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Abstract 

In recent years, quantum information theory ( QIT) has been on the foreground of contem-
porary research in quantum physics and has heralded a new era in information science and 
computation. At the quantum scale, the intrinsic nonclassicality of nature is the funda-
mental resource that enables us to design futuristic protocols for quantum computation and 
communication. Importantly, this allows QIT to proliferate in broader physical regimes and 
permits descriptions of quantum protocols in different physical systems, in condensed matter, 
quantum optics, nanoscience, and biochemistry. Experimental advances in ion-traps, pho-
tonic systems and optical lattices have ensured simulation of quantum many-body systems 
that may serve as substrates for application of QIT protocols and other quantum tasks. 

The characterization and classification of quantum correlations in physical systems is 
a fundamental aspect of understanding the nonclassical world. The first major develop-
ment in the characterization of quantum correlation in composite physical systems is the 
measure of entanglement, which is an important resource for performing various quantum 
information and computation tasks, such as quantum dense coding, quantum teleportation, 
quantum key distribution, and one-way quantum computation. Though the operationality 
of entanglement is well developed for low-dimensional quantum systems, its characterization 
in multipartite systems, which are important for developing scalable quantum devices, is 
a formidable task. Further, the broad concept of quantum correlations is not completely 
captured by entanglement. Information-theoretic quantum correlations such as quantum 
discord and quantum work-deficit, described independently of the entanglement-separability 
criteria, are important indicators of nonclassicality. The primary motivation of the research 
in my thesis is borne from these two interesting aspects of quantum correlations, viz., the 
characterization of entanglement in large multipartite quantum states (Part I) and the study 
of the dynamics of information-theoretic quantum correlations in relation to entanglement in 
quantum systems (Part II). The principal research work in the thesis utilizes the theoretical 
concepts and tools of QIT and its interface with quantum many-body physics and quantum 

optics. 



Chapter 1 is an introduction to the thesis and focuses on the development of nonclas-
sicality in different quantum systems. From a purely physical perspective, the concept of 
nonclassicality is dependent on the quantum system under study and a clear understanding 
of what is classical. In quantum optics, this can arise from the nature of the statistics of the 
optical field or the correlations shared by the quadrature components. In QIT, the nonclassi-
cality is measured by the correlations shared by two or many parts of a quantum system. We 
begin the introduction with a brief background on the origin of nonclassicality, followed by a 
short review on nonclassicality and quantum correlations in different physical systems. We 
then discuss the entanglement-separability criteria for characterizing quantum correlations 
in composite quantum states. We introduce the basic concepts and theoretical formulations 
that lead to detection and analytical quantification of bipartite entanglement using measures 
such as entanglement distillation, entanglement of formation, concurrence and logarithmic 
negativity. We then extend the formulation of entanglement for multiparty quantum sys-
tems and discuss the characterization and quantification of multipartite entanglement. Next, 
we introduce the information-theoretic measures of quantum correlations such as quantum 
discord, quantum work-deficit and measurement-induced disturbance. We end with a brief 
discussion on nonclassicality in continuous variable systems arising from quasiprobability dis-
tribution, photon statistics and quadrature correlations, with an extension of entanglement 
and information-theoretic quantum correlations in the continuous variable regime. 

In Part I of the thesis, we study the characterization of entanglement in a class of 
large superposed states, obtained from nearest-neighbor dimer coverings on spin-1/2lattices, 
also called resonating valence bond {RVB) states, which are possible ground states of the 
Heisenberg spin-1/2 lattices. RVB systems are of interest to the condensed matter physics 
community, for their possible connection to high-Tc superconductivity and exotic topological 
phases. RVB states have been experimentally simulated using ultracold atoms in optical 
lattices and are of interest in QIT for its possible role in fault-tolerant quantum computation. 

In Chapter 2, we investigate the behavior of bipartite and multipartite entanglement 
in a quantum spin-1/2 ladder, with RVB ground states, and contrast it with the results for 
isotropic quantum lattices. Using quantum information theory concepts such as monogamy 
of entanglement and quantum telecloning, we obtain analytical bounds for the behavior of 
entanglement in quantum spin-1/2 ladders. Further, using QIT properties such as strong 
sub-additivity of von Neumann entropy, we show that infinite or periodic isotropic quantum 
spin-1/2 lattices are always genuinely multipartite entangled. \Ve then perform a numerical 
analysis of the amount of bipartite and multipartite entanglement in the two-leg RVB ladder. 
\Ve observe that the amount of nearest-neighbor bipartite entanglement in the rails of the 
ladder decreases with increasing size in contrast to the behavior of bipartite entanglement 
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along the rungs of the ladder. FUrther, the multipartite entanglement decreases with in-
creasing size. The obtained numerical values strictly follow the analytical bounds obtained 
from QIT. The behavior of bipartite and multipartite entanglement in the RVB ladder is in 
stark contrast with their behavior for isotropic RVB systems, which tends to have negligible . 
bipartite entanglement with finite multipartite entanglement. We observe that ··a change in 

geometry of RVB systems can radically alter the qualitative behavior of both bipartite and 
multipartite entanglement. We conclude with a discussion on possible application of such 
systems in QIT protocols. 

In Chapter 3, we extend our study on RVB systems to characterize genuine multipartite 
entanglement in multi-legged quantum spin-1/2 ladders and isotropic lattices with a large 
number of spin sites. Calculation of relevant physical quantities, such as entanglement, for 
large sized lattices, is limited by computational difficulty. In this chapter, we introduce a new 
iterative analytical technique, the density matrix recursion method, to efficiently calculate 
reduced density matrices of large RVB states. This allows us to characterize the behavior of 
genuine multipartite entanglement, in large RVB systems, using a computable measure called 
the generalized geometric measure. We apply this technique to distinguish between even and 
odd multi-legged ladders. Specifically, we show that while genuine multipartite entanglement 
decreases with increasing system size for the even-legged ladder, it does the opposite for odd-
legged ones. For the isotropic lattice, the iterative analytical method is used to calculate 
the entanglement of finite-size 2D lattices, which through finite-size scaling, enables us to 
obtain an estimate of the genuine multipartite entanglement in an infinite square lattice. We 
conclude with a discussion on extrapolating the method for investigating other single- and 
multiparty properties of such states. 

In Part II of the thesis, we study the dynamics of information-theoretic quantum cor-
relation measures and entanglement in two archetypal quantum systems from many-body 
physics and quantum optics. The first is the infinite anisotropic XY-spin chain in a trans-
verse magnetic field while the second is a three-level atom interacting with classical optical 
fields. Since no unique analytical results exist that operationally relate the two paradigms 
of quantum correlations, viz. entanglement-separability and information-theoretic, finding 
quantitative relations between them in many-body systems or in quantum optical models 
may provide interesting insights. 

In Chapter 4, we investigate the dynamics of information-theoretic measures of quan-
tum correlation and entanglement, in a time-evolved nonequilibrium state of the infinite 
anisotropic quantum XY spin chain in a transverse time-dependent field. It is obse~ed 
that nearest-neighbor entanglement undergoes a dynamical phase transition with respect to 
the field parameter leading to entanglement death and occasional revival. We show that 
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the dynamical phase transition of entanglement is qualitatively related to the dynamics of 
information-theoretic measures of quantum correlation such as quantum discord and quan-
tum work-deficit. We derive quantitative relations showing that the entanglement death and 
subsequent revival are heralded by the rate of increase of quantum discord in the vicinity 
of the critical value of entanglement death. Further, the revival of entanglement is also di-
rectly related to the cumulative quantum work-deficit during the dynamical evolution of the 
system. The behavior of quantum correlation also provides useful leads on other important 
aspects of the dynamics such as quantum quenching. 

In Chapter 5, we analytically derive and characterize the dynamics of two-photon quan-
tum correlations generated by the interaction of a three-level atom in the 3, A, or V configura-
tion, with two classical external driving fields. Using the example of a rubidium atom in each 
configuration, in the presence of level decays, under the rotating-wave approximation and 
using the single-photon approximation, one can compute information-theoretic correlations, 
such as measurement induced disturbance, quantum discord, and quantum work-deficit, and 
compare the results with that of entanglement, for the generated two-photon state. It is 
observed that the qualitative hierarchy, monotonicity and steady-state behavior of the quan-
tum correlations can be controlled through the choice of parameters such as atomic decay 
constants and external driving field strengths. 

In Chapter 6, we summarize the basic results of the thesis and briefly discuss future 
directions that emanate from the results obtained in the research work. 

In Appendix A, we provide an example for the generation of entanglement in continu-
ous variable ( CV) optical states, using a superposition of number-conserving non-Gaussian 
operations. The bimode entangled states are observed to be efficient quantum channels in 
CV quantum teleportation protocols. The study demonstrates the ready applicability of CV 
states in quantum information protocols. 

The thesis is an attempt to contribute to the rapidly developing field of quantum in-
formation and its contemporary applications in many-body systems and quantum optics. 
The characterization of entanglement and the dynamics of quantum correlations in relevant 
quantum systems are important steps in identifying useful resources for designing futuristic 
quantum technologies. The characterization of multisite entanglement in spin lattices are 
crucial for ~nderstanding of the distribution of quantum correlation in large quantum sys-
tems that can be harnessed in developing scalable quantum computers. With the advent of 
quantum devices that require the transfer of quantum information between discrete spin sys-
tems and optical cavities and storage of information, the study of the dynamics of quantum 
correlations in both many-body and optical quantum systems is of great relevance. 
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CHAPTER 1 

Introduction 

What we observe is not Nature itself, but Nature exposed to our method of 
questioning. - Werner Heisenberg 

Nonclassicality is a fundamental feature of modern physics and the existence of quan-

tum correlation is one of its prominent signatures. Present day science predominantly 

ascribes quantum physics as the theory to describe Nature and often relies on inherent 

quantum correlation in physical systems to explain various exotic phenomena that are 

beyond the realm of classical physics. In the Introduction, we take a look at a slightly 

specialized description of quantum correlation, primarily those that are relevant to 

the field of quantum information theory and its interface with quantum many-body 
physics and quantum optics. 



1.1. BACKGROUND 2 

1.1 Background 

The advent of quantum theory in the early 20th Century introduced concepts that radically 
challenged the classical elements of contemporary physics and its description of Nature. 
An important example is the presence of nonclassical correlation in a quantum mechanical 
description of composite physical systems. Nonclassical correlations allow a complete de-
scription of a composite system without providing all the information about its subsystems, 
and was mentioned by Schrooinger as the "characteristic trait of quantum mechanics" {1] 
and originally referred as "Verschrankung" or entanglement. The first instance of confronta-
tion with the classical viewpoint of physics, when quantum correlations are considered, was 
raised by Einstein, Podolsky and Rosen (EPR), who were troubled by the violation of the 
conjunction of "objective reality" and "locality" in the quantum description of a physical 
system with spatially separated subsystems, as mentioned in their seminal paper of 1935 [2]. 
Over the years, important theoretical and experimental results have supported and enriched 
the quantum viewpoint of the physical world and established quantum theory as one of the 
foundational cornerstones of modern physics [3]. Significantly, the enigmatic trait of the 
quantum world arising due to quantum correlations is at the heart of major developments in 
the 21st Century quantum physics and is the fundamental resource for quantum information 
processing [4-6}. 

The signature of nonlocal quantum correlations was first quantified through the seminal 
derivation of Bell inequalities in 1964 [7]. Bell showed that for any local variable based 
theoretical description of quantum mechanics, the bipartite correlation, in any experimen-
tal setup, was statistically constrained by the Bell inequalities. In the following years, the 
experimental demonstration [8] of the violation of the Bell inequalities in certain entangled 
states1 confirmed the impossibility of any local variable description of quantum phenomena. 
The violation of Bell inequalities led to a critical interest in quantum correlations for future 
development of concepts such as quantum communication and the possibility of developing 
computational devices with no classical analogue [10, 11]. However, it was not until the 
late 20th Century, that the quantum correlation, in its quintessential form of entanglement, 
was established in terms of local quantum operations and classical operations [12}. In sub-
sequent years, various detection and quantification procedures for bipartite entanglement, 
such as inequalities derived from the von Neumann entropy [13, 14], majorization condi-
tions (15}, and positive partial transpose criteria [16, 17], were studied (for a review, see 
[6}). In the early 21st Century, the idea of quantum correlation was extended beyond the 

1 Most Bell inequality experiments suffer from certain loopholes in the experimental design or the mea-
surement. For a review of the various loopholes and their eradication in contemporary Bell experiments, see 
[9J. 



1.2. NONCLASSICALITY AND QUANTUM CORRELATION: A SHORT REVIEW 3 

entanglement-separability paradigm by the introduction of information-theoretic character-
izations of quantum correlation [18-20}. These measures sought to broaden the scope of 
quantum correlation in composite systems and demonstrated that residual correlation of 
nonclassical nature could be obtained in unentangled or separable quantum systems (for a 
review, see [21]). Over the last decade or so, quantum correlation was established as a r& 
source that enables performance of certain quantum tasks beyond the measures of classical 
resources. It has been the cornerstone of the relatively new interdisciplinary field of quantum 
information theory (QIT) and quantum computation [4, 5]. 

The impact of quantum correlation in modern day research can hardly be overstated. 
Besides playing a predominant role in the development of quantum information theory, the 
extensive work on entanglement theory [6] and information-theoretic quantum correlations 
[21} have generated an enormous interest in inter-disciplinary research. Important results 
from quantum information are routinely applied to study interesting quantum phenomena in 
a host of different disciplines, such as many-body physics [22], quantum optics [23, 24], quan-
tum gravity and black holes [25], and quantum biology [26]. Apart from inter-disciplinary 
research, a significant development has also been made in our fundamental understanding of 
the foundations of quantum mechanics [27]. Interesting features such as quantum contextu-
ality [28], quantum measurements {29] and quantum nonlocality [9] have received substantial 
attention from the perspective of quantum information theory. 

This introductory chapter is arranged as follows. We begin with a brief review of nonclas-
sicality and quantum correlation in composite systems in Section 1.2. We quantify quantum 
correlation measures from two different perspectives, namely the entanglement-separability 
paradigm and the information-theoretic perspective. In Section 1.3, we introduce and discuss 
the entanglement-separability paradigm. We discuss the different monotones of entanglement 
and their detection schemes. The section also contains a brief discussion on the quantifica-
tion of multipartite entanglement measures. In Section 1.4, we present the formalism and 
quantification of information-theoretic quantum correlations. We then present a brief discus-
sion on nonclassicality in continuous variable systems in Section 1.5, ending with an outline 
of the thesis in Section 1.6. 

1.2 Nonclassicality and quantum correlation: A short revtew 

The fundamental basis of what constitutes nonclassicality or how quantum correlations are 
conceptually formulated is not limited to a single theoretical framework. In a broad sense, 
nonclassicality arises when composite physical systems or degrees of freedom are correlated 
in ways that are inaccessible to classical objects [21]. The earliest forms of quantifiable 
nonclassicality in two-party quantum states {bipartite quantum states) arose from the Bell 
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inequality violation of such states. The conceptualization of quantum correlation has evolved 
over the years. The fundamental idea that violation of Bell inequality was the key princi-
ple of defining quantum correlation suffered a setback when it was shown that there exist 
certain entangled stat_escthat d9.notcviolate the Bell inequalities and hence, violation of Bell 
inequality is a sufficient but not necessary condition for entanglement [12]. This led to the 
realization that states without e~tanglement are those which can be prepared using local 
quantum operations and classical communication {LOCC) [6]. The set of states that cannot 
be prepared using LOCC are then called entangled. Consequently the set of separable states 
is smaller than the set of states that do not violate Bell inequalities. Incidentally, LOCC may 
introduce other features such as local indistinguishability of orthogonal quantum states that 
may not be possible in the classical realm [30] (also see [21]). There may exist states that 
are separable yet nonclassical, as revealed by the conceptualization of information-theoretic 
measures of quantum correlation. The set of states that are truly free from all forms of 
quantum correlation is significantly smaller than the set of separable states emerging from 
the entanglement-separability criteria, leading to a widely acknowledged fact that the states 
in the quantum domain are always quantum correlated. 

Entanglement has been a key ingredient in numerous QIT applications such as quan-
tum teleportation [31], quantum dense coding [32], and quantum key distribution [33]. It is 
also known to play an important role in the development of quantum computing, such as 
measurement-based (one-way) quantum computing [34] and linear optics quantum comput-
ing [35] (cf. [36]) (for a detailed discussion, see Reference [6]). Entanglement measures, such 
as entanglement of formation [37, 38] and logarithmic negativity [39] have been used in the 
analysis of quantum critical phenomena [40, 41], quantum phase transitions [22, 42], tensor-
network simulations [43, 44], and quantum spin channels [45] (for a review, see Reference 
[22}). In particular, entanglement is proposed to be an universal indicator of quantum critical 

phenomena. This has allowed the development of novel interdisciplinary interfaces of quan-
tum information theory with quantum many-body physics [22] and quantum optics (23, 24]. 
However, the formal structure of entanglement, despite great strides in recent decades, is 
still incomplete. The detection and quantitative characterization of entanglement in higher 

dimensional mixed bipartite systems and in complex multipartite states is still not tractable 

nor well-defined [6]. 
In recent years, it has been established that the essence of nonclassical correlation and 

resources can be taken beyond the typical domain of entanglement (21]. With the intro-

duction of information-theoretic concepts, the definition of quantum correlation and what 
constitutes truly separable or non-quantum correlated physical states has undergone drastic 

changes. The first protocol that considered shared quantum resources beyond entanglement 
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was the protocol for deterministic quantum computation with one qubit (DQCl), which 
achieved exponential speed up using a resource qubit very weakly entangled to a group of 
maximally mixed qubits (46]. Within a few years, a quantum correlation measure beyond the 
entanglement-separability criteria, and from an information-theoretic perspective, was done 
with the introduction of the measure of quantum discord [18, 19]. The possibility of connect-
ing quantum discord to the performance of certain computation tasks [4 7] heralded a new 
discourse in the perception of quantum correlation. It was later shown that quantum discord 
has a finite scaling with the efficiency of the DQCl protocol, even though entanglement is 
negligible [48]2 . Another information-theoretic quantum correlation measure based on negen-
tropy and local and global work extraction was introduced, called quantum work-deficit [20]. 
Subsequently, other measures of quantum correlation, all harnessing certain information-
theoretic properties were introduced, such as measurement induced disturbance {50, 51}, 
quantum dissonance [52], relative entropy of discord (53] and others (for an extensive review, 
see [21]). These information-theoretic quantum correlation measures have significant role 
in important quantum tasks such as local broadcasting [54], state discrimination [55], state 
merging [56] and quantum metrology [57]. Quantum correlation measures such as quantum 
discord and quantum work-deficit have also been extensively applied to study many-body 
phenomena such as quantum phase transitions [58], dynamics in many-body systems [59] 
and in open quantum systems [60]. However in contrast to entanglement, the operational 
significance and interpretation of information-theoretic quantum correlation are still debat-
able. As mentioned earlier, the set of all information-theoretic quantum correlated states 
is much larger than the set of all entangled states, leading to almost all dynamical maps 
retaining residual quantities of quantum correlation. This makes the study of identifying 
quantum processes that contain truly useful quantum correlation, a difficult task. 

In a slightly different direction, the ideas of nonclassicality were formalized in a different 
manner for multi-photon electromagnetic fields in quantum optics, partly through the semi-
nal results on quantum theory of optical coherence (61, 62] and atom-photon interaction [63] 
(also see [64]). The description of normal or symmetric ordered correlation functions using 
suitable quasiprobability distribution allows the classification of nonclassicality in quantum 
optical fields, with a sufficient criteria set by the negativity of such quasi probability functions 
[61, 64]. Important milestones in quantum correlation of optical states were also achieved in 
experimental demonstration of two-photon interferometry [65] and generation of entangled 
states [8, 66]. Further, experimental observations of nonclassical phenomena such as sub-
Poissonian statistics, quadrature squeezing and photon antibunching (see [64]) provided sig-

2 In Reference [49}, the authors have claimed that their results to the model ofDQCl, shows that quantum 
discord is possibly not the reason behind its speedup. 
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nificant indicators of nonclassicality. In recent years, the notion of entanglement-separability 
and other information-theoretic measures of quantum correlation have been extended to con-
tinuous variable optical multi-photon states, that have been extensively applied in numerous 
quantum information protocols [21, 24]. 

A more detailed discussion on the different aspects of nonclassicality and the development 
of the various characterizations of quantum correlation is beyond the scope of this thesis. 
We limit our brief discussion to only those measures of quantum correlation that have, 
in recent years, been extensively applied to study various quantum information protocols 
and are important tools in studying quantum many-body and quantum optical systems. 
Further, we only consider the detailed analysis of quantum correlation measures that are 
directly relevant to the thesis. In the next section (Section 1.3), we start by describing 
the entanglement-separability paradigm that include subsections on entanglement detection 
(Section 1.3.1), monotones (Section 1.3.2), bipartite entanglement measures (Section 1.3.3) 
and multipartite entanglement (Section 1.3.4). We discuss information-theoretic quantum 
correlation in Section 1.4. and some interesting facets of characterizing continuous variable 
nonclassicality in Section 1.5. 

1.3 Entanglement-separability paradigm 

The entanglement-separability paradigm is borne out of Schrooinger's initial assessment of 
the characteristic feature of composite quantum systems [1]. For an entangled state, the total 
information of the subsystems does not yield the complete information of the whole system. 
In this section, we will define entangled states and present a basic picture of the operational 
tools involved in detecting and quantifying entanglement and its characterization in various 

physical systems. 
Let us now consider a formal mathematical description of the idea of entanglement. For 

a bipartite quantum state, the associated Hilbert space 1l is a tensor product of the space 

of its subsystems, 1lll ® 1lv· We call a bipartite pure quantum state, 1¢), in the Hilbert 
space 1lll ® 1lv, entangled, if it cannot be represented in the product form ll/Jp) ® ll/Jv), where 

l'l/lp) E 1lll and l'lflv) E 1lv. States of the form ll/Jp) ® ll/Jv) are called product or separable 
pure states. The concept of entanglement can be given a clear information-theoretic basis in 
this case. A product or separable state allows the total information of the composite system 

l'l/1) to be obtained from its reduced subsystems ll/Jp) and ll/Jv)· For entangled states, such 
decompositions are not allowed and the most general form is given by the relation, 

d,_ dv 

ll/J) = L L aiilJLi) ® lvi) 
j 

{1.1) 
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where, dp. and dv are the dimensions of the two subsystems. {IJ.Li)} and {I vi)} are orthonormal 
bases in the subsystem Hilbert spaces, 1lp. and 1lv, respectively. A maximally entangled state 

has the form 11/1) = .1 'Lt IJ.ti) 0 jvi), where d = min(dp., dv)-
The extension of the entanglement-separability paradigm to mixed bipartite states is not 

straightforward. For mixed states, the idea of separability extends beyond that of simple 
product states, as a convex decomposition over a set of product states, is also a separable 
state. An efficient method to formalize the separability condition in bipartite mixed states 
is using local operation and classical communication between the subsystems [12]. Let p be 
the density matrix of a mixed bipartite quantum state in the Hilbert space 1lp. ® 1lv- For p 
to be separable, it must be of the general form 

{1.2) 

where Pi are the classical probabilities, with Li Pi = 1. Ia~) { E 1lp.) and l/3~) { E 1lv) are the 
locally prepared subsystems using an LOCC protocoL The mixed bipartite state is entangled 
if it can not be prepared in the form of Equation {1.2). 

The idea of entanglement-separability in terms of representation as a product of subsys-
tems {for pure states) or convex decomposition of products {for mixed states) can also be 
generalized to multiparty quantum systems. However, the extension is challenging due to 
different possible partitions available in a multiparty state. The simplest extension for pure 
states is that of k-separability. An N-party pure state, I¢)N is said to be k-separable if it 
can be written as a product of k pure subsystems, IJ.t1) 0 IJ.L2) ... 0 IJ.tk)- Fork< N, some of 
the N particles are entangled. If k = N, then the state is fully multipartite separable. A 
detailed discussion on multipartite entanglement is done in Section 1.3.4. 

From the above discussion it is clear that entangled states cannot be prepared using 
local operations on each particle in a bipartite or an N-party state, followed by classical 
communication. For entanglement, there must exist prior interaction directly between the 
subsystems or via ancilla states leading to entanglement swapping [67]. This implies that 
for an initial separable state, the physical system is operated with a global unitary operator 

in the joint Hilbert space, 1lp. 01lv [68] to generate entanglement. 

1.3.1 Detection of entanglement . 

The detection of entanglement and its quantification is a non-trivial problem. Even for bi-
partite systems, finding the convex decomposition, in the form of Equation {1.2), to establish 

the mixed state separability is a complicated procedure. There does not exist any general, 

operationally necessary and sufficient criteria to detect entanglement for arbitrary dimen-
sions. However, over the years, several criteria have been developed to detect and quantify 
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entanglement, under specific constraints, using various numerical and operational aspects 
[69}. For arbitrarily large dimensions, the detection of entanglement is a NP-hard com-
plexity problem [70}. In the following segment, we discuss some well-known entanglement 

~detection protocols. For a broader review, see Reference [6] and {69]. 

1.3.1.1 Schmidt rank 
For pure bipartite states in arbitrary finite dimensions, the Schmidt decomposition of the 
state and its rank is a necessary and sufficient indicator of entanglement. A bipartite pure 
state, 17/1), can be written in a general form given by Equation (1.1) and represented in terms 
of its Schmidt decomposition as 

s 

I¢) = L Ail Pi) ® I iii)' (1.3) 

where {ljii)} and {I iii}} are orthonormal bases in the subsystem Hilbert spaces, 1£,.,. and 
1lv, respectively. s(~ d = min(d,.,.,dv)) and -\/s are real numbers known as the Schmidt 
rank and the Schmidt coefficients, respectively. The derivation of Equation (1.3) from the 
general form [Equation (1.1)] is not very difficult. From Equation (1.1), we know that the 
coefficients aii form a d,.,. x dv matrix, satisfying the condition Lii a;iaii = 1. ~i can be 
written using a diagonal matrix, in its singular value decomposition of the form, aii = 

Li' vii'Ai'w;,i, where vii and Wij are unitary matrices and Ai' are the eigenvalues of the 
modulus of the aii matrix. Equation (1.1), using the decomposition can be written as, I¢} = 

2:1~-' L~v Li' Vii'Ai'w;,j!J.Li} ®!vi}· Replacing, IMi'} = L:1~-' Vii'IJ.Li} and jiii'} = L:tv w;,ilvi), we 
obtain the Schmidt decomposition in Equation (1.3). 

The Schmidt rank s, is the rank of the matrix aii, and also the rank of both the subsys-
tems. Drawing comparison v.ith earlier discussion on separable pure states, we can conclude 
that they have Schmidt rank, s = 1. For rank, s > 1, the bipartite pure system is entangled. 
For maximally entangled states, the Schmidt rank, s = d, with Schmidt coefficients Ai = 
1/Vd (for all i). The Schmidt ranks can be easily obtained as the maximum rank of the 
reduced density matrices of the state, say trs(l¢}(¢1). 

1.3.1.2 Positive maps 
The detection of bipartite pure entangled state using Schmidt decomposition is relatively 
simple as compared to mixed entangled states. The difficulty arises in establishing the 
separability criteria in terms of states that can be prepared using LOCC arid can be written 
in the form given by Equation (1.2). Interestingly, a novel way of detecting separability in 
mixed bipartite systems is by analyzing the effect of positive maps on separable states of the 
form given by Equation (1.2) [17]. 

If B(1£) is the set of all bounded operators in the Hilbert space 1£, a linear positive map 
A: B(1l) --)- B(1l), maps positive operators p E B(1£) onto positive operators A(p) E B{1£), 



1.3. ENTANGLEMENT-SEPARABILITY PARADIGM 9 

for all positive operators p. Positive or. positive semi-definite operators have non-negative 
eigenvalues. Positive maps are hermiticity preserving but not always trace preserving. As 
most quantum systems under consideration can, in principle, be entangled to a much larger 
quantum system, any quantum operation on the space of density matrices .must additionally 
be positive for the joint operation: a positive map (A) on the system of interest and the 
identity operation on the rest of the larger system. Hence, the extended map ][d ®A: B(1ld ® 
1l)--+ B(1ld®1l), where ][dis the identity operator on the d-dimensional Hilbert space, must 
be positive for all quantum operation. Positive maps (A) are called completely positive maps 
when they are positive for all such extensions. 

However all positive maps are not completely positive, an example being the transposition 
map (T). Such positive maps are extremely useful in obtaining a separability criteria for the 

LOCC generated states in Equation (1.2). Let us apply the map (HJt ® Av), where Av is a 
positive but not completely positive map, on the state p from Equation {1.2). This gives us 
the relation, 

(1.4) 

since Av is a positive map, jjr is a density matrix in 1lv- Hence, for separable states, 
(HJt ® Av)(p) is always a valid description of a density matrix. In particular, it is positive. 

Therefore, the condition (HJt ® Av)(p) i. 0, implies that the state p is entangled. For the 
state to be separable, it must satisfy the condition (liJt ®Av)(p) ~ 0, for all Av. However, the 
general classification of positive maps in higher dimension is not a completely understood 
problem. 

A well-known detection for entanglement using positive maps, is that of partial trans-
position. The non-positive partial transpose (NPT), for the state pPT ( = (li ® 'lr)p) is an 
important entanglement detection criteria- the Peres-Horodecki or the partial transposition 
criteria [16). Due to global properties of the transposition operation, the map can be applied 
on any one of the subsystems. pPT i. 0, i.e., pPT has atleast one negative eigenvalue, implies 
that p is entangled. For smaller dimensions, viz. 2 x 2 and 2 x 3, the NPT criteria is a neces-

sary and sufficient criteria for entanglement {17]. In higher dimensions, the NPT criteria is 
a sufficient condition for entanglement but not necessary. This is due to the fact that there 

exist positive partial transpose (PPT) states that are known to be entangled. Such states 
are examples of bound entangled states, that are defined as entangled states from which 
entanglement distillation is not possible [71]. Numerical evidence suggests that there may 
also exist NPT bound entangled states. However, a definite answer has not been obtained 

[72]. 
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1.3.1.3 Entanglement witness 
A special form of the Hahn-Banach theorem can be stated in the following way. For a 
point p outside a compact convex set F, in a Banach space of finite dimensions, there will 
always exist a hyperplane that.separates the point p from the set F. If we consider, F to 
be the subset of all separable states3 in space of all linear operators B(1i), then there will 
always exist a hyperplane separating the set from an entangled state p. Let us define the 
hyperplane by a perpendicular vector Won the hyperplane, directed towards the space F. 
The "projection", tr(Wp8 ep), of any separable state (Psep) on the hyperplane W is positive. 
Further, entangled states on the other side of the hyperplane have a negative projection on 
W. In the language of linear operators, for an entangled state p, we can always obtain an 
operator W E B(1l), such that the innerproduct for all separable states, tr(WPsep) ~ 0, 
while tr(Wp) < 0. We call the Hermitian operator Wan entanglement witness {73]. 

