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Abstract

The chemical composition of the inner core of the Earth is not under-

stood with clarity – except for the fact that it is largely iron. Strong

constraints are placed on the possible answers by the Preliminary Ref-

erence Earth Model (PREM) . This spherically symmetric model is

constructed by inverting a large amount of data including those on the

mass, the moment of inertia, the normal modes of elastic vibration of

the Earth and the travel time records of a very large number of seismic

events . It provides the values of density, pressure and compressional

(P-wave) and shear (S-wave) wave speeds at various distances from the

centre of the Earth. In particular it provides the relationship between

the two elastic wave speeds and the density in the inner core region.

Any proposal regarding the inner core composition must satisfy this

constraint. It is presently not possible to reproduce the thermody-

namic conditions of the inner core region in a laboratory experiment

and hence there is no way of directly checking if the aforementioned

elastic wave speed versus density relationship is satisfied by any par-

ticular proposal regarding the inner core composition. What is done

in practice is to perform the measurements at the relatively low den-

sities presently achievable in the laboratory and then to extrapolate

the data to the range of densities in the inner core region predicated

by the PREM. The formula used for this extrapolation is known as

the Birch’s law that postulates that the relationship between the elas-

tic wave speed and the density is linear. However, this law has never

been tested precisely since the data on elastic wave speeds from ex-

periments usually have too much scatter around the best linear fit.

In this thesis we propose a modified form of the Birch’s law by mak-

ing use of some scaling properties of crystalline vibrational spectra at



high pressure. According to this modified version it is the product of

the elastic wave speed and the density raised to the power one-third

that should be a linear function of density. We compare the relative

accuracies of the original and the modified versions of the Birch’s law

by designing a suitable metric for this purpose and by making use

of some existing data, both experimental and computational, and a

large volume of new high precision computational data generated by

us via the application of the density functional theory of electronic

structure calculation. Our calculations are done for a large number of

systems at zero temperature and for a somewhat smaller number of

systems at finite temperatures. The conclusion of our analysis is that

while the original Birch’s law is satisfied fairly well our modified ver-

sion does consistently better and provides a more accurate description

of the speed-density relationship. This should make possible a more

reliable extrapolation of the low density elastic wave speed data into

the domain of the much higher densities relevant to the inner core

region.
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Chapter 1

Introduction

1.1 Introduction

What is the chemical composition of the inner core of the Earth? This issue is

far from being resolved despite decades of research in this field [1-3]. Apart from

the fact that it is largely iron there is no clear convergence of opinion on what

the remaining elements might be or in what form and structure do the various

elements coexist. Since direct access is not possible one necessarily has to depend

on all the pieces of reasonably precise quantitative information that are available

and are relevant to the problem. To this category belongs the Preliminary Refer-

ence Earth Model (PREM) [4]. This is a spherically symmetric model of various

physical parameters such as density, elastic properties, pressure etc. of the Earth.

It has been constructed by inverting a vast amount of information such as the

mass, the moment of inertia and the normal modes of the Earth as well as the

travel time records of a very large number of seismic events propagating through

the Earth. Of particular interest in the present context are the aspects of pres-

sure, density and the speeds of the compressional (P-wave) and shear (S-wave)

waves as prescribed by this model. Figures 1.1 through 1.3 provide a summary

of this data over the inner core and the molten outer core region of the Earth

(in these three figures the vertical dashed lines represent the boundary between

the inner core region and the outer core region). Figures 1.1 and 1.2 show the

variation of the pressure and the density with radial distance from the centre of

the Earth. Figure 1.3 shows the variation of the P-wave and S-wave speeds. The
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1.1 Introduction

discontinuity in density and the P-wave speed at the boundary of the inner and

outer cores may be noted. S-waves do not propagate through the molten outer

core. However, a P-wave incident at an angle upon the boundary between the

inner and outer cores will give rise to a S-wave component that travels through

the inner core. Thus the speed of S-waves in the inner core is also a physical

quantity of interest and is shown in figure 1.3.
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Figure 1.1: Pressure (P ) is shown as a function of the distance (r) from the centre of the Earth.

We can combine the information available in the figures 1.2 and 1.3 regarding

the density and the P-wave speed in the inner core region. Figure 1.4 summarizes

this information by way of plotting the P-wave speed as a function of the density.

Although the information regarding the radial distance is lost it retains the key

elastic and thermodynamic components and this figure plays a focal role in finding

the answers to the central question posed at the very beginning. And the reason

is this: any proposal regarding the structure and chemical composition of the inner

core must be such that, under the prevalent thermodynamic conditions, it should

lead to this density versus P-wave speed plot. A similar statement would be true

for a plot of the S-wave speed against density using the PREM data.

Please note that the range of pressure in the inner core is from 330 to 360

GPa. The temperature is also extreme and although it is not known with complete
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Figure 1.2: Density (ρ) is shown as a function of the distance (r) from the centre of the Earth.
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Figure 1.3: P-wave and S-wave speeds are shown as function of the distance (r) from the centre

of the Earth.

certainty, a value of 5000K (let’s call it T0) may be taken to be acceptable enough

[5-7]. Thus if a proposition is made that the composition is X and the structural

state is Y then the following has to be true: For the temperature T0 if the pressure
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Figure 1.4: P-wave speed (VP ) is shown as a function of density (ρ) in the inner core region.

varies in the range of 330 GPa to 360 GPa then (i) the lowest free energy structural

state for the composition X should always be that described by Y and the density

should vary in the range prescribed by the PREM and (ii) if the P-wave speed

(VP ) is plotted as a function of density (ρ) [both VP and ρ being functions of the

pressure variable] the figure 1.4 should be reproduced. The first part is a question

in thermodynamics [8]. Our interest in this thesis is more in the second part i.e.

does the P-wave speed have the correct dependence on density? Of course this

is in the context of a particular temperature (or a range of temperatures) that

is extremely high. It is presently not possible to reproduce the thermodynamic

conditions of the inner core in the laboratory. So, given a composition (let’s say

pure iron or some compound or alloy in which iron is the dominant component)

how can one know the P-wave speed at the ultra-high densities appearing in figure

1.4 – when direct experimental data regarding the elastic wave speed is available

only for pressures up to about half the inner core pressure (and the densities are

also correspondingly low)?

The answer to the question appearing at the end of the previous paragraph
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1.1 Introduction

lies in what is known as the Birch’s law [9-11]. For our purposes it may be stated

as follows: (i) Elastic wave speed depends on the thermodynamic con-

ditions only through density and (ii) the dependence of elastic wave

speed on density is linear . If we assume the validity of the second part of the

law it becomes obvious that the speed at high densities can be found, through

extrapolation, from a knowledge of its values at lower densities. Note that the

essential point is not that the dependence of speed on density is linear but that

it is described by a known function. Birch’s law is used frequently enough by ex-

perimentalists and has been tested extensively (mostly for iron or its compounds

or alloys). Empirical evidence suggests that the law is satisfied fairly well [12-31].

However, there is a high level of inherent uncertainty in these extremely difficult

experiments and the data always displays a high level of scatter around the best

fit straight line when the elastic wave speed is plotted against the density. Thus

it is certainly possible that a non-linear function would provide a more accurate

description of the relationship between density and speed. Such non-linearity

was proposed quite early [32-33] and also has been revived more recently [20]. In

fact this is also the central theme of the present thesis: performing tests for

the conventional form of the Birch’s law and striving to construct

modifications to the law so that better agreement may be found with

observations .

The need for a modified version of the Birch’s law with improved predictive

ability can be fully appreciated on the basis of the following example: Suppose

the inner core is assumed to be made up of hexagonal-close-packed iron. Then an

extrapolation of the speed-density data, obtained at lower densities, to the core

densities by using the Birch’s law as stated above leads to a mismatch of elastic

wave speed with what is prescribed by the PREM. However, this mismatch is only

a few percent and the possible presence of one or more of a large variety of lighter

compounds of iron (oxides, hydrides, sulfides, alloys with silicon etc.) have been

suggested on the basis of this. Obviously it is not possible to discriminate between

these various proposals unless (i) the law on the basis of which the extrapolation

was made to the core densities itself is sufficiently accurate and (ii) the data on

the basis of which the extrapolation is made is also accurate enough. In this

thesis we are concerned primarily with the first aspect.
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1.1 Introduction

In pursuing our goal as stated above it must be borne in mind that the first

part of the Birch’s law, as stated above, cannot possibly be strictly correct. While

it is true that the elastic wave speed does depend primarily on density it does

depend somewhat on the temperature also. This has also been recognized in re-

cent works [2,20,34-35] that take this effect of temperature explicitly into account.

While trying to improve on the second part of the Birch’s law as stated above

(i.e. linear dependence of elastic wave speed on density), our goal would be to

construct a version that can be true at all temperatures – without committing

ourselves to any particular form of the dependence on temperature. What we do

expect intuitively on physical grounds is that the effect of temperature should be

weaker at higher densities due to the increasing suppression of lattice vibration

at higher pressures.

The main results of this thesis can be summarized as follows: Based on a scal-

ing description of the vibrational spectra of several elemental solids, computed

by using the density functional theory of electronic structure calculation, we put

forward a proposal for a modification of the standard Birch’s law of linear de-

pendence of elastic wave speed on density. The rest of the thesis is dedicated to

comparing the performance of this modified version vis-a-vis the standard ver-

sion as far as the accuracy of describing experimental or computational data is

concerned. Our primary observation is that while the standard Birch’s law is

satisfied fairly well the modified version is consistently more accurate – although

the extent of improvement is variable. These tests require high precision data for

the elastic wave speed as a function of the density and the density should also

vary over a wide enough range. Much of it is generated by us for a large num-

ber of elemental solids by employing techniques based on the density functional

theory (DFT). These DFT-based calculations have been performed both at zero

temperature and at elevated temperatures – although, due to its high demand on

computational resources, the latter category includes fewer systems.

The organization of the thesis is as follows: In chapter 2 we present a summary

of the essential tools of our investigation. These are mostly standard but our

calculations at finite temperatures incorporate some procedural elements which

are different from their counterparts in the published literature. This chapter

includes a brief review of the relevant concepts of the theory of elasticity. The key

6



1.1 Introduction

element in calculating the elastic wave speeds of various kinds is to calculate the

elastic constants ab initio for a single crystal. We explain the methodology used

by us for these calculations. The way to calculate the elastic constants of a bulk

isotropic and homogenous poly-crystalline material from those of a single crystal is

explained next. We also describe how the elastic wave speeds of various kinds, in a

single crystal as well as in a bulk poly-crystalline sample, are computed. Chapter

3 explains the scaling description of vibrational spectra at high pressures and

also how we combine this with the empirical observation of linear dependence of

average vibrational frequency on density to construct our proposal for a modified

Birch’s law which is stated as follows: The product of elastic wave speed

and density raised to the power one-third should be a linear function

of density . In chapter 4 we use data from the existing literature to compare

the performances of the two versions of the Birch’s law (i.e. the standard one

and our modified version). This comparison is continued in chapter 5 where we

use high precision data generated by us for the elastic wave speed as a function

of density at zero temperature. Chapter 6 examines data generated by us at

elevated temperatures. Both the chapters 5 and 6 make extensive use of the

density functional theory to achieve the computational objectives. Chapter 7

summarizes our findings.

7



Chapter 2

Methodology

2.1 Introduction and preliminaries

In this thesis our primary objective, as far as computational aspects are con-

cerned, will be to calculate the speed of propagation of various types of elastic

waves in either a single crystal or a poly-crystalline medium [36-44]. Descrip-

tion of the propagation of elastic waves in a solid involves a continuum model in

which there is no direct reference to individual atoms or molecules. They are of

course there in the background generating all the material and thermodynamic

attributes of the medium around any point. One basic assumption in this de-

scription is that the range of inter-molecular forces is very short – of the order of

a few times the typical inter-molecular separation. The elementary small volume

that we usually speak of in the description of the dynamics of such a medium

is understood to be much larger than this range of interaction but much smaller

than the length scale of variation of any physical attribute that is described in

the continuum model in terms of a field.

For our description we will label a small volume (containing a fixed set of atoms

or molecules) in the medium by its position coordinates (R) when no waves are

present. In the presence of a wave each such small volume will shift to a time-

dependent position r = r(R, t). Thus the instantaneous displacement is given by

the vector u ≡ r−R. Consider now two infinitesimally separated points labelled

by R and R + dR. The square of the distance between these two points in the

absence of any wave is dR.dR. When the elastic wave is present this becomes

8



2.1 Introduction and preliminaries

dr.dr. It is trivial to show that [Note: Summation over repeated indices is always

implied – unless specifically stated otherwise.]

dr.dr = dR.dR + 2ηijdRidRj (2.1)

where

ηij ≡
1

2
(
∂ui
∂Rj

+
∂uj
∂Ri

+
∂uk
∂Ri

∂uk
∂Rj

) (2.2)

ηij is a component of a symmetric entity called the Lagrangian strain parameter.

For small values of strain ηij reduces to εij ≡ 1
2
( ∂ui
∂Rj

+
∂uj
∂Ri

). If one considers a small

domain around R, with volume dΩ in the absence of distortion, its volume after

distortion (dΩ′) is given by dΩ multiplied by the Jacobian of the transformation

from R to r. Thus, dΩ′ = dΩ det[α] where α is a matrix whose i-th row and

j-th column = αij = ∂ri
∂Rj

. Thus, the initial density ρ0 and the density ρ after

distortion are related as ρ0 = ρ det[α].

The strain parameter η defined above is a natural and convenient measure of

distortion in a thermodynamic description. To see this consider a small domain

such as mentioned above. This may or may not be crystalline. The distances

separating all the pairs of particles after distortion is determined by the corre-

sponding values in the absence of distortion and the value of η. Now, for a solid

at a given temperature, all thermodynamic properties are uniquely determined

once the mean relative positions of all the atoms/molecules are known. Thus, the

thermodynamic state of the volume element of the solid under consideration is

determined by the arrangement of atoms/molecules in the absence of distortion,

the value of the Lagrangian strain parameter and the temperature (or energy or

entropy etc.). This means, for example, that we can consider the mean energy

or the Helmhotz free energy or the entropy per unit mass, at some point inside

the solid, to be a function of X, η and T – where X stands for the description of

the undistorted arrangement of atoms/molecules (also called a ’reference state’).

[Note: For a solid at a finite temperature, by position of an atom we mean the

average position around which the thermal motion takes place.] A crucial point

in this context is the following: In general the strain parameter will have spatial

and temporal variation. We will assume that the spatial and temporal variation

is always sufficiently slow so that the thermodynamics of any small volume is

9



2.2 Thermodynamics and dynamics in a pre-stressed medium

determined completely by the local, instantaneous values of the strain parameter

and the temperature/energy.

As we have mentioned above, inter-particle forces in a solid are very short-

ranged. This permits the existence of the concept of a stress tensor – as can

be seen from the following argument: Suppose that the solid has been distorted

under the influence of a system of forces and torques. Let the force per unit

volume at a point r be h(r). Then the i-th component of the total force (call

it Qi) on a domain D is
∫
D
hi(r)d3r. However, since the cause of the force on

D lies outside it these forces can only be transmitted via the surface S of D

through inter-particle forces. Since the inter-particle forces are short-ranged it

must be possible to write Qi as an integral of a local field over the surface of D.

In order for this to be identical to the volume integral mentioned above for an

arbitrary domain D, the surface integral has to be of the form
∫
S

W.dS where,

using Gauss’s theorem, div W equals hi. Thus, each of the three components of

the force per unit volume is the divergence of a vector field. These three vector

fields can be combined into a tensor field T , called the physical stress tensor,

so that the i-th component of the force per unit volume is given by
∂Tij
∂xj

[ Here,

of course, we assumed that there are no body forces (such as gravity) present].

Note that the i-th component of force transmitted through a surface element dS is

TijdSj. Thus Tij equals the i-th component of the force per unit area transmitted

through a surface whose outward normal is along the positive j-th axis. It can

be shown [42] that the stress tensor is symmetric.

2.2 Thermodynamics and dynamics in a pre-

stressed medium

Since our primary interest is the computation of elastic wave speed propagating

in a pre-stressed medium (which corresponds to our reference state X; the strain

is zero, by definition, in the state X) it is essential to understand the factors

that control the thermoelastic dynamics of a small mass element in the solid.

We consider two distinct circumstances in which this motion takes place: (i)

isothermal, meaning that the temperature is always fixed at the same value, and

10



2.2 Thermodynamics and dynamics in a pre-stressed medium

(ii) adiabatic, meaning that entropy of a small but fixed mass element does not

change. Our primary dependent variable in the first case is the free energy per

unit mass (F ) whereas in the second case it is the energy per unit mass (U). These

primary dependent variables are functions of the strain parameter. In fact the

basic physical input to the study of how elastic waves propagate is the knowledge

of how F (for constant temperature) or U (for constant entropy) depends on

strain. The relevant equations are:

(A) Applying Newton’s second law to a small mass element we get:

ρr̈i =
∂Tij
∂rj

(2.3)

Note: Multiply both sides of this equation by the volume of the mass element at

the time t to see that this corresponds to: Force = Mass times acceleration. It has

been noted above that the force per unit volume is given by the space derivative

of the stress tensor. This appears on the right hand side of the equation above.

(B) By tracking the motion of a small mass element which contains a fixed

set of particles, we can relate its density ρ0 in the reference state to that (ρ) at

any arbitrary time. In fact we have already noted this above. The relation is:

ρ0 = ρ det[α] (2.4)

(C) Finally, we need a way to calculate the stress tensor appearing in equation

(2.3) from the instantaneous value of the strain parameter. This is done in two

steps. First, it is necessary to find how F or U (for constant temperature or for

constant entropy situation, respectively) depends on the strain parameter η. The

second step is to calculate the stress from one of the two following equations:

[Isothermal]

Tij = ραikαjl
∂F

∂ηkl
(2.5)

[Adiabatic]

Tij = ραikαjl
∂U

∂ηkl
(2.6)

11



2.2 Thermodynamics and dynamics in a pre-stressed medium

By using the expression for F or U in terms of η in the last equation we get the

expression for stress in terms of strain. This expression for stress is then used

in equation (2.3). In the resulting equation the definition of strain is then used

to convert the equation into one containing only the current position coordinate

r(t). Finally, this equation is linearized around the reference state to get the

final equation describing the propagation of a small amplitude elastic wave in a

pre-stressed medium. Before this equation can be written down it is necessary to

specify how F (or U) is expressed as a function of the strain parameter η. Since

we assume that the strain measured with respect to the reference state X is small

a straightforward Taylor expansion with respect to the components of the strain

parameter, terminating with the second power, is done. This gives [41]:

ρ0U(X,η, S) = ρ0U(X,0, S) + CS
ijηij +

1

2
CS
ijklηijηkl (2.7)

and

ρ0F (X,η, T ) = ρ0F (X,0, T ) + CT
ijηij +

1

2
CT
ijklηijηkl (2.8)

In equations (2.7) and (2.8) Cij’s and Cijkl’s are the first and second derivatives

of ρ0U or ρ0F , evaluated at η = 0 i.e, for the reference state (or the quiescent

state) X. Using these expressions for U or F we can calculate the stress tensor

T after computing the derivatives in equations (2.5) or (2.6). In particular if we

calculate the stress at η = 0, we find that Cij=Tij(X) i.e, the coefficients of the

first order terms in equations (2.7) or (2.8) are nothing but the components of

the stress tensor for the reference state X itself. So we modify equations (2.7)

and (2.8) as

ρ0U(X,η, S) = ρ0U(X,0, S) + Tij(X)ηij +
1

2
CS
ijklηijηkl (2.9)

and

ρ0F (X,η, T ) = ρ0F (X,0, T ) + Tij(X)ηij +
1

2
CT
ijklηijηkl (2.10)

When we say that the medium in which the elastic wave is propagating is, in

general, pre-stressed we mean that the components of Tij(X) are non-zero in

general. CS
ijkl and CT

ijkl are called the adiabatic and isothermal elastic constants,

respectively.

