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Introduction

1.1 Heavy Fermion Systems . . . . . . . . . . . . . . . . . . . 2

1.1.1 Kondo insulators: SmB6, et cetera . . . . . . . . . . . . 4

1.1.2 Models of Kondo insulators . . . . . . . . . . . . . . . . 6

1.2 The de Haas-van Alphen Oscillations . . . . . . . . . . . 9

1.2.1 Landau quantization and dHvA effect in metals . . . . . 11

1.2.2 Curious case of SmB6: dHvA effect in insulators? . . . . 14

1.3 Brief Outline of the Thesis . . . . . . . . . . . . . . . . . 16

1.3.1 Studies on the half-filled Kondo lattice model . . . . . . 16

1.3.2 Studies on symmetric periodic Anderson model . . . . . 19

1.3.3 Quantum oscillations in spin-density wave insulators . . 19

The work presented in this thesis is our contribution to the ongoing effort in
understanding magnetic quantum oscillations, or the de Haas-van Alphen effect, in
Kondo insulators. The Kondo insulators are a class of heavy-fermion systems that
behave at lower temperatures as electrical insulators due to electron correlation
and hybridization. The heavy-fermion systems make a vast area of research within
the condensed matter physics. We begin this chapter with a basic introduction
to the heavy-fermion systems, and to the Kondo insulators which are of primary
interest to us here in this thesis. Then, we introduce the de Haas-van Alphen
(dHvA) effect, which refers to the oscillations of magnetization as a function of

1



2 Chapter 1. Introduction

magnetic field. Historically, the dHvA effect has been considered to be a hallmark
of metals. But recent findings of magnetic quantum oscillations in SmB6, a Kondo
insulator, poses a challenge to this conventional view. We briefly discuss the curious
case of SmB6, which motivated us to investigate the problem of dHvA oscillations
in Kondo insulators. We conclude this chapter with an outline of the problems
studied and the results obtained in this thesis.

1.1 Heavy Fermion Systems

The heavy-fermion (HF) systems are a family of rare-earth and actinide compounds
with incompletely filled 4f or 5f shells [1, 2, 3]. The electronic properties of the
HF materials are governed primarily by the strongly correlated and localized f

electrons, and their hybridization with the conduction (say, d or s) electrons. The
characteristic heavy fermion behaviour, which broadly defines this family, was first
noted in 1975 by Andres, Graebner and Ott in CeAl3 [4]. They observed that in
the specific heat measurement, the coefficient, γ, of the term linear in temperature
possesses an anomalously large value of 1620mJ/mole K2 for CeAl3, together with a
T 2 behaviour of resistivity (ρ ∼ ρ0+AT

2, A = 35µΩcm/K2), at low temperatures.
See Fig. 1.1(a)-(b) taken from this paper [4]. While the T 2 behaviour of low
temperature resistivity implies that it is metallic, the hugeness of γ compared to
its values in common metals suggests that the electrons in this material seem to
be unusually ‘heavy’. This opened up an exciting area of research that goes by the
name of heavy-fermion systems.

To appreciate the largeness of γ in HF materials, let us recall the specific heat,
C, of normal metals at low temperatures, given by the following simple formula
that is standardly used to discuss the experimental data.

C = γT + aT 3 (1.1)

Here, the term linear in temperature, T , is the contribution of electrons to spe-
cific heat (derived by Sommerfeld for free Fermi gas), and the T 3 contribution
comes from the acoustic modes of lattice vibrations (Debye’s law). According to
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(a) (b)

Figure 1.1: The heavy fermion nature of CeAl3. (a) Specific heat vs. temperature (T ),
with huge γ at low temperatures. (b) Electrical resistivity (ρ) as a function of T 2 is very
linear. Figures (a) and (b) are taken from Ref. [4].

Sommerfeld’s theory of free electron gas [5, 6]

γ =
2π2

3
k2BD(ϵF ) (1.2)

where kB is the Boltzmann constant and D(ϵF ) is the density of states at Fermi
energy, ϵF . For free electrons, D(ϵF ) = 3n

4ϵF
, with number density, n, and ϵF =

ℏ2k2F/2m, where m is the free electron mass. In a real material, let the “effective”
mass of electron be m∗, then using these, one arrives at the linear relation between
γ and m∗.

γ =
π2

2

n

ϵF
k2B ∝ m∗ (1.3)

Typical values of γ for metallic elements are: γCu = 0.695 mJ/mole K2, γK = 2.08

mJ/mole K2 and γNi = 7.02 mJ/mole K2 [6, 1]. In comparison to these, the value of
γ observed in CeAl3, as mentioned above, is about 103 times larger [See Fig. 1.1(a)].
In view of the linear relation between γ and m∗, the most immediate implication
of the the largeness of γ is that the effective mass of electrons in CeAl3 and other
such materials is very large (about 50 to 1000 times) compared to the free electron
mass. This heavy fermionic behaviour consistently shows up not only as large
γ of the specific heat, but also through enhancement of the Pauli susceptibility,
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the coefficient of T 2 term of the low-T resistivity, highly temperature dependent
amplitude of dHvA oscillations at low temperatures, etc.

The HF materials show a variety of interesting phenomena. For example, the
discovery of superconductivity in CeCu2Si2 by Steglich et al. [7] intensified the
interest in HF systems because of the coexistence of magnetism and superconduc-
tivity. Interestingly, in CeCu2Si2 the f -electrons are responsible both for local
moments formation at high-T as well as superconductivity below critical temper-
ature, Tc. Other HF systems like UBe13 shows superconductivity with non-Fermi
liquid behaviour [8], and UPt3 has antiferromagnetic (AFM) order below TN [9].
The HF materials are too numerous to list here with all their properties. One can
look up in the dedicated Handbooks for a detailed survey of this field [2]. We,
instead, direct our attention towards a particular class of heavy-fermion systems
called the Kondo insulators.

1.1.1 Kondo insulators: SmB6, et cetera

The Kondo insulators (KI) are those HF materials which at sufficiently low temper-
atures behave as small-gap insulators exhibiting quantum paramagnetism. How-
ever, at higher temperatures, they behave as metals. In 1969, Menth et al. ob-
served a change from metallic to insulating behaviour in samarium hexaboride,
SmB6, when temperature is lowered [10]. It is the earliest known case of a Kondo
insulator. Many more Kondo insulating materials have been discovered over the
years, for instance, YbB12, Ce3Bi4Pt3, CeNiSn, and so on [2]. Of these, SmB6 has
received much attention recently, and caused a stir in the condensed matter com-
munity by showing magnetic quantum oscillations at low temperatures, despite
being an insulator [11, 12].

The SmB6 forms the CsCl cubic structure, with lattice constant a = 4.3

Angstrom, in which Sm atoms sit at the corners and B6 octahedra at the body
centre, as shown in Fig. 1.2-(a). In this compound, samarium is in a mixed va-
lence state of Sm2+ (4f 6) and Sm3+ (4f 5). For temperatures above 50 K, it is a
Curie-Weiss metal. However, at lower temperatures, it opens up a gap and behaves
like a paramagnetic insulator [2, 13, 14, 15]. The activated behaviour of electrical
resistance with temperature, as shown in Fig. 1.2(b), gives an activation gap of
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about 40 K for SmB6 [12].

(a) (b)

Figure 1.2: (a) Crystal structure of SmB6, where the samarium ions are sitting at the
corners. This figure is taken from Ref. [16]. (b) Resistivity vs. temperature of SmB6

shows exponential rise in resistivity at low temperatures. This figure is taken from
Ref. [10].

The Kondo insulating behaviour in these materials is caused by a combination
of hybridization (between the conduction and f electrons) and strong correlation
(of the f electrons), for suitably commensurate electron fillings. In case of SmB6,
for instance, the relevant hybridization process is: 4f 6 ⇌ 4f 55d. The effective
Kondo exchange, that results from hybridization and strong correlation, causes the
formation of singlet between the conduction and localized electron spins, and opens
a charge gap leading to insulating behaviour, at low temperatures. Recall that the
metals (such as Au, Ag or Cu) with a dilute concentration of magnetic impurities
(say, Fe or Mn) show an increase in the resistivity at low temperatures [17, 18,
19]. Jun Kondo famously solved this resistivity minimum problem by invoking
‘Kondo’ exchange as a scattering channel for the conduction electrons that gives
a logT correction to the resistivity [20]. In contrast, the Kondo insulators are
highly ‘concentrated’ or ‘dense’ Kondo impurity systems, where the metallic state
completely gives way to an insulating state at low enough temperatures.
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1.1.2 Models of Kondo insulators

The microscopic setting of a Kondo insulator can be described as having a band of
conduction electrons, the localized and correlated f -electrons (or impurity spins),
and their mutual coupling. Like in the Mott-Hubbard insulators, the electron
filling is also an important parameter in the realization of a KI. For the basic case
of a single conduction band filled with one electron per site (of some lattice), it
would need exactly one localized f -electron (or spin-1/2 impurity) on every site, for
this system to behave as Kondo insulator. This is commonly known as the “half-
filled” case1. The microscopic physical models that are used to discuss Kondo
insulators are the Kondo lattice model [21] and the periodic Anderson model, both
at half-filling.

1.1.2.1 Kondo lattice model at half-filling

When the conduction and f electrons are weakly hybridized, the f electrons essen-
tially behave as localized spin-1/2’s interacting locally with the conduction electron
spins via Kondo exchange. The minimal model that describes this physical setting
is the Kondo lattice model (KLM). The Hamiltonian of the KLM can be written
as follows:

ĤKLM =
∑

k

∑
s=↑,↓

ϵ(k) ĉ†k,sĉk,s +
J

2

∑
r

Sr · τr (1.4)

Here, the first term is the kinetic energy of conduction electrons, with ϵ(k) as
the dispersion of the conduction band. For instance, on square lattice, ϵ(k) =

−2t(cos kxa + cos kya) with nearest-neighbour hopping, t. The ĉk,s (ĉ†k,s) are the
annihilation (creation) operators of the conduction electrons. The second term,
with J > 0, is the Kondo exchange interaction between the localized spin-1/2
moment described by the Pauli operators, τr, and the conduction electron spin,
Sr, on every lattice site r. In more general cases, τr’s could be taken as larger than
1/2, or even classical moments. But we in this thesis will always consider τr as
quantum spin-1/2.

1To completely fill a single conduction band, we need two electrons per site. Hence, a filling
of one conduction electron per site is called the half-filled case.
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TK~W e-1/J

TRKKY~J2

Ttr

AFM

Kondo Singlet

T

JD(εF )
(JD)c

Figure 1.3: Doniach’s phase diagram of the Kondo lattice model. For TK > TRKKY , i.e.
for stronger Kondo couplings, the Kondo singlet phase is realized. When TK < TRKKY ,
a magnetic order is expected to appear. Here, Ttr denotes the line of phase transition.

As we will see in the following chapter, it is the Kondo coupling, J , that drives
the formation of charge gap and Kondo singlet phase, when sufficiently strong.
However, for weaker J ’s, the KLM realizes an indirect exchange interaction between
the magnetic moments, which is mediated by the conduction electrons. It is known
as Ruderman-Kittel-Kasuya-Yosida or RKKY interaction [22, 23].

ĤRKKY =
1

4

∑
r,r′

JRKKY(|r − r′|)τr · τr′ (1.5)

The competition between Kondo and RKKY interactions can be illustrated us-
ing Doniach’s well-known phase diagram, shown in Fig. 1.3. It is obtained by
comparing the two energy scales present in the system: the Kondo temperature,
TK ∼ We−1/JD, and the magnetic ordering temperature, TRKKY ∼ J2D, where W
is the bandwidth and D is the density of states at Fermi surface. For strong Kondo
couplings, we get Kondo singlet phase, but for weak Kondo couplings, we expect
to get a magnetically ordered phase.

1.1.2.2 Symmetric periodic Anderson model

The periodic Anderson model (PAM) is the lattice version of the celebrated single
impurity Anderson model [24]. It is more microscopic than KLM, because it treats
the localized f electrons not merely as spin-1/2’s, but as full dynamic electrons
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which hybridize with the conduction electrons. The Hamiltonian of PAM can be
written as:

ĤPAM =
∑
k,s

ϵ(k)ĉ†k,sĉk,s + ϵf
∑
r,s

n̂f
r,s + Uf

∑
r
n̂f

r,↑n̂
f
r,↓ − V

∑
r,s

[
ĉ†r,sf̂r,s + h.c.

]
(1.6)

where ĉ†k,s(ĉk,s) are the creation (annihilation) operators of the conduction electrons
with momentum k and spin s =↑, ↓, and likewise, f̂ †

r,s(f̂r,s) are operators for the f
electrons at site r. Moreover, n̂f

r,s = f̂ †
r,sf̂r,s is the number operator of an f electron.

The ϵ(k) is the dispersion of the conduction band, ϵf and Uf are respectively the
local energy and Coulomb repulsion of the f electrons, and V is the hybridization
between the conduction and f electrons. The PAM, with all these key ingredients
necessary to discuss heavy fermion physics, is indeed the basic model of the HF
systems.

To see its utility for Kondo insulators, consider the PAM without Uf , which can
be diagonalized by Fourier transforming f̂r,s to f̂k,s and then mixing f̂k,s with ĉk,s.
The resulting band dispersions of this non-interacting PAM are given as follows:

λ±(k) =
1

2

[
ϵ(k) + ϵf ±

√
[ϵ(k)− ϵf ]2 + 4V 2

]
(1.7)

They are shown in Fig. 1.4. In order for the non-interacting PAM to describe
an insulator, it is clear that the band with lower energy, λ−(k), must be fully
occupied, while the higher energy band should be empty. It implies that the
number of electrons per site should be ne = 2, which is the half-filled case2. Thus,
the non-interacting PAM has an insulating ground state at half-filling. But this is
just a band insulator, without Kondo singlet formation. For the Kondo singlet, we
need to turn on Uf , which makes the PAM a difficult many-body problem. But Uf

does not alter the electron filling. Thus, the half-filled PAM with Uf > 0 describes
a Kondo insulator.

Now the question is how to realize and maintain half-filling, while doing the
calculations. It so happens that a neat and simple way of exactly guaranteeing
half-filling is to consider the PAM on a bipartite lattice with ϵf = −Uf/2. One can

2On every site there are two orbitals, c (conduction) and f (localized). Therefore, the maxi-
mum number of electrons per site could be 4. Hence, ne = 2 is the case of half-filling.
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Figure 1.4: The band structure of PAM for Uf = 0, plotted in one dimension for illus-
tration. Left panel: Dispersions, λ±(k), without hybridization, V = 0. The conduction
band (orange) is dispersive and the localized band (black) is completely flat. Right panel:
A non-zero V opens a gap. If the chemical potential (black dashed line) lies inside a
band (near the top of the lower band or the bottom of the upper band), then the system
is a heavy-fermion metal, otherwise (purple dashed line) it is an insulator.

show that this special case of PAM is symmetric under particle-hole transformation,
which guarantees the half-filling. For instance, on a hypercubic lattice with nearest-
neighbour hopping, this so-called “symmetric” periodic Anderson model can be
written as:

ĤSPAM =− t
∑
r,δ

∑
s=↑,↓

ĉ†r,sĉr+δ,s − V
∑

r

∑
s=↑,↓

(
ĉ†r,sf̂r,s + h.c.

)
+ Uf

∑
r

[
nf

r,↑n
f
r,↓ −

1

2

(
nf

r,↑ + nf
r,↓

)]
(1.8)

where δ is summed over the nearest neighbours of r. The symmetric periodic
Anderson model (SPAM) has been variously studied to understand the basic prop-
erties of Kondo insulators [19, 25, 3]. Here, we will study it to understand magnetic
quantum oscillations in Kondo insulators.

1.2 The de Haas-van Alphen Oscillations

The de Haas-van Alphen (dHvA) effect refers to the oscillations of magnetization,
M , with respect to magnetic field, B. It was discovered in 1930 by Wander Jo-
hannes de Haas and P. M. van Alphen in a single crystal of Bi at liquid hydrogen
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temperatures [5, 26]. The dHvA oscillations are periodic in 1/B, and are under-
stood to occur due to Landau quantization of electronic orbits in magnetic field.
Hence, they are also called quantum oscillations, or more specifically, magnetic
quantum oscillations. Historically, the dHvA effect is considered to be a hallmark
of the metallic response.

Figure 1.5: The oscillations of magnetization with magnetic field, as found by de Haas
and van Alphen, in Bi at temperature, T = 14.2K. This figure is taken from Ref. [26].

Classically, an electron traverses in the orbits caused by the Lorentz force.
Quantum mechanics quantizes these orbits in the plane perpendicular to magnetic
field. The area of these orbits in real space decreases upon increasing B, which
implies that the corresponding area in the momentum space would increase with
B. Therefore, when an orbit crosses the extremal cross-sectional area of the Fermi
surface in a metal, it shows a peak in the density of state, D. The peak in D
appears periodically as B increases. Therefore, all the physical quantities that
depend on D show an oscillatory behaviour with respect to B. For instance, like
M , the resistivity also exhibits such oscillations, which is known as Shubnikov-
de Haas effect. Interestingly, the oscillation frequency, f , can be related to the
extremal area, F , (perpendicular to magnetic field) on the Fermi surface through
the following relation due to Onsager [27].

f =
ℏ
2πe

F (1.9)

Here, ℏ = h/2π is the Planck’s constant, and e is magnitude of the charge of
electron. Notably, the proportionality constant between f and F in Eq. (1.9)
depends only on two fundamental quantities.
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1.2.1 Landau quantization and dHvA effect in metals

To understand the microscopic basis of the dHvA effect, let us consider the Landau
quantization for free electrons in a cubical box of sides Lx, Ly, Lz, in the presence
of a uniform magnetic field, B (say, along z-axis). The Hamiltonian of a free
electron of mass m and charge −e travelling in a magnetic field can be written as:

Ĥ =
(p + eA)2

2m
(1.10)

where, p = −iℏ∇ is canonical momentum operator. Since the magnetic field
B = Bẑ, therefore, we can choose the vector potential to be A = −Byx̂, which
satisfies the relation B = ∇×A. It is called the Landau gauge. So, in the Landau
gauge, Eq. (1.10) reads as:

Ĥ =
1

2m

(
−iℏ ∂

∂x
− eBy

)2

− ℏ2

2m

(
∂2

∂y2
+

∂2

∂z2

)
. (1.11)

Note that the momentum operators px and pz are conserved in the above Hamil-
tonian. That is, [px, Ĥ] = 0 and [pz, Ĥ] = 0. So, we can write the wavefunction
as:

ψ(x, y, z) = χ(y)ei(kxx+kzz) (1.12)

and then the Schrödinger equation Ĥψ = Eψ reads as:[
E − ℏ2k2z

2m
− 1

2
mω2

c (y − y0)
2

]
χ+

ℏ2

2m

∂2χ

∂y2
= 0 (1.13)

where ωc = eB/m is the cyclotron frequency. Here, we see that the electron’s
motion is free along z direction, while in the xy-plane, it behaves as a harmonic
oscillator along y centred at y0 = ℏkx

mωc
. Equation (1.13) is a standard problem in

quantum mechanics, whose energy eigenvalues, given by the wavenumber, kz, and
an integer n ≥ 0, can be written as follows:

En,kz =
ℏ2k2z
2m

+
(
n+

1

2

)
ℏωc (1.14)

This is the Landau quantization of a free electron in uniform magnetic field.
Equation (1.14) is quite remarkable. We can see that the energy ℏ2k2z/2m

coming from the motion along z direction remains the same even after turning
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on B, because the Lorentz force does not act along the magnetic field direction
(z-axis). However, the energy of the motion in the plane perpendicular to B is
quantized in the steps of ℏωc. That is, the cyclotron motion in the x-y plane gets
quantized according to the following (semiclassical) condition:

ℏ2

2m
(k2x + k2y) =

(
n+

1

2

)
ℏωc (1.15)

We note that the energy in Eq. (1.14) does not depend on quantum number kx,
which can take any value of kx = 2πN

Lx
(N is integer). So, each level is highly

degenerate. The set of all eigenstates [of Eq. (1.13)] for a given n (and arbitrary
kz) is referred to as the nth Landau level. Since 0 < y0 < Ly, we get the following
condition on N :

0 <
ℏkx
mωc

< Ly

⇒ 0 < N <
eB

h
LxLy =

Φ

Φ0

where Φ = BLxLy is magnetic flux passing through the sample and Φ0 = h/e

is the quantum flux. Hence, the total number of eigenstates per Landau level is
2Φ/Φ0, where the factor of 2 is due to spin degeneracy for electrons.

Origin of quantum oscillations: Semiclassical approach

We use the semiclassical approach to understand the origin of quantum oscillations
in metals [6, 5, 28]. An electron moving in magnetic field has momentum, p =

ℏk−eA, where the first term is its kinetic momentum and the second is due to the
magnetic field. Assuming that the orbit is closed, the Bohr-Sommerfeld condition
quantizes the orbital motion of electron in the magnetic field as:∮

p · dr = (n+ θ)2πℏ (1.16)

where n is a non-negative integer and θ, the phase correction, is 1/2 for parabolic
dispersion and 0 for graphene-like linear dispersion. The semiclassical equation of
motion of an electron in magnetic field can be written as follows:

ℏ
dk
dt

= −edr
dt

× B (1.17)
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By integrating it with respect to t, we get ℏk = −er × B plus a constant, which
does not contribute to the final result. We use this and Stoke’s theorem to find∮

p · dr =

∮
ℏk · dr − e

∮
A · dr = −e

∮
r × B · dr − e

∮
∇× A · dσ

= eB ·
∮

r × dr − e

∮
B · dσ = e(2Φ)− eΦ = eΦ

⇒ Φ = (n+ θ)2πℏ/e (1.18)

where dσ is the area element in real space. Here, we have also used the fact that∮
r × dr = 2 × the area enclosed by the close orbit. From the above result for Φ,

we get the following quantization rule for the area, S, of the cyclotron orbit in real
space.

Sn = (n+ θ)
2πℏ
eB

(1.19)

Since the line element ∆r in the plane normal to magnetic field B is related to
the line element ∆k in k-space as |∆r| = (ℏ/eB)|∆k|. Therefore, the area, Sn,
in real space corresponds to the area, Fn, in k-space as: Sn = (ℏ/eB)2Fn. From
Eq. (1.19) for Sn, we get the following expression for Fn.

Fn = (n+ θ)
2πeB

ℏ
. (1.20)

Note that, for θ = 1/2, Eq. (1.20) is same as Eq. (1.15) for the free electron.
Most low-temperature electronic properties of metals depend upon the density

of states at the Fermi energy. For a non-zero B, the free electron states reorganize
into Landau levels whose degeneracy grows with B. Therefore, as B increases
or decreases, the Landau levels repeatedly cross the Fermi level leading to an
oscillatory behaviour of various physical quantities. The period of this oscillation
is determined by the crossing of successive Landau levels (∼ semiclassical quantized
orbits in k-space) across those cross-sections on the Fermi surface that enclose an
extremal area perpendicular to magnetic field. Let such an extremal area be F ,
and the nth closed orbit attain this area for the field strength, Bn. Then, the
periodicity criteria, Fn = Fn+1 = F , and the quantization condition of Eq. (1.20),
together give

the period of oscillation =

∣∣∣∣ 1

Bn+1

− 1

Bn

∣∣∣∣ = 2πe

ℏF
. (1.21)
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This explains, for instance, why dHvA oscillations are periodic in 1/B. Finally,
the frequency, f , of such quantum oscillations is given by the following relation:

f =

∣∣∣∣ 1

Bn+1

− 1

Bn

∣∣∣∣−1

=
ℏ
2πe

F (1.22)

This celebrated equation provides the basis for directly measuring the Fermi sur-
faces in metals by doing quantum oscillation measurements.

1.2.2 Curious case of SmB6: dHvA effect in insulators?

In the previous subsection, we learnt about the dHvA effect, which has always
been considered to be a characteristic of metals, and was never expected to occur
in insulators. But this conventional view changed recently, when SmB6, a Kondo
insulator, showed magnetic quantum oscillations at low temperatures [11, 12].

RT and the Dingle damping factor RD, de-
fined as

RT ¼ aTm*=BsinhðaTm*=BÞ
RD ¼ expð−aTDm*=BÞ ð3Þ

where the effective mass m = m*me and the
Dingle temperature TD ¼ ℏ=2pkBtS . tS is the
scattering rate, kB is the Boltzmann Constant,
me is the bare electron mass, B = m0H is the
magnetic flux density, and a ¼ 2p2kBme=eℏ
~14.69 T/K (23).
Fitting the temperature dependence of the

normalized oscillation amplitudes to the ther-
mal damping factor RT (Fig. 2C) yields m =
0.119me for Fermi surface a, m = 0.129me for
Fermi surface b, andm = 0.192me for Fermi sur-
face g. Figure 2D displays the field dependence
of the oscillation amplitude, normalized by the
thermal damping factor RT. Fitting the curves
to RD yields TD ~15.9 K for Fermi surface a, TD
~18.6 K for Fermi surface b, and TD ~ 29.5 K for
Fermi surface g. Based on the extracted oscilla-
tion frequencies, effective masses, and Dingle
temperatures, we are able to characterize the
observed Fermi surfaces in SmB6 (Table 1).
The longmean free path lmeasured for all three

pockets (Table 1) supports the idea of intrinsic
metallic surface states. The mean free path is
two orders of magnitude larger than the crystal
lattice constant of ~0.4 nm. Such a long mean
free path is incompatible with the surface/bulk
conductance arising from hopping between
impurities.
The low effective mass that we measured

(Table 1) is quite surprising, because most of the
theoretical work on the topological Kondo in-
sulator predicts a heavy mass of the surface

states (28). The observed mass in SmB6 is also
much smaller than that of the divalent hexa-
boride compounds such as La-doped CaB6 and
EuB6 (29, 30). Pockets with heavier masses may
still exist but could not be observed in our ex-
perimental conditions because of the thermal
and Dingle dampings. Measurements in higher
magnetic field and in colder temperatures would
help resolve such extra Fermi pockets.
The most important feature of the observed

quantum oscillations is the two-dimensionality
(2D). For a 2D planar metallic system, the mag-
netic field projected to the normal axis of the
plane determines the LandauLevel quantizations.
Thus, the oscillation frequency versus tilt angle
curve generally follows the inverse of a sinusoi-
dal function (15–17). We rotate the whole canti-
lever setup to track how the oscillation frequency
F changes as a function of the tilt angle f in a
broad range of more than 180°. Using the com-
plete FFT plots (figs. S3 to S5), we obtain the an-
gular dependences of the oscillation frequencies
of all the Fermi pockets on the (100) and (101)
family surfaces, as displayed in Fig. 3, A to C.
For the dominating oscillatory pattern from

pocket b, the oscillation frequency F b not only
displays a large angular dispersion but also
closely tracks the 2D angular dependence from
the (101) surface families. There are four branches
of the Fb − f patterns, as a result of the fourfold
crystalline symmetry of the SmB6 cubic struc-
ture. At each f, there are two appearances of
the b family. For example, at f ~ 30°, there is one
Fb from the (101) plane and another one from
the neighboring ð101Þ plane (the latter contri-
bution ismarked as b′ in Fig. 2B).Most notably, all
the Fb points track the solid lines of the function
F b
0=cosðfþ 45○Þ,F b

0=cosðf−45○Þ,F
b
0=cosðf−135○Þ,

and F b
0=cosðf−225○Þ. We observe Fb at frequen-

cies as high as 900 T—amore than 200% increase
from the minimum value of 286 T. Such large
divergence and the close tracking of the inverse
cosine dependence strongly support the 2D na-
ture of the observed b pocket on the (101) surface
plane families.
In contrast, the angular dependence of the

oscillation frequency of the a pocket Fa follows
a different pattern. In Fig. 3A, the Fa values are
plotted against the tilt angle f of two SmB6 single
crystals. The uncertainty of Fa is determined by
the half width at half-height of the Fa peak in the
FFT plot. Similar to Fb, the Fa pattern has a
fourfold symmetry, but the minima are located
at f = 0°, 90°, and 180°, that is, along the (100)
crystalline axes. Fitting the data to the 2D form
for this family, Fa

0 =cosðf−0○Þ, Fa
0 =cosðf−90○Þ,

and Fa
0 =cosðf−180○Þ, with Fa

0 = 30.5 T (solid
lines in Fig. 3A) results in reasonable agreement.
This suggests that the observed a pocket arises
from a surface state on the (100) plane families.
Similarly, Fig. 3C shows that the angular de-
pendence of the g pocket Fg follows the func-
tional form of Fg

0=cosðf−0○Þ, F
g
0=cosðf−90○Þ,

and Fg
0=cosðf−180○Þ with Fg

0 ~385 T, suggest-
ing the two-dimensionality of the g pocket on
the (100) surface plane.
Further, given the small value and large un-

certainly of Fa, there is still a chance that an
extremely elongated 3D ellipsoidal Fermi surface
may fit the Fa versus f dependence. Experiments
with cleaner SmB6 crystals may resolve the issue.
The angular dependence of the oscillation fre-

quency suggests that the Fermi surface b is two-
dimensional and likely arises from the crystalline
(101) plane. In contrast, most of the theoretical
modeling focuses on the surface states in the

1210 5 DECEMBER 2014 • VOL 346 ISSUE 6214 sciencemag.org SCIENCE

Fig. 2. Quantum oscillation pattern observed by torque magnetometry. (A) The oscillatory mag-
netic torque tosc is plotted as a function of 1/m0H. tosc is calculated by subtracting a polynomial back-
ground from the full torque signal. (B) The Fast Fourier Transform (FFT) of the oscillatory torque tosc
shows three major peaks, labeled a, b, and g. The higher harmonics of the b peak are also observed,
together with the b′ peak from the neighboring surface plane. (C) The temperature dependence of the
FFTamplitude of the threemajor peaks, normalized by their 0 K limit.Themagnetic field tilt angle f ~ 32°.
Fitting the oscillatory amplitude to the LK formula (solid lines) yields the effective massm = 0.119me for
the low-frequency a pocket, m = 0.129me for the high-frequency b pocket, and m = 0.192me for the
higher-frequency g pocket. (D) At 0.3 K and f ~ 30°, the oscillation amplitude is tracked as a function of
field H, generally known as the Dingle plot. Solid lines are fits to the Dingle factor.
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Figure 1.6: Quantum oscillations in SmB6 from Ref. [11]. (A) Magnetic torque vs.
inverse magnetic field. (B) Fourier transform of the oscillation data showing frequencies
that are claimed to correspond to the two-dimensional Fermi surface of the conducting
surface states.