The PPT criteria can be used to form an entanglement witness. Let pPT be the partial 
transpose of an NPT state p. Let the state j{) be one of the eigenvectors of pPT, corresponding 
to a negative eigenvalue. Set W = 1{){~1- It is straightforward to note that tr(Wp) < 0 
for the entangled state p (not PPT bound entangled) and tr(WPsep) ~ 0 for all separable 
states.4 W is therefore an entanglement witness for p. 

The importance of entanglement witnesses is that it can be conveniently implemented 
in physical systems as the witnesses are Hermitian. It is currently one of the useful tools 
to detect entangled states in an experimental setting (7 4]. However, it is not possible to 
characterize all entangled states using a single entanglement witness and furthermore, given 
an entangled state, finding an optimal entanglement witness operator is a challenging task. 

1.3.1.4 Entropic inequalities and majorization 
The initial conceptualization of entanglement from the perspective of information, was only 
achieved after the formalization of the idea of what constituted information in a composite 
quantum system. This consisted in using the using concept of von Neumann entropy, S(p) = 

- tr(p log p) {75], to quantify the information content of a quantum state p, in analogy with 
the classical Shannon entropy, H(X) = - LiPi logpi {where Pi > 0 and LiPi = I), of a 
classical random variable X. 

In terms of the von Neumann entropy S(p), Schrodinger's idea of an entangled system 
containing more information than the sum of its subsystems could be quantified. It was 
shown that the subsystems of an entangled state could be more disordered than the composite 
system, which is not possible for classical random varaibles and their marginals (13]. In 
tenns of general a-€Iltropies the following scalar separability criteria is obtained (14}. For a 

3 0ne can show that the set of separable states is convex and compact. 
4The above example has been taken from Reference [68J. 
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separable state, 
{1.5) 

where Sa(P} = l~a logtrpa, and Pp.(v) = trv(p.)(I?/J){?jJI) is the reduced density matrix of the 
'·-:-subsystem of the state 11/J} in the1lp.®1lv Hilbert space. Sa(P) reduces to the von Neumann 

entropy for a = 1. However, this property could be violated by certain entangled states [6]. 
A stricter version of the entropic inequality can be obtained using majorization [15}. The 

concept of majorization [76] can be introduced as follows: For two vectors x = (x1, x2 , x3, ... , xn) 
andy= (yi, Y2, y3, ... , Yn), we say xis majorized by y, or x ~ y, if 

k k L xf ~ LYf, for 0 < k::; n- 1, with equality at k = n, {1.6) 
i=l i=l 

where, x-1-(yl-) is x(y) with coefficients in descending order, i.e., xf ~ x~ ~ ... ~ x~ (yr ~ 
y~ ~ ... ~ ~). For probability distributions, x ~ y implies that H(x) ~ H(y). 

The majorization concept leads to a separability criteria, as obtained in Reference [15]. 
For separable states, 

(1.7) 

where, E(p), E(Pv), and E(Pp.) are the vectors of the eigenvalues of p, Pv, and pf.l, respectively. 
To correct the dimensions of the reduced density matrices Pv and pf.l, with respect to p, 

additional zeroes are appended to the eigenvalue set. The entropic inequality in Equation 
{1.5), is a less stringent condition compared to the majorization condition, given by Equation 
(1.6}. 

The majorization condition and the entropic inequalities establishes a crucial link between 
thermodynamics and entanglement. For any two vectors x and y, the condition x ~ y, 

implies that x is more disordered than y as x can be obtained by mixing the vectors from 
permutationally ordered elements of y [76, 77]. Interestingly, from the separability criteria 
(Equation {1.7)], for a quantum state to be entangled, the global state can be less disordered 
than its subsystems, which is not possible in classical disordered systems. The majorization 
condition also plays an important role in defining the criteria required for transformation 
of a quantum state into another, using local operations and classical communication and is 
useful in defining entanglement monotones, as discussed in Section 1.3.2. 

1.3.2 Entanglement monotones 

From the last section, we learn that the detection of generic entangled or separable states is 
in general a difficult problem even in low dimensions. However, for purposes of application 
in useful theoretical models, it is essential to obtain suitable measures and quantifiers of 
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entanglement. The lack of an universal detector of mixed state separability makes the task 
of quantifying entanglement a complicated process. 

In general, the fundamental concept, central to the definition of entanglement measures 
is that, there exist quantum operations that do not generate or increase quantum correlation 

-:!.,·...:.~:"::_:· ~ .!...~J. 

when applied to physical systems, though they may generate, increase, decrease or not affect 
the classical correlation in the system. Any physical parameter or quantity that does not 
increase under such operations is a valid measure of quantum correlation or entanglement 
[78]. The most notable example of such a set of quantum operations is the set of local 
operations with classical communication. LOCC are known to generate classical correlation 
without generating entanglement. 5 This leads us to the definition of entanglement monotones 
[7&J, which are functions that do not increase under LOCC, and are suitable candidates for 
quantifying entanglement. Entanglement measures are usually required to be entanglement 
monotones. 

For pure states, entanglement monotones can be characterized using the concept of ma-
jorization [77). Any quantum pure state 17/J) can be transformed to another quantum state 
14>) using LOCC operations, provided the Schmidt coefficients, in descending order (At), of 
the two states follow the majorization criteria , 

k k 

L >.f(l¢)) ~ L >.f(I<P) ), for 0 < k ~ s- 1, with equality at k = s, (1.8) 
i=l i=l 

where s is the Schmidt rank. If the above criteria are satisfied, then >.It!>) -< >.1<1>). As 
discussed in Section 1.3.1.4, we again find the majorization condition establishes a crucial 
link between disorder and entanglement. For allowable transformations using LOCC, >.It!>) is 
required to be more disordered than AI<P). For a pure quantum state, the Schmidt coefficients 
are eigenvalues of its reduced density matrices of the subsystem. The majorization condition 
therefore implies, that pure quantum states can only be transformed from states with higher 
disordered subsystems than that of the target state, by using LOCC. 

Using the majorization condition, one can formulate a simple criterion to be satisfied 
by all entanglement monotones. Since, entanglement cannot be increased under LOCC, an 
entanglement monotone E has to satisfy the condition, 

{1.9) 

Hence, an entanglement monotone is a Schur concave function. A straightforward monotone 
that can be obtained using the concept of majorization, Schur concavity, and unitary invari-
ance is the von Neumann entropy of the reduced density matrix of a quantum pure state, 

5 1t will be discussed later that LOCC operations can generate other forms of (information-theoretic) 
quantum correlation, independent of the entanglement-separability criteria. 
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given by 

(1.10) 

where Pp.(v) = trv(p.)(l¢}{¢1) is the reduced density matrix of the subsystem of the state 17/1} in 
the 1/.p. ®1iv Hilbert space. S(pp.(v)) is actually one of the simplest measures of bipartite pure 
state entanglement, and in the asymptotic limit can be argued to be the only one. It is called 
the entropy of entanglement (79]. However, for a complete classification of entanglement in 
terms of monotones based on majorization a single value is insufficient, in the non-asymptotic 
limit. For a pure state, a minimum of d- 1 monotones are required, where d = min(dp.,dv) 
is the number of Schmidt coefficients (78]. 

For mixed states the definition of an entanglement monotone is more involved as com-
pared to that for pure quantum states. This is due to the fact that mixed quantum states 
contain classical correlation and any suitable entanglement monotone has to identify and 
retain correlation that are purely of quantum origin. The essential features of a mixed state 
entanglement monotone are generalized from pure state definitions. A mixed state mono-
tone Emix(P) must be a valid monotone for pure p and, more generally, non-increasing under 
LOCC for all states. 

A general way to define a mixed state entanglement monotone is to consider a convex-
roof construction [80]. A mixed state can always be presented as a convex combination of 
a set of pure states, p = L;Pil'l/1;){7/JJ A mixed state monotone Emix(P), is then defined 
in terms of the pure state monotone, £(!¢;), with classical probabilities Pi, as Em;x(p) = 

L;Pi £(1¢;}). However, there are numerous possible decompositions of the state pin terms 
of pure states, with none more unique than the other, and each decomposition casting a 
different numerical value. The convex-roof construction allows such decompositions using 
the pure state monotone, provided an infimum over all possible decompositions is performed. 
The construction can be written as, 

Emix(P) = min L p; E(j¢;) ), 
{p;,f,P}} i 

(1.11) 

where p = L; p; 17/1;} { 7/1; I is a possible decomposition, with classical probabilities p;, such that, 
L; p; = 1 and p; ~ 0. However, the computational intractability of such an optimization 
problem often renders the generation of meaningful monotones in mixed states, very difficult 
to perform in any dimension. 

1.3.3 Measures of entanglement 

The criteria for detection and characterization of entanglement in terms of monotones have 
been discussed in Sections 1.3.1 and 1.3.2. In the follo\\ing segment, we discuss some state 
functions, that are suitable as m~asures of entanglement and that can be numerically or 
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algebraically evaluated. To begin, we list some important criteria to define what constitutes 
an entanglement measure. Firstly, all entanglement measures should decrease on average 
under LOCC, i.e., all entanglement measures (E) satisfy 'EiPiE(pi) ~ E(p), where Pi are 
the -~tates obtained from LOCC on p with classical probabilities Pi· Additional sets of 
criteria, such as E(p) = 0, for p separable is also required. Additivity, E(p0 n) = nE(p), and 
subadditivity, E(p1 ® P2) ~ E(p1) + E(P2) are often imposed. However, not all measures 
satisfy the above criteria and often additional constraints or relaxations have been introduced 
to cater to different physical or numerical conditions. 

1.3.3.1 Distillable entanglement and entanglement cost 
An important string of research attempts to quantify entanglement in terms of its efficiency 
in quantum communication protocols such as quantum teleportation [31]. It is known that a 
maximally entangled state (say, a Bell singlet state: 1'1/1-) = ~(110) -101})), allows faithful 
teleportation of a single qubit. This is not true for a general entangled state. The original 
question that arose was: how many copies ( n) of an entangled state (p) were required to 
obtain m (m ~ n) copies of a maximally entangled state {1'1/1-}('1/1-1)? In other words, given 
n copies of an arbitrary state p, how many copies of l'l/1-)('1/1-1 can be "distilled" in the 
asymptotic limit ( n -+ oo )? The rate, r = limn-too mfn, would give us the number of qubits 
per copy that can be teleported using the entangled state p, thus providing an operational 
measure of entanglement [81]. 

The protocol can be concisely presented in the following steps. The two parties apply 
LOCC (A) on n copies of the state, p0 n, to obtain the desired state, l'l/l-){'l/l-l0 m. The 
distillable entanglement (ED) is then the supremum rate over all such LOCC protocols, and 
can be written as [6] 

(1.12) 

The reverse protocol can also be used to define an entanglement measure, called the 
entanglement cost (Ec) [6, 81]. It measures the number of copies (m) of 1'1/1-) required 
to generate n copies of the desired entangled state p. Though these measures have well 
understood operational significance, their evaluation for arbitrary quantum states is not 
tractable. For pure quantum states, both ED and Ec are equal to the von Neumann entropy 
of local subsytems. A measure closely related to Ec is the entanglement of formation-, which 
can be algebraically calculated in lower dimensions. 

1.3.3.2 Entanglement of formation 
For a bipartite system, 1'1/1), it can be shown that given nE1(1'1/J)) copies of a maximally 
entangled state, n copies of the state 1'1/1) can be obtained in the asymptotic limit, using 
LOCC [79], where, .l?'J(I'l/1)) = S(pf.l-) = S(pv)- where, S(p) is the von Neumann entropy. For 
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two-qubit states, E1(11P)) is the number of singlets required to obtain j.,P). This measure is 
called the entanglement of formation (EOF). We note that for pure states EOF is equal to 
the entropy of entanglement and consequently, to En and Ec. 

The entanglement of formation for a mixed bipartite quantum state (37} is defined using 
the convex-roof construction (80] or the average entropy of entanglement of its pure state 
decomposition, optimized over all such possible decompositions. For a bipartite quantum 
state, p = LiPi!?Pi)(?Pil. the entanglement of formation is defined as 

{1.13) 

where E,(j.,P)) is the EOF of the pure state I.,P). The minimization is over all possible pure 
state decompositions (pi, I?Pi)) of the bipartite state, p. For two-qubit systems, the EOF 
has a closed analytical form defined in terms of a quantity called concurrence [38]. For 
arbitrary dimensions, the convex-roof construction for mixed state EOF is not tractable, 
though generalizations and bounds of EOF using concurrence have been explored (82]. 

1.3.3.3 Concurrence 
Concurrence is an important entanglement monotone [38], initially derived as a parameter in 
the calculation of the entanglement of formation. Incidentally, concurrence is an independent 
measure of entanglement [38], that is not resource-based such as EOF. For a bipartite pure 
state, the concurrence in defined as C(I.,P)) = .j2{1 - tr{~)), where pp. = trv(I?P)(.,PI). For a 
bipartite two-qubit pure state, C(I?P)) can be obtained in terms of the Schmidt coefficients 

(-\1,-\2) of I?P) as 2-\1-\2. 
The mixed state concurrence can again be derived using convex-roof construction. How-

ever, for a two-qubit density matrix, p, concurrence can be alternatively be defined as 
C(p) = max[O, -\1 - -\2 - -\3 - -\4], where Ai (i = 1, 2, 3, 4) are the square roots of the eigen-
values of the spin-flip operator, R = pp, with p = (uy ® uy) p (uy ® uy), and uy is the Pauli 
spin matrix, 

( 
0 -i) 

Uy = i 0 . {1.14) 

For two-qubit states, the EOF is a monotonically increasing function of concurrence6 and 
can be expressed in a closed algebraic form, given by 

E,(p) = H (I + ,II 2- C'(p)) , {1.15) 

where, H(x) = -x log2 x- (1- x) log2(1- x), is the binary entropy. 
Concurrence in pure entangled states has been experimentally observed [83} using a pair 

of photons in a linear optical setup, and a single, local measurement. 
6Concurrence is also a monotonically increasing function of entanglement of formation. 



1.3. ENTANGLEMENT-SEPARABILITY PARADIGM 16 

1.3.3.4 Logarithmic negativity 
The convex-roof construction for general mixed state entanglement is intractable and diffi-
cult to compute in most cases. Measures such as the EOF and concurrence have a closed 
algebraic form only for two-qubit systems .[38}--and some isotropic states (84]. Logarithmic 
negativity {LN) [39] is an entanglement measure that can be algebraically computed for 
arbitrary dimensional quantum states. The definition of LN is based on the fact that the 
negativity of the partial transpose of a bipartite quantum state is a sufficient condition for 
entanglement- the Peres-Horodecki separability criterion [16]. Moreover, for two-qubit sys-
tems, the condition is necessary and sufficient [17]. For a detailed discussion, see Section 
1.3.1.2. 

LN is evaluated by using a quantity called negativity, defined for the state p as 

{1.16) 

where 11Pr,..IJ 1 is the trace norm of the partial transpose pr,.. of p, in the Hilbert space 1-lp01-l.,. 
From the Peres-Horodecki separability criterion, the partial transpose pr,.. should be positive 
for all separable states. Hence N(p) is zero for separable states and can be computed as the 
sum of the absolute values of the negative eigenvalues of pr,... LN of pis defined as 

EN(P) - log211Pr,..l1 1 

- log2[2N(p) + 1]. (1.17) 

LN can be computed for arbitrary dimensional bipartite systems, however, unlike EOF, does 
not reduce to the entropy of entanglement for pure states, and is zero for PPT bound entan-
gled states. However, non-zero values of LN is a useful upper bound on distillable entangle-
ment [39}. Due to its computational simplicity, LN is often used to calculate entanglement in 
higher dimensions. Interestingly, LN satisfies the monotonicity condition, E(A(p)) ~ E(p), 

for all LOCC, even though it is not convex [85] and further, is also additive. 
Another important measure of entanglement is the relative entropy of entanglement [86}, 

based on the minimal relative entropy distance between an entangled state and the set of all 
separable states. Interestingly, as we shall see in Section 1.4.4, entanglement measures based 
on geometric metrics offer a possibility to treat both entanglement and information-theoretic 
quantum correlation measures within an unified picture [87J. 

1.3.4 Multipartite entanglement 

The presence of entanglement among multiple parties in an N -party quantum system is an 
extremely important resource for designing scalable quantum devices that can be applied in 
larg~-scale quantum computation and multiparty quantum communication [6}. In principle, 
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the fundamental ideas and criteria for separability in bipartite states can be extended to 
multipartite states. However, these states are often characterized by varying entanglement 
along different bipartitions, that make the development of entanglement measures more 

. invQl~.Jm<l~®mp,licated. Moreover, for mixed multiparty states, there may appear the 
possibility of multiparty entanglement that cannot be understood by looking at bipartitions. 
In this segment, we briefly look at the standard extension of the entanglement-separability 
criteria in multipartite quantum states. 
k-separability: Let lllt} be a multipartite pure quantum state of N-parties, in the joint 
Hilbert space, 1l1 ® 1l2 ® ... ® 1-LN. The multiparty state, jllt) is called k-separable if it can 
be written as a product of k {1 < k ~ N) states 11/Ji), each containing one or many parties, 
as given by [6, 88} 

(1.18) 

A multipartite state that is separable across all N subsystems is called N-separable or fully 
multipartite separable. We note that a state that is k-separable is by defintion also rr 
separable, where 2 ~ p < k. A pure state that is not separable across any bipartition is 
called a genuinely multipartite entangled pure state. The Greenberger-Harne-Zeilinger [89] 
and the W [90} states are the common examples of genuine multipartite entangled states. 
Genuine multipartite entanglement is an important resource from the perspective of many-
party quantum communication [91] and is a potential resource for scalable quantum compu-
tation [92]. Cluster states are genuine multipartite entangled states that form a promising 
candidate in building a one-way quantum computer {93]. Multipartite entanglement also has 
fundamental applications in understanding the role of entanglement to indicate cooperative 
phenomena in many-body physics [22]. 

For mixed multiparty states, the k-separable state {!, can be obtained by the convex 
decomposition of k-separable multiparty pure states, given as [6, 88] 

(1.19) 

where 11/Ji) are k-separable and LiPi = 1. However, the definition of k-separable state{!, is 
not unique as there exist many possible convex decompositions. Further, the separability of 
k-separable 11/Ji) may occur across different partitions. 

A more stringent definition of k-separability for mixed states is in terms of the (k-

separability, which is defined as [6, 88] 

(1.20) 

where each Pi contains one or many parties. We observe that the partitions in such separable 

states are fixed. 'Yk-separability coincides with k-separability for pure states. 
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The quantification of multipartite entanglement is more involved and complicated than 
bipartite entanglement, primarily due to the fact that each type of entanglement (based on k-
separability) demands a different measure, with an unique characterization, to clearly identify 
the potential of each type of entanglement. General measures of multipartite entanglement· ·:.o. 

may be insensitive to specific types of entanglement and in contrast, detection of a specific 
type, such as genuine multiparty entanglement, may completely ignore other useful regional 
entanglements, that can be resourceful in specific quantum tasks [6]. 

1.3.5 Measures of multipartite entanglement 

In this segment, we discuss some of the more important attempts to quantify entanglement 
beyond the bipartite case. 

1.3.5.1 Tangle and global entanglement 
A seminal measure of multipartite entanglement in pure 3-party state, Ppve is the tangle [94}. 
It is defined as r(ppve) = T(Pp:ve)- T(Pp:v)- T(Pp:e)- Here, r(Pp:vt:), r(Pp:v) and r(Pp:e) refer 
to the concurrence square along the partitions, Jl : vc, Jl : v and Jl : c, respectively. The 
3-tangle is permutationally invariant and zero for some genuine 3-party entangled states, 
such as the W state. It is also zero for all states that are product across some partition. On 
extension to multiparty states with even n, the n-tangle can be defined in terms of the square 
of a quantity called then-concurrence [95],7, which is a suitable generalization of two-qubit 
concurrence, discussed in Section 1.3.3.3. 

A multipartite entanglement monotone for pure states, based on the sum of functions 
of bipartite entanglement is the global entanglement [96]. The global entanglement, for an 
n-qubit state in terms of tangles, can be written as [97] 

E:fw = ~ (2 L Ti1i2 + 3 L Ti 1i2 i 3 + ··· + n L Ti1 ••• in], 
iJ <i2 iJ <i2<i3 iJ < ... <in 

(1.21) 

where Ti1i2 is the 2-tangle, Ti1i 2 i 3 is the 3-tangle and T; 1 .•• in is then-tangle. 

1.3.5.2 Geometric measure of entanglement 
An important measure of multipartite entanglement is the geometric measure [98] (also see 
[88]). A natural geometric definition of the amount of multipartite entanglement of a pure 
multiparty quantum state is therefore the minimum distance of that state from the set of 
all states that are multiparty k-separable. A widely used measure of distance is the fidelity 
subtracted from unity, giving the geometric measure as g = 1- Ak(jw) ), where Ak(lw)) = 

sup{I'7}ESk} I{WI1J)j2. The set Sk, is the set of all k-separable states. Replacing the set, S,., 
with SN, we obtain a measure of finite multipartite entanglement, that is not N -separable. 

7 As shown in Reference [95] the relations obtained for the n-tangle is not invariant under permutation of 
qubits for odd n greater than 3. 
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1.3.5.3 Generalized geometric measure 
An efficient and computable geometric measure of genuine multipartite entanglement in pure 
quantum states is the generalized geometric measure (GGM) (99], that for anN-party pure 
quantum state j4>} is defined as the minimum ·ofthis fidelity-based distance of the state from 
the set of all states that are not genuinely multiparty entangled (99]. In other words, the 
GGM of I4>N}, denoted by £(14>N) ), is given by 

£(14>)) = 1 - A~ax(l4>) ), (1.22) 

where Amax04>)) = max J(xi4>N)j, with the maximization being over all N-party quantum 
states Jx} that are not genuinely multipartite entangled. 

It was shown in Reference [99] that the GGM of a multiparty pure state can be effectively 
calculated by using 

£(J4>N}) = 1- max{-\~,8jA U B = {1, 2, ... , N}, An B = 0}, (1.23) 

where AA:B is the maximal Schmidt coefficients in all possible bipartite splits A: B of I4>N)· 
The high utility of this measure lies in the fact that it is a measure of genuine multipartite 
entanglement that can be efficiently computed for any pure state of an arbitrary number of 
parties in any dimensions. 

1.4 Information-theoretic quantum correlation measures 

In the previous section, we identified quantum correlation within the entanglement-separability 
paradigm and attempted to discuss the theoretical framework around which the basic mea-
sures of entanglement were characterized. However, as discussed earlier in Section 1.2, the 
definition of quantum correlation is not exhausted by entanglement and the intuitive idea of 
nonclassical correlations can be stretched beyond the set of LOCC prepared separable states 
by using novel information-theoretic concepts. 

In this section, we discuss a few measures of information-theoretic quantum correlation. 
For a complete review of the origin and subsequent theoretical development of information-
theoretic quantum correlation measures, please see (21}. 

1.4.1 Quantum discord 

One of the first works that sought to relate the notion of quantum correlation beyond the 
entanglement-separability criterion, harnessing quantum information-theoretic concepts, was 
the characterization of a measure called quantum discord {QD) [18, 19}. 

In classical information theory, the correlation between two random variables is contained 
in the mutual information between these variables. The mutual information can be arrived 
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at using the classical Shannon entropy via two distinct methods: first, using the idea of 
joint probability distribution, and secondly, using the concept of conditional entropy. Ex-
tending the definition to the quantum regime and replacing Shannon entropy with the von 

_ ... N~umann entropy; we obtain two distinct, inequivalent but classically equal expressions for 
mutual information. QD is defined as the difference between the two expressions for mutual 
information when extended to the quantum regime. 

Classical mutual information can be defined for a joint probability distribution {Pii} as 

(1.24) 

where H ( { qi}) = - L i qi log2 Qj is the Shannon entropy of the probability distribution { qi}, 
and {Pd, {P.i} are the marginals of {Pii}. Using the concept of conditional entropy, we 
obtain the entropy of the joint probability distribution {Pii} as 

(1.25) 

where {Pili} and {Pili} are the conditional probability distributions. Plugging Equation 
(1.25) in the expression for H( {PiiJ) in Equation (1.24), gives us an alternate but equivalent 
classical expression for mutual information, 

(1.26) 

In the quantum regime, the total correlation in any bipartite quantum system, p, in the 
joint Hilbert space 1lp. ®1lv, can be measured by using quantum mutual information [100] 
(see also [ HH J): 

I(p) = S(pp.) + S(pv)- S(p), (1.27) 

where S(p') is the von Neumann entropy of the quantum state p', and pp. and Pv are the 
reduced density matrices of p. This quantifies the classical expression in Equation (1.24). 
To obtain the quantum equivalent of the classical mutual information in Equation (1.26}, we 
need the quantum conditional entropy, S(pp.fv), which is defined as the lack of information 
about one subsystem (say, pp.) when that of the other subsystem (Pv) is known. The complete 
knowledge of a subsystem invokes a partial measurement on the composite system p, as 
described below. 

For a bipartite quantum system p, measuring on the subsystem v using the set of 

projectors {ni}8 (where nrn1 = t5ijnr, Li nr = li", with li" being the identity opera-
tor on the Hilbert space on which Pv is defined), produces the post-measurement states 

8 In general, rank-I positive operator valued measurements {POVM) are needed to optimize the quantum 
discord. However, projective measurements give a very tight upper bound on discord and there exists only 
a small set of discordant states for which an insignificant numerical difference is observed, as mentioned in 
Reference [21J. 
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pi = ~{:II,. ®IIi pi,. ®IIi), where I,. is the identity operator on subsystem p,, and Pi = 

tr,.,_.(I,. ®IIi pIp® IIi). The conditional quantum states that are produced at p,, due to the 
measurement at v, are P~<li = ttr,..(Ip ®ITi pi,. ®lli), with probability Pi· The quantum con-
ditional entropy [4} is then defined as S(P,.Jv) = min{nf} L:iPiS(p,.Ji), and similarly, S(p,_.l,.)-
By using this definition, the classical expression in Equation {1.26) can be quantized as 

J(p) = S(p,.)- S(P,.Jv)- (1.28) 

It has been argued that J(p) can be used to quantify classical correlation in p [18]. 
Quantum discord ( Q(p)) is then defined as the difference between the total mutual in-

formation I(p) and tlie classical correlation J(p), given by 

Q(p) = I(p)- J(p). (1.29) 

Since, I(p) ~ J(p), Q(p) is always non-negative. For nonsymmetric p, QD is in general 
not symmetric to measurements on the p, and v subsystem, since J(p) is dependent on 
the measured subsystem. QD is positive for all quantum states, due to the concavity of 
conditional entropy {102] and is invariant under local unitary transformations, however, it is 
not contractive under general local transformations (21]. 

1.4.2 Quantum work-deficit 

Another information-theoretic measure of quantum correlation, based on the thermodynamic 
properties of information, is the quantum work-deficit (QWD) (20]. The concept of QWD 
is based on the fact that information can be treated as a thermodynamic resource (103}. 
Given a quantum state p, one defines the allowed class of global quantum operations, called 
closed operations (CO), as arbitrary sequences of the following operations: (Gl) unitary 
operations and (G2) dephasing p by using a set of projectors {lli}, i.e., p ~ Li ITipiii, 
where ninj = c5ijlli, Li ni = li, with ][ being the identity operator on the Hilbert space 
1l on which p is defined. Under this class of operations, it can be shown (see (20, 104}) 
that the number of pure qubits that can be extracted from pis Ia(p) = N- S(p), where 
N = log2 dim 1l. 

Correspondingly, the allowed class of local operations is called closed local operations and 
classical communication (CLOCC), and is defined as arbitrary compositions of the following 
operations: (Ll) local unitary operations, (L2a) local dephasing and (L2b) sending a com-
pletely dephased subsystem from one party to another over a noiseless quantum channeL 
Let us consider a bipartite quantum state p. The number of qubits that can be extracted 
from a bipartite quantum state p under CLOCC is 

lL{pAs) = N- inf [S(p',.) + S(p'v)J, 
AECLOCC 

{1.30) 
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where p'p. = trv(A(p)), p'v = trp.(A(p)). QWD is then defined as 

{1.31) 

Interestingly, the characterization of quantum '.work-deficit uses a lot of the thermody-
namic tools used in entanglement theory, such as pure state distillation and stringent forms 
of LOCC. Both quantum work-deficit and quantum discord reduce to the von Neumann 
entropy of local subsystems for pure bipartite quantum states. QWD can be classified as 
i-way QWD (i = 0, 1, 2), depending on the way the classical communication is performed in 
the CLOCC protocol [21, 104]. The 1-way QWD is equivalent to quantum discord [21] for 
states with maximally mixed marginals. 

1.4.3 Measurement induced disturbance 

Measurement induced disturbance (MID) is derived from the understanding that a truly 
classical state, with respect to some measurement, will remain unchanged after the mea-
surement [50]. Let us consider a bipartite density matrix p. If llf and llj are complete von 
Neumann measurements (one dimensional projections) for subsystems J-L and v, respectively, 
for a classical state, 

p = L nr 0 llj p nr 0 IIj. (1.32) 
ij 

The states p that do not satisfy Equation (1.32) are essentially quantum in nature. MID 
measures the quantumness in a bipartite state p by measuring the difference in the quantum 
mutual information between the state p and its least disturbed classical state obtained by the 
measurement, Pd = Li Pip Pi, where P1 are the spectral projections of the state p. Thus, 
MID can be defined as 

M(p) = I(p)- I(pd), (1.33) 

where I(p) = S(pp.) + S(pv) - S(p) is the quantum mutual information [100]. S(p) = 
-tr(plog2 p) is the von Neumann entropy of a quantum state p. Pp. and Pv are the reduced 
density matrices of the subsystem J-L and v, respectively. M(p) is the nonclassical measure 
of measurement induced disturbance (50] and unlike other information-theoretic measure of 
quantum correlation, based on projective measurements, does not introduce any optimization 
on the measured states. Hence, MID serves as an upper bound on other information-theoretic 
quantum correlation [21]. 

