4669 

(2) 

80.11±15.32 

1.0554 

(1) 

r=0.05 

78.63±3.78 

1.1778 

(3) 

78.75±3.26 

0.7914 

(1) 

78.65±5.26 

2.4828 

(2) 

76.23±15.29 

0.7650 

(4) 

r=0.1 

77.20±5.13 

1.1623 

(3) 

77.40±4.01 

0.7924 

(1) 

77.25±3.96 

2.4632 

(2) 

76.23±15.53 

0.7151 

(4) 

Pima 

Indians 

(768×8) 

r=0 

78.13±5.98 

1.1616 

(4) 

78.30±4.63 

0.8044 

(3) 

78.50±3.56 

2.8370 

(2) 

79.55±4.41 

0.8842 

(1) 

r=0.05 

77.22±4.46 

1.1598 

(4) 

77.25±5.16 

0.8055 

(3) 

77.60±6.06 

2.4607 

(2) 

78.25±5.66 

1.0125 

(1) 

r=0.1 

76.94±6.30 

1.1655 

(4) 

76.97±5.84 

0.8082 

(3) 

77.12±4.34 

2.3969 

(2) 

77.99±3.75 

0.8538 

(1) 

German 

(1000×24) 

r=0 

76.40±6.37 

1.9444 

(4) 

76.91±3.92 

1.7613 

(3) 

77.10±1.86 

4.1229 

(2) 

77.30±3.56 

1.6584 

(1) 

r=0.05 
75.90±4.12 

1.9611 

76.00±4.63 

1.7189 

76.30±5.59 

4.2436 

77.9±3.10 

1.4645 
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(4) (3) (2) (1) 

r=0.1 

75.30±5.85 

1.9843 

(3.5) 

75.30±5.85 

1.7788 

(3.5) 

76.00±5.86 

4.4651 

(2) 

76.60±3.16 

1.4147 

(1) 

CMC 

(1473 Χ 9) 

r=0 

75.15±2.74 

5.8026 

(3.5) 

75.15±4.91 

3.3092 

(3.5) 

75.20±5.23 

11.7514 

(2) 

75.70±4.52 

3.4301 

(1) 

r=0.05 

74.98±4.68 

5.6304 

(4) 

75.01±5.47 

3.3270 

(3) 

75.20±3.37 

9.9968 

(2) 

77.53±2.37 

3.1488 

(1) 

r=0.1 

75.00±3.65 

5.8822 

(4) 

75.04±4.26 

3.3445 

(3) 

75.08±4.16 

10.3863 

(2) 

75.36±4.68 

3.2903 

(1) 

 

best accuracy performer. The results are given in Table 3.1. In Table 3.2, we have reported their 

average ranks. Note that a smaller average rank means better prediction performance. At all 

levels of noise, the best prediction performance is achieved by Pin-TBSVM and is followed by 

Pin-SVM, TBSVM and lastly by SVM. This clearly shows the superiority of Pin-TBSVM. 

Enhanced performance by Pin-TBSVM and Pin-SVM in comparison to hinge loss SVMs on 

datasets corrupted by noise illustrates the robustness of pinball loss based SVMs. On learning 

time, though TBSVM shows the best result, our proposed method is comparable with TBSVM. 

As expected, Pin-SVM takes more time than the rest for training.  

Table 3.2 Average ranks on the accuracy for Gaussian kernel on real-world datasets with noise 

level r. 

Level of noise SVM TBSVM Pin-SVM Pin-TBSVM 

r=0 3.39 2.75 2.46 1.39 

r=0.05 3.46 2.75 2.21 1.57 

r=0.1 3.42 3.21 1.92 1.42 

 

In continuation of the above analysis, we verify the comparative performance of the algorithms 

statistically by applying the non-parametric Friedman test followed by Nemenyi post-hoc test 

reported in (Demsar, 2006). Under the assumption of the null hypothesis that all the algorithms 
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are equivalent, the Friedman statistic distributed according to 𝜒𝐹
2 =

12𝑁

𝑘(𝑘+1)
[∑ 𝑅𝑗

2 −
𝑘(𝑘+1)2

4
𝑘
𝑗=1 ] 

distribution with (𝑘 − 1) degrees of freedom and a better statistic 𝐹𝐹 =
(𝑁−1)𝜒𝐹

2

𝑁(𝑘−1)−𝜒𝐹
2 distributed 

according to 𝐹 −distribution with ((𝑘 − 1), (𝑘 − 1)(𝑁 − 1)) degrees of freedom are computed 

where 𝑘 = the number of algorithms, 𝑁 = the number of datasets and 𝑅𝑗 = the average rank of 

the jth algorithm. When the null hypothesis is rejected, a pair-wise comparison of the algorithms 

is performed with the Nemenyi post-hoc test by computing the critical difference (CD) (Demsar, 

2006). 

From Table 3.2, using the average ranks for 𝑟 = 0 with 𝑘 = 4 and 𝑁 = 14:  

 

𝜒𝐹
2 =

12 × 14

4 × 5
(3.392 + 2.752 + 2.462 + 1.392 −

4 × 52

4
) ≈ 17.1217, 

 

𝐹𝐹 =
13×17.1217

14×3−17.1217
≈ 8.9468 with (3,3 × 13) = (3,39) degrees of freedom. The critical value 

of 𝐹(3,39) at the level of significance 𝛼 = 0.05 is 2.8451. However, 𝐹(3,39) = 2.8451, we 

reject the null hypothesis. So, we proceed for pair-wise comparison using Nemenyi post-hoc 

test. From (Demsar, 2006), the value of CD at 𝑝 = 0.10 is 1.1179. If the average ranks of two 

algorithms differ at least by CD then their performance differs significantly (Demsar, 2006). 

Thus, from Table 3.2 and when 𝑟 = 0, the difference between the average ranks of: (i). Pin-

TBSVM and Pin-SVM is: 2.46-1.39=1.07 < 1.1179 (CD), the post-hoc test is not powerful 

enough to detect any significant difference between the algorithms; (ii). Pin-TBSVM and the 

best of SVM and TB-SVM is: 2.75-1.39=1.36 > 1.1179, we conclude that the performance of 

Pin-TBSVM is better than SVM and TBSVM. 

 Similarly, with 𝑟 = 0.05, we calculate 𝜒𝐹
2 = 15.8180 and 𝐹𝐹 = 7.8541. Here, we see 

that 𝐹𝐹 > 𝐹(3,39) = 2.8451 and hence we reject the null hypothesis. For pair-wise comparison 

using Nemenyi post-hoc test, as the difference between the average ranks of : (i). Pin-TBSVM 

and Pin-SVM is: 2.21- 1.57 = 0.64 < 1.1179, there is no significant difference between the 

algorithms according to the post-hoc test; (ii). Pin-TBSVM and the best of SVM and TB-SVM 

is: 2.75 - 1.57 = 1.18 > 1.1179, we say that the Pin-TBSVM outperforms  SVM and TBSVM in 

terms of performance. 

 As our final algorithm statistical comparison, for 𝑟 = 0.1, we compute 𝜒𝐹
2 = 22.7077 

and 𝐹𝐹 = 15.3015. Since 𝐹𝐹 > 𝐹(3,39), we reject the null hypothesis and so perform the post-

hoc test. Again from Table 3.2, the difference between the average ranks of : (i). Pin-TBSVM 

and Pin-SVM are 1.92 – 1.42 = 0.5 < 1.1179, we say that the test is not powerful enough to 

determine any significant difference between the algorithms; (ii). Pin-TBSVM and the best of 



 

60 

SVM and TB-SVM is: 3.21 - 1.42 = 1.79 > 1.1179, we conclude that the performance of Pin-

TBSVM is superior to SVM and TBSVM. 

 From the statistical tests, we say that Pin-TBSVM is more efficient than SVM and 

TBSVM and at the same time, it compares favourably with Pin-SVM. 

 In summary, we conclude that Pin-TBSVM is an efficient classification method for 

datasets corrupted by feature noise. 

3.4 Conclusions 

 In this chapter, we presented a robust twin bounded support vector machine with pinball 

loss (Pin-TBSVM) for feature noise affected datasets. Pin-TBSVM is a non-parallel classifier 

where kernel generated surfaces were determined as the solutions of quadratic programming 

problems. Experimental results on several benchmark datasets show that the proposed method 

achieves improved accuracy performance than the popular traditional methods. Though Pin-

TBSVM is a simple and efficient learning method, it loses sparsity. An increase in the number 

of parameters is a concern and the selection of their optimal values is a practical problem that 

needs attention. The proposed method’s application to multi-category classification problems is 

interesting and worth investigating. 
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Chapter 4 
 

4Robust Twin Bounded Support Vector Machine with 

Pinball Loss for Data Classification 

4.1 Introduction  

 In this chapter, a novel 𝐿1 −norm based twin bounded support vector machine with 

pinball loss having regularization term, scatter loss and misclassification loss is proposed to 

enhance robustness in the presence of feature noise and outliers. Unlike in twin bounded support 

vector machine (TBSVM), pinball is used as the misclassification loss in place of hinge loss to 

reduce noise sensitivity. To further boost robustness, the scatter loss of the class of vectors is 

minimized using 𝐿1 −norm. As an equivalent problem in simple form, a pair of quadratic 

programming problems (QPPs) is constructed (L1-Pin-TBSVM) with m variables where m is the 

number of training vectors. Unlike TBSVM, the proposed L1-Pin-TBSVM is free from inverse 

kernel matrix and the non-linear problem can be obtained directly from its linear formulation by 

applying the kernel trick. The efficacy and robustness of L1-Pin-TBSVM have been 

demonstrated by experiments performed on synthetic and UCI datasets in the presence of noise.  

 Over the past decades, the support vector machine (SVM) introduced by Vapnik (Cortes, 

1995; Vapnik, 2000) has become a popular machine learning tool for classification problems 

because of its solid mathematical foundation and excellent performance on many real-world 

problems of applications such as face recognition, text categorization, bioinformatics (Guyon et 

al., 2002; Joachims, 1998; Kim et al., 2010). The classical SVM finds an optimal hyperplane 

separating between the positive and negative class of input vectors with maximum margin 

(Cortes & Vapnik 1995; Vapnik, 2000). This leads to solving a convex quadratic programming 

problem (QPP) (Vapnik, 2000; Cristianini & Shawe-Taylor, 2000) consists of the regularization 

and misclassification error terms where the error is computed using hinge loss.  

 Though SVM provides a sparse and global solution, its main difficulty is the high 

computational cost in solving the QPP on large problems, i.e., its learning time complexity is 

𝑂(𝑚3) where m represents the number of training vectors. To get around this difficulty, fast 

SVM learning algorithms that are based on methods of optimization such as decomposition 

method (Osuna, 1997), sequential minimal optimization (SMO) (Platt, 1999), dual coordinate 

descent (DCD) (Hsieh et al., 2008) and successive over-relaxation (SOR) (Mangasarian & 

Musicant, 1999) have been reported in the literature. Inspired from the work of generalized 

eigenvalue proximal support vector machine (GEPSVM) of (Mangasarian & wild, 2006), 
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Jayadeva et al. (2007) proposed a twin support vector machine (TWSVM), a variant of SVM as 

an alternative approach, where a pair of non-parallel hyperplanes were constructed by solving 

two QPPs of smaller size. This strategy makes TWSVM four times faster than SVM (Jayadeva 

et al., 2007). Because of its low computational cost and better generalization performance than 

SVM, different forms of TWSVM and its extensions have been proposed in the literature 

(Balasundaram et al., 2017; Kumar & Gopal 2009; Peng, 2010; Peng, 2011; Peng et al., 2016; 

Shao et al., 2011). 

 The other issue with SVM is that since the margin is measured by the extreme values, 

once they are contaminated by noise, the resulting classifier will be susceptible to feature noise 

around the classification boundary and further unstable for re-sampling (Haung et al., 2014).To 

address this issue, Huang et al. (2014) introduced pinball loss in the SVM classification problem 

where the idea of maximizing the shortest distance between the two classes is changed into 

maximizing the quantile distance, resulting in the novel formulation of pinball loss SVM (Pin-

SVM).  In contrast to SVM, Pin-SVM penalizes the correctly classified training vectors which 

makes the model in minimizing the scatters around the parallel planes. Though Pin-SVM 

possesses a small within-class scatter property, it was noticed that it loses its sparsity. In order to 

attain that, 𝜀 −insensitive zone Pin-SVM is proposed in (Huang et al., 2014). As an optimal 

insensitive zone SVM with pinball loss, a modified (𝜀1, 𝜀2) − insensitive zone Pin-SVM is 

studied in (Rastogi et al., 2018). As an extension on the study of pinball loss to TWSVM where 

pinball loss is employed to twin parametric-margin support vector machine (TPMSVM) (Peng 

et al., 2011) for data classification, Xu et al. (2016) proposed pinball loss twin support vector 

machine (Pin-TSVM). By measuring the margin between the two classes with expectile value 

and using its relation to asymmetric squared pinball loss, asymmetric least squares support 

vector machine (aLS-SVM) is proposed in (Haung et al., 2014). In a recent work on L2-norm 

pinball based twin bounded support vector machine, the reader is referred to (Prasad & 

Balasundaram, 2021). 

 In real-world applications, data samples are often contaminated by different types of 

noise. While small perturbations resulted usually due to erroneous measurements are referred as 

feature noise, the samples which are significantly different from majority of the others such as 

wrongly labelled samples are defined as outliers (Frenay & Verleysen, 2014). Robustness to 

outliers is an important problem of study in pattern classification. It is well-known that the 

presence of outliers can ruin the resulting classifier and hence the learned classifier can become 

unreliable. A popular approach for constructing robust learning models is in developing 

algorithms based on robust optimization such as the application of a re-weighted strategy where 

different weights are assigned to the training samples according to their residuals (Suykens et 

al., 2002). Samples with large residuals may be assumed as outliers and consequently small 



 

63 

weights are assigned to them so that their effect can be reduced while learning. The main 

difficulty in this approach is usually it requires additional computational costs for training than 

SVM. The other approach is in designing robust loss functions so that they resist the effect of 

outliers. Though 𝐿2 −norm distance is insensitive to feature noise, the squared operation can 

significantly influence large outliers resulting poor classification performance by the learning 

model (Mehrkanoon et al., 2014). The popular TWSVM (Jayadeva et al., 2007) and its variant 

TBSVM (Shao et al., 2011) are sensitive to outliers because they implement 𝐿2 −norm distance. 

It is argued that both the hinge loss and pinball loss are unbounded and therefore they are not 

enough robust to outliers (Yang & Dong, 2018). In keeping view of this, truncated non-convex 

loss functions are proposed and robust models are constructed in (Yang & Dong, 2018; Haung 

et al., 2014, Shen et al., 2017). However, non-convexity introduces difficulty in optimization. As 

a promising alternative way to address outliers, many researchers in the literature of machine 

learning have often preferred 𝐿1 −norm measure (Gao et al., 2011; Yan et al., 2018; Yan et al., 

2019). Finally, on the recent work on least-squares TBSVM based on 𝐿1 −norm (L1-

LSTBSVM) where inequality constraints are replaced by equalities, we refer to (Yan et al., 

2018).   

 With the aim of obtaining a learning model robust to both feature noise and outliers, a 

non-parallel support vector machine under the framework involving a regularization term, a 

scatter loss and misclassification loss using robust loss functions is proposed in this work. Like 

TBSVM, the presence of the regularization term in the objective function has the advantage that 

the structural risk is minimized. Since 𝐿1 −norm distance makes the learning machines robust to 

outliers and pinball has the advantage of enhanced robustness to feature noise, with inspiration 

from the works of (Shao et al., 2011; Haung et al., 2014, Xu et al., 2016), a new twin bounded 

support vector machine classifier with pinball loss is developed as a non-parallel SVM where 

the within-class scatter is minimized in 𝐿1 −norm and pinball is used for misclassification error. 

Our problem is further simplified into an equivalent problem of solving a pair of SVM-type 

constrained QPPs in the dual space (L1-Pin-TBSVM) in m variables where m represents the 

number of training vectors. With the dual solution, the end classifier is obtained. Experiments 

were performed on Crossplanes dataset having two or four outliers, two-moon dataset and 

eleven benchmark datasets with different levels of noise. Their results in comparison with the 

state of the art variants of SVM show the robustness, effectiveness and suitability of L1-Pin-

TBSVM.  

   The following are the primary contributions of this work: 

• With the aim of obtaining enhanced generalization performance for feature noise and 

outliers, a novel twin bounded support vector machine with pinball loss for data 

classification is proposed. 
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• As an efficient way to reduce the influence of outliers, the robust 𝐿1 −norm is used for 

minimizing the within-class scatter and to bring noise insensitivity pinball is introduced 

into the classification. 

• Our formulation leads to a pair of QPPs with box constraints (L1-Pin-TBSVM) having m 

number of variables in the dual space and free of matrix inversion terms where m 

represents the number of training vectors. 

• As in the classical SVM, the duals for non-linear kernel can be derived directly from their 

linear formulations by applying kernel trick.  

• the number of variables in Pin-TSVM and L1-Pin-TBSVM is equal to the number of 

training vectors if the training set contains the same number of data points from both 

classes. 

• Empirical findings based on synthetic datasets, with outliers and feature noise, and in 

addition on sixteen benchmark datasets with three distinct amounts of noise in the 

datasets, confirm the efficiency and superiority. 

 In this work, all vectors are taken as column vectors. For any vector 𝒙 = (𝑥1, . . . , 𝑥𝑛)𝑡 ∈

𝑅𝑛, let 𝒙𝑡 be its transpose. Its 𝐿1 −norm and 𝐿2 −norm is denoted by ||𝒙||1 and ||x|| 

respectively. 0 and e correspondingly denote column vectors of zeros and ones of appropriate 

dimensions and I stands for an identity matrix of appropriate size. 

 The rest of the chapter is organized as follows.  In Section 4.2, TBSVM in 𝐿1 −norm 

with pinball loss is proposed whose properties of noise insensitivity and scatter minimization are 

verified and further as an equivalent problem in simple form, a pair of QPPs in the dual space is 

derived. In Section 4.3, a comparative study of the proposed method with TBSVM, Pin-SVM 

and Pin-TSVM is presented. Numerical experiments are detailed and their results are reported in 

Section 4.4 while Section 4.5 concludes the chapter. 

4.2 Robust Twin Bounded Support Vector Machine with Pinball Loss  

 Motivated by the works of TBSVM and Pin-TSVM, we develop a novel 𝐿1 −norm based 

twin bounded SVM with pinball loss (Pin-TBSVM) to enhance the robustness in this section. In 

addition to noise insensitivity, we will verify that Pin-TBSVM possesses within-class scatter and 

misclassification error properties.  

 Let the linear Pin-TBSVM seek two non-parallel hyperplanes of the form  

 

 𝑓1(𝒙) = 𝒘1
𝑡 𝒙 + 𝑏1 = 0 and 𝑓2(𝒙) = 𝒘2

𝑡 𝒙 + 𝑏2 = 0  (4.1) 
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where 𝒘1, 𝒘2 ∈ 𝑅𝑛 and 𝑏1, 𝑏2 ∈ 𝑅 are unknowns. Replacing the hinge loss for the pinball loss 

function and the kernel empirical term in 𝐿2 −norm, i.e., the second term of (2.27), by 

𝐿1 −norm, the linear Pin-TBSVM leads to solving the pair of optimization problems  

𝑚𝑖𝑛
𝒘1,𝑏1,𝝃1,𝝃2

   
1

2
𝑐3(||𝒘1||2 + 𝑏1

2) + ||𝝃1||1 + 𝑐1𝒆2
𝑡 𝝃2 

subject to 𝐴𝐰1 + 𝑏1𝒆1 = 𝝃1, 

  −(𝐵𝒘1 + 𝑏1𝒆2) ≥ 𝒆2 − 𝝃2,  −(𝐵𝒘1 + 𝑏1𝒆2) ≤ 𝒆2 +
1

𝜏1
𝝃2 

 

(4.2a) 

and 

𝑚𝑖𝑛
𝒘2,𝑏2,𝜼1,𝜼2

   
1

2
𝑐4(||𝒘2||2 + 𝑏2

2) + ||𝜼2||1 + 𝑐2𝒆1
𝑡 𝜼1 

subject to 𝐵𝐰2 + 𝑏2𝒆2 = 𝜼2, 

𝐴𝒘2 + 𝑏2𝒆1 ≥ 𝒆1 − 𝜼1,  𝐴𝒘2 + 𝑏2𝒆1 ≤ 𝒆1 +
1

𝜏2
𝜼1 

 

(4.2b) 

 

where ck > 0 and ck+1 > 0 (k = 1, 2) are regularization parameters; 𝝃1, 𝜼1 ∈ 𝑅𝑚1; 𝝃2, 𝜼2 ∈ 𝑅𝑚2  

are vectors of slack variables and 0 ≤ 𝜏1, 𝜏2 ≤ 1 are parameters. 

 Note that minimization of the terms ||𝝃1||1 and ||𝜼2||1will make the positive and 

negative class data points to be as close as possible to their corresponding hyperplanes. Problem  

(4.2) simultaneously considers the intra-class compactness and inter-class separation using 

absolute loss and pinball loss respectively.  

Remark 4.1. When 𝜏1 and 𝜏2 are very small then the second inequality constraints in (4.2a) and 

(4.2b) will reduce to 𝝃2 ≥ 𝟎 and 𝜼1 ≥ 𝟎 respectively.  

Remark 4.2. In problem (4.2), misclassification error is measured using pinball loss whereas LS 

loss is applied in L1-LSTBSVM. 

 Since 𝐿𝜏(𝒙, 𝑦, 𝑓(𝒙)) = 𝜏|(1 − 𝑦𝑓(𝒙))| +(1 − 𝜏)𝐿ℎ𝑖𝑛𝑔𝑒(𝒙, 𝑦, 𝑓(𝒙)), i.e., the pinball loss 

is a linear combination of them, one may expect that in addition to noise insensitivity, Pin-

TBSVM also possesses these properties.  

 Now we analyze the noise insensitivity, within-class scatter and misclassification error 

properties of Pin-TBSVM. For easy comprehension, we consider its linear formulation (4.2) in 

unconstrained form 

𝑚𝑖𝑛
𝒘1,𝑏1

1

2
𝑐3(||𝒘1||2 + 𝑏1

2) + ||𝐴𝒘1 + 𝑏1𝒆1||1 + 𝑐1 ∑ 𝐿𝜏1
(𝒙𝑖, 𝑦𝑖 , 𝑓1(𝒙𝑖))

𝑚1+𝑚2

𝑖=𝑚1+1

 
 

(4.3a) 

and 

𝑚𝑖𝑛
𝒘2,𝑏2

1

2
𝑐4(||𝒘2||2 + 𝑏2

2) + ||𝐵𝒘2 + 𝑏2𝒆2||1 + 𝑐2 ∑ 𝐿𝜏2
(𝒙𝑖, 𝑦𝑖 , 𝑓2(𝒙𝑖))

𝑚1

𝑖=1

. 
 

(4.3b) 

Define a generalized sign function  
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𝑠𝑔𝑛𝜏( 𝑢) = {
1, 𝑢 > 0

[−𝜏, 1], 𝑢 = 0

−𝜏 𝑢 < 0
 

Then, using the optimality condition for (4.3a), we obtain 

𝟎 ∈
𝑐3

𝑐1
[
𝒘1

𝑏1
] +

[𝐴 𝒆1]𝑡

𝑐1
𝑠𝑔𝑛𝜏=1( [𝐴 𝒆1] [

𝒘1

𝑏1
]) + ∑ 𝑠𝑔𝑛𝜏1

( 1 + 𝒘1
𝑡 𝒙𝑖 + 𝑏1)

𝑚1+𝑚2

𝑖=𝑚1+1

[
𝒙𝑖

1
].  (4.4) 

 

Let 𝑆1
+ = {𝑖: 𝒘1

𝑡 𝒙𝑖 + 𝑏1 + 1  > 0}, 𝑆1
− = {𝑖: 𝒘1

𝑡 𝒙𝑖 + 𝑏1 + 1  < 0} and  𝑆1
0 = {𝑖: 𝒘1

𝑡 𝒙𝑖 + 𝑏1 +

1  = 0} be the index sets where 𝑖 = 𝑚1 + 1, . . . , 𝑚1 + 𝑚2. Then, the above condition (4.4) can 

be written as   

 
𝑐3

𝑐1
[
𝒘1

𝑏1
] +

[𝐴 𝒆1]𝑡

𝑐1
𝑠𝑔𝑛𝜏=1( [𝐴 𝒆1] [

𝒘1

𝑏1
]) + ∑ [

𝒙𝑖

1
]

𝑖∈𝑆1
+

− 𝜏1 ∑ [
𝒙𝑖

1
]

𝑖∈𝑆1
−

+ ∑ 𝜍𝑖 [
𝒙𝑖

1
]

𝑖∈𝑆1
0

= 𝟎   (4.5) 

where  𝜍𝑖 ∈ [−𝜏1, 1]. From condition (4.5), we see that 𝜏1controls the amount of vectors for  

training in 𝑆1
+and 𝑆1

−. For small values of 𝜏1, the set 𝑆1
+contains few vectors and the result is 

sensitive. When 𝜏1 = 1, both sets contain large number of vectors, and the result is less 

susceptible to noise on 𝒙𝑖. This property is illustrated in Figure 4.1 on a 2-D synthetic dataset 

consisting of two classes of training points where those from the positive and negative classes 

are marked by red triangles and blue circles respectively. In addition, we have also shown the 

non-parallel hyperplanes 𝒘1
𝑡 𝒙 + 𝑏1 = 0 and 𝒘1

𝑡 𝒙 + 𝑏1 = −1 along with the boundary of the 

decision hyperplane obtained for the linear case. In fact, the results for TBSVM and L1-Pin-

TBSVM (𝜏1 = 0.1 and 𝜏1 = 0.5) are illustrated in Figure 4.1(a)-Figure 4.1(c) In Figure 4.1(b)-

Figure 4.1(c), the set of points of 𝑆1
+will be the points lying below the hyperplane 𝒘1

𝑡 𝒙 + 𝑏1 =

−1 whereas all points lying above this hyperplane will be 𝑆1
−. From  

 

(a) TBSVM 
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(b) L1-Pin-TBSVM )1.0( =  

 

(c) L1-Pin-TBSVM )5.0( =  

Figure 4.1 Classification results of linear (a) TBSVM, (b) L1-Pin-TBSVM with 1.0= , (c) L1-

Pin-TBSVM  

Figure 4.1(b) and Figure 4.1(c) with 𝜏1 = 0.1 and 𝜏1 = 0.5, with the increase of 𝜏1 the 

number of points in 𝑆1
+ region is becoming larger and accordingly the summation of 

[
𝒙𝑖

1
] term in (4.5) is insensitive to noise on 𝒙𝑖 ∈ 𝑆1

+. A similar analysis holds for (4.3b).  

 Let 𝒙0 ∈ 𝑇 be such that 𝒘1
𝑡 𝒙0 + 𝑏1 = 0 holds. By using the sum of the absolute distance 

between 𝒙0 ∈ 𝑇and 𝒙𝑖  vectors from the positive class in the projected space related to 𝒘1, the 

scatter of 𝒙𝑖 ∈ 𝑇 around 𝒙0 can be defined as ∑ |𝒘1
𝑡 (𝒙𝑖 − 𝒙0)|

𝑚1
𝑖=1 = ∑ |𝒘1

𝑡 𝒙𝑖 + 𝑏1|
𝑚1
𝑖=1 = 

||𝐴𝒘1 + 𝑏1𝒆1||1.  

 Consider the following problem formulation  

𝑚𝑖𝑛
𝒘1,𝑏1

1

2
𝑐3(||𝒘1||2 + 𝑏1

2) + ||𝐴𝒘1 + 𝑏1𝒆1||1 + 𝑐5||𝒆2 + 𝐵𝒘1 + 𝑏1𝒆2||1.  (4.6) 

 

The first term is the regularization term and by minimizing it, the structural risk is minimized. 

The second term might be viewed as the minimization of the scatter loss around the positive 

hyperplane. Lastly, minimization of the third term makes the negative class vectors to be pushed 

to lie around the plane  𝒘1
𝑡 𝒙 + 𝑏1 + 1 = 0. 

  By adding the hinge loss misclassification error term 𝑐7 ∑ 𝑚𝑎𝑥{ 0,1 − 𝑦𝑖(𝒘1
𝑡 𝑥𝑖 +

𝑚1+𝑚2
𝑖=𝑚1+1

𝑏1)} into (4.6) and by choosing 𝑐1 = 𝑐5 + 𝑐7 and 𝜏1 =
𝑐5

𝑐1
, our proposed pinball SVM (4.2) is 

obtained, i.e., the pinball loss minimization of a class of vectors can be interpreted as pushing 

the vectors to lie around a parallel hyperplane and minimizing the misclassification error 

together. 