Some years ago, SmB6 had been theoretically predicted to be a topological
Kondo insulator having conducting surface states with an insulating bulk [29, 30].
It motivated experiments that eventually found dHvA oscillations in SmB6. The
experiments by Li. et al. [11] claimed to have seen the two-dimensional Fermi sur-
face of the conducting surface states through quantum oscillation measurements.
Figure 1.6 shows some data from Ref. [11]. However, in contrast to this, no quan-
tum oscillations have been observed in the resistivity measurements on surface [31].
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In separate experiments, Tan et al. also observed magnetic quantum oscillations
in SmB6 [12]. But they claim these oscillations to come from a three-dimensional
“Fermi surface”. In fact, the high oscillation frequencies in their data are claimed
to correspond to the half of the bulk Brillouin zone. Figure 1.7 shows some data
from Ref. [12]. This is very puzzling, because the conducting surface states can
not account for it, and the bulk is insulating! As there are no free electrons in
the bulk, there is no Fermi surface (as we conventionally understand it). So what
surface, and of which quasiparticles, these oscillations are actually measuring?

REPORTS
◥
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Unconventional Fermi surface in an
insulating state
B. S. Tan,1 Y.-T. Hsu,1 B. Zeng,2 M. Ciomaga Hatnean,3 N. Harrison,4 Z. Zhu,4

M. Hartstein,1 M. Kiourlappou,1 A. Srivastava,1 M. D. Johannes,5 T. P. Murphy,2

J.-H. Park,2 L. Balicas,2 G. G. Lonzarich,1 G. Balakrishnan,3 Suchitra E. Sebastian1*

Insulators occur in more than one guise; a recent finding was a class of topological
insulators, which host a conducting surface juxtaposed with an insulating bulk. Here,
we report the observation of an unusual insulating state with an electrically insulating
bulk that simultaneously yields bulk quantum oscillations with characteristics of an
unconventional Fermi liquid. We present quantum oscillation measurements of magnetic
torque in high-purity single crystals of the Kondo insulator SmB6, which reveal quantum
oscillation frequencies characteristic of a large three-dimensional conduction electron
Fermi surface similar to the metallic rare earth hexaborides such as PrB6 and LaB6. The
quantum oscillation amplitude strongly increases at low temperatures, appearing strikingly
at variance with conventional metallic behavior.

K
ondo insulators, a class of materials posi-
tioned close to the border between insu-
lating andmetallic behavior, provide fertile
ground for unusual physics (1–14). This
class of strongly correlated materials is

thought to be characterized by a ground state

with a small energy gap at the Fermi energy
owing to the collective hybridization of conduc-
tion and f-electrons. The observation of quantum
oscillations has traditionally been associated with
a Fermi liquid state; here, we present the sur-
prising measurement of quantum oscillations in
the Kondo insulator SmB6 (15) that originate from
a large three-dimensional Fermi surface occupy-
ing half the Brillouin zone and strongly resem-
bling the conduction electron Fermi surface in
the metallic rare earth hexaborides (16, 17). Our
measurements in SmB6 reveal a dramatic depar-
ture from conventionalmetallic Lifshitz-Kosevich
behavior (18); instead of the expected satura-
tion at low temperatures, a striking increase is

observed in the quantum oscillation amplitude
at low temperatures.
Single crystals of SmB6 used in the present

study were grown bymeans of the image furnace
technique (19) in order to achieve high purities
as characterized by the high inverse residual re-
sistivity ratio. Single crystals with inverse resist-
ance ratios [IRR=R(T= 1.8K)/R(T=300K), where
R is resistance and T is temperature] of the order
of 105 were selected for this study; the IRR has
been shown to characterize crystal quality, with
the introduction of point defects through radia-
tion damage (20) or through off-stoichiometry
(21), resulting in a decrease in low-temperature
resistance and an increase in high-temperature
resistance. The resistance of a SmB6 single crys-
tal is shown in Fig. 1B measured as a function of
temperature at zero magnetic field and in an
appliedDCmagnetic field of 45 T, demonstrating
that activated electrical conductivity character-
istic of an energy gap ≈40 K at the Fermi energy
persists up to high magnetic fields. The non-
magnetic ground state of SmB6 is evidenced by
the linear magnetization up to 60 T (Fig. 1B, bot-
tom inset).
We observed quantum oscillations in SmB6 by

measuring the magnetic torque. The measure-
ments were done in magnetic fields up to 40 T
and down to T = 0.4 K and in magnetic fields up
to 35 T and down to T = 0.03 K. Quantum os-
cillations periodic in inverse magnetic field are
observed against a quadratic background, with
frequencies ranging from 50 to 15,000 T (Fig. 1,
A, C, andD). A Fourier transform of the quantum
oscillations is shown in Fig. 2A as a function of
inversemagnetic field, revealing well-defined peaks
corresponding to multiple frequencies. The peri-
odicity of the quantum oscillations in inverse
magnetic field is revealed by the linear Landau
index plot in Fig. 2B.
The observation, especially of rapid quantum

oscillations with frequencies higher than 10 kT
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A B C D

Fig. 1. Quantumoscillations in themagnetic torque inSmB6. (A) Quantum
oscillations in magnetic torque are visible against a quadratic background.
(Inset) Schematic of the magnetic torque measurement setup using a
capacitive cantilever and the notation for angular rotation by angle q. (B) Re-
sistance as a function of temperature in zero magnetic field (blue line) and
at 45 T (green line) using an unchanged measurement configuration on a
SmB6 sample of dimensions 1.1 by 0.3 by 0.1 mm. (Top inset) Measured
resistance from 80 mK up to high temperatures, from which the high IRR

can be ascertained [a fit to activated electrical conductivity is provided in
(23)]. (Bottom inset) Magnetization of SmB6 at 2.1 K remains linear up to 60 T.
(C) Dominant low-frequency quantum oscillations can be discerned after
background subtraction of a sixth-order polynomial. (D) Magnetic torque
at the highest measured fields after the subtraction of the low-frequency
background torque. Quantum oscillations are visible in an intermediate-
frequency range (between 2000 and 4000 T) as well as a high-frequency
range up to 15,000 T.
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(a)

(corresponding to approximately half the volume
of the cubic Brillouin zone) in SmB6, is striking.
This observation is in contrast to previous re-
ports of very-low-frequency quantum oscillations
corresponding to a few percent of the Brillouin
zone in SmB6, attributed to a two-dimensional
surface contribution (22). Our observation of very
high quantum oscillation frequencies requiring
mean free paths on the order of a fewmicrometers
would be challenging to explain from a surface
layer of a few atomic lengths’ thickness, which
would typically yield such rapid frequencies only
at a special angle of inclination at which the cy-
clotron orbit lies completely within the surface
layer. Key to identifying the Fermi surface from
which the observedquantumoscillation frequencies
originate is a comparison with previous quantum
oscillationmeasurements onmetallic hexaborides,
such as nonmagnetic LaB6, antiferromagnetic
CeB6, and antiferromagnetic PrB6 (16, 17). These
materials exhibit ametallic ground state involving
predominantly conduction electrons, with a low
residual resistivity of the order of onemicrohm cm
(≈106 times lower than inKondo insulating SmB6)
and are characterized by a multiply connected
Fermi surface of prolate spheroids (Fig. 3, D and
E). Strikingly, the angular dependence of the var-
ious quantum oscillation frequencies in SmB6

reveals characteristic signatures of the three-
dimensional Fermi surface identified in the me-
tallic rare earth hexaborides (Fig. 3, A to C). In
particular, thehighobserveda frequencies (Fig. 3A)
reveal the characteristic symmetry of large pro-
late spheroids centered atX-points of theBrillouin
zone (Fig. 3, D andE), whereas the lower observed
frequencies (Fig. 3A) reveal the characteristic
symmetry of small ellipsoids located at the neck
positions. Both of these types of ellipsoids are
universal Fermi surface features identified from
experiment and band structure calculations in
the metallic rare earth hexaborides (16, 17). Sim-
ilar features are also revealed in density functional
calculations of SmB6 when the Fermi energy is
shifted from its calculated position in the insu-
lating gap either up into the conduction or down
into the valence bands (Fig. 3, D and E) (23).
The observed angular dependence of quantum

oscillations in SmB6 remains the same irrespec-
tive of whether the sample is prepared as a thin
plate with a large plane face perpendicular to the
[110] direction, or to the [100] direction (fig. S1),
and exhibits the same characteristic signatures
with respect to the orientation of the magnetic
field to the crystallographic symmetry axes of
the bulk crystal (Fig. 3A). The bulk quantum
oscillations we measure in SmB6 corresponding
to the three-dimensional Fermi surface mapped
out in the metallic rare earth hexaborides may
not be directly related to the potential topolog-
ical character of SmB6, which would have as its
signature a conducting surface (24). In addition
to the magnetic torque signal from the atom-
ically thin surface region being several orders
of magnitude smaller than the signal from the
bulk, the observation of surface quantum oscil-
lations would be rendered more challenging by
the reported Sm depletion and resulting recon-

struction of Sm ions at the surface layer of
SmB6 (25).
The unconventional character of the state we

measure in SmB6 becomes apparent upon inves-
tigating the temperature dependence of the quan-
tum oscillation amplitude in SmB6. We found
that between T = 25 K and 2 K, the quantum os-
cillation amplitude exhibits a Lifshitz-Kosevich–
like temperature dependence (Fig. 4) characteristic
of a low effective mass similar to that of metallic
LaB6, which has only conduction electrons (16).
The comparable size of low-temperature electronic
heat capacity measured for our SmB6 single crys-
tals to that of metallic LaB6 (23) also seems to
suggest a large Fermi surface with low effective
mass in SmB6. However, instead of saturating at
lower temperatures as would be expected for the
Lifshitz-Kosevich distribution characteristic of
quasiparticles with Fermi-Dirac statistics (18), the
quantum oscillation amplitude increases dramat-
ically as low temperatures down to 30 mK are
approached (Fig. 4). Such non–Lifshitz-Kosevich
temperature dependence is remarkable, given the
robust adherence to Lifshitz-Kosevich tempera-
ture dependence in most examples of strongly
correlated electron systems, from the underdoped
cuprate superconductors (26) to heavy fermion
systems (27, 28) to systems displaying signatures

of quantum criticality (29), a notable exception
being fractional quantum Hall systems (30, 31).
The possibility of a subtle departure fromLifshitz-
Kosevich temperature dependence has been re-
ported in a few materials (32, 33).
The ground state of SmB6 is fairly insensitive

to applied magnetic fields, with activated electri-
cal conductivity behavior across a gap remaining
largely unchanged up to at least 45 T (Fig. 1B).
Such a weak coupling to the magnetic field is in
contrast to unconventional states in other mate-
rials that are tuned by an applied magnetic field
(6–11, 13). Furthermore, this rules out the pos-
sibility of quantum oscillations in SmB6 arising
from a high magnetic field state in which the
energy gap is closed. The possibility that quan-
tum oscillations arise from static, spatially dis-
connectedmetallic patches of at least 1-mm length
scale that do not contribute to the electrical trans-
port also appears unlikely. Similar quantum os-
cillations are observed in all (more than 10)
measured high-quality samples in multiple high-
magnetic-field experiments, with the best sam-
ples yielding magnetic quantum oscillations of
amplitude corresponding to a substantial frac-
tion of the expected size from bulk SmB6. The
presence of rare earths other than Sm has been
ruled out to within 0.01% by means of chemical
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Fig. 2. Landau quantization in SmB6. (A) Fourier transforms of magnetic torque as a function of
inverse magnetic field, from which a polynomial background has been subtracted, revealing multiple
quantum oscillatory frequencies ranging from 50 T to 15,000 T. Field ranges for analysis have been
chosen that best capture the observed oscillations, with the highest frequencies only appearing in
the higher field ranges. (B) The maxima and minima in the derivative of magnetic torque with
respect to the magnetic field, corresponding to the dominant low-frequency oscillation, are plotted
as a function of inverse magnetic field; the linear dependence signals Landau quantization.
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Figure 1.7: (a) Magnetic quantum oscillations in SmB6. (b) Fourier transform. Notably,
the oscillation frequencies ≳ 10, 000 T are claimed to correspond approximately to the
half of the bulk Brillouin zone. These figures are taken from Ref. [12].

These findings pose a difficult question of principle on the occurrence of dHvA
oscillations, not only in SmB6, but more generally in any insulator (correlated or
otherwise). This has led some to propose exotic neutral quasiparticles giving rise
to unconventional Fermi surface in Kondo insulators [32, 33, 34], while others have
tried to find answers within more conventional framework [35, 36, 37, 38]. Very
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recently, even disorder has been proposed as a possible cause of bulk quantum
oscillations in insulators [39, 40]. It is clearly a hotly debated and actively pursued
problem of great interest. Interestingly, another Kondo insulator, YbB12, has also
been reported recently to show magnetic quantum oscillations [41]. Thus, SmB6

is not a lonely case anymore, and this list may grow further.

1.3 Brief Outline of the Thesis

Motivated by the situation presented by SmB6, we too investigated the problem of
dHvA oscillations in Kondo insulators, and made some novel contributions to its
understanding [42]. Given that the quantum oscillation measurements on SmB6

observe a bulk Fermi surface (which the surface states obviously can not account
for), we believe that it must be so due to some intrinsic property of the Kondo
insulating bulk, regardless of its being topological or not. With this point of view,
we look afresh at the properties of the (non-topological) Kondo insulators by do-
ing calculations on the standard half-filled Kondo lattice and symmetric periodic
Anderson models. From these calculations, we discover a novel quasiparticle band
inversion that we show to have a direct bearing on the occurrence of dHvA os-
cillations in Kondo insulators. In fact, the quantum oscillations we get from our
calculations on square and simple cubic lattices correspond precisely to the half
of the bulk Brillouin zone. Notably, In our computation of dHvA oscillations, we
properly take into account the Kondo interaction, which is uncommon. In this
thesis, we present our theory of magnetic quantum oscillations in Kondo insula-
tors. Below we give an overview of the work presented in different chapters of this
thesis.

1.3.1 Studies on the half-filled Kondo lattice model

In Chapter 2, we investigate the orbital response to uniform magnetic field in the
ground state of the KLM (Kondo lattice model) of localized spin-1/2’s coupled to
the spins of the conduction electrons via an antiferromagnetic exchange coupling,
J > 0, at half-filling on square and simple cubic lattices. The conduction electron
hopping is taken to be nearest-neighbour only, with an amplitude t. It ensures
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particle-hole symmetry of the KLM on bipartite lattices, which in turn guarantees
half-filling. We formulate a novel self-consistent theory of the effective charge and
spin dynamics of the half-filled KLM by employing a canonical representation of
electrons, as invented by Brijesh Kumar [43]. This representation describes the
electron operators in terms of the spinless fermion and Pauli operators. It has
been used quite fruitfully in studying the problems of correlated electrons.

1.3.1.1 Inversion and dHvA oscillations

The ground state properties of the KLM in the absence of magnetic field are cor-
rectly described by our self-consistent theory. For instance, the charge gap in this
theory is always non-zero for any value of t/J , which is how it should be for an
insulating state. Moreover, for small t/J (i.e., strong Kondo coupling), the effec-
tive spin dynamics correctly produces the spin-gapped Kondo singlet phase. Upon
increasing t/J , the spin gap is found to continuously vanish, due to which the
Kondo singlet phase undergoes a continuous transition to the Néel antiferromag-
netic (AFM) phase.

Besides producing the commonly known features, our theory also reveals a novel
feature of the Kondo insulators, which is that the charge quasiparticle dispersion
undergoes inversion, as t (for a fixed J) increases beyond the inversion point,
ti. A simple consequence of the quasiparticle band inversion is that for strong
Kondo couplings, the charge gap comes from the Γ point in the Brillouin zone,
while it shifts to the half-Brillouin zone boundary for sufficiently weak Kondo
couplings. But a remarkable consequence of this inversion is the realization of
dHvA oscillations in the Kondo insulating state [42].

In uniform magnetic field, B, coupled via Peierls phase to electron hopping,
the effective charge and spin dynamics in our theory become two Hofstadter-like
problems of spinless fermions and hard-core bosons, respectively. By numerically
diagonalizing them, we calculate magnetization, M , as a function of B in the
ground state. The contribution of spin dynamics to M vs. B turns out to be in-
significant and not of much consequence. Hence, we focus on the charge dynamics.
But even the charge dynamics does not show any quantum oscillations for strong
Kondo couplings. However, after the inversion (t > ti) has taken place, we begin
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to see magnetic quantum oscillations from the charge dynamics. In fact, these
oscillations become more and more pronounced as the Kondo coupling goes from
moderate to weak. We do further analysis to clearly establish that the quasipar-
ticle band inversion is the key to dHvA oscillations in Kondo insulators. This is
why, in our calculations, the absence or appearance of dHvA oscillations depends
on t/J , because t/J controls the inversion.

By Fourier transforming the magnetization data, we find the dominant fre-
quency of dHvA oscillations to correspond to the half of the bulk Brillouin zone.
This is like what the experiments suggest. More precisely, these oscillations here
measure the surface of the effective chemical potential of the charge quasiparticles,
which plays the same role as the Fermi surface in metals.

As noted above, the dHvA oscillations grow stronger as t/J increases into the
Néel phase. On a careful reflection, it reveals to us a possibility of dHvA oscillations
occurring in the weak-coupling spin-density wave (SDW) insulators. To support
this insight, we do the same calculation also for the half-filled Hubbard model. In
Chapter 5, we do this again in the standard formulation of the SDW problem.

1.3.1.2 Investigations on Hubbard-Kondo lattice model

The KLM is a minimal physical model of the HF systems, where the local moments
are coupled to the ‘non-interacting’ conduction electrons. But there are materials
like Nd2-xCexCuO4 [44], and some Ce-based HF compounds [45], where the inter-
action between the conduction electrons plays an important role in determining
the properties of the system. Therefore, in Chapter 3, we investigate the half-
filled KLM but with an additional Hubbard repulsion, U > 0, for the conduction
electrons. We call it the Hubbard-Kondo lattice model (H-KLM).

By employing the theory developed for KLM in Chapter 2, we study the effect
of U on the properties of H-KLM at half-filling. We generate a quantum phase dia-
gram, that has Kondo singlet to Néel AFM phases separated by a critical line. This
is in good qualitative agreement with VCA (variational cluster approximation) [46]
and QMC (quantum monte carlo) [47] calculations. We find and understand that
the main effect of repulsion, U , in H-KLM is to enhance the Kondo coupling,
J . Like KLM, the H-KLM also exhibits inversion, and hence dHvA oscillations
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with the same frequency. Upon increasing U , these oscillations get suppressed.
Here, too, the appearance of quantum oscillations is intimately connected with
the inversion.

1.3.2 Studies on symmetric periodic Anderson model

In Chapter 4, we investigate SPAM (symmetric periodic Anderson model) as a
model of Kondo insulators, which is more microscopic than KLM. We study SPAM
on square and simple cubic lattices using the theory of Kondo insulators that we
developed for KLM. It works fine, and produces consistent results. For instance,
here too, we get inversion and dHvA oscillations. We also study quantum phase
transition from Kondo singlet to Néel phase in the Uf -V plane [for t = 1; see
Eq. (1.8) for notations]. Here, Uf helps the Néel order, because upon increasing
Uf , the effective Kondo exchange (∼ V 2/Uf ) weakens. The hybridization, V ,
supports the Kondo singlet.

Interestingly, by decreasing V for a fixed Uf , here we get two inversion transi-
tions, one each for the two kinds of quasiparticle dispersions (one narrow and one
broad). In the presence of magnetic field, we get dHvA oscillations, only when
the quasiparticle bands have appropriately inverted. The oscillation frequency
measures the same extremal area, as for KLM, on the effective chemical-potential
surface of the charge quasiparticles. Thus, our theory of Kondo insulators produces
consistent results for KLM and SPAM.

1.3.3 Quantum oscillations in spin-density wave insulators

Guided by the insight we had in Chapter 2 on weak-coupling insulators, in Chap-
ter 5, we investigate dHvA oscillations in the Néel SDW state of the half-filled
Hubbard model. Here, we do standard spin-density wave mean-field theory di-
rectly in terms of the electron operators on square and simple cubic lattices, and
obtain the anticipated quantum oscillations. We also do a similar calculation for
the half-filled KLM. These simple calculations suggest that the dHvA oscillations
can possibly occur in many different kinds of insulators (correlated or otherwise).

• • • • •
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Typically realized in rare-earth compounds, the Kondo insulators are dense ar-
rays of local moments interacting with the conduction electrons at half-filling [3, 2,
48]. They exhibit insulating behaviour at low temperatures due to singlet forma-
tion between the local moments and the conduction electrons. Recent observations
of de Haas-van Alphen oscillations in SmB6 has greatly renewed the interest in
Kondo insulators [11, 12]. Very recently, the dHvA effect has also been reported
to occur in another Kondo insulator, YbB12 [41].
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The de Haas-van Alphen (dHvA) effect refers to the quantum oscillations of
magnetization as a function of the (inverse) magnetic field. It is considered a
hallmark of the metallic response, and a direct probe of the Fermi surface (FS) [5,
28, 27]. The dHvA oscillations are a manifestation of the Landau quantization
of electronic states in uniform magnetic field. An insulator is not expected to
show dHvA oscillations. But the case of SmB6 presents a counterexample to this
conventional view, and poses a question of principle on the occurrence of dHvA
oscillations in the insulators. This question has been given some attention recently,
with some studies getting the hitherto unexpected dHvA oscillations in mostly the
band-theoretic models of insulators [35, 36, 37, 32, 49, 38]. But the situation in
a Kondo insulator (KI) is more precarious, where the electrons are correlated and
localized, and one is not quite sure which quasiparticles, if any, exhibit dHvA
oscillations, and what surface, Fermi or otherwise, is being measured. It is a hotly
debated current problem.

Topologically protected conducting surface states in a topological Kondo insu-
lator with an insulating bulk could in principle give quantum oscillations [50, 49].
But certain high frequency quantum oscillations in SmB6 imply the FS to corre-
spond to the half of its bulk Brillouin zone (BZ) [12]. This can not be accounted
for by the surface states, and calls for an understanding of the dHvA oscillations
within the bulk insulating behaviour of the KI’s. Another scenario treats the
Kondo insulating state on bipartite lattice (SmB6 has a simple cubic structure) at
half-filling as a scalar Majorana Fermi sea spread over half of the bulk BZ [32].
While it may look agreeable on the size of the observed FS, it has gapless quasi-
particles, and this gapless Majorana sea can not describe an insulator 1. A recent
experiment also rules this out [51].

Motivated by the curious case of SmB6, in this chapter, we do a theory of
the basic Kondo lattice model using a canonical representation of electrons [43]
that appropriately describes the Kondo insulating ground state, and gives the
magnetic quantum oscillations corresponding to half Brillouin zone as a general
bulk property for the Kondo coupling ranging from intermediate to weak.

1 The Fermi sea of non-interacting electrons on bipartite lattice, which is a conducting state,
consists of four such independent gapless Majorana Fermi seas.
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2.1 Kondo Lattice Model

To understand the dHvA oscillations in Kondo insulators, we study the orbital
response to uniform magnetic field in the ground state of the Kondo lattice model
(KLM) of localized spin-1/2 moments coupled via antiferromagnetic exchange,
J > 0, to the conduction electrons at half-filling with nearest-neighbour hopping,
t > 0, on square and simple cubic lattices. The Hamiltonian, Ĥ, of this problem
reads as follows:

Ĥ = −t
∑
r,δ

∑
s

ei
e
ℏ
∫ r+δ

r A·dr ĉ†r,sĉr+δ,s +
J

2

∑
r

Sr · τr (2.1)

Here, r runs over the lattice sites, δ is summed over the nearest neighbours of
r, and s =↑, ↓ is the spin label. The ĉr,s (ĉ†r,s), are the annihilation (creation)
operators of the conduction electrons, whose spin operators are denoted as Sr.
The Pauli operators, τr = (τxr , τ

y
r , τ

z
r ), denote the local moments. The uniform

external magnetic field, Bẑ, is coupled here to the electronic motion via Peierls
phase in terms of the vector potential, A = −Byx̂.

To control the number of conduction electrons, in general, one would also add
to Eq. (2.1) the chemical potential term, −µ

∑
r,s ĉ

†
r,sĉr,s. But our immediate inter-

est is in the Kondo insulating state which is realized at half-filling, and on bipartite
lattices, the half-filling of conduction electrons is exactly realized for µ = 0. There-
fore, we do not include this term in Hamiltonian, Ĥ, of Eq. (2.1).

A canonical representation of electrons, invented by Kumar [43], in terms of
spinless fermions and Pauli operators has been found to be very fruitful in de-
scribing the strongly correlated electron problems [52, 53]. Recently, this rep-
resentation has also been used by others to study quantum quenching [54] and
finite-temperature dynamics [55] in one-dimensional Hubbard model. Similar rep-
resentations have also been constructed independently by a few others, but the
two that bear closer resemblance with the Kumar’s representation are given in
Refs. [56, 57]. However, the way in which it was constructed and put into creative
use by Kumar is particularly elegant and novel. Hence, we employ the Kumar’s
representation to investigate the KLM at half-filling. Interestingly, it reveals for
us some beautiful physics of Kondo insulators. Before going into the details of our
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t

J

Figure 2.1: A pictorial depiction of the Kondo lattice model on square lattice (with red
filled-circles representing A-sublattice, and black ones, the B-sublattice). The conduc-
tion electrons hop between the nearest-neighbour sites, and are coupled to the localized
moments (empty squares) at each site via an exchange interaction (dotted links).