1.4.4 Geometric measures of quantum discord 

An independent information-theoretic measure of quantum correlation can be defined as a 
geometric distance from the set of zero-discord states. This is similar to the relative entropy 
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of entanglement [86}, which is the minimum relative entropy distance of a state from the set of 
separable states. Relative entropy, defined as S(piJu} = -tr(plogu}-S(p}, where S(p) is the 
von Neumann entropy, is not a true distance metric, as it is not symmetric, S(pllu) f. S(ullp) 
(86}. The first instar:ce Qf.-_q~~g_."bo~h entanglement measures and information-theoretic 
quantum correlation within an unified framework, was done by using the relative entropy 
[87}. The relative entropy of quantum discord ( QR) is defined as the distance of a state p 

from the set Sc, of zero-discord states. Mathematically, Q R can be written as 

QR(P) = min S(pll~), 
{~ESc} 

where p and ~ are density operators in the relevant Hilbert space. 

(1.34) 

The geometric discord, based on a true distance metric, was done by using the Hilbert-
Schmidt distance (49]. The definition can be written as 

(1.35) 

The measure is called the geometric quantum discord (GQD). The nearest classically corre-
lated state~ can be obtained following an optimal projective measurement in one of the sub-
sytems, ~ = Li nr ® liv p nr ® liv. The GQD can then be set as an optimization over all mea-
surements, similar to the general QD, and can be written as, Qc(p) = min{nr} tr [(p- ~)2J. 

The most remarkable advantage of GQD is that the optimization involved in the definition 
of discord is suitably replaced by exact analytical expressions [49] (also see, (21]), for certain 
bipartite systems. However, the GQD suffers from certain inconsistencies. The significant 
drawback is that the measure at times gives unphysical results, such as it can increase even 
under trivial local reversible operations on the unmeasured party, such as a reversible addi-
tion of an ancilla state to the unmeasured subsystem, as shown in Reference (105], which is 
undesirable in any indicator of quantum correlation. 

The geometric quantum discord can also be quantified using a distance metric other than 
the Hilbert-Schmidt distance. One notable definition uses the Bures metric (106], to define 
the geometric discord. The Bures distance is monotonous and Riemannian and satisfies some 
of the more important conditions required of a quantum correlation measure (106]. 

1.5 Nonclassicality in continuous variable quantum systems 

In this section, we discuss a few well-known indicators of nonclassicality in multi-photon 
optical fields, which are the m~-t widely inve.-tigated prototype of continnotJS \'miable ( CV) 
quantum systems. The primary motivation for using CV systems in QIT is the relative ease 
with which the system can be controlled and manipulated to generate quantum correlation 
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in quadrature variables such as momentum and position or alternatively, in the discrete, 
infinite dimensional energy eigenstates of electromagnetic fields, using established quantum 
optical methods [23, 24]. Most well-known QIT protocols can be suitably reformulated in 

.- , .the CV pi~ture, allowing a better platform for experimental realization using linear quantum 
optics and advanced photonics [24, 107]. Other notable examples of CV systems include 
vibrational modes of solids, bosonic atomic ensembles, Bose-Einstein condensates, nuclear 
spins in a quantum dot, and Josephson junctions [107]. 

As discussed in Section 1.2, the concept of nonclassicality in quantum optics was initially 
developed independently of the characterization of entanglement and information-theoretic 
quantum correlation in discrete systems and were based primarily on the nonclassical as-

pects of the quantized field in terms of its statistical behavior and various experimental 
phenomena. We start the section with a short description of CV nonclassicality in terms 
of the Wigner quasiprobability function and briefly discuss the nonclassical indicators asso-
ciated with sub-Poissonian statistics and quadrature squeezing. The last segment contains 
a brief discussion on entanglement and information-theoretic quantum correlation from the 
CV perspective. For a more detailed reading on nonclassicality of the electromagnetic field, 
including quasiprobabilies in phase-space representation, photon statistics, optical squeezing, 
and other interesting phenomena such as quantum interferometry, please see [64]. 
Wigner function: The nonclassicality of a quantum state can be studied in terms of its 
phase-space distribution characterized by the Wigner distribution. For a quantum state p, 
the Wigner function of the system is defined in terms of the coherent state basis [64] as 

(1.36) 

where h) = exp( -hl2 /2 + "Yat)IO) is a coherent state. By using the relation [108] 

00 

~ n-k _ (1 )-k-1 LnckY - -y , (1.37) 
n=k 

the Wigner function can be expressed in series form as 

(1.38) 

where 1/J, k) is the displaced number state [64]. 
A state with a non-positive Wigner function is essentially nonclassical, as it cannot be 

described in terms of a positive quasiclassical probability distribution in the coherent state 

representation. However, for a classical state, the positivity of the \Vigner function is a. 
necessary condition but not sufficient. For example, the Wigner function of the squeezed 
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state is Gaussian and positive everywhere but the state is a well-known nonclassical state 
[64}. 

We may consider a more generalized distribution function, viz. a parametrized quasiprob-
ability function U(F)(,B) describing a field state p, defined as [109} 

U(F) (,8) := .!_ Tr{pT(F) (,8)}, 
1r 

(1.39) 

where the operator t<F>(,B) is given by t(F>(,B) = * J exp(,B{* - .B*OiJ(F>({)£12{, with 
j)(F)({) = eFI{1212iJ(~) and D({) = e{aL{·a. The function u(F>(,B) can be rewritten in the 

number-state basis as U(F)(,B) = l L: p(n, m)(njT(F)(,B)jm), where the matrix elements 1r n,m 
of the operator fCF) (,B) are given by 

(njt(F>(,B)Im) = ( 
n!) I/2 (-2 )m-n+I (F + 1)n ,B*m-n 
m! 1- F F-1 

x exp (-~) Lm-n ( 41.Bj2 ) 
1-F n 1-F2 ' 

(1.40) 

in terms of the associated Laguerre polynomials L~-n(x). The above equation gives explicitly 
the F-dependence of U(F)(,B). For the special values ofF= 1, 0 and -1, U(F)(,B) becomes 
the Glauber-Sudarshan P, the Wigner W, and the Husimi Q functions, respectively (for a 
description, see [64]). The negativity of U(F)(,B) for any value of the parameter F indicates 
nonclassical nature of the state. 

The nonclassical nature of a positive Wigner function can be determined using other 
nonclassical features of the state, such as sub-Poissonian statistics and quadrature squeez-
ing. These features, discussed later, can be attributed to the negative values which arise 
due to the dispersion of normally-ordered observables that are not captured by the Wigner 
function [110]. In such cases, the nonclassicality is often manifested by the negativity of 
the F-parametrized distribution. The Wigner function can be mathematically extended to 
encompass multimode CV systems. 

Sub-Poissonian statistics: Mandel's Q parameter: The quantum character of a field can be 
demonstrated either in measurements of time intervals T between detected photons demon-
strating antibunching, or in photon counting measurements yielding sub-Poissonian statis-
tics. The condition for sub-Poissonian photon statistics is given by ((b.n)2)- (n) < 0, where 
n is the number operator, which makes the normalized second-order intensity correlation 
function, -y(O) < 1. The states with sub-Poissonian statistics have no classical description. 

To determine the photon statistics of a single-mode radiation field, we consider Mandel's 
Q parameter defined as [ 111] 

( -t2-2) (-f -)2 a a - a a 
Q- (at a) (1.41) 
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Q = 0 stands for Poissonian photon statistics. Q < 0 corresponds to the case of sub-
Poissonian distribution. This means that a nonclassical state often shows negative Q values. 
Squeezing: The quadrature squeezing of a field can be used to study its nonclassical proper-
ties. To analyze th~ squeezing properties of the radiation field, we introduce two hermitian 
quadrature operators 

(1.42) 

These two quadrature operators satisfy the commutation relation [X, Y] = 2i, and, as a 
result, the uncertainty relation (L\X) 2(L\Y)2 2: 1. A state is said to be squeezed if either 
(L\X) 2 or (L\Y)2 is less than its coherent state value. To review the principle of quadrature 
squeezing [112), we define an appropriate quadrature operator 

Xo = x cosO+ Y sinO= ae-i8 + atei8• {1.43) 

The squeezing of X 8 is characterized by the condition (: (L\Xll? :) < o, where the double 
dots denote the normal ordering of operators. After expanding the terms in(: (L\X8 ) 2 :) and 
minimizing its value over the whole angle 0, one gets 

Sopt - (: (L\XB)2 :)min 

- -2l(at2)- (at)21 + 2(ata)- 2l(at)l2· {1.44) 

The nonclassical states correspond to the negative values of Sopt. -1 :S Sopt < 0. 
The negativity of the Q function and squeezing are not necessary conditions for identifying 

nonclassical regimes of quantum states but are sufficient ones. As mentioned earlier, the Q 
function and the squeezing parameter S can be negative and hence nonclassical for states 
that have a positive Wigner function, as shown in [110]. Conversely, there are also instances 
where states with partial negative Wigner functions have positive Q functions [113]. 
Quantum correlation in continuous variable systems: A typical CV state can have two types 
of representations, both in the infinite-dimensional Hilbert space. A bipartite CV state 
can be represented in terms of two-mode continuous variable momentum and position basis 
or in the discrete, but infinite-dimensional two-mode number state basis. The archetypal 
bipartite entangled CV state is the two-mode squeezed vacuum state (TSVS). In the phase-
space representation, the Wigner function of the TSVS is given by [114} 

W(xt.X2,PI.P2) = 
4
2 exp {e-2

r [(xi +x2)2 +(PI- P2)2]- e2
r ((xi- x2)2 +(PI+ P2)2]}, 

1f 
{1.45) 

where r is the squeezing parameter. For r --t oo, the state reduces to the form b(xi -

x2 )c5(pi + p2 ), which is a maximally entangled state [23}, as envisioned by the EPR argument 
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[2J. In the number state basis, the TSVS is given by 

n 

where A= tanh2 r. The number-state basis for the TSVS state above, is also the Schmidt 
basis and the bipartite entanglement can be quantified by the von Neumann entropy or 
entanglement entropy. The analytical form is given by [115] 

Ersvs = -log2(1- A)- Alog2 A/(1- A)= cosh2 r log2 cosh2 r- sinh2 r log2 sinh2 r. (1.47) 

Importantly, pure Gaussian states, which are the most resourceful CV states with respect 
to quantum information theory protocols [107], can all be transformed using local transfor-
mations to two-mode squeezed vacuum states, enabling easy quantification. The principal 
criteria for a two-mode pure state to be entangled are the following i) Schmidt rank greater 
than 1, ii) von Neumann entropy of reduced state is finite, and iii) it violates nonlocality 
[24]. 

The mixed state entanglement of a CV state can be defined in terms of the positive partial 
transpose (PPT) criteria. For example, it is known that aN-mode Gaussian state with a non-
positive PPT is entangled. To completely understand the problem, one needs to characterize 
the PPT criterion for CV states [116]. The transposition operation in the CV regime, 
is given by the following operation, t,T = ft,T = (xt,-PI.X2,-P2,··-,XN,-PNV, where 
f, = (xt,p1,x2,p2, ... ,xN,PN) is the set of the position and momentum variables of theN-
mode CV state. Similarly, in vector notation,~= (±t.fi1, .•• ,i:N,PN)- For, Gaussian states, 
the transposition can be represented as a transformation in the covariance matrix (VN), such 
that yN -7 rvNr_ The covariance matrix VN has the second moments of~ as it elements, 
~f = H { L\~i, L\~i}), where L\~i = ~i - (~i) and {,} is the anti-commutator. The 2N x 2N 
real, symmetric covariance matrix must satisfy the uncertainty relation, VN +in ~ 0 (117], 
where for annihilation (creation) operators a (at), we define b = (a1,a1,a2,at ... ,aN,a!v), 
and nii = [bi, bi), is a 2N x 2N matrix whose elements are the bosonic commutations. 

The partial transposition can be applied using the matrix r ~-' EBliv on a bipartite Gaussian 
system p, and v, with Nt< and N~-' modes, respectively. The criterion that the following 
transformation of the covariance matrix, 

(1.48) 

vio!ates the uncertainty relation, is a sufficient criterion for inseparability (116, 118]. For 
Gaussian states ·with Nt<=Nv =1 [116} and N~-'=1, and N~-' =N (118], the condition is also 
necessary. It also holds for general N~-' x Nv Gaussian states that are bisymmetric [119]. 

'• 
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For an arbitrary bipartite two-mode CV state p, the inseparabilty criteria can be formu-
lated independent of the partial transposition, using the position and momentum uncertainty 
and the Cauchy-Schwarz inequality [120], given as 

-(1.49) 

where, u = lalx1 - x2/a, v = !alfi1 - fi2/a, and a is an arbitrary non-zero parameter9 • 

The information-theoretic measure of quantum discord can be extended to two-mode 
Gaussian states, with the subsystem measurement being a singlermode POVM [121] per-
formed using homodyne measurements [122). Any two-mode Gaussian state has a covariance 
matrix, ~, such that, 

2 ( A C) V = cr B , {1.50) 

where, A= all, B=bli and C=diag{c,c'}. The quantum discord can then be written as, 

Q cv (p) = h( J det A) - h(p+) - h(p_) - min h( Vdet/3), 
{v(l} 

where, the function h(x) is defined as, 

1+x (l+x) x-1 (x-1) h(x)=--log -- ---log --2 2 2 2 , 

(1.51) 

(1.52) 

and P± are the eigenvalues given by 2p~ =Z ± J Z2 - 4 det V2 , where Z =A+ B + 2C. f3=B-
C(A- Vo1 )-1aT. Vil refers to all pure singlermode Gaussian state covariance matrix [21, 121]. 

1.6 Outline of thesis 

In this section, we present a short outline of the division of the chapters in the thesis and 
the central problem being addressed. The thesis is divided into two parts (I and II), with 
two chapters in each part. The primary results presented in the thesis are adapted from 
References [123-128]. 

In Part I of the thesis, we study the characterization of entanglement in a class of large 
superposed states, obtained from nearest-neighbor dimer coverings on spin-1/2 lattices, also 
called resonating valence bond (RVB) states [129), which are possible ground states of the 
Heisenberg spin-1 /2 lattices. RVB systems have generated a lot of interest for possible 
connection to high-Tc superconductivity and exotic topological phases (129]. RVB states 
have been experimentally simulated using ultracold atoms in optical lattices and are of 
interest in QIT for its possible role in fault-tolerant quantum computation. 

9The Equation (1.49) has been taken from Refere~ce !24]. 
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In Chapter 2, we investigate the behavior of bipartite and multipartite entanglement 
properties of a quantum spin-1/2 ladder, with RVB ground states, and contrast it with the 
results for isotropic quantum lattices {123]. Using quantum information theory concepts such 
as monogamy, of entanglement and quantum telecloning, we obtain analytical bounds for the 
behavior of entanglement in quantum spin-1/2 ladders. Further, using QIT properties such 
as strong sub-additivity of von Neumann entropy, we show that infinite or periodic isotropic 
quantum spin-l/2lattices, are always genuinely multipartite entangled. We follow this with 
a numerical estimation of the amount of bipartite and multipartite entanglement in the two-
leg RVB ladder. We observe that the amount of nearest-neighbor bipartite entanglement in 
the rails of the ladder decreases with increasing size in contrast to the behavior of bipartite 
entanglement along the rungs of the ladder. Further, the multipartite entanglement decreases 
with increasing size. The obtained numerical values strictly follow the analytical bounds 
obtained from QIT. The behavior of bipartite and multipartite entanglement in the RVB 
ladder is in stark contrast with their behavior for isotropic RVB systems, which tends to 
have negligible bipartite entanglement with finite multipartite entanglement. We observe 
that a change in geometry of RVB systems can radically alter the qualitative behavior of 
both bipartite and multipartite entanglement. 

In Chapter 3, we extend our study of RVB systems to characterize genuine multipartite 
entanglement in multi-legged quantum spin-1/2 ladder and isotropic lattices with a large 
number of spin sites [124, 125]. Calculating relevant physical quantities, such as entangle-
ment, for large sized lattices, is limited by computational difficulty. However, we introduce a 
new iterative analytical technique, the density matrix recursion method, to efficiently calcu-
late reduced density matrices of large RVB states. This allows us to characterize the behav-
ior of genuine multipartite entanglement in large RVB systems using a computable measure 
called generalized geometric measure. We apply this technique to distinguish between even 
and odd multi-legged ladders. Specifically, we show that while genuine multipartite entan-
glement decreases with increasing system size for the even-legged ladder, it does the opposite 
for odd-legged ones [124]. For the isotropic lattice, the iterative analytical method is used 
to calculate the entanglement of finite-size 2D lattices, which through finite-size scaling, en-
ables us to obtain an estimate of the genuine multipartite entanglement in an infinite square 
lattice [12~]. 

In Part II of the thesis, we study and compare the dynamics of information-theoretic 
quantum correlation measures and entanglement in two archetypal quantum systems from 
many-body physics and quantum optics. The first is the infinite anisotropic XY-spin chain in 
a transverse magnetic field while the second is a three-level atom interacting with classical 
optical fields. Since no unique analytical results exist relating that operationally relate 
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the two paradigms of quantum correlation, viz. entanglement-separability and information-
theoretic, finding quantitative relations between them in many-body systems or in quantum 
optical models may provide interesting insights. 

In Chapter 4, we investigate the dynamics of information-theoretic measures of quan-
tum correlation and entanglement, in a time-evolved nonequilibrium state of the infinite 
anisotropic quantum XY spin chain in a transverse time-dependent field [126, 127]. It is 

observed that nearest-neighbor entanglement undergoes a dynamical phase transition with 
respect to the field parameter leading to entanglement death and occasional revivaL We 
show that the dynamical phase transition of entanglement is qualitatively related to the dy-
namics of information-theoretic quantum correlation measures such as quantum discord and 
quantum work-deficit. We derive quantitative relations showing that the entanglement death 
and subsequent revival are heralded by the rate of increase of quantum discord {126) in the 
vicinity of the critical value of entanglement death. Further, the revival of entanglement is 
also directly related to the cumulative quantum work-deficit during the dynamical evolution 
of the system [127]. The behavior of quantum correlation also provides useful insights on 
other important aspects of the dynamics such as quantum quenching. 

In Chapter 5, we analrtically derive and characterize the dynamics of two-photon quan-
tum correlation generated by the interaction of a three-level atom in the :=:, A, or V configu-
ration, with two classical external driving fields [128]. Using the example of a rubidium atom 
in each configuration, in the presence of level decays, under the rotating-wave approximation 
and using the single-photon approximation, one can compute information-theoretic correla-
tion, such as measurement induced disturbance, quantum discord, and quantum work-deficit, 
and compare the results with that of entanglement, for the generated two-photon state. It is 
observed that the qualitative hierarchy, monotonicity and steady-state behavior of the quan-
tum correlation can be controlled through the choice of parameters such as atomic decay 
constants and external driving field strengths. 

In Chapter 6, we summarize the basic results of the thesis and briefly discuss future 
directions that emanate from the results obtained in the research work. 

In Appendix A, we provide an example for the generation of entanglement m CV 
optical states, using a superposition of number-conserving non-Gaussian operations. The 
bimode entangled states are observed to b~ efficient quantum channels in CV quantum 
teleportation protocols. The study demonstrates the ready applicability of CV states in 
quantum information protocols. 
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PART I 

Characterization of entanglement in quantum spin-1/2 lattices 

In this part of the thesis, we investigate the characterization of both bipartite and mul-
tipartite entanglement in quantum spin-1/2 lattices, with short-range dimer covered 
ground states, the so called resonating valence bond states. We first use quantum 
information theory concepts to study the behavior of entanglement in ladder and 
isotropic quantum spin-1/2 lattices. We then devise a recursion technique to obtain 
the behavior of entanglement in large quantum spin-1/2 systems. The results ob-
tained provide us with valuable information regarding the distribution and scaling of 
entanglement in quantum spin systems and its strong dependence on geometry. 



CHAPTER 2 

Entanglement in quantum spin-1/2 lattices: 
ladder versus isotropic resonating valence bond liquids 

If people did not sometimes do silly things, nothing intelligent would ever get 
done. - Ludwig Wittgenstein 

In this chapter, we study the behavior of bipartite as well as multipartite entanglement 

in quantum spin-1/2 lattices, with possible resonating valence bond (RVB) liquid 
ground states. We compare the behavior of entanglement of RVB liquids on a two-

legged pseudo-20 ladder with isotropic 20 or 30 lattices. Although there is negligible 
bipartite entanglement present in the r.Uis of the RVB ladder. as is the case for 

isotropic RVB lattices, we show that the system possesses significant amounts of 
bipartite entanglement in the steps of the RVB ladder. Further, we also establish 

that the genuine multipartite entanglement in the RVB ladder system is substantially 

low in contrast to isotropic RVB lattices. Therefore, both the properties of bipartite 

as well as multipartite entanglement in the RVB ladder are contrary to the behavior 
of entanglement in isotropic RVB lattices, indicating that the geometry of the lattice 

can play a significant role in quantum information processing tasks. Our results also 

indicate that numerical and analytical investigations obtained on two-legged ladders 

cannot infer the quantum correlation content in two-dimensional isotropic lattices.1 

1The primary results of this chapter are adapted from: H.S. Dhar and A. Sen(De), J. Phys. A: Math. 
Theor. 44, 465302 (2011); H.S. Dhar, A. Sen(De) and U. Sen, Phys. Rev. Lett. 111, 070501 (2013). 
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2.1 Introduction 

In quantum many-body physics, quantum spin-1/2 lattices have received a lot of atten-
tion due to its importance in the description of different important nonclassical phenomena. 
Quantum spin-1/2 states, that we consider, are formed by the superposition of short-range 
dimer coverings, also known as short-range resonating valence bond (RVB) states {l-4J, 
and have potential use ranging from the description of covalent bond structure in organic 
molecules [1, 2} to fault-tolerant quantum computation [5]. Such quantum spin-1/2 states, 
under the RVB ansatz, have been used to study many fundamental aspects of quantum 
many-body physics, such as Mott insulators [4], high-temperature superconductivity {6, 7], 
insulator-superconductor transitions in doped diamonds [8} and topological quantum com-
puters [5}. Further, such RVB states have interesting short-range and multipartite entan-
glement [9} properties that can be exploited for applications in quantum information theory 
(QIT) [1D-16). 

The quantum spin-1/2 ladder in the intermediate regime between the one- and two-
dimensional lattice structures [17) is an interesting platform to investigate quantum many-
body phenomena. The characteristic pseudo 2-D structure of ladder states (obtained by 
assembling spin chains one next to the other to form ladders of increasing width) have 
recently generated a lot of interest in theoretical condensed matter physics. It has been 
found that ground states of antiferromagnetic Heisenberg models (with suitable couplings) 
on even ladders (consisting of two or more even number of chains) can be RVB states [18-20). 
RVB ladder states have been proposed in the study of superconductivity in systems, such 
as doped (V0)2P207 [18] and the study of transitions from 1-D RVB chains to 2-D RVB 
spin systems [19). Quantum information concepts, such as entanglement and fidelity, have 
been studied on different spin ladder systems [21], and protocols for transmission of quantum 
states through such systems have also been presented (22} (cf. [23}). Quantum properties of 
such systems have also been tested experimentally in several systems or proposals thereof 
have been presented, including in compounds and cold gas [24-27). 

In this chapter, we study the behavior of entanglement in quantum spin-1/2 ladders, 
with possible RVB liquid ground states, and contrast the results with that of an isotropic 
lattice in two or higher dimensions. To elaborate, we consider ladders consisting of two 
chains (2 x M ladders, N = 2M spins), of different lengths and show that the bipartite as 
well as multipartite entanglement characteristics of an RVB ladder state are significantly 
different from that of an isotropic RVB lattice. Bipartite entanglement between neighboring 
sites are of two different types for the case of a RVB ladder due to the asymmetry of the 
ladder lattice. We show that while the bipartite entanglement of the neighboring sites on 



2.2. RESONATING VALENCE BOND LIQUIDS 41 

the rails of the RVB ladder is insignificant, that of the steps (or rungs) is substantiaL This 
intuitively suggests that multipartite entanglement of the RVB ladder is negligible which is 
confirmed by considering measures of multipartite entanglement. This observation is in sharp 
contrast with that of an isotropic 2D or 3D RVB lattice, where the single type of nearest-

. . . 
neighbor (NN) bipartite entanglement is negligible, while the state is genuinely multiparty 
entangled [11). We reach our conclusions via analytical bounds on entanglement measures 
using QIT concepts and also by exact numerical calculations. The asymmetry inherent in 
the ladder makes the analytical study of bipartite entanglement interesting and far from 
straightforward. The change in the entanglement properties can be attributed to the change 
in the geometry of the RVB system: a ladder is not isotropic. Our results show that this 
change in geometry has a marked effect on the entanglement properties of the system, and 
hence, on quantum information tasks possible therein. While it is expected that the value of 
entanglement should be different for a change in geometry, we find that such a change can 
effectively change the qualitative behavior of entanglement in the system. 

The chapter is arranged in the following way. We start with a brief introduction and 
mathematical formulation of the RVB liquid state in Section 2.2. We then discuss the 
characterization of bipartite and multipartite entanglement for the considered RVB lattice in 
Section 2.3. In Section 2.5, we analytically study the properties and bounds on entanglement 
in RVB systems, using quantum information concepts. We obtain numerical results for the 
bipartite and multipartite entanglement in finite-sized, two-legged RVB ladders in Section 
2.4. We end with a short concluding statement in Section 2.6. 

2.2 Resonating valence bond liquids 

Resonating valence bond states were introduced in 1938 by Pauling in organic, and later in 
metals and intermetallic, compounds [1, 2]. It was extensively studied in many-body physics 
ever since Anderson, in 1973, who presented the idea of using such states to explain the 
behavior of Mott insulators [3, 4]. The importance of RVB states grew immensely after 
the proposition of relating such states with high-temperature superconductivity [6, 7]. The 
possibility of topological quantum computation using RVB states have been proposed [5], and 
the entanglement properties of such states in isotropic two- and three-dimensional lattices 
have also been explored ·[I0-16]. Quantum spin-1/2 lattices with RVB substrates, have 
been successfully simulated by using atoms in optical lattices [28, 29], and, also by using 
interacting photons [30]. AB mentioned earlier, the short-range RVB ladders are believed 
to be possible ground states of certain undoped Heisenberg spin ladders, that is supported 
by various numerical methods which include mean field theory [31], quantum Monte Carlo 
[32, 33], and Lanczos [18, 34). In isotropic 2D systems, RVB-like dimer states are fo1,1nd 
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that constitute the RVB state are formed by using only NN dimers, the state 11/1} is generally 
referred to as an RVB liquid. In the remainder of the text, the term RVB state will refer to 
an RVB liquid state, unless otherwise stated. 

The dimer coverings are formed by·nearest-neighbor dimers, with each dimer being from 
a site in sublattice A to a nearest-neighbor site in sublattice B. Moreover, we consider the 
periodic boundary condition i.e., the corresponding strips (rails) are joined at the ends. The 
condition is slightly different for ladders with an odd number of steps, as compared to the 
ones with an even number of them. For ladders with an even number of steps, the ends of 
the ladder are such that any leg of the ladder has sites of different sublattices at the two 
ends, so that the ends of the ladder can be joined by dimers in a normal way for attaining 
periodic boundary condition, in the sense that there are two faces of the ribbon formed and 
painting. the ribbon with a brush only paints one face of the ribbon, if the brush is not lifted. 
The situation is different for ladders with an odd number of steps, where to connect the ends 
of the ladder with dimers beginning in one sublattice and ending in another, one has to twist 
the ribbon, so that after joining, the ribbon forms a Mobius strip. In the latter case, the 
same mode of painting as in the even-steps case, will paint the whole ribbon (without lifting 
the brush). 

2.3 Characterization of entanglement in RVB liquid 

From the perspective of QIT, concepts such as entanglement [9] and other information-
theoretic quantum correlation (44] have been applied to understand quantum critical phe-
nomena in spin systems [45, 46]. Incidentally, large dimerized spin systems with exotic 
topological phases (3, 47], such as an RVB liquid, are a crucial many-body substrate that 
can be a useful resource in QIT applications, such as fault-tolerant computation [5]. In this 
section, we characterize the NN bipartite entanglement and the genuine multisite entangle-
ment in quantum spin-1/2 RVB systems. 

We begin by deriving the nearest-neighbor bipartite states of an RVB liquid. To obtain 
the bipartite density matrix, p12 , between any site (say, 1) in A and one of its nearest 
neighbors (say, 2) in B, we take the partial trace of the whole RVB liquid over all sites 
except 1 and 2: p12 = Tr12 l¢) (¢1, where Tr12 represents the partial trace over all sites other 
than 1 and 2. Rotational invariance of I¢) implies that p1i (and all other reduced density 
matrices of I¢)) is also rotationally invariant. The only rotationally invariant two-qubit 
states are the singlet and the maximally mixed state. Therefore, p12 is the Werner state [48], 
given by 

(2.2) 
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I I T • 1 2 3 
1. X 3 RVB LADDER I (a 1, 1J 1 ))l(a 2 . b2 )}1 (a 3 . b3)} 

tlJ • ). I = + . ( • 1 2 3 1 2 3 

13}123 I (a 1• b2 ))1 (a 2 . b 1 ))1 ( a 3 • b3 )} 

I . ( • • sublattice A (a.,:) + • sublattice B (bj) • ) . 
1 2 3 

I (at , b t))l(az . ba ))l (a a. b2)) 

Figure 2.2: There are 3 possible dimer coverings on a 2 x 3 RVB ladder with open boundary 
conditions , contributing to the summation of the RVB ~tate lv';) = J3)123 . given by Equation 
(2. 1) . The sublattices are the same as defined in Figure 2.1. The dimers in eYery covering 
satisfy ai E A and bj E B. The singlets are shown by arrows. 

where the mixing or Werner pammeter·. p satisfies - 1/3 :S:p:S: 1, and /4 is the identity oper-
ator of the four-d imensional complex Hilbert space. Bipart ite entanglement (BE) measur s, 
such as entangkment of formation [49] and concurrence [50. 51]. are monotonic functions 
of p. Hence. instead of ca lculating entanglement measures explicitly. w<' will investigate the 
behavior of p with respect to increase of system size. l\ote here that the vv·erner state is 

entangled for p > 1/3 [48]. 
From the geometry of the RVB ladder. it intuitivelv seems that the Werner parameter 

p will be different for the steps and the rails and there are two types of nearest-neighbor 

bipartite states: along any one of the rails. and on a step (sec Figure 2.1 ). \A/e denote 

the \.Verner parameter p of a Werner state along a rail as Pr. while that on a step as Ps. 