 A similar outcome can be obtained for (4.3b). Note that, we have  0 ≤ 𝜏1, 𝜏2 ≤ 1. 
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Based on the discussion, one can see that Pin-TBSVM can be thought of as a model that puts 

emphasis on within-class scatter, pushing the class of vectors to lie around a parallel hyperplane 

and misclassification error minimization together.  

  Assume that the data is contaminated by outliers and feature noise. Our principal 

concern in this study is in obtaining a robust classifier by constructing an elegant problem 

formulation in a simple form like the classical SVM. In this regard, it is suggested to obtain the 

solutions of Pin-TBSVM by solving an equivalent pair of QPPs each having m number of 

unknowns only. With this objective, the Pin-TBSVM problem (4.2) is equivalently formulated 

into the following novel pinball TBSVM in 𝐿1 −norm (L1-Pin-TBSVM) problem   

𝑚𝑖𝑛
𝒘1,𝑏1,𝝃1,𝝃2

   
1

2
𝑐3(||𝒘1||2 + 𝑏1

2) + 𝒆1
𝑡 𝝃1 + 𝑐1𝒆2

𝑡 𝝃2 

subject to 𝐴𝐰1 + 𝑏1𝒆1 ≤ 𝝃1,  −(𝐴𝒘1 + 𝑏1𝒆1) ≤ 𝝃1, 

                 −(𝐵𝒘1 + 𝑏1𝒆2) ≥ 𝒆2 − 𝝃2,  −(𝐵𝒘1 + 𝑏1𝒆2) ≤ 𝒆2 +
1

𝜏1
𝝃2 

 

(4.7a) 

and 

𝑚𝑖𝑛
𝒘2,𝑏2,𝜼1,𝜼2

   
1

2
𝑐4(||𝒘2||2 + 𝑏2

2) + 𝒆2
𝑡 𝜼2 + 𝑐2𝒆1

𝑡 𝜼1 

subject to 𝐵𝐰2 + 𝑏2𝒆2 ≤ 𝜼2,  −(𝐵𝒘2 + 𝑏2𝒆2) ≤ 𝜼2, 

                    𝐴𝒘2 + 𝑏2𝒆1 ≥ 𝒆1 − 𝜼1,   𝐴𝒘2 + 𝑏2𝒆1 ≤ 𝒆1 +
1

𝜏2
𝜼1 

 

(4.7b) 

 

The formulation L1-Pin-TBSVM (4.7) can be expressed as 

𝑚𝑖𝑛
𝒘1,𝑏1,𝝃1,𝝃2

 
1

2
𝑐3(||𝒘1||2 + 𝑏1

2) + 𝒆1
𝑡 𝝃1 + 𝑐1𝒆2

𝑡 𝝃2 

subject to − [
𝐴 𝒆1

𝐵 𝒆2
] [

𝒘1

𝑏1
] ≤ [

𝝃1

𝒆2 + (1/𝜏1)𝝃2
] ,   [

𝐴 𝒆1

𝐵 𝒆2
] [

𝒘1

𝑏1
] ≤ [

𝝃1

−𝒆2 + 𝝃2
] 

    

and 

𝑚𝑖𝑛
𝒘2,𝑏2,𝜼1,𝜼2

 
1

2
𝑐4(||𝒘2||2 + 𝑏2

2) + 𝒆2
𝑡 𝜼2 + 𝑐2𝒆1

𝑡 𝜼1 

subject to − [
𝐴 𝒆1

𝐵 𝒆2
] [

𝒘2

𝑏2
] ≤ [

−𝒆1 + 𝜼1

𝜼2
] ,  [

𝐴 𝒆1

𝐵 𝒆2
] [

𝒘2

𝑏2
] ≤ [

𝒆1 + (1/𝜏2)𝜼1

𝜼2
] 

Or equivalently in matrix form  

𝑚𝑖𝑛
𝒛1,𝝃

  
1

2
𝑐3||𝒛1||2 + 𝒆𝑡𝐷11𝝃 

  subject to  −𝐺𝒛1 ≤ 𝒓1 + 𝐷12𝝃,  𝐺𝒛1 ≤ −𝒓1 + 𝝃 

 

(4.8a) 

 

and 

𝑚𝑖𝑛
𝒛2,𝜼

  
1

2
𝑐4||𝒛2||2 + 𝒆𝑡𝐷22𝜼 

 

(4.8b) 
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  subject to      −𝐺𝒛2 ≤ −𝒓2 + 𝜼,  𝐺𝒛2 ≤ 𝒓2 + 𝐷21𝜼 

 

where  

 𝒛𝑘 = [
𝒘𝑘

𝑏𝑘
] ∈ 𝑅𝑛+1,  𝐺 = [

𝐴 𝒆1

𝐵 𝒆2
] = [𝐶 𝒆], 𝒓1 = [

𝟎1

𝒆2
] , 𝒓2 = [

𝒆1

𝟎2
] ,  𝝃 = [

𝝃1

𝝃2
] , 𝜼 [

𝜼1

𝜼2
] , 𝒆 =

[
𝒆1

𝒆2
] ; 𝟎𝑘,𝒆𝑘  signify the zeros in the column vectors and ones of dimension 𝑚𝑘  for   𝑘 = 1,2: 

𝐷11 = 𝑑𝑖𝑎𝑔(𝒆1; 𝑐1𝒆2), 𝐷12 = 𝑑𝑖𝑎𝑔(𝒆1; (1/𝜏1)𝒆2), 𝐷22 = 𝑑𝑖𝑎𝑔(𝑐2𝒆1; 𝒆2), 𝐷21 = 𝑑𝑖𝑎𝑔((1/

𝜏2)𝒆1; 𝒆2) are diagonal matrices of order m.   

 We solve the problem (4.8) in the dual space. By introducing the vectors of Lagrangian 

multipliers 𝜶1, 𝜷1, 𝜶2, 𝜷2 ≥ 𝟎 from 𝑅𝑚, the Lagrangian functions for (4.8) can be obtained as 

�̃�1(𝒛1, 𝝃, 𝜶1, 𝜷1) =
1

2
𝑐3𝒛1

𝑡 𝒛1 + 𝒆𝑡𝐷11𝝃 + 𝜶1
𝑡 (−𝐺𝒛1 − 𝒓1 − 𝐷12𝝃) + 𝜷1

𝑡 (𝐺𝒛1 + 𝒓1 − 𝝃) 

and 

�̃�2(𝒛2, 𝜼, 𝜶2, 𝜷2) =
1

2
𝑐4𝒛2

𝑡 𝒛2 + 𝒆𝑡𝐷22𝜼 + 𝜶2
𝑡 (−𝐺𝒛2 + 𝒓2 − 𝜼) + 𝜷2

𝑡 (𝐺𝒛2 − 𝒓2 − 𝐷21𝜼) 

By applying the necessary and sufficient KKT conditions for optimality, we get 

𝜕�̃�𝑘/𝜕𝒛𝑘 = 𝟎 ⇒ 𝒛𝑘 =
𝐺𝑡

𝑐𝑘+2
(𝜶𝑘 − 𝜷𝑘)   for 𝑘 =  1, 2,  (4.9) 

𝜕�̃�1/𝜕𝝃 = 𝟎 ⇒ 𝐷12𝜶1 + 𝜷1 = 𝐷11𝒆,     𝜕�̃�2/𝜕𝜼 = 𝟎 ⇒ 𝜶2 + 𝐷21𝜷2 = 𝐷22𝒆,  
 

(4.10) 

𝜶1
𝑡 (−𝐺𝒛1 − 𝒓1 − 𝐷12𝝃) = 0, 𝜷1

𝑡 (𝐺𝒛1 + 𝒓1 − 𝝃) = 0, 
 

(4.11) 

 𝜶2
𝑡 (−𝐺𝒛2 + 𝒓2 − 𝜼) = 0, 𝜷2

𝑡 (𝐺𝒛2 − 𝒓2 − 𝐷21𝜼) = 0 and  𝜶1, 𝜷1, 𝜶2, 𝜷2 ≥ 𝟎. 
 

(4.12) 

Using (4.9) and (4.10), the duals of (4.8) can be obtained as a pair of QPP minimization 

problems   

𝑚𝑖𝑛
𝜶1,𝜷1∈𝑅𝑚

1

2𝑐3
(𝜶1 − 𝜷1)𝑡𝐺𝐺𝑡(𝜶1 − 𝜷1) + 𝒓1

𝑡 (𝜶1 − 𝜷1)  

subject to 𝐷12𝜶1 + 𝜷1 = 𝐷11𝒆 and 𝜶1 ≥ 𝟎, 𝜷1 ≥ 𝟎   

 

(4.13a) 

and  

  𝑚𝑖𝑛
𝜶2,𝜷2∈𝑅𝑚

1

2𝑐4
(𝜶2 − 𝜷2)𝑡𝐺𝐺𝑡(𝜶2 − 𝜷2) − 𝒓2

𝑡 (𝜶2 − 𝜷2) 

subject to   𝜶2 + 𝐷21𝜷2 = 𝐷22𝒆 and 𝜶2 ≥ 𝟎, 𝜷2 ≥ 𝟎. 

 

(4.13b) 

Using the condition 𝐷12𝜶1 + 𝜷1 = 𝐷11𝒆 we get 𝜶1 − 𝜷1 = (𝐼 + 𝐷12)𝜶1 − 𝐷11𝒆 and 𝜷1 =

𝐷11𝒆 − 𝐷12𝜶1 ≥ 𝟎.  Putting this results in the dual problem (4.13a), we obtain  

𝑚𝑖𝑛
𝜶1∈𝑅𝑚

𝐿1(𝜶1) =
1

2
𝜶1

𝑡 𝑄1𝜶1 − 𝒉1
𝑡 𝜶1, 

 

(4.14a) 
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subject to  𝟎 ≤ 𝜶1 ≤ 𝐷12
−1𝐷11𝒆 = (

𝒆1

𝑐1𝜏1𝒆2
)   

where 𝑄1 = (𝐼 + 𝐷12)𝐺𝐺𝑡(𝐼 + 𝐷12) 𝑎𝑛𝑑 𝒉1 = (𝐼 + 𝐷12)(𝐺𝐺𝑡𝐷11𝒆 − 𝑐3𝒓1). 

Again, since 𝜶2 + 𝐷21𝜷2 = 𝐷22𝒆 and therefore 𝜶2 − 𝜷2 = 𝐷22𝒆 − (𝐼 + 𝐷21)𝜷2 implies 

problem (4.13b) can be rewritten in simple form as 

𝑚𝑖𝑛
𝜷2∈𝑅𝑚

𝐿2(𝜷2) =
1

2
𝜷2

𝑡 𝑄2𝜷2 − 𝒉2
𝑡 𝜷2, subject to 𝟎 ≤ 𝜷2 ≤ 𝐷21

−1𝐷2𝒆 = (
𝑐2𝜏2𝒆1

𝒆2
)    

 

(4.14b) 

where 𝑄2 = (𝐼 + 𝐷21)𝐺𝐺𝑡(𝐼 + 𝐷21) 𝑎𝑛𝑑 𝒉2 = (𝐼 + 𝐷21)(𝐺𝐺𝑡𝐷22𝒆 − 𝑐4𝒓2).  

Using the solutions of (4.14)  and (4.9), the decision function for L1-Pin-TBSVM is obtained  

𝑓(𝒙) = 𝑠𝑖𝑔𝑛 (
𝒘1

𝑡 𝒙 + 𝑏1

||𝒘1||
+

𝒘2
𝑡 𝒙 + 𝑏2

||𝒘2||
). 

Remark 4.3. In the derivation of L1-Pin-TBSVM (4.14), it is assumed that (𝜏1, 𝜏2) ≠ (0,0). 

Notice that our proposed method of solving (4.14) is novel and is general in the sense that it is 

applicable for 𝜏1, 𝜏2 ∈ (0,1]. 

Remark 4.4. Problems (4.14a) and (4.14b) are convex QPPs with box constraints in simple 

form. Since L1-Pin-TBSVM solves the pair of QPPs (4.14) in m variables, its computational 

complexity for learning is 2𝑂(𝑚3). 

Remark 4.5. When 𝜏1 = 𝜏2 = 0, problem (4.2) is the same as the 𝐿1 −norm loss based twin 

SVM (L1LTSVM) considered for study by Peng et al. (2016).   

Remark 4.6. Unlike in TBSVM where the dual QPPs of (2.27) contain terms having the inverse 

of kernel matrices (Shao et al., 2011), the proposed L1-Pin-TBSVM has the advantage that its 

dual QPPs (4.14) are free of matrix inversion terms. 

Remark 4.7. From the constraints of the problem (4.14) and from (4.10)-(4.12), one can verify 

that 𝜶1, 𝜷2 become sparse and hence from (4.9) we say that the normal vectors 𝒘𝑘where 𝑘 =

1,2 are partly sparse (Peng et al., 2016).   

Remark 4.8. The pair of dual problems (4.14) can be solved efficiently using SVM type 

algorithms like sequential minimal optimization (SMO) (Platt, 1999), dual coordinate descent 

(DCD) (Hsieh et al., 2008), successive over-relaxation (SOR) (Mangasarian & Wild, 2006), 

clipping DCD (clipDCD) (Peng et al., 2014). However, in this work, MOSEK optimization 

toolbox available for MATLAB is used. 

 For the non-linear case, we proceed as follows. Assuming that 𝜑(. )is the non-linear 

mapping taking the training vectors into a higher dimensional feature space, Pin-TBSVM in the 

feature space can be formulated in 𝐿1 −norm as  

𝑚𝑖𝑛
𝒘1,𝑏1,𝝃1,𝝃2

   
1

2
𝑐3(||𝒘1||2 + 𝑏1

2) + ||𝜑(𝐴)𝒘1 + 𝑏1𝒆1||1 + 𝑐1𝒆2
𝑡 𝝃2 

 subject to − (𝜑(𝐵)𝒘1 + 𝑏1𝒆2) ≥ 𝒆2 − 𝝃2,   

 

(4.15a) 
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−(𝜑(𝐵)𝒘1 + 𝑏1𝒆2) ≤ 𝒆2 +
1

𝜏1
𝝃2  

and 

𝑚𝑖𝑛
𝒘2,𝑏2,𝜼1,𝜼2

   
1

2
𝑐4(||𝒘2||2 + 𝑏2

2) + ||𝜑(𝐵)𝒘2 + 𝑏2𝒆2||1 + 𝑐2𝒆1
𝑡 𝜼1 

subject to  𝜑(𝐴)𝒘2 + 𝑏2𝒆1 ≥ 𝒆1 − 𝜼1,   𝜑(𝐴)𝒘2 + 𝑏2𝒆1 ≤ 𝒆1 +
1

𝜏2
𝜼1. 

 

(4.15b) 

By taking 𝐺 = [
𝜑(𝐴) 𝒆1

𝜑(𝐵) 𝒆2
] = [𝜑(𝐶) 𝒆], therefore 𝐺𝐺𝑡 = 𝐾(𝐶, 𝐶𝑡) + 𝐸 where 𝐸 = 𝒆𝒆𝑡is the 

matrix in which all its entries are equal to 1, and proceeding as in the linear case, the dual 

problems of (4.15) are obtained to be a pair of QPPs of the form (4.14). In this case,  

 𝒛𝑘 = [𝜑(𝐶)𝒆]𝑡𝒖𝑘 and 𝑓𝑘(𝒙) = [𝜑(𝒙)1] [
𝒘𝑘

𝑏𝑘
] = (𝐾(𝒙𝑡 , 𝐶𝑡) + 𝒆𝑡)𝒖𝑘 for 𝑘 = 1,2,  

where 𝒖1 = ((𝐼 + 𝐷12)𝜶1 − 𝐷11𝒆)/𝑐3 and 𝒖2 = (𝐷22𝒆 − (𝐼 + 𝐷21)𝜷2)/𝑐3. 

 Finally, the decision function for non-linear L1-Pin-TBSVM can be obtained as 

 

𝑓(𝒙) = 𝑠𝑖𝑔𝑛 (
(𝐾(𝒙𝑡 , 𝐶𝑡) + 𝒆𝑡)𝒖1

||𝒖1
𝑡 𝐾(𝐶, 𝐶𝑡)𝒖1||

+
(𝐾(𝒙𝑡 , 𝐶𝑡) + 𝒆𝑡)𝒖2

||𝒖2
𝑡 𝐾(𝐶, 𝐶𝑡)𝒖2||

) 

 

Notice that when 𝐾(𝐶, 𝐶𝑡) = 𝐶𝐶𝑡, problem (4.14) for the non-linear case is reduced to a linear 

problem, i.e. the proposed L1-Pin-TBSVM allows a uniform formulation for the linear and non-

linear kernels. 

4.3 Discussion on L1-Pin-TBSVM 

  we compare the proposed L1-Pin-TBSVM to TBSVM, Pin-SVM and Pin-TSVM 

in this subsection.   

4.3.1 LI-Pin-TBSVM versus TBSVM 

 Both TBSVM and L1-Pin-TBSVM classifiers are based on non-parallel hyperplanes and 

they lead to solving a pair of QPPs with box constraints. TBSVM uses the hinge loss whereas in 

L1-Pin-TBSVM, pinball loss is used. In case of non-linear classification, TBSVM identifies 

kernel generated surfaces of the kind (2.26), which means that an approximate formulation is 

solved (Tian, 2013). On the contrary, non-linear L1-Pin-TBSVM is formulated by applying the 

kernel trick directly in the dual QPPs like in the classical SVM and thereby a unified form for 

the linear and non-linear kernel is obtained. Although a pair of smaller sized QPPs (2.27) is 

solved in TBSVM, i.e. if the sizes of the datasets for the two classes are approximately equal 

then its computational training complexity is 2𝑂((𝑚/2)3), its formulation requires the inverse 

of kernel matrices of additional computational complexity 2𝑂((𝑚 + 1)3) which in practice is 

intractable. However, no inverse matrices appear in L1-Pin-TBSVM. Compared to the 
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minimization of the empirical kernel term of TBSVM in 𝐿2 −norm, the kernel term in L1-Pin-

TBSVM as the scatter loss is minimized in 𝐿1 −norm and hence the proposed L1-Pin-TBSVM 

is robust to feature noise and outliers.   

4.3.2 LI-Pin-TBSVM versus Pin-SVM 

 Since pinball loss function is used in L1-Pin-TBSVM and therefore, like Pin-SVM, the 

proposed L1-Pin-TBSVM has both noise insensitivity and re-sampling stability properties. With 

(m+1) equality constraints Pin-SVM resolves a single QPP in 2m nonnegative variables and 

hence its computational training complexity is 𝑂((2𝑚)3) whereas the computational complexity 

of L1-Pin-TBSVM is 2𝑂(𝑚3). This makes L1-Pin-TBSVM a faster learning method than Pin-

SVM. 

4.3.3 LI-Pin-TBSVM versus Pin-TSVM 

    Though the problem formulations of L1-Pin-TBSVM and Pin-TSVM are entirely 

different, both the methods share certain important properties: (i). pinball loss is used; (ii). a pair 

of QPPs is solved. In fact, when the sizes of the datasets of both the classes are approximately 

equal, i.e. m1   m2   m/2, Pin-TSVM solves a pair of QPPs having m nonnegative variables 

and (𝑚/2 + 1) equality constraints resulting its computational complexity is 2𝑂(𝑚3), i.e. same 

order of complexity is obtained for both the methods; (iii). The kernel technique is directly used 

and non-linear formulation is obtained; (iv). formulations are free from inverse of kernel 

matrices; (v). noise insensitivity and small within-class scatter properties are satisfied.   

4.4 Experimental Results 

 To investigate the effectiveness of the proposed L1-Pin-TBSVM, we perform an 

empirical comparison between L1-Pin-TBSVM and, along with the classical SVM, few popular 

variants: TBSVM, L1-LSTBSVM, Pin-SVM and Pin-TSVM. All the experiments are performed 

in MATLAB R2015a environment on a PC running Windows 10 operating system with 64 bit 

Intel®core™ i7 CPU with 8 GB of RAM. For solving the QPPs, MOSEK optimization toolbox 

for MATLAB available at http://www.mosek.com is used.  In experiments, the popular Gaussian 

kernel function of the form: 𝑘(𝒙, 𝒛) = 𝑒𝑥𝑝( −||𝒙 − 𝒛||2 2𝜎2⁄ ) is used where 𝜎 > 0 > 0 is the 

parameter. The parameters for SVMs are chosen by tenfold cross-validation strategy where the 

penalty parameters c’s, 𝜈1, 𝜈2 and the kernel parameter 𝜎 are selected from the set of values {2𝑖| 

i = -9, -8,-7,…,9} whereas 𝜏1, 𝜏2 are chosen from {0.1, 0.2, 0.5, 1}, i.e., (i). by randomly 

splitting each dataset into ten folds and using one of them as the validation set and the remaining 

for training, the accuracy over the validation set is computed; (ii). the values of the parameters 

showing the highest average accuracy are chosen as their optimal values where the average 

http://www.mosek.com/
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accuracy is computed by considering each one of the remaining folds as a validation set. For 

brevity’s sake, we assume 𝑐1 = 𝑐2, 𝑐3 = 𝑐4, 𝑣1 = 𝑣2 and 𝜏 = 𝜏1 = 𝜏2.    

 To validate the effectiveness of L1-Pin-TBSVM in the presence of outliers and feature 

noise, the results on Crossplanes (Mangasarian & Wild, 2006) and two-moon synthetic datasets 

are described. For empirical comparisons of the algorithms, 11 benchmark datasets from the 

UCI repository of machine learning datasets (Murphy & Aha, 1992) are considered for noiseless 

and noisy settings. 

4.4.1 Crossplanes synthetic dataset 

   To verify the classification performance of L1-Pin-TBSVM in the presence of outliers, a 

two dimensional Crossplanes dataset consisting of 46 positive and 58 negative classes of points 

is considered. It is generated by perturbing points originally lying on two intersecting lines and 

belonging in two classes. In Figure 4.2, the positive and negative points of Crossplanes are 

shown by using red and blue colours filled triangles and circles respectively. As it is known that 

the presence of outliers will degrade the performance of any classification method, for the 

purpose of testing robustness, manually we added outliers two in number in one case and four in 

the other case. They are marked by filled triangles and circles in red and blue colours in Figure 

4.2. We learned the non-parallel optimal hyperplanes on Crossplanes in the presence of two and 

four outliers, and their corresponding linear results for TBSVM, L1-LSTBSVM, Pin-TSVM and 

L1-Pin-TBSVM are shown in Figure 4.2. For the problem of two outliers, the results of 

classification accuracies of L1-Pin-TBSVM, Pin-TSVM, L1-LSTBSVM and TBSVM are 

98.1%, 96.2%, 90.8% and 81.1% respectively whereas for the case of four outliers, they are 

96.3%, 94.4%, 79.8% and 66.7% respectively. This clearly shows the influence of outliers on 

the performance of a learning  

 

(a) TBSVM (81.1321) 

 

(b) TBSVM (66.6667) 
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(c) L1-LSTBSVM (90.8182) 

 

(d) L1-LSTBSVM (79.8184) 

 

(e) Pin-TSVM (96.2264) 

 

(f) Pin-TSVM (94.4444) 

 

(g) L1-Pin-TBSVM (98.1132) 

 

(h) L1-Pin-TBSVM (96.2963) 

Figure 4.2 Results of nonparallel hyperplanes generated by linear TBSVM, L1-LSTBSVM, Pin-

TSVM and L1-Pin-TBSVM on “crossplanes” dataset with two outliers (Left) and four outliers 

(Right). ‘Triangles’ and ‘circles’ represent positive and negative class points. Outliers are marked 

by filled triangles and circles. 

method. Among the methods considered, better performance and very small performance 

degradation from 98.1% to 96.3% of L1-Pin-TBSVM show its superiority in terms of efficiency 
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and robustness to outliers. The superior performance of L1-Pin-TBSVM in comparison to 

TBSVM is attributed to 𝐿1 −norm is known for its ability to suppress the negative effect of 

outliers whereas the worst performance degradation from 81.1% to 66.7% of TBSVM where 

𝐿2 −norm is applied clearly shows its sensitivity towards outliers. Though 𝐿1 −norm is less 

sensitive to outliers, the poor performance of L1-LSTBSVM in comparison to L1-Pin-TBSVM 

may be because of the non-robust LS loss function. From this discussion, we conclude that L1-

Pin-TBSVM is a powerful method for data classification having the ability to suppress the 

influence of outliers. 

4.4.2 Two-moon synthetic dataset 

   To illustrate the effectiveness and robustness of L1-Pin-TBSVM, we considered a two-

dimensional synthetic binary classification dataset having two-moon shape shown in Figure 4.3. 

It consists of 220 positive and 180 negative samples where they are represented by small red and 

blue triangles and circles, respectively. As seen from the figure, it is linearly non-separable. To 

validate the insensitivity of L1-Pin-TBSVM towards noise, each feature of the data is corrupted 

by zero-mean additive Gaussian noise and its standard deviation 𝑟 is chosen as 1, 1.3 and 1.5. 

One-run simulation results showing the classifiers of the non-linear SVM, TBSVM, Pin-SVM, 

Pin-TSVM and L1-Pin-TBSVM for 1=r and 5.1=r are illustrated graphically in Figure 4.3(a) 

and Figure 4.3(b) respectively. By repeating the process of randomly generating 400 test vectors 

and computing the test accuracies, its average test accuracy is reported in Table 4.1. The 

classification accuracies of L1-Pin-TBSVM and its comparisons for Gaussian kernel are 

summarized for 𝑟 = 1, 𝑟 = 1.3 and 𝑟 = 1.5. Here, higher accuracy indicates better performance. 

The highest classification accuracy is shown in boldface and it is achieved by L1-Pin-TBSVM 

at all levels of noise. As the level of noise 𝑟 increases, performance degradation by all the 

learning methods shows their sensitivity to noise. Although L1-Pin-TBSVM and the hinge loss 

based SVMs show nearly equal accuracy for 𝑟 = 1, the results of comparison of the 

performance degradations for 𝑟 = 1.5 demonstrates that L1-Pin-TBSVM is more robust to SVM 

and TBSVM in the presence of noise. Similar result holds for Pin-SVM and Pin-TSVM. This 

shows that pinball loss is more robust to feature noise in comparison to hinge loss and better 

classification performance of L1-Pin-TBSVM confirms its superiority to all learning methods 

considered. 
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(a) SVM 

 

(b) TBSVM 

 

(c) Pin-SVM 

 

(d) Pin-TSVM 

 

(e) L1-Pin-TBSVM 

Figure 4.3(a) Visualizations of two-moon dataset and classifiers trained by SVM, TBSVM, Pin-

SVM, Pin-TSVM, L1-Pin-TBSVM with noise level r=1. 

 

(a) SVM 

 

(b) TBSVM 
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(c) Pin-SVM 

 

(d) Pin-TSVM 

 

(e) L1-Pin-TBSVM 

Figure 4.4(b) Visualization of two-moon dataset and classifiers trained by SVM, TBSVM, Pin-

SVM, Pin-TSVM, L1-Pin-TBSVM with noise level r=1.5. 

 

 

Table 4.1 A comparison of the proposed method’s performance L1-Pin-TBSVM with SVM, 

TBSVM, Pin-SVM and Pin-TSVM on two-moon dataset with different levels of noise. The 

Gaussian kernel was used.  Best result is indicated in boldface. 

 

4.4.3 Benchmark datasets 

   In this subsection, further, we test the effectiveness of the proposed method for linear 

and Gaussian kernels in terms of classification accuracy and learning time by performing 

experiments on 11 popular benchmark datasets of UCI (Murphy & Aha, 1992) under noiseless 

Dataset  

(Total size) 

Level of 

noise 
SVM TBSVM Pin-SVM Pin-TSVM L1-Pin-TBSVM 

 

Two-moon 

(400 X 2) 

r=1 98.12±0.6553 98.45±5.6090 98.55±0.5765 98.83±0.5288 98.93±0.5280 

r=1.3 95.81±0.8945 95.94±0.9965 96.45±0.7406 96.47±0.7408 97.05±0.6181 

r=1.5 92.77±1.0542 92.91±1.0160 93.92±0.9692 93.98±0.9697 94.31±0.9358 
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and noisy settings. All the samples are normalized so that their feature values lie in the unit 

interval [0, 1]. As noise setting, each feature value is corrupted by zero-mean Gaussian noise 

where the ratio (𝑟) of variance of noise to that of feature is taken as 𝑟 = 0 (i.e., noise-free), 𝑟 =

0.05 and 𝑟 = 0.1 (Huang et al., 2014). Both the training and test vectors are corrupted by the 

same noise. In Table 4.2 and Table 4.4, we report the experimental results for linear and 

Gaussian kernels including the learning CPU time, the average cross-validation accuracy as the 

classification accuracy and the standard deviation. We ranked the algorithms in accordance with 

the classification accuracy obtained on each dataset and is reported.  