12



2.2 Thermodynamics and dynamics in a pre-stressed medium

2.2.1 Equations for small amplitude elastic waves in a pre-

stressed medium

Using equations (2.9) or (2.10) and (2.5) or (2.6) to calculate the stress tensor in

a general strained state and using that in equation (2.3) we can get the equation

of motion for small amplitude elastic waves. The equation is

ρ0r̈i = Aijkl
∂2rk
RjRl

(2.11)

where

Aijkl = Tjl(X)δik + Cijkl (2.12)

For a plane propagating wave with wave vector k and circular frequency ω,

r(R, t)−R = a sin(k.R− ωt) (2.13)

Using this in equation (2.11) and then taking the limit |k| → 0, we find the

following eigenvalue-eigenvector equation for c(n̂), the speed of propagation in

the direction n̂(= k
|k|):

Mikak = ρ0c
2(n̂)ai (2.14)

Here Mik is the i-th row and k-th column of a real, symmetric matrix and is equal

to Aijkln̂jn̂l. Here n̂1, n̂2 and n̂3 are the three components of the unit vector n̂.

Solutions of equation (2.14) are direction-independent for isotropic materials. For

a crystalline medium the solutions will, in general, be direction-dependent. The

three solutions for a given direction are referred to as longitudinal acoustic (LA),

transverse acoustic 2 (TA2) and transverse acoustic 1 (TA1) – with decreasing

order of speed. It should be remembered that, despite what may be suggested by

the nomenclature, the longitudinal wave will have some transverse component of

displacement in general. Similarly, in the same sense, the transverse waves are

not strictly transverse.

In equation (2.12), the elastic coefficient Cijkl is of the isothermal or adiabatic

type. Which one should be used in the context of a particular application depends

on whether the process can be adequately described as isothermal or adiabatic.

Since we are largely interested in seismic waves we will assume that the frequencies
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2.2 Thermodynamics and dynamics in a pre-stressed medium

are not low enough to permit an isothermal process. Hence , in all our calculations

of elastic wave speed we will invariably use the adiabatic elastic constants in

equation (2.12). However, our calculations for elastic constants will always be, to

begin with, of the isothermal type. The scheme for the conversion of one type of

elastic constant to the other will be explained later. In passing we may note that

the elastic moduli measured in a static experiment in a high pressure cell will be

of the isothermal type since there is enough time for thermal equilibration. A

Brillouin scattering experiment or a typical elastic wave experiment will, on the

other hand, measure the adiabatic elastic constants.

2.2.2 Symmetries of the elastic constants

Equations (2.9) and (2.10) define the elastic constants. It should be noted that

η is a symmetric object with ηij = ηji. Thus there are only six independent

real numbers that characterize the strain parameter. As a result Cijkl can also

be defined so that it is symmetric under the exchange of i with j and k with l.

These symmetries lead to the introduction of the Voigt notation where pairs of

Latin indices are replaced by a single Greek index. This notation is:

Pair ij 11 22 33 32/23 31/13 21/12

Voigt notation α 1 2 3 4 5 6

Thus the elastic constants can be denoted as Cαβ and the components of the strain

parameter as ηα. Since both α and β in Cαβ can have 6 possible values, it would

appear that there are 36 independent elastic constants. However, Cαβ is also

symmetric under the exchange of α and β. Thus, there are only 21 independent

values at the most. Out these 21 independent elastic constants, many will often

vanish due to the requirements of crystalline symmetry. For example, all cubic

systems (simple cubic, face-centered-cubic and body-centered-cubic) have only

three non-vanishing independent elastic constants (usually taken to be C11, C12

and C44). Similarly, for a hexagonal-close-packed system there are only five inde-

pendent non-vanishing elastic constants (often taken to be C11, C12, C13, C33 and

14



2.2 Thermodynamics and dynamics in a pre-stressed medium

C44). For an isotropic elastic medium (as in the case of a poly-crystalline mate-

rial with truly randomly oriented grains) there are only two independent elastic

constants: the bulk modulus and the shear modulus.

2.2.3 Generalized Birch coefficients

We have already defined the symmetric strain εkl as 1
2
(ukl +ulk) where ulk ≡ ∂ul

∂Rk
.

Equivalently, εkl = 1
2
(αkl + αlk − 2δlk). Let us also define ωkl ≡ 1

2
(ukl − ulk) =

1
2
(αkl−αlk), which is an anti-symmetric object and measures pure rotation. It is

clear that

αij =
1

2
(εij + εji + ωij − ωji + 2δij) (2.15)

Thus (the six numbers in) ε and (the three numbers in) ω can be considered to

be independent variables. With this understanding we can define the quantity

Bijkl ≡ ∂Tij
∂εkl

. Here the partial derivative means that only one of the nine real

numbers in ε and ω is varying and that number is εkl. The Bijkl is called the

generalized Birch coefficient. Depending on whether the process is isothermal or

adiabatic it will carry a superscript T or S, respectively. It is possible to show

that [41]

B
S/T
ijkl =

1

2
(Tikδjl + Tilδjk + Tjkδil + Tjlδik − 2Tijδkl) + C

S/T
ijkl (2.16)

The concept of generalized Birch coefficient will be used to calculate the two

effective elastic constants of a poly-crystalline material from the elastic constants

of a single crystal. It may be noted that the generalized Birch coefficient Bijkl is

symmetric under exchange of i and j or of k and l. Hence the Voigt notation can

be used for the generalized Birch coefficient also. However, unlike for the elastic

constants where Cαβ = Cβα, Bαβ 6= Bβα in general.

Our calculations will be only for cubic and hexagonal-close-packed (hcp) sys-

tems. For these systems an elastic constant Cijkl will vanish whenever, in the list

{i, j, k, l} one symbol (out of the set {1, 2, 3}) appears only once. We will

now show that Bijkl also vanishes in this situation. To see this, note that the

expression for Bijkl in equation (2.16) is a sum of two terms. The first of these

two is itself a sum of five terms. Each of these five terms is a product of one

Kronecker delta function and one element of the stress tensor. In equilibrium the
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2.2 Thermodynamics and dynamics in a pre-stressed medium

stress tensor for cubic and hcp systems will be diagonal. Thus each of the five

terms will involve the product of two delta functions. In these two delta functions

each of the four indices i, j, k and l appear once. Obviously, if one of these four

indices is different from the other three the product of the two delta functions

will always be zero. Thus, for the cubic and the hcp systems Bαβ is non-zero only

when Cαβ is non-vanishing.

2.2.4 Calculation of isothermal elastic constants at zero

temperature and for a given pressure

The basic equation to be used for the calculation of isothermal elastic constants

is equation (2.10) where Tij(X) represents the stress in the pre-stressed medium.

We will now specialize to the calculation of elastic constants of a single-crystal.

And, although much of the procedure is completely general, we will limit our

description to the cases of cubic and hcp crystals.

First one needs to know the reference state X. For this one minimizes the sum

of the energy (e0) per unit cell and the pressure (P ) times the volume (v0) of the

unit cell with respect to the basis vectors and the positions of the atoms within

the unit cell (while satisfying the requirements of symmetry). For example, for

an fcc lattice with one atom per unit cell, this means minimizing (e0 +Pv0) with

respect to the lattice parameter of the fcc primitive unit cell. For the hcp case with

two atoms per unit cell, it means extremization with respect to the two lattice

parameters a and c and also the relative position vector of the two atoms. This

minimization of enthalpy is done with the help of the software package Quantum

Espresso (QE) [45]. It may be noted that the tensor representing hydrostatic

stress is Tij = −Pδij. So we already know the coefficients of the term linear in

the strain parameter η in the equation (2.10).

The next step is to apply various kinds of strain parameter η and compute the

corresponding values of energy per unit cell (Note: At T = 0, the Helmholtz free

energy is simply the energy (e0)). For this we use the software package ElaStic

[46] to calculate the distorted unit cell geometry corresponding to a given η.
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2.2 Thermodynamics and dynamics in a pre-stressed medium

Calculating the basis vectors of the lattice for a given strain when the

reference state basis vectors are given

Consider two Bravais lattice points with the value of (n1, n2, n3) separated by

∆n1, ∆n2 and ∆n3. Before distortion (i.e. in the reference state X), their loca-

tions are separated by

∆R = ∆n1V1 + ∆n2V2 + ∆n3V3 (i)

where V1, V2 and V3 are the reference state basis vectors. After distortion they

are separated by

∆r = ∆n1v1 + ∆n2v2 + ∆n3v3 (ii)

We have to calculate v1, v2 and v3 – given V1, V2 and V3 and the symmetric

strain parameter ηij = 1
2
(uij + uji +

∑
k ukiukj) where uij = ∂ri

∂Rj
− δij = αij − δij.

Now, since ∂ri
∂Rj

= αij

∆ri =
∑

j
∂ri
∂Rj

∆Rj =
∑

j,l αij∆nlVlj from (i)

and ∆ri =
∑

m ∆nmvmi from (ii)

Thus
∑

m ∆nmvmi =
∑

j,l αij∆nlVlj (iii)

(whenever ∆n1, ∆n2 and ∆n3 are small but otherwise arbitrary integers)

Now suppose ∆nl = δlk for some k = 1, 2 or 3. Then using equation (iii)∑
m δmkvmi = vki =

∑
l,j αijδlkVlj =

∑
j αijVkj

⇒ vki =
∑

j αijVkj

Thus if we know α we can calculate the new basis vectors. To calculate α from

η the following procedure may be used:

ηij = 1
2
(uij + uji +

∑
k ukiukj)

For a pure strain (no rotation) uij = uji. Then ηij = uij +
[U2]ij

2
= [U]ij +

[U2]ij
2

.

⇒ η = U + U2

2
.

To solve for U for a given η, use η as the first guess for U. Then use the following

recursive algorithm: Un+1 = η − [Un]2

2

Since η is quite small, as is U, this algorithm will converge quite rapidly and

solve for U. Once U is found the identity matrix has to be added to it to get α.

For this distorted unit cell, e0 is calculated by using the QE package. In the tables

2.1 and 2.2 we describe the three types of distortion η used and the expression

for energy in each case for the cubic geometry.
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2.2 Thermodynamics and dynamics in a pre-stressed medium

Table 2.1: Distortions used for the cubic case

Voigt η1 η2 η3 η4 η5 η6

notation

Lagrangian

strain

η11 η22 η33 2η23 = 2η32 2η13 = 2η31 2η12 = 2η21

η(1)∗ η η η 0 0 0

η(8)∗ η η 0 0 0 0

η(23)∗ 0 0 0 2η 2η 2η

* Notation for the strain follows that of the ElaStic software package.

Table 2.2: Expression for the change in energy per unit cell divided by the volume

of the undistorted cubic unit cell

η(1)∗ −3Pη + 3
2
(C11 + 2C12)η

2

η(8)∗ −2Pη + (C11 + C12)η
2

η(23)∗ 6C44η
2

* Notation for the strain follows that of the ElaStic software package.

For each of the distortion types we choose a set of N values of η between

−ηmax and +ηmax. For each such η calculation is done for the energy per unit

cell. Finally from the analysis of energy vs. η we extract the values of C11, C12

and C44. Examples of the free energy versus amplitude of distortion, for each of

the three types of distortion, will be shown in chapter 6.
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2.2 Thermodynamics and dynamics in a pre-stressed medium

Table 2.3: Distortions used for the hcp case

Voigt η1 η2 η3 η4 η5 η6

notation

Lagrangian

strain

η11 η22 η33 2η23 = 2η32 2η13 = 2η31 2η12 = 2η21

η(1)∗ η η η 0 0 0

η(3)∗ 0 η 0 0 0 0

η(4)∗ 0 0 η 0 0 0

η(17)∗ 0 0 η 2η 0 0

η(26)∗ η
2

η
2
−η 0 0 0

* Notation for the strain follows that of the ElaStic software package.

Table 2.4: Expression for the change in energy per unit cell divided by the volume

of the undistorted hcp unit cell. Here T xy = T11 = T22 and T z = T33

η(1)∗ (2T xy + T z)η + 1
2
(2C11 + 2C12 + 4C13 + C33)η

2

η(3)∗ T xyη + 1
2
C11η

2

η(4)∗ T zη + 1
2
C33η

2

η(17)∗ T zη + 1
2
(C33 + 4C44)η

2

η(26)∗ (T xy − T z)η + 1
2
(C11

2
+ C12

2
+ C33 − 2C13)η

2

* Notation for the strain follows that of the ElaStic software package.

Next we describe the five types of distortion for the hcp case in table 2.3. It

may be noted that the positions of the atoms are optimized in the distorted cell

before calculating the energy. In table 2.4 the expression for the change of energy

due to the distortion has been given – taking into account the fact that the stress

tensor is diagonal and T11 = T22 due to the hexagonal symmetry. In the special

case of hydrostatic pressure T11 = T22 = T33 = T xy = T z ≡ −P . Again for each

distortion type we choose a set of N values of η between −ηmax and +ηmax. For
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2.2 Thermodynamics and dynamics in a pre-stressed medium

each value of η calculation is done for the energy per unit cell (after optimizing

the atomic positions). Finally, from an analysis of the plot of the energy vs. η,

we extract the values of the five elastic constants. Examples of the free energy

versus amplitude of distortion, for each of the five types of distortion, will be

shown in chapter 6.

2.2.5 Calculation of isothermal elastic constants at finite

temperature and for a given density

For the calculation of isothermal elastic constants at finite temperature one has

to use the defining equation (2.10). Now it is the Helmholtz free energy that

has to be calculated for various distortions. Since the temperature is finite now,

electronic and phononic excitations will also have to be included while calculating

the Helmholtz free energy F ≡ E−TS. But first of all the reference state X has

to be specified. When the density is fixed the specification of the reference state

X can be a non-trivial matter at finite temperatures. For the cubic geometry

with one atom per unit cell it poses no problem since there is only one lattice

parameter whose value is fixed uniquely by the density – and this is independent

of temperature. On the other hand, for a case like hcp-Fe with two atoms per

unit cell it is a lot more complicated. If a and c denote the lattice parameters

perpendicular to and parallel to the axis of hexagonal symmetry, respectively,

then only the product a2c is fixed by the density. So, in this case we minimize

the free energy with respect to a (or c) to get the reference state X which is a

hcp-crystal lattice. The calculation of the free energy for given values of a and c

is done by using the methods described next.

We will need to calculate the Helmholtz free energy per unit cell for the refer-

ence state as well as for crystal lattices obtained by putting in known distortions.

In all cases the free energy per unit cell is given by the expression

f = e0 + eel(T )− Tsel + fph (2.17)

where e0 is the electronic ground state energy per unit cell (when more than one

atom is present in the unit cell, the electronic ground state energy is minimized
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2.2 Thermodynamics and dynamics in a pre-stressed medium

with respect to the co-ordinates of these atomic positions within the unit cell). e0

is calculated by using the QE package. eel(T ) is the additional electronic energy

due to the finite temperature excitations from the ground state and is equal to

χ(T )− χ(0) where

χ(T ) =

∫
φn(φ)H(φ, T )dφ (2.18)

Here n(φ) is the electronic density of states per unit cell at the energy φ (obtained

by using the QE package). H(φ, T ) is the Fermi occupation function ((exp(φ−µ
kBT

)+

1)−1) where the chemical potential µ is obtained numerically by making use of the

requirement that
∫
n(φ)H(φ, T )dφ must be equal to the total number of valence

electrons per unit cell (as used in the ab initio electronic structure calculation). It

is numerically difficult to calculate χ(T ) at very low temperatures. So we calculate

χ at temperatures not so low and then graphically extrapolate the values to T = 0

to calculate χ(0).

The electronic entropy sel in equation (2.17) is obtained from the expression

sel = −kB
∫
n(φ)[H ln(H) + (1−H) ln(1−H)]dφ (2.19)

where H is the Fermi occupation factor defined above. The phononic free energy

per unit cell is calculated from the formula

fph = kBT

∫
g(ω) ln[2 sinh(

hω

4πkBT
)]dω (2.20)

where g(ω) is the phonon density of states at the circular frequency ω. The nor-

malization of g(ω) is done such that
∫
g(ω)dω equals three times the number of

atoms per unit cell. The phonon density of states is obtained via the implemen-

tation of density functional perturbation theory within the QE package. It is

extremely important to understand that the above calculation of Helmholtz free

energy is based on the quasi-harmonic approximation which treats the vibrational

quantum state as a non-interacting gas of phonons. Temperatures upto which

this approximation holds is a matter some of debate. It has been asserted by

some [35] that this holds good almost all the way upto melting. While that may

or may not be true, it follows from physical intuition that the validity of this

approximation should extend to higher and higher temperatures as the applied
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pressure ( or stress, in general) keeps increasing. The reason is simply that higher

applied pressure will suppress atomic vibration to a greater degree and thus re-

duce the amplitude of atomic vibration – leading to a higher level of validity of

the quasi-harmonic approximation. In our calculations we have been conservative

and have normally not allowed the temperature to exceed 1500K.

2.2.6 From isothermal to adiabatic elastic constants

In many applications, including the propagation of seismic waves, the process

is described more appropriately as adiabatic rather than isothermal. Hence the

elastic constants relevant to these applications are the adiabatic ones. The general

relationship between these two types of elastic constants is given by the following

equation [41]:

CS
ijkl = CT

ijkl +
Tv0
Cv

τijτkl (2.21)

where τij = (
∂Tij
∂T

){η=0} and Cv is the specific heat at constant volume per unit

cell (of volume v0). It may be noted that there is no distinction between the

two types of elastic constants at T = 0. To calculate a derivative such as
∂Tij
∂T

we calculate the stress tensor Tij at an equally spaced set of temperatures – lo-

cated symmetrically around the target temperature. The derivative is calculated

numerically from a polynomial fit to the data for Tij as function of T .

The specific heat per unit cell Cv is a sum of two terms Cel and Cph – which

are the contributions of the electronic excitations and the phononic excitations,

respectively. The expression for Cph is:

Cph = kB

∫
(

hω

2πkBT
)2g(ω)I(1 + I)dω (2.22)

where I is the phonon occupancy factor given by the expression (exp( hω
2πkBT

) −
1)−1. The expression for Cel is:

Cel =

∫
[

1

kBT

dµ

dT
+

1

kBT 2
(φ− µ)]φn(φ)H(1−H)dφ (2.23)

where, as before, H is the Fermi occupancy factor. The derivative dµ
dT

, appearing

in the expression of Cel, is calculated by numerically evaluating its expression

−( 1
T

)
∫
(φ−µ)n(φ)H(1−H)dφ∫

n(φ)H(1−H)dφ
.
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2.2 Thermodynamics and dynamics in a pre-stressed medium

2.2.7 Useful formulas

Generalized Birch coefficients

For the cubic case : B11 = C11 − P ; B12 = C12 + P ; B44 = C44 − P .

P is the parameter appearing in the stress tensor Tij = −Pδij.

For the hcp case : B11 = B22 = C11 + T xy; B12 = B21 = C12 − T xy;

B13 = B23 = C13 − T xy; B31 = B32 = C13 − T z;

B33 = C33 + T z; B44 = B55 = C44 + 1
2
(T xy + T z);

B66 = C66 + T xy.