(a) Bipartite Simple Cubic (b) Brillouin Zone

kz

kx

ky

~a1
~a 2

~a 3

~a1 = a(x̂ + ŷ)

~a2 = a(x̂ + ẑ)

~a3 = a(ŷ + ẑ)

~b1 =
π
a(x̂ + ŷ − ẑ)

~b2 =
π
a(x̂− ŷ + ẑ)

~b3 =
π
a(−x̂ + ŷ + ẑ)

Figure 2.2: (a) The bipartite simple cubic lattice with primitive vectors, a⃗1, a⃗2, and a⃗3.
Here, a is the nearest-neighbour distance. (b) The corresponding Brillouin zone (which is
the half-Brillouin zone of the simple cubic lattice), and reciprocal lattice vectors, b⃗1, b⃗2,
and b⃗3. The orange-coloured octagonal region is the kz = 0 plane inside the Brillouin
zone.

calculations and findings, let us briefly describe this representation.
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2.2 Kumar’s Representation of Electrons

According to Ref. [43], we can write the conduction electron operators, ĉ†r↑ and ĉ†r↓,
at site r, in terms of the spinless fermion and Pauli operators as follows:

ĉ†r↑ = ϕ̂a,rσ
+
r (2.2a)

ĉ†r↓ =
1

2
(iψ̂a,r − ϕ̂a,rσ

z
r) (2.2b)

where σz
r and σ±

r are the Pauli operators, and ϕ̂a,r = â†r + âr and iψ̂a,r = â†r − âr

are the Majorana fermion operators. These Majorana operators, given in terms
of the spinless fermion creation (annihilation) operators, â†r (âr), are Hermitian.
They mutually anticommute, {ϕ̂a,r, ψ̂a,r} = 0, and ϕ̂2

a,r = ψ̂2
a,r = 1.

This representation is based on a one-to-one mapping between the local Hilbert
space of the physical electron and that of the spinless fermion and Pauli operators
combined. The mapping given by the following table leads to the representation
given in Eqs. (2.2).

⊗ |−⟩ |+⟩

|o⟩ |0⟩ | ↑↓⟩
|1⟩ | ↓⟩ | ↑⟩

(2.3)

Here, {|o⟩, |1⟩ = â†r|o⟩} and {|−⟩, |+⟩} are the basis states of spinless fermion and
Pauli operators, respectively, at site r. The local Hilbert space of the physical elec-
trons is spanned by the states, {|0⟩, | ↓⟩ = ĉ†r↓|0⟩, | ↑⟩ = ĉ†r↑|0⟩, | ↑↓⟩ = ĉ†r↑ĉ

†
r↓|0⟩}.

This table is to be read as: |0⟩ = |o⟩ ⊗ |−⟩, | ↓⟩ = |1⟩ ⊗ |−⟩, and so on. The
representation is canonical as it satisfies the necessary anticommutation algebra
for the electron operators. It is also invertible, as the mapping is one-to-one. In
the inverse picture, the spinless fermion physically describes a Gutzwiller type
correlated electron [43].

On bipartite lattices, we can use two slightly different forms of this represen-
tation on the two sublattices, which gives an elegant form to the hopping. Say,
on A sublattice, we use Eq. (2.2), but on B sublattice, we use the form as given
below [43],

ĉ†r↑ = iψ̂b,rσ
+
r (2.4a)
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ĉ†r↓ =
1

2
(ϕ̂b,r − iψ̂b,rσ

z
r) (2.4b)

Here, b̂r is the spinless fermion operator on B sublattice.
In this representation, the electronic spin operator is written as: Sr =

1
2
n̂a,rσr

on A sublattice and Sr =
1
2
n̂b,rσr on B sublattice, where n̂a,r = â†râr and n̂b,r = b̂†rb̂r.

Moreover, the number operator for total number of ↑ and ↓ electrons on a site
r ∈ A(B) is: 1 + σz

r(1− n̂a(b),r).

2.3 Properties in the Absence of Magnetic Field

To set up our scheme of calculation, we first discuss the KLM without magnetic
field. It is given by the following Hamiltonian, which is Eq. (2.1) for B = 0,

Ĥ = −t
∑
r,δ

∑
s

ĉ†r,sĉr+δ,s +
J

2

∑
r

Sr · τr (2.5)

In the representation given by Eqs. (2.2) and (2.4), the KLM reads as:

Ĥ = −it
2

∑
r∈A

∑
δ

[
ψ̂a,rϕ̂b,r+δ + ψ̂b,r+δϕ̂a,r (σr · σr+δ)

]
+
J

4

[∑
r∈A

n̂a,r(σr · τr) +
∑
r∈B

n̂b,r(σr · τr)

]
(2.6)

The form of Eq. (2.6) clearly suggests that, if J ≫ t, then σr and τr would locally
form a singlet, |s⟩ = (|+⟩| ⇓⟩ − |−⟩| ⇑⟩)/

√
2, on each lattice site. Here, the

thick arrows refer to the states of the local spin-1/2 moment. The ‘spin’ part of
the ground state in this limit is the direct product,

∏
r ⊗|s⟩r, of the local Kondo

singlets, while the residual charge dynamics is given by the following Hamiltonian
of the spinless fermions:

Ĥ0 = −it
2

∑
r∈A

∑
δ

ψ̂a,rϕ̂b,r+δ −
3J

4

[∑
r∈A

n̂a,r +
∑
r∈B

n̂b,r

]
(2.7)

It has a charge gap, ∆c =
√
(3J/4)2 + (zt/2)2 − zt/2 2. Here, z is the nearest

neighbour coordination. This singlet state also has a spin gap, ∆s = J , and keeps
2The term corresponding to t in Ĥ0 is the so-called scalar Majorana Fermi sea of Ref. [32].

But here it occurs with an additional term due to J that opens the charge gap.
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the local occupancy at one electron per site. We will see that, for B ̸= 0, this
idealized model of strong-coupling KI will not show quantum oscillations. Hence,
we improve it by correcting the local singlets for the exchange interaction caused
by hopping, and also correcting in return the charge dynamics self-consistently.

To this end, we decouple the Pauli operators from the spinless fermions in
Eq. (2.6), and write an approximate version of the KLM: Ĥ ≈ Ĥc + Ĥs + e1L,
where

Ĥc = −it
2

∑
r∈A

∑
δ

[
ψ̂a,rϕ̂b,r+δ + ρ1ψ̂b,r+δϕ̂a,r

]
+
Jρ0
4

[∑
r∈A

n̂a,r +
∑
r∈B

n̂b,r

]
(2.8a)

Ĥs =
tζ

4

∑
r,δ

σr · σr+δ +
Jn̄

4

∑
r

σr · τr, (2.8b)

and e1 = −(ztζρ1 + Jn̄ρ0)/4. Here, L is the total number of lattice sites, and the
mean-field parameters are defined as follows:

ρ0 =
1

L

∑
r
⟨σr · τr⟩ (2.9a)

ρ1 =
1

zL
∑
r,δ

⟨σr · σr+δ⟩ (2.9b)

n̄ =
1

L
⟨
∑
r∈A

n̂a,r +
∑
r∈B

n̂b,r⟩ (2.9c)

ζ =
2i

zL
∑
r∈A

∑
δ

⟨ϕ̂a,rψ̂b,r+δ⟩ (2.9d)

Here, n̄ is the density of spinless fermions. These mean-field parameters, ρ0, ρ1, ζ
and n̄, are determined self-consistently by solving Ĥc and Ĥs

3.

2.3.1 Effective charge dynamics

The charge part of the self-consistent dynamics is given by the effective Hamilto-
nian Ĥc of Eq. (2.8a). We rewrite the Majorana operator terms as

iψ̂a,rϕ̂b,r+δ = (â†rb̂r+δ + h.c.) + (â†rb̂
†
r+δ + h.c.)

iϕ̂a,rψ̂b,r+δ = −(â†rb̂r+δ + h.c.) + (â†rb̂
†
r+δ + h.c.)

3The Ĥs resembles the Kondo necklace model [58]. Here, it describes the magnetic properties
of the Kondo insulator.
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which leads to the following bilinear form of Ĥc in terms of the spinless fermions:

Ĥc = − t

2

∑
r∈A

∑
δ

[
(1 + ρ1)(â

†
rb̂r+δ + h.c.) + (1− ρ1)(â

†
rb̂

†
r+δ + h.c.)

]
+
Jρ0
4

[∑
r∈A

n̂a,r +
∑
r∈B

n̂b,r

]
(2.10)

We diagonalize Ĥc by successively applying Fourier and Bogoliubov transforma-
tions. The Fourier transformation of âr and b̂r is given by the relations

âr =

√
2

L

∑
k
eik·r âk and b̂r =

√
2

L

∑
k
eik·r b̂k,

where the wave-vector k is summed over the half-Brillouin zone, because âr and
b̂r live on separate sublattices. The operators âk and b̂k are two canonical spinless
fermions in the reciprocal space. Applying this transformation to Ĥc leads to the
following form:

Ĥc = − t

2

∑
k

[
(1 + ρ1)(γkâ

†
kb̂k + h.c.) + (1− ρ1)(â

†
kb̂

†
−k + h.c.)

]
+
Jρ0
4

∑
k

(n̂a,k + n̂b,k) , (2.11)

where γk =
∑

δ e
ik·δ. Under the Bogoliubov transformation given by 4

âk =
1√
2

[
cos θk η̂+(k)− sin θk η̂

†
+(−k)− cos θk η̂−(k)− sin θk η̂

†
−(−k)

]
b̂k =

1√
2

[
cos θk η̂+(k) + sin θk η̂

†
+(−k) + cos θk η̂−(k)− sin θk η̂

†
−(−k)

]
for

tan 2θk =

[
−t(1− ρ1)|γk|/2

Ek

]
the Ĥc of Eq. (2.11) becomes diagonal in terms of the new fermion operators,
η̂±(k).

In the diagonal form, the Ĥc reads as

Ĥc = Jρ0L/8 +
∑

k

∑
ν=±

Ekν

[
η̂†ν(k)η̂ν(k)−

1

2

]
(2.12)

4The γk is a real function of k on square and simple cubic lattices. But on other bipartite
lattices, it could be complex. For instance, on honeycomb lattice, it is complex. For such cases,
we can write γk = |γk| eiχk , and do a gauge transformation, âk → âke

iχk , before doing the
Bogoliubov rotation.
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where k ∈ the half-BZ, and

Ek± = Ek ± 1

2
t(1 + ρ1)|γk| > 0 (2.13)

with Ek =
√

(Jρ0/4)2 + [t(1− ρ1)|γk|/2]2 are the charge quasiparticle dispersions.
The ground state of Ĥc is given by the vacuum of the η̂±(k) quasiparticles, and
the ground state energy per site is given by the following equation:

eg,c =
Jρ0
8

− 1

2L

∑
k

∑
ν=±

Ekν (2.14)

The self-consistent equations for n̄ and ζ, in the ground state of Ĥc, are

n̄ =
1

2
− Jρ0

4L

∑
k

1

Ek
and ζ =

t(1− ρ1)

zL
∑

k

|γk|2

Ek
. (2.15)

2.3.2 Effective spin dynamics

We study the effective spin Hamiltonian, Ĥs of Eq. (2.8b), using the bond-operator
representation [59] for σr and τr, according to which

σα
r = (ŝ†rt̂rα + h.c.)− iϵαβγ t̂

†
rβ t̂rγ (2.16a)

τα
r = −(ŝ†rt̂rα + h.c.)− iϵαβγ t̂

†
rβ t̂rγ. (2.16b)

Here, α, β, γ = x, y, z denote the three components of Pauli operators, and ŝr and
t̂rα are the so-called bond-operators corresponding to the local singlet and triplet
states at site r. These bond-operators are taken to be bosonic. For every pair of
σr and τr, they are defined as follows:

|s⟩ = 1√
2
(|+⟩| ⇓⟩ − |−⟩| ⇑⟩) := ŝ†|0⟩ (2.17a)

|tx⟩ =
1√
2
(|−⟩| ⇓⟩ − |+⟩| ⇑⟩) := t̂†x|0⟩ (2.17b)

|ty⟩ =
i√
2
(|−⟩| ⇓⟩+ |+⟩| ⇑⟩) := t̂†y|0⟩ (2.17c)

|tz⟩ =
1√
2
(|+⟩| ⇓⟩+ |−⟩| ⇑⟩) := t̂†z|0⟩ (2.17d)

The completeness of the local spin Hilbert space on every site, r, puts the following
local constraint on the bond-operators:

ŝ†rŝr +
∑
α

t̂†rαt̂rα = 1. (2.18)
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We make three standard simplifying approximations [59, 60] to discuss the ba-
sic physics of Ĥs using bond-operator representation. Firstly, we treat ŝr as mean
singlet amplitude, s̄, which is physically relevant for the present model. Secondly,
we ignore the terms bilinear in triplet operators in Eqs. (2.16). It amounts to
neglecting the interaction between the triplet excitations. With these two approx-
imations, we can write σrα ≈ s̄(t̂†rα + t̂rα) and τrα ≈ −s̄(t̂†rα + t̂rα). Thirdly, we
treat the local constraint given in Eq. (2.18) only on average using Lagrange mul-
tiplier, λ. Under these approximations, the effective spin Hamiltonian, Ĥs, takes
the following form

Ĥs ≈ tζs̄2

4

∑
r,α

∑
δ

[(
t̂†r,α + t̂r,α

)(
t̂†r+δ,α + t̂r+δ,α

)]
+
Jn̄

4

∑
r

[
− 3s̄2 +

∑
α

t̂†r,αt̂r,α

]
− λ

∑
r

[
s̄2 +

∑
α

t̂†r,αt̂r,α − 1
]

(2.19)

It presents the minimal dynamics of triplet fluctuations with respect to mean
Kondo singlet background. The corresponding Hamiltonian in k-space is obtained
by doing the Fourier transformation, trα =

√
1
L

∑
k e

ik·rtkα, where k lies in the full
Brillouin zone. The resulting mean-field Hamiltonian reads as:

Ĥs =
1

2

∑
k,α

{[
λ+

1

2
tζs̄2γk

] (
t̂†kαt̂kα + t̂−kαt̂

†
−kα

)
+

1

2
tζs̄2γk

(
t̂†kαt̂

†
−kα + t̂−kαt̂kα

)}
+ L

[
λs̄2 − 5

2
λ+ Jn̄(s̄2 − 1/4)

]
(2.20)

where L is the total number of sites, λ → (Jn̄/4 − λ) is the effective chemical
potential, and γk =

∑
δ e

ik·δ. It can be diagonalized by applying the following
Bogoliubov transformation

t̂kα = t̃kα cosh θ̃k + t̃†−kα sinh θ̃k (2.21)

Here, t̃kα are the new bosonic operators describing triplon quasiparticles, and

tanh 2θ̃k = −
1
2
tζs̄2γk

(λ+ 1
2
tζs̄2γk)

(2.22)

The Ĥs in the diagonal form reads as:

Ĥs ≈ L[λs̄2 − 5λ/2− Jn̄(s̄2 − 1/4)] +
∑

k

∑
α=x,y,z

εk

[
t̃†kαt̃kα +

1

2

]
(2.23)
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where the bosonic operators t̃kα defined in Eq. (4.29) describe the triplon excita-
tions with respect to the mean Kondo singlet given by s̄, εk =

√
λ(λ+ tζs̄2γk) is

the triplon dispersion, and k ∈ the full BZ. The ground state energy per site of Ĥs

is given as:

eg,s =
[
λs̄2 − 5λ/2− Jn̄(s̄2 − 1/4)

]
+

3

2L

∑
k
εk (2.24)

and the corresponding self-consistent parameters [defined in Eq. (2.9)] for the spin
part are given as: ρ0 = 1− 4s̄2 and ρ1 = 4s̄2(Jn̄− λ)/ztζ, where

s̄2 =
5

2
− 3

4L

∑
k

2λ+ tζs̄2γk

εk
, and (2.25a)

λ = Jn̄− 3λtζ

4L

∑
k

γk

εk
. (2.25b)
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Figure 2.3: Mean-field parameters of the effective charge and spin dynamics as a function
of t/J on square and simple cubic lattices. The black dots indicate the critical hopping,
tc, below which the insulating ground state is a Kondo singlet, and above which, it is
antiferromagnetically ordered [see Fig. 2.4 for the spin and charge gaps].
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2.3.3 Insulating ground state: Kondo singlet vs. Néel or-
der

We compute the parameters, n̄, ζ, ρ0 and ρ1, by self-consistently solving the
Eqs. (2.15) and (2.25) for different value of t/J . In our calculations, we take
J = 1.

Kondo singlet phase

At t = 0, the exact values of these mean-field parameters are: ρ0 = −3, ρ1 = 0,
n̄ = 1, and ζ = 0, which simply means that the local Kondo singlets are perfectly
formed. For t > 0, we get −3 < ρ0 ≲ ρ1 < 0, and 0 < ζ < 0.5 < n̄ < 1 from
the self-consistent calculation, as shown in Fig. 2.3. From our calculations, we
correctly find the Ĥc to have a non-zero charge gap, ∆c, for all values of t, which
makes it an insulator. For smaller values of t, the Ĥs also has a gap, ∆s, to the
spin excitations. See Fig. 2.4 for the charge and spin gaps on square lattice. This
singlet phase with a non-zero spin gap is called the Kondo singlet (KS) phase.

However, as t increases, ∆s decreases and eventually vanishes at the critical
point, t = tc. Equation (2.29) shows the values of tc for square and simple cubic
lattices. The closing of the spin gap at tc marks a quantum phase transition from
the quantum paramagnetic KS phase to a magnetically ordered phase. The wave-
vector Q at which the gap vanishes, that is εQ = 0, determines the nature of
magnetic order. In our calculation, we find the KS phase is slightly overestimated
as compared to the other methods [61, 62, 63]. See Table 2.1 for a comparison of
the values of tc obtained from different methods.5

Antiferromagnetically ordered phase

The gaplessness, εQ = 0, fixes the Lagrange multiplier to λ = ztζs̄2. It also makes
the k = Q terms in Eqs. (2.25) singular, which causes Bose condensation of triplons
that leads to magnetic ordering with ordering wave-vector Q [64]. Corresponding
to the singularity at Q, we introduce triplon condensate density, nc :=

1
L
⟨t̂†Qαt̂Qα⟩.

5VMC≡ variational monte carlo, BO-MFT≡ bond operator mean-field theory [C. Jurecka and
W. Brenig, Phys. Rev. B. 64.092406 (2001)]
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KLM square lattice(tc) simple cubic lattice(tc)
Our theory 0.89 0.62

QMC[61] 0.69 −

VCA[46] 0.49 −

Series-expansion[62] 0.70 0.50

VMC[63] 0.71 −

BO-MFT[47] 0.67 0.55

Table 2.1: For the Kondo lattice model (KLM), the critical value of hopping, tc, (for
magnetic phase transition from Kondo singlet to Néel antiferromagnetic phase) obtained
from different methods are compared from our theory.

Hence, in this gapless ordered phase, the mean-field equations for the spin part
read as follows:

λ = ztζs̄2, (2.26a)

s̄2 =
5

2
− nc −

3

4L

∑
k ̸=Q

2λ+ tζs̄2γk

εk
, and (2.26b)

nc =
1

ztζ

(
λ− Jn̄+

3λtζ

4L

∑
k̸=Q

2λ+ tζs̄2γk

εk

)
. (2.26c)

Together with Eqs. (2.15) for the charge part, the self-consistent solution of Eqs. (2.26),
determines the properties of the phase with zero spin gap.

From our calculations, we find the triplon dispersion to become gapless for
t > tc at Q = (π, π) on square lattice and Q = (π, π, π) on simple cubic lattice.
See Fig. 2.5 for triplon dispersion. Hence, we get Néel antiferromagnetic order in
the insulating ground state of the half-filled KLM for t > tc.

2.3.4 Inversion of the charge quasiparticle dispersion

A special feature of the Kondo insulating state, that we discover here, is the “in-
version” of charge quasiparticle dispersion, which has a direct bearing on quantum
oscillations (as we will see later). Note that the dispersions Ek+ and Ek−, of the
charge quasiparticles given in Eq. (2.13) always touch each other at |γk| = 0, at a
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Figure 2.4: The charge (∆c) and spin (∆s) gaps vs. t/J for square lattice at half-filling
of KLM obtained in ground state of Eq. (4.16) and (4.34).

t<tc
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Γ X

M

Figure 2.5: Triplon dispersion, εk, of Ĥs. It is gapped (Kondo singlet) for t < tc and
gapless (Néel antiferromagnetic) for t > tc. See Eq. (2.29) for tc.

value of J |ρ0|/4, which is the chemical potential of the spinless fermions in Ĥc. See
Eq. (2.10) for the number operator terms. For small t/J , Ek−(+) is lowest (highest)
at k = 0, and highest (lowest) at |γk| = 0. But for t greater than a particular
value ti (we term it as the inversion point), the k = 0 becomes a point of local
maxima of Ek−, whose lowest value (the charge gap, ∆c) now lies not at k = 0,6

but on a contour whose equation is given as:

|γk| = J |ρ0|(1− |ρ1|)/{4t(1 + |ρ1|)
√

|ρ1|}. (2.27)

See Fig. 2.6 for the evolution of Ek− with t. Thus, for t > ti, Ek− undergoes
inversion, while Ek+ is always maximum at k = 0 7. We further find that, for

6A shift in the band minimum at a similar value of t as our ti has also been noted in Ref. [65].
7We see no such inversion to occur for the triplon dispersion, εk.
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(a) t < ti

(b) ti < t < tL

(c) t > tL

Ek− Ek+

Figure 2.6: Behaviour of charge quasiparticle dispersions, Ek±, of Ĥc for different t’s.
The Dispersion, Ek− undergoes inversion for t > ti however Ek+ remains uninverted.
See Eq. (2.29) for ti and tL.

t > tL > ti, the k = 0 becomes the global maxima of Ek−, which leads to a second
branch of the chemical-potential surface (CPS) given by

|γk| = J |ρ0|(1− |ρ1|)/{4t|ρ1|} (2.28)

in addition to |γk| = 0 [see Figs. 2.7 and 2.10(c-d)]. This is akin to Lifshitz
transition [66], but in a Kondo insulator! We will see that, for dHvA oscillations,
the CPS in KI plays the role of Fermi surface in metals. Sufficiently above tL, the
Ek− nearly fully inverts and looks similar to Ek+. This inversion of Ek−, shown
in Fig. 2.6 for square lattice, is generic to Kondo insulators, at least on bipartite
lattices. Having obtained this novel and other expected features of the KI’s using
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Figure 2.7: The chemical-potential surface (CPS), Ek− = J |ρ0|/4, for t > tL, where tL

is the point of Lifshitz-like transition, below which |γk| = 0 is the CPS, and above tL,
the CPS has a second t dependent branch that approaches |γk| = 0 with increasing t.
We find the dHvA oscillations to measure CPS. See Eq. (2.29) for ti and tL.

Ĥc+Ĥs, we now study this minimal approximate model in uniform magnetic field.

ti tL tc

square lattice 0.38 0.52 0.89

simple cubic lattice 0.33 0.48 0.62

(2.29)

2.4 Magnetic Quantum Oscillations

We now rewrite the KLM of Eq. (2.1) for B ̸= 0, in a manner similar to Eq. (2.6),
by keeping only those terms that couple to n̄, ζ, ρ0 and ρ1. In this way, we
derive the following magnetic field dependent minimal models of charge and spin
dynamics of a Kondo insulator:

Ĥ [B]
c = −it

2

∑
r∈A

∑
δ

cos
(
2πα ry x̂ · δ̂

) [
ψ̂a,rϕ̂b,r+δ + ρ1ψ̂b,r+δϕ̂a,r

]
+
Jρ0
4

[∑
r∈A

n̂a,r +
∑
r∈B

n̂b,r

]
(2.30a)

Ĥ [B]
s =

tζ

4

∑
r,δ

cos
(
2πα ry x̂ · δ̂

)
σr · σr+δ +

Jn̄

4

∑
r

σr · τr (2.30b)
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These are Hofstadter [67] type models, but for Majorana fermions and hard-core
bosons. Here, α = eBa2/h is the magnetic flux in units of h/e, a is the lattice
constant (nearest-neighbour distance), integer ry is the y-coordinate of r, and
δ̂ = δ/|δ|. We put zero-field values of ρ0, ρ1, n̄ and ζ in Eqs. (2.30), and compute
magnetization, M , as a function of α = p/q for integer p = 1, 2, . . . q with q upto 709

on square lattice, and 401 on simple cubic lattice.8 The numerical diagonalization
of Ĥ [B]

c and the procedure to calculate the corresponding M is described in detail
in Appendix A.

t=1.2

t=1.0

t=0.86
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α

Figure 2.8: The magnetization Mc and Ms as a function of α from Ĥc and Ĥs of
Eqs. (2.30) in (a) and (b) for different value of t. We clearly see no oscillations (apart
from sinusoidal behaviour) in Ms, and its amplitude is approximately 100 times smaller
than Mc.

As the contribution to M from Ĥ
[B]
s happens to be quite (about 100 times)

small compared to Ĥ [B]
c , see Fig. 2.8, and we get dHvA oscillations only through

charge dynamics, here we discuss the results of our calculations for Ĥ [B]
c only.

While we see no dHvA oscillations for strong Kondo coupling (small t/J), it is very
heartening to see clear magnetic quantum oscillations for sufficiently large values
of t. Since we know that Ek− undergoes inversion with increasing t, we believe
that this inversion has something to do with the appearance of dHvA oscillations
in the Kondo insulating ground state. To get a clear insight into this, we resolve
the total M into the contributions, M+ and M−, coming respectively from Ek+

and Ek− bands of quasiparticle states.
8Unlike the basic Hofstadter model, in our H

[B]
c (that has hopping and pairing), the Landau

bands are somewhat dispersive with respect to kx, even for large q. Hence, in our calculations,
we have also taken upto 288 kx-points.
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Figure 2.9: The dHvA oscillations from Eq. (2.30a) in the Kondo insulating ground state
on square lattice. (a) Magnetization vs. α, where M± are the contributions from the
two charge quasiparticle bands, and M = M+ + M−. (b) M/α vs. 1/α. (c) Fourier
transform of M/α, with an inset showing the dominant frequency of oscillation, f0, and
its amplitude vs. t/J . The f0 = 0.5 is t independent, and it corresponds to the area of
the half-BZ enclosed by the |γk| = 0 contour [see Fig. 2.7].

In Fig. 2.9(a), we show the evolution of magnetization behaviour with t on
square lattice. For t < ti, we see no oscillations of M with respect to α, except
an overall sinusoidal variation of negligible magnitude. This is because the non-
trivial oscillatory contribution to M from Ek− states (M−) cancels that (M+) from
Ek+. It is like two opposite cyclotron orbits from two oppositely curved dispersions
cancelling each other. This cancellation gets weaker as Ek− starts inverting. But
only when t is sufficiently bigger than tL, with Ek− nearly fully inverted (that is,
having the same sense of curvature as Ek+), we begin to clearly see the oscillations
of M as a function of B in the ground state of Ĥ [B]

c . This analysis neatly reveals
the intimate connection between inversion and magnetic quantum oscillations in
Kondo insulators.

The amplitude of these oscillations is weak in the Kondo singlet phase for
t ≲ tc, but becomes pronounced when t increases into the Néel phase, as shown in
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Figure 2.10: (a) M/α vs. 1/α in the Kondo insulating ground state on simple cubic
lattice. (b) Fourier transform of M/α. The dominant frequency, f0 = 0.185, is same as
the area enclosed by the blue orbit in (c). It is a t independent extremal orbit on the
|γk| = 0 CPS. (d) The second branch of CPS. It tends to the first one with increasing t.
The dotted octagons in (c)-(d) denote the boundary of the half-BZ on kz = 0 plane.