Table 4.2 A comparison of the performance of proposed L1-Pin-TBSVM with SVM, TBSVM, 

Pin-SVM, Pin-TSVM on benchmark datasets with noise level r. The linear kernel was used. 

Best result is indicated in boldface. 

Dataset 

(Total size) 

Level 

of 

noise 

SVM 

Time 

(𝐶) 

Rank 

TBSVM 

Time 

(𝐶1, 𝐶2) 

Rank 

Pin-SVM 

Time 

(𝐶1, 𝜏) 

Rank 

Pin-TSVM 

Time 

(𝐶1, 𝜏) 

Rank 

L1-Pin-

TBSVM 

Time 

(𝐶1, 𝐶2, 𝜏) 

Rank 

 

 

Sonar 

(208×60) 

r=0 

78.38±5.97 

0.0047 

(2-2) 

(4) 

78.95±5.82 

0.0024 

(20, 2-1) 

(2) 

78.14±5.75 

0.0176 

(24, 0.5) 

(5) 

78.52±5.92 

0.0104 

(22, 0.1) 

(3) 

79.57±5.87 

0.0018 

(2-2, 24,1) 

(1) 

r=0.05 

77.47±6.16 

0.0082 

(2-3) 

(5) 

77.52±5.92 

0.0031 

(21, 20) 

(4) 

78.35±6.26 

0.0130 

(23, 0.2) 

(2) 

77.57±5.69 

0.0128 

(24, 0.8) 

(3) 

78.96±5.56 

0.0045 

(2-2, 24,0.8) 

(1) 

r=0.1 

76.42±6.27 

0.0074 

(2-2) 

(5) 

77.34±4.28 

0.0045 

(24, 24) 

(3) 

78.05±5.86 

0.0144 

(23, 0.8) 

(2) 

77.14±6.52 

0.0165 

(24, 1) 

(4) 

78.44±5.74 

0.0060 

(2-3, 24,0.8) 

(1) 

 

 

Breast-

cancer 

(683×9) 

r=0 

95.79±2.96 

0.0340 

(2-1) 

(4) 

95.06±4.37 

0.0148 

(23, 24) 

(5) 

96.05±3.66 

0.0413 

(2-4, 0.1) 

(2) 

95.93±2.31 

0.0225 

(24, 1) 

(3) 

96.44±3.21 

0.0185 

(22, 2-2, 20,1) 

(1) 

r=0.05 

95.37±2.72 

0.0334 

(20) 

(4) 

94.64±2.73 

0.0138 

(2-2, 24) 

(5) 

95.87±3.48 

0.0422 

(2-3, 0.5) 

(2) 

95.58±2.46 

0.0239 

(24, 0.8) 

(3) 

96.02±2.36 

0.0160 

(22,2-2,0.5) 

(1) 

r=0.1 94.50±3.29 94.39±2.60 94.95±3.52 94.71±4.11 95.40±4.18 
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0.0392 

(2-4) 

(4) 

0.0110 

(20, 24) 

(5) 

0.0448 

(2-3, 0.8) 

(2) 

0.0281 

(20, 0.2) 

(3) 

0.0163 

(22,2-2,0.2) 

(1) 

 

 

German 

(1000×24) 
r=0 

75.50±6.05 

0.0734 

(23) 

(5) 

75.70±6.83 

0.0319 

(23, 21) 

(3.5) 

75.70±5.89 

0.0843 

(2-4, 0.1) 

(3.5) 

75.81±5.94 

0.0440 

(2-3, 1) 

(2) 

76.90±5.15 

0.0477 

(24,2-4,0.1) 

(1) 

r=0.05 

74.80±5.39 

0.0716 

(23) 

(3) 

74.20±4.56 

0.0373 

(2-4, 21) 

(5) 

74.25±4.38 

0.0865 

(2-2, 0.5) 

(4) 

75.30±5.41 

0.0469 

(20, 0.2) 

(2) 

76.50±4.24 

0.0482 

(24,2-3,0.2) 

(1) 

r=0.1 

74.30±4.39 

0.0783 

(20) 

(2) 

73.00±5.55 

0.0325 

(2-2, 22) 

(5) 

73.40±5.91 

0.0883 

(2-3, 0.2) 

(4) 

74.00±4.80 

0.0498 

(2-1, 0.8) 

(3) 

75.40±4.37 

0.0494 

(23,2-3,0.5) 

(1) 

 

CMC 

(1473 Χ 9) 

r=0 

74.95±4.93 

0.0935 

(2-4) 

(1.5) 

73.95±4.93 

0.0585 

(2-4, 2-1) 

(4.5) 

73.95±4.93 

0.1439 

(2-4, 0.1) 

(4.5) 

74.02±4.98 

0.0672 

(2-2, 0.5) 

(3) 

74.95±3.54 

0.0533 

(21,2-1,0.2) 

(1.5) 

r=0.05 

73.58±4.48 

0.0988 

(2-4) 

(4) 

73.76±4.93 

0.0592 

(2-3, 2-1) 

(3) 

73.54±5.03 

0.1466 

(2-4, 0.8) 

(5) 

73.95±4.93 

0.0643 

(2-2, 0.8) 

(1.5) 

73.95±3.24 

0.0546 

(21,2-2,1) 

(1.5) 

r=0.1 

73.02±4.35 

0.0993 

(2-4) 

(5) 

73.31±4.82 

0.0552 

(2-4, 2-1) 

(3) 

73.11±5.37 

0.1480 

(2-4, 0.5) 

(4) 

73.68±4.93 

0.0689 

(2-2, 0.5) 

(2) 

74.94±4.38 

0.0573 

(22,2-2,0.5) 

(1) 

 

 

ILPD 

(583 Χ 10) 

r=0 

71.36±5.97 

0.0216 

(2-4) 

(5) 

71.38±5.02 

0.0099 

(2-4, 21) 

(4) 

71.90±5.46 

0.0327 

(23, 0.2) 

(3) 

73.00±5.55 

0.0378 

(2-2, 0.1) 

(1) 

71.95±6.42 

0.0018 

(2-4,2-4,0.5) 

(2) 

r=0.05 

71.34±5.65 

0.0224 

(2-2) 

(5) 

71.54±6.64 

0.0087 

(2-4, 21) 

(2) 

71.53±6.67 

0.0335 

(21, 0.8) 

(3) 

71.38±5.02 

0.0380 

(2-4, 0.1) 

(4) 

71.56±6.38 

(2-4,2-3,0.2) 

0.0036 

(1) 

r=0.1 

71.28±6.43 

0.0294 

(2-2) 

70.68±7.08 

0.0073 

(2-2, 23) 

70.10±5.80 

0.0387 

(24, 0.8) 

71.54±6.64 

0.0396 

(2-3, 0.2) 

71.36±6.08 

0.0051 

(2-4,2-4,0.5) 
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(3) (4) (5) (1) (2) 

 

 

Bupa 

(345 Χ 7) 

r=0 

67.26±8.98 

0.0084 

(24) 

(5) 

67.41±6.71 

0.0064 

(2-3, 21) 

(4) 

67.85±2.48 

0.0132 

(2-4, 0.5) 

(3) 

68.01±4.58 

0.0104 

(23, 0.5) 

(2) 

68.94±7.30 

0.0018 

(2-3,22,0.5) 

(1) 

r=0.05 

66.08±4.64 

0.0012 

(24) 

(5) 

67.25±4.34 

0.0054 

(2-2, 23) 

(3) 

67.00±2.28 

0.0159 

(21, 1) 

(4) 

67.89±5.63 

0.0143 

(24, 0.2) 

(2) 

68.31±6.88 

0.0036 

(24, 20,0.8) 

(1) 

r=0.1 

66.72±4.82 

0.0096 

(24) 

(3) 

66.35±3.76 

0.0023 

(2-4, 24) 

(5) 

66.52±3.51 

0.0186 

(22, 0.5) 

(4) 

66.84±5.80 

0.0136 

(24, 0.1) 

(2) 

67.04±5.04 

0.0014 

(23, 2-2,0.8) 

(1) 

 

 

QSAR 

(1055 Χ 41) 

 

r=0 

84.83±6.33 

0.0904 

(24) 

(1) 

84.07±5.78 

0.0386 

(21, 22) 

(5) 

84.10±7.96 

0.0986 

(2-3, 0.1) 

(4) 

84.19±5.66 

0.0499 

(22, 0.1) 

(3) 

84.26±5.66 

0.0346 

(20,20,0.5) 

(2) 

r=0.05 

82.85±8.91 

0.0926 

(24) 

(5) 

83.02±7.72 

0.0344 

(21, 21) 

(4) 

83.25±2.90 

0.0974 

(2-1, 0.2) 

(3) 

83.34±6.29 

0.0474 

(2-2, 0.1) 

(2) 

83.54±6.36 

0.0330 

(2-4, 24,0.8) 

(1) 

r=0.1 

80.76±9.02 

0.0958 

(24) 

(5) 

82.28±9.34 

0.0395 

(2-2, 2-3) 

(3) 

82.40±5.98 

0.0994 

(2-2, 0.2) 

(2) 

82.19±6.66 

0.0457 

(24, 0.1) 

(4) 

84.20±3.83 

0.0369 

(2-3, 23,0.5) 

(1) 

 

 

Rice 

(3810 Χ 8) 

r=0 

90.85±3.80 

2.2010 

(2-4) 

(5) 

91.44±2.12 

0.6965 

(22, 24) 

(2) 

90.94±2.11 

2.9128 

(2-4, 0.1) 

(4) 

90.99±2.88 

0.7368 

(2-4, 0.8) 

(3) 

91.69±2.28 

0.7213 

(23, 21, 0.2) 

(1) 

r=0.05 

90.63±2.48 

2.2070 

(2-4) 

(3) 

90.56±2.83 

0.6922 

(23, 24) 

(5) 

90.62±3.43 

2.9161 

(2-4, 0.5) 

(4) 

90.78±3.25 

0.7375 

(2-4, 1) 

(2) 

91.48±2.41 

0.7222 

(22, 24, 0.8) 

(1) 

r=0.1 

90.05±3.52 

2.2081 

(2-3) 

(5) 

90.27±2.69 

0.6983 

(21, 23) 

(4) 

90.36±2.31 

2.9188 

(2-3,0.8) 

(3) 

90.53±2.85 

0.7398 

(2-3, 0.5) 

(2) 

91.05±3.11 

0.7299 

(22, 21,1) 

(1) 

 r=0 71.45±5.61 73.95±3.09 71.79±4.92 71.97±3.74 74.20±3.83 
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Monks1 

(556 Χ 7) 

0.0123 

(21) 

(5) 

0.0062 

(20, 2-4) 

(2) 

0.0265 

(2-4, 0.1) 

(4) 

0.0142 

(24, 0.8) 

(3) 

0.0010 

(2-3,24,0.2) 

(1) 

r=0.05 

70.57±4.63 

0.0137 

(2-2) 

(4) 

73.58±4.77 

0.0089 

(20, 24) 

(2) 

70.51±3.46 

0.0281 

(20, 0.8) 

(5) 

71.06±2.06 

0.0158 

(24, 1) 

(3) 

73.82±4.71 

0.0045 

(2-2,24,0.8) 

(1) 

r=0.1 

70.12±5.94 

0.0108 

(2-2) 

(5) 

72.99±4.86 

0.0056 

(2-1, 2-4) 

(2) 

70.24±4.25 

0.0293 

(21, 0.2) 

(4) 

70.34±3.88 

0.0120 

(23, 0.5) 

(3) 

73.12±4.30 

0.0055 

(2-3,23,0.5) 

(1) 

 

 

Monks2 

(601 Χ 7) 

r=0 

65.72±5.68 

0.0139 

(2-4) 

(4.5) 

66.86±6.23 

0.0086 

(2-1, 2-4) 

(2) 

65.75±6.82 

0.0246 

(2-4, 0.1) 

(3) 

65.72±6.86 

0.0097 

(23, 0.8) 

(4.5) 

67.87±6.04 

0.0010 

(2-4,24,0.5) 

(1) 

r=0.05 

64.32±6.82 

0.0163 

(2-4) 

(5) 

64.38±6.67 

0.0014 

(2-1, 2-4) 

(4) 

65.72±6.07 

0.0272 

(2-4, 0.1) 

(2.5) 

65.72±6.20 

0.0080 

(24, 0.2) 

(2.5) 

66.71±5.09 

0.0027 

(2-4,24,1) 

(1) 

r=0.1 

63.52±5.34 

0.0197 

(2-4) 

(5) 

64.72±6.82 

0.0090 

(2-1, 2-4) 

(3) 

64.05±6.83 

0.0284 

(2-4, 0.1) 

(4) 

65.47±6.82 

0.0048 

(24, 0.2) 

(2) 

65.73±6.57 

0.0072 

(2-4,24,1) 

(1) 

 

 

Monks3 

(554 Χ 7) 

 

r=0 

63.51±6.68 

0.0132 

(2-4) 

(5) 

64.87±4.34 

0.0033 

(20, 2-4) 

(2) 

64.52±4.16 

0.0268 

(2-4, 0.1) 

(4) 

65.98±5.45 

0.0009 

(21, 0.2) 

(1) 

64.55±5.31 

0.0047 

(2-1,21,0.8) 

(3) 

r=0.05 

62.42±4.16 

0.0164 

(2-3) 

(5) 

64.77±3.75 

0.0012 

(2-2, 20) 

(1) 

63.48±5.02 

0.0277 

(2-3, 0.2) 

(4) 

64.69±4.98 

0.0060 

(20, 0.8) 

(2) 

64.53±3.85 

0.0083 

(2-4,24,1) 

(3) 

r=0.1 

61.39±5.97 

0.0182 

(2-4) 

(5) 

63.65±4.34 

0.0029 

(20, 23) 

(3) 

62.92±4.96 

0.0289 

(2-2, 0.5) 

(4) 

64.01±3.86 

0.0015 

(23, 0.8) 

(1) 

63.93±8.65 

0.0091 

(2-3,24,1) 

(2) 

 

   In Table 4.2, the performances of the algorithms by SVM, TBSVM, Pin-SVM, Pin-

TSVM and L1-Pin-TBSVM for linear kernel are presented. In comparison with the remaining 
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algorithms, L1-Pin-TBSVM achieves the highest classification accuracy at all levels of noise on 

8 datasets among the 11 datasets considered. Also, out of 33 cases (11 datasets x 3 noise levels) 

the proposed method yields the highest accuracy in 27 cases. These observations indicate the 

superiority of L1-Pin-TBSVM. Among the remaining algorithms, Pin-TSVM shows in general 

better performance. Notice that as the quantity of noise rises, the classification accuracy 

performance of the methods deteriorates. In Table 4.3, the average ranks of the five methods for 

linear kernel are tabulated for 𝑟 = 0, 𝑟 = 0.05 and 𝑟 = 0.1. Note that smaller average rank 

means better prediction ability. From the results of Table 4.3, one can see that pinball twin 

SVMs perform better than hinge loss based SVM and TBSVM. When 𝑟 = 0.05 and 𝑟 = 0.1, 

enhanced performance of L1-Pin-TBSVM compared to other SVMs clearly illustrates its 

effectiveness and usefulness on noisy data. 

Table 4.3 Average ranks on the accuracy of SVM, TBSVM, Pin-SVM, Pin-TSVM and L1-Pin-

TBSVM for linear kernel on benchmark datasets with different levels of noise. 

Level of 

noise 
SVM TBSVM Pin-SVM Pin-TSVM 

L1-Pin-

TBSVM 

r=0 4.0909 3.2727 3.6363 2.5909 1.409 

r=0.05 4.3636 3.4545 3.5 2.4545 1.2272 

r=0.1 4.2727 3.6363 3.4545 2.4545 1.1818 

 

   In Table 4.4, the results of SVM, TBSVM, Pin-SVM, Pin-TSVM and L1-Pin-TBSVM 

using the Gaussian kernel on 11 datasets are shown. One can observe that, at all levels of noise, 

L1-Pin-TBSVM achieved the highest accuracy performance on 5 datasets. Also, out of 33 cases, it 

achieved 25 times the highest classification accuracy. This suggests the effectiveness of L1-Pin-

TBSVM for Gaussian kernel. 

Table 4.4 A comparison of performance of the proposed L1-Pin-TBSVM with SVM, TBSVM, 

Pin-SVM, Pin-TSVM on benchmark datasets with noise level r.  Gaussian kernel was used. Best 

result is indicated in boldface. 

Dataset 

(Total size) 

Level 

of 

noise 

SVM 

Time 

(𝐶, 𝜇) 

Rank 

TBSVM 

Time 

(𝐶1, 𝐶2, 𝜇) 

Rank 

Pin-SVM 

Time 

(𝐶, 𝜇, 𝜏) 

Rank 

Pin-TSVM 

Time 

(𝐶1, 𝜇, 𝜏) 

Rank 

L1-Pin-

TBSVM 

Time 

(𝐶1, 𝐶2, 𝜇, 𝜏) 

Rank 

 

 

Sonar 

r=0 

90.40±4.99 

0.0140 

(22, 20) 

89.50±5.06 

0.0063 

(2-4, 2-2, 20) 

90.88±7.65 

0.0255 

(21, 2-1, 0.5) 

90.88±5.68 

0.0095 

(2-4, 20, 0.5) 

91.85±7.80 

0.0069 

(24, 23, 2-1,1) 
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(208×60) (4) (5) (2.5) (2.5) (1) 

r=0.05 

88.90±6.45 

0.0158 

(23, 22) 

(3) 

87.95±5.73 

0.0072 

(2-4, 2-1, 20) 

(5) 

88.45±7.19 

0.0245 

(22, 20, 0.8) 

(4) 

89.33±7.32 

0.0083 

(2-3, 20, 0.8) 

(2) 

89.90±5.75 

0.0052 

(24, 24, 2-4,1) 

(1) 

r=0.1 

88.00±6.79 

0.0169 

(21, 2-1) 

(2) 

87.47±7.00 

0.0082 

(2-4, 2-2, 20) 

(3.5) 

87.04±6.70 

0.0244 

(23, 2-1, 0.2) 

(5) 

87.47±7.10 

0.0099 

(2-3, 20, 0.8) 

(3.5) 

88.95±7.44 

0.0075 

(24, 24, 2-1,1) 

(1) 

 

 

Breast-

cancer 

(683×9) 

r=0 

96.79±3.40 

0.0993 

(20, 21) 

(5) 

97.37±1.64 

0.0461 

(21, 2-4, 24) 

(2) 

96.92±3.66 

0.0862 

(22, 22, 0.8) 

(4) 

96.94±3.57 

0.0582 

(2-1, 23, 0.1) 

(3) 

97.66±2.07 

0.0461 

(22, 21, 20,1) 

(1) 

r=0.05 

95.89±2.47 

0.0953 

(23, 22) 

(5) 

97.20±2.13 

0.0457 

(21, 2-4, 24) 

(1) 

96.46±2.80 

0.0838 

(20, 22, 0.5) 

(4) 

96.48±3.18 

0.0574 

(2-2, 23, 0.2) 

(3) 

97.07±2.07 

0.0432 

(23,22,20,0.8) 

(2) 

r=0.1 

95.32±2.73 

0.0998 

(24, 20) 

(4) 

96.48±1.97 

0.0496 

(2-4, 2-4, 21) 

(2) 

95.87±2.40 

0.0863 

(20, 23, 0.5) 

(3) 

94.45±3.20 

0.0537 

(2-2, 21, 0.5) 

(5) 

97.37±2.35 

0.0408 

(24,24,2-3,0.8) 

(1) 

 

 

German 

(1000×24) 

r=0 

75.90±4.22 

0.2866 

(23, 22) 

(5) 

76.1±4.72 

0.1391 

(2-4, 2-3, 22) 

(4) 

76.8±4.15 

1.4920 

(24, 23, 0.1) 

(2) 

76.2±4.73 

0.1562 

(20, 24, 1) 

(3) 

77.40±4.14 

0.1417 

(22,21,20,1) 

(1) 

r=0.05 

74.20±3.85 

0.2874 

(22, 21) 

(5) 

75.20±4.44 

0.1399 

(2-3, 2-2, 22) 

(3) 

75.35±4.24 

0.9094 

(24, 21, 0.1) 

(2) 

74.40±3.30 

0.1581 

(21, 24, 0.8) 

(4) 

76.30±3.05 

0.1481 

(22,21,20,1) 

(1) 

r=0.1 

73.20±2.85 

0.2856 

(24, 22) 

74.40±3.37 

0.1352 

(2-4, 2-2, 21) 

74.20±4.10 

1.7433 

(23, 21, 0.8) 

74.80±4.36 

0.1534 

(20, 24, 0.5) 

74.90±4.72 

0.1439 

(22,21,20,1) 
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(5) (3) (4) (2) (1) 

 

CMC 

(1473 Χ 9) 

r=0 

75.02±4.89 

1.0301 

(22, 20) 

(4) 

75.09±4.98 

0.3678 

(23, 2-3, 2-4) 

(2.5) 

75.09±4.89 

3.0703 

(23, 20, 0.1) 

(2.5) 

74.67±2.64 

0.4721 

(20, 23, 0.2) 

(5) 

75.22±4.92 

0.2583 

(2-3,2-1,2-1,0.8) 

(1) 

r=0.05 

74.81±2.80 

1.0517 

(22, 20) 

(3) 

74.95±4.93 

0.3687 

(24, 2-4, 2-3) 

(2) 

74.60±2.79 

3.3879 

(20, 2-1, 0.5) 

(4) 

74.47±3.12 

0.4792 

(21, 23, 0.1) 

(5) 

75.01±2.92 

0.2558 

(2-4,2-1,2-1,1) 

(1) 

r=0.1 

74.19±3.15 

1.0649 

(20, 2-1) 

(5) 

74.75±2.61 

0.3635 

(22, 2-4, 2-3) 

(2) 

74.26±3.64 

3.5635 

(24, 20, 0.2) 

(4) 

74.40±3.56 

0.4756 

(21, 23, 0.2) 

(3) 

74.97±4.09 

0.2572 

(22,21,2-2,1) 

(1) 

 

 

ILPD 

(583 Χ 10) 

r=0 

72.56±5.97 

0.0893 

(2-4, 2-1) 

(2.5) 

72.36±5.97 

0.01120 

(2-4, 21, 24) 

(5) 

72.52±6.25 

0.0978 

(2-1, 2-3, 0.8) 

(4) 

72.69±8.02 

0.0182 

(2-4, 24, 0.8) 

(1) 

72.56±5.97 

0.0142 

(2-4,2-2,24,0.8) 

(2.5) 

r=0.05 

72.35±5.75 

0.0895 

(2-2, 2-1) 

(3) 

72.01±4.77 

0.01185 

(2-4, 21, 24) 

(5) 

72.38±5.75 

0.0928 

(2-2, 2-3, 0.5) 

(1.5) 

72.34±5.57 

0.0013 

(2-2, 23, 0.5) 

(4) 

72.38±5.75 

0.0118 

(2-4,2-4,2-4,0.1) 

(1.5) 

r=0.1 

72.35±6.96 

0.0865 

(2-2, 20) 

(3) 

72.35±4.91 

0.01172 

(2-2, 23, 23) 

(3) 

72.35±6.96 

0.0960 

(2-1, 2-4, 0.5) 

(3) 

71.50±6.73 

0.0014 

(2-3, 23, 0.2) 

(5) 

72.38±6.96 

0.0103 

(2-4,2-4,2-4,0.1) 

(1) 

 

 

Bupa 

(345 Χ 7) 

r=0 

69.62±7.06 

0.0394 

(23, 2-1) 

(2) 

69.84±5.80 

0.0090 

(2-3, 21, 23) 

(1) 

69.01±8.91 

0.0404 

(24, 2-1, 0.1) 

(4) 

68.43±6.37 

0.0172 

(22, 23, 0.1) 

(5) 

69.52±6.75 

0.0026 

(2-2,22,2-4,0.8) 

(3) 

r=0.05 

67.79±6.42 

0.0382 

(24, 20) 

68.69±5.67 

0.0094 

(2-2, 23, 20) 

68.37±6.91 

0.0417 

(20, 2-1, 0.5) 

68.97±6.61 

0.0158 

(2-1, 23, 0.1) 

68.43±6.96 

0.0066 

(22, 23, 2-4,1) 
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r=0.1 

66.73±8.17 

0.0354 

(23, 2-1) 

(5) 

67.83±4.61 

0.0023 

(2-4, 24, 2-1) 

(3) 

67.26±6.83 

0.0475 

(24, 2-1, 0.2) 

(4) 

68.14±8.71 

0.0179 

(2-3, 23, 0.1) 

(1) 

67.92±6.89 

0.0094 

(23, 24, 2-3,1) 

(2) 

 

 

QSAR 

(1055 Χ 41) 

 

r=0 

85.68±3.35 

0.1549 

(24, 20) 

(3) 

84.46±4.79 

0.1338 

(20, 23, 23) 

(5) 

84.63±3.77 

1.2182 

(20, 2-2, 0.8) 

(4) 

85.79±3.78 

0.1401 

(22, 23, 0.1) 

(2) 

86.59±3.60 

0.1280 

(23,24,21,0.5) 

(1) 

r=0.05 

84.92±2.67 

0.1516 

(22, 21) 

(3) 

84.18±4.56 

0.1319 

(20, 23, 23) 

(5) 

84.35±2.54 

1.2075 

(2-3, 2-2, 0.2) 

(4) 

85.21±3.40 

0.1435 

(2-1, 23, 0.2) 

(2) 

85.31±3.14 

0.1228 

(23, 24, 2-3,0.8) 

(1) 

r=0.1 

83.79±3.74 

0.1572 

(2-1, 20) 

(5) 

83.98±4.56 

0.1304 

(21, 24, 23) 

(4) 

84.65±3.94 

1.2108 

(2-2, 2-1, 0.2) 

(3) 

85.12±2.92 

0.1428 

(22, 23, 0.1) 

(2) 

85.97±3.38 

0.1246 

(2-4, 2-4, 2-4,0.1) 

(1) 

 

 

Rice 

(3810 Χ 8) 

r=0 

91.52±3.09 

3.8328 

(2-4, 2-4) 

(3) 

91.93±3.73 

2.4294 

(2-2, 23, 22) 

(2) 

91.41±3.24 

3.2793 

(2-4, 2-4, 0.2) 

(4) 

91.18±3.29 

2.8763 

(21, 24, 1) 

(5) 

92.38±3.60 

2.3104 

(22, 22, 2-4,0.5) 

(1) 

r=0.05 

91.46±1.14 

3.8322 

(2-3, 2-4) 

(2) 

91.44±2.12 

2.4216 

(2-4, 21, 24) 

(3) 

91.07±1.33 

3.2729 

(2-1, 2-4, 0.1) 

(5) 

91.18±1.79 

2.8731 

(20, 2-4, 0.8) 

(4) 

92.13±2.75 

2.5493 

(21, 22, 2-4,0.8) 

(1) 

r=0.1 

91.28±1.15 

3.8302 

(2-2, 2-4) 

(5) 

91.59±2.75 

2.4210 

(2-1, 22, 23) 

(4) 

91.73±1.32 

3.2648 

(2-4, 2-3, 0.5) 

(2) 

91.62±1.43 

2.8706 

(21, 23, 0.5) 

(3) 

91.95±2.07 

2.3849 

(21, 21, 2-4,0.8) 

(1) 

 

 

Monks1 

r=0 

85.03±5.37 

0.1036 

(23, 2-1) 

87.70±5.32 

0.0153 

(2-4, 2-3, 2-1) 

87.40±5.90 

0.0142 

(24, 2-1, 0.2) 

86.65±2.89 

0.0249 

(2-4, 21, 0.1) 

87.50±8.98 

0.0109 

(21,22,2-4,1) 
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(556 Χ 7) (5) (1) (3) (4) (2) 

r=0.05 

84.98±3.59 

0.1080 

(24, 2-1) 

(5) 

85.90±3.06 

0.0157 

(2-3, 2-4, 2-2) 

(2) 

85.34±2.71 

0.0138 

(23, 2-1, 0.1) 

(3.5) 

85.34±5.44 

0.0213 

(2-2, 22, 0.8) 

(3.5) 

86.25±5.08 

0.0152 

(21,22,2-3,0.8) 

(1) 

r=0.1 

83.15±2.63 

0.1056 

(24, 2-1) 

(3) 

82.41±4.18 

0.0178 

(2-3, 2-4, 20) 

(4) 

81.50±4.25 

0.0157 

(23, 20, 0.1) 

(5) 

84.34±5.44 

0.0225 

(2-4, 22, 0.2) 

(2) 

85.87±5.75 

0.0142 

(21,22,2-3,0.5) 

(1) 

 

 

Monks2 

(601 Χ 7) 

r=0 

94.50±6.33 

0.0269 

(24, 2-1) 

(3) 

93.83±5.24 

0.0128 

(2-3, 2-4, 2-2) 

(5) 

94.37±6.79 

0.0128 

(2-4, 20, 0.5) 

(4) 

94.51±3.83 

0.0192 

(2-4, 21, 0.1) 

(2) 

95.83±3.17 

0.0110 

(24,23,21,0.8) 

(1) 

r=0.05 

93.19±7.50 

0.0277 

(23, 2-1) 

(5) 

93.47±5.62 

0.0130 

(2-1, 2-3, 2-2) 

(4) 

93.90±4.55 

0.0130 

(22, 2-2, 0.5) 

(3) 

93.95±4.43 

0.0185 

(20, 2-4, 0.8) 

(2) 

94.18±2.66 

0.0125 

(21,22,2-2,0.8) 

(1) 

r=0.1 

92.87±6.82 

0.0206 

(22 2-2) 

(5) 

93.01±4.73 

0.0145 

(21, 2-1, 2-2) 

(4) 

93.66±5.49 

0.0145 

(22, 2-1, 0.1) 

(1) 

93.17±2.77 

0.0184 

(21, 23, 0.5) 

(3) 

93.35±5.90 

0.0138 

(22,22,2-2,0.5) 

(2) 

 

 

Monks3 

(554 Χ 7) 

 

r=0 

63.42±4.58 

0.0717 

(2-4 2-4) 

(4) 

63.52±4.42 

0.0173 

(2-2, 22, 22) 

(3) 

62.52±4.16 

0.0073 

(2-4, 20, 0.5) 

(5) 

63.86±5.76 

0.0162 

(23, 22, 1) 

(2) 

64.23±3.78 

0.0132 

(24,21,2-2,0.5) 

(1) 

r=0.05 

61.41±4.53 

0.0733 

(2-2 2-3) 

(5) 

62.00±4.48 

0.0165 

(2-1, 24, 22) 

(4) 

63.27±3.85 

0.0043 

(2-2, 2-1, 0.2) 

(3) 

63.86±6.79 

0.0121 

(21, 21, 0.2) 

(2) 

64.25±3.15 

0.0112 

(24,23,2-1,0.8) 

(1) 

r=0.1 

61.12±4.16 

0.0731 

(2-1 2-2) 

61.83±5.36 

0.0188 

(23, 2-1, 24) 

63.66±4.52 

0.0068 

(2-4, 21, 0.1) 

63.85±5.01 

0.0188 

(2-4, 21, 0.1) 

63.74±4.49 

0.0151 

(22,23,2-2,1) 
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Table 4.5 Average ranks on the accuracy of SVM, TBSVM, Pin-SVM, Pin-TSVM and L1-Pin-

TBSVM for Gaussian on benchmark datasets with different levels of noise. 