T xy = T11 = T22 and T z = T33; the stress tensor is diagonal.

Relationship between adiabatic and isothermal elastic constants and

Birch coefficients

In general BS
ijkl −BT

ijkl = CS
ijkl − CT

ijkl

For the cubic case: BS
11 −BT

11 = BS
12 −BT

12 = Tv0
Cv

(∂P
∂T

)2; BS
44 −BT

44 = 0.

For the hcp case: BS
11 −BT

11 = BS
12 −BT

12 = Tv0
Cv

(∂T
xy

∂T
)2;

BS
13 −BT

13 = BS
31 −BT

31 = Tv0
Cv

(∂T
xy

∂T
)(∂T

z

∂T
);

BS
33 −BT

33 = Tv0
Cv

(∂T
z

∂T
)2; BS

44 −BT
44 = 0.

Wave propagation matrix M in equation (2.14)

n̂1, n̂2, n̂3 are the three components of the unit vector in the direction of propa-

gation.

For the cubic case : Stress tensor Tij = −Pδij
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M11 = n̂2
1(C11 − P ) + n̂2

2(C44 − P ) + n̂2
3(C44 − P )

M12 = M21 = n̂1n̂2(C12 + C44)

M13 = M31 = n̂1n̂3(C12 + C44)

M22 = n̂2
1(C44 − P ) + n̂2

2(C11 − P ) + n̂2
3(C44 − P )

M23 = M32 = n̂2n̂3(C12 + C44)

M33 = n̂2
1(C44 − P ) + n̂2

2(C44 − P ) + n̂2
3(C11 − P )

For the hcp case: Stress tensor Tij = βiδij; β1 = β2 = T xy and β3 = T z

M11 = n̂2
1(C11 + T xy) + n̂2

2(C66 + T xy) + n̂2
3(C44 + T z)

M12 = M21 = n̂1n̂2(C12 + C66)

M13 = M31 = n̂1n̂3(C13 + C44)

M22 = n̂2
1(C66 + T xy) + n̂2

2(C11 + T xy) + n̂2
3(C44 + T z)

M23 = M32 = n̂2n̂3(C13 + C44)

M33 = n̂2
1(C44 + T xy) + n̂2

2(C44 + T xy) + n̂2
3(C33 + T z)

When the stress is hydrostatic, Tij = −Pδij i.e., T xy = T z = −P .

24



2.3 Elastic waves in an isotropic and homogeneous medium

2.3 Elastic waves in an isotropic and homoge-

neous medium

A polycrystalline material with a truly random alignment of the individual grains

will be an isotropic and homogeneous elastic medium. It will support two kinds of

elastic waves in the bulk: P -waves and S-waves. P -waves (sometimes also called

primary wave) are compressional waves with vibration parallel to the direction of

propagation of the wave and it moves with the speed given by

VP =
(D + 4

3
G

ρ0

) 1
2

(2.24)

S-waves (sometimes also called secondary wave) are shear waves with vibration

perpendicular to direction of propagation of the wave and it moves with the speed

given by

VS =
(G
ρ0

) 1
2

(2.25)

In equations (2.24) and (2.25), D and G denote the bulk modulus and the

shear modulus, respectively, of the isotropic and homogeneous elastic medium.

To derive the equations (2.24) and (2.25) we proceed as follows:

Let us consider the propagation of small amplitude waves. As noted in sec-

tion (2.1), the strain parameter η reduces, for small distortions, to ε where

εij = 1
2
( ∂ui
∂Rj

+
∂uj
∂Ri

). Due to the isotropic nature of the medium, the expression

given by the equation (2.10) for free energy now looks like

ρ0F (X, ε, T ) = ρ0F (X,0, T ) + Tij(X)εij +
1

2
λ(Tr(ε))2 + µεikεik (2.26)

where Tr(ε) = εii. λ and µ are called the Lamé parameters. Now the stress

component

Tij =
∂F

∂εij
= Tij(X) + λδijTr(ε) + 2µεij

= Tij(X) + λδij

3∑
k=1

∂uk
∂Rk

+ µ(
∂ui
∂Rj

+
∂uj
∂Ri

) (2.27)
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Applying Newton’s second law to a small mass element we get the equation of

motion:

ρ0
∂2ui
∂t2

= i-th component of force per unit volume = ∂jTij. Thus

ρ0
∂2ui
∂t2

= λ
∑
k

∂2uk
∂Ri∂Rk

+ µ
∑
j

∂2uj
∂Rj∂Ri

+ µ
∑
j

∂2ui
∂R2

j

(2.28)

To see what the solutions of this equation are like we consider the propagation of

a plane wave in the direction of the positive x-axis (Since the medium is isotropic,

the results cannot depend on the direction selected). Here, we assume that the

directions 1, 2 and 3 are synonymous with x, y and z, respectively. Because of

our choice of the direction of propagation ∂
∂R2

or ∂
∂R3

acting on ui (for any i) or its

spatial derivatives vanish identically. Thus we get the following three equations:

ρ0üx = (λ+ 2µ)
∂2ux
∂X2

(2.29)

ρ0üy = µ
∂2uy
∂X2

(2.30)

and

ρ0üz = µ
∂2uz
∂X2

(2.31)

It is obvious that equation (2.29) supports a longitudinal wave that propagates

with speed (λ+2µ
ρ0

)
1
2 . Similarly, equations (2.30) and (2.31) support transverse

waves with uy and/or uz 6= 0 and these waves have speed ( µ
ρ0

)
1
2 .

Physical meaning of λ and µ:

We can write εij in the form (εij − 1
3
δijεkk) + 1

3
δijεkk. The purpose behind this

decomposition is that the tensor with components (εij − 1
3
δijεkk) is traceless and

hence such a strain causes no change in volume [Note: Trace(ε) is the fractional

change in volume due to the strain]. On the other hand 1
3
δijεkk represents the

part of ε that causes change of volume. Using this decomposition, the last two

terms on the right hand side of equation (2.26) look like 1
2
K(Tr(ε))2+µ

∑
i,k(εik−

1
3
δikTr(ε))

2 where K ≡ λ+ 2
3
µ. K quantifies the increase of free energy due to the

change of volume and hence is called the bulk modulus. Similarly, since µ appears

as a coefficient of the part that represents the pure shear, it is called the shear
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modulus. Using these, the speed of longitudinal wave is VP = (λ+2µ
ρ0

)
1
2 = (

K+ 4
3
µ

ρ0
)
1
2

and the speed of shear wave is Vs = ( µ
ρ0

)
1
2 . In our notation K = D and µ = G.

How are the values of D and G determined from a knowledge of the elastic con-

stants of the individual single crystals that the material is composed of ? Answer

to this question is not always unique. Often only a range can be found. Below

we summarize the main results that are used in our calculations [43-44].

For cubic systems:

D is uniquely defined and is equal to 1
3
(B11 + 2B12). The shear modulus is

bounded by G∗1 and G∗2 where

G∗1 = G1 +
3

5
G2−G1

− 4β1
(2.32)

and

G∗2 = G2 +
2

5
G1−G2

− 6β2
(2.33)

with G1 = 1
2
(B11 − B12), G2 = B44, β1 = −3(D+2G1)

5G1(3D+4G1)
and β2 = −3(D+2G2)

5G2(3D+4G2)
. In

the expression of the P -wave velocity G = 1
2
(G∗1 +G∗2).

For hcp systems:

The bounds for D and G are given by those corresponding to the Voigt-averaging

and the Reuss-averaging and are denoted by the subscripts V and R, respectively.

The expressions for DV , DR, GV and GR are given by (with B∗ = 1
2
(B13 +B31)):

DV = 1
9
(2B11 +B33 + 2B12 + 4B∗)

DR = (B11+B12)B33−2B∗2
B11+B12+2B33−4B∗

GV = 1
30

(12B44 + 12B66 +B11 +B12 + 2B33 − 4B∗)

GR =
5
2
B44B66[(B11+B12)B33−2B∗2]

3DV B44B66+(B44+B66)[(B11+B12)B33−2B∗2]

Finally, D = 1
2
(DV +DR) and G = 1

2
(GV +GR). The P -wave velocities that are

reported here are calculated using these values of D and G.
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The range of definitional uncertainty of VP is calculated in each case as follows:

For cubic systems:

The limiting values of VP are calculated using the combinations {D,G∗1} and

{D,G∗2}. Half of the difference between these two values is quoted as the defini-

tional uncertainty of VP .

For hcp systems:

The limiting values of VP are calculated using the combinations {DV , GV } and

{DR, GR}. Half of the difference between these two values is quoted as the defi-

nitional uncertainty of VP .

2.4 Density Functional Theory and Density Func-

tional Perturbation Theory

2.4.1 Density Functional Theory (DFT)

Wave function of a system of N electrons can be specified in the form

ψ(r1s1; r2s2; ......; rNsN) where ri and si are the position vector and the

z-component of the spin, respectively, of the i-th electron. The number

density of electrons at the point r is then given by

n(r) = N
∑

s1,s2,...,sN

∫
r2

...

∫
rN

∣∣∣ψ(rs1; r2s2; ......; rNsN)
∣∣∣2 N∏

i=2

d3ri (2.34)

Density functional theory is a formulation of the quantum mechanics of a system

of many electrons in which the problem of obtaining the energy and the number

density function of electrons for the ground state of a system of electrons inter-

acting among themselves and also with a given external potential (created by the

nuclei etc.) is reduced to one of minimizing a suitable functional of the positive

definite number density function (let’s say) f [47-48]. This functional depends

parametrically on the locations of the nuclei. Suppose that the i-th nucleus of

mass Mi and charge Zie is located at the point Ri(i = 1, 2, ..., K). Then for a
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given set {R1,R2, ...,RK} ≡ {R}, the external potential is

V{R}(r) = −
K∑
i=1

Zie
2

|Ri − r|
(2.35)

Then if f denotes the electron number density function, the ground state energy

is obtained by minimizing the following functional with respect to f :

E{R}(f) = T0(f) +
e2

2

∫
s′

∫
s′′

f(s′)f(s′′)

|s′ − s′′|
d3s′d3s′′ + Exc(f)

+

∫
V{R}(s)f(s)d3s + En({R}) (2.36)

where T0(f) is the minimum possible expectation value of the operator T repre-

senting the total kinetic energy of all the electrons with respect to all the wave

functions that generate the number density function f (through the definition

given in equation (2.34)). The functional Exc(f), called the exchange-correlation

functional, is defined so that the sum of the first three terms on the right hand

side of equation (2.36) is the minimum possible expectation value of the opera-

tor T + 1
2

∑
i 6=j

e2

|ri−rj | with respect to all the wave functions consistent with the

number density function f . Note that T0 and Exc are completely independent of

the external potential V{R}.

In practice the minimization of E{R}(f) is done by recasting the problem into the

following steps which need to be undertaken iteratively to achieve self-consistency

[47,49-50]:

0© Make an initial guess f for the electron number density function.

1© Obtain the Kohn-Sham (KS) orbitals χα(s) and energies eα which are so-

lutions of the following eigenvalue-eigenfunction problem:

HKSχα(s) = eαχα(s) (2.37)

where HKS is the Kohn-Sham Hamiltonian operator given by

HKS = − ~2

2m
∇2

s + Φ(s) (2.38)
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Here m is the mass of the electron and Φ(s) is the (self-consistent) potential

function defined as

Φ(s) = V{R}(s) + e2
∫

f(s′)

|s− s′|
d3s′ + vxc(s) (2.39)

where vxc(s) = δExc

δf
(s) i.e., the functional derivative of the exchange-correlation

functional with respect to the number density function f and is to be evaluated

at s.

2© Occupy the N energetically lowest KS orbitals so that every electron is as-

signed one. Then construct the revised number density function

g(s) =
N∑
i=1

|χβ(i)(s)|2 (2.40)

where β(i) is the index of the KS orbital occupied by the i-th electron.

3© Self-consistency is said to have been achieved when

g(s) = f(s) ∀ s (2.41)

(If it has not been achieved set f = g and go back to step 1.) Once these three

equations have been solved and self-consistency is achieved, the ground state

electron number density is given by g. The ground state energy is given by

E0({R}) =
N∑
i=1

eβ(i) + Exc(g)−
∫
vxc(s)g(s)d3s

− e2

2

∫
s′

∫
s′′

g(s′)g(s′′)

|s′ − s′′|
d3s′d3s′′ (2.42)

The exact prescription for evaluating the functional Exc is not known and it is

in practice approximated by expressions such as the local density approximation

(LDA), the generalized gradient approximation (GGA) etc.
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2.4.2 Density Functional Perturbation Theory (DFPT)

As far as lattice vibration is concerned, within the Born-Oppenheimer approxi-

mation, the function E0({R}) (considered for all values of {R} around the equi-

librium configuration) serves as the potential energy function for the collective

dynamics of the nuclei once the inter-nuclear Coulomb interaction En({R}), given

by 1
2

∑
i 6=j

ZiZje
2

|Ri−Rj | , is added.

Define

E({R}) = E0({R}) + En({R}) (2.43)

Normal modes are those collective patterns of classical motion of the nuclei in

which every nucleus vibrates sinusoidally with a common (circular) frequency ω.

They are obtained by solving the equation∑
j,b

(Dab
ij − ω2Miδijδab)u

b
j = 0 ∀ i, a (2.44)

where ubj is the displacement amplitude of the b-th component (b = x, y, z) of

motion of the nucleus j.

Here

Dab
ij ≡

∂2E({R})
∂Ra

i ∂R
b
j

(2.45)

with the derivative being evaluated at {R} = {R0} where {R0} is the equilib-

rium configuration of the nuclei i.e. it is the configuration at which the function

E({R}) has a local minimum (often it is the global minimum also). Dab
ij are the

components of what is referred to as the interatomic force constant (IFC) matrix.

Using Hellmann-Feynman theorem it can be shown that

∂2E({R})
∂Ra

i ∂R
b
j

=

∫
∂g(s)

∂Ra
i

∂V{R}(s)

∂Rb
j

d3s + δij

∫
g(s)

∂2V{R}(s)

∂Ra
i ∂R

b
j

d3s

+
∂2En({R})
∂Ra

i ∂R
b
j

(2.46)

Calculation of the IFC matrix thus requires the knowledge of both the electron

number density function at equilibrium (second term on the right hand side of

the above equation) and how this density function changes if any of the nuclei
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moves (the first term). Basically, the density functional perturbation theory is

about how to calculate ∂g
∂Ra

i
i.e., if a small change is made in any of the nuclear

coordinates how will the ground state electron number density change in response.

Remember that δRa
i is small. So it creates a small change in V ({R}) which is

a part of the potential Φ (see eqn. (2.39)) that appears in the KS equation

(Eqn.(2.37)). So the KS orbitals and the energies will also change a little due to

this small change in the Kohn-Sham Hamiltonian (HKS). The density functional

perturbation theory formulates this process of calculating the changes in the KS

orbitals and energies (and thus E0({R}) eventually) in terms of a perturbation

theory [51]. Finally, it leads to a coupled set of linear equations.

For an infinite periodic solid the IFC matrix elements depend only on (R0
i −R0

j)

(the superscript ’0’ denoting the values at equilibrium) which, in turn, depends

on the identities of the two atoms and on the Bravais lattice vector separating

the two unit cells in which the two atoms are located. Every normal mode can be

taken to be a travelling wave characterized by some wave vector q. For each such

normal mode the displacement vector of an atom in the unit cell with coordinates

(n1A1 + n2A2 + n3A3) will be proportional to exp(iq.(n1A1 + n2A2 + n3A3)).

Here A1, A2 and A3 are the basis vectors of the Bravais lattice and q belongs

to the first Brillouin zone. For a given q the number of normal modes is equal to

thrice the number of atoms in the unit cell. Of these three will be of the acoustic

type for which ω → 0 when |q| → 0.

In practice in DFPT based calculations a uniformly spaced grid of q points is se-

lected in the first Brillouin zone and the normal mode frequencies are calculated

for each of these wave vectors by the DFPT. Then the vibrational frequencies

for any arbitrary q in the first Brillouin zone can be calculated via Fourier in-

terpolation (for example, while calculating the phonon density of states which

requires the knowledge of the vibrational frequencies at every point of a very

dense q-grid).
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Chapter 3

Modifying Birch’s law : A scaling

approach

3.1 Introduction

In this chapter we explain the genesis of our conjecture, referred to in the In-

troduction, that when the product of density raised to the power one-third and

the speed of elastic wave is plotted against density it is expected to give a better

linear fit than when the speed alone is plotted against density. It is based on two

ingredients: (i) The observation [52-53] that the phonon dispersion relation for

many elemental solids satisfies a scaling relation at high enough pressures – this

relation being that the vibrational frequency for a particular wave vector, when

measured in suitable units that depend only on the applied pressure, is a function

only of the product of the wave vector and a length scale defined by the number

of particles per unit volume. The functional dependence of the rescaled frequency

on the rescaled wave vector depends on the particular branch of the dispersion

relation. Of course, we are interested primarily in the acoustic branches. (ii) The

empirical observation [54] that the phonon frequency, averaged over the entire

vibrational spectrum, is often, to a very good approximation, a linear function

of density. In the following two sections we elaborate on these two observations

before explaining, in the final section, how a combination of these two ingredients

leads to our conjecture.
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3.2 Scaling form of the phonon dispersion relation

3.2 Scaling form of the phonon dispersion rela-

tion

It has been pointed out in two recent works[52-53] that the high pressure phonon

dispersion relation in many elemental solids has the following structure:

ωi(k) = W (P )Fi(n
−1/3k) (3.1)

Here n is the number density of particles, ωi(k) is the frequency of the phonon of

the i-th branch with wave vector k. Fi is a function that becomes independent

of the pressure P in the limit of large enough pressure i.e. this statement is

asymptotically exact. W (P ) is the scale of frequency at pressure P and its exact

value is determined by the normalization condition∑
i

∫
Fi(s)d3s = 1 (3.2)

The physically interesting significance of equation (3.1) is that the dependence of

the rescaled frequency ω(k)/W (P ) on the rescaled wave vector n−1/3k becomes

eventually independent of pressure as pressure keeps increasing i.e. if suitable

units are used for the frequency and the wave vector, the dispersion relation is

asymptotically independent of pressure.

We will first show that the equation (3.1) is exact for a class of model isotropic

solids consisting of identical particles for which the inter-atomic interaction is

described by positive homogenous potentials (PHP) [53]. A positive homogenous

potential V satisfies the requirement that

V (αr1, αr2, ......, αri, .....) = αQV (r1, r2, ........, ri, ........) (3.3)

where ri is the position vector of the i-th particle, α is a positive real number.

Q is called the degree of homogeneity and is usually a negative integer −m. The

most common instance of such a potential is when the total potential energy of a

solid, made up of identical particles, is a sum over all the pair potential energies.

The pair potential will typically have the structure φ1(r) − φ2(r) where φ1, the

repulsive part, varies with r as r−m at shorter distances. φ2(r) describes the

attractive part of the interaction [Please note that a solid cannot exist at zero
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3.2 Scaling form of the phonon dispersion relation

pressure without the attractive part]. If the ratio φ2(r)/φ1(r) also goes to zero

in the limit of r going to zero it follows that the potential energy will behave

increasingly accurately like a positive homogenous potential in the high pressure

limit when all the inter-particle distances have shrunk enough.