Under the considered periodic boundary conditions . all the bipartite states along the rails 
are equivalent to one another. and so are the states on the steps. The two-qubit state on 

the rails and steps. however. may be inequivalent. A ladder has the propertY that every site 

on it is on the boundary. Hmvever. the boundary for a rail-state is different from that of a 

step-state: the former touches only one edge of the boundary, while the latter touches both. 
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Intuitively, this difference in the relative placing of the rail- and step-states in the general 
structure of the ladder, will lead to different Werner parameters. 

The genuine multipartite entanglement in the RVB liquid state can be calculated using 
the generalized geometric measure (GGM) [52, 53}, defined in Section 1.3.4. To calculate the 
GGM one needs to obtain the maximal Schmidt coefficient square in all possible bipartite 
splits A : B of 11/1}, which can be obtained from the square root of the eigenvalues of the 
reduced density matrix, PA = trBI1P)(1/JI, as shown in Equation {1.23). Hence, the GGM can 
be calculated by obtaining the n-site reduced density matrices of the pure RVB liquid state, 
11/J) corresponding to different bipartition splits. The bipartite state {p12) in Equation {2.2) 
is a possible two-site reduced density matrix. Similarly, an n-site reduced density matrix is 

obtained using, P12 ... n = tr I2 ... ni1P){1/ll-3 

2.4 Numerical evaluation of entanglement in RVB ladders using pe-
riodic boundary conditions 

In this section, we obtain numerical values using exact diagonalization, to obtain the bi-
partite and multipartite entanglement in finite-size, two-legged RVB ladders. The bipartite 
entanglement is quantified using the Werner parameter p, and the genuine multipartite en-
tanglement is quantified using the generalized geometric measure. 

2.4.1 Bipartite Entanglement: Steps versus Rails 

We know, by symmetry, there are only two types of nearest-neighbor bipartite states in the 
RVB liquid on a ladder: along any one of the rails, and on a step, with Werner parameter 

Pr and Ps, respectively. 
As shown in Figure 2.3, the values of Pr consistently decrease with the increasing system 

size N, and hence bipartite entanglement on the rails decreases with the increasing N, similar 
to the case of an isotropic lattice. Interestingly, the bipartite entanglement (BE) of the steps 
increases with respect to N (see Figure 2.4).4 This complementary behavior of the NN 
bipartite entanglement between the rails and the steps is further supported by the analytical 
results obtained from quantum information tools such as monogamy of entanglement and 

3The derivation of reduced density matrices in arbitrary sized RVB lattices is numerically constrained 
by the sheer size of Hilbert space. As shown in the next chapter (Section 3.3}, this can be overcome using 
innovative analytical techniques based on recursion of the density matrix [15, 16]. 

4 There is a slight decrease in BE before the increase occurs. This effect is due to the periodic nature of the 
RVB liquid. There is a slight difference in the periodic boundary conditions between ladders made of an even 
number of steps and those with an odd number of steps, as mentioned earlier. The BE values for the odd 
and even cases are separately monotonically increasing, while finite-size effects have led to small oscillations 
between neighboring even and odd step system-sizes, for very small system sizes. This is observed at lower 
values of N, but blurs out at higher values. It does not affect the predictions qualitatively. 
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asymmetric quantum telecloning in Section 2. 5 . 
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Figure 2.3: Bipartite entanglement on the rails. The decrease of the entanglement parameter 
Pr with increasing N is clearly seen. Here, N = 2M is even. 
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Figure 2.4: Bipartite entanglement on the steps. In sharp contrast to the isotropic case, 
bipartite entanglement on the steps, as parametrized by p8 , increases with increasing system 
size N. Here, N =2M is even. 

Therefore, already at the level of bipart ite entanglement , one obtains a trade-off between 
the two different forms of nearest-neighbor entanglement , in the case of an RVB liquid on a 
ladder. Contrast this with the case of a square lattice or any other isotropic lattice. where 
the corresponding RVB states have only a. single type of nearest-neighbor entanglement due 

to its symmetry and its value decreases with increasing system siz [11]. 

2.4.2 Negligible genuine multipart ite entanglement 

The numerical results in Section 2.4.1 on the values of N N bipartite entanglement air ad 

suggest that the RVB liquid on a. ladder has negligible or no genuine multiparty entanglem nt. 
This is due to the fact that for a. mult ipartite state, maximal bipartite entanglement in any of 
its two-party reduced density matrices leads to no genuine multipartite entanglement, which 
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is evident from the results presented , that t he bipartite entanglement of the stales on the 
steps are near-maximal or maximal. A maximally entangled state in d ® d must be pure5 

( cf. [54]) , and hence cannot have any correlation, classical or quantum . with the other part 
of the quantum system ( cf. [55]). 6 

In this segment. we concretize these evidences by direct computation of a measure of 
genuine multiparty entanglement for the systems under study. 

To quantify the amount of genuine mult iparty entanglement present in the RVB liquid 

on ladders of different sizes, we consider a genuine multipartite entanglement measure called 
generalized geometric measure (GGM) [52. 53] (see Section 2.3). 
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Figure 2.5: Genuine multipartite entanglement measure of RVB liquid on ladders. The 
figure clearly shows that the genuine multiparti te entanglement decreases with the increase 
of system size N. Here. N = 2!11 is even. 

In Figure 2.5 , we find that indeed the GGM for the RVB liquid on a ladder , decreases 
with increasing N. We also notice that when performing the maximization for obtaining the 
GGM , the maximum Schmidt coeffi cient is obtained when the maximum number of steps 
are included on one side of the bipartition. This can be explained by the complementary 

behavior of bipartite entanglement in steps and rails as discussed earlier. Therefore. the trend 
of multipartite as well as bipartite entanglements indicate that for large N. only bipartite 

entanglement in the steps will remain, while bipartite entanglement of the rails as well as 
multipartite entanglement of the whole RVB liquid will disappear. 

5M. Horodecki, U. Sen. \ 'V.K. Wootters, and A. Sen(De). private communication (2002). 
6 For a. clearer explanation, check the theorem on Section 2.5.3 or consul t the section on mutipa.rtite 

entanglement in Section 1.3 .4. 
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2.5 Analytical estimate of entanglement from quantum information 
tasks 

The behavior of bipartite and multipartite entanglement in short-range RVB latt~~ can be 
characterized using concepts of quantum information theory such as monogamy of entangle-
ment [56, 57}, asymmetric quantum cloning [58] and strong sub-additivity of von Neumann 
entropy {59]. In Reference [11], it was shown using the monogamy of entanglement and 
quantum telecloning properties, that while large isotropic, 2D or higher dimensional RVB 
lattices have finite multisite entanglement, they possess negligible bipartite entanglement. 
Using a variation of these quantum information-theoretic tools, we derive upper bounds on 
entanglement for the pseudo-2D RVB liquid ladders and demonstrate that the results cannot 
be extrapolated to isotropic 2D lattices (13]. We also present an exhaustive proof to show 
that isotropic RVB lattices, with necessary boundary conditions, are always genuinely mul-
tisite entangled {16}, which from numerical results in Section 2.4.2, is known to be untrue for 
RVB ladders. A qualitative analysis using QIT properties shows that the change in geometry 
affects the behavior of both bipartite and multipartite entanglement [13]. 

2.5.1 Upper bound on bipartite entanglement from monogamy of entanglement 

A first estimate on the bipartite entanglement can be obtained by using the quantum 
information-theoretic property of monogamy of entanglement (56, 57}. Let us consider an 
arbitrary site iA, say on sublattice A of the bipartite lattice. Each site is surrounded by three 
NN sites, belonging to the sublattice B. Rotational invariance of the state l'l/1} ensures that 
all the three NN bipartite states are in Werner states, of which two have Werner parameter 
Pr (along the rail), and one hasPs (along the step). The monogamy of entanglement [56, 57] 
demands that 

(2.3) 

r{p) is the concurrence [50, 51] of the bipartite state p, as defined in Section 1.3.3.3. For a 
Werner state, p(p), r(p) = (3p- 1)2 /4. Further, r 1,restCI'l/1}) is the tangle of the state l'l/1} 
in any bipartition of one site to rest of the sites, and is bounded by 1, i.e., ruest<l'l/1)) :5: 1. 

Hence, the tangle for the NN rail/step state is r(p(Pr;s)) = (3Pr/s - 1)2 /4, so that the 
monogamy inequality reads [13} 

(2.4) 

The bound on Pr and Ps obtained in the form of the above inequality is depicted in Figure 
2.6. The 2D projection of the surface in Figure 2.6 clearly shows that the allowed value for 
Ps can go up to 1 while the same for Pr is :5: 0.8. The complementary behavior between the 
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Figure 2.6: Estimate of Werner parameters from the monogamy of entanglement. The 
allowed combinations of Pr and Ps are those for which the surface (3pr -1)2 /2+(3p8 - 1)2 /4 -1 
is negative, and can be read off from the projection of the surface. 

entanglement in the rails and steps can be anticipated from the monogamy inequality and 

Figure 2.6. A numerical increase in Ps with increasing ladder size will imply a decrease in Pr· 
The monogamy relation here is enunciated by using the three NN sites of any given lattice. 
In principle, it is not necessary to restrict oneself to only the NN sites, and a monogamy 
relation using all sites of the lattice can also be considered. Such a non-NN site monogamy 
relation is relatively simple to handle in isotropic states due to symmetry but is complicated 
for t he case of an RVB ladder. Since the RVB liquid involves only nearest-neighbor dimer 
coverings, it is plausible that a monogamy relation involving only nearest-neighbor sites will 

be sufficiently strong to obtain the information required from it. 
For isotropic 2D RVB lattice Pr= Ps = p, the monogamy bound on p, for four NN sites is 

given by p ::; 2/3. For R non-NN bipartite states, the monogamy relation for isotropic RVB 

states can be written as, R x (3p - 1)2 /4::; 1, and the bound on p reduces to [11], 

2 1 
p< --+-. - 3VR 3 

2.5.2 Bounds on bipartite entanglement from asymmetric telecloning 

(2.5) 

More stringent estimates on bipartite entanglement can be obtained by using information-

theoretic properties of a general quantum teleportation channel [60, 61] and the distribution 
of information in asymmetric quantum cloning [58]. 
Asymmetric quantum telecloning: The optimal fidelity of quantum teleportation using a 

d x d bipartite system is directly related to its maximal singlet fraction F , by the relation 

f = Fd + 1 
d+ 1 , (2.6) 

where f is the fidelity of teleportation [61 J. For a generalized d x d Werner state, the singlet 
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fraction is related to the Werner parameter p, by the relation, 

1-p 
F= p+ --;p-· 
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{2.7) 

Hence, the optimal fidelity of quantum telepoftatiori in terms of the Werner parameter, using 
Equations (2.6) and {2.7), is given by the relation (Equation (14) in Reference [61}), 

1-p 
l=p+-d-. {2.8) 

If the NN bipartite states in an RVB ladder (d = 2} are used as quantum teleportation 
channels, the fidelity of teleporting an arbitrary auxiliary qubit from any site iA, in sublattice 
A, to its three neighboring sites, in sublattice B, will depend on the Werner parameter Pr 
(along the rails) and Ps (along the steps). From Equation (2.10), the teleportation fidelity 
of the output state using NN sites on the same rail (as iA) and the NN site along the step 
is given by, 

lr = (Pr + 1)/2, Is= (Ps + 1)/2. (2.9) 

However, quantum mechanics implies that the fidelities of the output states in any tele-
portation protocol along 1 + n bipartite quantum channels cannot exceed the fidelities of 
1 + n approximate clones of the initial state in the optimal 1 ~ ( 1 + n) asymmetric quantum 
cloning machine [58] (also see [62]). For n > 1, the corresponding fidelities in the optimal 
1 -+ (1 + n) asymmetric cloning, can be written as (Equation (1) in Reference [58]), 

l cl = 1- ~y2 
I 3 ' 

1 1 
~~ = 2 + 3n [y2 + Jn(n + 2)xy], (2.10) 

where, x2 + y2 = 1. For quantum teleportation along the three NN bipartite sites in an RVB 
ladder, the fidelity is constrained by the optimal 1 -+ (1 + 2) asymmetric quantum cloning, 
corresponding to one NN along the step and two along the rails (n = 2) of the site iA. Hence, 
the expression for asymmetric cloning in Equation (2.10} can be rewritten as, 

f cl = 1- ~y2 
s 3 ' (2.11} 

The fidelity constraint implies that, lr :S g 1 and Is :Sf</. Taking, x =cosO andy= sinO, 
and using Equations (2.9} and (2.11) for the expression of teleportation and cloning fidelities, 
we obtain the following bound on the Werner parameters Pr and Ps, 

Pr :S ~(sin2 0 + J2 sin 20), 1 4 . 20 
P < - -sm 
s- 3 ' (2.12) 

for all possible 0. This gives us the bound from asymmetric telecloning [13}. 
From the asymmetric telecloning bound obtained in Equation (2.12), we note here that 

if 0 ~ 0, it would imply Pr :S 0 and Ps < 1. Moreover, Pr :S 0 will imply no bipartite 
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Figure 2.7: Decrease of Bmax for increasing N. The dots represent Bmax obtained from 
Equation (2.12) corresponding to N = 6, 8, 10, 12, 14. Red (dashed) and blue lines are 
respectively linear (0 .741298 - 0.0177198x) and quadratic (0.659286- 0.00088135x2) fits of 
the points. Th corresponding mean square errors are 1.22 x 10- 3 for the linear fit and 
1.06 x 10-3 for t he quadratic. 

entanglement in the rails while t here can be some in principle, maximal entanglement in 
the steps. The question remains whether B will converge to zero for large RVB ladders. 

To obtain estimates of B, we insert the values of Pr and p5 , that have been obtained from 
the numerical simulations (for different N). in the inequalities in Equation (2. 12) [13]. We 
then solve the above inequalit ies to obtain BE Sf for the first inequality for a fixed N, and 
similarly B E St' . We now consider the allowed B lying in the intersection Sf nSf , and plot 

Bmax = max{ B : B E Sf nSf} with respect to N. \11/e find that Bmax is decreasing with the 
increase of the size of the lattice, as shown in Figure 2. 7. The dots in Figure 2. 7 represent Bmax 

obtained numerically from Equation (2.12) corresponding to system-sizes N = 6, 8, 10, 12, 14. 
We then fit this data with linear as well as quadratic equations. The respective mean square 
errors are 1.22 x 10-3 and 1.06 x 10-3. Both fits predict a vanishing Bmax for larger N [13]. 
Therefore, the inequalities in Equation (2.12) also show the complementary behavior between 
the bipart ite entanglement in two N::\ sites along the rails and steps. We observe that the 
entanglement in the steps is near-maximal or maximaL while along the rails it vanishes. 

Hence, one can infer that as the system approaches the thermodynamic limit ( N ---+ oo) , 
the system reduces to a series of near-maximally entangled steps with minimal entanglement 
along the rails. Another perspective of t he same facts , as obtainable regarding bipartite 
entanglement from Equation (2.12). is given in Figure 2.8. 

For isotropic 2D RVB lattice. Pr= Ps = p, the fidelity of the output states in the tele-
portation protocol cannot exceed the fidelity of n approximate clones of t he initial state in 

the optimal 1 ---+ n symmetric cloning., which is equal to 2~~ 1 [63]. For n = 4 TN in the 
2D RVB lattice the optimal cloning is equal to 3/4. Hence, the bound from telecloning i 
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Figure 2.8: Complementary behavior of the entanglement on the rail with that on the step. 
The bound on Pr and p5 , as obtained from the Equation (2 .12). for all possible values of e, 
is depicted by t he ellipse in t he figure. The allowed combinations of p1• and Ps fall inside the 
ellipse. The (red) open curve is the quadratic fit ( -0.858x2 + 0.241x + 0.67) of the (black) 
circles, which are in turn the values found by exact calculations for N = 6, 8, 10, 12, 14. 
All calculated points are within the bounding ellipse. It is evident that as Ps attains the 
maximum value 1, t he value of Pr goes to 0. 

given by ~ :S 1· which implies p :S ~· Using n = R non-.\! bipartite states the bound 
on entanglement can be further lowered [11]. The fidelity inequality for non-Nl\ bipartite 

states is given by, 
p + 1 2R + 1 1 2 
-2- :S 3R = 3 + 3R (2 .13) 

For high values of R, the bound on pis given by, p :S ~ ' which is the separabili ty limit [11]. 
The telecloning bound for p in isot ropic RVB states is tighter that the bound obtained from 

monogamy of entanglement . 
The analytical bounds on the two types of N T bipartite entanglement present in the RVB 

liquid on ladders give us evidence that there is negligible or no mult ipartite entanglement for 
large RVB ladders. in contrast to the case of isotropic lattices [11] . as maximal entanglement 
in any two-party reduced state implies that the parent multiparty state is not genuinely 

multiparty entangled. In the next segment, we observe that isotropic RVB lattice~ are 
always genuinely multisite entangled, in contrast to two-legged RVB ladders. 

2.5 .3 Genuine multisite entanglement of isotropic RVB lattices using strong 
subadditivity 

As mentioned earlier, a mult iparty pure state is said to be genuinely multisite entangled if it 
is entangled across every possible bipart ition of the system. In this section. we show that all 
isotropic RVB state with infinite number of spins or with suitable boundary conditions are 

always genuinely multisite entangled. We exploit t he rotational invariance of RVB liquid 
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and the strong subadditivity of von Neumann entropy (59} to prove the following theorem. 

Theorem: The pure state formed by superpositions of dimer coverings is genuinely multisite 
entangled for all isotropic quantum spin-1j2lattices of arbitrary dimensions that are periodic 
or infinite in all directions and all covering functions that are isotropic over the lattice {16}. 
Proof. The superposition state of the quantum spin-1/2 lattice consisting of, say 2N par-
ticles, such as the RVB liquid state in Equation (2.1), is a pure quantum state. To prove 
that this superposed state is genuinely multisite entangled, we are required to prove that the 
partial density matrix of the state across any bipartition cannot be pure. In other words, the 
density matrix of any p spins, formed by tracing the remaining 2N-p spins, is always mixed 
and, hence entangled to the rest. We conveniently divide the proof into the two cases where 
the number of spins (a) is finite in at least one part of the bipartition and (b) is infinite in 
both the parts. 

a) Finite case: For a rotationally invariant state, such as the dimer covered spin-1/2 
state under consideration, it is known that the partial density matrix of an arbitrary number 
of spins is also rotationally invariant. Moreover, for an odd number of spin-1/2 particles, 
there is no pure quantum state that is rotationally invariant. Hence, any odd bipartition of 
the system is always entangled to the rest of the system (see Figure 2.9(a)). For example, 
any single-site density matrix is ~I, where I is the 2 x 2 identity matrix, and therefore is 
maximally entangled to the rest of the lattice. 

Let us now consider the case of a bipartition with an even (finite) number of spins in 
one part. Consider any set X of an even number of sites. Let the partial density matrix of 
these sites in X, corresponding to the state 1¢), be p<X). Let us assume that p(X) is pure, 
which would imply that 1¢) is separable, contrary to the statement of the theorem. Let 
X= X'Uc, where c contains an arbitrary but fixed odd number of sites< lXI. (lSI denotes 
the cardinality of the set S.) In particular, lei can be unity. For an isotropic lattice, we can 
always find another equivalent set of spins, Y' U c, such that IY'I = IX'!, which is again pure 
(by the assumption) (see Figure 2.9(b)). The strong subadditivity of von Neumann entropy 
(59} implies 

(2.14) 

where S( ·) denotes the von Neumann entropy. Since p<X> and p<Y) are pure, and since von 
Neumann entropy is non-negative, we have S(p<X'>)+S(p(Y')) = 0, which in turn implies that 
p<X') and p<Y') are pure. This immediately implies that p<c) is pure. This is a contradiction 

as lei is odd. This part of the proof was partially presented in Reference [11]. 
b) Infinite case: Let us begin with the case of an infinite 2D square, dimer covered 

lattice partitioned into two half-planes by an infinite horizontal line. Let us assume that the 
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Figure 2.9: The entanglement of different finite and infinite bipartitions in an isotropic RVB 
lattice. (a) The odd:rest bipartition of the RVB lattice is always entangled as any odd 
rotationally invariant subsystem is always mixed. The odd partitions are shown in green 
boxes. (b) The even:rest bipart it ion. It can be proved that, by using strong suba.dditivity of 
von Neumann entropy, the existence of separable pure even partitions will imply the existence 
of smaller odd subsystems t hat are pure, which is not possible. In the figure the two even 
bipart it ions (red and green boxes) have a. common, odd single-site subsystem (shown by 
a. blue circle) . Assuming the even squares to be pure, will imply by strong suba.dditivity, 
that the odd circle is pure, which is not possible. (c) The proof can be extended to infinite 
half-plane bipartitions (shown by the shaded blue box). Assuming such bipartitions to be 
separable, one can isolate strips (shown between horizontal dotted lines) of pure subsystems 
along the horizontal, using the isotropy of the system. (d) Similarly, 1r /2 radians mtated, 
infinite half-plane bipartitions (shown by the rotated shaded blue box) give us vertical strips 
of pure subsystems (shown between vertical dotted lines). We observe that the strips of 
horizontal and vert ical pure subsystems, can be aligned to contain a. common odd, single-
site subsystem (shown in (d) by a. red circle) , that by strong suba.dditivity should also be 
pure, which again is impossible. 
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reduced states are pure, contrary to the statement of the theorem. Let H p denote the sites 
in one such half-plane. Consider now the set Hp U Ln, where Ln is the infinite horiwntal 
strip ofsites with single-site width and that is directly adjacent to Hp (see Figure 2.9(c)). 
By isotropy, if p(Hp > is pure, p(HpuLn) is also pure. Consequently, we can again use strong 
subadditivity to show that p<Ln) is pure. Now if p<Ln) is pure, by isotropy, p<i<Jl·1'2>) is also 
pure, where L~1 'P2) is the infinite vertical strip of sites with single-site width and that is 
obtained from Ln by rotating it by 1r /2 radians around the site with Cartesian coordinates 
(pt,p2 ) (see Figure 2.9(d)). Again using strong subadditivity, we find that p(Pl,P2) is pure, 
which is a contradiction. A similar proof works for boundaries that are not straight lines. 

One needs a separate proof for the case when we want to prove that the infinite horizontal 
strip Lw having a width of r sites is not a product with the remaining portion of the lattice. 
Assume, if possible, that p<Lw >is pure. Then, by isotropy, p<L~~·P2>> is also pure, where L~~·P2) 
is obtained from L w by a 1r /2 rotation around (p1 , p2 ). Again applying strong subadditivity, 
we have that the reduced state of the 2r spins in LwnL~~·P2) is pure, which is a contradiction 
(by the (a) part of the proof). The proof can be extended to other infinite strips. The proof 
of the (a) and (b) part also works, with suitable modifications, for isotropic RVB lattices of 
arbitrary geometry and dimensions, e.g. the triangular and hexagonal lattices in 2D and the 
cubic lattice. • 

The theorem analytically proves that all isotropic RVB states, with periodic boundaries, 
are genuinely multisite entangled. However, analytical results from monogamy of entangle-
ment and asymmetric cloning show that this is not true for RVB ladders. In the next section, 
we use numerical simulation to exactly evaluate the bipartite and multipartite entanglement 
properties in finite-size RVB ladders. We observe that the numerical estimates are in agree-
ment with the analytical results obtained. Figure 2.9 is an illustration of the different finite 
and infinite bipartitions considered in the proof. 

2.6 Conclusion 

In conclusion, we have considered the resonating valence bond liquid state on a ladder and 
isotopic lattice, with periodic boundary conditions. For the RVB ladder state, we have 
presented two qualitatively different behavior of nearest-neighbor bipartite entanglement: 
While the bipartite entanglement on the steps is increasing, that on the rails is decreasing, 
with the increase in the size of the lattice. Both analytical and numerical results support 
the argument. Moreover, genuine multipartite entanglement of the ladder decreases with 
increasing system size. This is in sharp contrast with the situation in isotropic lattices, 
where RVB liquid state has negligible bipartite entanglement, but substantial multipartite 
entangle!fient. The observation is supported by analytical study of entanglement in isotropic 
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RVB lattices. 
Intuitively, the change in geometry is expected to change the quantitative entanglement 

properties of the system. However, what makes the findings interesting is that there is a 
drastic qualitative difference in bipartite and multipartite entanglement properties due to this 
change. The complementary behavior of bipartite entanglement in the steps and rails of the 
RVB ladder is an important feature that has been observed for a change in the geometry and 
cannot be a priori predicted by using our knowledge about isotropic systems, regardless of 
how the geometry is manipulated. Furthermore, a decrease in multipartite entanglement with 
increase in system size is highly unexpected and is a deviation from the observed results in 
isotropic RVB states. The asymptotic nature of multipartite entanglement has been reversed 
with an introduction of asymmetry along a dimension in an isotropic 2D square lattice, to 
obtain a ladder. This can potentially be exploited in the future for developing quantum 
information networks. 

The results show that geometry can play an important role in determining the entangle-
ment properties of multiparty quantum states. Moreover, these results reveal that studies 
in many-body physics, at least for tasks related to quantum computation, on ladders cannot 
be extrapolated to two-dimensional lattices. 
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CHAPTER 3 

Characterization of genuine multisite entanglement in quantum 
spin-1/2 lattices: density matrix recursion method 

The most exciting phrase to hear in science, the one that heralds new discovery, 
is not 'Eureka!' but 'that's funny'. -Isaac Asimov 

We introduce an analytical iterative method, the density matrix recursion method 

(DMRM), to generate arbitrary reduced density matrices of superpositions of short-

range dimer coverings in quantum spin-1/2 ladders and isotropic square lattices, with 
or without periodic boundary condition, for an arbitrary number of spins. The method 
can be used to efficiently calculate bipartite as well as multipartite physical properties, 

including entanglement. We apply this technique to characterize the genuine multisite 
entanglement in multi-legged resonating valence bond (RVB) ladders and isotropic 

20 RVB lattices. We distinguish between even- and odd-legged RVB ladders, and 

specifically show that while genuine multisite entanglement decreases with increasing 

system size for the even-legged ladders, it does the opposite for odd-legged ones. 

For the case of finite-sized isotropic RVB lattices, we calculate the genuine multisite 

entanglement, which through finite-size scaling, enables us to obtain an estimate of 

the f'!lUitisite entanglement of the infinite square RVB lattice. The method can be 

a useful tool to investigate other single- and multisite properties of such quantum 

spin-1/2 states.1 

1The primary results of this chapter are adapted from: H.S. Dhar, A. Sen(De) and U. Sen, New J. Phys. 
15, 013043 (2013); Phys. Rev. Lett. 111, 070501 (2013). 
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3.1 Introduction 

As discussed in the previous chapters, genuine multisite entanglement is an important re-
source in quantum information protocols and is known to offer significant advantage in quan-
tum tasks in comparison to bipartite entanglement [1]. In particular, it is the basic ingredient 
in measurement-based quantum computation [2], and is beneficial in various quantum com-
munication protocols [3], including secret sharing [4-7] (cf. [8, 9]). An understanding of the 
multipartite entanglement content is potentially advantageous, in assessing the importance 
of a quantum state state for future applications, over that of bipartite measures. This is 
due to the fact that the former takes into account the distribution of information between 
the multisite sub-regions of the entire system and the hidden correlation are not ignored 
due to tracing out [10-15]. Apart from the conventional information tasks, the study of 
multisite entanglement turns out to be important in understanding many-body phenomena, 
such as quantum phase transitions [16-22] and to understand transport properties in the 
evolution of photosynthetic complexes [23, 24]. Although bipartite entanglement in the case 
of two spin-1/2 particles is rather well-understood, the situation is quite different in the 
case of classification and quantification of entanglement in higher dimensions as well as in 
multiparty systems. The fact that many-particle systems can have different types of useful 
entanglement, depending on the particular information processing protocols under study, 
makes the quantification a formidable task (see Section 1.3). While there are several char-
acterizations of multiparty entanglement measures known in the literature [1, 25-44], it is 
in general difficult to compute them for large systems. As shown in Section 2.3, for pure 
multisite states, it is possible to use the generalized geometric measure {45, 46], which is a 
computable geometric measure of genuine multisite entanglement. 

As discussed in Section 2.1, the quantum spin-1/2lattice states, with short-range dimer 
coverings, known as resonating valence bond (RVB) states (47], are of considerable interest in 
high-temperature superconductivity (48, 49], cooperative phenomena in many-body systems 
[50-53}, and quantum computation [54]. These short-range dimer states can be efficiently 
simulated in laboratories using atoms in optical lattices [55-57] or in cavities using interacting 
photons [58}. We also observed that such systems have entanglement properties that are 
dependent on the geometry of the system [59]. As such, quantum spin ladders and isotropic 
states have uniquely different quantum characteristics (see Chapter 2). A striking feature of 
the quantum RVB ladder is that the extrapolation from the 10 spin chain to the 2D square 
lattice by gradually increasing the number of legs is not straightforward. For example, the 
quantum characteristics of the Heisenberg ladder ensures that the odd- and the even-legged 
ladder ground states have different correlation properties. Even ladders have a finite-gapped 
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ground state excitation and have exponential decay of two-site correlation, while odd ladders 
are gapless and have power-law decay [53, 6{}-62]. Such effects also occur in quantum spin 
liquids, as observed in References [63, 64}. Although the odd- and even-legged Heisenberg 
ladders belong to different universality class, in the infinite limit it must converge to the 
same class for 2D systems [62]. Similarly, the characteristic difference in odd- and even-
legged ladders may lead to interesting entanglement properties of the system, which for 
infinite legs must converge to the entanglement properties of the 2D lattice. 