Level of 

noise 
SVM TBSVM Pin-SVM Pin-TSVM 

L1-Pin-

TBSVM 

r=0 3.6818 3.2272 3.5454 3.1363 1.409  

r=0.05 4.0 3.2727 3.4545 2.9545 1.3181 

R=0.1 4.2727 3.3181 3.3636 2.7727 1.2727 

 

   In Table 4.5, the average ranks of the five methods are tabulated for 𝑟 = 0, 𝑟 = 0.05 

and 𝑟 = 0.1. One can see that, as the level of noise increases, the average rank for the hinge loss 

based SVM and TBSVM also increases whereas for pinball loss based SVMs it decreases 

indicating its advantage in terms of robustness on noisy data. Finally, from the enhanced 

performance of L1-Pin-TBSVM for 𝑟 = 0.05 and 𝑟 = 0.1 we conclude its superiority for 

problems whose datasets are corrupted by noise.  

   The following is a summary of the experimental results in Table 4.2-Table 4.5: (i). 

Gaussian kernel takes longer to learn than the linear kernel; (ii). slower learning speed result by 

Pin-SVM could be attributed to solving large sized QPPs; (iii).on average, the learning speed of 

the proposed L1-Pin-TBSVM is faster than the remaining algorithms; (iv). Gaussian kernel has 

a higher classification accuracy than the linear kernel.; (v).as the level of noise increases, 

classification accuracy generally decreases; (vi).Pin-TSVM and L1-Pin-TBSVM show better 

average ranks than the remaining algorithms; (vii).for noisy data, the lowest average rank by L1-

Pin-TBSVM indicates its superiority and robustness. 

   It is interesting to statistically compare the performance on the classification accuracy 

of the five algorithms (𝑘 = 5) on the 11 datasets (𝑁 = 11) for the Gaussian kernel. For this 

purpose, we proceed in performing statistical tests for r = 0, r = 0.05 and r = 0.1 in that order. In 

this work, we employ the non-parametric Friedman test which is a simple, robust test with its 

corresponding Nemenyi post-hoc test (Demsar, 2006). Under the null hypothesis that all the 

algorithms are equivalent, we consider the Friedman statistic distributed according to 

𝜒𝐹
2 −distribution with (𝑘 − 1) degrees of freedom and a better statistic 𝐹𝐹, distributed according 

to 𝐹 −distribution with ((𝑘 − 1), (𝑘 − 1)(𝑁 − 1)) degrees of freedom defined by 

𝜒𝐹
2 =

12𝑁

𝑘(𝑘+1)
[∑ 𝑅𝑗

2 −
𝑘(𝑘+1)2

4
𝑘
𝑗=1 ]  and 𝐹𝐹 =

(𝑁−1)𝜒𝐹
2

𝑁(𝑘−1)−𝜒𝐹
2 (4.16) 
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where 𝑅𝑗, 𝑘 and 𝑁 denote the average rank of the jth algorithm, the total number of algorithms 

and datasets respectively. When the null hypothesis is rejected, we proceed for pair-wise 

comparison of the algorithms with the Nemenyi test by computing the critical difference. For 

details, see (Demsar, 2006). 

   From Table 4.5 on the average ranks for the Gaussian kernel where k = 5 and N = 11, 

we perform the Friedman test and Nemenyi post hoc test. For r=0, we get from Table 4.5 and 

using (24),  𝜒𝐹
2 = 14.7932 and 𝐹𝐹 = 5.065.  Since the critical value of 𝐹(4,40) = 2.606 for the 

level of significance 𝛼 = 0.05 is such that 𝐹𝐹 > 2.606 and hence we reject the null hypothesis. 

Subsequently, we proceed with pair-wise difference (CD) at 𝑝 = 0.10 is 2.459√
𝑘(𝑘+1)

6𝑁
≈

1.6579 (Demsar, 2006). From Table 4.5, the distinction between: (i). L1-Pin-TBSVM and the 

best among the rest of the methods is: 3.1363 − 1.409 = 1.7273 > 1.6579(𝐶𝐷), we say that 

L1-Pin-TBSVM performs significantly better than the rest; (ii). the finest and the worst of SVM, 

TBSVM, Pin-SVM and Pin-TSVM is 3.6818-3.1363= 0.5455 < 1.6579,  we say that the post-

hoc test is not powerful enough to find any significant differences between the algorithms.  

   Next, we employ the statistical tests for comparison of algorithms on datasets 

contaminated by noise with r=0.05. By the same manner as above, from the average ranks of 

Table 4.5, we compute 𝜒𝐹
2 = 18.0871 and 𝐹𝐹 = 6.98. We see that 𝐹𝐹 > 𝐹(4,40) and hence we 

reject the null hypothesis. By the Nemenyi post-hoc test, the difference between the average 

ranks of: (i). L1-Pin-TBSVM and Pin-TSVM are 2.9545 – 1.3181 = 1.6364 < 1.6579, the post-

hoc test is insufficiently powerful to distinguish between the two algorithms; (ii). L1-Pin-

TBSVM and the best of SVM, TBSVM, Pin-SVM is 3.2727 − 1.3181 = 1.9546 > 1.6579, 

we say that L1-Pin-TBSVM performs significantly better than SVM, TBSVM and Pin-SVM. 

    Finally, the values of 𝜒𝐹
2 and 𝐹𝐹 on noise-corrupted datasets with r = 0.1 can be 

computed as 21.5041 and 9.5591 respectively. Since 𝐹𝐹 > 𝐹(4,40), we reject the null 

hypothesis and hence we perform Nemenyi test. In terms of the average ranks of Table 4.5, the 

difference between: (i). L1-Pin-TBSVM and Pin-TSVM is 2.7727 – 1.2727 = 1.5 < 1.6579, 

there were no significant differences between the two methods in the post-hoc test; (ii). L1-Pin-

TBSVM and the best of SVM, TBSVM, Pin-SVM is 3.3181 − 1.2727 = 2.0454 > 1.6579 

implies L1-Pin-TBSVM performs significantly better than SVM, TBSVM and Pin-SVM. 

 In light of the statistical comparisons of the algorithms on datasets with three levels of 

noise presented above, we see that L1-Pin-TBSVM performs significantly better than the other 

SVMs. 
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               In summary, we conclude that the proposed L1-Pin-TBSVM is an efficient method 

showing enhanced classification performance and robustness in the presence of noise and 

outliers. 

4.5 Conclusions 

 With the aim of obtaining an efficient robust learning model, 𝐿1 −norm based twin 

bounded support vector machine with pinball loss for data classification is presented in this 

chapter. Besides the benefit of less sensitivity to noise property of pinball loss, with the 

application of 𝐿1 −norm for within-class scatter minimization, the proposed method also enjoys 

robustness to outliers. As a novel approach of solving, by a simple reformulation of the primal 

problem considered, an equivalent pair of dual QPPs in m variables only is derived (L1-Pin-

TBSVM), where m is the number of training vectors. In comparison with the twin bounded 

support vector machine (TBSVM), the duals of our proposed L1-Pin-TBSVM are free of inverse 

matrices and the non-linear duals can be obtained from their linear formulations directly by 

applying the kernel trick. Experiments on Crossplanes dataset where two or four outliers were 

introduced show that the proposed L1-Pin-TBSVM outperforms the other SVM methods in 

terms of accuracy, confirming its robustness to outliers. In addition, empirical findings based on 

two-moon synthetic dataset and numerous benchmark datasets with varying levels of noise 

clearly demonstrate improved generalization ability of L1-Pin-TBSVM at comparable training 

cost which further confirms its effectiveness and suitability where robustness is a problem of 

major concern. Though L1-Pin-TBSVM is a simple, efficient learning method, it loses sparsity. 

Increase in the number of parameters in our L1-Pin-TBSVM is also a concern as the selection of 

their optimal values is a practical problem which needs attention. As a future research, 

application of optimization methods for large scale datasets like sequential minimal optimization 

(SMO), dual coordinate descent (DCD) and successive over-relaxation (SOR) is an important 

practical problem worthy of consideration. Extension to semi-supervised learning is interesting 

and will be investigated in our future work. 
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Chapter 5 

 

5L1-norm Based Non-parallel Support Vector Machine 

Classifier with Pinball Loss   

5.1 Introduction 

 In this chapter, we propose a novel 𝐿1 −norm based non-parallel support vector machine 

with pinball loss for data classification designed at reducing the effect of noise and outliers 

present in the data. The problem is formulated involving a regularization term, scatter loss and 

misclassification loss where the scatter of class of vectors is minimized in 𝐿1 −norm and pinball 

is used for misclassification. As an elegant equivalent problem in simple form, a pair of 

quadratic programming problems free of inverse of kernel matrices having m variables in the 

dual space is constructed where m is the number of input data points. Our proposed method 

allows a unified framework for the linear and non-linear kernels where kernel trick can be 

applied directly. Empirical results on synthetic and benchmark datasets demonstrate the 

effectiveness of the proposed method. 

           Over the last two decades, support vector machine (SVM) proposed by Vapnik (Vapnik, 

2000) has evolved into a strong kernel based machine learning tool for classification and 

regression problems. The popularity of SVM has grown owing to its mathematical elegance and 

excellent generalization performance on many real-world problems of applications such as face 

recognition (Kim et al., 2010), fault diagnosis (Ma et al., 2018), text categorization (Basu, et al., 

2003), bioinformatics (Guyon, 2002). SVM for classification seeks an optimal hyperplane by 

separating the two classes of input data points via maximizing the margin between two parallel 

hyperplanes. The optimal classifier is learned by solving a quadratic programming problem 

(QPP) consists of a regularization term and hinge loss term where hinge loss is used for 

measuring misclassification error. SVM implements structural risk minimization (SRM) 

principle and thereby gain in generalization performance is achieved.   

           Though SVM leads to a sparse, global solution and further showing excellent 

generalization performance, the computational complexity in solving the QPP, i.e.𝑂(𝑚3) where 

m is the number of input data points, greatly limits its practical application. As efforts to reduce 

the learning time complexity, two approaches are popular: (i).by constructing fast SVM learning 

algorithms like decomposition method (Osuna et al., 1997), sequential minimal optimization 

(SMO) (Platt, 1999), dual coordinate descent (DCD) (Hsieh, 2008); (ii).by relaxing the parallel 

requirement of supporting hyperplanes, non-parallel SVM classifiers have been proposed as 
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variants of SVM. The generalized eigenvalue proximal support vector machine (GEPSVM) of 

Mangasarian & Wild (2006) is the first one such example where non-parallel hyperplanes are 

determined by solving two generalized eigenvalue problems. Similar in spirit of GEPSVM, 

Jayadeva et al. (2007) proposed twin support vector machine (TWSVM) for binary classification 

in which the positive and negative non-parallel hyperplanes are constructed so that each of them 

is close to its own class of input data points and is at least a unit distance away from the other 

class of data points. This strategy of constructing two non-parallel hyperplanes leads to solving a 

pair of smaller sized SVM-typed QPPs resulting significant improvement in the training time for 

TWSVM over SVM (Jayadeva et al., 2007). However, TWSVM implements the empirical risk 

minimization principle and further it loses sparsity. Due to its reduced computational learning 

cost and comparable generalization performance, variants of TWSVM and its extensions have 

been developed in the literature (Balasundaram et al.,2017; Kumar & Gopal, 2009; Peng, 2011; 

Peng et al., 2016; Shao et al., 2011). Specifically, the least-squares twin SVM (LSTSVM) 

(Kumar & Gopal, 2009), twin bounded SVM (TBSVM) (Shao et al., 2011) and twin parametric-

margin SVM (TPMSVM) (Peng, 2011; Hao, 2010) are some of the successful improvements of 

TWSVM. Finally for the study of a general framework on non-parallel support vector machines 

consisting of a regularization term, scatter loss term and misclassification term, see 

(Mehrkanoon et al., 2014). 

           Since the hinge loss of SVM realizes the maximum distance between the closest data 

points of the two classes it was observed that once the input data points, especially around the 

decision boundary, become noisy wrong learned classifier may result. This shows that SVM is 

sensitive to feature noise and further it is unstable for re-sampling (Huang et al., 2014). As a 

significant novel approach, Huang et al. (2014) used quantile distance measure to maximize the 

distance between the two classes of input data points. By applying the pinball loss that is related 

to quantile distance in place of hinge loss, a new SVM (Pin-SVM) is proposed in (Huang et al., 

2014). A nice property possessed by pinball is that it penalizes also the correctly classified 

points and thereby less sensitive to feature noise around the decision boundary is reported. 

Though Pin-SVM shows insensitivity to noise and stability to re-sampling, it loses sparsity. By 

introducing 𝜀 −insensitive zone in the formulation of Pin-SVM, a new 𝜀 −insensitive zone Pin-

SVM model is proposed to show sparsity (Huang et al., 2014). As a modified (𝜀1, 𝜀2) − 

insensitive zone Pin-SVM, an optimal insensitive zone Pin-SVM is proposed having sparsity 

and small within-class scatter properties in (Rastogi et al., 2018). Since pinball enjoys 

robustness to noise, by employing it to the well-known twin parametric-margin support vector 

machine (TPMSVM) for data classification (Peng, 2011), Xu et al. (2016) proposed pinball loss 

twin support vector machine (Pin-TSVM) as an extension of pinball loss based non-parallel 

SVM. In (Huang et al., 2014), an asymmetric least squares SVM (aLS-SVM) is proposed where 
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the margin between the classes is measured by considering expectile value that is related to 

asymmetric squared pinball loss.  

            The data arising in real-world applications is subject to the presence of not only feature 

noise but also outliers. While feature noise is often referred to small perturbations, data points 

that are significantly far away from the majority of the input data points, such as wrongly 

labelled data points, are taken as outliers. Since the presence of outliers may seriously affect the 

performance of the learned model, robustness to outliers is an important study in classification. 

The main approaches suggested in the literature to decrease the effect of outliers are data 

cleaning, robust algorithm and robust model approaches (Frenay & Verleysen, 2014). Data 

cleaning is the method of identifying and eliminating outliers from the set of input data points 

(Ding & Xu). It is worth noting that often it is hard to detect outliers, especially in higher 

dimensional datasets. The second approach is on robust optimization algorithms aimed at 

reducing the effect of noise and outliers. For example, re-weighted strategy was proposed in 

(Suykens et al., 2002) where different weights were assigned to input data points depending on 

their residuals. Both the approaches require extra computational efforts and hence expensive. 

The third approach is the introduction of robust loss functions in the learning models. When 

𝐿2 −norm is used, the influence of outliers is exaggerated due to squared operation leading to 

lower accuracy performance. As a consequence, the popular TWSVM and many of its variants 

become sensitive to outliers. However, 𝐿1 −norm is generally regarded as an effective way to 

decrease the effect of outliers present in the data and as a result many works in the literature of 

robust machine learning are based on 𝐿1 −norm (Peng et al., 2016; Gu et al., 2017; Yan et al., 

2018). For example, as a robust-promising model, Guo et al., (2017) proposed 𝐿1 −norm twin 

projection support vector machine (TPSVM-L1) and applied on image classification. In (Yan et 

al., 2018) a least squares twin bounded support vector machine based on 𝐿1 −norm (L1-

LSTBSVM), whose solution is obtained by an iterative method, has been proposed. By 

simultaneously minimizing 𝐿1 −norm based scatter loss and the misclassification error by hinge 

loss, 𝐿1 −norm loss based twin support vector machine (L1LTSVM) has been proposed in 

(Peng et al., 2016).  Meanwhile, some researchers argue that the popular hinge loss and pinball 

loss functions are unbounded and thus they will be sensitive to outliers to some extent. In view 

of it, truncated non-convex bounded loss functions are proposed as robust learning models 

(Shen et al., 2017; Yang & Dong, 2018). However, non-convexity introduces difficulty in 

optimization.  

              From the above discussion, we summarize that pinball can bring noise insensitivity and 

stability to re-sampling whereas 𝐿1 −norm distance measure can improve the robustness of the 

model. To the best of our knowledge, support vector machines that are simultaneously having 

the above advantages have not been yet formulated. Accordingly, inspired from the studies of 
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Pin-SVM and Pin-TSVM (Huang et al., 2014; Xu et al., 2016), we present an outlier-robust, 

non-parallel twin support vector machine learning method (L1-Pin-NPSVM) with noise 

insensitivity that also preserves the elegant formulation of the classical SVM. The proposed 

method is evaluated with TPMSVM, Pin-SVM and Pin-TSVM on Crossplanes dataset having 

two and four outliers, the popular Ripley dataset and fifteen benchmark datasets with different 

levels of noise. Experimental results on the datasets confirm the robustness and effectiveness of 

the proposed L1-Pin-NPSVM. 

The main contributions of this work can be summarized as follows: 

• A novel 𝐿1 −norm based non-parallel support vector machine classifier with pinball loss 

is proposed where for scatter loss and misclassification error, the 𝐿1 −norm and pinball 

loss are used.  

• A pair of QPPs in the dual space with box constraints (L1-Pin-NPSVM) and free of matrix 

inversion terms with m number of variables is solved where m is the number of input data 

points.  

• The non-linear dual QPPs can be derived directly from its linear problem by applying 

kernel trick. 

• When both the positive and negative classes have equal number of input data points, the 

size of the dual QPPs corresponding to L1-Pin-NPSVM and Pin-TSVM is the same.  

• Empirical results on synthetic datasets with outliers and feature noise and on benchmark 

datasets contaminated with three different levels of noise confirm the robustness and 

superiority of the proposed method. 

All vectors are assumed as column vectors. For any vector 𝒙 = (𝑥1, . . . , 𝑥𝑛)𝑡 ∈ 𝑅𝑛, we represent 

its transpose by 𝒙𝑡. Its 𝐿1 −norm and 𝐿2 −norm is denoted by ||𝒙||1 and ||x|| respectively. The 

vectors of zeros and ones of appropriate dimensions are indicated by 0 and e correspondingly 

and further, we denote the identity matrix of appropriate size by I.  

              The rest of the chapter is organized as follows. In Section 5.2, 𝐿1 −norm based non-

parallel SVM with pinball loss is introduced and as an equivalent problem in simple form a pair 

of SVM-typed QPPs in the dual space is derived (L1-Pin-NPSVM) whose noise insensitivity 

and scatter minimization properties are verified. A comparative study of the proposed method 

with TPMSVM, Pin-SVM and Pin-TSVM is presented in Section 5.3. Numerical experiments 

are detailed and their results are reported in Section 5.4 while Section 5.5 concludes the chapter. 
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5.2 L1-norm Based Non-parallel Support Vector Machine with Pinball 

Loss 

              Consider the binary classification problem where the positive and negative classes 

consist of 𝑚1 and 𝑚2 number of input data points respectively. It has been shown that both Pin-

SVM and Pin-TSVM are efficient classification methods having noise insensitivity and stability 

to re-sampling. In addition to the advantages, as an important contribution on developing a 

robust learning model, we present a novel outlier-robust 𝐿1 −norm based non-parallel SVM 

with pinball loss (L1-Pin-NPSVM) in this section. Besides robustness, we show that the 

proposed method possesses small within-class scatter and misclassification error properties. 

5.2.1 Linear L1-Pin-NPSVM 

              Consider the linear problem seeking two non-parallel hyperplanes of the form  

𝑓1(𝒙) = 𝒘1
𝑡 𝒙 + 𝑏1 = 0 and 𝑓2(𝒙) = 𝒘2

𝑡 𝒙 + 𝑏2 = 0 (5.1) 

where 𝒘1, 𝒘2 ∈ 𝑅𝑛 and 𝑏1, 𝑏2 ∈ 𝑅 are unknowns. Let them separate the classes of data points 

such that  𝑓1(𝒙𝑖) ≥ 0, 𝑖 = 1,2, . . . , 𝑚1 and 𝑓2(𝒙𝑗) ≤ 0 𝑗 = 𝑚1 + 1, . . . , 𝑚1 + 𝑚2. 

  Following the problem formulation of Pin-TSVM (Xu et al., 2016), by computing the 

misclassification error using pinball loss defined of the form: 

𝐿𝜏(𝑥, 𝑦, 𝑓(𝒙)) = {
0 − 𝑦𝑓(𝒙),     0 − 𝑦𝑓(𝒙) ≥ 0,
−𝜏(0 − 𝑦𝑓(𝒙)),  0 − 𝑦𝑓(𝒙) < 0

  (5.2) 

and introducing 𝐿1 −norm for scatter loss, it is proposed to obtain the non-parallel hyperplanes 

(5.1) by solving the following pair of QPPs:  

𝑚𝑖𝑛
𝒘1,𝑏1

1

2
𝑐3(||𝒘1||2 + 𝑏1

2) + ||𝐵𝒘1 + 𝑏1𝒆2 + 𝒆2||1 + 𝑐1 ∑ 𝐿𝜏1
(𝒙𝑖, 𝑦𝑖 , 𝑓1(𝒙𝑖))

𝑚1

𝑖=1

 
 

(5.3a) 

And 

𝑚𝑖𝑛
𝒘2,𝑏2

1

2
𝑐4(||𝒘2||2 + 𝑏2

2) + ||𝐴𝒘2 + 𝑏2𝒆1 − 𝒆1||1 + 𝑐2 ∑ 𝐿𝜏2
(𝒙𝑗 , 𝑦𝑗 , 𝑓2(𝒙𝑗))

𝑚1+𝑚2

𝑗=𝑚1+1

.   (5.3b) 

Or equivalently 

𝑚𝑖𝑛
𝒘1,𝑏1,𝝃1,𝝃2

   
1

2
𝑐3(||𝒘1||2 + 𝑏1

2) + ||𝝃2||1 + 𝑐1𝒆1
𝑡 𝝃1 

subject to  𝐵𝐰1 + 𝑏1𝒆2 + 𝒆2 = 𝝃2, 

          𝐴𝒘1 + 𝑏1𝒆1 ≥ 𝟎1 − 𝝃1, 𝐴𝒘1 + 𝑏1𝒆1 ≤ 𝟎1 +
1

𝜏1
𝝃1,  

 

(5.4a) 

 



 

95 

and 

𝑚𝑖𝑛
𝒘2,𝑏2,𝜼1,𝜼2

   
1

2
𝑐4(||𝒘2||2 + 𝑏2

2) + ||𝜼1||1 + 𝑐2𝒆2
𝑡 𝜼2 

subject to 𝐴𝐰2 + 𝑏2𝒆1 − 𝒆1 = 𝜼1,  

          −(𝐵𝒘2 + 𝑏2𝒆2) ≥ 𝟎2 − 𝜼2, −(𝐵𝒘2 + 𝑏2𝒆2) ≤ 𝟎2 +
1

𝜏2
𝜼2, 

 

(5.4b) 

where 𝟎𝑘 ∈ 𝑅𝑚𝑘 is the column vector of zeros, 𝑐𝑘 , 𝑐𝑘+1 are regularization parameters, 𝝃𝑘 , 𝜼𝑘 ∈

𝑅𝑚𝑘  are vectors of slack variables, 𝜏𝑘 > 0 are parameters and  k = 1, 2. 

              One can notice that the third term of the objective functions of Pin-TSVM and L1-Pin-

NPSVM, namely the misclassification error term using pinball, is exactly the same. However, 

unlike Pin-TSVM, the bias term is also penalized in L1-Pin-NPSVM.  In view of the fact that 

𝐿1 −norm helps in reducing the effect of outliers, as a simple and an efficient way to promote 

robustness (Peng et al., 2016; Yan et al., 2018), the negative class data points are clustered 

around the parallel positive hyperplane 𝑓1(𝒙) = −1 by minimizing (𝐵𝒘1 + 𝑏1𝒆2 + 𝒆2) using 

𝐿1 −norm in (5.4a). This leads to the negative class data points to be as far away as possible 

from the positive hyperplane. Likewise the positive class points are made as close as possible to 

the parallel negative hyperplane 𝑓2(𝒙) = 1 in (5.4b) by minimizing ||𝐴𝒘2 + 𝑏2𝒆1 − 𝒆1||1. 

Clearly both of them correspond to scatter loss minimization in 𝐿1 −norm.  

Remark 5.1. When 𝜏1=𝜏2= 0 the second inequality constraints in (5.4a) and (5.4b) will 

degenerate into 𝝃1 ≥ 𝟎 and 𝜼2 ≥ 𝟎 respectively (Huang et al., 2014). In this case, problem (5.4) 

becomes 

𝑚𝑖𝑛
𝒘1,𝑏1,𝝃1,𝝃2

   
1

2
𝑐3(||𝒘1||2 + 𝑏1

2) + ||𝝃2||1 + 𝑐1𝒆1
𝑡 𝝃1 

subject to  𝐵𝐰1 + 𝑏1𝒆2 + 𝒆2 = 𝝃2, 

𝐴𝒘1 + 𝑏1𝒆1 ≥ −𝝃1, 𝝃1 ≥ 𝟎1, 

and 

𝑚𝑖𝑛
𝒘2,𝑏2,𝜼1,𝜼2

   
1

2
𝑐4(||𝒘2||2 + 𝑏2

2) + ||𝜼1||1 + 𝑐2𝒆2
𝑡 𝜼2 

subject to 𝐴𝐰2 + 𝑏2𝒆1 − 𝒆1 = 𝜼1, 

−(𝐵𝒘2 + 𝑏2𝒆2) ≥ −𝜼2, 𝜼2 ≥ 𝟎2. 

 

Remark 5.2. It is very interesting to observe that when 𝜏1 = 𝜏2 = 1, problem (5.4) becomes 

𝑚𝑖𝑛
𝒘1,𝑏1,𝝃1,𝝃2

   
1

2
𝑐3(||𝒘1||2 + 𝑏1

2) + ||𝝃2||1 + 𝑐1||𝝃1||1 
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subject to  (𝐵𝐰1 + 𝑏1𝒆2) + 𝒆2 = 𝝃2, 

  𝐴𝒘1 + 𝑏1𝒆1 = 𝝃1, 

and 

𝑚𝑖𝑛
𝒘2,𝑏2,𝜼1,𝜼2

   
1

2
𝑐4(||𝒘2||2 + 𝑏2

2) + ||𝜼1||1 + 𝑐2||𝜼2||1 

subject to 𝐴𝐰2 + 𝑏2𝒆1 − 𝒆1 = 𝜼1, 

𝐵𝒘2 + 𝑏2𝒆2 = 𝜼2, 

which is a special case of the general framework of non-parallel SVM formulation of  

(Mehrkanoon, 2014) where 𝐿1 −norm is used for both the loss and therefore it can be referred as 

𝐿1 − 𝐿1 loss SVM problem.  