If there are N particles in the unit cell, the vibrational frequencies ωi(k)

[i = 1, 2, ..., 3N ] are proportional to the square-roots of the 3N eigenvalues of the

dynamical matrix D(k) – which is the Fourier transform of the force-derivative

matrix D(R). To be precise

D(k) ≡
∑
R

D(R)e−ik.R (3.4)

where D(R) is the matrix of second derivatives of the potential energy with

respect to the coordinates of two particles located in two unit cells separated by

the Bravais lattice vector R. If we denote the basis vectors by a1, a2 and a3, an

arbitrary Bravais lattice vector R can be written as n1a1 + n2a2 + n3a3, where

n1, n2 and n3 are integer-valued, and equation (3.4) can be rewritten as

D(k) =
∑

n1,n2,n3

T (n1, n2, n3)e
−ik.(n1a1+n2a2+n3a3) (3.5)

Suppose now we vary the applied pressure P . Since the interactions in the solid

are isotropic it will not change the shape of the unit cell (and hence, that of

the first Brillouin zone) but will alter the scale l of the linear dimension of the

unit cell. If v and ε denote the volume of the unit cell and energy per unit cell,

respectively, v ∝ l3 while ε ∝ l−m. Thus the pressure P = − ∂ε
∂v
∝ l−(m+3). The

number density n ∝ 1
v
∝ l−3. In equation (3.5) T (n1, n2, n3) is the second spatial

derivative of the potential energy. Thus, for a given set of values of {n1, n2, n3},
T = f1(n1, n2, n3)l

−(m+2) while k.(n1a1 +n2a2 +n3a3) is the scalar product of lk,

which is proportional to n−1/3k, and a vector that depends only on {n1, n2, n3}
and the shape of the unit cell (neither of which depends on pressure) = A function

of n−1/3k that depends parametrically on {n1, n2, n3} = f2(n
−1/3k;n1, n2, n3).
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Thus

D(k) = l−(m+2)
∑

n1,n2,n3

f1(n1, n2, n3)e
−if2(n−

1
3 k; n1,n2,n3)

= l−(m+2)f3(n
− 1

3 k) (3.6)

Note that l ∝ P−
1

m+3 . Thus D(k) is proportional to P
m+2
m+3f3(n

− 1
3 k). Since ωi(k)

is proportional to the square-root of some eigenvalue of D(k) we finally get the

result that ωi(k) = P
m+2
2m+6 multiplied by a function of n−1/3k that depends on the

particular branch of the vibrational spectrum. This is what we set out to prove.

But we also have the additional result that W (P ) ∝ P
m+2
2m+6 .

In a real material, with the possible exception of inert gas solids, the poten-

tial energy function is not expected to be of the PHP type. Yet, it has been

demonstrated recently [52] that the vibrational spectra of many elemental solids

do satisfy equation (3.1) to a very good approximation. To check this we first

note that, due to the normalization condition given by equation (3.2), the average

phonon frequency < ω > (P ) ∝ W (P ). If we choose the wave vector k to be any

of the special symmetry points in the first Brillouin zone the value of n−1/3k is

independent of the pressure. Thus, for any such special symmetry point, the ratio

ωi(k)/ < ω > (P ), when plotted as a function of P , should saturate when the

pressure becomes high enough. This is what was found in the DFT-based studies

of the vibrational spectra [52]. Figure 3.1 shows an example of such behaviour

for magnetic nickel.
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3.2 Scaling form of the phonon dispersion relation

Figure 3.1: Evolution of the ratio ω/ < ω > (P ) with pressure (P ) [52] is shown for the

modes LA, TA1, TA2 at the symmetry points X, K, L, and W for magnetic nickel. From top to

bottom: L(LA), X(LA), K(LA), W(LA and TA2: degenerate), K(TA2),X(TA2 and TA1: degener-

ate),W(TA1),K(TA1), and L(TA2 and TA1: degenerate).
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3.2 Scaling form of the phonon dispersion relation

Figure 3.2: Superposition of experimentally measured [55] normalized phonon density of states

for hcp-iron at 77 (filled circle), 106 (open inverted triangle), 133 (open square) and 171 (open

circle) GPa.
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Another implication of the scaling hypothesis is the following: Suppose the

phonon density of states is expressed as a function of the normalized frequency

ν ( ≡ ω
<ω>(P )

). Call it g(ν) and normalize it so that
∫
g(ν)dν = 1 (or any other

constant). Then the plot of g(ν) vs. ν will saturate when the pressure becomes

high enough. This is indeed what is seen (figure 3.2) in the experimentally mea-

sured vibrational spectra of hcp-iron. In fact, this scaling form of the vibrational

spectrum was proposed [55] before the more detailed form contained in equation

(3.1) was introduced in [52]. Hints of such behaviour are available elsewhere also

[56-60].

3.3 Linear relation between average phonon fre-

quency and density

For several materials we have found [54], through density functional perturbation

theory calculations of vibrational spectra at zero temperature, that the average

vibrational frequency is an excellent linear function of density. We show some

examples in the following figures:
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Figure 3.3: Plot of the average phonon frequency (< ω >) against density (ρ) for palladium.

The average frequency is computed via a pseudo-potential based electronic structure calculation.
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Figure 3.4: Plot of the average phonon frequency (< ω >) against density (ρ) for platinum. The

average frequency is computed via a Projector-Augmented-Wave (PAW) based electronic structure

calculation.
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Figure 3.5: Plot of the average phonon frequency (< ω >) against density (ρ) for rhodium. The

average frequency is computed via a PAW based electronic structure calculation.
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Figure 3.6: Plot of the average phonon frequency (< ω >) against density (ρ) for iridium. The

average frequency is computed via a pseudo-potential based electronic structure calculation.

41



3.3 Linear relation between average phonon frequency and density

8000 9600 11200 12800 14400 16000

 ρ (Kg/m
3
)

150

200

250

300

350

400

450
< 

ω
> 

(c
m

-1
)

              Copper           

Figure 3.7: Plot of the average phonon frequency (< ω >) against density (ρ) for copper. The

average frequency is computed via a pseudo-potential based electronic structure calculation.
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Figure 3.8: Plot of the average phonon frequency (< ω >) against density (ρ) for nickel (mag-

netic). The average frequency is computed via a pseudo-potential based electronic structure calcu-

lation.
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Figure 3.9: Plot of the average phonon frequency (< ω >) against density (ρ) for gold. The

average frequency is computed via a pseudo-potential based electronic structure calculation.
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Figure 3.10: Plot of the average phonon frequency (< ω >) against density (ρ) for hcp-iron (non-

magnetic). The average frequency is computed via a pseudo-potential based electronic structure

calculation.
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Figure 3.11: Plot of the average phonon frequency (< ω >) against density (ρ) for osmium. The

average frequency is computed via a pseudo-potential based electronic structure calculation.

3.4 Genesis of our conjecture

Finally, we show in this section how a combination of equation (3.1) with the

observation of linear dependence of average phonon frequency on density leads

to our proposal for a modification of the conventional form of the Birch’s law.

Equation (3.1) is applicable to all the branches of the phonon dispersion relation.

However, we are going to focus only on the three acoustic branches for which

ω → 0 as |k| → 0 and limk→0+ ωi(kt̂)/k = Speed of propagation of the i-th type

of acoustic wave in the direction of t̂ (which is a unit vector) = ci(t̂). From

equation (3.1),

lim
k→0+

∂ωi(kt̂)

∂k
= W (P ) lim

k→0+

∂

∂k
Fi(n

− 1
3kt̂) (3.7)

[ Please note that Fi is not an analytic function of its argument s around s = 0

for the acoustic branches.]

Define Gi(n
− 1

3k; t̂) = Fi(n
− 1

3kt̂) for k > 0 (for a particular value of t̂). Denote

n−
1
3k = x. Then limx→0+

∂Gi

∂x
is well defined and is finite. Let us call this limit
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3.4 Genesis of our conjecture

θi(t̂). Then

ci(t̂) = W (P )n−
1
3 θi(t̂) (3.8)

and consequently

ci(t̂)n
1
3 = W (P )θi(t̂) (3.9)

We have already recorded the empirical observation that the average phonon

frequency < ω > (P ) is a linear function of density. Since W (P ) is proportional

to < ω > (P ) the same statement is true of W (P ) also. It follows immediately

from equation (3.9) that: the product of elastic wave speed and density

raised to the power one-third can be expected to be a linear function

of density [This is the modified version (sometimes referred to as hypothesis H1)

of the Birch’s law that we will compare with the conventional form (sometimes

referred to as hypothesis H2) of the Birch’s law through much of the present

thesis]. However, this expectation must be tempered with the following points of

caution: (i) The scaling law expressed by equation (3.1) is asymptotic in nature

i.e. it is supposed to hold good only in the limit of high pressure – whereas, in

practice, the lower limit of the range of pressures that we will be interested in will

usually go down to about 15 GPa; (ii) We do not have a fundamental justification

of the validity of the scaling law even in those cases where it is found to work; and

(iii) The observation of the linear dependence of the average phonon frequency

on density is an empirical one. Thus it is necessary to test the extent of validity

of this modified version of the Birch’s law on a case by case basis.

This is what the remaining chapters are largely devoted to. In chapter 4

we examine data that already exists in the literature. These include laboratory

experiments and/or computational data on elastic constants and/or elastic wave

speed. When the data is available only for the elastic constants we convert them

to elastic wave speed by using the methods explained in chapter 2. In chapter 5 we

examine data generated by us (by using the density functional theory of electronic

structure calculation) for elastic wave speed in various elemental solids, over a

large range of densities in each case, at zero temperature. The relatively high

precision of this data enables us to meaningfully discriminate between the two

versions of the Birch’s law. In chapter 6 we progress to the far more challenging

calculations at finite temperature.
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Chapter 4

Analysis of data in the existing

literature

4.1 Introduction

We now begin the examination of various pieces of evidence to compare the two

alternative formulations of the Birch’s law. In this chapter we take up the data

that already exists in the published literature. These are from laboratory experi-

ments and various computational studies. During our search of the literature we

accepted only those data for analysis which appeared to be reasonably precise and

also covered a sufficiently wide range of densities. This second criterion is quite

essential. Over a range of densities not sufficiently wide the two versions of the

Birch’s law cannot be discriminated since the factor of density raised to the power

of one-third (that multiplies the elastic wave speed in the modified Birch’s law)

will not vary enough. In some cases only the data for elastic constants was avail-

able. These have been converted by us, using the relevant techniques described

in chapter 2, to elastic wave speeds. As we shall see these data are of varying

levels of precision and hence not all of them will permit conclusive analysis. In

this chapter, in all cases the data that we analyze is read via the application of a

highly precise data extraction software on the electronic version of the published

work.
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4.2 Methodology of analysis

In all cases the basic data is a set of values of some kind of elastic wave speed

(y1, y2, ...., yN) measured or computed for a set of densities (x1, x2, ....., xN). And

the question to be addressed is this: Which of the plots, y versus x or yx1/3 versus

x, is described more accurately by a straight line ? In some cases even a visual

examination of the two graphs will make the answer evident. But, in general, one

cannot rely on visual examination and a more quantitative parameter has to be

constructed. Since the question is one of deviation from the best fit straight line

given by, let’s say y = ax + b, obviously larger absolute values of the difference

yi − axi − b will mean poorer compliance with a linear dependence. To make

the metric of non-compliance dimensionless this can be scaled by something with

the dimension of y. We can choose yi itself for this purpose. However, this will

increase the weight of the data with smaller value of y. To avoid this we can

choose the range of variation of y across all values of x ( i.e. ymax− ymin ) as the

scale so that the absolute deviation will get equal weightage at all values of x.

Thus, for a given data point, the absolute value (fi) of the fractional deviation

(yi − axi − b)/(ymax − ymin) will be taken as the dimensionless measure of non-

compliance. Now the maximum value of this ratio across all values of x (fmax)

is a candidate for a measure of the deviation from the best linear fit. However,

this measure is too sensitive to the presence of any outlier in the data. Hence a

somewhat safer measure would appear to be the average fmean ≡
∑

i fi/N . In

our calculations we will always compute both the maximum fractional deviation

fmax and the mean fractional deviation fmean.

Having defined the measure of the deviation from linear fit, the comparison

of the two hypotheses H1 and H2 is completely straightforward. Whichever gives

the smaller value of fmax and fmean has to be taken as giving the more accurate

description. The ratio of the values of fmax or fmean for the two hypotheses will

sometimes be referred to as the factor of superiority of one version of the Birch’s

law over the other. In case fmax and fmean give conflicting conclusions it may

indicate the presence of serious outliers in the data or it may mean that our

procedure is indeterminate. This happens only with extreme rarity in all the

cases we have dealt with.
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4.3 Results

Due to its importance in terrestrial geophysics iron is the material most exten-

sively studied experimentally at extreme pressures and sometimes, simultane-

ously, at moderately high temperatures also. Most previous experimental verifi-

cations of the Birch’s law, involving data over a wide range of densities, have been

carried out for iron only. In these ranges of thermodynamic parameters iron has

the hexagonal-close-packed (hcp) structure. Several different experimental tech-

niques have been employed in these experiments to measure the speed of elastic

waves. The data that we analyse have been generated via one of the following

three techniques: (a) Inelastic x-ray scattering (IXS), (b) Nuclear Resonant In-

elastic x-ray scattering and (c) Impulsive Stimulated Light Scattering (ISLS). The

first two methods probe phonons. The IXS is the standard inelastic scattering of

x-rays by phonons – the measurements being made possible by the advent of high

intensity synchrotron radiation. On the other hand the NRIXS measures partial

phonon density of states of materials containing isotopes susceptible to Mössbauer

resonance. However, in the case of pure Fe-57, it is the total phonon density of

states that is measured. ISLS experiments create sound waves by the superposi-

tion of two laser beams at some angle of convergence. This superposition creates

an interference pattern and the spatially alternating heating that the absorption

of this interference pattern causes, ultimately creates counter-propagating sound

waves. Finally, this acoustic wave is probed by another light beam.

In our analysis of experimental data on iron we focus, to a large extent,

on the data summarized recently in a review article [26]. Figure 4.1 shows a

combined plot of the data for the P-wave velocity (VP ) against density (ρ) from

several experiments – along with a best linear fit to this combined data. The first

important point to notice is the presence of a large amount of scatter in the data

– both within individual experiments and amongst the different experiments.

This is partially due to the inherent uncertainties in these extremely difficult

experiments. The other important reason is that the thermodynamic conditions

are not always the same in these experiments. This level of irregularity in the data

means that the metrics that we defined in the previous section are substantially

meaningless as a tool of comparison between the two hypotheses of interest to
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Figure 4.1: The P-wave speed in hcp-iron (VP ), as measured in various experiments, is plotted

against density. The data are extracted from figure 6 of [26]. Original source of data: Open circle

[15,19]; Open square [17]; Open triangle [25]; and filled circle [23].
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us. The experimental error bars overwhelm the metrics designed for data that

is assumed to be of a high-precision and smoothly-varying type. However, we

present, in figure 4.2 a replot of the data in figure 4.1 in the VPρ
1/3 versus ρ

format – along with a best linear fit. A visual comparison between figures 4.1 and

4.2 shows that this set of data is certainly not incompatible with our proposed

modification to the Birch’s law. In fact the data cannot differentiate between

H1 and H2 on the basis of the visually apparent quality of linear fit in these two

figures. This is also supported by the data in table 4.1 where we present the values

of our metrics for the data from the individual experiments (the results of which

are combined in figure 4.1) and also for the combined data set. Not surprisingly

we find, in the first six rows of table 4.1, that the values of both fmax and fmean

are rather large in absolute value. And, even though the values of both fmax and

fmin are nominally always less for the modified Birch’s law, the differences are

not all that significant. This implies that our test is not particularly meaningful

for these data sets.
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Figure 4.2: The experimental data shown in figure 4.1 are now presented in the format VP ρ
1/3

against density (ρ).
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Table 4.1: Data for maximum and mean fractional deviation

System Velocity Maximum fractional deviation Mean fractional deviation

v − ρ vρ1/3 − ρ v − ρ vρ1/3 − ρ
hcp-fea P-wave 4.1× 10−2 4.0× 10−2 2.4× 10−2 2.0× 10−2

hcp-feb 1.1× 10−1 9.5× 10−2 3.9× 10−2 3.2× 10−2

hcp-fec 2.7× 10−2 1.7× 10−2 1.1× 10−2 6.1× 10−3

hcp-fed 6.1× 10−2 5.6× 10−2 2.0× 10−2 1.8× 10−2

hcp-fee 6.2× 10−2 4.4× 10−2 3.7× 10−2 2.6× 10−2

hcp-fef 9.1× 10−2 8.0× 10−2 2.5× 10−2 2.2× 10−2

CaO P-wave 2.3× 10−2 1.2× 10−2 9.7× 10−3 4.7× 10−3

CaSiO3 3.1× 10−2 1.6× 10−2 1.6× 10−2 8.0× 10−3

MgO 2.8× 10−2 9.5× 10−3 1.1× 10−2 3.9× 10−3

MgSiO3 3.4× 10−2 1.8× 10−2 1.4× 10−2 7.3× 10−3

Fe0.85Si0.15 Bulk 2.6× 10−2 6.4× 10−3 1.0× 10−2 2.2× 10−3

Fe3C 2.0× 10−2 5.8× 10−3 7.8× 10−3 1.4× 10−3

Fe3S 2.2× 10−2 2.6× 10−3 8.8× 10−3 1.1× 10−3

FeO 2.4× 10−2 2.3× 10−3 1.0× 10−2 1.1× 10−3

FeS2 1.8× 10−2 4.6× 10−3 9.6× 10−3 2.7× 10−3

FeSi 2.0× 10−2 4.8× 10−3 8.3× 10−3 1.5× 10−3

FeS 1.8× 10−2 4.5× 10−3 8.4× 10−3 1.7× 10−3

Fe 2.3× 10−2 5.5× 10−3 1.0× 10−2 2.4× 10−3

a: [23]; b: [15,19]; c: [17]; d: [25]; e: [20]; f: [23,15,19,17 and 25 combined].
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The next four rows in table 4.1 relate to data generated [61] for P-wave velocity

with density-functional-theory-based calculations at zero temperature (as we will

do in the chapter 5) for some oxides and silicates of interest in the studies of

the mantle of the Earth. The data actually used in our analysis was extracted

from figure 8 of [61]. The remaining entries in this table are for bulk speed in

iron and several of its compounds. To get the bulk speed the bulk modulus and

the density are measured at the relevant thermodynamic conditions via x-ray

diffraction measurements in a diamond anvil cell. Then the bulk speed is defined

as the square root of the bulk modulus divided by the density. The data that we

use are extracted from figure 3 of [20]. Inspection of the values of fmax and fmean

in the relevant rows of table 4.1 makes it evident that the values of either fmax or

fmean are consistently several times smaller for the V ρ1/3− ρ plot. The reduction

factor for the metric is however variable – going all the way up to almost 10 in

two instances.