In Section 2.2, we have considered a class of large superposed states, the resonating va-
lence bond (RVB) liquid states on ladders and isotropic lattices. We have observed using 
quantum information theory (QIT} concepts that bipartite and multipartite entanglement 
properties qualitatively differ for RVB ladder states and isotropic lattices (59]. FUrther, we 
have observed that exact numerical calculation of such entanglement properties is limited 
to small spin systems (2N = 14).2 This is due to the fact that calculating the bipartite 
or multipartite entanglement in large-sized quantum spin-1/2 lattices, formed by the super-
position of short-range dimer coverings (RVB states), is numerically challenging.3 Within 
a dimer-covering approach [53), it is possible to derive energy density and spin-correlation 
functions for two-legged ladders by using generating functions [65] or state iterations [62]. 
Approximate solutions may also be obtained for the four-legged ladder [66]. For further work 
in this direction, including density matrix renormalization group and quantum Monte Carlo 
calculations in 2D Heisenberg ladders, see Reference [67]. 

In this chapter, we introduce an analytical iterative technique, the density matrix recur-
sion method (DMRM), to obtain the reduced density matrix of arbitrary number of sites of 
a state on a quantum spin-1/2 RVB ladder (with multiple number of legs) or the 2D square 
RVB lattice, with both open and periodic boundary conditions. We start with the DMRM 
formalism for the multi-legged quantum spin-1/2 ladder, with nearest-neighbor (NN) dimer 
coverings. We find separate iterative methods for even and odd ladders. These partial den-
sity matrices obtained using DMRM can be used to calculate and study single-, two-, and 
multi-site physical properties of the many-body quantum spin-1/2 system, including two-site 
correlation and bipartite as well as multipartite entanglement. We then apply the DMRM 
method to facilitate the calculation of the genuine multipartite entanglement, using the gen-
eralized geometric measure (GGM) [45, 46]. The results allow us to distinguish b~tween even-
and odd-legged RVB ladders and, specifically, show that while genuine multisite entangle-
ment decreases with increasing system size for the even-legged ladders, it increases with size 

2 Let's say that the RVB lattice has even 2N number of spins.. 
3 This is due to the exponential increase in the number of the terms in the superposition, in the computa-

tional basis, with increase in system size. Hence calculation of multisite physical properties in multi-legged 
ladder or isotropic states becomes difficult. 
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for odd-legged ones. Incidentally, we also find that the convergence of the GGM, for a given 
odd- or even-legged ladder, occurs for relatively small ladder lengths of the corresponding 
ladder. The DMRM formalism for odd- and even- legged ladders is then extended to study 
thegenuine.multisite ent&nglement properties of finite-sized isotropic 2D quantum spin-1/2 
lattices. The method enables us to calculate the GGM for moderately large lattices and 
perform finite-size scaling [68] to predict the genuine multisite entanglement for the infinite 
two-dimensional square lattice. We observe that the distinctly different behavior of multisite 
entanglement in odd- and even-legged ladders, converge as the number of legs of the ladders 
are increased. This implies that in the infinite limit, the scaling of entanglement in odd- and 
even-legged ladders must be similar to that of the isotropic 2D quantum RVB system. 

The paper is organized as follows. We introduce the model multi-legged and isotropic 
RVB liquid state in Section 3.2. The density matrix recursion method is introduced and 
defined in Section 3.3. The multisite entanglement behavior of odd versus even multi-legged 
ladder is discussed in Section 3.4. The use of DMRM for isotropic square RVB lattice and 
the finite-size scaling of genuine multisite entanglement is performed in Section 3.5. We 
present a conclusion in Section 3.6. 

3.2 Multi-legged and isotropic RVB liquid 

Within a short-range dimer-covering approach, the quantum spin-1/2 state under considera-
tion consists of an equal superposition of nearest-neighbor directed dimer pairs from sublat-
tice A to sublattice Bon the bipartite lattice, defined in Section 2.2. The highly superposed 
state is called the resonating valence bond (RVB) liquid state. The 2D quantum spin-1/2 
bipartite lattice consists of coupled parallel, }vf horizontal spin chains with N sites on each 
chain (see Figure 3.1).4 The chains in the horizontal, also referred as legs of the lattice, are 
labelled as 1 to M. The total number of spin-1/2 sites in the entire bipartite lattice is 2N 
(= M x N). Alternately, theN vertical chains, referred as rungs of the lattice, are labelled 
from 1 ton, similar to the horizontal sites on the chain, and each rung contains M spins (see 
Figure 3.1 for a better description). The periodic quantum spin-1/2 state is conditionally 
defined by allowing dimer states to be formed between rungs 1 and n [65]. Of course as 
numbers, n = N. The bipartite lattice model can be formalised to study the pseudo-2D 
multi-legged ladder as well as the isotropic 2D square quantum spin-1/2 lattice, with RVB 
liquid ground state. The multi-legged ladder states correspond to lattices for which M ~ N. 
Note that for RVB lattice, the total number of spins (2N) is always even, since lattices are 
formed by superpositions of dimer pairs. We only consider multi-legged ladder with even 

4 Also see Figure 2.1 for the illustration of a bipartite RVB lattice on a tw<rlegged ladder. 
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number of rungs to allow the periodic coupling between rungs 1 and n, to occur between 
sublattice A and sublattice B (cf. Section 2.2).5 From Figure 3.1, we observe that by forcing 
M = N (for even M), we have an 2D square RVB lattice with total spin 2N = M 2 • We 
note that a perfect isotropic lattice has equal number of legs and rungs. Hence,,.there.can " ,.., 
be no square RVB lattice for odd M, since 2N is always even. For odd M, we consider the 
imperfect lattice with either the leg or rung shorter by a unit, i.e., either M = N'(= N + 1) 
or M = N'(= N- 1), such that M x N' is always even. Hence, the RVB multi-legged 
ladder states can also be imposed as finit~size RVB square lattices, albeit, with appropriate 
boundary conditions. 

As defined in Equation (2.1) in Section 2.2, the (unnormalized} quantum spin-1/2 RVB 
liquid state under study is given by {69] 

(3.1) 

where j(ai,bj)) refers to a dimer between sites ai and bi on the bipartite lattice, where (i,j) 
are NN sites with i #- j. A product of all such dimers on the spin-1/2 lattice constitutes 
an RVB covering. The summation refers to the superposition of all such dimer product 
states that give us the superposed short-range dimer covering states. Again, as mentioned in 
Section 2.2, it is believed that these short-range dimer covered states are possible solutions 
of the two-dimensional antiferromagnetic Heisenberg systems based on the understanding of 
the RVB theory and using numerical methods, such as the density matrix renormalization 
group {62, 70]. 

3.3 Density matrix recursion method 

The genuine multisite entanglement is quantified using a computable measure called the 
generalized geometric measure (45, 46]. The formulation of GGM for RVB spin liquids has 
been shown in Section 2.3. The computation of the GGM depends on the efficient generation 
of arbitrary reduced density matrices across all possible bipartitions of the spin system. We 
now introduce the density matrix recursion method as an analytical iterative technique for 
efficiently generating arbitrary local density matrices for quantum spin-1/2lattices with even 
and odd number of spins on the vertical edge, M. The mathematical description can then 
be suitably extended to encapsulate the reduced density matrices for multi-legged ladders 

5For even-legged lattices, we only consider even number of rungs and the boundary condition that does 
not involve the twist in the ribbon as considered for the ~leg RVB ladders in Section 2.2. This is done to 
allow a consistent formulation of the density matrix recursion method for both even- and odd-legged RVB 
lattices. For odd-legged lattices, the number of rungs is always even as the total number of spins, 2N, in 
any dimer-covered lattice is by definition even. 
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Figure 3. 1: The quantum spin-1 / 2 RVB state in the form of a bipartite lattice. with M 
horizontal and N vert ical chains. The isotropic 2D lattice can be visualized by demanding 
that M = N . The bipartite lattice is shown by the solid circles of sublattice A with 
hollow ones for sublattice B. The red arrows (solid) show the uearest-neighbor dimer states 
(l(ai, bi ))) from a site in sublattice A to another in B. The arrows (dashed) at the boundary 
indicate that the lattice is with periodic boundary condition. The dashed lines indicate that 
the number of legs and rungs can be extended beyond the illustrated number of sites. T he 
figure also shows the two-rung RVB state, 12) , and the single-rung RVB state, 11) , which will 
be profusely used in the analytical iteration method presented. 

and isotropic 2D RVB lattices. The DMRM technique allows us to efficiently investigate the 

scaling of entanglement properties, using numerical simulation, from RVB ladder state to 
the 2D isotropic RVB state. 

3.3.1 Quantum spin-1 / 2 lattice with even M spins 

Let us denote a quantum spin-1/ 2 lattice as (M,N), when there are !VI spins along the 
vertical edge and N spins in the horizontal edge, such that M x N ( =2N) is the total 
number of spins. Alternately, we can say that the lattice has M horizontal and N vertical 
chains. For an even spins on the vertical edge, M is even. Let the state of an ( M , N + 2) 

quantum spin-1/ 2 lattice be given by IM,N +2). The state IM,N +2) , in thi case can be 
written using smaller lattice states IM,N + 1) and IM,N). We drop the first !vi from th 

states, as it remains unchanged. 

IN +2) IN+ 1)11)n+2 + IN) I2)n+l,n+2 

IN)I2)n+l ,n+2 +IN- 1)1 2)n,n+ll 1)n+2, (3.2) 

where the subscripts correspond to the numbering of the sites on the horizontal side on the 

lattice. Here, l1 )i refers to the state IM, 1) at the column i , and l2)i,J refers to the tate 
IM, 2) at the columns 'i and j. The state 12)i,j can be written as 
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The term jZ)n+l,n+2 contains all the coverings of a two rung lattice denoted by the state 
l2}n+l,n+2> apart from the coverings formed by the product of the two rungs j1}n+II1)n+2· 
The subtraction removes possible repetition of states between the two terms in the recursion 
for IN+ 2) in relation (3.2). 

The density matrix for the state given by Equation (3.2) is given by, 

p<N+2) =IN+ 2}(N + 21- (3.3) 

If, for example, we trace out all but two rungs (say n + 1 and n + 2) from the state, we will 
obtain a two-rung state (mixed state) containing 2 x M spins, where M is the number of 
spins on the vertical edge of the lattice. Note that M is even here. These reduced states 
can then be used to calculate the multisite entanglement properties of the quantum spin-1/2 
lattice. In particular, 

P~~+l,n+2) - trL.n(IN + 2)(N + 21) = trl..n[IN)(NII2}(2j(n+l,n+2) 

+ IN- 1}(N- lll2}(2l<n,n+l)j1)(lj(n+2) 

+ IN)I2}n+l,n+2(N- 11(2ln,n+l (lln+2 

+ IN- l)l2}n,n+dl}n+2(NI(2In+l,n+2]· 

Tracing over the rungs 1 to n, we get 

P~~+l,n+2) = ZNj2}(2l(n+l,n+2) + ZN-lPn+l ®ll}(ll(n+2) 

+ (12}n+l,n+2(1jn+2(~Nin+1 + h.c.), 

where ZN = (NIN), Pn+l = trn[l2)(2hn,n+l)J, and 

(&ln+l = (2ln,n+l(N- liN). 

(3.4) 

(3.5) 

(3.6) 

For our analysis, we consider a spin-1/2 quantum lattice states, with NN dimers, that is 
periodic along the horizontal axis {65] (cf. Reference [71]). The periodic boundary condition 
entails that the lattice also form dimer states between the rungs 1 and n. Accounting for 
the additional states in the spin lattice, due to the periodicity, the recursion relation can be 
modified into (see Figure 3.2) 

(3.7) 

where the subscript P stands for a periodic lattice state. Throughout the section, a state 
without a subscript P will imply a state with open boundary conditions. The density matrix 
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I I I I = rn ® I 
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12 )12 12h4 I ' l2 h3 

Figure 3.2: An illustration of the recursion relation for an even A/ lattice. vvith periodic 
boundary condition, IN + 2)p . as given by Equation (3.7). for M = 2 and N = 2. Solid lines 
in a lattice refer to states with all possible dimer coverings . whereas bold arrows refer to 
specific singlet between the sites. The figure shows t hat a 14) p state, with 2 horizontal chains 
and a periodic boundary condition , can be recursively generated using the open boundary 
states 13) . 12) and 11). The recursion also uses the state, 12);,j = l2)i.j - l1);1 1)j · The bold 
red arrows demonstrate the periodic boundary condition . The sublatticcs arc defined in a 
manner consistent with Figure 2. 1. 

for the periodic state can be calculated by using the recursion relation in Equation (3.7): 

(N+2) Pp IN+ 2)(N + 2l p 

IN+ 2)(N + 21 +IN+ 2)(NI2,n+ I(21n+2,l 

+ 1Nh,n+li 2)I,n+2(N + 21 

+ IN) (NI(2,n+ll l2 ) (2l(l,n+2)· (3 .8) 

As done for the lattice with open boundary conditions. we t race out all but two rungs (say 
n+ 1 and n+ 2) from the periodic state in Equation (3.8), to obtain a two-rung state (mixed 
state) containing 2 x M spins. 

(3 .9) 

is the reduced two-rung state of the periodic lattice. The reduced state, for periodic boundary 
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condition, upon tracing out all but two rungs at (n + 1, n + 2}, is given by the relation 

P~) - P~ll,n+2 + trl..n[I.N}(NJ(2,n+I)J2)-{2~(1,n+2) 
+ (I.N)2,n+tl2h,n+2(N + 2j + H.c.)] 

(2). .q(2) ({3(2} H ) 
- Pn+I,n+2 + I-'I(n+l,n+2) + 2(n+1,n+2) + .C. > 

where P~li,n+2 can be obtained from Equation (3.5), and 

/3i2) - ZN-IJ1}(1I(n+I) ® Pn+2 + ZN-2Pn+l 

® Pn+2 + (11}(w-tl<n+~> ® Pn+2 + h.c.), and 

/3~2) - J2}n+I,n+2(1ln+I (wln+2 + J2}n+I,n+2 

X ~1 (~fn+2(W-iln+I + Pn+l ® J1}n+2(Win+2 

+ .A (1Ft}n+II1}n+2(1ln+l~t (~ln+2Y1-t), 
and Y).r = (NlN -1}11}. 

(3.10) 

(3.11) 

(3.12) 

The different inner products can be calculated as follows: The recursion begins with 

evaluating (1~2} = L:~=I nllni}, where {jai}h forms an independent set of vectors consisting 
of certain non nearest-neighbor singlet combinations of an (1,N + 2) spin system. Here k is 
numerically calculated; e.g., ja1}=11}. In general, we can write 

Using this relation, we generate the inner product recursions: 

and 

ZN Z1ZN-1 + Z~ZN-2 + 2( -1t-1L:iaJYJ..,-_1, 

YJv n(Gjj(1,n-l {JV- 1JN)I,n) 

Ai1ZN-1 + (-1)n-ILicrfYN-1• 

(3.13) 

(3.14) 

(3.15) 

where Z~ and Aii are (2j2} and (aijaj}, respectively. (Filn+I = n,n+l (2tFi-I)n and JFo}n = 
J1)n· On expanding, we can write 

(Filn+l = n,n+l (2JFi-I}n = LY~(akln+l> (3.16) 
k 

where gj Lkg~- 1 aj. Hence all the terms can be recursively calculated provided the 
parameters for small spin systems can be accurately estimated. The terms af(i,j = 1 to k), 
of Z 1 , Z~, and A;i need to be exactly calculated. The value of k needs to be determined for 

a small system size by solving the linear equation sys~em in n(aij2}n,n+I· 
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3.3.2 Quantum spin-1/2 lattice with odd M spins 

Let us now consider a quantum spin-1/2 lattice, IM,N + 2), when there are odd M spins 
along the vertical edge and even N + 2 spins in the horizontal edge, such that M x (N + 2) 
( = 2N) is the total number of spins. The periodic recursion for the lattice with odd spins 
on the vertical edge, M, is rather different from that of the even M lattice. This is due to 
the fact that there exists no analogous state for j1) in the odd M lattice.6 The state IN), 
with open boundary conditions, can be written as a series of N = 2, odd M lattices, given 
by the state l2)iJ• where theM has been dropped (as was done for even M states in Section 
3.3.1). 

IN+ 2) - IN)I2)n+l,n+2 

- I2}I,2j2h,4···12}n+l,n+2 (3.17) 

The corresponding density matrix, using the above equation, can be written as, 

IN+ 2)(N +21 
(.N) (2) 

Pt,n ® Pn+l,n+2 
(2) {2) (2) 

- P1,2 ® P3,4 ··· ® Pn+t,n+2· (3.18) 

For obtaining the two-rung reduced density matrix, we trace out the rungs ranging from 1 to 
n, as done for the even M lattice. The reduced state for the odd M lattice, using Equation 
(3.18), is given by, 

P~!~t,n+2) - trLn[IN + 2)(N + 21) 

[ (2) (2) (2} ] 
= trl..n P1,2 ® P3,4 ··· ® Pn+l,n+2 

= ZNj2}(2l(n+l,n+2)• 

where ZN = (NIN) = z:12 and ~ = (212). 

{3.19) 

Applying the periodic recursion for the odd IM,N + 2) horizontal spin lattice, using 
Equation {3.17), we obtain the following recursion relation, 

(3.20) 

where l2)n+I,l is a periodic two-rung, odd A1 lattice formed between rungs at sites n + I and 
1. We observe that there is no repetition of terms in IN + 2) and IN + 2) p and hence no 
subtraction of states is required, as is needed for the even M lattice. This is possible due to 

the absence of II) state in the odd-legged state. 
6Since, jl) is a representation of the state jM, 1), it. will only be a valid dimer-pair superposition state for 

even M. For odd M, no single vertical colum!l dimer superposed state is possible. 
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II' II' 

... .. 
.. ,., 'Ill" 'Ill" • .. .. 
1 2 3 4 

I I I I .. .. 12hz l2h4 
12)14 .. .. .. .. ., .. 

1 2 3 4 + 
l4)p 

1 2 3 4 
I I 

l2h3 
Figure 3.3: An illustration of the recursion relation for an odd M lattice. with periodic 
boundary condition. IN+ 2)p. as given by Equation (3.7) . for 111 = 3 and N = 2. Solid 
lines in a lattice refer to states with all possible dimer coverings. The figure shows that a 
14) p state. v.rith 3 horizontal chains and a periodic boundary condition. can be recursively 
generated using the open boundary states 12). The bold red lines demonsLra Le the periodic 
boundary condition. The sublattices are defined in a manner consistent with Figure 2. 1. 

The density matrix for the periodic odd lattice. can now be calculated. using (3 .20)': 

rlf,+2 =IN + 2)(N + 2lp. (3 .21 ) 

The reduced density matrices can be obtained by tracing out the requisite number of spins. 

In particular. for obtaining a two-rung reduced density matrix for the periodic odd lattice. 
we trace out the rungs ranging from 1 ton in the expression given bv Equation (3 .21): 

P~ln+l,n+2 ) = tr l..n[IN + 2)(N + 2lp] 

= tr l.n[IN) (Nil,nl2) (2ln+l ,n+2 + IN) (NI2.n+ll 2) (2ln+2,1 

+(IN)l,nl2)n+l,n+2(NI2.n+l(2h,n+2 + h. c.)]. 

Upon further simplification, using Equation (3.19), the above~ equation reads 

P~ln+l ,n+2) ZNI 2)(2I(n+l ,n+2) + ZN- 2Pn+l 0 Pn+2 

+ (l 2)n+l.n+2(DNin+l.n+2 + h.c.), 

(3.22) 

(3.23) 
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where the expression for (f!NI is given by, 

(f!Nin+l,n+2 = (2h,n+2(.NJ2,n+IIN}l,n, (3.24} 

and ZN has been defined earlier. The recursion to obtain (f!NI can be written as, 

(f!Nin+l,n+2 - (2h,n+2(Niz,n+IIN}l,n 

(2Jl,n+2 (2lz,3··· (2tn,n+lj2}1,2j2}3,4···12}n-l,n· (3.25} 

Hence the computation involves writing an algorithm to iterate the step (2Ji,H3 (2Ii+t,i+212}i,i+l· 
Once the reduced density matrices are obtained by the iterative method, we can again use 
them to obtain the different single- and multi-site physical quantities of the odd M quantum 
lattice. Together with the characterization of reduced density matrices, in Section 3.3.1, we 
obtain an analytical method to calculate any properties, including classical and quantum 
correlation measures, in 2D RVB spin liquids. 

3.4 Even-legged vs odd-legged RVB ladders 

To illustrate the effectiveness of the DMRM, we apply it to obtain the multisite entanglement 
of multi-legged ladders with both even and odd number of legs. 

In particular, we consider two-, four- and six-legged ladders among even ladders, and 
three-, five- and seven-legged ladders among odd ones. For even-legged ladders, the formalism 
developed in Section 3.3.1, for quantum spin-I/2 lattices with even spins along the vertical 
edge, is applied. The iterative variables for the two-, four- and six-legged ladders can be 
evaluated by using their explicitly calculated initial set of values. The iterations provide the 
reduced density matrices of the system, which are thereafter utilized to obtain the GGM. 

We use the specific example of the two- and four-legged ladders to demonstrate the 
numerical calculation of some of the initial parameters to be applied to the recursion. For a 
two-legged ladder (M = 2), the relevant initial parameter is, 

Zo = I, Z1 = (III}= 2, 

z~ = (212) = 4. (3.26} 

The term n(lj2)n,n+I = L~=l afJai)n+l = jl)n+l· This implies the parameter k = L Hence, 
af = 0, Vi =I= L a} = 1 and ja1) = II). Hence, the term Aii = (ailai) = 0, Vi =I= 1, j =I= L 

Au = (ada1) = (1jl) = 2. The recursion relation for ZN and y_t. can then be simplified to 
the following form: 

Z.N 2Z.N-I + 4ZN-2 + 2Y1-I, 

Y1 n{1j(I,n-I (N- ljN}l,n) 

2ZN-l + Y1-}- (3.27) 
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The initial term Yl = (ljl} = 2. Further, the recursion for the term (€1 can also be simplified, 
a.s shown, 

(3.28) 

where (.liln+I = (1~+1· The above set of numerical initial parameter and simplified recur-
sions allows us to calculate the reduced density matrix p~>, using Equation (3.10), for the 
two-legged ladder. 

A similar analysis can also be extended for the four-legged ladder to calculate the relevant 
initial parameters and recursion relations. For a four-legged ladder (M = 4), the relevant 
initial parameter is, 

Zo = 1, Z1 = (III)= 4, 

z~ = (2J2} = 136. (3.29) 

Proceeding in a manner similar to that for the two-legged ladder, we obtain the term, 

k 

n(lj2)n,n+I = L afjai)n+l 
i=l 

5jl}n+l + ljl}n+b (3.30) 

where II)n+I is a single-rung state with a periodic dimer covering between the topmost and 
lowermost spin sites. This implies the parameter k = 2. Hence, af = 0, Vi =!= (1, 2), such 

that a: = 5 and a~ = 1. The states ja1} = jl) and ja2) = ji}. This leads to additional 
initial parameters for the four-legged ladder, a.s shown, 

k 

n(lj2)n,n+l - L a~jai)n+l 
i=l 

= 2jl}n+l + 3jl}n+l· (3.31) 

Hence, a?= 0, Vi=!= (1, 2), such that a"f = 2 and a~= 3. The term Ai = (ailai} = 0, Vi=!= 
(1, 2), j =!= (1, 2), such that 

Au - (adat} = (ljl) = 4 

A22 - (a2la2) = (2j2) = 4 

A12 - (a1la2) = (112) = 2 

(3.32) 
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The recursion relation for Z.N and YJ..r can then be simplified to the following form: 

z.N - 4Z..v-I + l36Z.N-2 + IOY_1._1 + 2Y1_1, 

Yl,r - n(lj(I,n-I (N- lJN}t,n) 

- 4Z.N-t + 5Y_1._1 + IY1-t· 

Y1 - n(li{I,n-1 (N- IJN}I,n) 

- 2Z.N-I + 2Yl,r_1 + 3Y1-I-

The initial term of the recursion for Ylr and Y.}, is given by 

Yl - (Ill}= An= 4, 

Yi - (Ijl} = A12 = 2. 
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{3.33) 

(3.34) 

The term (wln+I = ~1ZN-i(.1iln+I can also be obtained by iterations of the term 
(Filn+I =n,n+I (2tn-I}n = L:k gi(akln+I· The initial parameters for the iteration are given 
by, !Fo}n = jl}n and IFI}n =n-1 (Ij2}n-I,n = 5jl}n + ljl}n, which can be suitable represented 
to obtain the recursion on the term gk. Hence, the set of initial parameter and recursions 
allows us to obtain the reduced density matrix p~), using Equation (3.10). 

Similar calculation for initial parameters and recursion relation can also be obtained for 
six- and higher-legged ladders, however, the analytical expressions for the recursions become 
more complicated. 7 

For odd-legged quantum spin ladders, with odd spins along the vertical edge, the DMRM 
formalism developed in Section 3.3.2 is applied. In the case of odd-legged ladders, the 
recursion relations have simple analytical expressions but are numerically more challenging. 
We consider the odd-legged ladder with M = 3, 5, and 7 legs. Since, the odd-legged ladder 
state, IN}, without periodic boundary condition, can be written in terms of a product of 
two-rung states, 12}, as shown in Equation {3.17), the recursion can be solved with relative 
ease. Let us consider the three-legged ladder. The relevant term required to study the 
recursion is given by, 

(3.35) 

where, ~ = (2j2) = 44, for a three-legged ladder. The next recursion term (fl.NI is obtained 
by the numerical recursion, given in Equation (3.25). To obtain the reduced density matrix 
p~>, using Equation (3.25), the iteration of the terms Z 2 and (DNI is required, which is an-
alytically simpler than the recursion involved in even-legged ladders. However, the iteration 
of (QNI for odd-legged ladders can be numerically challenging. Using a similar approach, 

7The results for M = 6, are not included in Reference [71], and have been compiled and presented for 
the thesis. 
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Figure 3.4: Genuine multisite entanglement decreases with system-size for <:' \·en ladders. \Ve 
perform the iterations for M = 2. 4 and 6. ThE iterations are carried out until 20 rungs . 
i.e. 40 . 80 and 120 sites respectively for !lr! = 2. -! and 6. l-IO\Yever in both the cases. the 
GGl\1 converges much before those sizes . The vertical axis represents the GGl\1. \vhilc the 
horizontal one represents the number of rungs . Both axes arc dimensionless . Though for 
ladder states. N ~ M. \Ye consider N = 4. as the least number of rungs . for conformity. 

the relevant initial paramet ers for the five-l egged ladder is Z 2 = 804. and for seven-legged 

ladder is z2 = 14276. 
The evaluation of GGl\1 allows us to compare the mult isite entanglements for the even-

and odd-legged RVB ladders. The GGl'v1s obtained by the iterative methods d earlY capture 

the characteristic complementary nature of even and odd ladders. \Ve show that the GGl\1 

decreases with the increase of s~rstem-size in the case of even ladders (Figure 3. -1 ). The 

opposite is true for odd ladders the GGM increases with system-size (Figure 3.5) . 

Although the comparison is made by taking M = 3. 5 and 7 among odd ladders. we haw 

actually performed the computations also forM = 1, which again shows an increase in GGl\1 

with increasing size. In all the cases. t he GGl\1 is calculated bv considering reduced deusily 
matrices upto 2 x !If spins: numerical exact diagonaliza tions corroborate that considering 

upto 4 spins is already enough. \·\"e have performed the iterative algorithms upto 20 rungs 

in all the cases (which is equivalent to 120 spins for the e\·en six-legged ladder and 140 spins 

for the odd seven-legged ladder) . As seen in t he Figures 3.4 and 3.5. the GGl\1 has already 

converged much before the maximum number of rungs that we have considered . 

The recursion relat ion for reduced densitv mat rices of quantum spin ladder states can 

be useful in investigating other important aspects of quantum spin systems. The two-site 

reduced density matrix of superposed dimer-covered state is a Werner state [72] and the 

bipart ite entanglement of the state is a monotone of the \Vmner parameter. The Werner 

parameter can also be used to stud~· t he ground state energy aud spin correlation length (see 

e.g. [62. 65. 66] and references therein). There is also a correspondence between the entropic 
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Figure 3.5 : Genuine multisite entanglement increases wit h system-size for odd ladders. \JI/e 
perform the iterations for M = 3. 5 and 7. The iterat ions are until 20 ruugs. i. e. 60 . 100 
and 140 sites respectively for for M = 3. 5 and 7. Agaiu in both the cases. the GGM 
converges much before 20 rungs. The vertical axis represents the GGl\1. while the horizontal 
one represents the number of rungs. Both axes are dimensionless. Though for ladder states. 
N ~ !11. we consider N = 4. as the least number of rungs. for conformity. 

properties of spin ladder states with entanglement [73]. 

3.5 Scaling of multisite entanglement in isotropic 20 RVB st ates 

Let us now calculate the genuine multipartite entanglement of quantum spin-1 / 2 square 
latt ices by using the OMRl\1 technique developed in Section 3.4. The laLtice (!11, M). for 
even M , is a 20 square RVB lattice with total spin 2N = M 2 . Hence, for perfect square 20 

lattices. the formalism developed in Section 3.3.1. for quantum spin-1 / 2 lattices with eYen 
spins along the vertical edge. is applied with M = N. 

We note. that a perfect isotropic lattice has equal even number of spins along the vertical 
and horizontal edge of the lattice. Hence. there can be no square RVB lattice for odd M. 

since 2N is always even . For odd !11 . we consider the imperfect lattice with either the leg 

or rung shorter by a unit. i. e .. either M = N'(= N + 1) or M = N'(= N- 1). such that 
2N = M x N' is always even. l-Ienee. imperfect square 20 lat tices . the formalism developed 
in Section 3.3.2 , for quantum spin-1 / 2 lattices wi th odd spins along the vertical edge. is 
applied with M = N ± 1. Ideally. the appropriate boundarv conditions. for the isotropic 

20 lattice should also be imposed along the vertical chains. However. in this study. we limit 
ourselves to horizontal periodic conditions. 