              On variants of non-parallel support vector classifiers fitting in the general framework of 

(Mehrkanoon, 2014) where 𝐿1 −norm distance for scatter loss and 𝐿2 −norm for 

misclassification error are applied, see (Yan et al., 2018); and however for 𝐿1 −norm for scatter 

loss and hinge loss for misclassification, we refer to (Peng et al., 2016).   

  As a novel approach of problem solving, we proceed in constructing an equivalent 

problem formulation of (5.4) in an elegant and simpler form whose duals will have m number of 

unknowns and m is the number of input data points. With this objective, problem (5.4) is 

equivalently written in the following manner:   

𝑚𝑖𝑛
𝒘1,𝑏1,𝝃1,𝝃2

   
1

2
𝑐3(||𝒘1||2 + 𝑏1

2) + 𝒆2
𝑡 𝝃2 + 𝑐1𝒆1

𝑡 𝝃1 

 subject to 𝐵𝐰1 + 𝑏1𝒆2 + 𝒆2 ≤ 𝝃2,  −(𝐵𝒘1 + 𝑏1𝒆2 + 𝒆2) ≤ 𝝃2,  

                 𝐴𝒘1 + 𝑏1𝒆1 ≤
1

𝜏1
𝝃1,  −(𝐴𝒘1 + 𝑏1𝒆1) ≤ 𝝃1,  

 

(5.5a) 

and 

𝑚𝑖𝑛
𝒘2,𝑏2,𝜼1,𝜼2

   
1

2
𝑐4(||𝒘2||2 + 𝑏2

2) + 𝒆1
𝑡 𝜼1 + 𝑐2𝒆2

𝑡 𝜼2 

 subject to 𝐴𝐰2 + 𝑏2𝒆1 − 𝒆1 ≤ 𝜼1,  −(𝐴𝒘2 + 𝑏2𝒆1 − 𝒆1) ≤ 𝜼1,  

                    𝐵𝒘2 + 𝑏2𝒆2 ≤ 𝜼2,  −(𝐵𝒘2 + 𝑏2𝒆2) ≤
1

𝜏2
𝜼2  

 

(5.5b) 

Or equivalently we have  

𝑚𝑖𝑛
𝒘1,𝑏1,𝝃1,𝝃2

   
1

2
𝑐3(||𝒘1||2 + 𝑏1

2) + 𝒆2
𝑡 𝝃2 + 𝑐1𝒆1

𝑡 𝝃1 

subject to   [
𝐴 𝒆1

𝐵 𝒆2
] [

𝒘1

𝑏1
] ≤ [

(1/𝜏1)𝝃1

𝝃2
] − [

𝟎1

𝒆2
] , − [

𝐴 𝒆1

𝐵 𝒆2
] [

𝒘1

𝑏1
] ≤ [

𝝃1

𝝃2
] + [

𝟎1

𝒆2
], 
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and 

𝑚𝑖𝑛
𝒘2,𝑏2,𝜼1,𝜼2

   
1

2
𝑐4(||𝒘2||2 + 𝑏2

2) + 𝒆1
𝑡 𝜼1 + 𝑐2𝒆2

𝑡 𝜼2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 [
𝐴 𝒆1

𝐵 𝒆2
] [

𝒘2

𝑏2
] ≤ [

𝜼1

𝜼2
] + [

𝒆1

𝟎2
] , − [

𝐴 𝒆1

𝐵 𝒆2
] [

𝒘2

𝑏2
] ≤ [

𝜼1

(1/𝜏2)𝜼2
] − [

𝒆1

𝟎2
] ,  

which in matrix form becomes 

𝑚𝑖𝑛
𝒛1,𝝃

  
1

2
𝑐3||𝒛1||2 + 𝒆𝑡𝐷11𝝃 

  subject to  𝐺𝒛1 ≤ 𝐷12𝝃 − 𝒓1,  −𝐺𝒛1 ≤ 𝝃 + 𝒓1 

 

(5.6a) 

and 

𝑚𝑖𝑛
𝒛2,𝜼

  
1

2
𝑐4||𝒛2||2 + 𝒆𝑡𝐷22𝜼 

subject to      𝐺𝒛2 ≤ 𝜼 + 𝒓2,  −𝐺𝒛2 ≤ 𝐷21𝜼 − 𝒓2 

 

(5.6b) 

where  

 𝒛𝑘 = [
𝒘𝑘

𝑏𝑘
] ∈ 𝑅𝑛+1,  𝐺 = [

𝐴 𝒆1

𝐵 𝒆2
] = [𝐶 𝒆], 𝒓1 = [

𝟎1

𝒆2
] , 𝒓2 = [

𝒆1

𝟎2
] ,  𝝃 = [

𝝃1

𝝃2
] , 𝜼 =

[
𝜼1

𝜼2
] , 𝒆 = [

𝒆1

𝒆2
] ; 𝟎𝑘 , 𝒆𝑘 ∈ 𝑅𝑚𝑘 indicate the column vectors of zeros and ones, and  𝐷11 =

𝑑𝑖𝑎𝑔(𝑐1𝒆1; 𝒆2), 𝐷12 = 𝑑𝑖𝑎𝑔((1/𝜏1)𝒆1; 𝒆2),𝐷22 = 𝑑𝑖𝑎𝑔(𝒆1; 𝑐2𝒆2), 𝐷21 = 𝑑𝑖𝑎𝑔(𝒆1; (1/𝜏2)𝒆2)  

are diagonal matrices of order m.   

 The solutions of the primal QPPs (5.6) are obtained by solving their duals. By 

introducing the vectors of Lagrangian multipliers 𝜶1, 𝜷1, 𝜶2, 𝜷2 ≥ 𝟎 from 𝑅𝑚, the following 

Lagrangian functions are formulated  

 �̃�1(𝒛1, 𝝃, 𝜶1, 𝜷1) =
1

2
𝑐3𝒛1

𝑡 𝒛1 + 𝒆𝑡𝐷11𝝃 + 𝜶1
𝑡 (𝐺𝒛1 − 𝐷12𝝃 + 𝒓1) + 𝜷1

𝑡 (−𝐺𝒛1 − 𝝃 − 𝒓1) 

and 

 �̃�2(𝒛2, 𝜼, 𝜶2, 𝜷2) =
1

2
𝑐4𝒛2

𝑡 𝒛2 + 𝒆𝑡𝐷22𝜼 + 𝜶2
𝑡 (𝐺𝒛2 − 𝜼 − 𝒓2) + 𝜷2

𝑡 (−𝐺𝒛2 − 𝐷21𝜼 + 𝒓2) 

 Applying the necessary and sufficient KKT optimality conditions, we obtain 

𝜕�̃�𝑘/𝜕𝒛𝑘 = 𝟎 ⇒ 𝒛𝑘 =
(−𝐺𝑡)

𝑐𝑘+2
(𝜶𝑘 − 𝜷𝑘)   for 𝑘 =  1, 2,  (5.7) 

𝜕�̃�1/𝜕𝝃 = 𝟎 ⇒ 𝐷12𝜶1 + 𝜷1 = 𝐷11𝒆 and 𝜕�̃�2/𝜕𝜼 = 𝟎 ⇒ 𝜶2 + 𝐷21𝜷2 = 𝐷22𝒆             (5.8) 

𝜶1
𝑡 (𝐺𝒛1 − 𝐷12𝝃 + 𝒓1) = 0, 𝜷1

𝑡 (−𝐺𝒛1 − 𝝃 − 𝒓1) = 0  (5.9) 

𝜶2
𝑡 (𝐺𝒛2 − 𝜼 − 𝒓2) = 0,  𝜷2

𝑡 (−𝐺𝒛2 − 𝐷21𝜼 + 𝒓2) = 0 and  𝜶1, 𝜷1, 𝜶2, 𝜷2 ≥ 𝟎 .            
 

(5.10) 
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Substituting (5.7) and (5.8) in the Lagrangian functions will lead to the duals of (5.6) as a pair of 

QPP minimization problems   

𝑚𝑖𝑛
𝜶1,𝜷1∈𝑅𝑚

1

2𝑐3
(𝜶1 − 𝜷1)𝑡𝐺𝐺𝑡(𝜶1 − 𝜷1) − 𝒓1

𝑡 (𝜶1 − 𝜷1)    

subject to  𝐷12𝜶1 + 𝜷1 = 𝐷11𝒆 and 𝜶1 ≥ 𝟎, 𝜷1 ≥ 𝟎 

 

(5.11a) 

and   

𝑚𝑖𝑛
𝜶2,𝜷2∈𝑅𝑚

1

2𝑐4
(𝜶2 − 𝜷2)𝑡𝐺𝐺𝑡(𝜶2 − 𝜷2) + 𝒓2

𝑡 (𝜶2 − 𝜷2)  

 subject to   𝜶2 + 𝐷21𝜷2 = 𝐷22𝒆 and 𝜶2 ≥ 𝟎, 𝜷2 ≥ 𝟎.  

 

(5.11b) 

 

Since 𝐷12𝜶1 + 𝜷1 = 𝐷11𝒆, we have 𝜷1 = 𝐷11𝒆 − 𝐷12𝜶1 ≥ 𝟎  and  𝜶1 − 𝜷1 = (𝐼 + 𝐷12)𝜶1 −

𝐷11𝒆. Putting this results in the dual problem (5.11a) it can be equivalently expressed as  

𝑚𝑖𝑛
𝜶1∈𝑅𝑚

𝐿1(𝜶1) =
1

2
𝜶1

𝑡 𝑄1𝜶1 − 𝒉1
𝑡 𝜶1 

  subject to   𝟎 ≤ 𝜶1 ≤ 𝐷12
−1𝐷11𝒆 = (

𝑐1𝜏1𝒆1

𝒆2
),                                                    

 

(5.12a) 

where 𝑄1 = (𝐼 + 𝐷12)𝐺𝐺𝑡(𝐼 + 𝐷12) 𝑎𝑛𝑑 𝒉1 = (𝐼 + 𝐷12)(𝐺𝐺𝑡𝐷11𝒆 + 𝑐3𝒓1). 

Similarly, the conditions 𝜶2 + 𝐷21𝜷2 = 𝐷22𝒆 and 𝜶2 ≥ 𝟎 𝜶2 − 𝜷2 = 𝐷22𝒆 − (𝐼 + 𝐷21)𝜷2 

and 𝐷22𝒆 ≥ 𝐷21𝜷2 hold, an equivalent problem of (5.11b) in simple form is obtained  

𝑚𝑖𝑛
𝜷2∈𝑅𝑚

𝐿2(𝜷2) =
1

2
𝜷2

𝑡 𝑄2𝜷2 − 𝒉2
𝑡 𝜷2, 

 subject to   𝟎 ≤ 𝜷2 ≤ 𝐷21
−1𝐷22𝒆 = (

𝒆1

𝑐2𝜏2𝒆2
)                                                            

 

(5.12b) 

where 𝑄2 = (𝐼 + 𝐷21)𝐺𝐺𝑡(𝐼 + 𝐷21)  𝑎𝑛𝑑  𝒉2 = (𝐼 + 𝐷21)(𝐺𝐺𝑡𝐷22𝒆 + 𝑐4𝒓2).  

We call the pair of quadratic minimization problems with linear inequality constraints (5.12a) –

(5.12b), the 𝐿1 −norm based pinball loss non-parallel support vector machine (L1-Pin-NPSVM). 

 From the solutions of (5.12) and using (5.7), the linear classifier for L1-Pin-NPSVM is given by  

𝑓(𝒙) = 𝑠𝑖𝑔𝑛 (
𝒘1

𝑡 𝒙 + 𝑏1

||𝒘1||
+

𝒘2
𝑡 𝒙 + 𝑏2

||𝒘2||
). 

Remark 5.3. It is assumed that (𝜏1, 𝜏2) ≠ (0,0), in the above derivation of the problem 

formulation (5.12). Notice that our approach of deriving (5.12) is novel and is applicable for all 

𝜏1, 𝜏2 > 0. 

5.2.2 Non-Linear L1-Pin-NPSVM 

 Our results (5.12) for the linear kernel can be easily extended to the problem of non- 
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linear classifiers. Assuming that the input data points are taken into a higher dimensional feature 

space via a non-linear mapping 𝜑(. ), non-linear L1-Pin-NPSVM in the feature space leads to 

solving  

𝑚𝑖𝑛
𝒘1,𝑏1,𝝃1,𝝃2

   
1

2
𝑐3(||𝒘1||2 + 𝑏1

2) + ||𝝃2||1 + 𝑐1𝒆1
𝑡 𝝃1 

 

(5.13a) 

and 

𝑚𝑖𝑛
𝒘2,𝑏2,𝜼1,𝜼2

   
1

2
𝑐4(||𝒘2||2 + 𝑏2

2) + ||𝜼1||1 + 𝑐2𝒆2
𝑡 𝜼2 

subject to 𝜑(𝐴)𝐰2 + 𝑏2𝒆1 − 𝒆1 = 𝜼1, 

 −(𝜑(𝐵)𝒘2 + 𝑏2𝒆2) ≥ 𝟎2 − 𝜼2, −(𝜑(𝐵)𝒘2 + 𝑏2𝒆2) ≤ 𝟎2 +
1

𝜏2
𝜼2, 

 

(5.13b) 

where 𝟎𝑘 ∈ 𝑅𝑚𝑘 is the column vector of zeros, ck > 0 and ck+1 > 0 are regularization parameters, 

𝝃𝑘 , 𝜼𝑘 ∈ 𝑅𝑚𝑘  are vectors of slack variables, 𝜏𝑘 > 0 are parameters and  k = 1, 2. 

Clearly, we have 𝐺 = [
𝜑(𝐴) 𝒆1

𝜑(𝐵) 𝒆2
] = [𝜑(𝐶) 𝒆] and hence 𝐺𝐺𝑡 = 𝐾(𝐶, 𝐶𝑡) + 𝐸 in which 𝐸 =

𝒆𝒆𝑡 is the matrix where all its entries become 1. By considering the equivalent problem (5.5) for 

the non-linear case and proceeding as in the linear case, the duals of (5.13) can be derived as a 

pair of QPPs in kernel based formulation, again of the form (5.12) In this case,  

 𝒛𝑘 = [𝜑(𝐶)𝒆]𝑡𝒖𝑘 and 𝑓𝑘(𝒙) = [𝜑(𝒙)1] [
𝒘𝑘

𝑏𝑘
] = −(𝐾(𝒙𝑡 , 𝐶𝑡) + 𝒆𝑡)𝒖𝑘 for 𝑘 = 1,2,  

where 𝒖1 = ((𝐼 + 𝐷12)𝜶1 − 𝐷11𝒆)/𝑐3 and 𝒖2 = (𝐷22𝒆 − (𝐼 + 𝐷21)𝜷2)/𝑐4. 

 Finally, from the solutions of the non-linear L1-Pin-NPSVM problem (5.12) and using (5.7) we 

construct the non-linear classifier as 

𝑓(𝒙) = 𝑠𝑖𝑔𝑛 (
(𝐾(𝒙𝑡 , 𝐶𝑡) + 𝒆𝑡)𝒖1

||𝒖1
𝑡 𝐾(𝐶, 𝐶𝑡)𝒖1||

+
(𝐾(𝒙𝑡 , 𝐶𝑡) + 𝒆𝑡)𝒖2

||𝒖2
𝑡 𝐾(𝐶, 𝐶𝑡)𝒖2||

) 

Clearly, when 𝐾(𝐶, 𝐶𝑡) = 𝐶𝐶𝑡, problem (5.12) for the non-linear case reduces to the linear 

problem. This shows that a uniform formulation for the linear and non-linear kernels is 

guaranteed by L1-Pin-NPSVM and there is no need for deriving different formulations 

separately for linear and non-linear kernels.     

Remark 5.4. The problem (5.12) is a QPP with box constraints in m variables and thus the 

computational complexity of training L1-Pin-NPSVM is 2𝑂(𝑚3). 

Remark 5.5. L1-Pin-NPSVM has the advantage that its learning time will be much less than 

TWSVM and TBSVM since the dual QPPs (5.12a) and (5.12b) do not have inverse of kernel 

matrices. 
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Remark 5.6. Using the KKT conditions (5.8) –(5.10), it is simple to verify that 𝜶1, 𝜷2 become 

sparse. Thus, from (5.7), we say that the solution vectors 𝒘1and 𝒘2 are partly sparse (Peng et 

al., 2016).   

Remark 5.7. The dual problems (5.12a) and (5.12b) are linearly constrained QPPs. One can 

solve them using SVM-type algorithms like sequential minimal optimization (SMO) (Platt, 

1999), dual coordinate descent (DCD) (Hsieh et al., 2008). In this work we used MOSEK 

optimization toolbox of MATLAB. 

5.2.3 Properties of L1-Pin-NPSVM 

 As the main benefits of introducing pinball loss, we analyze the noise insensitivity, 

within-class scatter and misclassification error properties of L1-Pin-NPSVM. For easy 

comprehension, we focus on its linear problem in unconstrained form (5.3) As similar 

arguments hold for the formulation (5.3b), we restrict our discussion on the problem formulation 

(5.3a). 

 Let a generalized sign function be defined as 

𝑠𝑔𝑛𝜏( 𝑢) = {
1, 𝑢 > 0

[−𝜏, 1], 𝑢 = 0

−𝜏 𝑢 < 0
. 

From the optimality condition of (5.3a) we get  

 𝟎 ∈
𝑐3

𝑐1
[
𝒘1

𝑏1
] +

[𝐵 𝒆2]𝑡

𝑐1
𝑠𝑔𝑛𝜏=1( 𝐵𝒘1 + 𝑏1 𝒆2 + 𝒆2)

+ ∑ 𝑠𝑔𝑛𝜏1
( − (𝒘1

𝑡 𝒙𝑖 + 𝑏1))

𝑚1

𝑖=1

[
𝒙𝑖

1
].  

 

(5.14) 

Let 𝑆1
+ = {𝑖: 𝒘1

𝑡 𝒙𝑖 + 𝑏1   > 0}, 𝑆1
− = {𝑖: 𝒘1

𝑡 𝒙𝑖 + 𝑏1   < 0} and 𝑆1
0 = {𝑖: 𝒘1

𝑡 𝒙𝑖 + 𝑏1   = 0} be a 

partition of the index set for positive class data points, i.e., 𝑖 = 1, . . . , 𝑚1. Then, there exists 𝜍𝑖 ∈

[−𝜏1, 1] such that the condition (5.14) becomes    

𝑐3

𝑐1
[
𝒘1

𝑏1
] +

[𝐵 𝒆2]𝑡

𝑐1
𝑠𝑔𝑛𝜏=1( 𝐵𝒘1 + 𝑏1 𝒆2 + 𝒆2) 

−𝜏1 ∑ [
𝒙𝑖

1
]

𝑖∈𝑆1
+

+ ∑ [
𝒙𝑖

1
]

𝑖∈𝑆1
−

+ ∑ 𝜍𝑖 [
𝒙𝑖

1
]

𝑖∈𝑆1
0

= 𝟎     

 

(5.15) 

Once 𝑐1, 𝑐3, 𝒘1 and 𝑏1 are given, from the above condition (5.15), we see that 𝜏1 controls the 

number of input data points in 𝑆1
+, 𝑆1

0and 𝑆1
−. When 𝜏1 is small, lot many input data points 

belong to 𝑆1
+ and hence 𝑆1

0 and 𝑆1
− will contain less number of data points which implies the 

result is sensitive to feature noise around the decision boundary. However, when 𝜏1 = 1, all the 

three sets contain many input points and thus the result is less sensitive to noise on 𝒙𝑖. Figure 
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5.1 shows the results of TPMSVM and L1-Pin-NPSVM on a 2-D synthetic dataset where the 

positive and negative class data points are marked by red triangles and blue circles respectively. 

Using the results of (5.3) for 𝜏1 = 0.1 and 𝜏1 = 0.5, the non-parallel hyperplanes 𝒘1
𝑡 𝒙 + 𝑏1 = 0 

and 𝒘2
𝑡 𝒙 + 𝑏2 = 0 along with the boundary of the decision hyperplane are illustrated in Figure 

5.1(b) and Figure 5.1(c) respectively. In the figures, data points lying below the positive 

hyperplane 𝒘1
𝑡 𝒙 + 𝑏1 = 0 will be the set 𝑆1

+ (lightly shaded region) and those data points which 

lie above the hyperplane will form the set 𝑆1
− (non-shaded region). When the value of 𝜏1 

becomes large, the sets 𝑆1
+, 𝑆1

0and 𝑆1
−contain many data points and the result is less susceptible 

to noise. 

 

(a) TPMSVM 

 

(b) L1-Pin-NPSVM (𝜏 = 0.1) 

 

(c) L1-Pin-NPSVM (𝜏 = 0.5) 

Figure 5.1 Classification results of linear (a) TPMSVM, (b) L1-Pin-NPSVM with and (c) L1-

Pin-NPSVM with on a 2D synthetic dataset. The region corresponding to 𝒘1
𝑡 𝒙 + 𝑏1 > 0 is 

shown lightly shaded and 𝑆1
+denotes all the positive class data points falling in this region. As 

the value of 𝜏1 increases, the margin between the positive 𝒘1
𝑡 𝒙 + 𝑏1 = 0and negative 𝒘2

𝑡 𝒙 +

𝑏2 = 0 hyperplanes become larger and hence less number of points in𝑆1
+. 
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 Let 𝒙0 be a data point such that 𝒘1
𝑡 𝒙0 + 𝑏1 = −1 is satisfied. Using the sum of the 

distance between 𝒙0 and negative class samples 𝒙𝑖 ∈ 𝑇, define the scatter of  𝒙𝑖 around 𝒙0 as 

∑ |𝒘1
𝑡 (𝒙𝑖 − 𝒙0)|

𝑚1+𝑚2
𝑖=𝑚1+1  = ∑ |𝒘1

𝑡 𝒙𝑖 + 𝑏1 + 1|
𝑚1+𝑚2
𝑖=𝑚1+1 = ||𝐵𝒘1 + 𝑏1𝒆2 + 𝒆2||1. Thus, we can see 

that minimization of ||𝐵𝒘1 + 𝑏1𝒆2 + 𝒆2||1 in (5.3a) can be interpreted as the scatter 

minimization of negative class data points around 𝒘1
𝑡 𝒙 + 𝑏1 = −1.    

      Similarly, the scatter of 𝒙𝑖 from the positive class around a data point �̃�0 so that 𝒘1
𝑡 �̃�0 +

𝑏1 = 0 becomes ∑ |𝒘1
𝑡 (𝒙𝑖 − �̃�0)|

𝑚1
𝑖=1 =∑ |0 − 𝑦𝑖(𝒘1

𝑡 𝒙𝑖 + 𝑏1)|
𝑚1
𝑖=1  and therefore its minimization 

is the scatter minimization of positive class data points around 𝒘1
𝑡 𝒙 + 𝑏1 = 0. 

      Consider the following problem  

𝑚𝑖𝑛
𝒘1,𝑏1

1

2
𝑐3(||𝒘1||2 + 𝑏1

2) + ||𝐵𝒘1 + 𝑏1𝒆2 + 𝒆2||1 + 𝑐5 ∑ |0 − 𝑦𝑖(

𝑚1

𝑖=1

𝒘1
𝑡 𝒙𝑖 + 𝑏1)| 

 

(5.16) 

Where 𝑐5 > 0 is a parameter. Note that the first term is the regularization term and by 

minimizing it, the structural risk minimization principle is implemented. Adding the hinge loss 

based misclassification error term 𝑐7 ∑ 𝑚𝑎𝑥{ 0,0 − 𝑦𝑖(𝒘1
𝑡 𝑥𝑖 + 𝑏1)}

𝑚1
𝑖=1  into (5.16), where 𝑐7 > 0  

is a parameter, the problem formulation (5.3a) is obtained by choosing 𝑐1 = 𝑐5 + 𝑐7 and 𝜏1 =
𝑐5

𝑐1
, 

i.e., pinball can be regarded as a combination of within class scatter and the hinge loss 

misclassification error together. From the above derivation, we have  0 ≤ 𝜏1 ≤ 1. A similar 

conclusion can be drawn for (5.3b).  

5.3 Discussion on L1-Pin-NPSVM 

 The proposed L1-Pin-NPSVM is compared to TPMSVM, Pin-SVM and Pin-TSVM in 

this section.   

5.3.1 L1-Pin-NPSVM versus TPMSVM 

 Both TPMSVM and L1-Pin-NPSVM seek two non-parallel hyperplanes and they are 

obtained by solving a pair of QPPs with box constraints. They allow a unified framework for the 

linear and non-linear kernels where the kernel trick can be applied directly like in the classical 

SVM. Both of them lose sparsity. However, L1-Pin-NPSVM is significantly different from 

TPMSVM in the sense that TPMSVM employs hinge loss whereas pinball loss is used in L1-

Pin-NPSVM. Because of pinball loss, correctly classified points are also penalized in L1-Pin-

NPSVM. When the size of both classes of data points is equal, the computational complexity of 

TPMSVM is 2𝑂((𝑚/2)3) whereas for L1-Pin-NPSVM it is 2𝑂(𝑚3). In Figure 5.1, the 

classification results for a synthetic dataset by TPMSVM and L1-Pin-NPSVM are illustrated. 

Since TPMSVM employs hinge loss, the margin between the positive and negative hyperplanes 
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is small. On the contrary, the margin between the non-parallel hyperplanes of L1-Pin-NPSVM 

can be controlled using pinball loss parameters. 

5.3.2 L1-Pin-NPSVM versus Pin-SVM 

 Pinball is employed in both Pin-SVM and L1-Pin-NPSVM. Like Pin-SVM, the proposed 

L1-Pin-NPSVM also enjoys the benefits of noise insensitivity and stability in terms of re-

sampling. Pin-SVM leads to solving a single QPP in 2m nonnegative variables subject to (m+1) 

equality constraints with computational complexity 𝑂((2𝑚)3) whereas L1-Pin-NPSVM solves 

two smaller sized QPPs in m variables subject to m box constraints and its computational 

complexity is 2𝑂(𝑚3). Note that, solving two smaller QPPs instead of a single large QPP makes 

the learning speed of L1-Pin-NPSVM much faster than Pin-SVM. Lastly, one can observe that 

Pin-SVM is formulated with a single pinball loss parameter value 𝜏 whereas in L1-Pin-NPSVM 

one can set the pinball loss parameter values  𝜏1, 𝜏2 separately corresponding to data points of 

positive and negative classes. This property makes L1-Pin-NPSVM more suitable for problems 

with imbalanced data. 

5.3.3 L1-Pin-NPSVM versus Pin-TSVM 

 Both the methods are non-parallel SVM classifiers in the spirit of TWSVM where pinball 

loss of the form (5.2) is employed for misclassification terms. L1-Pin-NPSVM minimizes the 

sum of projection values of negative (positive) input data points on the hyperplane 𝑓1(𝒙) = −1 

(𝑓2(𝒙) = 1) in 𝐿1 −norm whereas in case of Pin-TSVM it is minimized on the positive 

(negative) hyperplane 𝑓1(𝒙) = 0 (𝑓2(𝒙) = 0). If we assume that the size of the datasets of both 

the classes is approximately equal, i.e. m1 ≈ m2   m/2, Pin-TSVM solves a pair of QPPs having 

m variables of computational complexity 2𝑂(𝑚3). Both the methods have the following 

advantages: (i). like in the classical SVM, kernel trick can be applied directly; (ii). the pair of 

QPPs are free from inverse of kernel matrices; (iii). noise insensitivity, small within-class scatter 

and small misclassification error properties are satisfied.   