Fig. 2.9(b) by plotting M/α vs. 1/α for different t’s. Since M/α oscillates with
non-zero baseline, therefore to clearly see the non-trivial oscillation frequencies, we
subtract the flat background of M/α before performing the Fourier transform. In
Appendix C, we have illustrated the procedure to calculate the Fourier transform
of any waveform. The Fourier transform of M/α for 4 < 1/α < 20 is presented in
Fig. 2.9(c), where interestingly the dominant Fourier peaks for different t’s occur
at the same frequency, f0 = 0.5, while their amplitudes grow with t. Empirically,
the amplitude of the f0 peak is found to grow as (t− t∗)

2 with t∗ ≈ 0.57 ≳ tL.

The well-known semiclassical relation, F = (2π/a)2f , between the area F of
an extremal orbit perpendicular to magnetic field on a constant energy surface in
k-space and the frequency f (in units of h/ea2) of dHvA oscillations [27], implies
that the f0 = 0.5 corresponds to the area of the half-BZ, which unmistakably
points to the |γk| = 0 in Fig. 2.7 as its origin. From this, we infer that these dHvA
oscillations measure the CPS of its charge quasiparticles. We think of the CPS as
a generalization of the FS to the cases with gapped fermion quasiparticles. In the
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gapless Fermi systems, say metals, the CPS would be same as the Fermi surface.

Similarly, we also get magnetic quantum oscillations on simple cubic lattice,
as shown in Fig. 2.10(a). Its Fourier transform in Fig. 2.10(b) gives the dominant
frequency at f0 = 0.185, which is independent of t/J , and corresponds precisely
to the area enclosed by the blue-coloured orbit shown in Fig. 2.10(c). It is an
extremal orbit on the |γk| = 0 branch of the CPS on kz = 0 plane. See Fig. 2.2(b)
for simple cubic BZ. It is very clear that the dHvA oscillations measure the CPS,
in corroboration of what we found on square lattice.

Our study of the half-filled Kondo lattice model unambiguously finds magnetic
quantum oscillations corresponding to the half Brillouin zone as a generic bulk
phenomenon of Kondo insulators. Moreover, it clearly establishes the role of in-
version in realizing these oscillations from moderate to weak Kondo couplings. In
experiments, the hopping t can be tuned by applying pressure. Therefore, this
finding could in principle be seen in pressure dependent measurements of dHvA
oscillations.

We end this section by noting that the effective charge dynamics of the KLM
given by Ĥc has an unmistakable likeness to the Hubbard model in Kumar’s repre-
sentation [43], with J acting like the Hubbard interaction, U . It suggests that such
quantum oscillations, as we found in the Kondo insulating state, should also occur
in the insulating state of the Hubbard model for moderate to weaker strengths
of U . We also note that the oscillation amplitude grows in strength as t/J in-
creases. These observations point to a clear possibility of the dHvA oscillations
occurring in the weak coupling antiferromagnetic insulators, viz., the spin-density
wave (SDW) insulators. In the following section, we make calculations on the
half-filled Hubbard model to immediately validate our observation. A study of the
dHvA oscillations in SDW insulators is presented separately in Chapter 5 of this
thesis.
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2.5 Implications for the Half-filled Hubbard Model

The Hubbard model with nearest-neighbour hopping and a chemical potential of
U/2

ĤH = −t
∑
r,δ,s

ĉ†r,sĉr+δ,s + U
∑

r
n̂r,↑n̂r,↓ −

U

2

∑
r

(n̂r,↑ + n̂r,↓) (2.31)

guarantees half-filling on any bipartite lattice. In the canonical representation of
Kumar, this half-filled Hubbard model reads as [43]

ĤH = −it
2

∑
r∈A

∑
δ

[
ψ̂a,rϕ̂b,r+δ + ψ̂b,r+δϕ̂a,r (σr · σr+δ)

]
− U

2

[∑
r∈A

n̂a,r +
∑
r∈B

n̂b,r

]
.

(2.32)

Under the same decoupling scheme as employed for the KLM, the Hubbard model
takes an approximate form: ĤH ≈ e0L+ ĤH,c + ĤH,s, with

ĤH,c = −it
2

∑
r∈A

∑
δ

[
ψ̂a,rϕ̂b,r+δ + ρ1ψ̂b,r+δϕ̂a,r

]
− U

2

[∑
r∈A

n̂a,r +
∑
r∈B

n̂b,r

]
(2.33a)

ĤH,s =
tζ

4

∑
r,δ

σr · σr+δ (2.33b)

where e1 = −(ztζρ1)/4, and the decoupling parameters ρ1 and ζ are defined in
the same way as in Eqs. (2.9b) and (2.9d). Here, the effective spin part, ĤH,s,
is simply the Heisenberg model, which correctly gives the Néel antiferromagnetic
ground state for the half-filled Hubbard model on bipartite lattice. Comparing
ĤH,c of Eq. (2.33a) with Ĥc of Eq. (2.8a) clearly suggests that the effective charge
dynamics of the half-filled Hubbard and Kondo lattice models are essentially the
same, with J and U playing similar roles. That is, their insulating behaviour is
governed by the same mechanism.9

This explicit likeness between these two models prompts us to revisit the Hub-
bard model to see if inversion and magnetic quantum oscillations also arise there.
Below we will show that this is indeed the case.

9Here, we have focused on the ground state properties only. But it would be interesting to
also investigate the paramagnetic phase (metal-insulator transition) of Hubbard model at finite
temperatures by doing the same self-consistent calculations.
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(a) t < ti

(b) ti < t < tL

(c) t > tL

Ek+ Ek−

Figure 2.11: The charge quasiparticle dispersions of the Hubbard model. Here, too, we
see inversion phenomenon similar to what we saw in the Kondo lattice model.

2.5.1 Inversion

Diagonalization of the effective charge Hamiltonian, ĤH,c, for the Hubbard model
is done exactly in the same way as for the Ĥc of the KLM. The resulting dispersion
for the charge quasiparticles of the Hubbard model is

Ek± = Ek ± 1

2
t(1 + ρ1)|γk| > 0 (2.34)

with Ek =
√(

U
2

)2
+ [t(1− ρ1)|γk|/2]2. To discuss its implications, we assign to ρ1

(determined by the effective spin dynamics, ĤH,s) a numerical value of −1.338 (as
known from the quantum monte carlo method [68]) on square lattice, and −1.194

(as known from the spin-wave theory [69]) on simple cubic lattice.
The evolution of the charge quasiparticle dispersion with t/U is presented in

Fig. 2.11. For small t (in units of the local repulsion U), the Mott insulating
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ground state at half-filling on bipartite lattices is described here by the gapped,
oppositely curved dispersions, Ek±. Here, Ek+ undergoes inversion as t increases.
On square (simple cubic) lattice, the inversion of Ek+ starts at ti = 0.016 (0.007),
and the Lifshitz-like transition (crossing of the chemical potential, U/2) happens
at tL ≈ 2ti.
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Figure 2.12: The dHvA oscillations in the insulating Néel ground state of the Hubbard
model (with U = 1) at half-filling on (a) square and (c) simple cubic lattices. Their
Fourier amplitudes (divided by t for better visibility at smaller t’s) are plotted in (b)
and (d). The dominant frequency, f0, in the two cases here is same as that for the
corresponding KI’s.

2.5.2 dHvA oscillations

We study the orbital response of electrons in the Hubbard model to magnetic field
coupled to electron hopping as: −t

∑
r,δ,s e

i eℏ
∫ r+δ

r A·drĉ†r,sĉr+δ,s. In the presence
of magnetic field, the effective charge Hamiltonian, ĤH,c, suitably modifies to an
Hofstadter like model as derived in Sec. 2.4, using which we compute M vs B in the
insulating Néel ground state of the Hubbard model. For the same α = p/q as taken
for the KLM, the data in Fig. 2.12 for the Hubbard model shows clear oscillations
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for t ≳ 0.5, with f0 = 0.5 and 0.185 coming from the |γk| = 0 chemical potential
surface on square and simple cubic lattices. Note that the strong U Mott insulating
phase does not show magnetic quantum oscillations. This calculation predicts the
dHvA oscillations to occur in spin-density wave (SDW) insulators, because the Néel
insulating state of the half-filled Hubbard model for such large values of t describes
the SDW insulators. Motivated by this, we further investigate the occurrence of
dHvA oscillations in weakly correlated SDW insulators in Chapter 5.

2.6 Conclusion

In this chapter, to understand the quantum oscillations of magnetization in Kondo
insulators, we have studied the spin-1/2 Kondo lattice model at half-filling on
square and simple cubic lattices. The key finding of our study is that the dHvA
oscillations corresponding to half Brillouin zone in Kondo insulators occur as a
bulk phenomenon, which manifests itself through the inversion of a Hofstadter-
quantized dispersion of the gapped charge quasiparticles whose chemical-potential
surface these oscillations measure. We have found this through a minimal effec-
tive dynamics, in a certain canonical representation of electrons, that appropriately
describes the Kondo insulating ground state, and reveals the inversion and Lifshitz-
like transition for charge quasiparticles. This approach also gives the same oscilla-
tions in the Néel insulating ground state of the half-filled Hubbard model, with an
amplitude that grows with hopping. It clearly suggests that the spin-density wave
insulators would also exhibit quantum oscillations of magnetization.

• • • • •
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While the Kondo lattice model of localized moments coupled to “non-interacting”
conduction electrons (as discussed in the previous chapter) provides the minimal
physical description of the heavy-fermion systems, there are materials (such as
Nd2-xCexCuO4 [44], CaCu3Ru4O12, and certain Ce-based compounds [45]) in which
the “interaction” between the conduction electrons is known to play an important
role. This led to the studies of an extended KLM that includes onsite repulsion,
U , between the conduction electrons, in addition to the hopping, t, and the Kondo
interaction, J . We call it the Hubbard-Kondo lattice model (H-KLM) [70, 71].

In this chapter, we apply the theory of Kondo insulators, as developed for KLM
in the previous chapter, to H-KLM at half-filling. The basic motivation for this
study is to understand the influence of U on the Kondo insulating ground state,
and how it affects the dHvA oscillations. In the absence of magnetic field, there

45
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have been done a few studies on H-KLM by methods such as QMC (quantum
monte carlo), generalized bond-operator mean-field theory, DMRG (density ma-
trix renormalization group) [47, 70]. Our theory, in concert with VCA (variational
cluster approximation) calculations [46], not only produces results that are in qual-
itative agreement with what is known, but also reveals inversion (as in KLM) and
provides a neat understanding of the role U plays relative to J . Furthermore,
we study dHvA oscillations in the insulating ground state of H-KLM, which was
never done before. Our calculations give clear magnetic quantum oscillations for
H-KLM. We find these oscillations to become weaker, and eventually disappear,
by increasing U or J or both.

t

J

(a)

kx

ky

Γ X

M

Λ

Γ = (0, 0) X = (π, 0)

M = (π, π) Λ = (π/2, π/2)

(b)

Figure 3.1: (a) A depiction of the Hubbard-Kondo lattice model on square lattice. Here,
red solid circles represent A-sublattice, and the black ones denote B-sublattice. The
conduction electrons hop between nearest-neighbour sites with an amplitude, t, and
the antiferromagnetic exchange interaction, J , couples the conduction electron with the
local moment present at each site. In addition, the onsite repulsion, U , acts between the
conduction electrons. (b) Brillouin zone (BZ) of the square lattice. Here, the dashed
black line (enclosing the faded blue region) indicates magnetic BZ or the half-BZ, and
the solid black line represents full BZ. Also shown are the special points Γ, X, M and
Λ along various symmetry directions.
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3.1 Hubbard-Kondo Lattice Model

The model that we study here is the KLM of Eq. (2.5) with an additional onsite
Coulomb repulsion, U > 0, between the conduction electrons. It is given by the
following Hamiltonian (in the same notation as used in the previous chapter),

Ĥ = −t
∑
r,δ,s

ĉ†r,sĉr+δ,s +
J

2

∑
r

Sr · τr + U
∑

r
n̂r,↑n̂r,↓ −

U

2

∑
r,s

n̂r,s (3.1)

Here, in the last term, the chemical potential of the conduction electrons is set to
U/2, which on bipartite lattices exactly fixes the conduction electron filling to half.
That is, the average number of electrons per site is equal to 1. In the canonical
representation described in Sec. 2.2, the H-KLM given by Eq. (3.1) on bipartite
lattice reads as:

Ĥ =− it

2

∑
r∈A

∑
δ

[
ψ̂a,rϕ̂b,r+δ + ψ̂b,r+δϕ̂a,r (σr · σr+δ)

]
+
J

4

[∑
r∈A

n̂a,r(σr · τr) +
∑
r∈B

n̂b,r(σr · τr)

]
− U

2

[∑
r∈A

n̂a,r +
∑
r∈B

n̂b,r

]
(3.2)

Following the procedure worked out in Sec. 2.3, we derive the effective spin
and charge dynamics of the half-filled H-KLM. Under this procedure, Eq. (3.2)
becomes: Ĥ ≈ Ĥc + Ĥs + e1L, where e1 = −(ztζρ1 + Jn̄ρ0)/4,

Ĥs =
tζ

4

∑
r,δ

σr · σr+δ +
Jn̄

4

∑
r

σr · τr, and (3.3a)

Ĥc = −it
2

∑
r∈A

∑
δ

[
ψ̂a,rϕ̂b,r+δ + ρ1ψ̂b,r+δϕ̂a,r

]
+

(
Jρ0
4

− U

2

)[∑
r∈A

n̂a,r +
∑
r∈B

n̂b,r

]
(3.3b)

Here, the parameters, n̄, ζ, ρ0 and ρ1, are defined exactly in the same way as for
the KLM in Eqs. (2.9) of Chapter 2. Since ρ0 (the local Kondo singlet correlation)
is always negative, we note that the Hubbard repulsion, U , adds to the Kondo
interaction, J , in the charge dynamics given by Eq. (3.3b). Thus, a non-zero U

clearly strengthens the Kondo coupling.
By comparing Eq. (2.8a) with Eq. (3.3b), we can immediately derive the

charge quasiparticle dispersions for H-KLM by replacing J in Ek± of Eq. (2.13) by
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J − 2U

ρ0

)
. Thus, the charge dynamics of H-KLM is essentially like that of KLM,

in which U just adds on to J . The effective spin dynamics of H-KLM is governed
in fact by the same Ĥs as for KLM, with no explicit dependence on U . However,
it doesn’t mean that U has no influence on its magnetic nature. In fact, implicitly
through n̄ and ζ, the spin dynamics given by Eq. (3.3a) does depend on U .

The equations that determine these parameters for the charge part are:

n̄ =
1

2
− 1

L

(
Jρ0
4

− U

2

)∑
k

1

Ek
and ζ =

t(1− ρ1)

zL
∑

k

|γk|2

Ek
. (3.4)

and those for the spin part are: ρ0 = 1− 4s̄2, and ρ1 = 4s̄2(Jn̄− λ)/ztζ, where

s̄2 =
5

2
− 3

4L

∑
k

2λ+ tζs̄2γk

εk
, and (3.5a)

λ = Jn̄− 3λtζ

4L

∑
k

γk

εk
. (3.5b)

These parameters are determined by solving the above equations iteratively in the
ground state of Eq. (3.3). Figures 3.2 and 3.3 show their values obtained from the
self-consistent calculation on square lattice. In the calculations here, we specify J
and U in units of t. That is, we have put t = 1.
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Figure 3.2: The self-consistent parameters as a function of J for different values of U on
square lattice. (a) The n̄ and ζ for the charge part. (b) The parameters ρ0 and ρ1 for
the spin part. In extreme limit of J , all these parameters saturate to a specific value for
any U .
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Figure 3.3: The mean-field parameters, λ and s̄2, of the bond-operator theory of Ĥs,
plotted as a function of J for different values of U on square lattice.

3.2 Ground State Properties

In Fig. 3.2, we see that for any value of U , when J is large enough, the mean-
field parameters saturates at, n̄ = 1, ζ = 0, ρ0 = −3 and ρ1 = 0. In this
limit, the Kondo exchange dominates, forming perfect local singlets between the
electron spin and the local moment with spin gap, ∆s = J . In this case, the
charge dynamics is governed by the strong coupling model (similar to KLM): Ĥ0c =

− it
2

∑
r∈A

∑
δ ψ̂a,rϕ̂b,r+δ−

(
3J
4
+ U

2

)
(
∑

r∈A n̂a,r+
∑

r∈B n̂b,r), with charge gap, ∆c =√
(3J/4 + U/2)2 + (zt/2)2 − zt/2. In this extreme J limit, the ground state of H-

KLM is a Kondo singlet insulator for any U . As we lower the value of J , the
values of the self-consistent parameters renormalize strongly and depend on U , the
physical consequences of which are discussed in the following sections.

3.2.1 Quantum phase diagram

We know that in KLM (the U = 0 case of H-KLM), by decreasing J below a
critical value, Jc, a continuous phase transition occurs from the Kondo singlet
to Néel ordered phase in the insulating ground state on square and simple cubic
lattices.1 Therefore, it is natural to ask how a non-zero U affects this quantum

1Note that, on one-dimensional lattice, there is no antiferromagnetic order, but only the
Kondo singlet phase.
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phase transition. To this end, we obtain the quantum phase diagram in the J-U
plane by tracking the quasiparticle gaps of the effective spin and charge dynamics.
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Figure 3.4: The triplon dispersion, εk, for U = 0 and 2 on square lattice, plotted along
the symmetric directions in the Brillouin zone (see Fig. 3.1). We find that for J > Jc, it
is always gapped. But when J ≤ Jc, we find the gap closes at (π, π) for all U ’s.
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Figure 3.5: Square lattice. (a) Spin gap, ∆s vs. J at U = 0, 2, 4, 6. It clearly shows that
Jc decreases with an increase in U . This means, U helps J in forming the Kondo singlet.
(b) Charge gap, ∆c is always non-zero, and increases with U .

Look at the triplon dispersion, εk, plotted in Fig. 3.4 for two different U ’s on
square lattice. It is found to be gapped for J > Jc, and gapless at Q = (π, π)

[on simple cubic lattice, Q = (π, π, π)] for J < Jc, where Jc is the point at which
∆s (spin gap) vanishes. See Figs. 3.5a and 3.6a for ∆s vs. J for different U ’s
on square and simple cubic lattices. From this figure, it is quite clear that Jc
decreases with increasing U . While the spin gap closes below Jc, the charge gap,
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Figure 3.6: Simple cubic lattice. (a) Spin gap, ∆s vs. J for U = 0, 2, 4, 6. (b) Charge
gap, ∆c vs. 1/J for U = 0, 2, 4.

∆c is found to be always non-zero, as shown in Figs. 3.5b and 3.6b. This describes
an insulating ground state. Notably, as shown in Fig. 3.7, both spin and charge
gaps are always non-vanishing on a chain, resulting in the absence of any transition
to a magnetically ordered phase in the insulating ground state. Our theory, thus,
also captures the correct dimensional dependence of the properties of the Kondo
insulators.

On square and simple cubic lattice, where the quantum phase transition occurs,
we obtain the phase boundary between the Kondo singlet and Néel phase by the
condition, εQ = 0, of the Goldstone mode, which fixes λ as: λ = ztζs̄2. After a few
steps of manipulations, it gives the following equation of the boundary separating
the Néel phase from the Kondo singlet phase:

Jc = t

(
5

2
− 3x+ 3y

)
ζ

n̄
(3.6)

where x and y are two constants2. Notably, ρ0 = 3(4x−3) and ρ1 = 6(5−6x)y are
also constants on the phase boundary. Thus, only through the parameter, ζ/n̄, of
the charge dynamics, the Jc depends on U . Figure 3.12 shows the resulting quan-
tum phase diagram of the half-filled H-KLM on square and simple cubic lattices.
From this phase diagram, it is very clear that U , like J , favours the Kondo singlet
state.

By taking a simplistic constant density of states for the summations over k in
2Here, x = 1

4L

∑
k

2+(γk/z)√
1+(γk/z)

and y = 1
4L

∑
k

(γk/z)√
1+(γk/z)

.
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Figure 3.7: One-dimensional Kondo lattice. (a) Spin gap, ∆s, vs. J for U = 0, 2, 4, 6.
Note that ∆s never vanishes for any J > 0. (b) Charge gap, ∆c, vs. 1/J for U = 0, 2, 4.
It is always non-zero. Hence, the insulating ground state in one dimension is always the
Kondo singlet, which is qualitatively consistent with DMRG and other numerical and
analytical studies [72, 70, 73, 74, 75, 65].

Eqs. (3.4) for n̄ and ζ, we can analytically derive the following explicit expression
for the quantum phase boundary given by Eq. (3.6)

Jc(Jc + aUc) =
∞∑

m=0

bm
(Jc + aUc)2m

(3.7)

Here, a is a positive constant, and bm’s are the constant coefficients of the power
series in 1

(Jc+aUc)2
. At the leading order, it reads as: Jc(Jc + aUc) = b0, where b0

is also a positive constant. This leading order equation is a parabola in the J-UJ
plane. Hence, in Fig. 3.8, we present the phase diagrams for square and simple
cubic lattices in the J-UJ plane, which indeed look pretty much like a parabola.

3.2.1.1 Comparison with VCA and QMC

We compare the findings of our theory with the numerical results from a recent
VCA (variational cluster approximation) calculation by our collaborators [46], and
a QMC (quantum monte carlo) calculation [47], both on square lattice.

In Fig. 3.9, we show the quantum phase diagram obtained from our theory
together with that from the VCA calculation, in the J-UJ plane. Although quan-
titatively they differ, but there is good agreement in the qualitative behaviour of
the two. The VCA phase boundary nicely fits to the equation of the critical line,
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Figure 3.8: Quantum phase diagram of the Hubbard-Kondo lattice model in the J-UJ

plane (for t = 1). (a) Square lattice. (b) Simple cubic lattice.

Eq. (3.7), from our theory. In fact, this fitting is quite remarkable already at the
level of the leading order parabolic equation, Jc(Jc + aUc) = b0, with a ≈ 0.58 and
b0 ≈ 4.26 for the VCA data.

The QMC data in Fig. 3.10b, taken from Ref. [47], is also in qualitative agree-
ment with our theory plotted in Fig. 3.10a. Quantitatively, however, the VCA
overestimates the antiferromagnetic phase, while our theory slightly overestimates
the Kondo singlet phase, in comparison to QMC. We can see that for U = 0 the
critical point from QMC is Jc = 1.45± 0.05, but our theory gives Jc = 1.12 and it
is 2.05 from VCA. The Jc from our theory is lower because, in making the bond-
operator calculations of the effective spin dynamics, we assume an average Kondo
singlet per site and then consider triplet fluctuations on top of it, while in VCA the
magnetic order is assumed and determined self-consistently. So, our theory and
VCA approach the critical line from the opposite phases, which overestimates one
or the other phase. However, our theory is quantitatively still closer to the QMC.
Moreover, the size of the cluster in VCA is finite and small (4 sites), due to which
it is not expected to meet close quantitative agreement. But it is the qualitative
agreement that is notably good.
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Figure 3.9: Quantum phase diagram of the half-filled H-KLM on square lattice from the
VCA (blue filled circles) and from our theory (red empty circles). Since, for small J ,
the critical value of U goes as 1/J , we have plotted the data in the J-UJ plane. The
black line is the fit to the leading order equation, J⊥(J⊥ + aU) = b0, of the critical line
from our theory. For the VCA data, a ≈ 0.58 and b0 ≈ 4.26. In spite of the quantitative
differences, the VCA phase boundary follows remarkably closely the behaviour obtained
by our theory.
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Figure 3.10: Quantum phase diagram of the Hubbard-Kondo lattice model in the J-U
plane (for t = 1). (a) Our result for square lattice. (b) Quantum phase diagram of
the Hubbard-Kondo lattice model at half-filling on square lattice. This figure is taken
from Ref. [47]. The solid line: QMC data, dot-dashed line: MF and dashed line is spin
Hamiltonian. At U = 0, the critical Jc = 1.45±0.05 for QMC however it is approximately
Jc = 1.5 for MF and close enough to the QMC.

3.2.2 Inversion and Lifshitz-like transitions

In this subsection, we discuss the evolution of the charge quasiparticle dispersions,
Ek±, with J for different fixed values of U . As for the KLM in the previous
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Figure 3.11: Charge quasiparticle dispersions, Ek+ (green) and Ek− (orange), along
symmetric directions in the Brillouin zone of the square lattice (see Fig. 3.1) for U =

0, 2, 4. Similar to KLM, here too, the Ek− undergoes inversion for J < Ji.

chapter, here too, the lower charge quasiparticle dispersion, Ek−, reveals inversion
and Lifshitz like transitions as we decrease the value of J for any U .

We call that value of J at which Ek− starts to invert the inversion point, Ji.
For a given U , at large J the minimum (maximum) of Ek− (Ek+) occurs at the Γ

point, that is k = (0, 0), and the maximum (minimum) is located on the boundary
of the half BZ, i.e |γk| = 0. As we lower J below Ji, the Γ point becomes a local
maxima, and the minima of Ek− shifts to the points away from Γ (on a contour
surrounding the Γ point). See Figs. 3.11. We define this contour as the charge gap
contour. By setting ∂Ek−

∂|γk|
= 0, we get the following equation for the charge gap

contour:

|γk| =
1

t
√
|ρ1|

(
1− |ρ1|
1 + |ρ1|

)(
Jρ0
4

+
U

2

)
(3.8)

We calculate an expression for the inversion point, Ji, by expanding Ek− upto



56 Chapter 3. Kondo Lattice with Interacting Conduction Electrons

quadratic term in |k| around the Γ point. As long the coefficient of this quadratic
term is positive, the minimum of Ek− stays at the Γ point. But just when the
coefficient of the quadratic term changes sign, the Γ point is no more the point of
minima. It gives us the following equation whose solution is the Ji.

Ji = tz
√

|ρ1|
(
1 + |ρ1|
1− |ρ1|

)
1(

|ρ0|
4

+ U
2Ji

) (3.9)

Here, ρ0 and ρ1 also depend implicitly on Ji. Hence, for a given U , we iteratively
solve Eq. (3.9) for Ji, together with the self-consistent Eqs. (3.4) and (4.36). The
result is plotted in Fig. (3.12). We find Ji to become small with increase in U .

When J is further decreased below Ji, at some point, JL, the Ek− at Γ point
crosses the effective chemical potential in Eq. (3.3b). We call it a Lifshitz-like
transition, because now in addition to |γk| = 0, there is another contour (or surface)
at which Ek− is equal to the effective chemical potential, J |ρ0|

4
+ U

2
, of the spinless

fermions. The JL is obtained by equating Ek (at |γk| = 0) = Ek=0, then

JL =
tz|ρ1|

(1− |ρ1|)
(

|ρ0|
4

+ U
2JL

) (3.10)

Similar to Ji, we calculate JL by solving the above equation. Upon increasing the
repulsion U , the value of JL also decreases. See Fig. 3.12 for the inversion and
Lifshitz-like transitions, in relation to the phase transition from Kondo singlet to
Néel phase.

For the charge gap, ∆c, as a function of J , calculated for different U , see
Fig. 3.13. The ∆c is always non-zero, and decreases with decrease in J and U . For
large J (small 1/J), it comes from the Γ point. As discussed above, for J < Ji, the
∆c comes from the charge gap contour of Eq. (3.8), which for small J approaches
the half-BZ boundary. The overall behaviour of the charge gap from our theory is
similar to the spectral gap from VCA [46], as shown in Fig. 3.13(b).