We calculate the GGl\1 for perfect as \.vel! as imperfect square 20 latt ices and observe 

that for increasing system size. the GGl\1 converges to the value 0.358 (see Figure 3.6). Using 
finite-size scaling, the behavior of GGM for finite-sized lattices can be used to estimate the 
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Figure 3.6: The behavior of GGl\'I in the case of a square spin-1 / 2 lattice. Ki th increasing 
total number of spins (2N ). 

GGM for an infinite square lattice. The scaling analysis gives 

(3.36) 

where N = 2N and C c(['t/J) ) is an estimated value of GGM for the infinite lat tice, based on 
the average of the last two values of GGM given in Figure 1. with k being a constant. The 

value of x, as estimated by fini te-size scaling, using Gc([¢N))=0.358 . is x =1.82. whereas 

k=l.77. 
It is shown in Section 2.5.3. t hat a quantum spin-1/ 2 lattice with short-range isotropic 

dimer coverings , wit h either periodic boundary conditions or is infinite. is always genuinely 

multipartite entangled. regardless of the geometry and dimension of the isotropic lattice. 

The Dl\IR.l\1 method enables us to e.t imate the genuine multisite entanglement measure 

of an infinite square lattice. This gives us a quantitative analysis to the analyt ical proof 

obtained in Section 2.5 .3. We have checked for small system size . that the square latt ice 

under consideration is long-range entangled. in the sense introduced in Heference [74]. Hence, 

genuine multisite entanglement can be used as an indicator of topological long-range order. 

for the RVB liquid states. l\1oreover. noisy admixtures of these superposed dimer states can 

be shown to be differential loca,l convertibl e, implying that snch states arc deep inside a 

macroscopic phase of the corresponding quantum many-body s~·s tem [75. 76]. 

3.6 Conclusion 

In this chapter , we have introduced an analytical iterative technique. t he density matrix 

recursion method , which can be efficiently used to obtain arbitrary reduced density matrices 

vvith an arbit rary number of spins. of t he states of spin-1 / 2 quan tum spin lattices formed 

by the superposition of dimer coverings. such as HVB liquids. This technique immediately 
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allows us to obtain single- and multi-site physical properties of the system. In particular, we 
use the method to obtain the genuine multisite entanglement in both odd- and even-legged 
RVB ladder states and find that the genuine multisite entanglement can capture the disparity 
between the even and odd RVB ladder. The method can also be extended to study finite, 
isotropic 2D RVB lattices. Finite-size scaling analysis enables us to confirm the existence of 
high genuine multisite entanglement of an infinite square RVB lattice. The method presented 
can be a useful tool if such highly superposed systems are considered for performing quantum 
tasks. Specifically, the iterative method can be employed to derive reduced density matrices 
that will be fruitful in the calculation of entanglement as well as other important correlation 
functions. 

The behavior of multipartite entanglement of such large superposed quantum spin sys-
tems has created a lot of interest due to recent experimental developments. Simulating large 
qubit systems, using optical superlattices [55-57] and interacting photon states [58], to gen-
erate dimer-covered superposed states in the laboratory points to the future applications of 
such multipartite entangled states, and to potential applications in building cluster states for 
large scale quantum computation [2] and in quantum metrology [77}. Our analytical method 
enables the investigation of entanglement properties in these superposed dimer-covered sys-
tems with relative control and ease, even for systems containing a considerable number of 
quantum spins. The results obtained may prove useful in predicting the prospects of the 
entanglement properties of experimentally generated states for future applications. 
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PART II 

Dynamics of entanglement and information-theoretic quantum 
correlations 

In this part of the thesis, we consider two prototypical models of quantum interaction 
from many-body physics and quantum optics, namely, an anisotropic XY spin chain, 
in a transverse magnetic field and a three-level atom interacting with two optical 

fields. We investigate the behavior of different quantum correlation measures, based 
on both entanglement-separability and information-theoretic criteria, under different 

dynamical regimes and conditions, and try to establish some corroborative inter-
relation between the measures pertaining to the systems under consideration. 



CHAPTER 4 

Information-theoretic quantum correlation measures versus 
entanglement in the dynamics of an infinite spin chain 

A theory that explains everything, explains nothing. - Karl Popper 

In this chapter, we show that the dynamical phase transition in nearest-neighbor 
bipartite entanglement of time-evolved states of the infinite, anisotropic quantum 
XY spin chain, in a transverse time-dependent field, can be quantitatively charac-
terized by the dynamics of information-theoretic quantum correlation measures, such 
as quantum discord and quantum work-deficit. We show that only those nonequilib-
rium states exhibit entanglement revival after death, on changing the field parameter 

during the dynamical phase transition, for which the there is an increase in quantum 
discord in the vicinity of entanglement collapse or the cumulative quantum work-
deficit, during the transition, is above a threshold. The results point to an interesting 

inter-relation between quantum correlation measures that are conceptualized from 
different perspectives, viz., the entanglement-separability criteria and information-

theoretic concepts. 1 

1The primary results of this chapter are adapted from: H.S. Dhar, R. Ghosh, A. Sen{De) and U. Sen, 
EPL 98, 30013 (2012); Phys. Lett. A 378, 1258 {2014). 

------------------------------------------------------------------------- ~--
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4.1 Introduction 

There have been extensive studies in many-body physics and quantum information theory 
(QIT), attempting to quantify the key aspects of quantum correlation present between the 
parts of a system. As introduced in Chapter 1, the foremost among them is the entanglement-
separability criteria and its subsequent quantification using measures, such as distillable 
entanglement, entanglement of formation, and relative entropy of entanglement (see {I] for 
a review). Entanglement has been extensively used for indicating quantum criticality in 
phase transitions [2, 3J and in numerous QIT applications, such as quantum teleportation 
[4}, quantum dense coding (5}, and quantum key distribution [6]. However, as discussed in 
Section 1.2, there exist quantum correlation that appear even when entanglement is absent. 
Several phenomena have been discovered which produce nonclassical results with no shared 
entanglement identified in the system. These correlations feature in important aspects of 
QIT, such as quantum nonlocality without entanglement [7-9) ( cf. (10-13]) and quantum data 
hiding in separable states (14-16]. A natural question then arises: What are the forms of 
quantum correlation that are responsible for such nonclassical behavior even in the absence 
of entanglement? 

From Section 1.2, we know that early attempts to explore the concept of nonclassical-
ity and correlation, from a perspective that is different from the entanglement-separability 
paradigm, include those defined in the language of quantum optics (17-20), and the lit-
erature on Bell inequalities (21, 22}. Recently, information-theoretic and thermodynamic 
concepts have been used to define quantum correlation independent of the entanglement-
separability paradigm. Quantum discord (QD) (23, 24] and quantum work-deficit (QWD) 
(25-27] are quantum correlation measures obtained by quantizing expressions for correlation 
existing in classical information theory (for a review, see (28}). QD is defined by using the 
difference in the quantum expressions corresponding to two equivalent definitions of clas-
sical mutual information (29]. QWD, on the other hand, is the difference in the amount 
of negentropy (work or information) extractable by global and local heat engines (30-32]. 

A mathematical formulation of QD and QWD is given in Section 1.4.1 and 1.4.2, respec-
tively. These information-theoretic measures have been used to study various aspects of 
quantum information theory and have been applied to investigate many-body phenomena, 
such as quantum phase transitions (33-39}, correlation dynamics in many-body systems {40-

47} and in open quantum systems (48-52] (for a review, see (28}). Further, the application 
of such measures of quantum correlation in many-body systems may reveal new phenomena 
which cannot be detected by entanglement. Though there exist nontrivial qualitative rela-
tion between information-theoretic and entanglement measures (53-57}, for specific quantum 
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systems, however, in general, there is no operational hierarchy between these measures (58}. 
In order to probe the interrelation between these measures, we investigate an exactly 

solvable, prototype model - the infinite anisotropic XY quantum spin chain, in a transverse 
magnetic. field. The nearest-neighbor (NN) entanglement in the time-evolved state of the XY 
spin chain, at a given fixed time, erlribits 'critiCal behavior - a dynamical phase transition 
(DPT), controlled by the initial value of the transverse field (59J. We study the dynamics 
of information-theoretic quantum correlation, as quantified by QD and QWD between two 
neighboring spins, and show that for this particular system, the observed collapse and revival 
of entanglement (with changing initial value of the transverse field) can be characterized by 
the behavior of QD and QWD. For instance, entanglement revives after collapse, if QD is 
an increasing function in the vicinity of the region where entanglement collapse occurs [56]. 2 

Further, the collapse and revival of entanglement can also be inferred by the cumulative 
QWD in the system during the dynamical evolution. Only those nonequilibrium states 
exhibit revival after death for which the cumulative QWD is above a threshold value (57J. 
Both the results are independent of the anisotropy parameter in the quantum XY model. 
Hence, an increasing QD at the point of entanglement collapse (i.e., at the corresponding 
time and field strength) or the value of cumulative QWD, above a specific threshold, can be 
used as an indicator for entanglement revival. 

4.2 The quantum XY spin chain 

The infinite anisotropic XY spin chain in a transverse field is governed by the Hamiltonian, 

{4.1) 

where the anisotropy 1 is nonzero, and J measures the interaction strength. Si = ~o-i 

(j = x, y, z) are one-half of the Pauli spin matrices at the corresponding site. Note that 
1 = 0 corresponds to the XX model while 1 = 1 is the Ising model. Here we consider 
the models for 1 > 0, so that the interaction and the field parts of the Hamiltonian do 
not commute, whereby the external field can have nontrivial effects on the evolution. The 
transverse field is applied in the form of an initial disturbance: 

where a =/: 0. 

h( t) = {a, t = 0 
0, t ~ 0, 

{4.2) 

2The collapse and revival of entanglement occurs with the changing initial value of the transverse field 
for a fixed evolution time, and does not, as such impiy temporal behavior. 
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The above Hamiltonian can be realized in a system of cold atoms confined in an optical 
lattice. The two-component Bose-Bose and Fermi-Fermi mixtures, in the strong coupling 
limit with suitable tuning of scattering length and additional tunneling in the system can be 
described :by the above Hamiltonian {2, 3] (also see [60}). The dynamics of the system can 
be simuiated by controlling the system parameters and the applied transverse field [61, 62]. 

4.2.1 Reduced two-qubit density matrix 

Let us suppose that the system starts off from the initial state which is a canonical equilibrium 
state at temperature T. We are interested in the nearest-neighbor (two-site) density matrix 
of the nonequilibrium evolved state at time t, that started off from the equilibrium state. In 
general, a two-qubit density matrix is of the form 

p12(t) = ~(l®I+ L Mi(t)(ui®J+I®ui) 
j=x,y,z 

+ L Tik(t)ui ® uk), 
j,k=x,y,z 

where Tik(t) are the two-site correlation functions, and Mi(t) are the magnetizations. Using 
properties of the XY Hamiltonian, some simplifications can be made, and the final form of 
the two-site density matrix of the evolved state is given by [63--66] 

p~2(t) = ~ (I® I+ Mz(t)(uz ®I+ I® uz) 

+ TxY(t)(ux ® uY + uY ® ux) 

+ L Tf(t)ui ® ui). 
j=x,y,z 

(4.3) 

Diagonalizing the Hamiltonian via Jordan-Wigner and Fourier transformations, the correla-
tion and the transverse magnetization in Equation ( 4.3), for an initial temperature T = 0, 
can be found analytically [63-66]. They are given by, 

Txy(t) = TYX(t) = S(t), rxx(t) = G( -1, t), TYY(t) = G(l, t), and 

rzz(t) = [Mz(t)J2- G(1, t)G( -1, t) + [S(t)l2 (4.4) 

where G(R, t) (for R = ± 1)is are given by 

G(R,t) rrr 1 ; lo d</> sin( </>R) sin</> A(a)A2(0) x {'l sin2 4> + (cos 4> - a) cos 4> 

1 r 1 + acos¢cos[2A(O)i}}-; lo d¢ cos<!> A(a)A2(0) 
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S(t) and Mz(t) are given respectively by, 

S(t) = _ rii 11rd.A-- . 2 A--sin[2tA(O)} d 
1r 0 'f'sm 'f' A{ii)A{O) ' an 

1111" 1 
Mz(t) - ;: o d¢ A{ii)A2(0) 

x { cos[2A{O)~'Y2ii sin2 ¢] 

cos¢[ (cos cP - a) cos <P + r 2 sin2 c/>]}. 
1 

Here A{x) = { 1 2 sin2 ¢ + [x- cos ct>F} 2 , and a =a/ J, l = Jtj!i. We will use a and las 
the (dimensionless) initial field and time parameters, respectively. 

4.2.2 Characterization of the measures 

We observe the behavior of the system at a time l after it starts from an initial canonical 
equilibrium state at zero temperature. The density matrix of the evolved two-qubit state at 
time l is used to calculate the bipartite entanglement. We use logarithmic negativity (LN) 
[67}, as defined in Section 1.3.3.4, as our measure of entanglement. Other bipartite measures 
of entanglement, such as entanglement of formation and concurrence [68, 69}, defined in 
Sections 1.3.3.2 and 1.3.3.3, also behave in a similar fashion. For the information theoretic 
measures of quantum correlation, the characterization is a little nontrivial. In particular, 
we wish to find the measurement strategy for obtaining the optimal quantum discord and 
quantum work-deficit, for the nearest-neighbor {two-qubit) density matrix of the evolved 
state at time l. vVe focus on projection-valued measurements, as discussed in Sections 1.4.1 
and 1.4.2. Since the local systems are qubits, the measurement will necessarily involve 
projecting onto an orthonormal {two-element) basis of a two-dimensional complex Hilbert 
space. Let that basis be given by 

() "tf> () 
- cos 2 IO) +e' sin211), 

"tf> () () 
- e-• sin 2 10) +cos 211), (4.5) 

where {10), j1)} form the computational qubit basis. 

In the case of QWD, the general definition involves two-way communication of dephased 
states, and is as yet not computable for arbitrary states. We consider the restricted case 
where only one-way communication is allowed. Again, as the local subsystems are qubits, 
the most general measurement basis for the dephasing "iH be of the fo.-m in Equation {4.5). 

In our analysis, we consider the evolved state after sweeping over the applied initial field 
strength ii, at a fixed value of the anisotropy parameter 1 for a fixed time of evolution with the 
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initial state being the equilibrium state of zero temperature. The motivation for considering 
such a state is the fact that the anisotropic transverse XY model, at zero temperature, 
undergoes a quantum phase transition (QPT) at a= 1, with the change of field at a fixed I· 
An initial zen:rtemperature equilibrium state ensures that thermal fluctuations are absent 
in the system. This allows us to look for any signature of criticality in the time-evolved 
nonequilibrium state of the Hamiltonian, with respect to the quantum correlation generated. 

4.3 Dynamical behavior of quantum correlation 

In the following segments, we look at the dynamical behavior of the NN entanglement and 
information-theoretic quantum correlation measures in the evolution of the nonequilibrium, 
time-evolved state of the XY spin chain, as a function of the field paramter a and fixed 
evolution time l. 

4.3.1 Dynamical phase transition of bipartite entanglement 

We consider the initial states to be equilibruim states at zero temperature. In Figure 4.1, 
we plot entanglement of the nearest-neighbor evolved state, as a function of time i and 
the initial field strength a, for anisotropy parameter 1 = 0.4 (Figure 4.1(a)) and 1 = 0.6 
(Figure 4.1(b)). An important observation from the figures is that for certain fixed evolution 
times l, the entanglement collapses to zero at a certain initial field ii, but revives to a 
nonzero value of entanglement at higher initial field, in the dynamic evolution. At other 
times, the entanglement recedes to zero, and does not become nonzero at higher field values. 
This remarkable behavior of collapse and higher-field revival of bipartite entanglement (as 
quantified by LN), takes place ·with respect to the varying initial field (a) applied to the 
system. 3 We call the collapse and revival of entanglement as dynamical phase transition. 
The results hold irrespective of the value of 1 chosen in the range (0, 1 ]. 

The DPT of bipartite entanglement is also observed for other computable measures of 
entanglement, such as concurrence [68, 69]. For two-qubit systems, concurrence and LN 
vanish if and only if the state is separable [68-72]. Interestingly, we find that there is no 
DPT when the time-dynamics of the NN quantum discord and quantum work deficit is 
considered for the same system parameters. 

3 A temporal collapse and revival of entanglement can also be observed in Figure 4.1. The entanglement 
collapses and revives with varying time for certain values of the initial field strength (ii > 1.2 for Figure 
4.l(a)). Our primary interests, however, lie at understanding the correlation that arise close to the zero-
temperature QPT at a fixed time of evolution of the quantum state. Note that the QPT at zero temperature 
also happens at a fixed time. which is i = 0. as we sweep over the a a.xis. The DPT, observed in [59], 
considers the status of the zero-time transition at nonzero times, if we still sweep over the ii axis. 



4.3. DYNAMICA L BEHAVIOR OF QUANTUM CORRELATION 

0.4 

g 0.3 

" ~00.2 

] 0 I 

0 

0.5 - 0.4 
0.4 " 
o.3 E o.J 

" 0.2 g J0.2 
0.1 g 0 I 
0 Lil . 

0 

0.5 
OA 
0.3 
0.2 
0.1 
0 

89 

Figure 4.1: Behavior of entanglement, as quantified by logarithmic negativity. is ploLI <:'d in 
panels (a) and (b) , as functions of the evolution t ime t and initial field strength ii. \Yith 
'Y = 0.4 (a) and 'Y = 0.6 (b). Entanglement is measured in ebits. The other axes are 
dimensionless. The revival of entanglement is distinctly observed at particular times i for a 
both the fixed values of "f. 
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Figure 4.2 : Behavior of quantum discord with respect to time and transverse field . Quantum 
discord is plotted in panels (a) and (b). as functions of the eYolution t ime i and initial field 
strength ii. with ~1 = 0. 4 (a) and 'Y = 0. 6 (b). Quantum discord is is measured in qu bits. 
The other axes are dimensionless. Quantum discord shows different behavior around times 
t, for fixed 'Y . at which revival of entanglement occurs (See 4.1). 

4.3 .2 Quantum discord vs entanglement 

The dynamics of quantum discord for the nearest-neighbor two-qubit eYolYed state. as a 
function of time i and the ini t ial field strength ii. for anisotropy parameter , -alues ~~ = 0.-± 

and ~~ = 0.6 is given in Figure 4.1. The figure shows that QD does not undergo DPT as 

observed for bipartite entanglement. However. we observe that QD behaves differently at 

fixed evolution times i. for which entanglement revival takes place. 

To get a clearer picture of the situation. in Figure 4.3. W<' plot entanglement, as quantified 

by logarithmic negativity, and QD for different fixed t imes t, as functions of the initial field 

strength ii. We observe that the absolute values of the quantum correlation measures . QD 

(as measured in qubits) and Ll\ (as measured in ebits) are different. QD is always finite and 

does not undergo DPT. However. LN is always greater at low values of init ial field parameter 

ii. The interesting pat tern that emerges is that entanglement revival apparently seems to 
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Figure 4.3: Quautum discord (cont inuous. black) and entanglement (logarithmic ncga ti,·ity) 
(beaded , red) for fixed times i as functions of the initial field strength ii . Entanglement 
collapses to zero and revives at higher-fields for times before i ~ 2 and at around i = -l . For 
these and only these times. QD increases around the collapse of Ll\' . LN is measured in ebits. 
QD in bits , while the horizontal axes denoting the initial field strength ii arc dinwusionless . 
'Y = 0.5 . 

occur at instances where QD is increasing in the vicini ty of the critical Yalue of ii . where 
entanglement collapse occurs. A more quantitative analysis of DPT of entanglement and the 

behavior of QD is done in Section 4.4.1. 

4.3.3 Quantum work-deficit vs entanglement 

In Figure 4.4. the dynamics of another information-theoretic measure of quantum correlation . 

quantum work-deficit, with respect to evolution time (i) and t he init ial field parameter (ii) is 
depicted. The figures give us the behavior of QWD, for anisotropy param eters /=0.-l (Figure 
4.4(a)) and / =0.6 (Figure 4.4(b)). The DPT of entanglement, as observed in Figure -l.l. 

leading to entanglement death and possible revival or it absence. with changing initial field 
parameter. is closely associated v,rith the dynamics of QWD. Though no DPT is observed 
for QWD. it is clear from Figure 4.4 that the behavior of Q\VD is qualitatively different at 
times when entanglement revival with respect to ii is observed . from the times \Yhen such 

revival is absent. 
Figure 4.5 shows the behavior of Ll\' and Q\VD of the time-cvoh·ed state, at different 

fixed times (i) , as a function of the initial field parameter ii. The six panels in the figure 

pertain to different fixed times and each row of the figure corresponds to a particular value 

of the anisotropy parameter (J = 0.4 , 0.5, 0.6). An important observation from the figure 
is that for certain ,·alues of eYolution time (Figure -1 .5 (a) . (c) and (e)). entanglement death 



4.3. DYNAMICAL BEHAVIOR OF QUANTUM CORRELATION 

0.5 0.5 0.5 
;_g 04 04 ;g 0.4 

0.3 .g 0.3 0.2 :g 0.3 
~ 0" ~ 0.2 i5 ·- 0.1 
~ 0.1 0 ~ 0.1 

0 0 

0 0 

0.5 
0.4 
0.3 
0.2 
0.1 
0 

91 

Figure 4.4 : Behavior of quantum work-deficit with respect to time and transverse field. 
Quantum work deficit is plotted in panels (a) and (b), as functions of the evolution time 
i and initial field strength a. with ~; = 0.-! (a) and 'Y = 0.6 (b) . Quantum work-deficit is 
measured in qubits. The other axes are dimensionless. The re,·ival of entanglement is seen 
to be directly related to the amount of work-deficit present at any particular time for a fixed 
'Y, viz. the times for which the quantum work-defici t is significantly high as a function of a 
correspond to t he times at which entanglement revival has taken place (see 4. 1). 

occurs at a certain initial field value, but ent anglement again revives to give nonzero values 

at some higher initial field . However , for the same anisotropy parameter but different fixed 

values of evolution time (Figure 4.5 (b) . (d) and (f)). entanglement death occurs but does not 

revive with the increase of ini tial magnetic field. In particular , we obsen·e that at t imes where 

revival of entanglement have taken place. the values of QWD are much higher than the times 

where revival does not occur. Hence. there is an indication that the dynamics of entanglement 

can be quantified by the behavior of Q\VD even in the absence of a clirect operational relat ion. 

\Yhich we obtain in Section 4.4.2. In particular, for cases where ent anglement revival occurs. 

the area under the QWD is much larger than for cases where revi,·al is absent. Vve find that 

this feature is generic and is observed for the whole range of the anisotropy parameter. "f i= 
0. Figures 4.4 and -1.5 qualitatively indicate that the behavior of entanglement and Q\1\.'D is 

nontrivially related for the model under consideration. 

4.3.4 Quenched dynamics 

An interesting feature of the dynamics is the sudden quantum quenching of the transverse 

field , h(t). The initial field . h(O) = ii . is quantum quenched to h(t) = 0 for t > 0. For 

certain values of ii. the sudden quench could involve a rapid passage of the non-equilibrium 

system across a quantum crit ical point [73. 74]. For rapid quenches that cross the critical 
field ac, the dynamics of quantum correlation are significantly different from those quenches 

that do not cross any crit ical point. This can be seen from Figure 4.1 for anisotropy values 

;y = 0.4 and ;y = 0.6. For fixed values of a. the temporal dvnamics of the correlation i 

different above and below the critical point ac· Such qualitatively different behavior as the 
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Figure 4.5: Behavior of entanglement (dashed line). measured in ebits. and quantum \YOrk-
deficit (continuous line), measured in qubits, at fixed times i as functions of the initial field 
strength a, for 1 = 0.4 ((a) and (d)), 1 = 0.5 ((b) and (e)) , and 1 = 0.6 ((c) and (f)). a 
and i are dimensionless parameters. It is seen tha t entanglement resurrection. after death . 
takes place only when the area (light blue) under the quantum \\·ark-deficit is significantly 
large . Resurrection takes place in the top panels ( (a). (b) and (c) ) as opposed to the bot tom 
panels ((d) . (e) and (f)) for the sam e 1 in which no revival occurs. 

system passes through crit icality can be used to study the cri t ical scaling of the quantum 

correlation under finite quenching and the Kibble-Zurek mechanism [75. 76]. This i also 
potentially important to results pertaining to quenched quantum dynamical phase t ransition 

[77 79] and critical scaling [80 83]. 

4.4 Quantitative relations : entanglement versus information-theoretic 
measures 

Below, we analyze the quantitative aspect of the inter-relation between information-theoretic 
measures and entanglement , for the anisotropic, infinite quantum XY spin chain. in a trans-

verse field . 

4.4.1 Quantum discord surge heralds entanglement revival 

An important question that intuitively arises is: Does there exi st any relation between 
entanglement and QD in the interesting range of initial field strength a and time [? The 

first observation in the numerically simulated dynamical behavior of QD , shown in Figure 

3.4. is that QD is nonzero at points \\·here entanglement is zero. \Ve further observe that 
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the behavior of QD at points where entanglement revival occurs is markedly different (see 
Figure 4.3}. 

An exact quantitative response to the question of the role of QD in the collapse and revival 
of entangl~me:n,t can be formulated using a relation that ascertains the observed behavior 
for the considered system. Consider a time-evolved nonequilibrium bipartite quantum state 
rfA8 (l), for an anisotropic XY spin chain in a transverse field, obtained by time-evolution for 
a duration t and varying with a system parameter a. If for a fixed time t, the entanglement 
E vanishes at a= ac, then 

{4.6} 

Here Q stands for quantum discord4 and the parameter a is the initial transverse field. From 
Equation (4.6), it is evident that the QD decreases if one considers DPT along the negative 
a axis. This is due to the reflection symmetry and surge (dip) in QD is along the positive 
(negative) direction of the considered physical parameter. Hence we consider just the positive 
parameter axis and the surge of QD. 

Already in Figures 4.2 and 4.3, we see that QD behaves differently at times for which 
entanglement revival takes place. Only for those times t for which QD is an increasing 
function of the field strength a at a = ac, ac being the field strength at which entanglement 
vanishes for a given i, there is a revival of entanglement at a higher value of a, as stated 
in Equation ( 4.6). In Figure 4.6, we plot the partial derivative of QD with respect to 
a, at a = ac· It is a pictorial representation of the relation given in Equation (4.6). A 
similar conjecture can also be obtained by studying the correlation dynamics by varying the 
anisotropy parameter"' even though no consistent DPT is observed for such evolutions. 

4.4.2 Cumulative quantum work-deficit vs entanglement 

The property of QWD that fosters the dynamical behavior of entanglement can be estimated 
from Figures 4.1, 4.4 and 4.5. We infer that the revival of entanglement is directly related 
to the area of the region under QWD as a function of the initial field strength a, for a fixed 
time i and anisotropy "'· To obtain an analytical expression for this relation, we calculate 
the area under the QWD in the panels of Figure 4.5 under a suitable scaling. By studying 
the dynamics qf QWD and LN for different anisotropy values "f and evolution times i, we 
find that on varying the initial field parameter a, the quantum correlation measures, QWD 

4 For the specific model, the violation of the inequality in Equation (4.6), usually results in no revival 
of entanglement. There may, however, exist few intermediary states where entanglement revival occurs in 
absence of distinct positivity and the collapse-reviYal behavior of entanglement remains inconclusive. For 
positive a such resurgence of entanglement without positivity of Equation ( 4.6) around a = ac, happens in 
the vicinity of ii. = 1, and so it is plausible that such exceptional cases are related to the zero-temperature 
QPT in this model [60]. 
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Figure 4.6: Increase of quantum discord at entanglement collapse indicates entanglement 
revival. The continuous red curve is of the (first) partial derivative of QD (measured in bits) 
with respect to the initial field strength at a = iic versus t ime l (dimensionless) . The black 
diamonds denote the maximum values attained by L~ after its collapse (measured in ebits) 
versus i. The continuous curve crosses over zero for l ;S 2. and again at l ~ --1. \Yhich are 
exactly the t imes for which entanglement reviva l happens. i. e .. \Yhere the curve of diamonds 
is nonzero. The inset magnifies the crossing over zero around t ~ 4. Thus the me:"L-ximum 
entanglement after collapse is nonzero only at times where the part ial derivat ive curve 1s 
positive (since a. is positive, the relation in Equation (4.6) holds). 1 = 0.5 . 

and LN, converge to finite values for a ~ 2.0. The DPT is observed in the vicinity of a ~ 
1.0 and the most interesting dynamics of the quant um correlat ion occurs around this region. 

Let A' (l) be the area under the plot of QWD for any particular t ime i and anisotropy~/ - for 
the initial field parameter ranging from a = 0.0 to a = 2.0. 

We find that given a known area A 1 ( t) fo r which a revival of entanglement occurs. any 
situation with a higher area, A 1 ( t') , will always result in 1evival of enlanglem enl. .l\1orc 

specifically, 

A1 (i') ~ A1 (t) ===?Entanglement reviYal for ~i', (--1 .7) 

provided A' '(L) is known to provide a revival. Hence. one is able to obtain a quantitat ive 

expression in terms of Q\\-D that can predict the revi,·al of entanglement in an infinite spin 

system for a fixed 1 , but at different l provided a knmm cas<' of revival is already obtained 

for a single set of parameters. Furthermore, we now define a scale factor sY (i) as 

(--1.8 ) 

where A~in is t he lowest value of .4"1 ( t ) for which a revival is already known. M is an arbitrary 

scaling parameter. which e.g. can be chosen to be A~in · V./e call S'( t) t he cumulative QWD. 
noting its similarity to cumulative frequency in a probability distribution. The values of S'(t) 
for different times are plotted in Figure 4.7. It is evident from t he panels in Figure -1.7 (for 
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(a) (b) (c) 

y = 0.6 
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(d ) (e) (f) 

Figure 4.7: Behavior of the scale factor sY (t) as a function of time i for different values of 
the anisotropy parameter T For a given T the non-negative part (the region of i for which 
the scale factor is nou-negative) corresponds to the region (light blue) where entanglement 
revival is observed. while the negative region (dark blue) corresponds to no-revival. For the 
above plots. t he scaling parameter M is equal to A ~1.in . sY (l). i and 'Y are all dimensionless. 

different 'Y) tha l the following holds: 

S"1(i) > 0 ~revival of entanglement occurs, 

S"~ ( t ) < 0 ~ no revival. (--1.9) 

The estimation of A~in requires an optimization. However. Equations ( 4.8) and ( 4.9) can 
be used for a non-optimized A:in . ·which in fact leads to Equation ( 4. 7). Comparing Figures 
4.4, 4.5 and 4.7, we find that S"~ (t). which is a function of the QVVD . correct l~, signals the 
times at which entanglement death and revival occurs for different T The beha,·ior of S"~ (t) 

also indicates tha t with the increase of 'Y· entanglement revival becomes more and more 
frequent. In particular. when 'Y is close to unity and the system is close to the transverse 
Ising model. the characteristics of S"~(t) point to an almost periodic entanglement death and 
re,·ival. 