5.4 Experimental Results  

 In this section, we conduct the performance evaluation of our method L1-Pin-NPSVM by 

comparing its experimental results with the state-of-the-art SVM methods: TPMSVM, Pin-SVM 

and Pin-TSVM on two synthetic and 15 benchmark datasets from UCI repository of machine 

learning datasets (Murphy & Aha, 1992). As synthetic datasets, Cross-planes (Mangasarian & 

Wild) and Ripley (Ripley, 1996) datasets are chosen to test the robustness in the presence of 

outliers and feature noise. On the other hand, we have polluted the benchmark datasets (Murphy 

& Aha, 1992) by adding noise with three levels of variance. All the algorithms are implemented 

in MATLAB R2015a on Windows 10 OS running on a PC configured with 64 bit, 3.40 GHz 
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Intel®core™ i7 processor having 8 GB of RAM. The MOSEK optimization toolbox for 

MATLAB available at http://www.mosek.com is used to solve the QPPs. The popular Gaussian 

kernel function of the form: 𝑘(𝒙, 𝒛) = 𝑒𝑥𝑝( −||𝒙 − 𝒛||2 2𝜎2⁄ ) is applied where 𝜎 > 0 is a 

parameter. It is known that parameter values can influence the performance of the classifier. In 

this study, the parameters of SVMs are determined by performing tenfold cross-validation 

strategy where the penalty parameters c’s, 𝜈1, 𝜈2 and the kernel parameter 𝜎 are chosen by 

varying them in the range of {2𝑖| i = -9, -8, … ,9} whereas 𝜏1, 𝜏2 are varied in {0.1, 0.2, 0.5, 1}. 

For simplicity, we assumed 𝑐1 = 𝑐2,  𝑐3 = 𝑐4,  𝜈1 = 𝜈2,  𝜏1 = 𝜏2. In our experiments, by: (i) 

randomly dividing the dataset into 10 equal parts in which nine of them are taken together to be 

the training set and the remaining one as a test set, the accuracy is computed; (ii) repeating the 

process 10 times, the average test accuracy is computed and is taken as the classification 

accuracy. 

5.4.1 Cross-planes synthetic dataset 

 In this sub-section, we perform experiments on a 2D Cross-planes dataset consisting of 

46 positive data points and 58 negative data points generated by perturbing them originally lying 

on two intersecting lines belonging in two classes. In Figure 5.2, they are represented by red 

triangles and blue circles respectively. To test the robustness of L1-Pin-NPSVM, we introduce 

outliers in the dataset and analyze the changes of the results after adding them. For this purpose, 

the dataset is contaminated having two outliers in one case and four in the second case (Yan et 

al., 2018). Along with the input data points and the outliers, the learned linear non-parallel 

hyperplanes of TPMSVM, Pin-TSVM and L1-Pin-NPSVM are shown in Figure 5.2(a)- Figure 

5.2(f) where the outliers are marked by filled red triangles and blue circles. In addition, the 

classification accuracies and the plus or minus standard deviations are also indicated. All the 

results are based on the optimal parameters. For the problem of two outliers, the results of 

classification accuracies of TPMSVM, Pin-TSVM and L1-Pin-NPSVM are 87.73%, 96.27% 

and 99.09% respectively whereas, in case of four outliers, their accuracies are 80.55%, 93.63% 

and 98.18% respectively. The degradation in the classification performance of the algorithms 

confirms their sensitivity to outliers. Among them, TPMSVM shows the worst accuracy and 

performance degradation. Further, better accuracy and smaller performance degradation from 

99.09% to 98.18% by L1-Pin-NPSVM than Pin-TSVM clearly confirm its superiority in 

suppressing the influence of outliers present in the given dataset.  

http://www.mosek.com/


 

105 

 

(a) TPMSVM (87.73±17.2341) 

 

(b) TPMSVM (80.55±31.5740) 

 

(c) Pin-TSVM (96.27±6.4489) 

 

(d) Pin-TSVM (93.63±12.1590) 

 

(e) L1-Pin-NPSVM (99.09±2.8748) 

 

(f) L1-Pin-NPSVM (98.18±5.7946) 

Figure 5.2 Results of nonparallel hyperplanes generated by linear TPMSVM, Pin-TSVM and 

L1-Pin-NPSVM on “Cross-planes” dataset with two outliers (Left) and four outliers (Right). 

‘Triangles’ and ‘circles’ represent positive and negative class points. Outliers are marked by 

filled triangles and circles. 
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In summary, the proposed L1-Pin-NPSVM is superior to Pin-TSVM and TPMSVM in 

terms of accuracy and robustness which confirms that it is an efficient learning method 

for classification 

5.4.2 Ripley synthetic dataset 

               We test the effectiveness of L1-Pin-NPSVM by considering the Ripley dataset (Ripley, 

1996) in 𝑅2 where the positive and negative classes of input points are represented by red triangles 

and blue circles respectively in Figure 5.3. The dataset consists of 250 training and 1000 test 

points. The learned classifiers and the nonparallel hyperplanes of Pin-TSVM and L1-Pin-NPSVM 

for nonlinear kernel are shown in Figure 5.3(a) and Figure 5.3(b). The prediction accuracies for 

the linear and nonlinear kernels of Pin-TSVM and L1-Pin-NPSVM are tabulated in Table 5.1. 

Clearly, L1-Pin-NPSVM shows better performance than Pin-TSVM in both cases. According to 

(Peng et al., 2016), for any test point 𝒙𝑖 ∈ 𝑅2 we compute 𝒅𝑖 = (𝑑1
𝑖 , 𝑑2

𝑖 ) where 𝑑1
𝑖  and 𝑑2

𝑖  are the 

distances from 𝒙𝑖 to the nonparallel hyperplanes 𝑓1(𝒙) = 0 and 𝑓2(𝒙) = 0 respectively. If 𝑑1
𝑖 < 𝑑2

𝑖  

then we assign the class label (+1) to 𝒙𝑖 else its class label will be (-1). For the purpose of 

illustration, any test point 𝒙𝑖 ∈ 𝑅2 is plotted with (𝑑1
𝑖 , 𝑑2

𝑖 ) as its coordinates. 

 By considering a part of test points, the 2D scatter plots for Pin-TSVM and L1-Pin-

NPSVM are illustrated in Figure 5.4 where the horizontal and vertical axes represent the distance 

of a point from hyperplane1 and hyperplane2 respectively. 

 

(a) Pin-TSVM 

 

(b) L1-Pin-NPSVM 

Figure 5.3 Experimental results of Pin-TSVM and L1-Pin-NPSVM on Ripley dataset. The 

positive and negative classes of data points are marked by ‘triangle’ and ‘circle’. The kernel 

classifier and the non-parallel hyperplanes are shown as solid and dashed curves. 
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(a) Pin-TSVM 

 

(b) L1-Pin-NPSVM 

Figure 5.4 Two dimensional projection of kernel Pin-TSVM and L1-Pin-NPSVM for a part of 

test data points from Ripley dataset. 

 In both methods, majority of test points are clustered around their respective 

hyperplanes. For the proposed method, most test points are very close to their respective 

hyperplanes. We compute the following values for the test points 

𝐴1 =
∑ 𝑑1

𝑖
𝑦𝑖=+1

∑ 𝑑2
𝑖

𝑦𝑖=+1
 and 𝐴2 =

∑ 𝑑1
𝑖

𝑦𝑖=(−1)

∑ 𝑑2
𝑖

𝑦𝑖=(−1)
. 

 Note that whenever 𝐴1and 𝐴2 are smaller, better accuracy performance is achieved. In addition 

to their learning accuracies the values of 𝐴1 and 𝐴2 by Pin-TSVM and L1-Pin-NPSVM for both 

the linear and nonlinear kernels are reported in Table 5.1. Since the ordered pair of values 

(𝐴1, 𝐴2) for the nonlinear kernel is much smaller than the linear kernel, we say that nonlinear 

kernel performs better than linear kernel. Also, smaller value of (𝐴1, 𝐴2) for L1-Pin-NPSVM 

than Pin-TSVM indicates the superiority of L1-Pin-NPSVM. 

Table 5.1 Experimental results of Pin-TSVM and L1-Pin-NPSVM on Ripley dataset 

Type of kernel 

(Train size, Test size) 

Pin-TSVM 

Accuracy 

L1-Pin-NPSVM 

Accuracy 

A1 A2 A1 A2 

Linear kernel 

(250Χ2,1000 Χ2) 

89.20 89.50 

0.3577 0.3476 0.2887 0.3418 

Gaussian kernel 

(250 Χ2 Χ1000 Χ2) 

91.10 92.10 

0.2500 0.2614 0.2156 0.1625 

5.4.3 Benchmark datasets 

 In this subsection, we test the validity of the proposed method for linear and Gaussian 

kernels by conducting numerical experiments on 15 commonly used benchmark datasets from 
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the UCI machine learning repository (Murphy & Aha, 1992). All the input data points are 

normalized to lay their feature values in the unit interval [0, 1]. For the purpose of checking 

noise insensitivity of L1-Pin-NPSVM, both the training and testing data points are distorted by 

zero-mean Gaussian noise in which the ratio of variance of noise to that of feature represented 

as 𝑟, is taken as 𝑟 = 0 (i.e., noise-free), 𝑟 = 0.05 and 𝑟 = 1 (Huang et al., 2014).  

Table 5.2 Performance comparison of the proposed method L1-Pin-NPSVM with TPMSVM, Pin-

SVM and Pin-TSVM on real-world benchmark datasets with noise level r. The Linear kernel was 

used. Training time is measured in seconds. 

Dataset 

(Total size) 

Ratio of 

noise 

TPMSVM 

Time 

 (Rank) 

Pin-SVM 

Time 

 (Rank) 

Pin-TSVM 

Time 

 (Rank) 

L1-Pin-NPSVM 

Time 

 (Rank) 

 

Cleveland 

(297Χ 13) 

r=0 
84.18±7.35 

 0.0467 

 (3) 

84.17±5.49 

0.1338 

 (4) 

84.40±4.15 

0.0450 

(2) 

85.25±6.05 

0.0427 

(1) 

r=0.05 
83.43±7.28 

0.0452 

 (4) 

84.10±5.06 

0.1344 

 (3) 

84.25±4.20 

 0.0428 

(2) 

85.05± 6.30 

0.0462 

(1) 

r=0.1 
83.25±7.22 

0.0456 

 (4) 

84.30±4.90 

0.1337 

 (3) 

84.40±4.14 

 0.0477 

 (2) 

84.51± 6.90 

0.0483 

(1) 

 

Breast Cancer 

(683 Χ9) 

r=0 
96.65±2.46 

 0.4368 

 (4) 

96.80±1.73 

 0.8396 

 (3) 

96.98±2.77 

 0.6546 

 (2) 

97.66±1.83 

0.4780 

(1) 

r=0.05 
96.60±3.62 

 0.4376 

 (2) 

96.40±1.97 

0.8169 

 (4) 

96.55±2.85 

0.6511 

 (3) 

97.52±2.05 

0.4785 

(1) 

r=0.1 
96.06±3.80 

0.44380 

 (4) 

96.10±2.96 

0.8159 

 (2.5) 

96.10±2.96 

 0.6589 

 (2.5) 

97.37±1.98 

0.4785 

(1) 

 

WPBC 

(194 Χ 33) 

r=0 
78.95±9.33 

0.0216 

 (4) 

79.58±10.12 

 0.0557 

 (2) 

79.35±10.74 

 0.0389 

 (3) 

79.94±9.01 

0.0265 

(1) 

r=0.05 
78.67±9.30 

 0.0220 

 (4) 

79.40±10.27 

 0.0550 

(1) 

79.30±10.81 

 0.0375 

 (2.5) 

79.30±9.15 

0.0305 

(2.5) 

r=0.1 
77.89±9.26 

 0.0220 

 (4) 

79.12±10.37 

 0.0555 

 (3) 

79.22±10.87 

0.0390 

 (1) 

79.15±9.40 

0.0308 

(2) 

 

Sonar 

(208 Χ 60) 

r=0 
78.91±8.53 

0.0308 

 (2) 

77.45±6.08 

 0.0639 

 (4) 

77.85±5.98 

 0.0433 

 (3) 

79.98±6.10 

0.0385 

(1) 

r=0.05 
78.55±8.78 

0.0315 

 (4) 

78.90±5.10 

 0.0646 

 (3) 

79.27±5.71 

0.0406 

 (2) 

79.85±5.91 

0.0379 

(1) 

r=0.1 
77.15±8.90 

 0.0312 

 (4) 

78.85±5.54 

0.0643 

 (3) 

79.08±5.90 

0.0438 

 (2) 

79.83±.6.05 

0.0385 

(1) 

 

Heart statlog 

(270 Χ 13) 

r=0 
84.25±6.34 

 0.0421 

 (4) 

84.70±6.65 

0.1087 

 (1.5) 

84.70±6.65 

0.0626 

 (1.5) 

84.60±6.12 

0.0345 

(3) 

r=0.05 83.90±6.54 84.44±7.65 84.30±7.81 84.44±6.50 
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 0.0420 

 (4) 

0.1090 

 (1.5) 

 0.0533 

 (3) 

0.0361 

(1.5) 

r=0.1 
82.80±6.99 

0.0418 

 (2) 

82.40±9.45 

 0.1097 

 (4) 

82.59±8.86 

 0.0516 

 (3) 

83.33±6.02 

0.0396 

(1) 

 

Votes 

(435 Χ 16) 

r=0 
94.47±3.16 

 0.1120 

 (4) 

96.20±4.31 

0.2516 

 (1.5) 

96.20±4.31 

0.1245 

 (1.5) 

96.15±3.71 

0.1449 

(3) 

r=0.05 
94.47±3.20 

0.1115 

 (4) 

95.90±4.20 

0.2502 

 (3) 

96.05±3.86 

 0.1204 

 (1) 

95.95±3.51 

0.1791 

(2) 

r=0.1 
94.24±3.95 

0.1120 

 (4) 

95.80±4.32 

0.2518 

 (2) 

95.60±2.73 

0.1267 

 (3) 

95.90±3.26 

0.1780 

(1) 

 

Haberman 

(306Χ 3) 

r=0 
73.47±9.10 

0.0710 

 (3) 

73.53±7.42 

 0.1403 

 (2) 

73.45±6.50 

0.1282 

 (4) 

77.70±7.12 

0.0821 

(1) 

r=0.05 
73.80±9.97 

0.0696 

 (2) 

73.50±7.38 

 0.1386 

 (3) 

73.30±6.74 

0.1246 

 (4) 

77.20±7.30 

0.0830 

(1) 

r=0.1 
73.00±9.10 

0.0705 

 (4) 

73.10±7.12 

0.1390 

 (2.5) 

73.10±7.12 

0.1236 

 (2.5) 

76.09±7.31 

0.0855 

(1) 

 

Ionosphere 

(351 Χ 33) 

r=0 
89.78±3.67 

 0.0890 

 (4) 

91.60±3.62 

 0.1983 

 (3) 

91.73±2.73 

 0.0995 

 (2) 

91.80±3.65 

0.0845 

(1) 

r=0.05 
88.20±3.95 

0.0891 

 (4) 

90.40±3.95 

0.1972 

 (3) 

90.45±.3.90 

 0.0881 

 (2) 

91.45±3.42 

0.0857 

(1) 

r=0.1 
86.35±4.11 

 0.0890 

 (4) 

88.54±5.12 

0.1954 

 (3) 

88.70±3.98 

 0.0975 

 (2) 

89.25±3.59 

0.0870 

(1) 

 

Spect 

(267 Χ 22) 

r=0 
79.40±5.39 

 0.0390 

 (1) 

78.28±5.85 

 0.1325 

 (4) 

78.35±7.99 

0.0463 

 (3) 

78.90±5.04 

0.0395 

(2) 

r=0.05 
78.60±5.25 

 0.0412 

 (3.5) 

78.90±5.26 

 0.1364 

 (2) 

78.95±6.23 

0.0482 

 (1) 

78.60±5.39 

0.0390 

(3.5) 

r=0.1 
78.40±5.21 

 0.0405 

 (3.5) 

78.90±5.18 

 0.1351 

 (1) 

78.60±4.35 

0.0481 

 (2) 

78.40±5.35 

0.0406 

(3.5) 

 

Heart-C 

(303 Χ13) 

r=0 
83.50±5.88 

 0.0491 

 (1) 

83.10±7.09 

0.1459 

 (4) 

83.21±7.12 

0.0480 

 (3) 

83.45±6.46 

0.0456 

(2) 

r=0.05 
82.49±8.08 

 0.0485 

 (3) 

82.20±6.77 

 0.1472 

 (4) 

83.50±6.80 

0.0492 

 (2) 

83.69±6.55 

0.0470 

(1) 

r=0.1 
81.84±6.65 

 0.0490 

 (3) 

81.54±7.31 

 0.1458 

 (4) 

83.17±6.47 

0.0490 

 (2) 

83.60±5.51 

0.0484 

(1) 

 

WDBC 

(569 Χ 30) 

r=0 
96.42±4.97 

 0.3812 

 (4) 

97.50±2.20 

0.6589 

 (2) 

97.68±2.64 

0.4950 

 (1) 

97.25±1.74 

0.3725 

(3) 

r=0.05 
96.30±4.86 

 0.3805 

 (4) 

97.25±1.90 

 0.6514 

 (1.5) 

97.25±1.86 

0.4947 

 (1.5) 

97.18±2.01 

0.3720 

(3) 

r=0.1 96.08±4.89 97.10±1.99 97.20±1.10 96.90±1.43 



 

110 

 0.3810 

 (4) 

 0.6524 

 (2) 

0.4809 

 (1) 

0.3890 

(3) 

 

Transfusion 

(748 Χ 4) 

r=0 
77.30±7.01 

0.5892 

 (4) 

78.25±4.15 

 0.9770 

 (1) 

77.98±4.24 

0.7895 

 (3) 

78.10±5.13 

0.5608 

(2) 

r=0.05 
76.70±6.91 

 0.5873 

 (4) 

77.80±4.32 

0.9722 

 (1) 

77.50±4.62 

 0.7757 

 (3) 

77.60±5.40 

0.5801 

(2) 

r=0.1 
76.41±6.98 

 0.5890 

 (4) 

76.55±4.85 

 0.9751 

 (2) 

76.50±4.80 

 0.7896 

 (3) 

77.03±5.60 

0.5886 

(1) 

 

Pima Indians 

 Diabetes 

(768 Χ 8) 

r=0 
75.91±6.00 

 0.6084 

 (4) 

76.95±5.78 

1.1805 

 (3) 

77.20±4.08 

 1.0090 

 (2) 

77.61±6.16 

0.7186 

(1) 

r=0.05 
75.58±6.10 

 0.6048 

 (4) 

76.78±6.87 

1.1721 

 (2) 

76.70±6.54 

 0.9865 

 (3) 

77.16±6.40 

0.7105 

(1) 

r=0.1 
75.89±6.48 

 0.6080 

 (4) 

76.15±6.42 

 1.1782 

 (3) 

76.35±569 

 1.0098 

 (2) 

77.03±5.62 

0.7093 

(1) 

 

German 

(1000 Χ 24) 

r=0 
76.16±7.22 

0.7253 

 (3) 

76.70±3.16 

1.8821 

 (1) 

76.10±3.89 

1.2623 

 (4) 

76.21±5.20 

1.1531 

(2) 

r=0.05 
74.98±7.43 

0.7498 

 (4) 

75.45±4.91 

1.9518 

 (3) 

75.50±4.85 

1.3860 

 (2) 

76.04±5.25 

1.1601 

(1) 

r=0.1 
73.91±8.01 

0.7438 

 (4) 

75.30±5.86 

1.8963 

 (2.5) 

75.30±5.80 

1.2891 

 (2.5) 

75.60±5.40 

1.1583 

(1) 

 

QSAR 

(1055 Χ 41) 

r=0 
85.12±9.58 

0.7586 

 (4) 

87.39±3.25 

2.5416 

(3) 

87.98±4.01 

1.4010 

 (2) 

88.90±6.50 

1.3128 

(1) 

r=0.05 
84.69±9.42 

0.7694 

 (4) 

85.20±3.45 

2.7536 

 (3) 

86.45±4.76 

1.2856 

(2) 

87.52±6.72 

1.1064 

(1) 

r=0.1 
82.98±9.86 

0.7580 

 (4) 

84.54±3.78 

2.7311 

 (3) 

84.65±5.42 

1.3951 

 (2) 

85.16±6.86 

1.1180 

(1) 

   Average rank 3.5556 2.6111 2.3 1.5333 

 

Table 5.3 Average ranks on the accuracy by SVMs for linear kernel on real-world datasets with 

noise level r 

Noise TPMSVM Pin-SVM Pin-TSVM L1-Pin-NPSVM 

r=0 3.2667 2.6 2.4667 1.6667 

r=0.05 3.6333 2.5333 2.2667 1.5667 

r=0.1 3.7667 2.7 2.1667 1.3667 

 



 

111 

Table 5.4 Performance comparison of the proposed method L1-Pin-NPSVM with TPMSVM, Pin-

SVM, and Pin-TSVM on real-world benchmark datasets with noise level r.  Gaussian kernel was 

used. Training time is measured in seconds. 

Dataset 

(Total size) 

Ratio of 

noise 

TPMSVM 

Time 

 (Rank) 

Pin-SVM 

Time 

 (Rank) 

Pin-TSVM 

Time 

 (Rank) 

L1-Pin-NPSVM 

Time 

 (Rank) 

 

Cleveland 

(297Χ 13) 

r=0 
84.18±7.36 

0.0786 

(4) 

84.25±8.55 

0.1428 

 (3) 

85.18±6.22 

0.0866 

 (2) 

85.49±6.30 

0.0910 

(1) 

r=0.05 
83.84±6.82 

0.0798 

 (4) 

84.34±6.57 

0.1444 

 (2) 

84.30±6.45 

0.0871 

 (3) 

85.48±6.86 

0.0930 

 (1) 

r=0.1 
83.81±8.21 

0.0790 

 (4) 

84.88±5.97 

0.1439 

 (2) 

84.79±6.07 

0.0893 

 (3) 

85.08±6.82 

0.0920 

 (1) 

 

Breast Cancer 

(683 Χ9) 

r=0 
97.18±1.42 

0.6289 

 (4) 

97.42±0.83 

1.1370 

(3) 

97.95±1.57 

0.7906 

 (1.5) 

97.95±1.62 

0.6918 

 (1.5) 

r=0.05 
97.15±1.48 

0.6086 

 (3) 

97.06±1.95 

1.1362 

(4) 

97.80±1.58 

0.7897 

 (2) 

97.90±1.65 

0.6996 

 (1) 

r=0.1 
97.30±1.95 

0.6349 

 (4) 

97.36±1.93 

1.1374 

 (3) 

97.80±1.58 

0.7917 

 (1.5) 

97.80±1.67 

0.6914 

 (1.5) 

 

WPBC 

(194 Χ 33) 

r=0 
79.80±6.76 

0.0462 

 (4) 

82.17±9.88 

0.0767 

 (2) 

81.75±7.88 

0.0495 

 (3) 

82.52±9.63 

0.0498 

 (1) 

r=0.05 
78.32±6.89 

0.0428 

 (4) 

81.80±9.81 

0.0747 

 (1) 

80.95±6.81 

0.0489 

 (3) 

81.79±9.40 

0.0430 

 (2) 

r=0.1 
77.78±5.47 

0.0428 

 (4) 

80.44±5.81 

0.0704 

 (3) 

80.50±5.60 

0.0489 

 (2) 

81.05±9.21 

0.0425 

 (1) 

 

Sonar 

(208 Χ 60) 

r=0 
88.02±7.14 

0.0590 

 (4) 

90.85±5.30 

0.0740 

 (2) 

90.80±5.30 

 0.0622 

 (3) 

92.33±5.09 

0.0481 

 (1) 

r=0.05 
87.52±7.20 

0.0585 

 (4) 

89.62±6.30 

0.0749 

 (2) 

89.60±6.30 

0.0617 

 (3) 

91.35±6.20  

0.0470 

 (1) 

r=0.1 
86.59±7.14 

0.0596 

 (4) 

88.58±6.70 

0.0741 

 (2) 

88.50±6.70 

0.0621 

 (3) 

90.35±.6.48 

0.0491 

 (1) 

 

Heart statlog 

(270 Χ 13) 

r=0 
85.55±3.68 

0.0795 

 (1) 

84.80±9.40 

 0.1168 

 (4) 

84.81±4.93 

0.0890 

 (2.5) 

84.81±5.90 

0.0840 

 (2.5) 

r=0.05 
84.07±4.29 

0.0806 

 (4) 

84.55±10.39 

0.1180 

 (2) 

84.70±5.90 

0.0865 

 (1) 

84.50±5.75 

0.0845 

 (3) 

r=0.1 
83.09±5.96 

0.0820 

 (4) 

83.54±5.46 

0.1165 

 (2) 

83.60±5.56 

0.0878 

 (1) 

83.50±5.73 

0.0863 

 (3) 

 

Votes 
r=0 

94.93±2.91 

0.1391 

 (4) 

96.50±3.91 

 0.2915 

 (1.5) 

96.32±2.98 

 0.1434 

 (3) 

96.50±2.87 

0.2153 

 (1.5) 
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(435 Χ 16) 
r=0.05 

94.70±3.44 

0.1384 

 (4) 

96.50±3.07 

0.2900 

 (1) 

96.20±2.07 

 0.1409 

 (3) 

96.32±2.88 

0.2354 

 (2) 

r=0.1 
94.16±2.94 

 0.1370 

 (4) 

96.18±1.55 

 0.2869 

 (2) 

96.10±1.86 

 0.1406 

 (3) 

96.30±2.85 

0.2301 

 (1) 

 

Haberman 

(306Χ 3) 

r=0 
76.73±8.20 

0.0950 

 (1) 

75.54±9.07 

 0.2552 

 (4) 

75.81±7.54 

0.1491 

 (3) 

76.37±7.63 

0.0941 

 (2) 

r=0.05 
75.75±8.28 

 0.0974 

 (2) 

75.17±7.41 

0.2544 

 (3.5) 

75.17±7.43 

0.1442 

 (3.5) 

76.40±7.36 

0.0928 

 (1) 

r=0.1 
74.79±8.51 

0.0993 

 (2) 

74.20±6.54 

0.2513 

 (3.5) 

74.20±6.54 

0.1417 

 (3.5) 

76.07±7.39 

0.0978 

 (1) 

 

Ionosphere 

(351 Χ 33) 

r=0 
94.02±4.02 

0.1158 

 (4) 

94.30±2.33 

0.2265 

 (3) 

94.59±1.33 

0.1218 

 (2) 

95.45±4.05 

0.1694 

 (1) 

r=0.05 
92.61±4.10 

0.1160 

 (3) 

92.87±2.03 

0.2206 

 (2) 

92.30±1.20 

 0.1159 

 (4) 

94.03±3.86 

0.1701 

 (1) 

r=0.1 
90.97±4.86 

0.1170 

(4) 

91.46±5.85 

0.2148 

 (2) 

91.29±2.96 

0.1270 

 (3) 

94.03±3.80 

0.1718 

 (1) 

 

Spect 

(267 Χ 22) 

r=0 
81.65±4.47 

0.0780 

 (4) 

82.05±6.98 

0.1396 

 (3) 

82.06±3.68 

0.0854 

 (2) 

83.30±5.60 

0.802 

 (1) 

r=0.05 
80.48±4.88 

0.0792 

 (3) 

80.40±5.72 

 0.1421 

 (4) 

82.50±3.43 

0.0874 

 (2) 

83.16±5.43 

0.0794 

 (1) 

r=0.1 
80.10±5.00 

 0.0785 

 (4) 

80.16±6.41 

0.1408 

 (3) 

81.30±3.70 

0.0892 

 (2) 

82.08±5.89 

0.0790 

 (1) 

 

Heart-C 

(303 Χ13) 

r=0 
85.51±5.35 

0.0868 

 (1.5) 

84.81±5.26 

0.1783 

 (4) 

85.12±3.96 

0.1021 

 (3) 

85.51±4.11 

0.0960 

 (1.5) 

r=0.05 
83.82±6.18 

0.0832 

 (4) 

84.65±5.65 

 0.1795 

 (2) 

84.80±4.19 

0.1038 

 (1) 

84.60±4.28 

0.0976 

 (3) 

r=0.1 
83.82±6.15 

 0.0883 

 (4) 

83.98±5.60 

0.1787 

 (2) 

83.90±4.24 

0.1034 

 (3) 

84.05±4.30 

0.0960 

 (1) 

 

WDBC 

(569 Χ 30) 

r=0 
97.18±2.13 

0.5164 

 (4) 

98.08±2.45 

1.0744 

 (1) 

97.98±3.78 

0.5484 

 (3) 

98.00±1.16 

0.3814 

 (2) 

r=0.05 
96.67±2.01 

0.4856 

 (4) 

97.78±1.69 

 1.1068 

 (3) 

97.86±3.69 

0.5130 

 (1) 

97.84±1.18 

0.4010 

 (2) 

r=0.1 
96.66±1.87 

 0.4860 

 (4) 

97.20±1.86 

1.0717 

 (3) 

97.80±3.86 

0.4923 

 (1.5) 

97.80±1.20 

0.4187 

 (1.5) 

 

Transfusion 

(748 Χ 4) 

r=0 
78.77±2.85 

0.7676 

 (4) 

79.70±2.74 

2.4669 

 (2.5) 

80.10±2.80 

0.9870 

 (1) 

79.70±2.03 

0.8975 

 (2.5) 

r=0.05 
76.63±4.18 

0.7410 

 (4) 

78.65±5.26 

 2.4828 

 (3) 

79.01±3.36 

0.9725 

 (2) 

79.40±2.25 

0.8143 

 (1) 
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r=0.1 
76.36±4.12 

0.7403 

 (4) 

77.25±3.96 

2.4632 

 (3) 

77.75±4.60 

0.9246 

 (2) 

78.15±2.67 

0.8190 

 (1) 

 

Pima Indians 

 Diabetes 

(768 Χ 8) 

r=0 
77.3±5.98 

0.5135 

 (4) 

78.52±4.54 

2.8370 

 (2) 

78.50±3.56 

1.0114 

 (3) 

78.65±5.91 

0.9103 

 (1) 

r=0.05 
76.80±5.97 

0.5145 

 (4) 

77.60±6.06 

2.4607 

 (2) 

77.50±5.99 

1.0148 

 (3) 

78.14±6.20 

0.9873 

(1) 

r=0.1 
76.35±5.31 

0.5196 

 (4) 

77.12±4.34 

2.3969 

 (2) 

77.09±4.69 

1.0135 

 (3) 

77.61±6.96 

0.9807 

 (1) 

 

German 

(1000 Χ 24) 

r=0 
76.90±5.54 

1.0861 

 (4) 

77.30±5.59 

4.1229 

 (1) 

77.10±1.86 

2.5687 

 (3) 

77.25±5.10 

2.0153 

 (2) 

r=0.05 
75.25±5.60 

1.0250 

 (4) 

76.30±5.59 

4.2436 

 (3) 

76.70±1.85 

2.6473 

 (2) 

76.80±5.20 

1.9729 

 (1) 

r=0.1 
75.16±5.98 

1.0982 

 (4) 

76.00±5.86 

4.4651 

 (3) 

76.10±1.92 

2.5989 

 (2) 

76.80±5.21 

1.9631 

 (1) 

 

QSAR 

(1055 Χ 41) 

r=0 
86.97±6.65 

1.1453 

 (4) 

88.43±2.09 

5.2027 

(3) 

89.38±9.92 

2.7243 

 (2) 

90.90±9.66 

2.0948 

 (1) 

r=0.05 
85.98±6.77 

1.2328 

 (4) 

88.06±2.77 

5.2160 

 (3) 

89.28±9.48 

2.7560 

 (2) 

90.08±9.35 

2.0655 

 (1) 

r=0.1 
85.80±7.79 

1.1062 

 (4) 

87.73±3.49 

5.2089 

 (3) 

88.34±8.33 

2.6815 

 (2) 

89.21±9.10 

2.0614 

 (1) 

   Average rank 3.6556 2.5556 2.4 1.3889 

 

Table 5.5 Average ranks on the accuracy by SVMs for Gaussian kernel on real-world datasets with 

noise level r 

Noise TPMSVM Pin-SVM Pin-TSVM L1-Pin-NPSVM 

r=0 3.4333 2.6 2.4667 1.5 

r=0.05 3.6667 2.5 2.3667 1.4667 

r=0.1 3.8667 2.5667 2.3667 1.2 

 

 As experimental results, the classification accuracy and the learning time based on 

optimal parameters for the linear and Gaussian kernels are summarized in Table 5.2 and 5.4. 