3.3 Magnetic Quantum Oscillations

Since we find the H-KLM to behave pretty much like the KLM, we expect to
see dHvA oscillations also in the insulating ground state of H-KLM. Moreover,
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Figure 3.12: Quantum phase, inversion and Lifshitz-like transitions of the Hubbard-
Kondo lattice model in the J-U plane (for t = 1). (a) Square lattice. (b) Simple cubic
lattice.
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Figure 3.13: On square lattice. (a) Quasiparticle charge gap, ∆c, vs. 1/J for U = 0, 2, 4

from our calculations. (b) The spectral gap obtained by VCA, figure from Ref. [46].

since U in H-KLM simply adds onto J in the effective charge dynamics, we expect
the increase in U to suppress these oscillations. To check these expectations, we
calculate the magnetic response of H-KLM to a uniform magnetic field, exactly
the way we did it in Sec. 2.4 for KLM, The effective charge dynamics of H-KLM
in the presence of a magnetic field, B, is given by the following Hamiltonian.

Ĥ [B]
c = −it

2

∑
r∈A

∑
δ

cos
(
2παryx̂ · δ̂

) [
ψ̂a,rϕ̂b,r+δ + ρ1ψ̂b,r+δϕ̂a,r

]
+

(
Jρ0
4

− U

2

)[∑
r∈A

n̂a,r +
∑
r∈B

n̂b,r

]
(3.11)
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Here, α is magnetic flux defined in terms of B and lattice constant, a, as α =

eBa2/h, and integer ry is the y-coordinate of r, and δ̂ = δ/|δ|.
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Figure 3.14: The effect of U on dHvA oscillations in the insulating ground state of
H-KLM on (a) square lattice, and (b) simple cubic lattice. Here, J = 0.7 is fixed, and
U = 0, 0.2, 0.4, 0.8, 1.2, 1.6. It is clear that U tends to suppress quantum oscillations. See
amplitude vs U plots in the insets of the bottom two figures. Also note the dominant
frequency, which corresponds the half Brillouin zone.

We know that at U = 0 the oscillations occur more prominently for smaller J ’s
sufficiently below Ji. Hence, we fix J = 0.7, and do the calculations for different
U ’s. As for the KLM, we put zero field value of the parameters ρ0 and ρ1 in
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Eq. (3.11), and calculate M as a function of α = p
q

for integer p = 1, 2, . . . , q with
q = 601 for square lattice. We also do this calculation on simple cubic lattice for
q = 401. Figure 3.14 shows the behaviour of M with respect to α (magnetic field)
for different U ’s. Expectedly, we see clear dHvA oscillations corresponding to the
half Brillouin zone. We also see that, upon increasing U , the amplitude of these
oscillations gradually decreases and eventually vanishes.

3.4 Conclusion

In summary, we have studied here the ground state properties of the half-filled
Hubbard-Kondo lattice model, given by Eq. (3.1), using the theory that we de-
veloped for KLM in Chapter 2. The H-KLM is an extended version of the KLM
obtained by adding onsite Coulomb interaction, U , between the conduction elec-
trons. From our theory, we obtain a quantum phase diagram having Kondo sin-
glet and Néel phases, that is in qualitative agreement with what is obtained from
VCA [46] and QMC calculations [47]. Moreover, for a 1D chain, we correctly ob-
tain a ground state that is insulating and always a Kondo singlet for all J and
U . The fact that a repulsive U helps the Kondo singlet phase in H-KLM is neatly
seen in our theory, where a non-zero U essentially amount to enhancing J as:
J → J + 2U

|ρ0| . Like KLM [42], here too, we have found the charge quasiparticle
dispersion to undergo inversion, which is important for quantum oscillations. Fi-
nally, we have investigated the effect of U on magnetic quantum oscillations in
the insulating ground state of H-KLM. We have found that the dHvA oscillations,
with frequency corresponding to half-Brillouin zone, do occur for moderate to small
values of J , sufficiently below Ji. Moreover, we have found that these oscillations
are suppressed upon increasing U .

• • • • •





Chapter4

Symmetric Periodic Anderson Model

4.1 Theory in Kumar Representation . . . . . . . . . . . . . 62

4.1.1 Effective charge dynamics . . . . . . . . . . . . . . . . . 65

4.1.2 Effective spin dynamics . . . . . . . . . . . . . . . . . . 69

4.2 Magnetic Transition in the Ground State . . . . . . . . 72

4.2.1 Triplon dispersion and spin gap . . . . . . . . . . . . . . 73

4.2.2 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Two Inversions for the Charge Quasiparticles . . . . . . 76

4.4 Quantum Oscillations of Magnetization . . . . . . . . . . 79

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A model of the heavy-fermion systems, that is more microscopic than the KLM,
is the periodic Anderson model (PAM). In PAM, the conduction electrons are cou-
pled through hybridization to the localized and correlated f -electrons (having a
Hubbard repulsion, Uf ) [24]. The KLM can be derived from the PAM [76], in the
same way as the t-J model can be derived from the Hubbard model [77]. The PAM
has proved to be fruitful in studying the rare-earth and actinide compounds exhibit-
ing phenomena such as valence fluctuation [19, 78], heavy-fermion physics [79, 80],
volume collapse [81, 82], and unconventional superconductivity [83].

Like the KLM, the PAM at half-filling too describes a Kondo insulator [84, 25,
85]. On bipartite lattices, such as the square or simple cubic lattice with nearest-
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62 Chapter 4. Symmetric Periodic Anderson Model

neighbour hopping, the particle-hole symmetric form of the Hubbard interaction
exactly guarantees the half-filling. The PAM with this particle-hole symmetric
Hubbard repulsion for the localized f -electrons, Uf

∑
r(n̂

f
r↑ − 1

2
)(n̂f

r↓ − 1
2
), is called

the symmetric periodic Anderson model (SPAM). In this chapter, the SPAM is
the object of our study.

Continuing with our investigation of the orbital response of Kondo insulators
to magnetic field, we in this chapter investigate the SPAM on square lattice. The
theory of Kondo insulators, as worked out in the previous chapters, is applied
here to the SPAM. Notably, with this theory of SPAM, we discover two inversions
happening once each for the two kinds of charge quasiparticles (with narrow and
broad bands), as the hybridization, V , decreases for a fixed Uf . The two inversions
occur at two different points along V axis. It also gives us clear dHvA oscillations
with frequency corresponding to the half Brillouin zone, like what we got for the
half-filled KLM and H-KLM. Thus, we get consistent physics for all the three
models of Kondo insulators.

This chapter is arranged in the following way. In Sec. 4.1, we introduce the
SPAM. We then rewrite it in terms of the spinless fermions and Pauli operators
using Kumar’s representation [43], and derive from it the models to describe effec-
tive spin and charge dynamics of SPAM. In Sec. 4.2, we show that our canonical
theory correctly describes the insulating ground state of SPAM, with a quantum
phase transition from the Kondo singlet to AFM phase. In Sec. 4.3, we describe
that the charge quasiparticle dispersions (narrow and broad) go through an inver-
sion process as hybridization strength is decreased. Through the effective charge
dynamics, we investigate the dHvA oscillations in the insulating ground state of
SPAM in Sec. 4.4. We conclude and discuss the important results obtained in this
chapter in Sec. 4.5.

4.1 Theory in Kumar Representation

The SPAM includes the nearest-neighbour hopping, t, for the conduction electrons,
the hybridization, V , between the conduction and localized electrons, and an onsite
repulsion, Uf , between the localized electrons. We denote the conduction and
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localized electrons as c and f electrons, respectively. The Hamiltonian of S-PAM
can be written as follows:

Ĥ =− t
∑
r,δ

∑
s=↑,↓

ĉ†r,sĉr+δ,s − V
∑

r

∑
s=↑,↓

[
ĉ†r,sf̂r,s + h.c.

]
+ Uf

∑
r

(
n̂f

r,↑ −
1

2

)(
n̂f

r,↓ −
1

2

)
(4.1)

where r is a lattice site, δ denotes the nearest-neighbours of r, and s =↑, ↓ is the
spin label. The fermion operators ĉ†r,s(ĉr,s) create (annihilate) a conduction elec-
tron at site r with spin s, and likewise the operators f̂ †

r,s(f̂r,s) do for the localized
electrons. The number of f electrons at site r with spin s =↑, ↓ is n̂f

r,s = f †
r,sfr,s.

This model is symmetric under particle-hole transformation on any bipartite lat-
tice. We use the following Kumar representation for c and f electron operators:

↑↓
Uf

V

t

� B ẑ

kx

ky

Γ X

M

Λ

Γ = (0, 0) X = (π, 0)

M = (π, π) Λ = (π/2, π/2)

Figure 4.1: Left panel: A pictorial depiction of symmetric periodic Anderson model
given in Eq. (4.1) on a bipartite square lattice. The solid circles are lattice sites where
c electrons hop from one site to another with strength t, set to t = 1 as energy scale.
The c electrons hybridize (V ) with f electrons (shown as diamond). The f electrons
feel repulsion (Uf ) when they sit at the same site. An external magnetic field, B, is
applied along ẑ direction to see the quantum oscillations. Right panel: The full Brillouin
zone (BZ) and half-BZ (faded blue region) of the square lattice and corresponding high
symmetric lines.
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sublattice A sublattice B

c-electrons ĉ†r↑ = ϕ̂a,rσ
+
r ĉ†r↑ = iψ̂b,rσ

+
r

ĉ†r↓ =
1
2
(iψ̂a,r − ϕ̂a,rσ

z
r) ĉ†r↓ =

1
2
(ϕ̂b,r − iψ̂b,rσ

z
r)

f -electrons f̂ †
r↑ = iη̂a,rτ

+
r f̂ †

r↑ = χ̂b,rτ
+
r

f̂ †
r↓ =

1
2
(χ̂a,r − iη̂a,rτ

z
r ) f̂ †

r↓ =
1
2
(iη̂b,r − χ̂b,rτ

z
r )

(4.2)

Here, ϕ̂a,r = â†c,r + âc,r, iψ̂a,r = â†c,r − âc,r and χ̂a,r = â†f,r + âf,r, iη̂a,r = â†f,r − âf,r

are the Majorana operators corresponding to the spinless fermions âc,r and âf,r,
respectively, on A sublattice. Similarly, ϕ̂b,r = b̂†c,r + b̂c,r, iψ̂b,r = b̂†c,r − b̂c,r and
χ̂b,r = b̂†f,r + b̂f,r, iη̂b,r = b̂†f,r − b̂f,r are the Majorana operators corresponding to
the spinless fermions b̂c,r and b̂f,r, respectively, on B sublattice. However, σ±

r , σ
z
r

and τ±r , τ zr are Pauli operators corresponding to the c and f electrons respectively.
The Hamiltonian of the SPAM, given by Eq. (4.1), in this representation reads as:

Ĥ =− it

2

∑
r∈A

∑
δ

[
ψ̂a,rϕ̂b,r+δ + ψ̂b,r+δϕ̂a,r (σr · σr+δ)

]
− iV

2

∑
r∈A

[
ψ̂a,rχ̂a,r + η̂a,rϕ̂a,r (σr · τr)

]
− iV

2

∑
r∈B

[
η̂b,rϕ̂b,r + ψ̂b,rχ̂b,r (σr · τr)

]
− Uf

2

[∑
r∈A

â†f,râf,r +
∑
r∈B

b̂†f,rb̂f,r

]
+
UfL

4
(4.3)

Following the approach described in Chapter 2, and developed in Ref. [42],
we decouple the spinless fermion and Pauli operator terms in Eq. (4.3). In this
approximation, the SPAM reads as: Ĥ ≈ Ĥc + Ĥs + e0L, where e0 = −(ztζ1ρ1 +
2V ζ2ρ0)/4,

Ĥc = −it
2

∑
r∈A

∑
δ

[
ψ̂a,rϕ̂b,r+δ + ρ1ψ̂b,r+δϕ̂a,r

]
− iV

2

∑
r∈A

[
ψ̂a,rχ̂a,r + ρ0 η̂a,rϕ̂a,r

]
− iV

2

∑
r∈B

[
η̂b,rϕ̂b,r + ρ0ψ̂b,rχ̂b,r

]
− Uf

2

[∑
r∈A

â†f,râf,r +
∑
r∈B

b̂†f,rb̂f,r

]
+
UfL

4
(4.4)

describes the effective charge dynamics of the SPAM, and

Ĥs =
tζ1
4

∑
r,δ

σr · σr+δ +
V ζ2
2

∑
r

σr · τr (4.5)

is the model of its effective spin dynamics. Here, L is the total number of lattice
sites and z is the coordination number. Note that in Ĥs, the r is summed over the
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entire lattice, unlike for Ĥc where it is summed either of the sublattice. The δ in
both cases is summed over all the z nearest-neighbours. The mean-field parameters
ρ1, ρ0, ζ1, and ζ2 are defined as follows:

ρ1 =
2

zL
∑
r∈A

∑
δ

⟨σr · σr+δ⟩ (4.6a)

ρ0 =
1

L

∑
r
⟨σr · τr⟩ (4.6b)

ζ1 =
2i

zL
∑
r∈A

∑
δ

⟨ϕ̂a,rψ̂b,r+δ⟩ (4.6c)

ζ2 =
i

L
⟨
∑
r∈A

ϕ̂a,rη̂a,r +
∑
r∈B

χ̂b,rψ̂b,r⟩ (4.6d)

We calculate these parameters self-consistently in ground states of Eqs. (4.4)
and (4.5). To find the ground state, we diagonalize the charge part, Ĥc, numeri-
cally. However the spin dynamics, Ĥs, is discussed using bond-operator mean-field
theory [86, 60], similar to what we did for the Kondo lattice model [42].

4.1.1 Effective charge dynamics

To diagonalize Ĥc given in Eq. (4.4), we first write it directly in terms of the
spinless fermion operators, by using the definition of the corresponding Majorana
operators given below Eq. (4.2)

Ĥc =− t

2

∑
r∈A

∑
δ

[
(1 + ρ1){â†c,rb̂c,r+δ + h.c.}+ (1− ρ1){â†c,rb̂

†
c,r+δ + h.c.}

]
− V

2

∑
r∈A

[
(1 + ρ0){â†c,râf,r + h.c.}+ (1− ρ0){â†c,râ

†
f,r + h.c.}

]
− V

2

∑
r∈A

[
(1 + ρ0){b̂†f,rb̂c,r + h.c.}+ (1− ρ0){b̂†f,rb̂

†
c,r + h.c.}

]
− Uf

2

[∑
r∈A

â†f,râf,r +
∑
r∈B

b̂†f,rb̂f,r

]
+
UfL

4
(4.7)

We use the Fourier transformation

âϑ,r =

√
2

L

∑
k

eik·r âϑ,k

b̂ϑ,r =

√
2

L

∑
k

eik·r b̂ϑ,k, ϑ = c, f (4.8)
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to go from the real r-space to momentum k-space. The Ĥc in k-space reads as:

Ĥc =− t

4

∑
k

[
(1 + ρ1)|γk|

{(
â†c,kb̂c,k + b̂†c,kâc,k

)
−
(
b̂c,−kâ

†
c,−k + âc,−kb̂

†
c,−k
)}

+ (1− ρ1)|γk|
{(
â†c,kb̂

†
c,−k + b̂c,−kâc.k

)
−
(
b̂†c,kâ

†
c,−k + âc,−kb̂c,k

)}]
− V

4

∑
k

[
(1 + ρ0)

{(
â†c,kâf,k + â†f,kâc,k

)
−
(
âf,−kâ

†
c,−k + âc,−kâ

†
f,−k

)}
+ (1− ρ0)

{(
â†c,kâ

†
f,−k + âf,−kâc,k

)
−
(
â†f,kâ

†
c,−k + âc,−kâf,k

)}
+ (1 + ρ0)

{(
b̂†f,kb̂c,k + b̂†c,kb̂f,k

)
−
(
b̂c,−kb̂

†
f,−k + b̂f,−kb̂

†
c,−k
)}

+ (1− ρ0)
{(
b̂†f,kb̂

†
c,−k + b̂c,−kb̂f,k

)
−
(
b̂†c,kb̂

†
f,−k + b̂f,−kb̂c,k

)}]
− Uf

4

∑
k

[
â†f,kâf,k + b̂†f,kb̂f,k − âf,−kâ

†
f,−k − b̂f,−kb̂

†
f,−k

]
(4.9)

where k ∈ half-BZ, γk =
∑

δ e
ik·r = |γk| eiφk , and a gauge transformation, â†c(k) →

e−iφk â†c(k) and â†f (k) → e−iφk â†f (k), has been applied to absorb the phase factor
ϕk. To diagonalize Eq. (4.9), we rewrite it in the Nambu basis in the following
manner:

Ĥc =
∑

k
Ψ†

kHkΨk (4.10)

where the Nambu vector, Ψ†
k, is an operator row-vector defined as:

Ψ†
k =

[
â†c,k b̂†c,k b̂†f,k â†f,k âc,−k b̂c,−k b̂f,−k âf,−k

]
(4.11)

and Ψk = [Ψ†
k]

†. The Hk is the following 8× 8 matrix:

Hk =

 A B

−B −A

 (4.12)

with

A = −1

4


0 t|γk|ρ1+ 0 V ρ0+

t|γk|ρ1+ 0 V ρ0+ 0

0 V ρ0+ U 0

V ρ0+ 0 0 U

 and (4.13a)
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B = −1

4


0 t|γk|ρ1− 0 V ρ0−

−t|γk|ρ1− 0 −V ρ0− 0

0 V ρ0− U 0

−V ρ0− 0 0 U

 , (4.13b)

where ρ1± = (1 ± ρ1) and ρ0± = (1 ± ρ0). We diagonalize Eq. (4.10) by applying
Bogoliubov transformation for each k. To do this, define a unitary matrix Uk as:

Uk =

W X

X∗ W ∗

 where W and X are 4× 4 matrices, (4.14)

such that

U †
kHkUk =

Σ4×4 0

0 −Σ4×4

 with Σ4×4 =


E1 0 0 0

0 E2 0 0

0 0 E3 0

0 0 0 E4

 (4.15)

and Ψ†
kUk = Λ†

k =
[
Λ†

k,1 Λ†
k,2 Λ†

k,3 Λ†
k,4 Λ−k,1 Λ−k,2 Λ−k,3 Λ−k,4

]
are the new

canonical fermions. The fermion operators, Λk,i’s, describe the charge quasiparti-
cles. In the diagonal form, in terms of these quasiparticle operators, the Ĥc reads
as:

Ĥc =
∑

k

4∑
i=1

Ek,i

(
2Λ†

k,iΛk,i − 1

)
(4.16)

where Ek,i > 0 , i = 1, 2, 3, 4 are the dispersions of the charge quasiparticles. The
ground state of Ĥc is the vacuum of the Λk,i quasiparticles i.e.

|Gc⟩ =
∏

k
⊗
(∏

i

⊗|0⟩k,i

)
(4.17)

So, in the ground state ⟨Gc|Λ†
k,iΛk,i|Gc⟩ = 0 and ⟨Gc|Λk,iΛ

†
k,i|Gc⟩ = 1. Therefore,

the ground state energy per site (eg,c) of charge dynamics part is given by

eg,c = − 1

L

∑
k

4∑
i=1

Ek,i (4.18)

To find the mean-field parameters ζ1 and ζ2, we rewrite Eqs. (4.6c) and (4.6d) in
k-space, apply the Bogoliubov transformation begin by Uk, and then calculate the
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expectation values in the vacuum of the charge quasiparticles (that is, the ground
state of Ĥc). This gives us the following equations for ζ1 and ζ2:

ζ1 =
2

zL⟨Gc|
∑

k

[
|γk|
{(
â†c(k)b̂†c(−k)− â†c(k)b̂c(k)

)
+ h.c

}]
|Gc⟩

=
1

zL⟨Gc|
∑

k
Ψ†

kMζ1(k)Ψk|Gc⟩ (4.19)

and,

ζ2 =
1

L
⟨Gc|

∑
k

[{
(â†c(k)â

†
f (−k) + h.c) + (b̂†f (k)b̂†c(−k) + h.c)

−(â†c(k)âf (k) + h.c)− (b̂†f (k)b̂c(k) + h.c)
}]
|Gc⟩

=
1

L
⟨Gc|

∑
k

Ψ†
kMζ2(k)Ψk|Gc⟩ (4.20)

Here, Mζ1(k) and Mζ2(k) are 8× 8 matrices and they are given as:

Mζ1(k) =



0 −|γk| 0 0 0 |γk| 0 0

−|γk| 0 0 0 −|γk| 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 −|γk| 0 0 0 |γk| 0 0

|γk| 0 0 0 |γk| 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


(4.21)

Mζ2(k) =



0 0 0 −1 0 0 0 1

0 0 −1 0 0 0 −1 0

0 −1 0 0 0 1 0 0

−1 0 0 0 −1 0 0 0

0 0 0 −1 0 0 0 1

0 0 1 0 0 0 1 0

0 −1 0 0 0 1 0 0

1 0 0 0 1 0 0 0


(4.22)

Since, we know that Ψ†
kUk = Λ†

k ⇒ Ψ†
k = Λ†

kU
†
k and Ψk = UkΛk because Uk is

unitary i.e. UkU †
k = U †

kUk = I, where I is identity matrix. We use these relations
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in ζ1 and ζ2 and find that

ζ1 =
1

zL⟨Gc|
∑

k
Λ†

kU
†
kMζ1(k)UkΛk|Gc⟩

=
1

zL⟨Gc|
∑

k
Λ†

kM̃ζ1(k)Λk|Gc⟩ (4.23)

and

ζ2 =
1

L
⟨Gc|

∑
k

Λ†
kU

†
kMζ2(k)UkΛk|Gc⟩

=
1

L
⟨Gc|

∑
k

Λ†
kM̃ζ2(k)Λk|Gc⟩ (4.24)

where, U †
kMζ1(k)Uk = M̃ζ1(k) and U †

kMζ2(k)Uk = M̃ζ2(k). Now, exploiting the
ground state properties ⟨Gc|Λ†

k,iΛk,j|Gc⟩ = 0 and ⟨Gc|Λk,iΛ
†
k,j|Gc⟩ = δi,j in above

equations of ζ1 and ζ2, we arrive at the final expressions:

ζ1 =
1

zL
∑

k

4∑
i=1

[M̃ζ1(k)]i+4,i+4 (4.25a)

ζ2 =
1

L

∑
k

4∑
i=1

[M̃ζ2(k)]i+4,i+4 (4.25b)

4.1.2 Effective spin dynamics

The spin dynamics given by Ĥs of Eq. (4.5) is exactly like Eq. (2.8b) of Chap-
ter 2. We study it by doing the same bond-operator mean-field theory, as we
did in the previous two chapters. Taking an average Kondo singlet per site (that
is, the local singlet between σr and τr) s̄, we write σr and τr approximately as:
σα

r ≈ s̄
(
tα + t̂†α

)
≈ −τα

r , where α.β, γ = x, y, z denote the three components of
Pauli operators and t̂rα are the bosonic bond-operators representing triplet excita-
tions above the average local singlet. These operators are physically constrained by
the condition: ŝ†rŝr +

∑
α t̂

†
rαt̂rα = 1, on every site, which in the mean-field approx-

imation is satisfied only on average by using the same Lagrange multiplier λ for all
sites. Refer to Sec. 2.3.2 for more discussion on bond-operator mean-field theory.
In this theory, the local interaction between σr and τr, is written as follows:

σr · τr ≈ −3s̄2 +
∑
α

t̂†rαt̂rα (4.26)
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After making all these approximations, the Ĥs takes the following mean-field form

Ĥs =
tζ1s̄

2

4

∑
α

∑
r,δ

[(
t̂†r,α + t̂r,α

)(
t̂†r+δ,α + t̂r+δ,α

)]
+
V ζ2
2

∑
r

(
− 3s̄2 +

∑
α

t̂†r,αt̂r,α

)
− λ

∑
r

(
s̄2 +

∑
α

t̂†r,αt̂r,α − 1
)
. (4.27)

In above we only keep upto bilinear terms and ignore the higher terms in triplet
operators. The Hamiltonian in k-space is obtained by doing Fourier transforma-
tion,

t̂rα =

√
1

L

∑
k
eik·rt̂kα

where k ∈ full BZ. The final mean-field Hamiltonian has the following form

Ĥs = L

[
λs̄2 − 5

2
λ− 2V ζ2(s̄

2 − 1/4)

]
+

1

2

∑
k,α

{[
λ+

1

2
tζ1s̄

2γk

]
×
(
t̂†kαt̂kα + t̂−kαt̂

†
−kα

)
+

1

4
tζ1s̄

2γk

(
t̂†kαt̂

†
−kα + t̂−kαt̂kα

)}
(4.28)

Here, L is the total number of sites, λ → (V ζ2/2 − λ) is the effective chemical
potential, and γk =

∑
δ e

ik·δ. This mean-field Hamiltonian can be diagonalized by
applying the following Bogoliubov transformation:

t̂kα = βkα cosh θk + β†
−kα sinh θk (4.29)

Here, βkα is new bosonic operator (triplon quasiparticles). Under the above trans-
formation, the operators in the mean-field Hamiltonian of Eq. (4.28) become

(t̂†kαt̂kα + t̂−kαt̂
†
−kα) = cosh 2θk(β

†
kαβkα + β−kαβ

†
−kα)

+ sinh 2θk(β
†
kαβ

†
−kα + β−kαβkα) (4.30a)

(t̂†kαt̂
†
−kα + t̂−kαt̂kα) = sinh 2θk(β

†
kαβkα + β−kαβ

†
−kα)

+ cosh 2θk(β
†
kαβ

†
−kα + β−kαβkα) (4.30b)

Substituting Eqs. (4.30a) and (4.30b) into Eq. (4.28) gives the following form of
the Hamiltonian:

Ĥs =
1

2

∑
k,α

{[(
λ+

1

2
tζ1s̄

2γk

)
cosh 2θk +

1

2
tζ1s̄

2γk sinh 2θk

] (
β†

kαβkα + β−kαβ
†
−kα

)
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+
[(

λ+
1

2
tζ1s̄

2γk

)
sinh 2θk +

1

2
tζ1s̄

2γk cosh 2θk

] (
β†

kαβ
†
−kα + β−kαβkα

)}
+ e0L

(4.31)

By demanding that the off-diagonal terms in Eq. (4.31) be zero, we fix θk as:(
λ+

1

2
tζ1s̄

2γk

)
sinh 2θk +

1

2
tζ1s̄

2γk cosh 2θk = 0

⇒ tanh 2θk = −
1
2
tζ1s̄

2γk

(λ+ 1
2
tζ1s̄2γk)

= ωk (4.32)

⇒ cosh 2θk =
1√

1− ω2
k

, sinh 2θk =
ωk√
1− ω2

k

. (4.33)

Substituting the values of cosh 2θk and sinh 2θk from Eq. (4.33) in Eq. (4.31), we
get the following diagonal form for Ĥs in terms of triplons:

Ĥs = e0L+
∑
k,α

εk

(
β†

kαβkα +
1

2

)
(4.34)

Here, e0 =
[
λs̄2 − 5

2
λ− 2V ζ2(s̄

2 − 1/4)
]
, and εk =

√
λ(λ+ tζ1s̄2γk) ≥ 0 is the

triplon dispersion. The ground state energy per site of spin dynamics part is given
as:

eg,s = e0 +
3

2L

∑
k
εk (4.35)

We determine λ and s̄ by minimizing eg,s. Thus, by demanding that ∂λeg,s = 0

and ∂s̄2eg,s = 0, we get the following equations for λ and s̄.

s̄2 =
5

2
− 3

4L

∑
k

2λ+ tζ1s̄
2γk

εk
, and (4.36a)

λ = 2V ζ2 −
3λtζ1
4L

∑
k

γk

εk
. (4.36b)

Moreover, the decoupling parameters for the spin part are given as: ρ0 = 1 − 4s̄2

and ρ1 = 4s̄2(2V ζ2 − λ)/ztζ1.
We can determine ζ1, ζ2, ρ0 and ρ1, defined in Eqs. (4.6), numerically by solving

the Eqs. (4.25) and (4.36) self-consistently through iterative method.
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Figure 4.2: The behaviour of the mean-field parameters, ζ1, ζ2, ρ0, ρ1, λ and s̄2, of the
charge and spin dynamics on square lattice, as a function of V for Uf = 4, 6, and 8. For
large V , the ground is a perfect Kondo singlet with s̄2 = 1 (or ρ0 = −3).