4.5 Conclusion 

Quantum correlat ion of composite quantum systems can broadly be divided into two categories 
ones that are conceptualized using the entanglement-separability paradigm and those that 
are defined using information-theoretic concepts. For general mixed states. there exists no 
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unique operational relation between these two categories of correlation measures. In this 
work, we have attempted to create a quantitative inter-relation between measures from each 
of the mentioned categories, namely, the logarithmic negativity, an entanglement measure, 
and quantum discord and quantum work-deficit, both information-theoretic quantum-corre-
lation measures. We have obtained a quantitative relation between these two sets of measures 
in the time-dynamics of the infinite, anisotropic quantum XY spin-1/2 chain, in an external 
transverse magnetic field. Entanglement is known to exhibit a dynamical phase transition 
in the time-evolution of the system: for certain evolution times, the entanglement vanishes 
at a certain value of the initial magnetic field and revives at higher values, while for other 
times, the entanglement vanishes and does not show revivaL We have observed that the 
collapse and revival of entanglement, for a given evolution time in its dynamical phase tran-
sition, is quantitatively related to the information-theoretic quantum correlation measures, 
viz. quantum discord and quantum work-deficit. We have shown that an increase of QD 
in the vicinity of the critical field parameter, where entanglement collapse occurs, indicates 
a revival of entanglement at higher field parameter values. This behavior can be suitably 
quantified to an analytical criterion. Further, for the same set of evolution times, we have 
observed that the revival of entanglement is also related to the area accumulated under the 
quantum work-deficit curve as a function of the initial magnetic field. An accumulated area 
under the quantum work-deficit curve that is higher than a certain threshold, forces the 
revival of entanglement to occur. 

Studies of information-theoretic measures of quantum correlation, such as QD and QWD, 
have revealed that such measures give a fine-grained picture of quantum states of distributed 
systems in comparison to that provided by entanglement. Our study indicates that such a 
fine-grained picture can show the underlying reason for the dynamics observed for entangle-
ment in quantum many-body systems. The quantitative relation that is obtained between 
the two categories of quantum correlation measures for the anisotropic quantum XY spin-1/2 
models can possibly be extended to other generic quantum many-body systems to obtain a 
better understanding of nonclassicality in those models. The results may also prove useful in 
developing a robust operational relation between the two categories of quantum correlation 
measures. 
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CHAPTER 5 

Quantum correlation dynamics in two-photon states generated using 
classically driven three-level atoms 

We are trying to prove ourselves wrong as quickly as possible, because only in 
that way can we find progress. - Richard P. Feynman 

We investigate the dynamics of two-photon quantum correlation generated by the 

interaction of a three-level atom in the :=:, !::. or V configuration, with two classi-

cal external driving fields, under the rotating-wave approximation and in presence 
of level decays. Using the example of a rubidium atom in each configuration, with 
field strengths validating the single-photon approximation, we compute information-

theoretic quantum correlation, such as measurement induced disturbance, quantum 
discord:land quantum work-deficit, and compare the results with that of entangle-

ment, as quantified by concurrence. The results exhibit interesting inter-relation, 

hierarchy and qualitative monotonicity between entanglement and the information-

theoretic quantum correlation measures in various dynamical regimes, parametrically 

controlled through the choice of atomic decay constants and external driving field 

strengths. 1 

1The primary results of this chapter are adapted from: H.S. Dhar, S. Banerjee, A. Chatterjee, and R. 
Ghosh, Ann. Phys. 331, 97 (2013). 
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5.1 Introduction 

The interaction of atomic systems and external electromagnetic fields is a principal source for 
the generation and classification of nonclassical correlation [1]. The quantum nature of these 
atom-photon interactions and the ability to implement such systems in controlled experi-
mental settings make them important tools in the study of nonclassical features [2]. From 
the perspective of quantum information theory (QIT), atomic systems are the quintessen-
tial computational hardware needed for the future implementation of quantum information 
protocols [3-6}, and photons are the basic building blocks of quantum communication [7, 8} 
and cryptography [9}. Hence, the generation and manipulation of nonclassical correlations 
in complex atomic systems interacting with radiation fields are the most challenging aspects 
of future applications of QIT. 

The nonclassical properties of three-level atomic systems have been well studied in quan-
tum optics for understanding quantum-coherence phenomena, such as electromagnetically-
induced transparency (EIT) [1G-12}, lasing without inversion (13}, and cohe;ent trapping 
[14}. Three-level atoms interacting with low-strength driving fields, similar to EIT systems, 
have been used to generate entangled two-mode photon states which can be suitably ma-
nipulated to yield desired correlations [15]. The potential of emitted photons to encode 
and transfer quantum correlation stored in atomic systems may prove immensely useful in 
designing future QIT systems for communications and computation. However, the genera-
tion and characterization of mixed state quantum correlation is a very challenging prospect. 
Well established processes, such as parametric down-conversion (16} generate pure entangled 
states with poor conversion efficiency and few control parameters, whereas processes, such 
as resonance fluorescence have low signal-t~noise ratio with poor control over the emission 
statistics [15]. Quantum optical processes, such as coherent superposition operations have 
also been traditionally used to generate and characterize nonclassical and entangled states 
[17-20}. The use of generic quantum optical models, such as the considered semiclassical 
three-level atomic system, that can be experimentally implemented and observed, can serve 
as an important tool to generate and control nonclassical correlation and their features. In-
cidentally, they also serve as an useful prototype model to investigate the dynamical relation 
between entanglement [21} and other information-theoretic quantum correlations [22}. 

In this chapter, we investigate the quantum correlation. properties of the photon states 
emitted from a three-level atomic system interacting with two classical driving fields. The 
interactions generate tw~mode single photon states, arising from two controlled coherent 
transitions connecting the three levels, under the single photon approximation (SPA) [23]. 
The system can be set up· in three different configurations, cascade :=:, A and V. We study 
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13) ---- 12} 

(a) (b) (c) 

Figure 5.1: A three-level atom in the (a) 2 , (b) A, and (c) V configuration . r, and f 2 

are the decay constants (numbers shown in uni ts of l\1Hz) of the levels 12) and 13). v1 , v2 . 

and 0 1 , 0 2 are t he opt ical frequencies and the Rabi frequencies of the tvvo near-resonant 
driving fields. w1 and w2 are the two atomic transition frequencies. ~1 and ~2 are t he field 
detunings . set to zero in t his study. 

the correlated two-mode photon state that is generated, and characterize the dynamics of 
the different measures of quantum correlation. V1le seek t o establish a quali tative relation 
between the two different theoretical classes of quantum correlations, namely. entanglement 
[21] and the information- theoretic quantum correlation measures. such as quant um discord 
( QD) , quantum work-deficit ( QWD) and measurement induced disturbance (MID), defined 
in Section 1.4. The cont rol parameters in the system enable us to define specific dynamical 

regimes where certain quantum correlations are enhanced based on the nature of the output 
photon states. 'Ne also analyze various features of the quantum correlation generated by 
the interact ion to throw light into the monotonicity and hierarchy of the set of measures 
considered in the study [24] . The arrangement of the chapter is as follows. We briefly 
discuss the different configurations of the three-level atom in Section 5.2. In Section 5.3. we 

define the theoretical model used and the working approximations considered in t he analysis. 
In Section 5.4, the numerical results for the different quantum correlation measures . obtained 
from the theoretical model, are analyzed. We conclude in Section 5.5, with a summary of 

t he results obtained and their possible ramifications. 

5.2 T he t hree-level atom 

In this section, we briefly review our system. A three-level atom can be used in three different 

configurations, namely, 2 , A and V [25 , 26]. As a specific example, we focus on a gas of 
rubidium (Rb) atoms [27]. The energy levels 58 1; 2 , 5? 3; 2 and 5D5; 2 of Rb can be suitably 
used to generate each of the three configurations, shown in Figure 5.1(a)-(c) . as elaborated 

in the subsections below. Level 58 1; 2 is the ground state and does not decay. Level 5D5; 2 i 
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metastable, with a decay rate, r D ~ 1.0 MHz while the decay rate of level 5P3/2 is r p ~ 6.0 
MHz (27]. The conditions on the driving field Rabi frequencies ni shown in Figure 5.1{a)-(c) 
are explained later in Section 5.3.3. 

5.2.1 The 2 system 

The cascade 3 system (Figure 5.1{a)) uses the allowed dipole transitions J1) t-t J2) and 
12) B j3), with two classical fields of Rabi frequencies !11 and~ driving these transitions, 
respectively. The field detunings are Ll1 and Ll2, set to zero throughout our analysis for 
near-resonant fields. The transition 11} f7 13) is dipole forbidden. Levels J1), 12) and 13) 
correspond to the atmnic levels 5S1; 2, 5P3;2 and 5D5; 2 of the Rb atom, respectively. Thus 
the decay rates of 13) and 12) are r 2 = r D = 1.0 MHz and r 1 = r p = 6.0 MHz, respectively. 
Level P3/2 serves as the shared level j2) during the interaction. The initial atomic state is 
ground state {11)) populated and the levels J2) and 13) are unpopulated. :=: systems have 
been extensively used in coherent population trapping [28) and also in experiments to achieve 
laser cooling in trapped ions [29). 

5.2.2 The A system 

The A system configuration can be obtained by folding the :=:, with levels 5S1; 2, 5P3;2 and 
SD5;2 of the Rb atom now marked as levels J1), 13) and J2), respectively, as shown in Figure 
5.1(b). With this identification for Rb, we observe that levelJ2) is energetically higher than 
levelJ3). This corresponds to a negative transition frequency~- The rotating wave approx-
imation (RWA) thus holds for the negative frequency term of the field in the Hamiltonian 
[27]. Hence, the transition from level J3) to J2) annihilates a photon instead of creating a 
photon. The allowed dipole transitions are now J1) t-t J3) and 12) f7 J3), with two driving 
fields with Rabi frequencies S1 1 and S12 now acting on these transitions. Level 13) is the 
shared level, and the transition 11) f7 J2) is now dipole forbidden. The decay rates of 12) 
and 13) are r 1 :: f v = 1.0 MHz and r 2 = r p = 6.0 MHz, respectively. The initial atomic 
system is again ground state {11)) populated, and the detunings are taken to be zero. The 
interactions of the three levels are distinctly different from the :=: system, and hence can 
be associated with different nonclassical behavior. A systems have been extensively used in 
demonstrating diverse coherent phenomena, such as stimulated raman adiabatic passage [30) 
and electromagnetically induced transparency (EIT) [10-12). 

5.2.3 The V system 

The configuration of the V S}'Stem (Figure 5.1(c)) is considerabiy <f.tiferent from the:=: and 
the A systems. This is due to the fact that the shared level in the V system is the ground 
state. For the V system using Rb, we consider level 5S1; 2 as the shared ground level ( 11)) and 
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two hyperfine levels of 5P3t2 as the two-excited levels (12} and 13} ). Hence, r 1 = r 2 = r P = 

6.0 MHz. The allowed transitions are j1} H 13} and j1} H 12}, driven by the classical fields of 
Rabi frequencies nl and n2, respectively. The transition 12} H 13} is dipole-forbidden, i.e., 
the ground state excitations take the system to two excited levels that cannot .pe coupled, 
and interactions are thus limited to ground state transitions. The initial atomic system is 
again ground state {11)) populated, and the detunings are set to zero. V systems are widely 
used to study nonclassical phenomena, such as quantum jumps [31], quantum Zeno effect 
[32, 33] and quantum beats [14]. 

5.3 Atom-photon interaction 

Three-level atomic systems have been extensively used to study quantum and nonlinear fea-
tures under the realm of the semiclassical atom-field theory [25]. The nonclassical nature of 
the emitted radiation in such systems have also been investigated [34). From the perspec-
tive of QIT, entanglement properties of different features of the three-level atomic systems 
have also been examined [35-37). However, an exhaustive discussion on the generation and 
control of quantum correlation, both entanglement and information-theoretic measures, for 
such atom-field systems is not present, and we seek to investigate and compare the important 
features of such quantum correlation using this versatile system [24]. 

5.3.1 The Hamiltonian 

The Hamiltonian for a general three-level atom interacting with two classical driving fields, 
in the RWA, can be written as [14}: 

1l - 1lo + 1lJ, (5.1) 

1lo - liwuj1}{11 + liwd2)(21 + liw3313){31, 

(5.2) 

where liwii is the energy of level li) (i = I, 2, 3); nie-i<l>i (j = I, 2) is the complex Rabi 
frequency corresponding to the classical driving field of frequency vi, m,n,l,k = {1,2,3} 
denote the three atomic levels as appropriate for the .=:, A or V configuration. For the .=: 
configuration, (m,n,l,k) = (2,I,3,2) correspond to the atomic transitions j1} H j2} and 
12} H 13). For the A configuration, (m, n, l, k) = (3, 1, 3, 2) correspond to the transitions 
II) B j3) and j2} H 13}, and for the V configuration, (m, n, l, k) = (3, 1, 2, 1) correspond to 
the transitions II) H j3} and 11) H 12) (Figure 5.I(a)-(c)). 
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5.3.2 The Atomic Density Matrix 

The state of the atomic system, at any time t, can be written in the following form: 

where ~i (i = 1, 2, 3) are phases that depend on the detunings in a specific configuration. 
The detunings are defined as 

where w1 = Wmm- Wnn, and w2 = wu- Wkk, are the transition frequencies. (m, n, l, k) have 
been defined earlier and are different for the three configurations. 

Using the wavefunction in Equation (5.3), one can create an atomic density matrix PA(t) 
which depends on the classical driving field frequencies vi(j = 1, 2). We take phenomeno-
logical parameters to denote spontaneous decays of the excited atomic levels [14]. The 
parametrized decay terms may lead to spontaneously generated coherences in the decay 
paths [38]. Such phenomenological decay models are commonly used in the study of quan-
tum features in EIT [27], in quantum state tomography of emitted field states [15], and in 
earlier studies on atom-photon entanglement (39]. With the level decay terms, the dynamics 
of the system is in general mixed, and can be obtained using the von Neumann (quantum 
Liouville) equation of motion, 

(5.4) 

where the elements of the relaxation matrix r are the decay rates, (ilfli) = ri-I8ii• i,j = 
1, 2, 3. The time-evolved mixed atomic density matrix can be obtained provided the initial 
states of the atom (before interaction) are known. 

5.3.3 Characterization of the two-photon correlated state 

The nonclassical nature of the emitted radiation depends on the interaction between the 
three-level atomic system and the two-mode classical driving fields. The desired output, in 
our case, is to limit the generation to single photons for the two modes emitted after the 
interaction, so that at any given time within the lifetime of the atom, there will exist two 
photon states for each mode. Thus the two-photon density matrix can be written as 

/)ph= L Pii,i'i'lij)(i'/1-

where ji,j) (li',j')) stands for the two-photon states, with i and j (i' and j') = 0, 1 represent-
ing the number of photons in the first and second modes, respectively. Such a ~wo-photon 
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state can be achieved using the single photon approximation (SPA) [23] within the rotating 
wave approximation (RWA) [14]. The RWA ensures that a photon is created only when an 
atomic de-excitation takes place. The SPA is applied by ensuring that the excitation time 
(due to the driving field strength) is larger than the decay time. If n is the driving field Rabi 
frequency and r is the atomic decay rate, we require 1/n > 1/r for the SPA to be valid, so 
that the time taken for an atom to excite is much greater than the decay time and for small 
times only a single de-excitation will occur generating a single photon. 2 Hence, the ground 
state excitation strength n should be smaller than the upper-level decay rater [24}. 

The output state is thus a two-qubit (bipartite) photon state. For a semiclassical inter-
action involving atoms and driving fields, it has been shown that the density matrix of the 
output radiation state can be completely derived from the atomic density matrix [15]. Un-
der the far-field approximation [14, 40}, for an atom located at ro, the field operators of the 
emitted radiation at the point of detection rare proportional to the atomic spin operators 
at the retarded time (t- IT- rolfe). This equivalence leads to an expression for the pho-
ton density matrix Pph(t) that is identical to the atomic density matrix at an earlier time, 
PA(t- rfc), calculated using the von Neumann equation of motion. The photon density 
matrix has a reduced rank three.3 It has been shown [15) that such an equivalence leads 
to the complete determination of the output photon state using quantum state tomography, 
where measurements can be made on either the atomic or the photonic operators. Since the 
photon states can be completely determined by the atomic density matrix, the coherence of 
the photon correlation is closely related to the evolution of the atomic state. The purity of 
the output photon state is determined using the relation 1- tr(p;h). 

5.4 Dynamics of quantum correlation 

We use concurrence as our measure of bipartite entanglement between the two-mode photon 
pair. The numerical calculation of the quantum correlation measures, both entanglement and 
information-theoretic, are done based on their definition given in Sections 1.3 and 1.4. The 
optimal measurement strategy used in the evaluation of the information-theoretic quantum 
correlation measures in the two-mode photon is similar to one devised in Section 4.2.2. 

As mentioned in Section 5.2, the system, we consider, is a gas of Rb atoms. The three 
tevels 581; 2 , 5P3; 2 and 5D5; 2 of the Rb atom are appropriated to obtain the :=:, A and V 

2We consider evolution times much smaller than the lifetime of the atom, since the condition of single 
photon emission may not remain valid due to spontaneous decay over a longer period. 

3Tbe atomic density matrix is a 3x3 matrix pertaining to the three-dimensional single atom. The t.w«r 
mode photon density matri." is a 4x4 matrix, since each photon has two orthogonal states jO) and IJ}. 
The equivalence is possible because the atom-field interaction ensures that the photon density matrix has a 
Schmidt decomposition that reduces its rank to 3. 
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configurations. All rates and frequencies are rendered dimensionless by scaling with the 
metastable level decay rate ( ~ 1 NUiz). The scaled decay rates of 5? 3; 2 and 5D5; 2 are r p = 
6.0 and rD = 1.0. respectively. and 5S1; 2 is the ground state (wit h f s = 0) [27]. For desired 
results of two-mode single photon generation , we restrict ourselves to regimes that satisfy 
the SPA. In the :=: and A configuration (Figure 5.1 (a) and (b)), since the shared level is 5? 3; 2 . 

we t ake the ground st ate excitation field (0 1) to be always less than the decay constant of 

5? 3; 2 (in :=: , 0 1 < f 1 = fp = 6.0; in A, 0 1 < f 2 = f p = 6.0). For the V configuration 
(Figure 5. 1(c)), the ground state excitation leads to tran sitions to the hyperfine levels of 

5? 3; 2 , and hence both the driving fields 0 1 and 0 2 are less than the decay constant of 5? 3; 2 

(01,2 < f 1,2 = fp = 6.0). In our analysis, we set the atom-field cletunings to be zero.4 We 
calculate the information-theoretic quantum correlat ion measures and entanglement of the 
output two-mode photon density matrix that can be derived using the atomic density matrix 
(Section 5.3.1), obtained from the von Neumann equation of motion [Equation (5.4)]. in the 
three different configurations. 

t 
(a) 

0.5 

0.25 

1.5 
t 

(b) 

2 2.5 3 

Figure 5.2: The t ime evolution for correlation measures MID (red continuous) QD (blu 
circles) and QWD (green squares) along wit h the entanglement measure concurrence (black 
dashed) for t he cascade (:=:) configuration . The field detunings are .6.1 = .6.2 = 0, and the 
phases of the Rabi frequencies are ¢1 = ¢2 = 0. The level decay rat es are r 1 = 6.0 f 2 = 
1.0. SPA for this configuration requires t hat 0 1 < f 1 . The driving field strengths are (a) 01 
= 2. 0, 0 2 = 1.0, and (b) 0 1 = 2.0, 0 2 = 5.0. The inset shows the evolut ion of population 
elements of t he two-photon density matrix and its purity. 

'vVe discuss interesting aspects of the quant um correlation generated in the two-mode 
phot on state in specific parameter regimes using the :=: configuration as the reference. Some 

general observations can be made that are consistent with known results: MID always serves 
4It is observed t hat the qualitative nature of t he correlation dynamics is not very sensitive to finite 

detunings . 
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Figure 5.3: Fixed time (t = 1.0) MID (red continuous) , QD (blue circles) , QWD (green 
squares), and concurrence (black dashed) in the :=: configuration as a function of the driving 
field strength fh. The field detunings are b. 1 = b.2 = 0, and the phases of the Rabi frequencies 
are ¢>1 = ¢>2 = 0. The level decay rates are f 1 = 6.0, f 2 = 1.0. SPA for this configuration 
requires that D1 < f 1. One driving field strength D1 is fixed at (a) 1.5, and (b) 3.5. The 
inset shows the variation of population elements of the two-photon density matrix and its 
purity. 

as an upper bound on the other information-theoretic quantum correlation, such as QD 
and QWD [41]. The evolution of MID with respect to concurrence can be varied using the 
control parameters. There are two specific parameter regimes that correspond to two different 
hierarchies in the photon correlation. In Figure 5.2. we consider t he :=: configuration in two 
specific regimes of the driving classical fields. The decay constants for the :=: configuration 

are f 1 = 6.0, f 2 = 1.0. Hence, the driving field strengths are in the range (01 , 0 2 ) < 6.0. 
The detunings and the Rabi frequency phases have been set to zero . In Figure 5.2(a). we 

consider the regime where 0 1 > 0 2. Figure 5.2(b), corresponds to the field regime 0 1 < D2 
(0 1 = 2.0 , 0 2 = 5.0). For 0 1 > 0 2 , MID is non-monotonic and forms an upper bound on 

concurrence at times t > 1.0. For the field regime 0 1 < 0 2 (01 = 2.0, D2 = 5.0), concurrence 
forms an upper bound on the information-theoretic correlation. We observe that the behavior 
of the correlat ion is closely related to the dynamics of the populations (inset of Figure 5. 2) . 

The non-monotonic behavior of l\IID is associated with the population difference in the two 
photon modes I 00) and Ill). It is clear from the plots that the sudden increase in MID 
occurs when the populations of the modes IOO) and Ill) are nearly equal. This could be due 
to the fact that the non-optimization of the correlation measure in l\ IID is skewed in these 
regions. For cases where MID is monotonic with the other information-theoretic measures, 

the population is distinctly unequal. Observing the purity in these regimes, one can state 

that the monotonicity is observed at higher levels of purity [24]. 
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Figure 5.4: The time evolut ion for MID (red cont inuous), QD (blue circle ), QWD (green 
squares) and concurrence (black dashed) for the A configuration. The field detunings are ~1 
= ~2 = 0. and the phases of the Rabi frequencies are ¢1 = ¢2 = 0. The level decay rates 
are f 1 = 1.0, f 2 = 6.0. SPA for this configuration requires t hat 0 1 < f 2 . The driving field 
strengths are thus taken as (a) 0 1 = 4.0, 0 2 = 5.0, and (b) 0 1 = 4.0, 0 2 = 1.0. The inset 
shows the evolution of population elements of the two-photon density matrix and its purity. 

A similar dichotomy in behavior can also be observed for fixed time dynamics of the sys-
tem if the interaction is allowed to vary across driving field strengths. In Figure 5.3. keeping 

the evolution time fixed ( t = 1.0) and varying the two classical driving field strengths, a 
similar behavior of t he correlation is observed. MID is greater t han concurrence and non-
monotonic at t imes where the population levels are equal with significantly lo\\er purity (Fig-
ure 5.3(a)) as compared to regimes with unequal populations and higher purity where the 
information-theoretic quantum correlation and concurrence are monotonic (Figure 5.3(b)). 
Hence, we observe that the fixed t ime dynamics allows us to manipulate the correlation hier-
archy by changing t he ground-state driving field strength , 0 1 . The generation of corr lation 
can be controlled by using parameter regions that allow higher purity in the output photon 

state. 
Similar parameter regimes can also be generated in the A and V configuration as hown 

in Figure 5.4 and Figure 5.5, respectively. Interestingly, t he monotonic nature of the cor-
relation in the A and V configuration is different from that of the 3 configuration. In the 

relatively high ground state excitation regime (high 0 1) in Figure 5.4 we observe that the 
correlation attain steady-state values faster than in the :=: configuration . The information-
theoretic correlations are not monotonic at smaller t imes unlike in the :=: configuration where 
concurrence, QD and Q\.VD are always monotonic. There is a temporal discontinuity of 
concurrence around t ;::::; 0.5 . The concurrence collapses to a small finite value before reviv-

ing sharply. The revival of entanglement is associated wi th an increase in discord in the 
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Figure 5.5: The t ime evolut ion for MID (red continuous), QD (blue circles) . QWD (green 
squares) and concurrence (black dashed) for the V configuration . The field detunings are .6.1 

= .6.2 = 0, and t he phases of the Rabi frequencies are ¢1 = ¢2 = 0. The level decay rates 
are f 1 = f 2 = 6.0. SPA for this configuration requires that 0 1,2 < f 1,2 . The driving field 
strengths are 0 1 = 2.0, 0 2 = 4.0. The inset shows the evolution of population elements of 
the two-photon density matrix and its purity. 

vicinity of the collapse. Such an interplay of the quantum correlation has been reported 
in many-body systems [42]. as shown in Section 4.4. 1. Other measures do not exhibit any 
discont inuity. At greater times (t 2: 1.0). t he correlations are steady and weakly monotonic. 
The behavior of the correlation is again related to the population dynamics and purity of 
the density matrix as evident from Figure 5.4 and Figure 5.5. 

The different behavior of the correlation monotonicity in the A and V configuration as 
compared to :=: can be understood from the structural difference in the arrangement of the 
atomic levels. The highest excited level in t he :=: configuration is the metastable state with 
a decay rate f 2 ::::::: 1.0. In contrast, the A and V configurations have f 2 ::::::: 6.0. Hence, the 
evolut ion of populat ion dynamics and the temporal steady state occurs faster (t ::::::: 0.5) than 
in the :=: configuration. However, the steady state bounds of MID or concurrence in different 
parameter regimes are common t o all the configurat ions. From Figure 5.5, we observ that 
the steady state population dynamics in the V system results in high purity. We get an 

overlap of all information- theoretic correlation bounded by a low concurrence. This is due 
to the uniform decay rates of the two excited levels leading to a uniform distribut ion of 

population probabilities between JOO) and Ill ) with negligible population in IOl ). 
In Figure 5.6. we present a comparative study of the behavior in the three configurat ions 

under investigation , by choosing a common parameter regime that satisfi es the SPA for all 

configurations. We consider a region of moderately low values of the driving fields (0 1 = 

0 2 = 2.0) and another region of higher values (0 1 = 0 2 = 4.0). Some of the aspects of 
the correlation that can be quali tatively studied are monotonicity, temporal steady state. 
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Figure 5.6: Time evolutions of MID (red cont inuous). QD (blue circles). QWD (green 
squares) and concurrence (black dashed) for all the three configurations, :=: (top), A (middle) 
and V (bottom) . The field detunings are .6.1 = .6.2 = 0, and the phases of the Rabi frequen-
cies are ¢1 = ¢2 = 0. The chosen driving fi eld strengths of D1 = D2 = 2.0 (left panel) and 
D1 = D2 = 4.0 (right panel) satisfy the SPA for all three configurations. 

qualitative hierarchy and the puri ty of the two-photon density matrix. 

The correlation dynamics of the :=: system is dominated by the population dynamics of 
the photon state which evolves relatively slow due to the metastable nature of the highest 
excited level. We observe t hat the correlation do not achieve temporal steadiness in the 
observed times. This also leads to a lack of genuine monotonicity, with MID forming an 

upper bound in both the high and low field regimes. In comparison, the A and V systems 
have less stable excited states and hence achieve steady state correlation faster. For the 
A system, steady state quantum correlations are fairly monotonic with concurrence bound 

at lower fields and MID bound at higher fields. V systems have relatively lmv values of 
steady-state quantum correlation. as compared to the long t ime values in :=: systems, with a 
concurrence bound at all fields. 
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5.5 Conclusion 

In this chapter, we have exploited a semiclassical three-level atom interacting with two classi-
cal driving fields to generate a quantum correlated two-mode photon pair, with a dynamical 
control using the driving field parameters and the atomic level decay. Under certain physical 
approximations, we have investigated the dynamics of quantum correlation in the two-mode 
photon, using measures defined from the entanglement-separability criteria, such as concur-
rence and information-theoretic concepts, such as quantum discord, quantum work-deficit, 
and measurement induced disturbance, for three different configurations, namely,:=:, A and 
V, of the three-level atom driven by two controlled external classical driving fields. The 
qualitative inter-relation of the quantum correlation based on the monotonicity, general hi-
erarchy and steady state behavior are achieved using the control field parameters and the 
atomic decay terms. 