The best classification accuracy is boldfaced. We ranked the algorithms in accordance with the 

classification accuracy attained on each dataset and reported their average ranks. Note that 

smaller average rank means better prediction ability. In Table 5.2 for the linear kernel, the 

overall minimum average rank 1.5333 by the proposed L1-Pin-NPSVM indicates its superiority. 

Among the methods considered for experimental study, L1-Pin-NPSVM achieves the best 

accuracy at 7 times out of 15 datasets considered. Notice that the other two pinball based 

classifiers Pin-SVM and Pin-TSVM show comparative performance as they yield the best 
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classification accuracy in equal number of times. Again, out of 45 cases (15 datasets x 3 noise 

levels), L1-Pin-NPSVM yields the best accuracy in 30 cases. On learning time, it also compares 

well with SVM. From Table 5.3 on the average ranks for linear kernel, we can see that pinball 

based SVMs always show better accuracy performance than the hinge loss based TPSVM. At 

each level of noise, the best average rank is achieved by L1-Pin-NPSVM. In Table 5.4, the 

comparison results for Gaussian kernel are illustrated. Our L1-Pin-NPSVM formulation 

achieved the best accuracy on 8 datasets. Also, out of 45 experiments, the best accuracy was 

shown at 39 times by L1-Pin-NPSVM. Interestingly when 𝑟 = 0.05 and 𝑟 = 0.1, all the three 

pinball based SVMs show, in general, better classification accuracy than the hinge loss based 

TPMSVM.  

 From the results of Table 5.2-5.5, we have the following observations: (i). for all the 

methods, in general, better accuracy results are achieved for the Gaussian kernel than the linear 

kernel with extra learning cost; (ii). as the noise level rises, the decrease in the accuracy of each 

method indicates the effect of noise present in the data; (iii). the lowest average rank by L1-Pin-

NPSVM at all levels of noise for both the linear and Gaussian kernels indicate its superiority 

and robustness; (iv).with the increase in the level of noise, decrease in the average rank values 

for L1-Pin-NPSVM and whereas the reverse phenomena for TPSVM show the model robustness 

of L1-Pin-NPSVM to noise in the data which can be due to the use of 𝐿1 −norm; (v). higher 

learning cost by Pin-SVM is attributed to solving a large sized QPP. From the above 

observations on the results of comparison, we draw the conclusion that L1-Pin-NPSVM is a 

superior, robust method for noise and outliers. 

 To examine the efficiency performance of L1-Pin-NPSVM statistically, we calculate 

its statistical significance using the Friedman test followed by Nemenyi post-hoc test which is 

considered to be a simple, safe and robust non-parametric test (Demsar, 2006). We make the 

accuracy comparison of the algorithms on UCI datasets corrupted by different levels of noise 

whose average ranks for Gaussian kernel are displayed in Table 5.5. We perform the statistical 

test for r = 0, r = 0.05 and r = 0.1 in that order.   

 Under the null hypothesis that all the algorithms are equivalent, by taking 𝑘 = the 

number of algorithms, 𝑁 = the number of datasets and 𝑅𝑗 = the average rank of the jth 

algorithm, we compute the Friedman statistic distributed according to 𝜒𝐹
2 =

12𝑁

𝑘(𝑘+1)
[∑ 𝑅𝑗

2 −𝑘
𝑗=1

𝑘(𝑘+1)2

4
] distribution with (𝑘 − 1) degrees of freedom and a better statistic 𝐹𝐹 =

(𝑁−1)𝜒𝐹
2

𝑁(𝑘−1)−𝜒𝐹
2, 

distributed according to 𝐹 −distribution with ((𝑘 − 1), (𝑘 − 1)(𝑁 − 1)) degrees of freedom. 

Once the null hypothesis is rejected, we proceed with the Nemenyi post-hoc test and perform 

pair-wise comparison of the algorithms by computing the critical difference. For details, see 

(Demsar, 2006). 



 

115 

 From Table 5.5, we perform the Friedman test and the Nemenyi post-hoc test on the 

average ranks, assuming the null hypothesis that all four methods are similar. for  r=0 with k=4 

and N=15:  

𝜒𝐹
2 =

12 × 15

4 × 5
(3.43332 + 2. 62 + 2.46672 + 1. 52 −

4 × 52

4
) ≈ 16.9394, 

𝐹𝐹 =
14×16.9394

15×3−16.9394
≈ 8.4514, where 𝐹𝐹 is distributed according to F distribution with (3,3 ×

14) = (3,42) degrees of freedom. Since the critical value of 𝐹(3,42) at the level of significance 

𝛼 = 0.05 is 2.8270 and is such that 𝐹𝐹 > 2.8270, we reject the null hypothesis. Subsequently, 

we compare the four algorithms in pairs using Nemenyi post-hoc test. Accordingly, since 

𝑞𝛼=0.10 = 2.291 (Demsar, 2006), the critical difference (CD) at 𝑝 = 0.10 is 2.291√
4×5

6×15
≈

1.08. Further, if the average ranks of two algorithms differ at least by CD then their 

performances differ significantly. Thus, from Table 5.5, we derive the pair-wise comparison of 

L1-Pin-NPSVM with the remaining algorithms by computing the difference between their 

average ranks. For r=0, the difference between the average ranks of : (i). L1-Pin-NPSVM and 

Pin-TSVM is 2.4667 − 1.5 = 0.9667 < 1.08(𝐶𝐷), we say that the post-hoc test is not powerful 

enough to detect any significant differences between the algorithms; (ii). L1-Pin-NPSVM and 

the best of Pin-SVM and TPMSVM is 2.6 − 1.5 = 1.1 > 1.08, implies the performance of L1-

Pin-NPSVM is better than Pin-SVM and TPMSVM.  

 Similarly, to compare the significant performance difference of the algorithms 

statistically on noise corrupted datasets with r = 0.05, we calculate 𝜒𝐹
2 = 22.0245 and 𝐹𝐹 =

13.4205. Here, we see that 𝐹𝐹 > 𝐹(3,42) and hence we reject the null hypothesis. So we 

perform Nemenyi post-hoc test. From Table 5.5, the difference between the average ranks of: 

(i). the best and the worst among L1-Pin-NPSVM, Pin-TSVM and Pin-SVM are 2.5 −

1.4667 = 1.0333 < 1.08, we say that the post-hoc test is not powerful enough to detect any 

significant differences between the algorithms; (ii). TPMSVM and the worst of Pin-SVM, Pin-

TSVM and L1-Pin-NPSVM is 3.6667 − 2.5 = 1.1667 > 1.08 implies that the performance of 

TPSVM is inferior to the rest of the algorithms. 

 Finally, as a statistical comparison of algorithms, using the average ranks for datasets 

corrupted with noise level r = 0.1, we compute 𝜒𝐹
2 = 32.2253 and 𝐹𝐹 = 35.3162. Since 𝐹𝐹 >

𝐹(3,42), we reject the null hypothesis and therefore we proceed with Nemenyi post-hoc test for 

pair-wise comparison of algorithms. From Table 5.5, the difference between the average ranks 

of: L1-Pin-NPSVM and the best of the remaining algorithms is 2.3667-1.2 = 1.1667 > 1.08 

implies that L1-Pin-NPSVM performs better than the remaining algorithms. 
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 From Table 5.5 and the statistical tests considered, we observe that (i). at all levels of 

noise, the least average rank is reported by L1-Pin-NPSVM; (ii). when r = 0.1, i.e. for the 

highest level of noise considered, L1-Pin-NPSVM is the best performer among all the 

algorithms. 

 In summary, we conclude that the proposed L1-Pin-NPSVM is an efficient method 

showing enhanced classification performance and robustness in the presence of noise and 

outliers. 

5.5 Conclusions 

 With the aim of having the integrated merits of 𝐿1 −norm and pinball loss in achieving 

enhanced robustness to outliers and bringing noise insensitivity to feature noise, we presented a 

novel, efficient 𝐿1 −norm based nonparallel support vector machine classifier with pinball loss 

(L1-Pin-NPSVM) where its associated optimization problem minimizes the scatter loss and the 

misclassification error by 𝐿1 −norm and pinball loss respectively. The dual formulation of the 

proposed method solves a pair of QPPs free of inverse kernel matrices. Our formulation allows a 

unified framework for the linear and nonlinear kernels. The effectiveness of L1-Pin-NPSVM is 

evaluated on synthetic and UCI benchmark datasets having outliers and/or contaminated by 

noise. The results confirm its superiority in terms of robustness to outliers and noise 

insensitivity. In summary, we can conclude that the proposed L1-Pin-NPSVM is an efficient 

method than the other machine-learning methods for real-world problems when robustness and 

noise insensitivity is of major concern. Even though L1-Pin-NPSVM is a simple, efficient 

learning method, it loses sparsity. As future work, an efficient method of solving L1-Pin-

NPSVM for problems with large samples will be explored.  Possibility of the extension of the 

proposed method for multi-category classification will be interesting and it will be investigated 

as another future work.  

 

 

 

 

 



 

117 

Chapter 6 

 

6L1-norm Support Vector Regression in Primal Based on 

Huber Loss Function 

6.1 Introduction 

 Support vector regression (SVR) (Cristianini & Shawe-Taylor, 2000; Vapnik, 2000) 

method becomes the state of the art machine learning tool for data regression because of its 

excellent generalization performance on many real-world problems. It is well-known that the 

standard SVR determines the regressor using a predefined epsilon tube around the data points in 

which the points lying outside the tube contribute to the errors whereas the inside points are 

simply ignored. To measure the data misfit as stated, the epsilon insensitive function is 

introduced as a loss function. Construction of robust regression models for noisy data samples or 

data samples having outliers is a challenging research problem. Loss function plays an important 

role in obtaining a robust regression model. The popular loss functions used in the literature are 

the (i). quadratic; (ii). absolute value; (iii). ε-insensitive functions. The quadratic function is 

smooth but is sensitive to samples having large error of deviation. In comparison with the 

popular quadratic loss function, absolute value and ε-insensitive functions are less sensitive to 

noise but they are only continuous and therefore numerical minimization is difficult.  However, 

as a combination of robust treatment to large errors and showing quadratic treatment to small 

errors, Huber function (Huber & Ronchetti, 2009) was used in the literature to measure the data 

misfit having the smooth property that it is differentiable everywhere. 

 In this chapter, we propose a novel robust Huber SVR (HSVR) formulation in primal 

where the regressor is made as flat as possible by introducing the regularization term in L1-

norm. Since the regularization term is non-smooth, it is proposed to replace it by smooth 

approximation functions and solve the problems by functional iterative method. Tests with both 

synthetic and real-world data sets confirm the suitability and effectiveness of the proposed 

robust model. 

 This chapter is organized as follows. In section 6.2, a novel Huber SVR problem 

formulation is proposed whose solution is obtained by functional iterative method. The 

effectiveness of the proposed HSVR in comparison with SVR and LS-SVR is studied in section 

6.3. Finally, conclusions are drawn in section 6.4. 
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6.2 Proposed robust Huber SVR model via 1-norm regularization 

 Like the ε-insensitive function of Vapnik (Suykens et al., 2002) used in SVR, the Huber 

M-estimator function (Guitton & Symes, 2003) is convex and is insensitive to noise present in 

the data, i.e. robust to large error of misfit, which further shows good generalization property on 

many real-world problems of interest (Camps-Valls et. al., 2006; Gretton et. al., 2001). In this 

study, we present a regression model whose loss function is the Huber M-estimator function. 

The proposed Huber SVR model leads to solving an unconstrained minimization problem in 

primal whose solution is obtained by finding its critical point. 

  Consider the Huber function asymmetric with respect to γ defined as (Balasundaram & 

Meena, 2018;  Zhu et al., 2008) 

𝐿𝐻(𝑥) = {

−𝛾𝐿(2𝑥 + 𝛾𝐿)

𝑥2

𝑓𝑜𝑟 − ∞ < 𝑥 < −𝛾𝐿

𝑓𝑜𝑟 − 𝛾𝐿 ≤ 𝑥 < 0

𝑥2

𝛾𝑅(2𝑥 − 𝛾𝑅)

𝑓𝑜𝑟  0 ≤ 𝑥 < 𝛾𝑅

𝑓𝑜𝑟  𝛾𝑅 ≤ 𝑥 < ∞,

 (6.1) 

where 𝛾𝐿 , 𝛾𝑅 > 0 are constants. Clearly, LH (  ) is convex and it changes from quadratic to linear 

form at 𝑥 = −𝛾𝐿 and 𝑥 = 𝛾𝑅,  and , i.e. it is a hybrid function in which quadratic loss is assigned 

for small errors and linear otherwise. When 𝛾𝐿 = 𝛾𝑅 = 𝛾 in (6.1), becomes the Huber M-estimator 

(Huber & Ronchetti, 2009) 

𝐿𝐻(𝑥) = {
𝑥2 𝑖𝑓|𝑥| ≤ 𝛾

𝛾(2|𝑥| − 𝛾) 𝑖𝑓|𝑥| > 𝛾
 

 

(6.2) 

 It can be easily verified that the asymmetric Huber function (6.1) can be rewritten as 

𝐿𝐻(𝑥) = 𝑥2 − 𝑚𝑎𝑥{ (𝑥 − 𝛾𝑅),0}2 − 𝑚𝑎𝑥{ (−𝑥 − 𝛾𝐿),0}2 (6.3) 

or equivalently we have 

𝐿𝐻(𝑥) = 𝑥2 − (𝑥 − 𝛾𝑅)+
2 − (−𝑥 − 𝛾𝐿)+

2 , 

 
(6.4) 

 In this work, the equivalent form (6.4) is used for formulating our proposed Huber 

regression model with 1-norm regularization term and we solve it by functional iterative method. 

 By calculating the error of misfit via Huber function, the regression function of 𝑓(𝒙) =

𝑲(𝐱, 𝐴𝑡)𝐰 + 𝑏  is obtained by solving the minimization problem 

𝑚𝑖𝑛
𝒖∈𝑅𝑚+1

||𝒖||1 +
𝐶

2
∑ 𝐿𝐻(𝑦𝑖 −

𝑚

𝑖=1

𝑓(𝒙𝑖)), (6.5) 

where 𝒖 = [
𝒘
𝑏

] ∈ 𝑅𝑚+1is the unknown vector and 𝐶 > 0 is the regularization constant.  However, 

the identity |𝑧| = 2𝑧+ − 𝑧 holds for any 𝑧 ∈ 𝑅   implies ||𝒖||1 = 𝒆1
𝑡 (2𝒖+ − 𝒖)  will be satisfied 
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where 𝒆1  is the column vector of ones of size (m+1). Using this result, the Huber SVR in primal 

(6.5) (HSVR) can be rewritten as     

𝑚𝑖𝑛
𝒖∈𝑅𝑚+1

𝐿(𝒖) = 𝒆1
𝑡 (2𝒖+ − 𝒖) 

                   +
𝐶

2
[||𝒚 − 𝐺𝒖||2 − ||(𝒚 − 𝐺𝒖 − 𝛾𝑅𝒆)+||2 − ||(𝐺𝒖 − 𝒚 − 𝛾𝐿𝒆)+||2] 

(6.6) 

where 𝐺 = [𝐾(𝐴, 𝐴𝑡)𝒆]𝑚×(𝑚+1)            

Remark 6.1. When  𝛾𝐿 = 𝛾𝑅 = 𝛾, i.e. for the Huber M-estimator (6.2), the problem (6.6) becomes  

𝑚𝑖𝑛
𝒖∈𝑅𝑚+1

𝒆1
𝑡 (2𝒖+ − 𝒖) +

𝐶

2
[||𝒚 − 𝐺𝒖||2 − ||(𝒚 − 𝐺𝒖 − 𝛾𝒆)+||2 − ||(𝐺𝒖 − 𝒚 − 𝛾𝒆)+||2]. 

Remark 6.2. The objective function 𝐿(𝒖) is strongly convex and therefore the minimization 

problem (6.6) will have a unique minimal solution. 

 Clearly, 𝐿(𝒖) is only continuous and hence its gradient does not exist. To overcome 

the difficulty of the non-differentiability of 𝐿(𝒖), two approaches are taken in this work: (a). 

replace the non-smooth vector 𝒖+ in the regularization term 𝒆1
𝑡 (2𝒖+ − 𝒖) by two different smooth 

approximation functions; (b). application of a generalized derivative for 𝒖+.  In both approaches, 

the critical points will be computed by equating their gradients to zero.  

 Solving non-smooth mathematical programming problems, arising in machine learning 

methods, using smooth technique is very popular in the literature (Huber & Ronchetti, 2009; Lee & 

Mangasarian, 2001). In this work, it is proposed to approximate the ‘plus’ function appearing in 

the regularization term by smooth functions in two ways leading to two algorithms.  

 Consider the smooth function used in (Huber & Ronchetti, 2009) for approximating 

the ‘plus’ function: for 𝑥 ∈ 𝑅 and 𝛼 > 0, 𝑝1(𝑥, 𝛼) = ))exp(1log(
1

xx 


−++ . Taking 𝑥+ ≈

𝑝1(𝑥, 𝛼) and denoting 𝑝1(𝒖, 𝛼) = (𝑝1(𝑢1, 𝛼), . . . , 𝑝1(𝑢𝑚+1, 𝛼))𝑡 where 𝒖 = (𝑢1, . . . , 𝑢𝑚+1)𝑡, 

problem (6.6) becomes 

𝑚𝑖𝑛
𝒖∈𝑅𝑚+1

�̃�(𝒖) = 𝒆1
𝑡 (2𝑝1(𝒖, 𝛼) − 𝒖) +

𝐶

2
[||𝒚 − 𝐺𝒖||2 − ||(𝒚 − 𝐺𝒖 − 𝛾𝑅𝒆)+||2 −

||(𝐺𝒖 − 𝒚 − 𝛾𝐿𝒆)+||2]
   

 

(6.7) 

 

 By defining 
1

(𝒆1+𝑒𝑥𝑝(−𝛼𝒖))
= (

1

1+𝑒𝑥𝑝(−𝛼𝑢1)
, . . . ,

1

1+𝑒𝑥𝑝(−𝛼𝑢𝑚+1)
)

𝑡
, the critical point for 

�̃�(𝒖) can be computed by solving the root finding problem 

𝐺𝑡𝐺𝒖 =
𝒆1

𝐶
−

2

𝐶
(

1

𝒆1 + 𝑒𝑥𝑝( − 𝛼𝒖)
) + 𝐺𝑡[𝒚 + (𝐺𝒖 − 𝒚 − 𝛾𝐿𝒆)+ 

−(𝒚 − 𝐺𝒖 − 𝛾𝑅𝒆)+] 

(6.8) 
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 This leads to the iterative method of solving the smooth HSVR problem (6.8) 

(SHSVR1): for i=0,1... 

𝒖𝑖+1 = (𝐺𝑡𝐺)−1[
𝒆1

𝐶
−

2

𝐶
(

1

𝒆1 + 𝑒𝑥𝑝( − 𝛼𝒖𝑖)
) 

+𝐺𝑡[𝒚 + (𝐺𝒖𝑖 − 𝒚 − 𝛾𝐿𝒆)+ − (𝒚 − 𝐺𝒖𝑖 − 𝛾𝑅𝒆)+]] 

Remark 6.3. Following the work of (Huber & Ronchetti, 2009), numerical experiments using 

SHSVR1 were performed in section 6.3 by taking 𝛼 = 5. 

 As another smooth approximation of the ‘plus’ function, consider the quadratic 

function 𝑝2(𝑥, 𝑥0) =
𝑥2

4|𝑥0|
+

𝑥

2
+

|𝑥0|

4
 introduced in (Lee, 2001) where 𝑥, 𝑥0(≠ 0) ∈ 𝑅. Clearly,  

𝑝2(𝑥, 𝑥0) = 𝑥+ whenever 0|||| 0 = xx  (6.9) 

Replacing 𝑥+ by 𝑝2(𝑥, 𝑥0), problem (6.6) becomes  

𝑚𝑖𝑛
𝒖∈𝑅𝑚+1

�̃̃�(𝒖) = 2𝒆1
𝑡 𝑝2(𝒖, 𝒖0)

+
𝐶

2
[‖𝒚 − 𝐺𝒖‖2 − ‖(𝒚 − 𝐺𝒖 − 𝛾𝑅𝒆)+‖2 − ‖(𝐺𝒖 − 𝒚 − 𝛾𝐿𝒆)+‖2] 

(6.10) 

where 𝑝2(𝒖, 𝒖0) = (𝑝2(𝑢1, 𝑢01), . . . , 𝑝2(𝑢𝑚+1, 𝑢0,𝑚+1))𝑡 and 𝒖0 = (𝑢01, . . . , 𝑢0,𝑚+1)𝑡 is a non-

zero vector in Rm+1.  By equating the gradient of �̃̃�(𝒖) to zero, we get 

(
𝑑𝑖𝑎𝑔(|𝒖0|)−1 + 𝐺𝑡𝐺

𝐶
) 𝒖 = 𝐺𝑡[𝒚 + (𝐺𝒖 − 𝒚 − 𝛾𝐿𝒆)+ − (𝒚 − 𝐺𝒖 − 𝛾𝑅𝒆)+] (6.11) 

 This leads to the iterative method of solving the smooth HSVR problem (6.11) 

(SHSVR2): for i=0,1... 

𝒖𝑖+1 = (
𝑑𝑖𝑎𝑔(|𝒖0|)−1 + 𝐺𝑡𝐺

𝐶
)

−1

𝐺𝑡[𝒚 + (𝐺𝒖 − 𝒚 − 𝛾𝐿𝒆)+ − (𝒚 − 𝐺𝒖 − 𝛾𝑅𝒆)+] 

Remark 6.4. The solution of SHSVR2 depends on the choice of the vector 𝒖0. To make 𝑝2(𝒖, 𝒖0) 

≈ 𝒖+, the simple iterative procedure adopted in (Lee & Mangasarian, 2001) is followed in this 

work wherein the vector 𝒖0 is modified at each iteration to become closer to |𝒖| =

(|𝑢1|, . . . , |𝑢𝑚+1|)𝑡 ((Lee & Mangasarian, 2001)). 

 As the final method of solving the HSVR problem (6.6), the approach on the 

application of a generalized derivative (Fung, 2003) for the non-smooth ‘plus’ function will be 

considered.  

 Taking the left-hand side derivative as a generalized derivative and hence 

)( +
+ = xsign

dx

dx
, a generalized gradient of )(uL  denoted by )(uL can be obtained as  
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𝜕𝐿(𝒖) = 2𝑠𝑖𝑔𝑛(𝒖+) − 𝒆1 + 𝐶𝐺𝑡[𝐺𝒖 − (𝒚 + (𝐺𝒖 − 𝒚 − 𝛾𝐿𝒆)+ − (𝒚 − 𝐺𝒖

− 𝛾𝑅𝒆)+)] 
(6.12) 

where 𝑠𝑖𝑔𝑛(𝒖+) is a vector in 𝑅(𝑚+1) whose ith component is 𝑠𝑖𝑔𝑛(𝑢𝑖+). It is easy to verify that 

finding the critical point of 𝐿(𝒖) using the generalized gradient (6.12) simplifies in to solving  

𝐺𝑡𝐺𝒖 =
𝒆1 − 2𝑠𝑖𝑔𝑛(𝒖+)

𝐶
+ 𝐺𝑡[𝒚 + (𝐺𝒖 − 𝒚 − 𝛾𝐿𝒆)+ − (𝒚 − 𝐺𝒖 − 𝛾𝑅𝒆)+)] (6.13) 

 This suggests that the iterative method of solving HSVR by generalized derivative 

(GHSVR) problem (6.13) is: for i=0,1,… 

𝒖𝑖+1 = (𝐺𝑡𝐺)−1[
𝒆1 − 2𝑠𝑖𝑔𝑛(𝒖+

𝑖 )

𝐶
+ 𝐺𝑡[𝒚 + (𝐺𝒖𝑖 − 𝒚 − 𝛾𝐿𝒆)+ − (𝒚 − 𝐺𝒖𝑖 − 𝛾𝑅𝒆)+)]] 

6.3 Experimental Results 

 In this section, we perform numerical experiments on a number of synthetic and real-

world data sets and investigate the effectiveness of our proposed methods by comparing their resu-           

lts with SVR and LS-SVR.  

 All the algorithms considered were implemented in MATLAB R2008b running on a 

PC having 8 GB of RAM with Windows 7 OS and a 64 bit, 3.20 GHz Intel(R) CoreTM i5-3470 

processor. For SVR, we used the MOSEK optimization tools for MATLAB available at 

http://www.mosek.com. The Gaussian kernel of the form: 𝑘(𝒙, 𝒛) = 𝑒𝑥𝑝( − 𝜇||𝒙 − 𝒛||2) is taken, 

where 𝜇 > 0 is the kernel parameter. For evaluating the test accuracy, the 2-norm root mean 

square error (RMSE) is chosen. For the termination of the training of the algorithms, i.e., 

SHSVR1, SHSVR2 and GHSVR, the maximum number of iterations and the minimum learning 

accuracy were taken as 20 and 10−4 respectively. The values of the regularization parameter 𝐶 

and the kernel parameter 𝜇 were selected from the sets {10−5, 10−4, . . . ,105} and 

{2−5, 2−4, . . . , 25} respectively. 𝜀𝐿 , 𝜀𝑅 were chosen from {0.001, 0.01, 0.1} and however, following 

(Balasundaram & Meena, 2018) 𝛾𝐿 , 𝛾𝑅 were selected from {0.1, 1.0, 1.345}. All the parameters 

were obtained by employing 10-fold cross-validation procedure. Using these values, the RMSE on 

the test data set was calculated.  