4.2 Magnetic Transition in the Ground State

Now we investigate the ground state properties of SPAM by self-consistently solv-
ing the Eqs. (4.25) and (4.36). Here, we put t = 1. The computed values of
parameters are plotted in Fig. 4.2 as a function of V for different fixed values of Uf
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on square lattice. We calculate the triplon dispersion and spin gap to understand
the magnetic nature of the ground state. It generates the boundary between the
Kondo singlet and antiferromagnetic (AFM) phases. We also compute the charge
quasiparticle dispersions. It shows the ground state to be insulating, and notably,
reveals two inversion transitions for the charge quasiparticles. But first, let us
discuss the magnetic transition in the ground state.

4.2.1 Triplon dispersion and spin gap

We compute the triplon dispersion, εk, as given in Eq. (4.34). It is found to
show gapped behaviour for large values of V for any Uf . It remains gapped with
decreasing V upto a critical value, Vc. Thus, for V > Vc, the system is in the
spin-gapped Kondo singlet phase. At Vc, however, the εk becomes gapless at
k = Q = (π, π), and stays gapless as V is further decreased. The gapless nature
of εk at Q implies Bose condensation for triplons, which in turn implies a phase
transition to the Néel ordered AFM phase. This phase transition by decreasing V
occurs for any Uf , but at a Vc which depends upon Uf . In Fig. 4.3, we have shown
the behaviour of triplon dispersion, εk, for two different values of V on both sides
of Vc, for Uf = 4.

V > Vc

V < Vc

0.0

0.5

1.0

1.5

2.0

εk

Uf = 4

(0, 0) (π, 0) (π, π) (0, 0)

Figure 4.3: Triplon dispersion, εk, along the high symmetric lines in full-BZ in Kondo
singlet (blue dashed curve) and AFM phase (red solid curve) at Uf = 4. This phase
transition occurs as V is decreased.

We also calculate the spin gap, ∆s, as a function of V for different values of
Uf . Since, the minima of εk is always at Q, the spin gap is given by equation
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Figure 4.4: The spin gap, ∆s vs. V for Uf = 4, 6 and 8. We can see that when Uf is
increased the critical value, Vc, increases which means that Uf hepls to form an order
between c and f electrons.

εQ = ∆s. That is, ∆s =
√
λ(λ− ztζ1s̄2). The calculated ∆s vs. V is shown in

Fig. 4.8, where the spin-gap closes continuously at Vc. We observe that as Uf is
increased the critical value, Vc, also increases. Hence, the Uf helps the AFM order
in the system.

4.2.2 Phase diagram

We calculate the quantum phase diagram of SPAM in V -Uf phase space. Instead
of following the spin-gap by scanning through the entire V -Uf plane to find the
critical points, we set up a direct scheme for calculating the phase boundary by
imposing the condition, εQ = 0, which marks the instability of the Kondo singlet
phase towards magnetic ordering by the closing of the spin gap. It fixes λ of
the bond-operator theory as: λ = ztζ1s̄2. After a few steps of manipulations of
Eqs. (4.36) with this value of λ, we get the following equation for the critical
hybridization, Vc, as:

Vc =
1

2
zt(s̄2 + 3y)

(
ζ1
ζ2

)
(4.37)

This is similar to Eq. (3.6) in Chapter 3. We find the self-consistent parameters of
the spin part to become constants at the phase boundary as given below

ρ0 = 1− 4s̄2, ρ1 = 12s̄2y (4.38)
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where, s̄2 = 5/2− 3x with

x =
1

4L

∑
k

2 + (γk/z)√
1 + (γk/z)

, and y =
1

4L

∑
k

(γk/z)√
1 + (γk/z)

as two constants. So, the critical hybridization value, Vc, depends implicitly upon
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Figure 4.5: The quantum phase diagram of symmetric periodic Anderson model on
square and simple cubic lattices, as obtained from Eq. (4.37) of our theory. We have
presented it in two different ways: (a) in the V -Uf plane, and (b) in the V 2

Uf
- 1
Uf

plane.
Here, t = 1.

Uf through the parameters ζ1 and ζ2 of the charge part.
We calculate Vc as a function of Uf in the ground state by solving the Eqs. (4.37)

together with Eqs. (4.25) and (4.36), numerically iteratively. Thus, we obtain the
phase boundary between the quantum paramagnetic Kondo singlet phase and the
antiferromagnetic Néel phase in the V -Uf plane. The resulting quantum phase
diagram, for square and simple cubic lattices, is shown in Fig. 4.5. We see that as
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Uf is increased the Vc increases, which means that the AFM order lasts for large
values of V for a bigger Uf . This is consistent with the fact that the effective
Kondo exchange interaction in SPAM behaves as: J ∼ V 2/Uf [76, 87]. So, an
increase in Uf reduces the strength of the effective Kondo coupling that allows the
AFM order to survive upto the correspondingly larger value of Vc. For moderate
to larger values of U , our theory produces a qualitatively correct phase diagram,
agreeable with quantum monte carlo calculations [88, 89]. When Uf is small, the
spin-density wave theory provides a better description, in which Vc rapidly goes to
zero as Uf goes to zero [90, 89].

4.3 Two Inversions for the Charge Quasiparticles

Now let us discuss the nature of charge quasiparticles in our theory of SPAM.
To this end, we numerically calculate the dispersions Ek,i (for i = 1, 2, 3, 4) of
the charge quasiparticles, as defined in Eq. (4.16). These Ek,i’s are the positive
eigenvalues of the Hermitian matrix Hk of Eq. (4.12). The evolution of these
dispersions with respect to V , on square lattice, is presented in Fig. 4.6 for Uf = 4.
Note that, for any non-zero V , the pair of quasiparticle bands, Ek,1 and Ek,2, is
lower in energy by a finite energy difference than the pair Ek,3 and Ek,4. Moreover,
the lowest dispersion, Ek,1, is strictly > 0 for V ̸= 0. Hence, it describes an
insulating state.

The bands Ek,1 and Ek,2 touch each other on the contour |γk| = 0, which in
the two-dimensional plots in Fig. 4.6 is the middle branch from (π, 0) to (π/2, π/2)

lying on the boundary of the half-BZ of square lattice. The higher energy bands,
Ek,3 and Ek,4, also touch each other exactly in the same way. Note that, for
large V , we find that the band Ek,1 (Ek,2) has minima (maxima) at k = (0, 0)

and maxima (minima) at |γk| = 0. Thus, they are mutually oppositely curved
or oriented. Likewise, the dispersions Ek,3 (Ek,4) look the same. Notably, Ek,3

and Ek,4 are very narrow compared to Ek,1, and Ek,2, for large value of V , which
however become broader with decreasing V . Eventually, for sufficiently small V ’s,
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Figure 4.6: Evolution of the charge quasiparticle dispersions, Ek,i for i = 1, 2, 3, 4, with
respect to V along the high symmetric lines in half-BZ. We can clearly see the band
inversion happening in Ek,1 (first column) and Ek,3 (second column) as V is decreased.
In third column, all four bands are plotted together to see overall dispersion. Also note
that higher energy narrow bands tend to become broader as V decreases.

they all become of comparable bandwidths.
More importantly, with decrease in V , we see two inversion transitions hap-
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Also shown is the critical line (red circle) of transition from Kondo singlet to AFM phase.

pening separately for one narrow and one broad quasiparticle band. We find that
for V lower than a characteristic value, Vi,3, the k = (0, 0) is no more a point of
minimum for Ek,3. Instead, for V < Vi,3, the Γ becomes a point of local maxima,
and the minimum value of Ek,3 now shifts onto a contour around it, while the Ek,4

shows no such change. Neither Ek,1 and Ek,2 show any qualitative change across
Vi,3, but only for a while! As we take V further down, there comes a second special
point, Vi,1, below which Ek,1 (the lowest energy band) undergoes inversion in the
same way. Finally, when V is sufficiently below the inversion point, Vi,1, both Ek,1

and Ek,3 get fully inverted and look pretty much like their partner bands, Ek,2 and
Ek,4, respectively. Hence, like the KLM (and H-KLM), the charge quasiparticle
bands of SPAM also undergo inversion transition. But the inversion in SPAM is
richer by two! That is, the SPAM exhibits two inversion transitions, first for a
narrow band and then for a broad quasiparticle band. This is indeed a novel find-
ing for the symmetric periodic Anderson model. We find the inversion of Ek,1 and
Ek,3 to occur for any Uf . Figure 4.7 shows the inversion transition lines for Vi,1
and Vi,3 in the V -Uf plane, together with the phase boundary between the Kondo
singlet and AFM phases.
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Figure 4.8: The charge gap, ∆c, vs. 1/V for Uf = 4, 6 and 8. For large V (strong
Kondo coupling), the ∆c is large, and it come from the Γ point in the Brillouin zone.
It decreases as V decreases, and across Vi,1, it comes from the points away from the Γ

point.

Charge gap

In Fig. 4.6, we present the charge gap, ∆c, calculated as a function of 1/V for
different Uf . For strong hybridization (i.e., small 1/V ), ∆c = E(0,0),1, because the
Γ point is where the minimum of the lowest band Ek,1 is. But below V < Vi,1,
due to inversion, the Γ point is no more the point of minima of Ek,1, and hence
the ∆c now comes from a certain contour around k = (0, 0), which for sufficiently
small V tends to the boundary of the half-Brillouin zone. This is qualitatively
similar to the behaviour of the charge gaps for KLM and H-KLM (for example,
see Fig. 3.13).

4.4 Quantum Oscillations of Magnetization

Our experience with KLM (and H-KLM) shows that after the inversion of the
charge quasiparticle band, the dHvA oscillations show up nicely in the insulating
ground state. Since we do find inversion happening also for the charge quasipar-
ticles of SPAM, we are confident of seeing magnetic quantum oscillation here too.
Thus motivated, we investigate the quantum oscillations of magnetization in the
ground state of SPAM. For this purpose, we study the orbital response of SPAM
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to uniform magnetic field, B, coupled to the electronic motion via Peierls phase as
given below:

Ĥ =− t
∑
r,δ

∑
s=↑,↓

ei
e
ℏ
∫ r+δ

r A·drĉ†r,sĉr+δ,s − V
∑

r

∑
s=↑,↓

[
ĉ†r,sfr,s + h.c.

]
+ Uf

∑
r

(
nf

r,↑ −
1

2

)(
nf

r,↓ −
1

2

)
(4.39)

We take the vector potential as A = −Byx̂, which gives the magnetic field, B,
along the ẑ direction. As for the KLM in Sec. 2.4, we derive the following field
dependent minimal effective model of the charge dynamics from Eq. (4.39).

Ĥ [B]
c = −it

2

∑
r∈A

∑
δ

{[
ψ̂a,rϕ̂b,r+δ + ρ1ψ̂b,r+δϕ̂a,r

]
cos(2παryx̂ · δ̂)

}
−iV

2

∑
r∈A

[
ψ̂a,rχ̂b,r + ρ0η̂b,rϕ̂a,r

]
− iV

2

∑
r∈B

[
η̂a,rϕ̂b,r + ρ0ψ̂b,rχ̂a,r

]
−Uf

2

[∑
r∈A

â†f,râf,r +
∑
r∈B

b̂†f,rb̂f,r

]
(4.40)

Here, α = eBa2/h is the reduced magnetic flux, with a as the lattice constant.
The ry and δ̂ = δ/|δ| are the y coordinate of r and unit vector for δ, respectively.

To calculate magnetization, M , versus B from this Hofstadter like problem,
we (for simplicity) put zero field values of ρ0 and ρ1 (calculated in Sec. 4.2) in the
Ĥ

[B]
c of Eq. (4.40), and numerically find its ground state energy per site, eg, as a

function of α = p
q

for integer p = 1, 2, . . . , q with q = 601 (a prime number) on
square lattice. Using the definition M = −∂eg/∂α, we calculate M as a function
of α. In Fig. 4.9, we present in two different ways the results of this calculation.
Three plots on the left-hand side of this figure present the dHvA oscillation data
for different values of V for a fixed Uf = 4, and on the right side, it is for different
values of Uf for a fixed V = 0.6. Note that for Uf = 4, the critical point for
transition from Kondo singlet to AFM phase is Vc ≈ 0.7. The critical point along
Uf axis for a fixed V = 0.6 is Uf,c ≈ 2.4. Thus, by keeping one of these two
fixed, we are varying the other across the critical point from one phase to another.
In both case, we find that the oscillations become more prominent as the Kondo
coupling becomes weaker. For a fixed Uf , it happens by decreasing V , and for a
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Figure 4.9: The dHvA oscillations in the insulating ground state of the symmetric pe-
riodic Anderson model on square lattice. On the left-hand side, we present the data
for V = 0.75, 0.72, 0.70 (Kondo singlet) and V = 0.65, 0.6, 0.5 (Néel AFM) for a fixed
Uf = 4. We see clear oscillations, both in the Kondo singlet and AFM phases, of fre-
quency ν0 = 0.5 corresponding to the half-Brillouin zone (see Fig. 4.1). The data on the
right side for different Uf ’s and V = 0.6, also shows the magnetic quantum oscillations
with same features.

fixed V , it happens by increasing Uf . Remember that V 2/Uf is roughly speaking
the measure of Kondo coupling in SPAM. Thus, we do get dHvA oscillations in the
Kondo singlet phase close to critical point, but they are less prominent compared
to the oscillations in the AFM phase for weaker couplings. However, for stronger
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Kondo couplings (V > Vi3), we do not see any dHvA oscillations (hence, we don’t
show the data here), which affirms that the inversion of charge quasiparticles is very
important for these oscillations to show-up. By doing the Fourier transformation
of the M/α vs 1/α data, we get the dominant frequency of dHvA oscillations,
ν0 = 0.5, which corresponds to the half of the bulk Brillouin zone. Recall the
relation, A = (2π/a)2ν, between the area A of an extremal orbit perpendicular
to magnetic field on a constant energy surface in k-space and the frequency ν (in
units of h/ea2) of the dHvA oscillations. All these findings for SPAM are fully
consistent with what we obtained for the KLM in the previous chapters.

4.5 Conclusion

In this chapter, we have investigated the symmetric periodic Anderson model using
the theory of Kondo insulators that we developed for the half-filled Kondo lattice
model. Our approach correctly produces the qualitative features of the Kondo
insulating ground state of the SPAM. More importantly, it reveals the novel inver-
sion phenomena also for the charge quasiparticles of SPAM, similar to what we got
for the KLM. In fact, here, we get two inversion transitions, one each for a narrow
(higher energy) and a board (lower energy) band of the charge quasiparticles. In
the presence of uniform magnetic field coupled to the electronic motion, our the-
ory also produces magnetic quantum oscillations of the frequency corresponding
to the half-Brillouin zone (on bipartite lattice). The inversion has a direct bearing
on these quantum oscillations which is clearly affirmed by the fact that the oscil-
lations appear only after the quasiparticle bands have appropriately inverted. It
is indeed very heartening and encouraging to see that our theory has produced a
consistent physical understanding of all the three models of Kondo insulators, viz,
the KLM, the H-KLM and the SPAM.

• • • • •
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In the previous three chapters of this thesis, the theory that we developed
to describe Kondo insulators was motivated to treat the interactions (Kondo ex-
change, Hubbard repulsion) respectfully. It basically approached the problem from
the strong coupling side, and produced a consistent trend of physical behaviour in
going towards weaker couplings in three different models of Kondo insulator. In
particular, we found that the dHvA oscillations become more and more pronounced
as the Kondo coupling gets weaker and weaker. Since the antiferromagnetically
ordered insulating ground state in the weak coupling limit can be described very
well by the spin density wave (SDW) mean-field theory (directly in terms of the
electron operators) [91, 1], we are prompted to make an independent study of
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magnetic quantum oscillations in the SDW insulators. This is what we do in the
present chapter of this thesis.

A SDW state, caused by electron-electron interaction (howsoever small), is an
instability of the metallic state. It involves the modulation of electronic spins
with some characteristic periodicity (given by nesting wavevector, Q), which is
not necessarily commensurate with the underlying lattice. This spin density wave
opens up a single-particle gap at the Fermi level, due to which, the system may
either behave as an insulator if the gap opens on the entire Fermi surface (as in
the quasi one dimensional Bechgaard salts (TMTSF)2PF6 [92]), or may continue
to be a metal if the Fermi surface partially survives (say, as in Cr metal [93], or
LaFePO [94, 95, 96]). On the half-filled hypercubic lattices, due to perfect nesting
of the Fermi surface, 1 the spin density modulation leads to an insulating ground
state with Néel AFM order commensurate with the lattice.

In this chapter, we calculate the orbital response to magnetic field in the weak-
coupling Néel insulating ground states of the Hubbard and Kondo lattice models
(on square and simple cubic lattices at half-filling) by doing a simple mean-field
theory directly in terms of electron operators. As expected from our studies in
Chapter 2, we do get clear dHvA oscillations in these weakly correlated insulating
states. This study suggests that, apart from the Kondo insulators, the quantum
oscillations of magnetization can also occur in other kinds of insulators (correlated
or otherwise).

5.1 Small U Hubbard Model at Half-Filling

Motivated by the similarities between the effective charge dynamics of the KLM
and Hubbard models in Kumar’s representation, in Sec. 2.5 we had investigated
and found the dHvA oscillations in the insulating ground state of the half-filled
Hubbard model. The amplitude of these oscillations was found to grow with in-
crease in t/U , suggesting that dHvA effect would occur also in the weakly corre-
lated insulators. For the weakly correlated (small U) Hubbard model, a straight-
forward approach (directly in terms of the electron operators) that appropriately

1Say, with respect to Q = (π, π) on square lattice, or Q = (π, π, π) on simple cubic lattice.
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describes the insulating AFM ground state is the SDW mean-field theory. In this
section, we discuss the dHvA oscillations in the SDW insulating ground state of
the half-filled Hubbard model on square and simple cubic lattices. In the next
section, we will do the same for the half-filled KLM.

To study dHvA oscillations in an SDW insulator, we consider the following
symmetric Hubbard model on bipartite lattice:

Ĥ = −t
∑
r,δ

∑
σ

ei
e
ℏ
∫ r+δ

r A·drĉ†r,σ ĉr+δ,σ + U
∑

r

(
n̂r,↑ −

1

2

)(
n̂r,↓ −

1

2

)
(5.1)

Here, r is sum over the lattice sites, δ is summed over the nearest neighbours
of r, and σ =↑, ↓ is spin label. The ĉ†r,σ(ĉr,σ) are electron creation (annihilation)
operators and n̂r,σ is number operator. The first term in Eq. (5.1) of Ĥ is the
kinetic energy with hopping, t > 0, between nearest neighbour sites, and magnetic
field is coupled to the electron motion through Peierls phase factor in terms of
vector potential, A = B(−y, 0, 0) for magnetic field B along ẑ direction. The
second term, with U > 0, is the onsite repulsion. If you expand this term, you get
U/2 as the chemical potential, which guarantees half-filling on any bipartite lattice
due to the particle-hole symmetry of this model. So, Eq. (5.1) is the Hamiltonian
of the half-filled Hubbard model.

5.1.1 SDW mean-field theory on bipartite lattices

When U is not strong compared to the bandwidth, it has been found reasonable to
treat the Hubbard interaction, U

∑
r n̂r↑n̂r↓, in the Hartree-Fock approximation,

which decouples the two-body interaction into self-consistently determined single
particle terms. This simple mean-field decoupling is given as:

n̂r,↑n̂r,↓ = n̂r,↑⟨n̂r,↓⟩+ ⟨n̂r,↑⟩n̂r,↓ − ⟨n̂r,↑⟩⟨n̂r,↓⟩.

The SDW, that is, the spin density wave approximation amounts to considering
the following periodic spatial modulation for the mean fields [1].

⟨n̂r,σ⟩ =
n

2
+ ησ mse

iQ·r (5.2)

with ⟨Sz
r ⟩ =

1

2
⟨n̂r,↑ − n̂r,↓⟩ = ms e

iQ·r
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Here, n is the average number of electrons per site (which is 1 at half-filling), ms

is the magnitude of the staggered magnetic moment (which is to be determined
self-consistently), and the wavevector Q = π corresponds to the Neél SDW on
hypercubic lattice. 2 This Q is so chosen, because π is the nesting wavevector
for the Fermi surface of the half-filled tight binding model with nearest neighbour
hoping on a hypercubic lattice. See Fig. 5.1

Q

(0, 0)

(π, π)(−π, π)

(−π,−π) (π,−π)

Figure 5.1: Nesting on square lattice. The large square enclosed by solid black lines
is full-BZ however the faded light red region represents half-BZ. The edges of half-BZ
describe the Fermi-surface at half-filling when U = 0. Here, Q = π is the nesting vector
which connects a large portion of Fermi surface to the other.

On a bipartite lattice, if the magnetic moment ⟨Sz
r ⟩ = ms for r ∈ A sublattice,

then it is −ms on B sublattice, because Q = π. Moreover, η↑ = +1 and η↓ =

−1. In this approximation, Eq. (5.1) takes the following form (written in the two
sublattice notation):

Ĥ =
∑
σ

{
−t
∑
r∈A

∑
δ

[
ei

e
ℏ
∫ r+δ

r A·drâ†r,σ b̂r+δ,σ + h.c.
]
+ U

∑
r∈A

[
n− 1

2
− ησms

]
â†r,σâr,σ

+ U
∑
r∈B

[
n− 1

2
+ ησms

]
b̂†r,σ b̂r,σ

}
+ e0L (5.3)

Here, e0 = U(m2
s − n2

4
+ 1

4
) is a constant, L is total number of lattice sites, and

â†r,σ(âr,σ) and b̂†r,σ(b̂r,σ) are electron creation (annihilation) operators at site r with
spin σ on A and B sublattice, respectively. Since Eq. (5.3) is bilinear in the

2The wavevector π denotes (π/a, π/a) for square lattice and (π/a, π/a, π/a) for simple cubic
lattice, with a as the lattice constant.
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electronic creation and annihilation operators, therefore we can diagonalize it us-
ing Bogoliubov transformation. Before we compute the magnetic response in the
ground state of Eq. (5.3), let us briefly describe the basic physics in the absence
of magnetic field.

For B = 0, the SDW Hamiltonian of Eq. (5.3) is translationally invariant. To
further simplify it, we use Fourier transformation as defined below

âr,σ =

√
2

L

∑
k
eik·r âk,σ

b̂r,σ =

√
2

L

∑
k
eik·r b̂k,σ (5.4)

Here, k ∈ half Brillouin zone (BZ) or magnetic Brillouin zone (see in Fig. 5.1).
The SDW Hamiltonian in the k-space reads as:

Ĥ =
∑
k,σ

{
−t
(
γkâ

†
k,σ b̂k,σ + h.c.

)
+ Umsησ

(
b̂†k,σ b̂k,σ − â†k,σâk,σ

)
+
U(n− 1)

2

(
â†k,σâk,σ + b̂†k,σ b̂k,σ

)}
+ e0L (5.5)

with γk =
∑

δ e
ik·δ. Now we use the Bogoliubov transformation,

âk,σ = cos θk αk,σ − eiϕk sin θk βk,σ

b̂k,σ = e−iϕk sin θk αk,σ + cos θk βk,σ, (5.6)

with θk = 1
2

tan−1
[

t|γk|
Umsησ

]
, to diagonalize Eq. (5.5). The SDW Hamiltonian in the

diagonalized form can be written as:

Ĥ = e0L+
∑
k,σ

[
Ek,− α†

k,σαk,σ + Ek,+ β†
k,σβk,σ

]
(5.7)

where Ek,± = U(n−1)
2

±
√

(Ums)2 + (t|γk|)2 are the electronic dispersions.
Since n = 1 at half-filling, the only mean-field parameter ms is determined

self-consistently by minimizing the ground state energy of Eq. (5.7). In the ground
state of Eq. (5.7) at half-filling, the Ek,+ band is fully empty, while the Ek,− band
is fully filled. Therefore, the ground state energy per site (eg) is given by

eg = e0 +
2

L

∑
k
Ek,− (5.8)
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The energy minimization condition, ∂eg
∂ms

= 0, gives the following equation for ms.

ms =
1

L

∑
k

msU√
(Ums)2 + (t|γk|)2

(5.9)

This equation obviously has a paramagnetic (PM) solution, ms = 0, which is not
the lowest energy solution. The non-zero ms in the ground state is given by the
solution of the equation, 1 = 1

L

∑
k

U√
(Ums)2+(t|γk|)2

.
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Figure 5.2: The staggered magnetization, ms, and the band gap, ∆, vs. U/t of the
SDW ground state of the half-filled Hubbard model. They are always non-zero, but for
U/t ≪ 1, they are expectedly exponentially small.
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Figure 5.3: Square lattice: 2d plot of dispersion, Ek− along symmetric lines, for U = 0.1

and U = 2.0. The dispersion is always minimum (maximum) at k = 0 (|γk| = 0) point.
As we see, there is no inversion or Lifshitz like phenomenon observed in the insulating
ground state of SDW quasiparticles dispersion for any value of U , and this is also true
for simple cubic.

The top (bottom) of the fully occupied (empty) band, Ek,− (Ek+), lies at the
|γk| = 0. This gives a band gap, ∆ = 2Ums. The staggered magnetization, ms,
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and the gap, ∆, are plotted as a function of U/t for the square and simple cubic
lattices in Fig. (5.2). We have taken t = 1 for all the calculation. The gap, ∆, is
found to be non-zero for any U , howsoever small. Thus, the Néel SDW ground
state of the half-filled Hubbard model is always gapped, and hence insulating. For
U very small compared to t, the SDW state is known to behave as ms ∼ ∆ ∼ e−t/U ,
which is why get tiny gap and staggered moment for very mall U/t. Next we study
dHvA oscillations in this SDW insulating ground state.

5.1.2 dHvA oscillations in the SDW insulating state

To investigate dHvA oscillations in the SDW insulator, we numerically compute
M in the ground state of the following Hamiltonian, which is Eq. (5.3) for n = 1

(half-filling) in the magnetic field, B, given by A = −Byx̂ and parameterized as,
α = eBa2/h.

Ĥ =
∑
σ

{
−t
∑
r∈A

∑
δ

[
e2πiαryx̂·δ̂ â†r,σ b̂r+δ,σ + h.c.

]
+ Umsησ

(∑
r∈B

b̂†r,σ b̂r,σ −
∑
r∈A

â†r,σâr,σ

)}
(5.10)

Here, ry is the y component of r in units of a, and δ̂ = δ/|δ| for the nearest
neighbour sites. We calculate the ground state energy, eg[B], of Eq. (5.10) as a
function of α = p/q for integer p = 1, 2, .., q with q upto 1021 for square lattice and
907 for simple cubic lattice. We do this by numerical Bogoliubov diagonalization
of Eq. (5.10), and then summing over all the negative energy eigenvalues [see the
Eq. (B.23) of Appendix B]. The ground state energy per site is given as follows:

eg[α] = − 2

L

∑
k

q∑
nq=1

ϵk(nq) (5.11)

Here, k ≡ (k1, k2) where −π < k1 < π and −π
q
< k2 <

π
q
. From the ground state

energy, we compute the magnetization, M = −∂eg
∂α

, numerically.
It is important to note that in the presence of magnetic field, the order pa-

rameter, ms, in Eq. (5.10) should in principle be calculated self-consistently as a
function of the field. But this is a computationally demanding task, because to
determine ms self-consistently, we have to diagonalize q × q matrices very many
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times for each value of magnetic field, α, which is not feasible for large q. There-
fore, we simply use the zero field value of ms to compute M vs. α, for q = 1021

and 907 respectively on square and simple cubic lattice. This calculation shows
clear magnetic quantum oscillations, as anticipated. Then, for comparison, we also
do an M vs. α calculation by using the field dependent ms for a small q = 307

on square lattice. This second calculation also gives similar quantum oscillations
with same dominant frequency.