Table 4.2: Data for maximum and mean fractional deviation

System Data Maximum fractional deviation Mean fractional deviation

type∗ v − ρ vρ1/3 − ρ v − ρ vρ1/3 − ρ
Ar C 2.8× 10−2 8.7× 10−3 1.3× 10−2 4.2× 10−3

C 2.9× 10−2 9.5× 10−3 1.4× 10−2 4.2× 10−3

Ar E 1.9× 10−2 8.5× 10−3 6.7× 10−3 3.3× 10−3

E 3.3× 10−2 3.1× 10−3 1.1× 10−2 1.2× 10−3

Co E 5.3× 10−2 3.6× 10−2 2.7× 10−2 1.8× 10−2

E 4.1× 10−2 3.1× 10−2 2.0× 10−2 1.5× 10−2

C 1.9× 10−2 9.9× 10−3 1.2× 10−2 6.6× 10−3

Ru C 2.0× 10−2 6.4× 10−3 1.4× 10−2 4.6× 10−3

He E 5.5× 10−2 3.6× 10−2 4.8× 10−2 3.1× 10−2

Fe C 1.7× 10−2 1.3× 10−2 1.1× 10−2 4.6× 10−3

Kr E 2.1× 10−2 8.4× 10−3 4.6× 10−3 2.8× 10−3

E 1.0× 10−2 1.1× 10−2 3.5× 10−3 4.6× 10−3

Fe C 2.3× 10−2 1.0× 10−2 9.8× 10−3 5.9× 10−3

Fe0.875Si0.125 C 1.3× 10−2 3.6× 10−3 8.9× 10−3 2.2× 10−3

* E: Experimental work; C: Computational work.
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Now we proceed to the entries of table 4.2. These data sets represent outcomes

of either laboratory experiments or computation. First of all, we identify all the

rows. Row 1: Computational work on argon based on density functional theory

[62]; the velocity data used is the minimum longitudinal acoustic velocity in a

single crystal. Row 2: Same as row 1 but the velocity data used is the maximum

longitudinal acoustic velocity in a single crystal. Row 3: Experimental work on

argon [63]; the velocity data used is the minimum longitudinal acoustic velocity

in a single crystal. Row 4: Same as row 3 but the velocity data used is the

maximum longitudinal acoustic velocity in a single crystal. Row 5: Measurement

[64] of P-wave velocity in hcp-cobalt in an impulsive stimulated light scattering

experiment; data analysed is taken from table I of [64]. Row 6: Inelastic x-ray

scattering measurement of P-wave velocity in hcp-cobalt [64]; data analysed is

taken from table I of this reference. Row 7: Density-functional-theory-based

calculation on hcp-cobalt [65]. Data analysed is the value of P-wave velocity

taken from table I of [64]. Row 8: Density-functional-theory-based calculation

on hcp-ruthenium [66]; elastic constants and unit cell volumes available in table

V of this reference are used by us to calculate P-wave velocity as a function of

density. Row 9: Brillouin scattering measurements on hcp-helium-4 in a diamond

anvil cell [67]; values of elastic constant and density available in tables I and II

were used by us to calculate P-wave velocity. Row 10: Density-functional-theory-

based calculation on hcp-iron [68]; data analysed is taken directly from table 1

of this work. Row 11: Experimental work on cubic-krypton using the technique

of Brillouin scattering [69]; figures 2 and 5 of this reference were used to get the

maximum longitudinal acoustic velocity as a function of density. Row 12: Same

as row 11 but the velocity data is the minimum longitudinal acoustic velocity.

Row 13: Density-functional-theory-based calculation on hcp-iron [70]; data from

figures 1 and 3(a) have been used to calculate P-wave velocity as a function of

density. Row 14: Same as row 13 but for Fe0.875Si0.125. It may be noted that

all the density-functional-theory-based calculations referred to above are at zero

temperature.

Inspection of the tables 4.1 and 4.2 and comparison of the values of fmax

and/or fmean for the two alternative laws leads us to conclude that the modified

version of the Birch’s law works essentially consistently more accurately than the
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standard version – although the factor of superiority is not uniform. Unfortu-

nately, the available experimental data often contains a level of uncertainty that

is much larger than the small systematic differences between the predictions of

the two alternative versions. It is interesting to recognize that the conventional

Birch’s law would seem to work fairly well in an absolute sense if one judges

merely by the values of fmax and fmean. Often it is only a few percent. However,

if the primary objective is to be able to extrapolate speed data from the low

density domain to the high density domain with an acceptable level of precision

this may not be good enough. The modified version that we are testing will

show its superiority when the data is sufficiently precise. The improved accu-

racy of the modified version becomes crucial in the context of extrapolation of

relatively low density data to extreme densities. It thus becomes necessary to

generate many more instances of high precision data for speed of elastic waves

in extreme conditions so that the modified version of the Birch’s law may be

subjected to more extensive testing. Presently this type of high precision data

can be generated only with density-functional-theory-based calculations. It is to

such calculations that we devote the next two chapters. Chapter 5 deals only

with zero temperature calculations done by us whereas chapter 6 is about finite

temperature calculations.
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Chapter 5

Ab initio calculations at zero

temperature

5.1 Introduction

In this chapter we present the results of our analysis of elastic wave speed at

zero temperature in some elemental solids. We generated the data analysed here

by using the density functional theory (DFT) of electronic structure calculation.

We have done these calculations for a large number of elemental solids so that

the validity of the modified version of the Birch’s law can be tested on a large

data set. The choice of materials has been dictated primarily by the following two

considerations: (i) The stability of a particular crystalline form over a large range

of pressures (typically from 15 to 360 GPa). This is essential since the scaling

law of the phonon dispersion relation will not hold good in the entire pressure

range if there is a structural phase transition in this region. The modified version

of the Birch’s law is based on the assumption of validity of this scaling law. If

this breaks down we certainly cannot expect the modified version to work. And

we need to work in a large range of pressures because unless the elastic wave

speed can be computed over a large enough range of densities it is not possible

to discriminate between the two versions of the Birch’s law (Note: Over a narrow

enough range of densities the modified form will effectively be indistinguishable

from the original one). (ii) Our previous experience [52] of working with some of

these materials for the study of the scaling law.
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5.2 Methodology

Section 2.2.4 provides a complete description of the computational objectives and

the procedure. For the purposes of this chapter it can be summarized as follows:

(i) Calculate the equilibrium unit cell structure at the pressure of interest. (ii)

Calculate the ground state electronic energy for various applied distortions [Note:

In principle, free energy at zero temperature also has a contribution from the zero-

point quantum fluctuation of the lattice. However, we checked in some cases that

this is small enough to be ignored. Due to this reason, for zero temperature

calculations, we ignored phonons altogether.]

In the first step we minimize, using the QE software, the enthalpy per unit

cell. This minimization is done with respect to the lattice parameters and also

(when more than one atom is present within the unit cell) the relative position

vectors of the atoms within the unit cell. In the second step the electronic ground

state energy is calculated for various types of distortions of the unit cell (after

optimizing the positions of the atoms within the unit cell in case more than one

atom is present). Each of these distortions create a crystalline solid with a new

unit cell geometry. As a result all calculations actually are for a periodic lattice

with a small unit cell. This makes calculations for a large number of materials

feasible even with modest computational resources.

The elastic constant were calculated with the help of the ElaStic software

[46]. However, all the calculations by the software involving the fitting of en-

ergy against the amplitude of distortion were cross-checked by us manually for

consistency. After the elastic constants are calculated (Note: At zero temper-

ature isothermal and adiabatic elastic constants are identical), we calculate the

direction-averaged value of the speed of longitudinal acoustic waves. This is

ideally what we might measure for the longitudinal wave speed through an in-

elastic scattering experiment for a poly-crystalline sample if the grains are truly

randomly oriented (see [71] for a more careful analysis). We also calculate the

aggregate P-wave speed for a polycrystalline material. It should be remembered

that the direction-averaged value of the longitudinal acoustic waves is not quite

the same as the P-wave speed – although they are very close.
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We have used the Projector-Augmented-Wave (PAW) method for doing our

DFT-based calculations. However, in many cases we have repeated the calcu-

lation with pseudo-potential based calculations to see if there is any qualitative

difference. In all cases first of all convergence with respect to the cut-off energy

and the k-grid in the first Brillouin zone was checked for the energy per unit cell

at a selected set of pressures through the full range upto 360 GPa. The targeted

level of convergence was around 1 meV. As a result the energy cut-offs and the

k-grid resolutions used by us are quite high. We first of all find out the values

of the energy cut-off and the k-grid resolution that are required, at each of the

selected pressures, to achieve the desired convergence. Then, for the production

runs, the maximum values (across all pressures) of these parameters are used for

calculations at all the pressures. Due to these high energy cut-offs the Pulay

stress is quite low [72] and is estimated to be of the order of 0.05 GPa. In tables

5.1 and 5.2 we present the values of the most important parameters for all the

DFT-based calculations (Note: In these two tables the unit of energy is Rydberg

– abbreviated as Ry).

All DFT-based calculations make certain choices and/or approximations whose

effect on the final outcome are rarely analyzable on a first principles basis. As

a result it is a standard practice to compare, whenever possible, computational

outcomes with laboratory experiments. We have also done such comparisons,

both for lattice constants and elastic constants, with experimental data or pre-

vious computational results – whenever we could find such data [73-102]. We

found that disagreement between our calculated values of lattice parameters and

experimental values was always less than two percent – usually much less.
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Table 5.1: DFT-parameters for the calculation of the elastic constants with pseu-

dopotentials.

System Energy

cut-off

k-mesh Exc

type

Pseudo potential file Library

(Ry)

Cu 70 24×24×24 GGA Cu.pbe-n-van ak.UPF Quantum

Ir 180 20×20×20 LDA Ir.pz-sp-hgh.UPF Espresso

Ni 120 24×24×24 GGA Ni.pbe-nd-rrkjus.UPF

Pd 80 28×28×28 LDA Pd.pz-n-rrkjus psl.0.2.2.UPF

Hcp-Fe 50 21×21×21 GGA Fe.pw91-sp-van ak.UPF

Os 70 24×24×20 LDA Os.pw-mt fhi.UPF

Re 80 16×16×12 GGA Re.pw91-n-van.UPF

Table 5.2: DFT-parameters for the calculation of the elastic constants using the

PAW method.

System Energy

cut-off

k-mesh Exc

type

PAW dataset Library

(Ry)

Cu 180 24×24×24 GGA Cu.pbe-kjpaw.UPF Quantum

Ir 140 24×24×24 GGA Ir.pbesol-n-kjpaw psl.0.2.3.UPF Espresso

Ni 80 24×24×24 GGA Ni.pbesol-n-kjpaw psl.0.1.UPF

Pd 80 24×24×24 GGA Pd.pbesol-n-kjpaw psl.0.2.2.UPF

Pt 70 28×28×28 GGA Pt.pbesol-n-kjpaw psl.0.1.UPF

Rh 130 24×24×24 GGA Rh.pbesol-spn-kjpaw psl.0.2.3.UPF

Mo 80 24×24×24 GGA Mo.pbesol-spn-kjpaw psl.0.2.UPF

Hcp-Fe 140 18×18×12 GGA Fe.pbesol-spn-kjpaw psl.0.2.1.UPF

Os 70 24×24×18 GGA Os.pbesol-n-kjpaw psl.0.2.3.UPF Standard

Solid-

State

Re 80 16×16×12 GGA Re.pbesol-spn-kjpaw psl.0.3.1.UPF Pseudo-

Potential
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5.3 Results

We have studied ten elemental solids. Of these nickel, iridium, palladium, plat-

inum, rhodium and copper have face-centered-cubic (fcc) lattice, molybdenum

has a body-centered-cubic (bcc) lattice and iron, rhenium and osmium have

hexagonal-close-packed lattice in the range of pressure of interest (roughly from

15 GPa to 360 GPa – partly to avoid the region of bcc to hcp transition of iron,

the most important element from the point of view of actual application in ter-

restrial geophysics). Also while nickel is magnetic, hcp-iron is non-magnetic in

this range of pressures [103-106].

After calculating the equilibrium geometry of the unit cell for the applied

pressure different kinds of distortions, as explained in section 2.2.4, are applied.

Through an analysis of the energies for these distorted states, the single crystal

elastic constants are computed. Since these are zero temperature calculations

isothermal and adiabatic elastic constants are identical. In tables 5.3 through

5.15 we tabulate the single crystal Birch coefficients (see section 2.2.7 for the

relationship between the Birch coefficients and the elastic constants). In every

case data is collected in the range of 0 to 360 GPa with a uniform spacing of 30

GPa.
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Table 5.3: Birch coefficients of non-magnetic hcp-iron at various densities: PAW

method.

ρ B11 B12 B13 B33 B44

(Kg/m3) (GPa) (GPa) (GPa) (GPa) (GPa)

9409.5 598.5 195.9 164.5 675.8 188.4

10167.4 799.4 300.0 252.1 897.2 235.2

10776.9 983.2 398.0 334.9 1106.2 275.4

11298.1 1155.6 488.0 418.4 1296.3 314.2

11759.2 1320.4 587.4 494.5 1476.7 349.8

12176.2 1479.3 670.7 575.7 1653.8 382.8

12558.5 1633.4 765.5 650.6 1816.6 416.8

12912.5 1783.8 854.6 725.8 1980.1 448.5

13246.3 1932.1 940.8 801.9 2141.8 479.1

13559.6 2076.9 1027.9 875.8 2299.6 509.9

13856.8 2221.6 1109.6 950.9 2453.4 538.6

14139.8 2361.9 1199.1 1022.9 2602.5 567.4

14410.0 2503.4 1277.7 1097.1 2753.1 595.5

Table 5.4: Birch coefficients of non-magnetic hcp-iron at various densities:

Pseudo-potential method.

ρ B11 B12 B13 B33 B44

(Kg/m3) (GPa) (GPa) (GPa) (GPa) (GPa)

9105.9 534.8 173.7 149.1 599.7 168.3

9913.9 737.4 277.3 236.4 821.4 215.7

10552.1 921.4 375.8 319.8 1022.5 256.8

11092.4 1093.4 470.9 400.9 1212.7 295.0

11567.5 1257.6 563.2 480.2 1393.5 330.3

11995.2 1416.4 654.2 557.9 1567.7 364.9

12386.4 1571.1 740.7 635.4 1736.0 397.1

12748.7 1722.5 828.5 711.3 1898.5 429.1

13090.6 1872.7 913.1 788.6 2065.8 460.7

13405.8 2017.9 995.8 863.6 2220.2 491.0

13706.7 2160.8 1080.1 938.6 2375.1 520.8

13993.1 2303.0 1161.3 1014.2 2528.3 549.9

14268.0 2443.8 1249.1 1086.9 2680.9 578.9
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Table 5.5: Birch coefficients of osmium at various densities: PAW method.

ρ B11 B12 B13 B33 B44

(Kg/m3) (GPa) (GPa) (GPa) (GPa) (GPa)

22649.5 796.0 245.6 246.1 883.1 277.5

24033.0 1013.6 346.6 340.6 1117.2 331.2

25186.8 1212.6 447.2 429.2 1333.8 379.1

26191.1 1400.3 539.6 516.7 1540.5 422.2

27088.8 1578.1 633.2 600.4 1734.4 462.4

27907.9 1749.8 725.3 681.5 1922.8 500.3

28664.9 1913.6 810.3 764.0 2107.3 534.1

29371.1 2074.8 900.7 841.7 2286.0 569.0

30035.4 2231.7 985.6 917.9 2462.8 599.9

30664.4 2385.0 1074.6 992.1 2635.3 629.3

31262.7 2534.6 1173.4 1063.0 2790.1 661.4

31833.9 2683.6 1248.3 1141.0 2952.1 690.4

32375.0 2826.6 1331.3 1216.5 3108.8 718.0

Table 5.6: Birch coefficients of osmium at various densities: Pseudo-potential

method.

ρ B11 B12 B13 B33 B44

(Kg/m3) (GPa) (GPa) (GPa) (GPa) (GPa)

22951.6 841.9 249.4 249.0 934.4 299.7

24306.9 1061.5 349.7 338.8 1169.9 355.8

25444.9 1263.5 446.1 424.5 1387.7 405.8

26440.4 1453.3 540.0 507.5 1593.3 451.6

27331.1 1633.4 631.8 588.5 1788.9 493.9

28153.8 1808.6 722.7 668.9 1979.7 534.6

28907.8 1975.7 812.6 747.7 2162.7 572.7

29609.4 2136.9 901.7 825.5 2339.8 608.4

30269.6 2293.5 990.4 902.6 2512.7 642.8

30898.3 2447.3 1078.6 979.5 2683.4 676.4

31507.5 2602.0 1166.7 1056.9 2855.2 710.1

32068.1 2748.9 1251.7 1131.9 3017.3 740.5

32611.3 2897.1 1336.3 1207.2 3180.2 771.0
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Table 5.7: Birch coefficients of rhenium at various densities: PAW method.

ρ B11 B12 B13 B33 B44

(Kg/m3) (GPa) (GPa) (GPa) (GPa) (GPa)

21314.2 657.5 285.7 232.6 717.4 174.9

22773.6 839.7 398.6 317.1 914.6 214.1

23994.4 1005.5 502.4 397.4 1099.9 247.9

25063.5 1163.8 597.7 475.8 1270.0 278.6

26025.6 1318.7 688.4 552.5 1427.3 308.4

26907.1 1465.1 780.7 626.6 1577.9 336.0

27724.6 1608.6 871.0 698.3 1728.8 362.2

28490.1 1745.6 959.1 767.3 1885.5 387.1

29211.7 1886.1 1040.2 836.1 2044.1 413.0

29895.5 2029.8 1114.8 903.7 2209.2 440.7

30547.0 2173.7 1193.5 968.6 2370.7 469.2

31168.2 2321.2 1264.1 1035.5 2536.9 497.3

31763.7 2470.4 1338.7 1098.6 2700.6 531.4

Table 5.8: Birch coefficients of rhenium at various densities: Pseudo-potential

method.

ρ B11 B12 B13 B33 B44

(Kg/m3) (GPa) (GPa) (GPa) (GPa) (GPa)

21008.2 612.8 269.2 223.6 667.2 162.3

22526.8 793.4 379.9 309.0 865.1 200.0

23791.0 955.1 482.6 388.1 1041.3 232.7

24897.9 1107.3 576.3 464.0 1201.2 261.8

25896.0 1251.5 662.6 538.6 1348.5 288.3

26813.0 1389.8 746.4 609.5 1488.1 312.8

27667.0 1521.8 829.3 676.7 1627.3 335.7

28469.8 1650.6 909.9 740.2 1769.2 358.0

29230.1 1774.3 990.0 802.3 1912.9 380.6

29953.8 1906.6 1058.4 863.7 2056.4 404.5

30645.0 2038.1 1123.4 924.6 2203.6 430.3

31309.0 2172.2 1187.5 983.0 2351.6 457.6

31947.1 2307.7 1247.3 1040.8 2496.2 485.5
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Table 5.9: Birch coefficients of magnetic nickel at various densities: PAW and

pseudo-potential methods.

PAW Pseudopotential

ρ B11 B12 B44 ρ B11 B12 B44

(Kg/m3) (GPa) (GPa) (GPa) (Kg/m3) (GPa) (GPa) (GPa)

9345.6 327.8 185.8 156.0 8915.1 266.7 152.2 126.3

10337.7 495.3 309.2 221.1 10034.2 432.6 271.5 189.6

11081.2 647.4 424.6 279.0 10849.7 574.0 385.3 244.1

11693.3 790.2 535.3 332.4 11513.6 735.6 480.2 296.8

12222.9 926.4 643.3 382.8 12084.1 848.7 592.5 344.9

12693.6 1055.6 749.6 430.2 12590.5 971.5 695.9 391.0

13120.7 1181.2 854.1 475.3 13046.9 1103.1 792.8 438.1

13513.5 1301.7 958.2 518.5 13466.2 1228.5 890.1 481.6

13878.5 1419.2 1060.8 559.7 13854.9 1338.8 992.5 522.2

14220.4 1533.4 1162.9 598.8 14223.5 1456.7 1092.0 566.8

14542.8 1645.6 1264.2 636.7 14559.8 1576.8 1183.6 606.6

14848.5 1754.1 1365.4 672.5 14884.0 1675.4 1288.9 644.1

15139.5 1861.4 1465.6 706.1 15190.8 1780.9 1387.0 680.7

Table 5.10: Birch coefficients of palladium at various densities: PAW and pseudo-

potential methods.