6.3.1 Synthetic Datasets 

 In order to test the robustness of the proposed methods, experiments were conducted 

on synthetic data sets generated by functions whose outputs corresponding to the training samples 

were polluted by adding noise drawn from either a uniform or a Gaussian distribution, and their 

effects in terms of test accuracy were investigated.  

 Let represent the uniform probability distribution in the interval and let the Gaussian 

distribution with mean value and standard deviation equals to be denoted by. For our experimental 

http://www.mosek.com/
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study, we generated five data sets using functions having 200 training and 1000 test samples and 

were selected randomly by uniform distribution. For each function, the observed value 

corresponding to the training sample was taken to be: and where is drawn uniformly from the 

domain of definition of and is the noise. 1000 test samples were randomly chosen, however, free 

of noise. In Table 6.1, we have listed the functions used for generating the data sets and the type of 

additive noise applied. 

 To avoid biased comparisons, noisy samples were randomly generated ten times and 

their averaged accuracies on the test data sets were listed in Table 6.2 and Table 6.3 for linear and 

Gaussian kernel respectively. It can be observed from the results that good generalization is 

achieved by the proposed methods. This suggests the suitability and usefulness of the proposed 

Huber SVR via 1-norm regularization.  

Table 6.1 List of functions used for generating data sets and the details of additive noise 

Name Function definition Domain of 

definition 

Details of 

additive 

noise 

Function1 0.02(12 + 3𝑥 − 3.5𝑥2 + 7.2𝑥3) 

(1 + 𝑐𝑜𝑠4𝜋𝑥) (1 + 0.8𝑠𝑖𝑛3𝜋𝑥) 

𝑥 ∈ [0,1] 𝑈[−0.25, 0.25] 

Function2 40𝑒8{(𝑥1−0.5)2+(𝑥2−0.5)2}

𝑒{8(𝑥1−0.2)2+(𝑥2−0.7)2} + 𝑒{8(𝑥1−0.7)2+(𝑥2−0.2)2}
 

𝑥1, 𝑥2 ∈ [0,1] 𝑈[−0.2, 0.2] 

Function3 sin √𝑥1
2 + 𝑥2

2

√𝑥1
2 + 𝑥2

2
 

𝑥1, 𝑥2

∈ [−4𝜋, 4𝜋] 

𝑁[0, 0.12] 

Function4 1.3356(𝑒(3(𝑥2−0.5)) sin(4𝜋(𝑥2 − 0.9)2)

+ 1.5  (1 − 𝑥1)

+ 𝑒(2𝑥1−1) sin(4𝜋(𝑥1 − 6)2)) 

𝑥1, 𝑥2 ∈ [−0.5,0.5] 𝑁[0, 52] 

Function5 
𝑡𝑎𝑛−1 [

𝑥2𝑥3

𝑥1

−
1

𝑥2𝑥4

] 
𝑥1 ∈ [0,100] 

𝑥2 ∈ [40𝜋, 560𝜋] 

𝑥3 ∈ [0,1] 

𝑥4 ∈ [1,11] 

𝑁[0, 0.1] 

 

Table 6.2 Comparison of the results of SHSVR1, SHSVR2 and GHSVR with SVR and LS-SVR 

on synthetic data sets for Linear kernel. The best result is shown in bold type. 

Dataset 

(Train Size, Test 

Size) 

SVR 

RMSE 

( ),C  

LS-SVR 

RMSE 

( )C  

SHSVR1 

RMSE 

( )RLC  ,,  

SHSVR2 

RMSE 

( )RLC  ,,  

GHSVR 

RMSE 

( )RLC  ,,  

Function1 

(200×1,1000×1) 

0.2931 

(10-3,10-5) 

0.2988 

(10-1) 

0.2982 

(103, 1,1) 

0.2981 

(100, 1,1) 

0.2982 

(105, 1,1) 

Function2 0.1192 0.1172 0.1172 0.1174 0.1174 
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(200×2,1000×2) (100,10-1) (100) (103, 1,1) (100, 1,1) (101, 1,1) 

Function3 

(200×2,1000×2) 

0.1171 

(100,10-1) 

0.1159 

(101) 

0.1162 

(101, 1,1) 

0.1167 

(100, 1,1) 

0.1164 

(101, 1,1) 

Function4 

(200×2,1000×2) 

0.3514 

(10-5,10-1) 

0.3447 

(100) 

0.3446 

(103, 1,1) 

0.3446 

(105, 1,1) 

0.3446 

(101, 1,1) 

Function5 

(200×4,1000×4) 

0.0968 

(10-1,10-1) 

0.0962 

(105) 

0.0962 

(100, 1,1) 

0.0962 

(105, 1,1) 

0.0962 

(105, 1,1) 

 

Table 6.3 Comparison of the results of SHSVR1, SHSVR2 and GHSVR with SVR and LS-SVR 

on synthetic data sets for Gaussian kernel. The best result is shown in bold type. 

Dataset 

(Train Size, 

Test Size) 

SVR 

RMSE 

(𝐶, 𝜇, 𝜀) 

LS-SVR 

RMSE 

(𝐶, 𝜇) 

SHSVR1 

RMSE 

(𝐶, 𝜇, 𝛾
𝐿
, 𝛾

𝑅
) 

SHSVR2 

RMSE 

(𝐶, 𝜇, 𝛾
𝐿
, 𝛾

𝑅
) 

GHSVR 

RMSE 

(𝐶, 𝜇, 𝛾
𝐿
, 𝛾

𝑅
) 

Function1 

(200×1, 

1000×1) 

0.1405 

(105,24,10-1) 

0.1391 

(105,24) 

0.1390 

(104, 25,1,1) 

0.1388 

(105, 25,1,1) 

0.1389 

(104, 25,1,1) 

Function2 

(200×2, 

1000×2) 

0.1126 

(105,2-2,10-3) 

0.1126 

(105,20) 

0.1125 

(104, 21,0.1,0.1) 

0.1126 

(105, 25,0.1,1) 

0.1125 

(105,24,0.1,0.1) 

Function3 

(200×2, 

1000×2) 

0.1957 

(102,23,10-3) 

0.2044 

(102,23) 

0.1955 

(105,23,0.1,0.1) 

0.2025 

(102,24,0.1,0.1) 

0.1955 

(105,23,0.1,0.1) 

Function4 

(200×2, 

1000×2) 

0.1107 

(100,25,10-3) 

0.1115 

(101,25) 

0.1093 

(105,22,0.1,0.1) 

0.1097 

(102,24,0.1,0.1) 

0.1092 

(104,22,0.1,0.1) 

Function5 

(200×4, 

1000×4) 

0.0003 

(101,21,10-3) 

0.0003 

(104,21) 

0.0003 

(105, 20,0.1,1) 

0.0003 

(105,21,0.1,0.1) 

0.0004 

(105,25,0.1,0.1) 

6.3.2 Real World Benchmark Datasets 

 For further analysis, we performed experiments on eleven benchmark real-world data 

sets: They are Auto price, Fertility, Triazines,  Boston housing data sets from UCI repository at 

http://www.ics.uci.edu/~mlearn; Hydraulic actuator data set (Fung & Mangasarian, 2003); 

Pollution, Balloon, Quake data sets from Statlib collection http://lib.stat.cmu.edu/datasets; 

Demo data set from http://www.toronto.edu/~delve/data and also the financial data sets IBM, 

Intel from http://finance.yahoo.com. From the 755 closing prices considered from 01-01-2006 to 

31-12-2008 for the financial data sets and using window size equals to five, 750 samples were 

obtained.  

http://www.ics.uci.edu/~mlearn
http://lib.stat.cmu.edu/datasets
http://www.toronto.edu/~delve/data
http://finance.yahoo.com/
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 For each data set, as preprocessing, normalization is performed on the value of each 

attribute of a sample so that it lies in the interval (0,1). By randomly dividing the whole data set 

into 10 equal parts, and taking one of them for testing and the remaining parts for training, test 

accuracy in terms of RMSE is computed. Finally, the averaged RMSE and the standard 

deviation of the test accuracies are tabulated. 

  The hydraulic actuator dataset (Fung & Mangasarian, 2003) used for nonlinear system 

identification, consists of 1024 pair of values (𝑢(𝑡), 𝑦(𝑡)) where 𝑢(𝑡) is the size of the valve 

through which oil flows into the actuator and 𝑦(𝑡) is the oil pressure. Taking 𝒙(𝑡) = (𝑦(𝑡 −

1), 𝑦(𝑡 − 2), 𝑦(𝑡 − 3), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2))𝑡
 
(Fung, 2003) whose output is 𝑦(𝑡), one can get 

1021 samples of the form: (𝒙(𝑡), 𝑦(𝑡)).
 

 As examples, the accuracy and the prediction error plots for Hydraulic actuator and 

Auto price data set for linear and Gaussian kernals are illustrated in Figure 6.1 to Figure 6.8.  

Table 6.4 and Table 6.5 show the results of comparison on the performance for the proposed 

algorithms with SVR and LS-SVR in terms of test accuracy along with the optimal parameter 

values and the learning time using Linear and Gaussian kernel respectively. From the figures 

and table, it can be observed that the proposed algorithms show comparable generalization 

performance in terms of test accuracy. 

 

Figure 6.1  Prediction plots for Hydraulic actuator dataset for Linear kernel. 
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Figure 6.2 Prediction plots for Hydraulic actuator dataset for Gaussian kernel. 

  

 

Figure 6.3 Prediction error plots for Hydraulic actuator dataset for Linear kernel. 
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Figure 6.4 Prediction error plots for Hydraulic actuator dataset for Gaussian kernel. 

 

Figure 6.5 Prediction plots for auto price dataset for Linear kernel. 
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Figure 6.6 Prediction plots for auto price dataset for Gaussian kernel. 

 

Figure 6.7 Prediction error plots for auto price dataset for Linear kernel 
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Figure 6.8 Prediction error plots for auto_price dataset for Gaussian kernel 

 

Figure 6.9 Prediction error plots for Function1 where Uniform noise was employed 
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Figure 6.10 Prediction error plots for Function1 where Gaussian noise was employed 

Table 6.4 Comparison of the results of SHSVR1, SHSVR2 and GHSVR with SVR and LS-SVR 

and the average ranks of the results on real world data sets. Test accuracy was calculated using 

RMSE. Linear kernel is used. The best result is shown in bold type. 

Dataset 

(Size) 

SVR 

RMSE 

( ),C
 

LS-SVR 

RMSE 

( )C
 

SHSVR1 

RMSE 

( )RLC  ,,
 

SHSVR2 

RMSE 

( )RLC  ,,
 

GHSVR 

RMSE 

( )RLC  ,,
 

Hydraulic 

actuator 

(10215) 

0.0130±0.0052 

(101,10-2) 

0.0129±0.0054 

(105) 

0.0129±0.0054 

(105,1,0.1) 

0.0129±0.0054 

(105,0.1,0.1) 

0.0129±0.0054 

(104,0.1,0.1) 

Auto_price 

(15915) 

0.0900±0.0395 

(10-1,10-3) 

0.0935±0.0362 

(100) 

0.1013±0.0491 

(103,1,0.1) 

0.0951±0.0393 

(101,1,0.1) 

0.1015±0.0438 

(103,1,1) 

Fertility 

(999) 

0.2792±0.2155 

(100, 10-3) 

0.2991±0.1446 

(10-2) 

0.2812±0.2033 

(105,0.1,1) 

0.2811±0.2041 

(101,0.1,1) 

0.2813±0.2033 

(105,0.1,0.1) 

Pollution 

(6015) 

0.1167±0.0350 

(100,10-1) 

0.1214±0.0404 

(100) 

0.1293±0.0477 

(105,1,0.1) 

0.1206±0.0331 

(101,1,0.1) 

0.1293±0.0477 

(105,1,0.1) 

Quake 

(21783) 

0.1807±0.0181 

(105, 10-3) 

0.1714±0.0132 

(10-1) 

0.1714±0.0132 

(104,1,1) 

0.1714±0.0132 

(101,1,1) 

0.1714±0.0132 

(105,1,1) 
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Balloon 

(20011) 

0.0634±0.0167 

(103, 10-2) 

0.0534±0.0255 

(105) 

0.0501±0.0217 

(10-1,1,0.1) 

0.0529±0.0259 

(105,1,0.1) 

0.0454±0.0175 

(10-1,01,0.1) 

Servo 

(1674) 

0.1612±0.0379 

(102,10-1) 

0.1600±0.0314 

(101) 

0.1600±0.0315 

(102,1,1) 

0.1600±0.0314 

(102,1,1) 

0.1601±0.0314 

(102,1,1) 

Demo 

(20184) 

0.1024±0.0119 

(103, 10-3) 

0.0999±0.0119 

(103, 10-3) 

0.0999±0.0106 

(103,1,1) 

0.0999±0.0106 

(101,1,1) 

0.0999±0.0106 

(101,1,1) 

Triazines 

(18658) 

0.1715±0.0547 

(10-1, 10-3) 

0.1722±0.0500 

(10-1) 

0.1934±0.0407 

(105,1,1) 

0.1705±0.0569 

(101,0.1,0.1) 

0.1932±0.0404 

(104,1,1) 

Boston 

housing 

(50613) 

0.1090±0.0651 

(100,10-2) 

0.1061±0.0235 

(100) 

0.1102±0.0677 

(104,0.1,0.1) 

0.1091±0.0617 

(101,0.1,0.1) 

0.1051±0.0853 

(100,1,0.1) 

Sunspots 

(2905) 

0.0874±0.0282 

(101,10-3) 

0.0874±0.0230 

(103) 

0.0868±0.0255 

(103,0.1,0.1) 

0.0869±0.0255 

(105,0.1,0.1) 

0.0869±0.0255 

(105,0.1,0.1) 

IBM 

(7505) 

0.0240±0.0132 

(101,10-2) 

0.0240±0.0131 

(102) 

0.0247±0.0131 

(104,0.1,0.1) 

0.0240±0.0131 

(103,0.1,0.1) 

0.0240±0.0131 

(105,0.1,0.1) 

Intel 

(7505) 

0.0285±0.0097 

(100,10-2) 

0.0286±0.0098 

(102) 

0.0286±0.0098 

(105,0.1,0.1) 

0.0286±0.0098 

(105,0.1,0.1) 

0.0286±0.0098 

(105,0.1,0.1) 

Citigroup 

(7505) 

0.0138±0.0057 

(102,10-3) 

0.0138±0.0057 

(103) 

0.0138±0.0057 

(105,0.1,0.1) 

0.0138±0.0057 

(105,0.1,1) 

0.0138±0.0057 

(104,0.1,1) 

 

Table 6.5 Comparison of the results of SHSVR1, SHSVR2 and GHSVR with SVR and LS-SVR 

on real world data sets. Test accuracy was calculated using RMSE. Gaussian kernel is used. The 

best result is shown in bold type. 

Dataset 

(Size) 

SVR 

RMSE 

( ),,C  

LS-SVR 

RMSE 

( ),C  

SHSVR1 

RMSE 

( )RLC  ,,,  

SHSVR2 

RMSE 

( )RLC  ,,,  

GHSVR 

RMSE

( )RLC  ,,,  

Hydraulicactuator 

(10215) 

0.0117±0.0051 

(101,21,10-3) 

0.0112±0.0046 

(102, 22) 

0.0113±0.0046 

(105,21,0.1,1) 

0.0113±0.0046 

(104,22,0.1,0.1) 

0.0112±0.0047 

(105,21,0.1,1) 
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Auto_price 

(15915) 

0.0850±0.0394 

(101,2-4,10-2) 

0.0897±0.0366 

(101, 2-4) 

0.0920±0.0413 

(105,2-5,1,0.1) 

0.0840±0.0338 

(102,2-5,1,0.1) 

0.0920±0.0413 

(105,2-5,1,0.1) 

Fertility 

(999) 

0.2805±0.2111 

(100,2-5,10-2) 

0.2938±0.1408 

(10-1, 20) 

0.2797±0.1944 

(104,2-5,0.1,1) 

0.2654±0.1973 

(101,22,0.1,0.1) 

0.2800±0.1941 

(104,2-5,0.1,1) 

Pollution 

(6015) 

0.1108±0.0352 

(100,2-3,10-2) 

0.1155±0.0395 

(101, 2-2) 

0.1194±0.0355 

(104,2-5,1,0.1) 

0.1074±0.0329 

(102,2-3,1,0.1) 

0.1211±0.0349 

(104,2-5,1,0.1) 

Quake 

   (21783) 

0.1759±0.0143 

(101,21,10-1) 

0.1714±0.0132 

(10-1, 20) 

0.1715±0.0131 

(105,2-3,1,1) 

0.1714±0.0124 

(100,25,1,1) 

0.1715±0.0131 

(105,2-3,1,1) 

Balloon 

(20011) 

0.0430±0.0273 

(100,20,10-1) 

0.0459±0.0235 

(101, 20) 

0.0458±0.0233 

(104,2-2,1,1) 

0.0453±0.0240 

(101,21,1,0.1) 

0.0459±0.0232 

(104,2-2,1,1) 

Servo 

(1674) 

0.0779±0.0506 

(102,2-1,10-3) 

0.0815±0.0238 

(103, 21) 

0.0810±0.0422 

(105,2-1,1,0.1) 

0.0811±0.0422 

(105,2-1,1,0.1) 

0.0811±0.0422 

(105,2-1,1,0.1) 

Demo 

  (20184) 

0.0886±0.0097 

(100,24,10-2) 

0.0854±0.0093 

(100, 24) 

0.0885±0.0088 

(104,20,1,1) 

0.0861±0.0093 

(101,25,1,1) 

0.0885±0.0088 

(104,20,1,1) 

Triazines 

(18658) 

0.1736±0.0516 

(102,2-5,10-3) 

0.1635±0.0561 

(101, 2-3) 

0.1672±0.0548 

(105,2-5,0.1,1) 

0.1644±0.0583 

(103,2-4,0.1,1) 

0.1672±0.0548 

(105,2-5,0.1,1) 

Boston housing 

(506 Χ 13) 

0.0874±0.0567 

(102,2-5,10-2) 

0.0877±0.0532 

(102, 2-4) 

0.0855±0.0580 

(105,2-5,1,0.1) 

0.0833±0.0509 

(103,2-3,0.1,0.1) 

0.0854±0.0581 

(105,2-5,1,0.1) 

Sunspots 

(2905) 

0.0722±0.0147 

(101,2-1,10-2) 

0.0708±0.0137 

(101, 22) 

0.0721±0.0123 

(104,2-1,0.1,0.1) 

0.0711±0.0109 

(103,21,1,1) 

0.0721±0.0131 

(104,2-1,1,0.1) 

IBM 

(7505) 

0.0241±0.0132 

(102,2-5,10-2) 

0.0242±0.0129 

(104, 2-5) 

0.0242±0.0130 

(105,2-3,0.1,0.1) 

0.0241±0.0130 

(105,2-3,0.1,0.1) 

0.0241±0.0130 

(105,2-3,0.1,0.1) 

Intel 

(7505) 

0.0285±0.0095 

(102,2-5,10-3) 

0.0287±0.0098 

(103, 2-5) 

0.0285±0.0090 

(105,2-1,0.1,0.1) 

0.0285±0.0090 

(105,2-1,0.1,1) 

0.0285±0.0092 

(105,2-2,0.1,0.1) 

Citigroup 0.0139±0.0059 0.0139±0.0059 0.0138±0.0060 0.0139±0.0062 0.0138±0.0058 



 

132 

(7505) (101,2-2,10-3) (105, 2-4) (105,2-3,0.1,0.1) (105,2-2,0.1,1) (105,2-3,0.1,0.1) 

 

Table 6.6 Average ranks of SVR, LS-SVR, SHSVR1and SHSVR2 with linear kernel.  

Dataset SVR LS-SVR SHSVR1 SHSVR2 GHSVR 

Hydraulic 

actuator 
5 2.5 2.5 2.5 2.5 

Auto_price 1 2 4 3 5 

Fertility 1 5 3 2 4 

Pollution 1 3 4.5 2 4.5 

Quake 5 2.5 2.5 2.5 2.5 

Balloon 5 4 2 3 1 

Servo 5 2 2 2 4 

Demo 5 2.5 2.5 2.5 2.5 

Triazines 2 3 5 1 4 

Boston 

housing 
3 2 5 4 1 

Sunspots 4.5 4.5 1 2.5 2.5 

IBM 2.5 5 2.5 2.5 2.5 

Intel 5 2.5 2.5 2.5 2.5 

Citigroup 3 3 3 3 3 

Average rank 3.4285 3.1071 3 2.5 2.9642 

 

Table 6.7 Average ranks of SVR, LS-SVR, SHSVR1and SHSVR2 with Gaussian kernel.  

Dataset SVR LS-SVR SHSVR2 SHSVR2 GHSVR 

Hydraulic 

actuator 
5 1.5 3.5 3.5 1.5 

Auto_price 2 3 4 1 4 

Fertility 4 5 2 1 3 
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Pollution 2 3 4 1 5 

Quake 5 1.5 3.5 1.5 3.5 

Balloon 1 4.5 3 2 4.5 

Servo 1 5 2 3.5 3.5 

Demo 5 1 2.5 4 2.5 

Triazines 5 1 3.5 2 3.5 

Boston 

housing 
4 5 3 1 2 

Sunspots 5 1 3.5 2 3.5 

IBM 2 4.5 4.5 2 2 

Intel 2.5 5 2.5 2.5 2.5 

Citigroup 4 4 1.5 4 1.5 

Average rank 3.3928 3.2142 3.0714 2.2142 3.0357 

 

To analyze statistically the performance of the five algorithms considered, we apply the Friedman 

test and, if necessary, its corresponding post hoc tests. For this purpose, we ranked the algorithms 

for each data set separately and reported their average ranks, in Table 6.7. Among the average 

rank, the minimum is shown by SHVR2 clearly indicates its superiority. Under the null-hypothesis 

that all the algorithms are equivalent, we compute the Friedman statistic on 11 real-world data sets 

of Table 6.4 

𝜒𝐹
2 =

12 × 11

5 × 6
[3.40912 + 3.18182 + 3.40912 + 1.77272 + 3.22732 −

5 × 62

4
] ≅ 8.4740 

𝐹𝐹 =
10 × 8.4740

11 × 4 − 8.4740
≅ 2.3853 

 Here 𝐹𝐹 is the F-distribution with (4,4 × 10) = (4,40) degrees of freedom. From 

statistical table, the critical value of 𝐹(4,40) for the level of significance 𝛼 = 0.05 is 2.6060. 

Since the computed 𝐹𝐹 value, i.e. 2.3853, is smaller than 2.6060 and hence we conclude that 

there is no significant difference between the five algorithms.  

6.4 Conclusions 

 Although the error of misfit measured using the epsilon insensitive function of Vapnik 

(Vapnik, 2000) leads to robust regression model, this function is only continuous and therefore 

the application of popular numerical minimization methods of solving is difficult. In this 

chapter, Huber function is used as the error function to measure the data misfit having both the 

robustness and differentiability properties. Our proposed formulation leads to solving an 
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optimization problem whose solution was obtained by functional iterative methods. Tests with 

both synthetic and real-world data sets confirm the suitability and applicability of our proposed 

robust model. 
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Chapter 7 
 

7Contribution and Future Work 

7.1 The Thesis's Contribution 

 In this thesis, we have studied the design and analysis of algorithms for nonparallel SVM 

with pinball loss function for pattern classification and Huber loss function based SVM for data 

regression problems, with the goal of achieving comparable or better generalization 

performance for noise corrupted datasets while improving computational efficiency over other 

state-of-the-art SVM solvers.  

 In chapter 3, we presented a robust twin bounded support vector machine with pinball 

loss (Pin-TBSVM) for datasets polluted by feature noise. Pin-TBSVM is a non-parallel classifier 

where kernel generated surfaces were determined as the solutions of quadratic programming 

problems. Experimental results on several benchmark datasets show that the proposed method 

achieves improved accuracy performance than the popular traditional methods. Though Pin-

TBSVM is a simple and efficient learning method, it loses sparsity. An increase in the number 

of parameters is a concern and the selection of their optimal values is a practical problem that 

needs attention. The proposed method’s application to multi-category classification problems is 

interesting and worth investigating. 

   The next work presents a −1L norm based twin bounded support vector machine with 

pinball loss for data categorization with the goal of obtaining an efficient robust learning model. 

Besides the benefit of less sensitivity to noise property of pinball loss, with the application of 

−1L norm for within-class scatter minimization, the proposed method also enjoys robustness to 

outliers. As a novel approach of solving, by a simple reformulation of the primal problem 

considered, an equivalent pair of dual QPPs in m variables only is derived (L1-Pin-TBSVM), 

where m is the number of training vectors. In comparison with the twin bounded support vector 

machine (TBSVM), the duals of our proposed L1-Pin-TBSVM are free of inverse matrices and 

the non-linear duals can be obtained from their linear formulations directly by applying the 

kernel trick. Experiments on Crossplanes dataset where two or four outliers were introduced 

show that the proposed L1-Pin-TBSVM outperforms the other SVM methods in terms of 

accuracy, confirming its robustness to outliers. In addition, experimental results on a two-moon 

synthetic dataset and several benchmark datasets with different levels of noise clearly 



 

136 

demonstrate improved generalization ability of L1-Pin-TBSVM at comparable training cost 

which further confirms its effectiveness and suitability where robustness is a problem of major 

concern. Though L1-Pin-TBSVM is a simple, efficient learning method, it loses sparsity. An 

increase in the number of parameters in our L1-Pin-TBSVM is also a concern as the selection of 

their optimal values is a practical problem that needs attention. As a future research, application 

of optimization methods for large scale datasets like sequential minimal optimization (SMO), 

dual coordinate descent (DCD) and successive over-relaxation (SOR) is an important practical 

problem worthy of consideration. Extension to semi-supervised learning is interesting and will 

be investigated in our future work. 

 In chapter 5, with the aim of having the integrated merits of −1L norm and pinball loss 

in achieving enhanced robustness to outliers and bringing noise insensitivity to feature noise, we 

presented a novel, efficient −1L norm based non-parallel support vector machine classifier with 

pinball loss (L1-Pin-NPSVM) where its associated optimization problem minimizes the scatter 

loss and the misclassification error by −1L norm and pinball loss respectively. The dual 

formulation of the proposed method solves a pair of QPPs free of inverse kernel matrices. Our 

formulation allows a unified framework for the linear and nonlinear kernels. The effectiveness 

of L1-Pin-NPSVM is evaluated on synthetic and UCI benchmark datasets having outliers and/or 

being contaminated by noise. The results confirm its superiority in terms of robustness to 

outliers and noise insensitivity. In summary, we can conclude that the proposed L1-Pin-NPSVM 

is an efficient method than the other machine-learning methods for real-world problems when 

robustness and noise insensitivity is of major concern. Even though L1-Pin-NPSVM is a simple, 

efficient learning method, it loses sparsity. As a future work, an efficient method of solving L1-

Pin-NPSVM for problems with large samples will be explored.  The possibility of the proposed 

method’s application for multi-category classification will be interesting and it will be 

investigated as another future work.  

 In chapter 6, we proposed a novel robust Huber SVR (HSVR) formulation in primal 

where the regressor is made as flat as possible by introducing the regularization term in L1-

norm. Since the regularization term is non-smooth, it is proposed to replace it with smooth 

approximation functions and solve the problems by functional iterative method. Tests with both 

synthetic and real-world datasets confirm the suitability and effectiveness of the proposed robust 

model. 

7.2 Extensions and Future Work 

 We identify the following apparent extensions and future study directions as a result of 

the work presented in this thesis. 
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• This thesis created robust regression models based on the Huber loss function. 

Nonconvex loss functions have received greater attention in recent years due to their 

relative advantage over convex loss functions in terms of generalization performance and 

robustness (Colobrot et al., 2006). Extending these models with a truncated Huber loss 

function will be interesting (Zhao & Sun, 2010). 

• The proposed Pin-TBSVM method’s application to multi-category classification 

problems is interesting and worth investigating. 

• As future research of L1-Pin-TBSVM, application of optimization methods for large 

scale datasets like sequential minimal optimization (SMO), dual coordinate descent 

(DCD) and successive over-relaxation (SOR) is an important practical problem worthy of 

consideration. Extension to semi-supervised learning is interesting and will be 

investigated in our future work. 

• In future work, an efficient method of solving L1-Pin-NPSVM for problems with large 

samples will be explored.  The possibility of the extension of the proposed method for 

multi-category classification will be interesting and it will be investigated as another 

future work. 

• Learning algorithms for large data is a difficult problem to solve. Future studies could 

include extending the presented solutions to challenges with extremely big datasets. 
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