Magnetization behaviour with zero-field ms

The results of the magnetization calculation in the ground state of Eq. (5.10) with
zero-field value of ms are presented in Fig. 5.4 for square and simple cubic lattices.
This magnetization data shows clear dHvA oscillations with respect to α (magnetic
field), whose amplitude is found to gradually decrease with increasing U/t. This
trend is consistent with what we obtained in Sec. 2.5 coming from the large U/t
side.

The Fourier transform of M/α (with flat background subtracted) for 4 < 1/α <

20 on square lattice is presented in left panel of Fig. 5.4(c), where we see the
dominant Fourier peak for different U ’s occurring at the same frequency, f0 = 0.5.
We also see its higher harmonics at f = 1 and 1.5. The semiclassical relation,
F = (2π/a)2f , between the area F of an extremal orbit perpendicular to magnetic
field on a constant energy surface in k space and the frequency f (in units of h/ea2)
of dHvA oscillations [5, 26, 28, 27] implies that the f0 = 0.5 corresponds to the area
of the half BZ, which points to the |γk| = 0 as its origin. Note that the contour
|γk| = 0 is where the highest energy states of the fully occupied band, Ek,−, sit.
Therefore, it suggests that for the dHvA oscillations the highest occupied levels in
an insulator act as the Fermi surface, in spite of the fact that it is not a metal.

Likewise, on simple cubic lattice, as shown in right panel of Fig. 5.4(c), the
Fourier transform of the M/α vs. 1/α data gives the dominant frequency, f0 =

0.185, independent of the value of U . This dominant frequency corresponds to
the extremal area enclosed by the |γk| = 0 contour on kz = 0 plane [see Fig. 2.10-
(c)]. The dominant frequencies, obtained on square and simple cubic lattices, show
that the dHvA oscillations in the SDW insulator measure the surface of the highest
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Figure 5.4: The dHvA oscillations in the SDW insulating state on square and simple
cubic lattices. The magnetization data in the ground state of Eq. (5.10) for zero-field
ms is plotted variously as M vs. α and M/α vs. 1/α for different U ’s. The Fourier
transform (amplitude is divided by 100 for clear visibility) of M/α data gives f0 = 0.5

(square) and f0 = 0.185 (simple cubic) as the dominant frequency of oscillations.

energy levels of the fully-filled band.
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Magnetization behaviour with field dependent ms

Here, we study the dHvA oscillations by calculating the SDW mean-field param-
eter, ms, self-consistently for different values of the magnetic field. Since the
computation now becomes more demanding due to very many repeated numerical
diagonalizations of the q × q matrices, we can not take large values for q. Recall
that α = p/q, where p = 1, 2, . . . , q. Nevertheless, we do this exercise on square
lattice for q = 307 to see if the dHvA oscillations obtained above (with zero-field
value of ms) is significantly modified, or if it remains qualitatively the same.
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Figure 5.5: Square lattice: (a) The field dependent ms for different U ’s. (b) Magneti-
zation, M , with respect to magnetic field, α, for different U ’s calculated by using field
dependent mean-field, ms. M/α as a function of inverse magnetic field, 1/α in (c). The
Fourier transform of M/α is given in (d) with dominant frequency, f0 = 0.5.

In Fig. 5.5(a), we plot ms as calculated by varying α for different values of
U . We observe that the ms also shows oscillatory behaviour that changes from
rapid to slow when U increases. We calculate the magnetization by using the
formula M = −∂eg/∂α, where the ground state energy per site, eg, is defined in
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Eq. (5.11). Fig. 5.5, shows the magnetization data obtained in this case. It looks
similar to what we found with zero-field ms, as shown in Fig. 5.4. In fact, the
Fourier transform of M/α shown in Fig. 5.5 gives the same dominant oscillations
frequency, f0 = 0.5, as obtained from the calculations with zero-field ms. Hence,
the dHvA oscillations in the two ways of treating ms for magnetization calculation
are found to be essentially same.

Remarks on the effect of Zeeman coupling

In this thesis, we have neglected the Zeeman coupling of magnetic field to the
electron spin. This is because our primary motivation here has been to understand
the response of the (Kondo) insulating state to magnetic field coupled via Peierls
phase to electron motion.We now very briefly look at how it may affect the dHvA
oscillations. Consider the Zeeman term, −gµB

∑
r(n̂r↑ − n̂r↓)/2, which can be

recast as:

−4πt αgrmr

∑
σ

ησ

{∑
r∈A

â†r,σâr,σ +
∑
r∈B

b̂†r,σ b̂r,σ

}
, (5.12)

where α = eBa2/h is the reduced flux (that sits in the Peierls phase), gr = g/2 is
the Landé g factor relative to 2, and the relative effective mass, mr = m∗/me, is the
ratio of the effective mass from the tight-binding band-structure, m∗(= ℏ2/2ta2),
and the free electron mass, me. Ideally, both gr and mr would be 1, but in actual
they would take different values for different materials.

According to Eq. (5.7), the single-particle gap is ∆ = 2Ums, and ↑ and ↓
electron dispersions are degenerate. The Zeeman term would lift this degeneracy
by 4πt αgrmr, but as long as Ums > 4πt αgrmr is true, the ground state is gapped.
Beyond it, the ↑ and ↓ electron bands will overlap, leading to a metallic ground
state. Within this simple minded picture, a sufficiently strong magnetic field would
destroy the SDW insulating state by overcoming the SDW gap. It can happen for
small fields (of a few Tesla) if the SDW gap is tiny, and will require larger fields if the
SDW gap is not so small. For a rough estimate, take grmr ∼ 1 and t ∼ 1eV. Then,
the condition for the survival of the SDW insulating phase reads as: ∆ ≳ 10−4B.
So, if ∆ ∼ 1 meV, then B ≳ 10 T can overcome the SDW gap. This magnetic field
is already quite large. But for slightly stronger ∆, one would require even larger
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fields, beyond the typical laboratory fields, to make this happen. In either case, the
quantum oscillations would survive. In the insulating case for smaller fields, they
will be like what we have obtained above. But when the SDW gap is overcome by
field, the resultant metallic state would show quantum oscillations with frequencies
different from those in the insulating case. We leave the detailed investigation of
dHvA oscillations for the case with both Peierls and Zeeman couplings, that is
Eq. (5.10) + Eq. (5.12), for a future study.

5.2 Weak-Coupling KLM at Half-Filling

We know very well that for sufficiently small J/t, the half-filled KLM on any
bipartite lattice realizes Néel insulating ground state. Hence, in the spirit of the
previous section, we do a simple weak-coupling mean-field theory of the KLM,
directly in terms of the electron operators. With Néel AFM order parameter,
both for the localized moments and the conduction electrons, we study quantum
oscillations of magnetization in this SDW like setting. We already know from
Chapter 2 that the dHvA oscillations occur in the half-filled KLM for J/t ranging
from intermediate to weak. This calculation, with the benefit of hindsight, is a
vindication of that finding from a very simplistic approach motivated from the
weak-coupling side.

5.2.1 Mean-field approximation with Néel order

The conduction electrons in KLM, Eq. (2.5), do not interact amongst themselves.
But they interact with the localized spins via the Kondo interaction, J

2

∑
r Sr ·

τr, between the electron spin, Sr, and the localized spin-1/2 given by the Pauli
operator, τr. At the simplest level, we can treat the Kondo interaction in the
following mean-field approximation:

Sr · τr ≈ ⟨Sr⟩ · τr + Sr · ⟨τr⟩ − ⟨Sr⟩ · ⟨τr⟩

= M⃗r · τr + Sr · m⃗r − M⃗r · m⃗r (5.13)

Here, ⟨Sr⟩ = M⃗r and ⟨τr⟩ = m⃗r, are the average magnetization vectors for the
conduction electrons and localized spins, respectively. Since we know about the
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Néel AFM ordering in the insulating ground state of the half-filled KLM, we choose,

M⃗r on A sublattice = −M⃗r on B sublattice =MΩ̂, and

m⃗r on A sublattice = −m⃗r on B sublattice = −mΩ̂.

Here, the unit vector Ω̂ (which is arbitrary) specifies the direction of the vector
order parameters, and M and m are their magnitudes. Under this approximation,
the mean-field KLM reads as: HMF ≈ Helectron +Hmoment +

J
2
MmL.

Hmoment =
JM

2

[∑
r∈A

−
∑
r∈B

]
Ω̂ · τr (5.14)

Helectron = −t
∑
r∈A

∑
δ,s

(
ei

e
ℏ
∫ r+δ

r A·drf †
r,sfr+δ,s + h.c.

)
− Jm

2

[∑
r∈A

−
∑
r∈B

]
Ω̂ · Sr

(5.15)

The Hmoment is so very simple. For Ω̂ = (sin θ cosϕ, sin θ cosϕŷ, cos θ), it can be
diagonalized by applying the following rotation on the localized spins operators on
both the sublattices.

Û =

 cos θ
2

− sin θ
2
e−iϕ

sin θ
2
eiϕ cos θ

2

 (5.16)

The diagonalized form of Hmoment is

Û †Hmoment Û = H̃moment =
JM

2

[∑
r∈A

−
∑
r∈B

]
τ z

r (5.17)

which immediately implies that the order parameter of the localized moments is
trivially, m = 1, in the ground state. Given this, the electronic Hamiltonian in the
basis rotated by the U defined above reads as:

Helectron =
∑
s=↑,↓

{
−t
∑
r∈A

∑
δ

(
ei

e
ℏ
∫ r+δ

r A·drf̃ †
r,sf̃r+δ,s + h.c.

)
− J

4

[∑
r∈A

−
∑
r∈B

]
ηsf̃

†
r,sf̃r,s

}
(5.18)

where η↑(↓) = +(−), and the new electrons operators f̃r,s are related to the old f̂r,s

via the same unitary matrix as defined above in Eq. (5.16).fr,↑

fr,↓

 = Û

f̃r,↑

f̃r,↓

 (5.19)
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Note the conspicuous absence of the electron’s staggered magnetic order parameter,
M , in Eq. (5.18). In this highly simple mean-field description of the Néel state of
the half-filled KLM, it is so because m happens to be independent of M . Hence,
once m(= 1) is determined, we need not write any self-consistent equation for M .

In the absence of magnetic field, Eq. (5.18) can be diagonalized by succes-
sively applying the Fourier and Bogoliubov transformations. Since the Néel or-
der distinguishes between the A and B sublattices, we incorporate this fact by
explicitly including in the fermion creation and annihilation operators by us-
ing subscripts, a and b, for the two sublattices, respectively. With this slight
change of notation, we define the Fourier transform of the fermion operators as:
f̃a,s(r) =

√
2
L

∑
k eik·r f̃a,s(k) and f̃b,s(r) =

√
2
L

∑
k eik·r f̃b,s(k), where k ∈ the

magnetic Brillouin zone. The diagonal form of Helectron is given as:

H
[B=0]
electron =

∑
k

∑
s

ωk

[
f̃ †
+,s(k)f̃+,s(k)− f̃ †

−,s(k)f̃−,s(k)
]

(5.20)

where ωk =
√

(tγk)2 + (J
4
)2 is electron dispersion, and the new fermion operators,

f̃±,s(k), are given by the following Bogoliubov transformation:

f̃a,s(k) = cos βk f̃−,s(k)− sin βk f̃+,s(k)

f̃b,s(k) = sin βk f̃−,s(k) + cos βk f̃+,s(k) (5.21)

with tan 2βk = tγk
(Jηs/4)

. In the ground state of H [B=0]
electron, the positive energy bands

corresponding to f̃+,s(k) are completely empty, while the negative energy bands
corresponding to f̃−,s(k) are fully filled (satisfying half-filling). We see that ωk

has minima at edge of half-BZ i.e. |γk| = 0, so we find the single-particle gap to
be, ∆c = 2 ωk=|γk|=0 = J . Hence, the Néel ordered ground state of KLM is an
insulating state for any non zero J . Contrast this gap which decreases linearly
with J , with the SDW gap of the Hubbard model which decreases exponentially
at small U .



5.2. Weak-Coupling KLM at Half-Filling 97

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲
▲▲▲
▲▲▲
▲▲▲▲▲
▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

▲▲▲
▲▲
▲▲
▲▲
▲▲
▲▲
▲▲▲
▲▲▲
▲▲▲▲
▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

▲▲
▲
▲
▲
▲
▲▲
▲▲
▲▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

▲
▲
▲▲▲▲▲▲
▲
▲
▲
▲
▲
▲
▲▲
▲▲▲▲▲▲▲

▲
▲
▲
▲
▲
▲▲▲▲
▲
▲
▲
▲
▲▲
▲▲▲
▲
▲
▲
▲
▲▲
▲
▲
▲
▲▲▲▲

▲
▲
▲▲
▲
▲
▲
▲▲

▲
▲
▲▲

▲
▲▲

▲
▲▲

▲
▲ ▲

▲
▲

◇◇◇◇◇◇◇◇◇◇◇
◇◇◇◇◇◇◇
◇◇◇◇◇◇
◇◇◇◇
◇◇◇
◇◇
◇◇
◇◇◇
◇◇◇◇
◇◇◇◇◇
◇◇◇◇◇◇
◇◇◇◇◇◇◇
◇◇◇◇◇◇◇◇
◇◇◇◇◇◇◇◇◇
◇◇◇◇◇◇◇◇◇◇◇
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
◇◇◇
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇

◇◇
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇

◇◇◇
◇◇
◇
◇
◇
◇
◇
◇
◇
◇◇
◇◇
◇◇
◇◇
◇◇
◇◇◇
◇◇◇◇◇◇
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇

◇
◇
◇
◇
◇
◇
◇◇◇◇◇◇◇
◇
◇
◇

◇

◇

◇
◇
◇
◇
◇
◇
◇◇
◇◇◇◇◇◇◇◇◇◇◇◇

◇
◇
◇
◇
◇
◇◇
◇

◇

◇
◇
◇◇◇
◇
◇

◇

◇

◇

◇

◇
◇
◇◇◇◇◇◇

◇
◇
◇

◇
◇

◇

◇

◇
◇◇
◇

◇

◇

◇

◇
◇◇◇◇

◇

◇

◇

◇

◇

◇◇

◇

◇

◇

◇◇◇

◇

◇

◇

◇◇

◇

◇

◇
◇
◇

◇

◇

◇

◇

◇

◇◇

◇

◇◇

◇

◇
◇

◇
◇

◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆
◆◆◆◆◆◆
◆◆◆◆◆
◆◆◆◆
◆◆◆
◆◆
◆
◆
◆◆
◆◆
◆◆◆
◆◆◆
◆◆◆◆
◆◆◆◆◆
◆◆◆◆◆
◆◆◆◆◆◆
◆◆◆◆◆◆
◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆
◆◆
◆◆◆
◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆
◆◆◆
◆
◆
◆◆◆◆◆
◆
◆
◆
◆◆◆◆
◆
◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆
◆◆
◆◆
◆
◆
◆

◆

◆
◆
◆
◆
◆
◆
◆◆
◆◆
◆◆
◆◆
◆◆◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆
◆
◆◆
◆
◆◆
◆

◆

◆
◆
◆
◆
◆
◆
◆◆◆◆
◆
◆
◆

◆

◆

◆

◆

◆

◆
◆
◆
◆
◆
◆◆
◆◆◆
◆
◆◆◆◆◆
◆
◆
◆
◆
◆
◆
◆
◆◆

◆

◆

◆

◆

◆
◆◆
◆

◆

◆

◆

◆

◆

◆

◆
◆◆◆
◆◆
◆
◆

◆

◆

◆

◆

◆

◆

◆

◆◆

◆

◆

◆

◆

◆

◆◆
◆
◆

◆

◆

◆

◆

◆

◆
◆

◆

◆

◆

◆◆

◆

◆

◆

◆

◆◆

◆

◆

◆◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

○○○○○○○○
○○○○○○○
○○○○○
○○○○
○○○○
○○○
○○
○○
○○
○
○
○
○○
○○
○○
○○○
○○○
○○○○
○○○○
○○○○
○○○○○
○○○○○
○○○○○○
○○○○○○
○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○
○
○
○○
○○○○○○○○
○
○○○
○
○○○○
○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○
○○○
○
○
○
○
○
○
○○○○
○

○

○
○○○
○
○
○
○○
○
○
○
○
○
○○○○○○○○
○
○○○○○○○○○○○○
○○
○○
○
○
○
○
○

○

○

○

○
○
○
○
○
○
○
○
○
○○
○○
○○
○○○○○○○○○○○
○
○
○○○
○
○○○
○○○○○○○
○
○
○
○
○
○
○
○○
○

○○

○

○○

○

○

○

○

○
○
○
○
○○○○
○
○
○

○

○

○

○

○

○

○

○
○
○
○○
○○
○
○
○○
○
○
○
○
○
○

○

○

○

○
○
○

○

○

○

○

○
○○
○

○

○

○

○

○

○

○
○○
○
○○
○

○

○

○

○

○

○

○

○

○○

○

○

○

○

○

○
○
○

○

○

○

○

○

○

○

○

○

○

○

○
○

○

○

○

○

○○

○

○

○
○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○
○

-10

-2

6

14

22

2 5 8 11 14 17 20

▲

▲▲▲▲▲▲▲
▲

▲

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

◇

◇
◇◇◇◇◇◇

◇

◇

◇
◇◇◇◇◇◇◇

◇
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇

◆◆
◆◆◆◆◆◆

◆

◆

◆◆◆◆◆◆◆
◆

◆

◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆○

○
○○○○○○

○

○

○
○○○○○○

○

○

○
○○○○○○○

○
○○○○○○○○○

▲▲ ◇◇ ◆◆ ○○

2 3 4 5
0.0

0.5

1.0

0

1

2

3

4

0.0 0.5 1.0 1.5 2.0

▲ t =2 ◇ t =3 ◆ t =4 ○ t =5

(a) (b)

M
α

1/α

Fo
ur

ie
rT

ra
ns

fo
rm

f

f 0

t/J

Figure 5.6: The dHvA oscillations in the mean-field Néel insulating ground state of the
Kondo lattice model at half-filling [Eq. (5.18)] on square lattice. (a) M/α, versus inverse
magnetic field, 1/α for t = 2, 3, 4, 5 (with J = 1). (b) Its Fourier transform (amplitude
is divided by 100), where the dominant fundamental frequency occurs at f0 = 0.5. The
inset shows that the f0 remains constant on increasing t/J .
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Figure 5.7: The dHvA oscillations in the mean-field Néel insulating ground state of the
Kondo lattice model at half-filling [Eq. (5.18)] on simple cubic lattice. (a) M/α, versus
inverse magnetic field, 1/α for t = 2, 3, 4, 5 (with J = 1). (b) Its Fourier transform
(amplitude is divided by 100), where the dominant fundamental frequency occurs at
f0 = 0.185. The inset shows that the f0 remains constant on increasing t/J .

5.2.2 Magnetic quantum oscillations

To compute the magnetic response in this highly simplified description of the half-
filled KLM, we put A = −yBx̂ in Eq. (5.18). The Helectron now reads as follows:

Ĥ =
∑
s=↑,↓

{
− t
∑
r∈A

∑
δ

[
e2πiαryx̂·δ̂ f̃ †

a,s(r)f̃b,s(r + δ) + h.c.
]
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− J

4
ηs

[∑
r∈A

f̃ †
a,s(r)f̃a,s(r)−

∑
r∈B

f̃ †
b,s(r)f̃b,s(r)

]}
(5.22)

This is a standard Hofstadter problem, but with a staggered potential term. For
each value of the spin quantum number s, we have an independent problem to solve.
We calculate the ground state energy per site, eg[B], as a function of magnetic field,
B, in the standard way by writing Eq. (5.22) in the Nambu notation, and then
doing a Bogoliubov diagonalization numerically [for instance, see Eq. (B.24) of
Appendix B]. Here, α = p/q, where p = 1, 2, . . . , q and q = 907 (601) for square
(simple cubic) lattice. From this, using M = −∂eg

∂α
, we calculate magnetization. In

Fig. 5.6(a), the behaviour of M/α with respect to 1/α is shown for different values
of t (for J = 1) on square lattice, where the oscillations are prominently visible.
Expectedly, their amplitude decreases as we decrease t/J . The Fourier transform
in Fig. 5.6(b) gives the dominant frequency f0 = 0.5. We also calculate M on
simple cubic lattice (data presented in Fig. 5.7), where too, we get clear magnetic
quantum oscillations with a dominant frequency at f0 = 0.185.

The quantum oscillation results obtained from this overly simplified calculation
on KLM are, as anticipated, in line with what we found through the systematic
theory in Chapter 2 and Ref. [42]. Notably, here too, as in the other calculations
presented in this thesis, the dominant frequencies correspond to the contours,
γk = 0, which is where the maxima of the fully-filled bands of Eq. (5.20) lie. This
clearly implies that the magnetic quantum oscillations in an insulator measure
the surface of the highest occupied energy levels of electrons (effective chemical
potential), analogous to the Fermi surface in metals.

5.3 Conclusion

In summary, we have investigated magnetic quantum oscillations in the insulating
SDW ground state of the half-filled Hubbard model, and done similar mean-field
calculations for the weak-coupling KLM at half-filling, on square and simple cu-
bic lattices. The occurrence of these oscillations was clearly anticipated by us in
Ref. [42]. This chapter is a simple byproduct of the main body of calculations
presented in the previous chapters based on our original theory of Kondo insula-
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tors. In our studies here, we have again found the fundamental frequency of dHvA
oscillations in the insulating states to correspond to the chemical potential surface
(highest energy levels of the fully-occupied band). Since it is relatively straightfor-
ward to formulate an SDW theory on non-bipartite lattices, and include Zeeman
coupling, it is our future goal to carry forward these studies to different physical
settings.

• • • • •





AppendixA

Diagonalization of the Charge Dynamics,
H

[B]
c

In this appendix, we show a detailed calculation of the ground state energy per
site (eg) of the charge dynamics Hamiltonian, Ĥ [B]

c given in Eq. (2.30a) to find
the magnetization, M , as a function of magnetic field, B. Here, we only describe
the calculation steps for the bipartite square lattice in detail. However, the cal-
culation for the simple cubic lattice case is similar to the square lattice, and it is
straightforward. To diagonalize the charge dynamics Hamiltonian, we recall the
Ĥ

[B]
c which is given as:

Ĥ [B]
c =− it

2

∑
r∈A

∑
δ

cos
(
2πα ry x̂ · δ̂

) [
ψ̂a,rϕ̂b,r+δ + ρ1ψ̂b,r+δϕ̂a,r

]
+
Jρ0
4

[∑
r∈A

n̂a,r +
∑
r∈B

n̂b,r

]
(A.1)

The bipartite square lattice is given in Fig. A.1 with primitive vectors, a1 = 2ax̂

and a2 = a(−x̂ + ŷ). We can find the corresponding reciprocal vectors, b1 =

π
a
(x̂+ ŷ) and b2 = 2π

a
ŷ. The Bravais lattice vector is taken to be R = ma1 + na2

with integers m = x+y
2a

and n = y
a
, where a is lattice constant, and x and y denote

the actual position of lattice sites.
Here, the nearest-neighbour unit vectors are δ̂ = {x̂,−x̂, ŷ,−ŷ} and the posi-

tion of site r is given as rx = m and ry = n. Using these informations we rewrite
the Hamiltonian given in Eq. (A.1) in r ≡ (m,n) coordinate notation as:

Ĥ [B]
c = −it

2

L1∑
m=1

L2∑
n=1

(
cos(2παn)

[
ψ̂a(m,n)ϕ̂b(m,n) + ρ1ψ̂b(m,n)ϕ̂a(m,n)

]
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m− 1 m m + 1

n− 1

n

n + 1

A B

a1

a2

Figure A.1: Bipartite square lattice: The filled black and red circles are taken as A-
sublattice and B-sublattice, respectively.

+ cos(2παn)
[
ψ̂a(m,n)ϕ̂b(m− 1, n) + ρ1ψ̂b(m− 1, n)ϕ̂a(m,n)

]
+
[
ψ̂a(m,n)ϕ̂b(m,n+ 1) + ρ1ψ̂b(m,n+ 1)ϕ̂a(m,n)

]
+
[
ψ̂a(m,n)ϕ̂b(m− 1, n− 1) + ρ1ψ̂b(m− 1, n− 1)ϕ̂a(m,n)

])
+
Jρ0
4

L1∑
m=1

L2∑
n=1

(
â†m,nâm,n + b̂†m,nb̂m,n

)
(A.2)

with, L1 = 2Lx and L2 = Ly where Lx and Ly are total length along x̂ and ŷ.
By using the definition of Majorana fermions in terms of spinless fermions i.e.
iψ̂a = â† − â, ϕ̂ = â† + â and iψ̂b = b̂† − b̂, ϕ̂b = b̂† + b̂, we derive the following
expression for Ĥ [B]

c as:

Ĥ [B]
c = − t

2

L1∑
m=1

L2∑
n=1

(
(1 + ρ1) cos(2παn)

[
(â†m,nb̂m,n + h.c.) + (â†m,nb̂m−1,n + h.c.)

]
+ (1 + ρ1)

[
(â†m,nb̂m,n+1 + h.c.) + (â†m,nb̂m−1,n−1 + h.c.)

]
+ (1− ρ1) cos(2παn)

[
(â†m,nb̂

†
m,n + h.c.) + (â†m,nb̂

†
m−1,n + h.c.)

]
+ (1− ρ1)

[
(â†m,nb̂

†
m,n+1 + h.c.) + (â†m,nb̂

†
m−1,n−1 + h.c.)

])
+
Jρ0
4

L1∑
m=1

L2∑
n=1

(
â†m,nâm,n + b̂†m,nb̂m,n

)
(A.3)
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We define a Fourier transform along m direction as:

âm,n =
1√
L1

∑
k1

eik1m âk1,n

b̂m,n =
1√
L1

∑
k1

eik1(m+ 1
2
) b̂k1,n (A.4)

where, we take the actual position of âm,n and b̂m,n. Using the Fourier transforma-
tion given in Eq. (A.4), Eq. (A.3) becomes,

Ĥ [B]
c = − t

2

∑
k1

L2∑
n=1

(
2(1 + ρ1) cos(k1/2) cos(2παn)

[
â†k1,nb̂k1,n + h.c.

]
+ 2(1− ρ1) cos(k1/2) cos(2παn)

[
â†k1,nb̂

†
−k1,n

+ h.c.
]

+ (1 + ρ1)
[
(eik1/2â†k1,nb̂k1,n+1 + h.c.) + (e−ik1/2â†k1,nb̂k1,n−1 + h.c.)

]
+ (1− ρ1)

[
(eik1/2â†k1,nb̂

†
−k1,n+1 + h.c.) + (e−ik1/2â†k1,nb̂

†
−k1,n−1 + h.c.)

]
+
Jρ0
4

∑
k1

L2∑
n=1

[
â†k1,nâk1,n + b̂†k1,nb̂k1,n

]
(A.5)

The above equation is like Harper’s equation [97, 67]. We can see that Ĥ [B]
c in

Eq. (A.5) does not incorporate the periodicity along n, but by choosing the mag-
netic field α as a rational number i.e. α = p/q where p and q are integers, we retain
the periodicity along n with q sites in a unit cell. Hence, we take a super-unit-cell
of q sites and define n = q(n′ − 1) + nq, where nq = 1, 2, ..., q and n′ = 1, 2, ..., L

′
2.

Then the total no. of sites, L2, along n is decomposed as q times L′
2 i.e. L2 = qL

′
2.