PAW Pseudopotential

ρ B11 B12 B44 ρ B11 B12 B44

(Kg/m3) (GPa) (GPa) (GPa) (Kg/m3) (GPa) (GPa) (GPa)

12073.7 246.7 183.6 81.6 12412.9 273.7 206.8 86.1

13461.4 418.9 326.6 133.3 13716.1 443.6 350.5 136.5

14449.9 573.6 456.0 178.4 14666.7 603.3 479.6 181.4

15247.5 717.9 579.0 219.5 15439.0 750.3 602.9 223.5

15929.4 856.5 697.6 258.2 16102.4 892.5 723.2 263.3

16530.0 990.4 812.5 296.1 16688.2 1031.4 837.8 302.0

17072.2 1120.0 925.3 332.5 17217.2 1160.0 951.8 338.3

17568.1 1246.4 1036.0 367.8 17702.7 1293.6 1060.5 374.3

18027.6 1371.4 1144.9 402.5 18152.6 1419.8 1170.8 408.7

18456.8 1493.5 1252.5 436.5 18573.2 1542.5 1278.9 442.8

18859.7 1613.3 1358.6 469.5 18979.5 1669.7 1387.1 477.6

19252.1 1735.5 1466.2 503.9 19343.7 1787.3 1491.2 509.5

19603.9 1848.4 1568.0 534.1 19699.8 1904.4 1598.2 540.4
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Table 5.11: Birch coefficients of iridium at various densities: PAW and pseudo-

potential methods.

PAW Pseudopotential

ρ B11 B12 B44 ρ B11 B12 B44

(Kg/m3) (GPa) (GPa) (GPa) (Kg/m3) (GPa) (GPa) (GPa)

22492.8 645.9 261.6 281.2 22896.9 682.4 272.0 295.5

24008.0 843.6 382.6 360.0 24378.9 878.6 390.1 376.1

25234.3 1023.1 497.2 431.0 25593.6 1059.3 501.8 449.9

26285.2 1191.7 607.3 496.7 26634.8 1227.6 610.2 517.6

27214.0 1352.8 713.9 559.1 27567.7 1390.6 715.2 583.5

28053.7 1507.1 818.1 618.5 28400.1 1543.2 817.2 644.2

28824.9 1657.6 920.2 675.8 29172.8 1691.8 918.7 703.4

29540.9 1804.4 1020.3 731.3 29900.8 1841.6 1018.4 762.4

30210.8 1947.3 1119.0 784.8 30578.4 1979.8 1120.2 818.9

30842.1 2087.6 1216.2 837.3 31201.1 2118.7 1214.9 871.4

31440.7 2225.0 1312.5 888.0 31808.2 2255.1 1313.0 925.0

32010.4 2360.3 1407.7 937.9 32392.6 2390.3 1411.0 977.8

32556.0 2493.1 1502.8 986.8 32923.9 2515.8 1503.9 1025.3

Table 5.12: Birch coefficients of copper at various densities: PAW and pseudo-

potential methods.

PAW Pseudopotential

ρ B11 B12 B44 ρ B11 B12 B44

(Kg/m3) (GPa) (GPa) (GPa) (Kg/m3) (GPa) (GPa) (GPa)

8627.9 171.1 117.6 80.2 8821.7 176.9 122.6 82.0

10031.4 330.4 248.3 141.2 10222.1 331.6 251.3 139.5

10967.1 474.8 367.4 191.1 11173.1 472.6 367.9 186.5

11703.8 610.1 482.3 236.1 11926.0 607.0 479.0 230.0

12322.3 743.1 594.7 280.8 12562.0 736.0 586.9 271.8

12860.9 874.6 702.7 323.1 13118.6 860.2 692.3 312.4

13346.7 1003.8 808.6 364.1 13618.9 981.5 797.0 352.4

13781.2 1121.1 917.5 404.1 14074.6 1101.6 899.4 391.6

14184.2 1249.2 1021.2 444.7 14494.5 1216.5 1002.1 430.0

14558.2 1386.4 1120.2 486.0 14890.8 1332.4 1104.7 468.6

14906.2 1492.3 1232.9 529.1 15253.4 1442.8 1204.8 505.0

15237.7 1620.4 1333.4 565.1 15600.0 1553.9 1305.3 541.3

15548.8 1748.0 1430.5 602.6 15928.7 1664.0 1405.1 577.1

65



5.3 Results

Table 5.13: Birch coefficients of platinum at various densities: PAW method.

ρ B11 B12 B44

(Kg/m3) (GPa) (GPa) (GPa)

21245.6 355.5 253.3 80.9

23089.9 538.2 394.1 131.8

24486.6 703.3 524.5 178.8

25645.0 858.7 648.8 223.5

26647.0 1006.7 768.7 266.3

27538.0 1149.4 885.1 307.6

28351.7 1289.0 999.5 348.2

29098.4 1424.8 1111.8 387.7

29797.0 1559.0 1222.9 426.8

30441.3 1688.4 1331.4 464.1

31052.5 1816.6 1439.1 501.2

31632.6 1943.3 1545.8 537.8

32184.6 2067.9 1651.7 573.8

Table 5.14: Birch coefficients of rhodium at various densities: PAW method.

ρ B11 B12 B44

(Kg/m3) (GPa) (GPa) (GPa)

12492.7 468.7 207.7 211.4

13565.5 660.8 331.1 289.1

14394.0 833.9 446.1 357.6

15087.9 995.9 556.4 420.8

15692.8 1150.2 663.3 480.4

16235.2 1299.2 767.7 537.4

16728.0 1442.9 870.0 592.0

17183.3 1583.4 970.7 645.0

17607.7 1720.7 1070.2 696.4

18005.7 1855.2 1168.4 746.3

18390.0 1990.8 1267.3 797.1

18744.7 2119.7 1363.5 844.2

19079.3 2244.2 1458.5 889.4
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Table 5.15: Birch coefficients of molybdenum at various densities: PAW method.

ρ B11 B12 B44

(Kg/m3) (GPa) (GPa) (GPa)

10278.2 490.5 175.7 106.4

11231.4 659.3 272.0 145.1

11997.0 811.7 363.1 181.4

12652.1 953.9 450.4 213.9

13234.3 1081.0 535.3 243.2

13764.7 1199.1 618.9 274.2

14253.9 1323.1 702.7 313.3

14707.4 1440.0 792.3 350.4

15131.0 1562.6 875.6 393.4

15530.3 1662.3 967.2 422.1

15909.4 1764.6 1055.6 446.0

16270.0 1867.0 1144.7 468.6

16615.3 1958.5 1231.7 487.1

Once the single crystal elastic constants are known we calculate the direction-

averaged value of the longitudinal acoustic wave speed as well as the polycrys-

talline aggregate elastic constants (bulk modulus and shear modulus) using the

methods described in section 2.3. The computed value of the P-wave speed de-

pends on the averaging scheme employed to calculate the elastic moduli of the

aggregate. For hcp materials the Voigt and Reuss schemes provide the two limits

[43] of the elastic moduli. For the cubic materials the bounds suggested by Hashin

and Shtrikman [44] are used. The two speeds calculated using these two limits

are taken as the two limits of the region of uncertainty for VP . Half of the width

of this region of uncertainty can be thought of as the (definitional) error bar in

the calculation of the P-wave speed. However, these error bars are too small to

be shown directly in any graph where the elastic wave speed (alone or multiplied

by some factor) is one of the two variables plotted.

We now proceed to the comparison of the hypotheses H1 and H2 in the light

the data just presented. In some of the cases (palladium, platinum, rhodium,

nickel, iridium and hcp-iron), data for which are presented in figures 5.1 through

5.12 (only for VP , not for < VLA >), even visually it is clear that the modified
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Birch’s law works better. For each of these elements we present the plot of the

P-wave speed (VP ) vs. the density (ρ). The best linear fit is also shown as a

continuous line. The dashed line in each case is the best quadratic fit and passes

essentially through every data point. Visual comparison of this with the best fit

straight line shows emphatically that the best linear fit is actually not so good.

The plots of VPρ
1/3 vs. ρ , on the other hand, show that the best fit straight line

passes through the data points. For each case comparison of the two plots makes

it evident that the product VPρ
1/3 gives a better linear fit than VP alone.
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Figure 5.1: P-wave speed VP against density (ρ) for palladium (PAW method).
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Figure 5.2: VP ρ1/3 against density (ρ) for palladium (PAW method).
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Figure 5.3: P-wave speed VP against density (ρ) for platinum (PAW method).
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Figure 5.4: VP ρ1/3 against density (ρ) for platinum (PAW method).
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Figure 5.5: P-wave speed VP against density (ρ) for nickel (PAW method).
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Figure 5.6: VP ρ1/3 against density (ρ) for nickel (PAW method).
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Figure 5.7: P-wave speed VP against density (ρ) for iridium (PAW method).
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Figure 5.8: VP ρ1/3 against density (ρ) for iridium (PAW method).
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Figure 5.9: P-wave speed VP against density (ρ) for hcp-iron (PAW method).
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Figure 5.10: VP ρ1/3 against density (ρ) for hcp-iron (PAW method).
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Figure 5.11: P-wave speed VP against density (ρ) for rhodium (PAW method).
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Figure 5.12: VP ρ1/3 against density (ρ) for rhodium (PAW method).

The values of our chosen metrics for goodness of linear fit are shown in tables

5.16 and 5.17 [Note: In every case the lowest density data point corresponds to

zero pressure and this is excluded from the calculation of the metrics fmax and

fmean]. For both < VLA > and VP , it can be seen that the metric for the modified

Birch’s law is smaller than that for the original version by a factor that ranges

between 2 and (about) 20 [Note: The only exception is the PAW calculation for

copper]. And hence the modified version clearly works better.
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Table 5.16: Data for maximum fractional deviation

Maximum fractional deviation

System Method < VLA > VP Maximum

fractional

uncertainty

for VP

V − ρ V ρ1/3 − ρ V − ρ V ρ1/3 − ρ

Ni PP 1.8× 10−2 5.0× 10−3 2.0× 10−2 9.3× 10−3 5.9× 10−3

PAW 2.2× 10−2 5.2× 10−3 2.5× 10−2 7.4× 10−3 6.3× 10−3

Ir PP 2.0× 10−2 5.3× 10−3 2.0× 10−2 5.8× 10−3 1.5× 10−3

PAW 1.8× 10−2 3.9× 10−3 1.8× 10−2 3.8× 10−3 1.4× 10−3

Pd PP 1.7× 10−2 9.6× 10−4 1.8× 10−2 1.8× 10−3 4.9× 10−3

PAW 2.2× 10−2 1.0× 10−3 1.7× 10−2 5.0× 10−4 5.7× 10−3

Pt PP[73] 1.7× 10−2 3.5× 10−3 1.8× 10−2 4.0× 10−3 3.2× 10−3

PAW 1.7× 10−2 9.7× 10−4 1.7× 10−2 1.6× 10−3 2.8× 10−3

Rh PAW 1.8× 10−2 2.2× 10−3 1.8× 10−2 2.3× 10−3 2.2× 10−3

Cu PP 1.1× 10−2 7.0× 10−3 1.4× 10−2 4.7× 10−3 8.5× 10−3

PAW 2.6× 10−3 1.4× 10−2 5.3× 10−3 1.4× 10−2 7.5× 10−3

Mo PAW 2.9× 10−2 1.4× 10−2 3.2× 10−2 1.6× 10−2 1.0× 10−4

Hcp-Fe PP 1.8× 10−2 1.9× 10−3 1.7× 10−2 1.4× 10−3 1.3× 10−3

PAW 2.0× 10−2 4.5× 10−3 2.0× 10−2 3.9× 10−3 1.5× 10−3

Re PP 3.1× 10−2 1.3× 10−2 3.0× 10−2 1.2× 10−2 1.9× 10−3

PAW 1.4× 10−2 9.7× 10−3 1.4× 10−2 1.0× 10−2 2.0× 10−3

Os PP 2.4× 10−2 8.8× 10−3 2.3× 10−2 8.6× 10−3 7.7× 10−4

PAW 2.5× 10−2 9.6× 10−3 2.5× 10−2 9.4× 10−3 8.8× 10−4
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Table 5.17: Data for mean fractional deviation

System Method < VLA > VP

V − ρ V ρ1/3 − ρ V − ρ V ρ1/3 − ρ

Ni PP 7.9× 10−3 1.7× 10−3 1.0× 10−2 3.3× 10−3

PAW 1.0× 10−2 2.5× 10−3 1.1× 10−2 3.6× 10−3

Ir PP 8.4× 10−3 2.2× 10−3 8.8× 10−3 2.6× 10−3

PAW 7.8× 10−3 1.7× 10−3 7.8× 10−3 1.7× 10−3

Pd PP 7.1× 10−3 3.5× 10−4 7.5× 10−3 7.0× 10−4

PAW 8.1× 10−3 4.6× 10−4 6.8× 10−3 2.6× 10−4

Pt PP[73] 9.9× 10−3 2.0× 10−3 1.0× 10−2 2.2× 10−3

PAW 6.9× 10−3 3.4× 10−4 7.2× 10−3 6.3× 10−4

Rh PAW 7.4× 10−3 8.6× 10−4 7.5× 10−3 9.8× 10−4

Cu PP 4.5× 10−3 2.8× 10−3 6.2× 10−3 1.6× 10−3

PAW 1.3× 10−3 6.4× 10−3 2.1× 10−3 6.7× 10−3

Mo PAW 1.2× 10−2 5.0× 10−3 1.3× 10−2 5.7× 10−3

Hcp-Fe PP 7.3× 10−3 7.4× 10−4 6.9× 10−3 4.6× 10−4

PAW 8.3× 10−3 1.8× 10−3 7.9× 10−3 1.4× 10−3

Re PP 1.1× 10−2 4.5× 10−3 1.1× 10−2 4.6× 10−3

PAW 5.3× 10−3 3.8× 10−3 5.3× 10−3 3.8× 10−3

Os PP 1.0× 10−2 3.8× 10−3 9.9× 10−3 3.6× 10−3

PAW 1.1× 10−2 4.5× 10−3 1.1× 10−2 4.4× 10−3
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While comparing the metrics in tables 5.16 and 5.17 it should be kept in mind

that the value of VP has some definitional uncertainty. And, while these defini-

tional errors may be too small to be meaningfully shown in the figures directly,

their values must be kept in mind while coming to any conclusion regarding the

relative merits of the two competing hypotheses – so as to have a proper perspec-

tive of how seriously should the metrics be taken. It is due to this reason that

we have also shown the values of these definitional error bars in the last column

of table 5.16 (these error bars are explained in section 2.3). Each row shows the

maximum value of the error bar across all pressures for that particular element

and for that particular method of calculation (PP or PAW). The typical value

of the error bar would be considerably less. It can be seen that these error bars

are never so high as to bring into question the validity of our analysis and the

conclusions drawn therefrom.
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Chapter 6

Ab initio calculations at finite

temperature

6.1 Introduction

In this chapter we continue our tests of Birch’s law but now at finite tempera-

tures. In chapter 5 we carried out the tests at zero temperature and found that

the modified version of the Birch’s law consistently gives a better agreement with

data than the original version. But few experiments are done at temperatures

close to zero. Due to the very difficult challenges involved in ultra-high pressure

experiments vast majority of the experiments are done at the room temperature.

A relatively small number of experiments have been performed at elevated tem-

peratures. For hcp-iron the highest temperature at which this type of experiment

has been performed is around 3000 K – according to our survey of the literature.

So we need to ask the question: does the modified Birch’s law, which seems to give

superior agreement with high precision data computed at T = 0, continue to be

equally accurate at higher temperatures? While the ultimate test of the relative

superiority of the two versions of the Birch’s law would be in the realm of data

from laboratory experiments, at the present time such data are not available at a

level of precision that is required to discriminate between the two hypotheses (In

fact, except for iron, we are not aware of any system for which elastic wave speed

data is available as a function of density at multiple values of the temperature).

The next best option is to continue the ab initio calculations based on the density
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functional theory into the domain of finite temperatures. Finite value of the tem-

perature immediately makes the calculations a lot more resource intensive. This

is partially due to the fact that now phonons also contribute to the free energy

and hence the phonon spectrum also has to be calculated. Thus the number of

systems we have studied at finite temperatures is less than that in the case of zero

temperature. Choice of systems was dictated by the criterion of phase stability

upto pressures exceeding 360 GPa and, whenever available, by the existence of

some previous work that can serve benchmarking purposes [107-120]. Study of

hexagonal-close-packed systems is a lot more (computationally) demanding than

it is for cubic systems. Hence we have studied only hcp-iron from this family.

This is due to the obvious geophysical interest in it. The remaining elements

studied are all of the cubic type. These elements are: platinum, molybdenum,

palladium and rhodium.

6.2 Methodology

The methodology used in these finite temperature calculations has already been

described fairly comprehensively in chapter 2. Here we just summarize some of

the key points. For the zero temperature calculations of chapter 5 we pre-selected

a set of values for the applied pressure. But now our goal is to calculate the elastic

speed at a pre-selected set of densities at each temperature chosen. First we have

to calculate the reference state around which the elastic wave propagates. Since

the cubic crystals have only one lattice parameter the selected value of the density

immediately fixes the value of this lattice constant. For the hcp-case the density

merely fixes the product a2c – not a and c individually. What we do to fix the

value of a (or c) is to choose the combination of a and c that minimizes the

Helmhotz free energy per unit cell – given a particular value of the product a2c.

It turns out that the stress tensor is almost hydrostatic even in the case of hcp-

iron – and increasingly so at higher densities. To calculate the isothermal elastic

constants we apply specific types of distortions of varying amplitude. In each

case, for the given unit cell, the electronic ground state energy as well as the full

electronic excitation spectrum is calculated by using the Quantum Espresso (QE)

software package. In addition the phonon spectrum is also calculated. We adjust
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the resolution of the k-grid and the q-grid (the latter defines the phonon wave

vectors for which the phonon frequencies are calculated by using the density-

functional-perturbation theory – as implemented in the QE software package) so

as to achieve a convergence level of 1 meV in the calculation of the free energy per

unit cell [The most important parameters of the DFT calculations are summarized

in the table 6.1].

Table 6.1: DFT-parameters for the calculation of the elastic constants with the

PAW method.

System Energy

cut-

off

k-mesh q-

mesh

PAW dataset Library

(Ry)

Pd 80 24×24×24 4×4×4 Pd.pbesol-n-

kjpaw psl.0.2.2.UPF

Quantum

Espresso

Pt 80 28×28×28 6×6×6 Pt.pbesol-n-

kjpaw psl.0.1.UPF

Rh 130 24×24×24 4×4×4 Rh.pbesol-spn-

kjpaw psl.0.2.3.UPF

Mo 80 24×24×24 6×6×6 Mo.pbesol-spn-

kjpaw psl.0.2.UPF

Hcp-Fe 140 18×18×12 6×6×4 Fe.pbesol-spn-

kjpaw psl.0.2.1.UPF

After this the calculation of the isothermal elastic constants follows the same

procedure as in the case of zero temperature. To get the adiabatic elastic con-

stants, which are in general different from the isothermal ones, we need the tem-

perature derivatives of the stress tensor. The procedure used to calculate these

is described in the section 2.2.6. It should be kept in mind that our calculation

of the free energy makes use of the quasi-harmonic approximation. This means

that the amplitudes of vibration of the nuclei in the solid are assumed to be small

enough to permit a quantum statistical description of the vibration in terms of a

gas of phonons. At higher densities even higher temperatures may reasonably be

treated by this approximation. But keeping in mind our ultimate goal of testing
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the Birch’s law we have limited the value of temperature at all densities to 1500K.

This is to ensure that an uniform level of accuracy and physical justifiability may

be maintained for the entire range of densities. A final note: Calculations in

this chapter use only the Projector-Augmented-Wave (PAW) method since it is

generally believed to be the method of choice when high energy densities are

involved.

6.3 Results

As before, for a given elemental solid at a given density and temperature, cer-

tain types of distortions are applied with varying amplitude. The free energy is

calculated for each such distorted configuration. Finally, from an analysis of the

dependence of the free energy on the amplitude of distortion the isothermal elas-

tic constants are extracted. Before presenting the values of the isothermal elastic

constants we show some illustrative examples of the plot of free energy versus

the amplitude of distortion. Figures 6.1, 6.2 and 6.3 show examples of such plots

for the three types of distortion in the cubic case (see table 2.1 for a description

of these distortions). Similarly, figures 6.4, 6.5, 6.6, 6.7 and 6.8 are for the five

types of distortion relevant to the hcp case (see table 2.3 for a description of these

distortions).

In each of the eight graphs shown the best fit cubic polynomial is used to calculate

the first and second derivatives at η = 0. For the cubic case the first derivative

for two of the distortion types will involve the pressure P and the ratio of these

two derivatives should be 3/2 (see table 2.2). This can be tested against the

computed data. This provides extremely valuable checks on the consistency and

accuracy of our calculations. Similarly (see table 2.4), in the hcp case, there are

five first derivatives involving only two unknowns T xy and T z. This redundancy

again makes it possible to perform critical quality checks on our computed data.

In the tables 6.2 through 6.15 we present the computed values of the isothermal

elastic constants as well as all other pieces of information required to calculate

the adiabatic elastic constants from these isothermal ones. It may be noted that

the temperatures at which the calculations have been done are: 300K, 900K and

1500K for the cubic materials and at 300K and 1500K for hcp-iron.
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Figure 6.1: Free energy (F ) is plotted as a function of the amplitude (η) of distortion for platinum

at 300 K (density = 29000Kg/m3) – along with the best fit cubic polynomial.
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Figure 6.2: Free energy (F ) is plotted as a function of the amplitude (η) of distortion for platinum

at 300 K (density = 29000Kg/m3) – along with the best fit cubic polynomial.

82



6.3 Results

-736.9164

-736.9160

-736.9156

-736.9152

-736.9148

-0.01 -0.005  0  0.005  0.01

 F
 (

R
y
)

η

Distortion type η(23)

Figure 6.3: Free energy (F ) is plotted as a function of the amplitude (η) of distortion for platinum

at 300 K (density = 29000Kg/m3) – along with the best fit cubic polynomial.
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Figure 6.4: Free energy (F ) is plotted as a function of the amplitude (η) of distortion for hcp-iron

at 300 K (density = 11800Kg/m3) – along with the best fit cubic polynomial.
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Figure 6.5: Free energy (F ) is plotted as a function of the amplitude (η) of distortion for hcp-iron

at 300 K (density = 11800Kg/m3) – along with the best fit cubic polynomial.
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Figure 6.6: Free energy (F ) is plotted as a function of the amplitude (η) of distortion for hcp-iron

at 300 K (density = 11800Kg/m3) – along with the best fit cubic polynomial.
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Figure 6.7: Free energy (F ) is plotted as a function of the amplitude (η) of distortion for hcp-iron

at 300 K (density = 11800Kg/m3) – along with the best fit cubic polynomial.
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Figure 6.8: Free energy (F ) is plotted as a function of the amplitude (η) of distortion for hcp-iron

at 300 K (density = 11800Kg/m3) – along with the best fit cubic polynomial.
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Table 6.2: Isothermal elastic constants and other useful information for palladium

at T = 300K.

ρ C11 C12 C44 P dP
dT
× 103 Cv × 104

(Kg/m3) (GPa) (GPa) (GPa) (GPa) (GPa
K

) ( eV
K

)

12600 313.86 223.23 112.06 12.009 6.6053 2.6020

13600 469.59 311.92 175.84 35.949 6.3562 2.5318

14600 664.35 414.44 254.80 67.487 6.1715 2.4573

15600 896.27 534.78 349.06 107.315 6.0233 2.3790

16600 1162.07 675.21 460.10 156.122 5.9043 2.2979

17600 1470.71 833.62 588.75 214.531 5.7824 2.2147

18600 1824.31 1010.04 736.35 283.129 5.6712 2.1301

19600 2211.42 1211.1 902.71 362.444 5.5529 2.0451

Table 6.3: Isothermal elastic constants and other useful information for palladium

at T = 900K.

ρ C11 C12 C44 P dP
dT
× 103 Cv × 104

(Kg/m3) (GPa) (GPa) (GPa) (GPa) (GPa
K

) ( eV
K

)

12600 309.15 221.05 121.59 16.228 7.222 2.8857

13600 466.0 310.73 185.45 40.083 7.1319 2.8653

14600 662.55 412.53 265.26 71.575 7.1063 2.8423

15600 894.29 533.66 360.05 111.39 7.1363 2.8176

16600 1163.41 672.63 471.54 160.198 7.1944 2.7918

17600 1473.27 830.62 600.45 218.617 7.2718 2.7655

18600 1828.57 1006.25 747.88 287.228 7.3538 2.7388

19600 2216.05 1207.28 914.11 366.557 7.4405 2.7120

Table 6.4: Isothermal elastic constants and other useful information for palladium

at T = 1500K.

ρ C11 C12 C44 P dP
dT
× 103 Cv × 104

(Kg/m3) (GPa) (GPa) (GPa) (GPa) (GPa
K

) ( eV
K

)

12600 307.27 218.19 129.51 20.597 7.3152 2.9472

13600 465.54 308.95 194.08 44.414 7.268 2.9379

14600 662.84 410.38 275.62 75.905 7.284 2.9271

15600 893.14 533.21 371.81 115.752 7.3576 2.9142

16600 1165.45 670.79 484.57 164.612 7.4647 2.8995

17600 1475.5 828.96 614.53 223.093 7.5866 2.8834

18600 1831.84 1004.23 762.49 291.769 7.714 2.8663

19600 2218.35 1206.08 929.33 371.165 7.8466 2.8485
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Table 6.5: Isothermal elastic constants and other useful information for rhodium

at T = 300K.

ρ C11 C12 C44 P dP
dT
× 103 Cv × 104

(Kg/m3) (GPa) (GPa) (GPa) (GPa) (GPa
K

) ( eV
K

)

13500 670.60 297.31 306.92 30.21 6.4262 2.4408

14300 865.18 379.32 400.74 58.611 6.1727 2.3763

15100 1084.48 472.65 507.82 92.953 5.9716 2.3091

15900 1334.46 575.16 628.19 133.569 5.8147 2.2397

16700 1610.36 690.48 762.08 180.763 5.6741 2.1686

17500 1913.65 818.37 909.87 234.84 5.5292 2.0962

18300 2248.82 957.44 1071.17 296.069 5.3812 2.0231

19100 2612.91 1108.85 1246.36 364.736 5.2631 1.9501

Table 6.6: Isothermal elastic constants and other useful information for rhodium

at T = 900K.

ρ C11 C12 C44 P dP
dT
× 103 Cv × 104

(Kg/m3) (GPa) (GPa) (GPa) (GPa) (GPa
K

) ( eV
K

)

13500 656.58 298.77 294.71 34.432 7.3816 2.8253

14300 851.77 382.16 388.83 62.731 7.2357 2.7905

15100 1070.86 476.34 496.56 97.003 7.137 2.7593

15900 1322.21 578.30 617.12 137.585 7.1081 2.7313

16700 1598.97 693.64 751.19 184.758 7.1093 2.7056

17500 1902.01 821.70 898.88 238.808 7.1008 2.6815

18300 2237.0 960.87 1059.76 300.026 7.1235 2.6588

19100 2601.7 1111.84 1234.82 368.688 7.1628 2.6371
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Table 6.7: Isothermal elastic constants and other useful information for rhodium

at T = 1500K.

ρ C11 C12 C44 P dP
dT
× 103 Cv × 104

(Kg/m3) (GPa) (GPa) (GPa) (GPa) (GPa
K

) ( eV
K

)

13500 641.48 300.94 281.46 39.006 7.8437 3.0372

14300 836.86 385.89 375.68 67.219 7.7003 2.9917

15100 1055.99 480.84 483.96 101.43 7.5981 2.9508

15900 1308.33 582.65 604.61 141.993 7.5639 2.9143

16700 1586.61 697.88 738.94 189.169 7.5652 2.8818

17500 1889.38 826.21 886.58 243.214 7.5518 2.8527

18300 2224.4 965.49 1047.18 304.447 7.5795 2.8266

19100 2590.09 1116.0 1222.23 373.138 7.6242 2.8031

Table 6.8: Isothermal elastic constants and other useful information for platinum

at T = 300K.

ρ C11 C12 C44 P dP
dT
× 103 Cv × 104

(Kg/m3) (GPa) (GPa) (GPa) (GPa) (GPa
K

) ( eV
K

)

23000 551.97 359.2 161.1 30.593 6.9682 2.5911

25000 839.09 507.06 275.05 74.961 6.6031 2.5243

27000 1188.54 685.59 418.54 133.726 6.3683 2.4529

29000 1609.69 894.79 593.78 208.244 6.1895 2.3777

31000 2102.4 1136.52 801.73 299.755 6.0427 2.2988

32000 2374.62 1270.99 918.29 352.253 5.9684 2.2585

Table 6.9: Isothermal elastic constants and other useful information for platinum

at T = 900K.

ρ C11 C12 C44 P dP
dT
× 103 Cv × 104

(Kg/m3) (GPa) (GPa) (GPa) (GPa) (GPa
K

) ( eV
K

)

23000 550.29 353.46 171.18 35.013 7.5794 2.8621

25000 834.35 505.3 284.98 79.214 7.3372 2.831

27000 1185.87 683.82 428.11 137.896 7.2386 2.8006

29000 1605.6 894.03 602.59 212.369 7.2023 2.7714

31000 2099.95 1135.05 809.55 303.867 7.2318 2.7428

32000 2372.3 1270.03 925.81 356.361 7.249 2.729
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Table 6.10: Isothermal elastic constants and other useful information for platinum

at T = 1500K.

ρ C11 C12 C44 P dP
dT
× 103 Cv × 104

(Kg/m3) (GPa) (GPa) (GPa) (GPa) (GPa
K

) ( eV
K

)

23000 548.23 348.22 181.08 39.626 7.7646 2.9588

25000 827.14 505.36 295.62 83.692 7.5587 2.9349

27000 1181.76 683.49 439.34 142.325 7.4923 2.9102

29000 1600.51 894.42 613.81 216.787 7.4873 2.8857

31000 2098.85 1133.39 820.32 308.315 7.5502 2.8613

32000 2372.13 1268.78 936.57 360.823 7.5806 2.8495

Table 6.11: Isothermal elastic constants and other useful information for molyb-

denum at T = 300K.

ρ C11 C12 C44 P dP
dT
× 103 Cv × 104

(Kg/m3) (GPa) (GPa) (GPa) (GPa) (GPa
K

) ( eV
K

)

11001.15 634.79 228.0 164.24 23.572 3.86 2.3943

12251.28 915.83 333.02 267.2 72.745 3.3468 2.3151

13501.41 1245.95 460.24 393.52 136.268 3.051 2.2397

14751.54 1621.13 614.51 536.87 215.152 2.5901 2.1687

16001.67 2011.22 782.83 701.68 308.865 2.1529 2.1074

Table 6.12: Isothermal elastic constants and other useful information for molyb-

denum at T = 900K.

ρ C11 C12 C44 P dP
dT
× 103 Cv × 104

(Kg/m3) (GPa) (GPa) (GPa) (GPa) (GPa
K

) ( eV
K

)

11001.15 611.38 234.66 165.68 26.065 4.2694 2.6924

12251.28 902.53 334.7 268.95 74.961 3.8234 2.6757

13501.41 1229.97 465.82 396.23 138.341 3.5886 2.6631

14751.54 1598.81 616.2 542.32 216.973 3.1997 2.6525

16001.67 2003.56 787.51 713.93 310.455 2.8279 2.6429
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Table 6.13: Isothermal elastic constants and other useful information for molyb-

denum at T = 1500K.

ρ C11 C12 C44 P dP
dT
× 103 Cv × 104

(Kg/m3) (GPa) (GPa) (GPa) (GPa) (GPa
K

) ( eV
K

)

11001.15 583.97 243.47 166.87 28.658 4.3683 2.8116

12251.28 889.28 335.94 270.38 77.284 3.9123 2.7921

13501.41 1212.01 472.63 398.97 140.512 3.644 2.7801

14751.54 1575.73 618.35 548.48 218.923 3.2831 2.7723

16001.67 1995.71 793.13 727.75 312.174 2.8812 2.7685

Table 6.14: Isothermal elastic constants and other useful information for hcp-iron

at T = 300K.

ρ C11 C12 C13 C33 C44 T xy T z dTxy

dT
× 103 dT z

dT
× 103 Cv × 104

(Kg/m3) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa
K

) (GPa
K

) ( eV
K

)

10900 1083.47 365.24 294.26 1189.7 346.8 -69.654 -69.772 -6.0836 -6.7882 4.3034

11800 1441.95 493.75 391.54 1586.08 470.02 -125.962 -126.072 -5.9632 -6.3453 4.0531

12700 1865.37 620.55 506.59 2045.34 615.1 -195.116 -195.052 -5.7321 -5.859 3.8048

13600 2347.31 788.65 623.22 2583.75 780.18 -277.561 -277.849 -5.7147 -5.339 3.5609

Table 6.15: Isothermal elastic constants and other useful information for hcp-iron

at T = 1500K.

ρ C11 C12 C13 C33 C44 T xy T z dTxy

dT
× 103 dT z

dT
× 103 Cv × 104

(Kg/m3) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa
K

) (GPa
K

) ( eV
K

)

10900 1082.3 353.18 297.61 1165.48 300.52 -79.202 -79.12 -7.9929 -9.8951 5.9019

11800 1422.48 486.44 410.01 1557.23 427.58 -135.661 -135.66 -8.3039 -9.8175 5.7971

12700 1881.83 597.36 515.97 2006.52 577.08 -204.703 -204.707 -8.4608 -9.558 5.7109

13600 2366.7 744.96 641.34 2549.69 740.97 -287.36 -287.357 -8.8158 -9.2634 5.6368
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Using the information given in the tables 6.2 through 6.15 the adiabatic elastic

moduli and elastic wave speed of any desired type can be calculated (see sections

2.2.7 and 2.3). We show the plots of the direction-averaged longitudinal acoustic

wave speed and the P-wave speed in the figures 6.9 through 6.18. As far as we are

aware these are the first full calculations of how the dependence of elastic wave

speed on density evolves with temperature. In the figures for the cubic materials

we have omitted the data for 900K for the sake of visual clarity. The first point to

note is that, for a given density, the elastic wave speed decreases with increasing

temperature for some materials whereas it is the opposite for others. In particular

we notice that for iron it decreases with temperature. This is qualitatively consis-

tent with the known experimental and computational results regarding hcp-iron

– although we find that the decrease of speed is somewhat less than what is seen

in laboratory experiments. Among the other four materials studied speed goes

up with rising temperature for platinum and palladium whereas it goes down for

rhodium in the same situation. For molybdenum it is found that there exists

a critical density below which the speed decreases with rising temperature and

above which the variation with temperature is of the opposite type.
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Figure 6.9: P-wave speed (VP ) is plotted as a function density (ρ) at the temperatures of 300K

(black) and 1500K (red).
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Figure 6.10: Direction-averaged longitudinal acoustic wave speed (< VLA >) is plotted as

function of density (ρ) at the temperatures of 300K (black) and 1500K (red).
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Figure 6.11: P-wave speed (VP ) is plotted as a function density (ρ) at the temperatures of 300K

(black) and 1500K (red).
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Figure 6.12: Direction-averaged longitudinal acoustic wave speed (< VLA >) is plotted as

function of density (ρ) at the temperatures of 300K (black) and 1500K (red).
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Figure 6.13: P-wave speed (VP ) is plotted as a function density (ρ) at the temperatures of 300K

(black) and 1500K (red).
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Figure 6.14: Direction-averaged longitudinal acoustic wave speed (< VLA >) is plotted as

function of density (ρ) at the temperatures of 300K (black) and 1500K (red).
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Figure 6.15: P-wave speed (VP ) is plotted as a function density (ρ) at the temperatures of 300K

(black) and 1500K (red).
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Figure 6.16: Direction-averaged longitudinal acoustic wave speed (< VLA >) is plotted as

function of density (ρ) at the temperatures of 300K (black) and 1500K (red).
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Figure 6.17: P-wave speed (VP ) is plotted as a function density (ρ) at the temperatures of 300K

(black) and 1500K (red).
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Figure 6.18: Direction-averaged longitudinal acoustic wave speed (< VLA >) is plotted as

function of density (ρ) at temperatures of 300K (black) and 1500K (red).
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This critical density is just below the highest density we have studied. It

may be noted that the phase stability of molybdenum at the highest densities we

have studied is a matter of some controversy [108,118]. We have not attempted

to investigate this aspect in our work. If we leave out molybdenum the extent

of the effect of temperature on the variation of speed with density is physically

sensible. In each case we find that a specified change of temperature causes a

steadily decreasing change of elastic wave speed as the density increases. This

is how it should be since increasing density corresponds to increasing pressure

– which in turn suppresses atomic vibration. This latter fact leads to steadily

decreasing impact of a given change of temperature. Our calculations regarding

the impact of changing temperature on the elastic wave speeds are predictions

that can be experimentally verified. For the cubic materials we are not aware of

any experimental work analogous to our computational studies.