This is shown below,

n′=1︷ ︸︸ ︷
1 2 3 · · · q

n′=2︷ ︸︸ ︷
1 2 3 · · · q · · ·

n′=L
′
2︷ ︸︸ ︷

1 2 3 · · · q

and sum over n becomes:
L2∑
n=1

⇒
q∑

nq=1

L
′
2∑

n′=1

. Therefore, We define a Fourier transform along n as:

âk1,n ≡ âk1,n′(nq) =
1√
L

′
2

∑
k2

eik2[q(n
′−1)+nq ] âk1,k2(nq)
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b̂k1,n ≡ b̂k1,n′(nq) =
1√
L

′
2

∑
k2

eik2[q(n
′−1)+nq ] b̂k1,k2(nq) (A.6)

Using the above Fourier transformation to Eq. (A.5), we get the following form of
the Hamiltonian,

Ĥ [B]
c = − t

2

∑
k1

∑
k2

q∑
nq=1

(
2(1 + ρ1) cos(k1/2) cos(2παnq)

[
â†k1,k2(nq)b̂k1,k2(nq) + h.c.

]
+ 2(1− ρ1) cos(k1/2) cos(2παnq)

[
â†k1,k2(nq)b̂

†
−k1,−k2

(nq) + h.c.
]

+ (1 + ρ1)
[
(ei(

k1
2
+k2)â†k1,k2(nq)b̂k1,k2(nq + 1) + h.c.)

+ (e−i(
k1
2
+k2)â†k1,k2(nq)b̂k1,k2(nq − 1) + h.c.)

]
+ (1− ρ1)

[
(ei(

k1
2
+k2)â†k1,k2(nq)b̂

†
−k1,−k2

(nq + 1) + h.c.)

+ (e−i(
k1
2
+k2)â†k1,k2(nq)b̂

†
−k1,−k2

(nq − 1) + h.c.)
])

+
Jρ0
4

∑
k1

L2∑
n=1

[
â†k1,k2(nq)âk1,k2(nq) + b̂†k1,k2(nq)b̂k1,k2(nq)

]
(A.7)

with the conditions, âk1,k2(nq+ q) = âk1,k2(nq) and b̂k1,k2(nq+ q) = b̂k1,k2(nq). From
Eq. (A.4) and (A.6), we can derive that −π < k1 < π and −π

q
< k2 <

π
q
. Hence,

Brillouin zone along k2 is reduced by a factor of q.
We can also rewrite the above Eq. (A.7) by defining, k ≡ (k1, k2), Λk(nq) =

−t cos(k1
2
) cos(2παnq) and λk = − t

2
eik1/2eik2 .

Ĥ [B]
c =

∑
k1

∑
k2

q∑
nq=1

(
(1 + ρ1)Λk(nq)

[
(â†k(nq)b̂k(nq) + h.c.)

]
+ (1 + ρ1)

[
(λkâ

†
k(nq)b̂k(nq + 1) + h.c.) + (λ∗kâ

†
k(nq)b̂k(nq + 1) + h.c.)

]
+ (1− ρ1)Λk(nq)

[
(â†k(nq)b̂

†
−k(nq) + h.c.)

]
+ (1− ρ1)

[
(λkâ

†
k(nq)b̂

†
−k(nq + 1) + h.c.) + (λ∗kâ

†
k(nq)b̂

†
−k(nq + 1) + h.c.)

])
+
Jρ0
4

∑
k1

∑
k2

q∑
nq=1

[
â†k(nq)âk(nq) + b̂†k(nq)b̂k(nq)

]
(A.8)

To diagonalize Eq. (A.8), we write it in the Nambu basis notation as:

Ĥ [B]
c =

(Jρ0
8

)
L+

1

2

∑
k1

∑
k2

Ψ†
kHkΨk (A.9)
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Here, Hk is a 4q × 4q hermitian matrix for a given value of k is

Hk =


A B 0 B

B A −B 0

0 −B −A −B
B 0 −B −A

 (A.10)

with A =
(

Jρ0
4

)
Iq×q where Iq×q is q × q identity matrix, and

B =



Λk(1) λk 0 0 . . . λ∗k

λ∗k Λk(2) λk 0 . . . 0

0 λ∗k Λk(3) λk . . . 0
... ... . . . . . . . . . ...
0 0 . . . λ∗k Λk(q − 1) λk

λk 0 . . . 0 λ∗k Λk(q)


. (A.11)

The Nambu basis operator Ψ†
k with row vector is defined as:

Ψ†
k = [â†k(1), â

†
k(2), ..., â

†
k(q), b̂

†
k(1), b̂

†
k(2), ..., b̂

†
k(q), â−k(1), â−k(2), ..., â−k(q),

b̂−k(1), b̂−k(2), ..., b̂−k(q)]. (A.12)

We numerically diagonalize the Hk by using a Bogoliubov transformation [de-
scribed in below Sec. A.1] and calculate the ground state energy using Eq. (A.25).
Hence, the final form of the ground state energy per site (eg) is given as:

eg =
(Jρ0

8

)
− 1

2L

∑
k1

∑
k2

2q∑
nq=1

ϵk,nq (A.13)

Using Eq. (A.13), we find the magnetization (M) as a function of α using the
formula, M = −∂eg

∂α
.

Further, for the simple cubic lattice, the calculation procedure is similar to
square lattice except there will be another sum over a wave vector k3 and the form
of λk and Λk(nq) is modified. We find the following form of eg for simple cubic as,

eg =
(Jρ0

8

)
− 1

2L

∑
k1

∑
k2

∑
k3

2q∑
nq=1

ϵk,nq (A.14)

with k ≡ (k1, k2, k3), Λk(nq) = −t[cos(k1
2
) cos(2παnq) + cos(k1

2
+ k2)] and λk =

− t
2
eik1/2eik3 . However, the range of wave-vectors are −π < k1 < π, −π < k2 < π

and −π
q
< k3 <

π
q
.
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A.1 Bogoliubov Transformation

Here, we describe the Bogoliubov transformation to diagonalize the fermionic
Hamiltonian, Hk, by redefining the Eq. (A.12) of Ψ†

k label index as follows,

Ψ†
k = [µ†

k,1, µ
†
k,2, ..., µ

†
k,q, µ

†
k,q+1, µ

†
k,q+2, ..., µ

†
k,2q, µ−k,1, µ−k,2, ..., µ−k,q,

µ−k,q+1, µ−k,q+2, ..., µ−k,2q] (A.15)

where, 

µ†
k,1

µ†
k,2
...

µ†
k,q

µ†
k,q+1

µ†
k,q+2
...

µ†
k,2q



=



â†k(1)

â†k(2)
...

â†k(q)

b̂†k(1)

b̂†k(2)
...

b̂†k(q)



and



µ−k,1

µ−k,2
...

µ−k,q

µ−k,q+1

µ−k,q+2

...
µ−k,2q



=



â−k(1)

â−k(2)
...

â−k(q)

b̂−k(1)

b̂−k(2)
...

b̂−k(q)



(A.16)

The anticommutation relations of the spinless fermions, â’s and b̂’s, in new opera-
tors µ’s become

{µk,i , µ
†
k′,j} = δi,jδk,k′ (A.17a)

{µk,i , µk′,j} = 0 (A.17b)

{µ†
k,i , µ

†
k′,j} = 0 (A.17c)

We also rewrite, Hk, given in Eq. (A.10) as following

Hk =

 D F
−F −D

 with D =

A B

B A


2q×2q

, F =

 0 B

−B 0


2q×2q

(A.18)

Now, we define a new transformation for a given k and label index i

µk,i =

2q∑
j=1

(
Ui,jµ̃k,j + Vi,jµ̃

†
−k,j

)
(A.19)
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such that the new operators µ̃j’s also follow the fermionic (anticommutation) al-
gebra. Therefore, using this transformation the Hamiltonian, Ĥ [B]

c , of Eq. (A.9)
becomes:

Ĥ [B]
c =

(Jρ0
8

)
L+

1

2

∑
k1

∑
k2

Ψ†
kUk︸ ︷︷ ︸
Ψ̃†

k

U †
kHkUk︸ ︷︷ ︸

Ek

U †
kΨk︸ ︷︷ ︸
Ψ̃k

(A.20)

where,

Ψ†
kUk = Ψ̃†

k , and Uk =

 U V

V ∗ U∗

 (A.21)

with U and V are 2q × 2q matrices and Ui,j and Vi,j are their elements. We can
find relation (in matrix form) between U and V by using the anticommutation
relations given in Eqs. (A.17) as: U V

V ∗ U∗

U † V T

V † UT

 =

I2q×2q 0

0 I2q×2q

 (A.22)

where, I2q×2q is identity matrix in 2q-dimension. Hence, Uk is a unitary matrix of
order 4q. Finally, the demand of Ĥ [B]

c is diagonalized in terms of new operators,
µ̃k,i’s, provides the following condition on

U †
kHkUk = Ek (A.23)

with

Ek =

Σk 0

0 −Σk

 (A.24)

where, Σk = Diag[ϵk,1, ϵk,2, ϵk,3, · · · , ϵk,2q]. Hence, the diagonalized form of Ĥ [B]
c is

given as:

Ĥ [B]
c =

(Jρ0
8

)
L+

∑
k1

∑
k2

2q∑
nq=1

ϵk,nq

[
µ̃†

k,nq
µ̃k,nq

− 1

2

]
(A.25)





AppendixB

Diagonalization of the SDW Hofstadter
Hamiltonian

In this appendix, we calculate the field dependent ground state energy per site,
eg[α], of the SDW Hamiltonian given in Eq. (5.10) using a Bogoliubov transfor-
mation to find magnetization, M , as a function of magnetic field, α. We recall the
Hamiltonian Ĥ as follows:

Ĥ =
∑
σ

{
−t
∑
r∈A

∑
δ

[
e2πiαryx̂·δ̂ â†r,σ b̂r+δ,σ + h.c.

]
+ Umsησ

(∑
r∈B

b̂†r,σ b̂r,σ −
∑
r∈A

â†r,σâr,σ

)}
(B.1)

Here, â†r,σ(âr,σ) and b̂†r,σ(b̂r,σ) are actual electron creation (annihilation) operators at
site r with spin σ(≡↑, ↓) on A and B sublattice, respectively. Using the convention
developed in Appendix A for square lattice [see Fig. A.1], the Hamiltonian Ĥ in
Eq. (B.1) becomes,

Ĥ =− t

L1∑
m=1

L2∑
n=1

∑
σ

[{
e2πiαn â†σ(m,n)b̂σ(m,n) + h.c.

}
+
{
e−2πiαn â†σ(m,n)b̂σ(m− 1, n) + h.c.

}
+
{
â†σ(m,n)

(
b̂σ(m− 1, n− 1) + b̂σ(m,n+ 1)

)
+ h.c.

}]
+ Umsησ

L1∑
m=1

L2∑
n=1

∑
σ

[
â†σ(m,n)âσ(m,n)− b̂†σ(m,n)b̂σ(m,n)

]
(B.2)
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Since, Eq. (B.2) is translationally invariant along m, so we define a Fourier trans-
form as:

âσ(m,n) =
1√
L1

∑
k1

eik1m âσ(k1, n) (B.3a)

b̂σ(m,n) =
1√
L1

∑
k1

eik1(m+ 1
2
) b̂σ(k1, n) (B.3b)

Using Eqs. (B.3) in Eq. (B.2) we get the following form of H,

Ĥ = −t
∑
k1

L2∑
n=1

∑
σ

[{
2 cos(2πiαn+ k1/2) â

†
σ(k1, n)b̂σ(k1, n) + h.c.

}
+
{(
eik1/2â†σ(k1, n)b̂σ(k1, n+ 1) + e−ik1/2â†σ(k1, n)b̂σ(k1, n− 1)

)
+ h.c.

}]
+ Umsησ

∑
k1

L2∑
n=1

∑
σ

[
â†σ(k1, n)âσ(k1, n)− b̂†σ(k1, n)b̂σ(k1, n)

]
(B.4)

As described in Appendix A, we choose the magnetic field α = p/q where p and q
are integers, which retain the periodicity along n with q sites in a unit cell. Hence,
by defining n = q(n′ − 1) + nq, where nq = 1, 2, ..., q and n′ = 1, 2, ..., L

′
2 with

L2 = qL
′
2 we can also apply the following Fourier transform

âσ(k1, n) ≡ âσ(k1, n
′;nq) =

1√
L

′
2

∑
k2

eik2[q(n
′−1)+nq ] âσ(k1, k2;nq) (B.5a)

b̂σ(k1, n) ≡ b̂σ(k1, n
′;nq) =

1√
L

′
2

∑
k2

eik2[q(n
′−1)+nq ] b̂σ(k1, k2;nq) (B.5b)

to Eq. (B.4) and obtain,

Ĥ =− t
∑
k1,k2

q∑
nq=1

∑
σ

[{
2 cos(2πiαnq + k1/2) â

†
σ(k1, k2;nq)b̂σ(k1, k2;nq) + h.c.

}
+
{(
ei(

k1
2
+k2)â†σ(k1, k2;nq)b̂σ(k1, k2;nq + 1) + h.c.

)
+
(
e−i(

k1
2
+k2)â†σ(k1, k2;nq)b̂σ(k1, k2;nq − 1) + h.c.

)}]
+ Umsησ

∑
k1,k2

q∑
nq=1

∑
σ

[
â†σ(k1, k2;nq)âσ(k1, k2;nq)− b̂†σ(k1, k2;nq)b̂σ(k1, k2;nq)

]
(B.6)

We rewrite Eq. (B.6) in compact form as:

Ĥ =− t
∑

k

q∑
nq=1

∑
σ

[{
Λk(nq) â

†
kσ(nq)b̂kσ(nq) + h.c.

}
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+
{(
λkâ

†
kσ(nq)b̂kσ(nq + 1) + h.c.

)
+
(
λ∗kâ

†
kσ(nq)b̂kσ(nq − 1) + h.c.

)}]
+ Umsησ

∑
k

q∑
nq=1

∑
σ

[
â†kσ(nq)âkσ(nq)− b̂†kσ(nq)b̂kσ(nq)

]
(B.7)

where, k ≡ (k1, k2), λk = −tei(
k1
2
+k2) and Λk(nq) = −2t cos(2πiαnq + k1/2). To

diagonalize the above Eq. (B.7), we write in the Nambu basis notation as:

Ĥ =
∑
σ

∑
k

Ψ†
kσHkσΨkσ (B.8)

Here, Hkσ is a matrix of order 2q which is given below for a value of k and σ as:

Hkσ =

A B

B −A

 (B.9)

with A = (Umsησ)Iq×q where Iq×q is q × q identity matrix, and

B =



Λk(1) λk 0 0 . . . λ∗k

λ∗k Λk(2) λk 0 . . . 0

0 λ∗k Λk(3) λk . . . 0
... ... . . . . . . . . . ...
0 0 . . . λ∗k Λk(q − 1) λk

λk 0 . . . 0 λ∗k Λk(q)


. (B.10)

However, the Nambu basis is chosen as:

Ψ†
kσ = [â†kσ(1), â

†
kσ(2), · · · , â

†
kσ(q), b̂

†
kσ(1), b̂

†
kσ(2), · · · , b̂

†
kσ(q)]. (B.11)

Bogoliubov transformation

Here, we describe a Bogoliubov transformation to diagonalize, Hkσ. To do so, we
define old operators in terms of new operators via a transformation (for a given k
and σ) given below:

âi =

q∑
j=1

[
Ui,j ãj + Vi,j b̃j

]
(B.12a)

b̂i =

q∑
j=1

[
V ∗
i,j ãj + U∗

i,j b̃j

]
(B.12b)
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such that the new operators ãj’s and b̃j’s also follow the fermionic algebra. There-
fore, using the above transformation in Eq. (B.7), we get

Ĥ =
∑
σ

∑
k

Ψ†
kσUkσ︸ ︷︷ ︸
Ψ̃†

kσ

U †
kσHkσUkσ︸ ︷︷ ︸

Ek

U †
kσΨkσ︸ ︷︷ ︸
Ψ̃kσ

(B.13)

where,

Ψ†
kσUkσ = Ψ̃†

kσ , and Ukσ =

 U V

V ∗ U∗

 (B.14)

with U and V are q × q matrices and Ui,j and Vi,j are their elements. We can find
relation between U and V by using the anticommutation relations of âi’s and b̂i’s
as:

{âi, â
†
j} = δi,j ⇒ UU † + V V † = I (B.15)

{b̂i, b̂
†
j} = δi,j ⇒ V ∗V T + U∗UT = I (B.16)

{âi, b̂
†
j} = 0 ⇒ UV T + V UT = 0 (B.17)

{b̂i, â
†
j} = 0 ⇒ V ∗U † + U∗V † = 0 (B.18)

We can also write these relations in compact form: U V

V ∗ U∗

U † V T

V † UT

 =

I 0

0 I

 (B.19)

Hence, it turns out that Ukσ is a unitary matrix of order 2q i.e. UkσU †
kσ = U †

kσUkσ =

I, where I is 2q-dimensional identity matrix. Finally, the demand of Ĥ is diago-
nalized in terms of the new operators, ãk,σ(i)’s and b̃k,σ(i)’s, provides the following
condition on

U †
kσHkσUkσ = Ek (B.20)

with

Ek =

Σk 0

0 −Σk

 (B.21)

where, Σk = Diag[ϵk(1), ϵk(2), ϵk(3), · · · , ϵk(q)]. Hence, the diagonalized form of
Ĥ is,

Ĥ =
∑
σ

∑
k

q∑
nq=1

ϵk(nq)

[
ã†kσ(nq)ãkσ(nq)− b̃†kσ(nq)b̃kσ(nq)

]
(B.22)
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We note that ϵk(nq) is independent of σ. Since, at half-filling in ground state of
Eq. (B.22) we have ⟨ã†kσ(nq)ãkσ(nq)⟩ = 0 and ⟨b̃†kσ(nq)b̃kσ(nq)⟩ = 1. Therefore, we
calculate the ground state energy per site, eg[α], using Eq. (B.22) as:

eg[α] = − 2

L

∑
k

q∑
nq=1

ϵk(nq) (B.23)

However, we can diagonalize the weak-coupling KLM field dependent Hamilto-
nian, Ĥ, given in Eq. (5.22) by replacing Ums → (−J/4) in Eq. (B.1). Therefore,
the ground state energy per site, eg[B], is also given by

eg[B] = − 2

L

∑
k

q∑
nq=1

ϵk(nq) (B.24)





AppendixC

Fourier Analysis

Fourier transform (FT) is a strong mathematical tool that converts a signal from
time domain to its frequency domain. In other words it a powerful method which
decomposes a function into the frequencies that constitute it. Since, it is always
possible that we can describe virtually most of the natural phenomenon through a
waveform, for example, sound waves, electromagnetic waves, and etc. Therefore,
studying FT becomes essential to describe many physical properties. Our imme-
diate goal is to obtain the magnetic quantum oscillations frequency by using the
Fourier transform.

Mathematically, the Fourier transform of a function f(t) from time to frequency
domain is defined as:

f(ν) =

∫ ∞

−∞
f(t) e2πiνt dt (C.1)

where f(ν) is the Fourier transform of f(t), and the inverse Fourier transform is
defined in following way,

f(t) =

∫ ∞

−∞
f(ν) e−2πiνt dν (C.2)

Since, the Fourier transform is a generalization of complex Fourier series, therefore,
we first discuss the Fourier series and then derive Eq. (C.1) and (C.2) in the next
section.
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C.1 Fourier Series

The Fourier series of a real function f(x) is defined as:

f(x) =
a0
2

+
∞∑
n=1

an cos(nx) +
∞∑
n=1

bn sin(nx) (C.3)

along with the integral identities (or orthogonality conditions) as:∫ π

−π

sin(mx) sin(nx)dx = πδmn (C.4a)∫ π

−π

cos(mx) cos(nx)dx = πδmn (C.4b)∫ π

−π

sin(mx) cos(nx)dx = 0 (C.4c)∫ π

−π

sin(nx)dx = 0 (C.4d)∫ π

−π

cos(nx)dx = 0 (C.4e)

where m,n are nonzero integer and δmn is the Kronecker delta function defined
below as:

δmn =

1 if m = n

0 otherwise
(C.5)

It turns out that we can define the Fourier coefficient a0, an and bn by using the
Eqs. C.4 as:

a0 =
1

π

∫ π

−π

f(x)dx (C.6a)

an =
1

π

∫ π

−π

f(x) cos(nx)dx (C.6b)

bn =
1

π

∫ π

−π

f(x) sin(nx)dx (C.6c)

We can use Euler’s equation, eiθ = cos θ + i sin θ, to extend the Fourier series
Eq. (C.3) in complex coefficient domain,

f(x) =
∞∑

n=−∞

cne
−inx (C.7)

where cn is a complex number and is defined as,

cn =
1

2π

∫ π

−π

f(x)einx dx (C.8)



C.1. Fourier Series 117

=


1
2
(an + ibn) for n < 0

1
2
(an − ibn) for n > 0

1
2
a0 for n = 0

(C.9)

However, the orthogonality relation becomes,∫ π

−π

(eimx)∗einx dx = 2π δmn (C.10)

Proof

To prove the Fourier transform relation, we consider a function f(t) which is pe-
riodic in the interval [−T/2, T/2], then the Fourier series can be defined as:

f(t) =
∞∑

n=−∞

cn e
−2πi( n

T
)t (C.11)

and its coefficient is,

cn =
1

T

∫ T/2

−T/2

f(t) e2πi(
n
T
)t dt (C.12)

Let us define nth frequency as

νn = n/T ⇒ ∆ν = νn+1 − νn =
n+ 1

T
− n

T
=

1

T

. Therefore,

f(t) =
∞∑

n=−∞

cn e
−2πi(n∆ν)t (C.13)

whereas

cn = ∆ν

∫ T/2

−T/2

f(t) e2πi(n∆ν)t dt (C.14)

By putting cn in f(t) equation and then taking limit T → ∞ the discrete sum
becomes integral and with ∆ν → dν, n∆ν → ν we arrive at the final form of
Fourier transform,

f(ν) =

∫ ∞

−∞
f(t) e2πiνt dt (C.15)

and its inverse transform is

f(t) =

∫ ∞

−∞
f(ν) e−2πiνt dν (C.16)
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C.2 Discrete Fourier Transform

The continuous Fourier transform is relevant for well defined analytical functions
that are doable by hand. However, to analyze the simulation or experimental data
on digital computers, it is necessary to replace the continuum values to a set of
discrete values. In order to do that, the integration is replaced by summation and
the continuous Fourier transform becomes the discrete Fourier transform. Below
we follow the steps of Arfken and Weber given in Ref. [98].

For the time interval (0, T ), we consider N discrete values of tk as,

tk =
kT

N
, k = 0, 1, 2, ..., N − 1 (C.17)

and the corresponding functions are f(t0), f(t1), f(t2), ..., f(tN−1). Then, from
Eq. (C.15), we get

f(ν) =
1√
N

N−1∑
k=0

f(tk) e
2πiνtk (C.18)

In principle, we can calculate the above Fourier transform for any value of ν. Since,
we are providing N data points as a input therefore only the final N output data
points will be physically relevant. So, we define N values in ν-space as:

νp =
p

T
, p = 0, 1, 2, ..., N − 1. (C.19)

Hence, the discrete Fourier transform is given as:

f(νp) =
1√
N

N−1∑
k=0

f(tk) e
2πiνptk (C.20)

and its inverse Fourier transform is defined as:

f(tk) =
1√
N

N−1∑
p=0

f(νp) e
−2πiνptk (C.21)

We can also write Eq. (C.20) in matrix form given below

f(ν0)

f(ν1)

f(ν2)

f(ν3)

...

f(νN−1)


=



1 1 1 1 ... 1

1 W W 2 W 3 ... WN−1

1 W 2 W 4 W 6 ... WN−2

1 W 3 W 6 W 9 ... WN−3

...

1 WN−1 WN−2 WN−3 ... W





f(t0)

f(t1)

f(t2)

f(t3)

...

f(tN−1)


(C.22)
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with, W = ei2π/N .

C.2.1 Limitations

The discrete Fourier transformation is a standard method to analyze any wave-
form, but it also has limitations when we apply Eqs. (C.20) and (C.21) to phys-
ical systems. For example, when N is small the physical interpretation of the
Fourier transformed data and the limit f(νp) → f(ν) becomes quite difficult to ex-
plain. Therefore, to avoid the trouble we can take the most essential precaution by
choosing N sufficiently large. We illustrate this point by choosing an appropriate
example given below.

Example(1):

We consider a simple function f(t) = cos(2πt) of length, T = 1 and N = 4

particular points as:

tk =
kT

N
=
k

4
, k = 0, 1, 2, 3 (C.23)

then the f(tk) can be represented by a four-component vector

f(tk) = (1, 0,−1, 0) (C.24)

and the corresponding frequencies are given by equation

νp =
p

T
= p p = 0, 1, 2, 3. (C.25)

Clearly the function, cos(2πt), only corresponds to the frequency component p = 1.
By solving 

f(ν0)

f(ν1)

f(ν2)

f(ν3)

 =
1

2


1 1 1 1

1 i −1 −i
1 −1 1 −1

1 −i −1 i




1

0

−1

0

 (C.26)

we get

f(νp) = (0, 1, 0, 1) (C.27)
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We can use the inverse Fourier transform of Eq. (C.21) to obtain our original
function

f(tk) = e−i2πtk + e−i2π3tk (C.28)

ℜf(tk) = cos(2πtk) + cos(2π3tk) (C.29)

But, we get one extra wave-function of frequency, ν = 3, other than actual ν = 1.
Hence, cos(2πtk) and cos(2π3tk) mimic each other because of limited number of
data points or a particular choice to data points. In literature, it is known as
aliasing. The results are plotted in Fig. C.1.
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Figure C.1: The function, f(t) = cos(2πt) and its Fourier transform, f(νp). We can see
the error frequency ν = 3 in the middle plot which have non-zero amplitude.
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C.3 Fourier Transform Using Mathematica

In this section we describe here how to perform Fourier analysis in Mathematica.
We can find the Mathematica expression of the discrete Fourier transform (or
inverse) by performing a minor change in Eq. (C.20) and (C.21) as:

tk =
kT

N
=

(k − 1)T

N
and νp =

p

T
=
p− 1

T
(C.30)

where p, k = 1, 2, ..., N . We can see that in Mathematica the zero frequency
correspond to p = 1. Then

f(νp) =
1√
N

N∑
k=1

f(tk) e
2πi(p−1)(k−1)/N (C.31)

The above expression is used to calculate the discrete Fourier transform. Its inverse
Fourier transform is given by

f(tk) =
1√
N

N∑
p=1

f(νp) e
−2πi(p−1)(k−1)/N (C.32)

Below we describe how to perform Fourier analysis in Mathematica. The Mathe-
matica uses Fourier function to find the discrete Fourier transform of any equally
spaced data.

Example(2):

In this example we consider a simple function f(t) = cos(2πt) of Length, T = 4

and N = 100 equally spaced data points.
Some Important Steps:

• Make a data file (say, source) and save the function value f(tk) = cos(2πtk)
in it for the discrete value tk = kT

N
, k = 1, 2, ..., N using Table command as:

source = Table[f(tk), {k, 1, N}]

• Apply Fourier command on source to calculate Fourier transform (named as
FTvalues). Since, f(νp) is complex valued function therefore after applying
Fourier we get a set of complex numbers. We find Fourier amplitude (or
intensity) by also applying absolute command Abs.
FTvalues = Abs[Fourier[source]]
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• The corresponding frequencies are calculated using the formula:

νp =
p− 1

T
=

p− 1

N ×∆t
, p = 1, 2, .., N

since, ∆t = tk+1 − tk = T/N . We call this data file ‘freq’ which is given as:
freq=Table[νp, {p, 1, N}]

• At last we combine frequency data (‘freq’) to Fourier transform data (‘FT-
values’) as:
FTvalues=Table[{freq[[i]], FTvalues[[i]]}, {i, 1, Length[FTvalues]}]

Through this procedures we find the Fourier transform of the function f(t) taken
in example(2) [See Fig. C.2].
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Figure C.2: The function, f(t) = cos(2πt) of the example and its Fourier transform. We
can see the Fourier transform correctly determines the function frequency, ν = 1. The
other frequency around ν = 24 is a mimic of ν = 1 because the Fourier transform also
calculates for negative frequency [see Eq. (C.31)].
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