Table 6.16: Data for maximum fractional deviation

Maximum fractional deviation

System T (K) < VLA > VP Maximum

fractional

uncertainty

for VP

V − ρ V ρ1/3 − ρ V − ρ V ρ1/3 − ρ

300 1.2× 10−2 6.9× 10−4 1.3× 10−2 8.7× 10−4 3.0× 10−3

Pt 900 1.1× 10−2 6.8× 10−4 1.1× 10−2 5.4× 10−4 3.3× 10−3

1500 9.8× 10−3 1.6× 10−3 9.7× 10−3 2.6× 10−3 3.3× 10−3

300 2.8× 10−2 1.4× 10−2 3.6× 10−2 1.5× 10−2 5.3× 10−5

Mo 900 2.6× 10−2 1.2× 10−2 2.8× 10−2 1.3× 10−2 9.4× 10−5

1500 2.7× 10−2 1.2× 10−2 2.8× 10−2 1.3× 10−2 1.6× 10−4

300 1.6× 10−2 1.1× 10−3 1.6× 10−2 1.3× 10−3 6.0× 10−3

Pd 900 1.5× 10−2 1.8× 10−3 1.7× 10−2 1.6× 10−3 6.5× 10−3

1500 1.4× 10−2 2.0× 10−3 1.7× 10−2 1.9× 10−3 8.8× 10−3

300 1.6× 10−2 2.3× 10−3 1.6× 10−2 2.6× 10−3 2.2× 10−3

Rh 900 1.7× 10−2 3.2× 10−3 1.7× 10−2 3.4× 10−3 2.2× 10−3

1500 1.8× 10−2 4.0× 10−3 1.8× 10−2 3.9× 10−3 2.3× 10−3

Hcp-Fe 300 6.1× 10−3 1.6× 10−3 7.3× 10−3 1.5× 10−3 1.4× 10−3

1500 1.1× 10−2 8.8× 10−3 1.2× 10−2 7.5× 10−3 2.8× 10−3
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Table 6.17: Data for mean fractional deviation

Mean fractional deviation

System T (K) VLA VP

V − ρ V ρ1/3 − ρ V − ρ V ρ1/3 − ρ

300 8.0× 10−3 3.8× 10−4 8.4× 10−3 5.7× 10−4

Pt 900 7.3× 10−3 4.1× 10−4 7.3× 10−3 3.6× 10−4

1500 6.6× 10−3 8.9× 10−4 5.9× 10−3 1.5× 10−3

300 2.1× 10−2 9.9× 10−3 2.3× 10−2 1.1× 10−2

Mo 900 2.0× 10−2 8.7× 10−3 2.1× 10−2 9.6× 10−3

1500 1.9× 10−2 8.0× 10−3 2.0× 10−2 8.6× 10−3

300 8.8× 10−3 5.8× 10−4 9.3× 10−3 7.4× 10−4

Pd 900 8.6× 10−3 7.8× 10−4 9.3× 10−3 7.3× 10−4

1500 8.5× 10−3 8.3× 10−4 9.3× 10−3 9.4× 10−4

300 8.8× 10−3 1.4× 10−3 8.7× 10−3 1.4× 10−3

Rh 900 9.5× 10−3 1.9× 10−3 9.3× 10−3 1.8× 10−3

1500 1.0× 10−2 2.4× 10−3 9.8× 10−3 2.2× 10−3

Hcp-Fe 300 5.0× 10−3 8.0× 10−4 5.7× 10−3 9.7× 10−4

1500 5.6× 10−3 4.4× 10−3 6.2× 10−3 4.3× 10−3

In order to test the compliance of our elastic wave speed data at elevated

temperatures with the Birch’s law, we compute (as in chapters 4 and 5) the

relevant metrics for both < VLA > and VP . These values are listed in table

6.16 and 6.17. As in chapter 5 our conclusion is again that, at least up to the

temperatures studied, the modified Birch’s law conforms more accurately to a

straight line fit than does the original version. However, the data also suggests

that the degree of superiority is decreasing with rising temperature. The possible

causes of this degradation are: (i) increasing error bar of the calculation itself at

higher temperatures – may be due to inadequate convergence in the calculation

of free energy; (ii) error in the calculation of the optimal lattice parameter(s) at

a given temperature in the case of systems with more than one lattice parameter

(actually this is also affected by the first cause); and of course (iii) a genuine

failure of the modified Birch’s law at elevated temperatures.

To check the first possibility we have carried out an analysis along the following

lines: Suppose, in a plot of the free energy versus the amplitude of distortion,
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we calculate the root-mean-square deviation (σ) of the data points around the

best fit cubic polynomial. Since even the maximum value of the amplitude of

distortion is very small, the most likely cause of a larger value of this number

is inadequate convergence in the calculation of free energy. The basis of this

conclusion is that inadequate (but not grossly inadequate) convergence usually

manifests itself as a pseudo-random noise. The scale with which to compare this

root-mean-square deviation is the range of variation (R) of the free energy across

the entire range of distortions of that particular type. We present the data for

the ratio σ/R in the tables 6.18 through 6.31.

Table 6.18: Values of σ/R for palladium: Temperature = 300K

ρ(Kg/m3) Distortion η(1) Distortion η(8) Distortion η(23)

12600 1.0× 10−4 1.0× 10−4 1.8× 10−3

13600 4.3× 10−5 5.7× 10−5 1.1× 10−3

14600 3.3× 10−5 3.7× 10−5 8.7× 10−4

15600 9.6× 10−6 1.7× 10−5 5.0× 10−4

16600 1.7× 10−5 2.1× 10−5 5.1× 10−4

17600 1.1× 10−5 1.4× 10−5 5.2× 10−4

18600 1.2× 10−5 8.1× 10−6 5.0× 10−4

19600 1.4× 10−5 8.9× 10−6 5.1× 10−4

Table 6.19: Values of σ/R for palladium: Temperature = 900K

ρ(Kg/m3) Distortion η(1) Distortion η(8) Distortion η(23)

12600 1.1× 10−4 1.7× 10−4 4.0× 10−3

13600 7.1× 10−5 8.1× 10−5 2.4× 10−3

14600 4.8× 10−5 9.6× 10−5 1.8× 10−3

15600 3.0× 10−5 1.5× 10−5 1.1× 10−3

16600 2.1× 10−5 2.3× 10−5 8.3× 10−4

17600 1.4× 10−5 1.4× 10−5 8.0× 10−4

18600 1.4× 10−5 7.4× 10−6 5.0× 10−4

19600 1.4× 10−5 7.5× 10−6 4.4× 10−4

It can be seen that this ratio increases with decreasing density. It is also sub-

stantially higher for the distortion η(23) for the cubic cases and for the distortion

η(26) for the hcp case. These two observations are explained by the fact that the

change of the free energy due to a given amplitude of distortion is dominated by
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Table 6.20: Values of σ/R for palladium: Temperature = 1500K

ρ(Kg/m3) Distortion η(1) Distortion η(8) Distortion η(23)

12600 2.1× 10−4 2.9× 10−4 5.8× 10−3

13600 1.8× 10−4 1.3× 10−4 3.6× 10−3

14600 8.6× 10−5 1.8× 10−4 2.7× 10−3

15600 6.6× 10−5 2.1× 10−5 1.9× 10−3

16600 2.9× 10−5 3.0× 10−5 1.4× 10−3

17600 1.9× 10−5 2.1× 10−5 1.3× 10−3

18600 1.8× 10−5 9.0× 10−6 9.0× 10−4

19600 1.5× 10−5 8.7× 10−6 8.1× 10−4

Table 6.21: Values of σ/R for platinum: Temperature = 300K

ρ(Kg/m3) Distortion η(1) Distortion η(8) Distortion η(23)

23000 4.8× 10−5 5.6× 10−5 1.1× 10−3

25000 3.3× 10−5 3.3× 10−5 9.3× 10−4

27000 1.2× 10−5 1.8× 10−5 7.9× 10−4

29000 1.8× 10−5 1.2× 10−5 8.2× 10−4

31000 1.6× 10−5 6.6× 10−6 6.4× 10−4

32000 7.9× 10−6 1.1× 10−5 6.3× 10−4

Table 6.22: Values of σ/R for platinum: Temperature = 900K

ρ(Kg/m3) Distortion η(1) Distortion η(8) Distortion η(23)

23000 9.5× 10−5 6.3× 10−5 1.3× 10−3

25000 7.3× 10−5 2.7× 10−5 1.0× 10−3

27000 1.7× 10−5 1.3× 10−5 8.0× 10−4

29000 2.0× 10−5 2.2× 10−5 7.2× 10−4

31000 1.8× 10−5 1.2× 10−5 6.6× 10−4

32000 6.2× 10−6 1.4× 10−5 5.7× 10−4

Table 6.23: Values of σ/R for platinum: Temperature = 1500K

ρ(Kg/m3) Distortion η(1) Distortion η(8) Distortion η(23)

23000 1.5× 10−4 1.3× 10−4 2.6× 10−3

25000 1.4× 10−4 2.3× 10−5 2.0× 10−3

27000 3.6× 10−5 1.6× 10−5 1.2× 10−3

29000 3.2× 10−5 4.2× 10−5 1.0× 10−3

31000 2.2× 10−5 2.1× 10−5 8.2× 10−4

32000 6.5× 10−6 2.0× 10−5 6.1× 10−4
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Table 6.24: Values of σ/R for molybdenum: Temperature = 300K

ρ(Kg/m3) Distortion η(1) Distortion η(8) Distortion η(23)

11001.15 1.8× 10−5 2.9× 10−5 4.1× 10−4

12251.28 1.5× 10−5 1.3× 10−5 3.0× 10−4

13501.41 1.5× 10−5 9.3× 10−6 4.6× 10−4

14751.54 1.8× 10−5 1.8× 10−5 9.7× 10−4

16001.67 1.0× 10−5 8.3× 10−6 4.4× 10−4

Table 6.25: Values of σ/R for molybdenum: Temperature = 900K

ρ(Kg/m3) Distortion η(1) Distortion η(8) Distortion η(23)

11001.15 2.7× 10−4 1.5× 10−4 6.8× 10−4

12251.28 5.1× 10−5 3.8× 10−5 6.3× 10−4

13501.41 4.1× 10−5 2.2× 10−5 8.5× 10−4

14751.54 1.8× 10−5 2.5× 10−5 1.1× 10−3

16001.67 1.7× 10−5 6.1× 10−5 9.0× 10−4

Table 6.26: Values of σ/R for molybdenum: Temperature = 1500K

ρ(Kg/m3) Distortion η(1) Distortion η(8) Distortion η(23)

11001.15 6.1× 10−4 3.4× 10−4 1.6× 10−3

12251.28 1.2× 10−4 8.7× 10−5 1.2× 10−3

13501.41 1.1× 10−4 4.3× 10−5 1.7× 10−3

14751.54 2.9× 10−5 3.7× 10−5 1.3× 10−3

16001.67 2.7× 10−5 1.2× 10−5 1.3× 10−3

Table 6.27: Values of σ/R for rhodium: Temperature = 300K

ρ(Kg/m3) Distortion η(1) Distortion η(8) Distortion η(23)

13500 8.6× 10−5 3.2× 10−5 3.1× 10−4

14300 2.5× 10−5 1.8× 10−5 7.2× 10−5

15100 1.3× 10−5 1.1× 10−5 1.2× 10−4

15900 1.4× 10−5 9.7× 10−6 1.4× 10−4

16700 1.2× 10−5 7.9× 10−6 1.7× 10−4

17500 1.2× 10−5 1.0× 10−5 1.6× 10−4

18300 8.2× 10−6 1.3× 10−5 1.4× 10−4

19100 1.1× 10−5 1.1× 10−5 2.1× 10−4
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Table 6.28: Values of σ/R for rhodium: Temperature = 900K

ρ(Kg/m3) Distortion η(1) Distortion η(8) Distortion η(23)

13500 9.9× 10−5 8.9× 10−5 1.3× 10−3

14300 4.3× 10−5 2.9× 10−5 2.6× 10−4

15100 2.4× 10−5 2.1× 10−5 1.5× 10−4

15900 1.7× 10−5 2.5× 10−5 1.6× 10−4

16700 1.4× 10−5 1.8× 10−5 1.8× 10−4

17500 9.2× 10−6 1.5× 10−5 1.4× 10−4

18300 9.4× 10−6 8.7× 10−6 2.2× 10−4

19100 1.3× 10−5 1.3× 10−5 1.9× 10−4

Table 6.29: Values of σ/R for rhodium: Temperature = 1500K

ρ(Kg/m3) Distortion η(1) Distortion η(8) Distortion η(23)

13500 1.9× 10−4 2.1× 10−4 2.8× 10−3

14300 8.9× 10−5 7.2× 10−5 6.8× 10−4

15100 4.4× 10−5 5.3× 10−5 3.5× 10−4

15900 2.9× 10−5 6.0× 10−5 3.7× 10−4

16700 2.1× 10−5 3.9× 10−5 2.2× 10−4

17500 1.1× 10−5 2.8× 10−5 1.5× 10−4

18300 1.3× 10−5 9.6× 10−6 3.9× 10−4

19100 1.6× 10−5 2.2× 10−5 1.6× 10−4

Table 6.30: Values of σ/R for hcp-iron: Temperature = 300K

ρ(Kg/m3) Distortion η(1) Distortion η(26) Distortion η(4) Distortion η(3) Distortion η(17)

10900 3.5× 10−5 1.5× 10−3 5.6× 10−5 1.0× 10−4 1.0× 10−4

11800 1.6× 10−5 8.4× 10−4 4.4× 10−5 7.4× 10−5 4.2× 10−5

12700 2.8× 10−5 6.1× 10−4 2.2× 10−5 6.2× 10−5 1.5× 10−4

13600 1.2× 10−5 5.1× 10−4 1.7× 10−5 2.1× 10−5 4.1× 10−5

Table 6.31: Values of σ/R for hcp-iron: Temperature = 1500K

ρ(Kg/m3) Distortion η(1) Distortion η(26) Distortion η(4) Distortion η(3) Distortion η(17)

10900 1.1× 10−4 2.2× 10−3 4.7× 10−4 5.7× 10−4 3.4× 10−4

11800 9.6× 10−5 2.5× 10−3 2.0× 10−4 2.4× 10−4 1.1× 10−4

12700 5.9× 10−5 2.8× 10−3 9.9× 10−5 2.2× 10−4 3.8× 10−4

13600 5.5× 10−5 9.9× 10−4 5.4× 10−5 5.1× 10−5 1.1× 10−4
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the linear term when it is present. However, for the distortion type η(23) for the

cubic cases this linear term is entirely absent. For the distortion type η(26) for

the hcp case, this is proportional to the difference (T xy − T z). Now, for hcp-iron

the values of T xy and T z are almost identical (see tables 6.14 and 6.15) ( i.e. de

facto the situation is almost like that of hydrostatic pressure). As a result the

coefficient of the linear term is almost zero. Thus the range of variation (R) of

the free energy is relatively small for these two types of distortion. Also a smaller

value of density means lower stress and a smaller value of the coefficient of the

linear term – when it is present. Thus, generally speaking, smaller densities are

more challenging computationally.

The two factors just discussed have to do with the denominator R. The

numerator, on the other hand, has to do with the level of convergence of free

energy. Comparison across tables for different temperatures clearly shows that

indeed the noise level is increasing with rising temperature – consistently and for

all materials. Thus the level of convergence is indeed an issue. But we believe

that the issue of convergence has caused visibly significant problem mostly for

hcp-iron at 1500K due to its impact on locating the value of the lattice parameter

– especially at lower densities. It so happens that the graph of the Helmhotz free

energy versus a (or c) is rather flat near the minimum at the lower densities. This

already makes it difficult to determine the location of the minimum of the free

energy (and thus the optimal value of the lattice constant). This is compounded

further by convergence issues. Thus it is quite difficult to reliably calculate the

weakly temperature dependent lattice constant for the hcp-case. In contrast no

separate calculations are needed to determine the lattice parameter for cubic

materials . Due to this reason we believe that the calculations for the cubic

materials are much less susceptible to convergence issues and are quite reliable

as they stand. The steady but not-so-radical degradation in the superiority of

the modified Birch’s law seems to be the residual effect of the convergence issues

becoming gradually worse with increasing temperature.

For hcp-iron the effect, through the error in the determination of the optimal

value of the lattice constant, seems to be significantly worse. It seems likely that

possibly an order of magnitude higher level of convergence in the calculation of

free energy will be required to decisively settle the issue of whether the apparent
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loss of superiority of the modified Birch’s law in the case of hcp-iron at 1500K is

caused only by limited convergence or it is due to a genuine failure of the modified

Birch’s law itself.

Finally, we touch upon an aspect of a recent work on hcp-iron [2] in which it

was assumed that that VP is a linear function of temperature at a given value of

the density. This is a de facto extension of the Birch’s law. We have carried out

a test of this idea for the cubic materials but only at the highest densities and up

to 3300K. The reason for using only the highest densities is that it is only when

the stress is sufficiently high that the quasi-harmonic approximation is likely to

hold at such high temperatures. In figures 6.19 through 6.26 we show the results

of this calculation.
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Figure 6.19: P-wave speed (VP ) is plotted as a function of temperature (T ). The best linear fit

(red) and quadratic fit (blue) are also shown.

Each graph shows the P-wave speed VP plotted as a function of temperature

– as well as the best linear and quadratic fits to this data. We find that while the

assumption of linearity works very well for palladium its applicability in other

cases is variable. As has been noted earlier, for molybdenum the elastic wave

speed can increase with temperature or decrease with temperature. It depends
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Figure 6.20: P-wave speed (VP ) is plotted as a function of temperature (T ). The best linear fit

(red) and quadratic fit (blue) are also shown.
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Figure 6.21: P-wave speed (VP ) is plotted as a function of temperature (T ). The best linear fit

(red) and quadratic fit (blue) are also shown.
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Figure 6.22: P-wave speed (VP ) is plotted as a function of temperature (T ). The best linear fit

(red) and quadratic fit (blue) are also shown. The two best fit curves are almost indistinguishable

in this case since the coefficient of the quadratic term is extremely small.
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Figure 6.23: P-wave speed (VP ) is plotted as a function of temperature (T ). The best linear fit

(red) and quadratic fit (blue) are also shown.
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Figure 6.24: P-wave speed (VP ) is plotted as a function of temperature (T ). The best linear fit

(red) and quadratic fit (blue) are also shown.
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Figure 6.25: P-wave speed (VP ) is plotted as a function of temperature (T ). The best linear fit

(red) and quadratic fit (blue) are also shown.
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Figure 6.26: P-wave speed (VP ) is plotted as a function of temperature (T ). The best linear fit

(red) and quadratic fit (blue) are also shown.

on the density. In general a quadratic fit to the VP versus temperature data is

more accurate and can perhaps be used to extrapolate the speed data obtained

at high densities, but not so high temperatures (if such data is available from

experiments), to the high temperatures often of interest in terrestrial geophysics.
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Chapter 7

Summary and conclusion

7.1 Summary and conclusion

In this thesis we have introduced a modified version of the Birch’s law. We then

examined a large array of experimental and computational data to compare the

relative accuracies of the two versions. Much of the high precision computational

data was generated by us by using the density functional theory of electronic

structure calculation. We found that almost universally the modified version

agrees more closely with the observed data – although the degree of superiority

is not uniform.

In order to compare the two versions we introduced a metric that can give a

quantitative measure of the deviation from the best linear fit. It is in terms of this

metric that we performed the comparison between the two choices. However, in

a large number of cases the superiority of the modified version of the Birch’s law

was evident even visually from the two plots: one of P-wave speed VP vs. density

(ρ) and the other of VPρ
1/3 vs. ρ. These plots also make it evident why the

modified form seems to work better much of the time: The plot of speed versus

density has an upward curvature (d
2VP
dρ2

< 0) i.e. the deviation from linearity

is in the form of a systematic curvature of a fixed sign. It is this curvature

that is almost entirely cancelled upon multiplication of the dependent variable

by the monotonically increasing extra factor of density raised to the power of

one-third. But this also means that our metric of deviation from linear behaviour

does not properly capture the damaging effect of this non-linear behaviour on
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the process of extrapolation from low density data i.e. the metric may project a

seriously undervalued representation of the mismatch between the extrapolated

value at high densities and the actual data in case there is a systematic curvature.

For example, in the VP - ρ plots in the chapter 5, if we use only the three

lowest density data points (excluding the one at P = 0) to perform the linear

extrapolation we would have an overestimation by around three percent – which

is significantly higher than what might be suggested by the values of the mean

fractional deviation quantifying the goodness of linear fit.

We noted in the Introduction that a credible theory of the composition of

the inner core would require both an accurate extrapolation formula and also

sufficiently accurate data at the lower densities. The latter is presently difficult

to attain in the laboratory set up. In this thesis we fulfilled our limited goals by

generating high precision data with the help of density-functional-theory-based

calculations. But all present DFT calculations have inherent uncontrolled approx-

imations whose impact on the end results of the calculation are hard to assess

(This is why we often need to validate the outcomes of these DFT-based calcula-

tions with the help of experimental results). Hence, in the long run, there is no

alternative to experiments with adequate precision.
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B83, 144113 (2011).

[120] J. H. Nguyen et al, Phys. Rev. B 89, 174109 (2014).

118