The generation of mixed state quantum correlation is an important problem in the context 
of future implementation of quantum information tasks. The characterization of such quan-
tum correlation in a possible experimentally realizable model is thus an worthwhile exercise. 
With developments in experimental techniques for measurement of quantum discord [43-45}, 
the importance of generating and analyzing information-theoretic quantum correlation has 
manifestedly increased in recent times. The possibility of using well studied quantum optical 
systems, such as the three-level atom to generate, characterize and parametrically control 
mixed state quantum correlation is indeed an encouraging step in this direction. 
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CHAPTER 6 

Summary and Outlook 

Science is a wonderful thing if one does not have to earn one's living at it. -
Albert Einstein 

6.1 Summary 

The fundamental objective of the work presented in the thesis has been to obtain theoretical 
results that would advance our understanding of quantum correlation in complex many-body 
and quantum optical systems. The analysis of quantum correlations, in particular genuine 
multipartite entanglement in large superposed quantum spin states, is of interest due to 
potential applications of such many-body systems in scalable quantum computation [1, 2J 
and communication [3] tools of the future. The analysis of ground state properties of quan-
tum spin liquids such as resonating valence bond states, provides us with important insights 
about the scaling behavior of short-range and global quantum correlations and its relation 
with lattice geometry. Such results may be important from the perspective of understanding 
topological order in spin liquids [4]. Further, the analytic recursion technique, the density 
matrix recursion method, developed in the thesis, is a powerful method to overcome com-
putational complexity in ground state estimation to obtain important nearest-neighbor and 
multiparty correlation properties, in the considered class of spin states. Another impor-
tant result obtained in this thesis pertains to the analysis of information-theoretic quantum 
correlations in both quantum spin systems and quantum optical states. With major de-
velopments in experimental techniques to detect information-theoretic quantum correlation 
measures such as quantum discord [5], the importance of understanding many-body behavior 
and information protocols from the perspective of these measures, has increased drastically 
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in recent years [6]. In the following paragraph, we summarize the important results obtained 
in the thesis. 

The primary findings presented in the thesis can be divided into two exclusive, but con-
ceptually related components. The study conducted in Part I of the thesis has concentrated 
on the characterization of bipartite as well as multipartite entanglement in quantum spin-
1/2 lattices, with resonating valence bond {RVB) ground states [7]. For two-legged ladder 
systems, we have performed a theoretical analysis of entanglement in the system, using con-
cepts from quantum information theory, such as monogamy of entanglement and quantum 
telecloning. Moreover, along with numerical simulation, we have observed the variation of 
both bipartite and multipartite entanglement with the geometry of the quantum spin lattices 
[8]. In particular, we have shown that the geometry of an RVB lattice can play an important 
role in determining the entanglement content of multiparty quantum states and how one can 
use quantum information tools to obtain strong bounds on the values of entanglement. We 
have analytically proved that isotropic quantum spin-1/2 states, with RVB ground states 
and periodic or infinite boundaries, are always genuinely multipartite entangled [9], using 
the concept of strong-subadditivity of von Neumann entropy [10]. In the Chapter 3, we have 
addressed the important question of whether one can develop an efficient analytical method 
to investigate the behavior of bipartite and multipartite entanglement for large-sized quan-
tum spin-1/2lattices. For quantum spin ladders and isotropic states, the properties of RVB 
ground state can be suitably simulated in terms of its reduced density matrices, using a 
technique, called the density matrix recursion method [9, ll). The method allows us to nu-
merically calculate the bipartite and multipartite entanglement of quantum spin-1/2 lattices 
with as many as 140 spins. Further, using finite-size scaling, we could derive an estimation of 
the genuine multipartite entanglement in an infinite 2D isotropic quantum spin-1/2 lattice. 
The method can also be applied to distinguish odd and even legged RVB ladders. 

In Part II of the thesis, we have looked at the dynamics of quantum correlations, defined 
both from the traditional entanglement-separability paradigm and the more contemporary 
information-theoretic perspective [6, 10]. We have taken up two quintessential models, the 
quantum spin-1/2 XY spin chain and a quantum optical three-level atom interacting with two 
multimode electromagnetic fields. We have investigated the bipartite quantum correlation 
in nearest-::neighbor spin states, and the two photons generated in the atom-field interaction. 
For the XY spin model, we have observed that the dynamical behavior of nearest-neighbor 
bipartite entanglement {12] can be suitably characterized and quantified by the behavior of 
information-theoretic measures such as quantum discord and quantum work-deficit [13, 14]. 
Since there does not exist any unique operational relation between the two paradigmatic 
quantum correlation measures, we believe that our results can be an important step in es-
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tablishing a connection between the two quantum correlation paradigms. The presented nu-
merical data and analytical quantification allow for non-trivial study of quantum correlation 
in understanding many-body phenomena. In the Chapter 5, we have studied the dynamics 
of quantum correlation measures between two-photons generated from a three-level atom 
interacting with two driving fields. The results show how the dynamics and montonicity of 
different quantum correlation measures can be generated and controlled using the system 
parameters [15}. The results could be useful in experimental study of quantum correlation 
and its operational inter-relation. 

To conclude, in this thesis, we have provided some new results in the broad direction set 
by our initial objective. However, there are many pertinent questions that can be addressed 
from this juncture that may further help to develop the theory of quantum correlation in 
many-body and quantum optical systems. The interface of the field of many-body physics 
and quantum optics is the emerging ground for exciting physics of the future, and provides 
important components for practical realization of quantum computation and communication. 
Below, we present a brief outlook of research directions that may emerge as consequence of 
some of the results obtained in thesis, and indicate some progress already made in associated 
areas in recent times. 

6.2 Outlook 

The primary focus of the thesis has been on the. analysis of quantum correlations on discrete-
level quantum systems in both quantum many-body and quantum optical systems. However, 
an important ingredient of contemporary research in quantum information and computation 
is the machinery of continuous variable (CV) quantum systems. As discussed in the Introduc-
tion in Section 1.5, the experimental tools of quantum optics allow the generation and ma-
nipulation of quantum correlated CV states with relative ease, as compared to discrete-level 
systems. This makes CV resources extremely useful in practical applications of quantum 
information protocols such as quantum teleportation and cryptography (for a review, see . 
{16}). Hence, analysis of quantum correlation in CV optical states generated through atom-
photon interactions, non-linear operations and heralded photon generation is of immense 
importance. Interesting results have been obtained from the analysis of entanglement and 
information-theoretic quantum correlations iii basic prototypes of single atom and multimode 
photon interactions [17]. The characterization of entanglement _and information-theoretic 
quantum correlation in CV systems can be further developed to achieve greater control in 
applications. For example, obtaining quantifiable measures of multipartite entanglement in 
multimode CV systems will be an important step in designing scalable computation and 
communication protocols and investigating robustness against decoherence. Another impor-
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tant aspect of CV quantum systems is the generation of heralded entanglement and quantum 
state engineering using quantum optical operations that can be experimentally implemented 
using tools of linear quantum optics and parametric down converters [18-20].1 The control 
of quantum correlations in these CV states allows one to tailor quantum states suitable for 
specific quantum operations. For example, there has been a lot of interest, in recent years, 
on the generation of controlled microscopic-macroscopic entangled CV states, such as qubit-
cat states [21}. Such micro-macro entangled systems allow the possibility of transitioning of 
quantum properties such as quantum correlations from the discrete-level to the CV system, 
and can be of potential use in information protocols including error-correction, information 
storage and quantum metrology [21]. A lot of interesting physics can also be unravelled by 
investigating quantum phenomena in these systems such as coherent population trapping 
and Raman transitions [22}, that can be exploited in designing optimal quantum control [23] 
and quantum networking [24}. 

Though a lot of interesting research has already been done in many-body systems [25], 
there are still some pertinent areas that need attention. Most of these questions arise from 
the computational complexity involved in ground state estimation and quantification of 
important physical quantities in large many-body systems such as spin liquids. In this re-
spect, the application of analytical tools such as our density matrix recursion method may 
prove useful in investigating both classical and quantum correlation properties in specific 
large spin systems. The study of highly superposed, genuinely multipartite entangled states 
such as resonating valence bond states and cluster states may have direct application in 
designing fault-tolerant [1] and measurement-based [2] quantum computation models. Im-
portantly, the quantification of entanglement in interesting quantum spin lattices [26] is not 
only desirable for designing and developing applicable quantum information tools but also 
for understanding critical phenomena and long-range order in many-body systems [4). Con-
trol of many-body spin ensembles in quantum optical cavities, that allow for a nice interplay 
of discrete-level and CV quantum properties, is a crucial component in designing quantum 
information storage and retrieval devices [27). 

1See Appendix A for a study on the generation of entangled states using superposed non-Gaussian oper-
ations and its application in CV quantu!fi teleportation, across generated nonclassical channels. 
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APPENDIX A 

Generating continuous variable entangled states for quantum 
teleportation using a superposition of number-conserving operations 

In this Appendix, we provide an example of the generation of bimode entangled continuous 
variable ( CV) optical states, using a superposition of number-conserving operations. The 
generated states are of importance for application as efficient quantum channels in CV quan-
tum teleportation protocols [1]. The results show the applicability of engineered nonclassical 
optical states in performing important quantum information protocols. 1• The strength of 
the protocol lies in the fact that the considered operations can be conveniently performed in 
quantum optical experiments. 

The wide use of Gaussian and non-Gaussian electromagnetic field states in practical ap-
plications of various quantum tasks and protocols renders the generation and investigation of 
these quantum states essential aspects of modern research. Entangled states generated using 
both linear and non-linear quantum optical operations have been extensively used in appli-
cations of quantum information [2] and communications (3]. The accessibility of continuous 
variable optical states in quantum information theory has led to success in implementing 
novel quantum tasks such as quantum teleportation [4, 5], quantum cryptography (6} and 
quantum memory [7, 8} (for reviews, see {9-11]). 

A recent method of generating nonclassicality in electromagnetic field states is by the 
operation of photon addition (at) [12} and subtraction (a) [13]. A remarkable aspect of the 
non-Gaussian photon addition and subtraction operation is the relative efficiency with which 
these operations can be experimentally realized using linear optical devices and parametric 
down-converters [14}. These non-Gaussian operations are known to enhance entanglement 
[15] and other forms of CV quantum information protocols (16]. An extension of similar non-

1The findings presented in the Appendix are based on the results obtained in [1] 



124 

Gaussian operations such as photon addit"ion followed by photon subtraction and vice-versa 
have also been implemented [17, 18]. The study of nonclassical optical states generated by 
such non-Gaussian operations have received considerable theoretical attention in quantum 
optics [19, 20}. Further, the experimental implementation of these operations have been used 
to prove the canonical commutation relation {21]. An interesting operation based on the idea 
of non-Gaussian photon-addition and subtraction protocols is the number-conserving gener-
alized superposition of products (GSP) of field annihilation (ii) and creation (at) operators of 
the form saat +tat a, with s2 +t2 = 1 [20]. Such an operation is a generalization of the exper-
imental scheme proposed to study the bosonic canonical commutation in optical fields {21]. 
Using an analysis of quasi-probability functions, quadrature squeezing and sub-Poissonian 
statistics, we have shown elsewhere that such an operation introduces nonclassicality in 
single-mode coherent and thermal states [20]. The GSP operation can be experimentally 
designed and hence applied to perform suitable quantum operations. 

We analyze below the description of nonclassicality introduced by the GSP operation 
from a quantum information perspective and investigate if the generated nonclassicality 
can enhance the performance of specific quantum information tasks. The GSP operation 
is applied to single- and two-mode input optical field states such as coherent, thermal and 
squeezed vacuum state. We show that the nonclassicality introduced in the states can be 
suitably converted into bipartite mode-entanglement via linear interactions, using a beam-
splitter. The generated entanglement is characteristic of the nonclassicality of the GSP 
operated state as beam-splitters do not generate entanglement for classical inputs [22}. For 
relatively low field intensities, the mode-entangled state can be truncated from an infinite-
dimensional to a finite-dimensional states and nonclassicality can be measured in terms of the 
bimode entanglement. From the continuous-variable (CV) perspective, the nonclassical state 
can be investigated for potential use as a quantum channel in a CV quantum teleportation 
protocol. We follow the Braunstein and Kimble (BK) teleportation protocol [5] and calculate 
the success of the operation in terms of the average fidelity obtained in teleporting a single-
mode coherent and squeezed state. The teleportation capacity of the single- and two-mode 
states are further investigated by studying the phase-quadrature correlations or the Einstein-
Podolsky-Rosen (EPR) correlations generated in the GSP operated quantum channels. We 
demonstrate that t~e GSP operation enhances the average fidelity of teleportation over the 
non-operated two-mode squeezed state even at relatively low squeezing. Interestingly, the 
GSP operations reduces the average fidelity for teleportation in the coherent and thermal 
channels. This result is important from the consideration of noisy quantum channels. The 
teleportation fidelity pattern observed is consistent with the observed EPR correlations in 
the two-mode quantum channel. 
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A.l Measure of nonclassicality 

The action of number-conserving operators formed by the GSP of field annihilation (a) and 
creation (at) operators of the type saat + tata, with s2 + t2 = 1, on field mod~ ~ntroduces 

.... ~~~ .. -~ ... -··-' 
distinct nonclassicality in the operated states [20}. From the perspective of quantum in-
formation theory, the nonclassicality of the GSP operated state is known to be manifested 
in terms of the bimodal quantum correlation it develops upon interaction of the modes via 
some linear optical device. Nonclassical states upon interacting with another mode via a 
beam splitter will develop finite bipartite quantum correlations [22]. 

We use entanglement as. a measure of quantum correlation developed between the modes 
of a GSP operated state. The protocol adopted to measure the nonclassicality using en-
tanglement is different for the case of single-mode and two-mode inputs. To calculate the 
entanglement of a single-mode GSP operated state we interact the single-mode output with 
a vacuum mode via a 50:50 beam splitter to generate a two-mode bipartite output [23]. The 
generated bimode entanglement is measured using logarithmic negativity (LN), defined in 
Section 1.3.3.4. For instances where a classical input state interacts with the vacuum mode, 
the entanglement is zero [22]. For two-mode input states that are initially classical, such 
as the coherent and thermal states, the GSP operation is applied separately on each mode. 
This operation does not introduce any entanglement in the two-mode output since the GSP 
operations are local. However, the two GSP operated modes are individually nonclassical 
and this can again be converted into two-mode entanglement using a linear optical device 
such as a 50:50 beam splitter. The bimode entanglement is then calculated using LN. For 
two-mode input states that are initially entangled, such as two-mode squeezed state, the 
GSP operation is globally applied to the two-modes without further interaction between the 
modes. A schematic of the GSP protocol and the linear interaction is given in Figure A.l. 

A.2 GSP operated output states 

Single-Mode Coherent State: Let us consider the GSP operation acting on a single-mode 
coherent state 1'1/J)a = la)a- The single-mode (in mode a) GSP operated coherent state is 
given by 

(A. I) 

where N is the normalization constant. In terms of the displacement operator, D a (a) = 
exp(ata- aa*), a coherent state can be wlitten as ja)a = Da(a)IO)a [24]. Hence we can 
write Equation (A.l) as 

Ia') a= ~(sDa(a) + a(s + t)at Da(a))IO)a = D:iit) (s~O)a + a(s + t)[II)a + a*jO)aJ),(A.2) 
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Figure A.l: Schematic of the generation of bipartite entangled out put with single-mode state 
preparation (top row) and two-mode state preparation (bottom row) for (a) coherent input 
state. (b) thermal input state , and (c) squeezed input state. Bab represents the beam-spli tter 
operation. The experimental scheme for performing a generalized superposition of products 
(GSP) operation i given in Reference [20]. 

where we have used the relation D1(a)atDa(a) = a,t +a* . The single-mode GSP operated 

coherent state is then interacted with a vacuum mode via a 50 :50 beam splitter. The two-

mode output state after the interact ion has t he form l¢)~"bL = Bab ja')a ® jO)b, where Bab = 
exp( 1r / 2{ atb - abt}) is t he beam-splitter operator with input ports a and b [see Figure A.l (a) . 
top row]. Expanding the expression for i¢)~t . we obtain 

i¢)~bt = Bab Dj;) [(s + (s + L)jaj 2)IO)aiO)b + a(s + L)j l )a iO)b] 

BabDj;)B~b Bab [pliO) a IO )b +p2atjO)aiO)b] , (A .3) 

where P1 = s + (s + t)ial 2 and ]J2 = a(s + t ). 
Using t he fact that BabDa(a)B~b = Da(a/ V'i.)Db ( -a/ J2). and the beam-splitter rela-

t ions, Babat B~b = )2 (at - ht) and Babbt .B!.b = ~(bt +at ), we obtain 

where A ab=Da(a/V'i. )Db ( - a / V'i. )j -/N. jij )ab= li) aiJ )b. T he density matrix for t he two-

mode state given by Equation (A.4) is p':J/ = A ab P~b A:b, where p~b is given by 

P1P2/V'i. 
p~ /2 
PV2 

0 

(A.5) 
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The operator Aab acts locally on the modes a and b, and hence cannot increase entanglement 
in the two-qubit density matrix in Equation (A.5). This reduces an infinite-dimensional 
bipartite interaction (in an infinite dimensional Fock state basis) to a two-qubit problem (in 
the {10}, II}} basis). Hence, the entanglement can simply be calculated by computing the 
LN of the smaller two-qubit state. 
Single-Mode Thermal State: A similar approach can be taken if the single-mode input is 
a classical thermal state. The thermal state is a maximally mixed state in the Fock state 
basis, and the thermal density matrix can be represented as 

th 1 
00 

( ii )n 
Pa = 1 +n ~ 1 +n ln}(nla, (A.6) 

where n is the average photon number. The action of GSP on the thermal field density 
matrix gives us the following operated state [20]: 

(A.7) 

where M is the normalization constant. The GSP operated thermal state (A.7) is thus a 
mixed state in the infinite dimensional basis. It is known that the GSP operated single-mode 
thermal state has nonclassicality introduced by the operation and is non-Gaussian [20]. The 
GSP operated state (in mode a) is interacted with a vacuum state in mode b via a 50:50 
beam splitter to generate a nonclassical two-mode output state. The operated two-mode 
state is of the form 

where Qn = ( r;;) ( 11nr (s + n (s + t))2
• The infinite-dimensional interaction between the 

two modes can be reduced by considering a truncated thermal state input with a low average 
photon number. For n :=:; 0.1, the two-mode density matrix (A.8) can be written as 

where only the first three terms (n = 0, 1, 2) in the summation have been retained after 
truncation. Applying the unitary operation Bab, we get the final two-mode output state as 

p:t,t = qoiOO}{OOI + ~ (at- bt) IOO}(OOI (a- iJ) + ~ (at - iJt) 2 IOO}(OOI (a- b) 2 . (A.lO) 

The low average photon number ensures that the density matrix is effectively truncated to 
a discrete 3°2-dimensional bipartite system. Hence, the GSP operation generates a discrete 
two-mode nonclassical state. 
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Single-Mode Squeezed State: The GSP operation and subsequent conversion to a bimode 
entangled state for a single-mode squeezed state is similar to the approach adopted for 
coherent and thermal input states. However, the squeezed state is not a classical input state 
unlike the coherent and thermal inputs. The single-mode (in mode a) squeezed state can be 
written as 

S(z)IO) ~ exp((z/2}(d2
- a12)JIO}. = (!- A')'i' ~ ~ ( -D n J2n}., (A.ll) 

where S(z) is the squeezing operator, z is the squeezing parameter, and >. = tanh z. The 
GSP operated squeezed state is given by 

11/J) = -
1-(saat + tafii)(1- >.2 ) 114 x f J(2n)f (-~)n j2n} .JN n=O n! 2 a 

/ (1- ).2)1/2 oo J(2n}f ( ).) n - y N L n! · - 2 x (s + 2n(s + t))j2n}a, 
n=O 

(A.12) 

where N is the normalization constant. The GSP operated single-mode squeezed state (in 
mode a) is interacted with a vacuum state (in mode b) via a 50:50 beam splitter. The 
resulting two-mode state is given by 

(A.13) 

where jO) is the vacuum mode, Bab is the beam-splitter operator, and 

-j (!- A')l J(2n}f ( ).)n ( 2 ( )) Cn = -- s + n s + t . N n! 2 

The infinite-dimensional two-mode output can be truncated by considering regimes where 

>. « 1. In the low >. regime, the GSP operated single-mode squeezed state can be written as 

(A.14) 

where Co = J(l-~2)~ s, and c1 = -J<l-~2 )~ >.(~ + (s + t)). Applying the beam-splitter 

operation, we get 

The output two-mode density matrix is given by p<::t,t = I1/J')(1/J'I· The GSP operated 
two-mode output can be used as a quantum channel in CV teleportation. 
Two-Mode Coherent State: For a classical coherent state input, the GSP operation is applied 

separately on the two modes a and b. Each mode operation is similar to the case for a single-

mode input. The two modes than interact via the beam-splitter. The single-mode GSP 
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operated input coherent state is given by Equation (A.2). The beam-splitter interaction for 
the two modes can then be written as 

{A.l6) 

Here ja)a and I.B)b are the two input coherent states. The action of the beam splitter on the 
two-mode input can be described as 

{A.17) 

where 

Atocal = BooDa(o:)Db(,B)B~ = 1 x D (~) D (-a:) D (!!_) D (!!_) 
ab J N1N2 JN1N2 a y'2 b y'2 a y'2 b y'2 ' 

and p~ = s1s2+s1(s2 +t2H.BF+s2(s1 +tr)lal2+(s1 +t1)(s2+t2)la:l2l.BJ2, p~ = s1(s2+t2).8+ 
(s1 +tr)(s2+t2)ja:j2,8, p; = s2(s1 +t1)o:+(s1 +t1)(s2+t2)I.BI2o:, and p~ = o:,B(s1 +tr)(s2+t2). 
Hence, applying the beam-splitter operation in Equation ( A.l7), we obtain 

(A.l8) 

1 I I I+ I I 

where p" = p' p" = Pz-P3 p" = ~ and p" = ~ 1 1, 2 V2 ' 3 ../2 4 ,J2• 

The two-mode output density matrix can be written in the form p'::J:/ = A!;bl p~b A~t. 
Hence, the entanglement between the two modes of the output is encoded in the density 
matrix p~, since the operation A~bal only acts locally on the two modes. 
Two-Mode Thermal State: The two-mode GSP operated thermal input state can be calcu-
lated using an approach similar to that for the two-mode input coherent state. The two 
modes are operated separately and then interact via a 50:50 beam-splitter. The single-mode 
GSP operated thermal state can be written in a form similar to Equations (A.7) and {A.8). 
The action of the beam-splitter ca,n be represented as the following: 

where p~+l = ( :~() ( 11A:.) n (sx + n (sx + tx)f corresponds to the two input thermal 
modes x = a, b. We have used the low average photon number approximation and retained 
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terms up to n < 2. Since the most of the terms in the GSP operated density matrix are 
product of the probabilities from the single-mode GSP operated thermal state, the smaller 
probabilities can be neglected for low average photon number. 

The two-mode output state generated, using Equation (A.l9), is of the form 

rJ:t ~ 1":#.100)(001 +vM ct::t) IOO)(OOI c~a) +v;v: ( at;t) IOO)(OOI 

x e~b)+vMet~bt) et~a}oo)(OOix e~b) c~a). (A.20) 

On solving, we get 

Po:.bt - q~IOO){OOI + q~ {IOI){Oll + IIO){IOJ)- q; {jOI)(IOI + 110)(011) 

+ q~ {120)(201 + I02}(02l- I20)(021-I02)(2ol), 

where th = pfp~, <h = (pfp~ + P2PU /2, ~ = (P2P~ - pfpn /2, and ck = (P2P~) /2. 

(A.21) 

The nonclassical properties of the two-mode output GSP operated thermal state can be 
obtained using the density matrix Po:.bt in Equation (A.21). 
Two-Mode Squeezed State: The two-mode squeezed state is a well-known Gaussian state 
that can be experimentally prepared by applying suitable unitary operations on any pure 
Gaussian state. The initial squeezed state is an entangled two-mode state and hence it is 
not necessary to interact the modes via any active linear optical media as in the case of 
coherent or thermal input states. The two-mode squeezed state is an infinite dimensional 
superposition state of the two modes. The two-mode squeezed state can be written as, 

00 

{A.22) 
n=O 

where r is the squeezing parameter and >. = tanh r. Applying the GSP operation on the 
two-mode squeezed state [see Figure A.l(c), bottom row], we obtain 

11/l')ab = If (s1aat + t1ata)(s2bbt + t2btb) x v'l- >.2 f >.nln)aln)b 
n=O 

where N is the normalization constant. The infinite dimensional two-mode squeezed state 
can be reduced by considering the low squeezing region. For >. ~ 1, the GSP operated 
squeezed state reduces to 

ll/J')ab ~ [sis2!0)aiO)h + >.[s1s2 + s1(s2 + t2) 

+ s2{s1 + ti) + (si + ti)(s2 + t2)Jil)all}h]- (A.24) _ 
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The GSP operated two-mode squeezed state in Equation (A.24) g1ves us the two-mode 

output pure state density matrix PC:://(= l'lf)')('lf)'lab) that can be used to study its nonclassical 
properties. 
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Figure A.2: Behavior of the entanglement (EC) for two-mode output states generated from 
GSP operated single-mode input states interacting with a vacuum mode. EC is shown as a 
function of the GSP operator parameters for (a) different coherent state amplitudes (lad = 
0.1 , 1.0, 2.0) , (b) different thermal state average photon number (n = 0.01. 0.05. 0.10) for 
a thermal input state, and (c) different values of>-(= tanhz = 0.01 , 0.05, 0.10). where z is 
the squeezing parameter of squeezed input state. 
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Figure A.3: Behavior of the entanglement (EC) for tvvo-mode output states generated from 
GSP operated two-mode input states. The variation of EC is shown with respect to the 
two-mode GSP operator parameters s1 and s2 for (a) coherent state amplitudes lad = I,BI = 
0.5 , (b) thermal state average photon number , na = 'i'ib = 0.05 , and (c) for a fixed value of 
A (= tanh r) = 0.05. where 1· is the squeezing parameter of the two-mode squeezed input. 

A.3 Entanglement properties 

We consider the low average field-intensity regime to reduce the infinite-dimensional state to 
a truncated discrete bipartite state. The entanglement (EC) 2 of the single- and two-mode 

GSP operated input states is calculated using logarithmic negativity. The parameters that 
2The abbreviation EC is motivated from the definition of entanglement capacity, as introduced in Refer-

ence [23], for bea m-splitter generated bimode entanglement. 
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control the entanglement of the single- and two-mode inputs after the GSP operation are the 
initial field parameters such as the amplitude of coherent state, average photon number of 
thermal input and the squeezing parameter of squeezed input along with the GSP operation 
p~rameter 8. 

Single-mode states: The variation of EC with GSP operation parameter 8 and field param-
eters for the single-mode input states is given in Figure A.2. In Figure A.2(a), we observe 
that high EC is observed for lower values of 8 and the amplitude (lal) of the coherent state 
input. The operation generates maximal entanglement at 8 ~ 0. For greater jaj, the states 
have lower values of EC but are not very sensitive to variation in 8. We also observe that for 
the truncated input thermal state (Figure A.2(b )], the EC is maximum at 8 ~ 0 and steadily 
decreases with increase in 8. The maximum EC corresponds to the lowest average photon 
number (n = 0.01). This is due to the fact that the classicality of coherent and thermal states 
increases with increase in average photon number. Figure A.2(c) gives us the variation of 
EC with A(= tanh z ), where z is the squeezing parameter of the input single-mode squeezed 
state. The maximum EC is obtained at 8 > 0, and the EC decreases with increasing 8. The 
state is seen to be more entangled for higher values of A for all values of 8 away from 8 = 0. 
Hence, the squeezed output with high A is nonclassical for all ranges of the GSP operation. 
Two-mode states: The EC of the GSP operated two-mode coherent, thermal and squeezed 
input states is shown in Figure A.3. The variation of the EC is with respect to the two-mode 
GSP operation parameters 8 1 and s2 for fixed values of field parameters such as amplitude, 
average photon number and squeezing parameter for coherent, thermal and squeezed states, 
respectively. For coherent and thermal fields, we consider inputs with equal field parameters 
for both the input modes. 

Figure A.3(a) gives us the variation of EC with the two-mode GSP operator parameters 
8 1 and 82 for the two-mode coherent state input with equal amplitudes, jaj = I.BI = 0.5. We 
observe that low values of either of the mode operators 8 1 and 8 2 are sufficient for obtaining 
entangled states. The only region that produces low entanglement is the region corresponding 
to simultaneous high values of both 8 1 and 8 2 marked by the dark region in the color scheme 
of Figure A.3(a). In contrast, the plot for the EC of two-mode thermal state input in Figure 
A.3(b ), with fixed photon number averages na = nb = 0.05, shows that regions of relatively 
high entanglement is restricted to a small region along the two axes that correspond to the 
small values of 8 1 ( « 1) or 8 2 ( « 1 ). For other values of 8 1 and 8 2 , the output state has 
very low entanglement. The behavior of EC for the two-mode squeezed state (A = 0.05) is 
completely opposite of that of the two-mode thermal state. Figure A.3( c) shows that the EC 
remains high at most values of 8 1 and 8 2 , dropping in the region of 8 1 , 8 2 ~ 0. The two-mode 
input squeezed state, unlike the two-mode coherent and thermal state, is entangled prior to 
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the GSP operation. However, the GSP operation enhances the amount of entanglement [17] 
over the range of parameters s 1 and s2 • 

Hence, it is seen that the GSP operated states under low-field truncation can generate 
highly entangled low-dimensional discrete systems. Under appropriate control of the input 
field parameters and GSP parameters, these states can be used as entangled photon source 
in quantum optical experiments and information tasks. The nonclassicality of the GSP 
generated states can also be utilized in the continuous variable regime. 

A.4 Average fidelity of continuous variable teleportation 

Quantum teleportation was originally devised as a quantum information protocol that in-
volved sending an unknown qubit, from one party to another, across an entangled EPR 
channel shared between the two parties [25]. In the CV regime, the earliest example of tele-
portation was formulated for a one-dimensional phase-space particle [4}. A more practical 
version of the CV quantum teleportation was devised by Braunstein and Kimble [5], who 
proposed the teleportation of quadrature components of an electromagnetic field using finite 
degrees of correlation. CV quantum teleportation protocol is experimentally realizable [26]. 

The success of a teleportation protocol is indicated by the average fidelity of the teleported 
output state with the input state to be teleported. Perfect teleportation protocols with 
infinitely nonclassical resources have fidelity of 1. For teleporting a coherent state via a 
classical channel, the upper limit of average fidelity (Fclass) is ~ [27]. This is the maximum 
permissible fidelity without entangled quantum channels. In terms of quantum cloning, the 
lower limit for any quantum teleportation is set at ~ [28], which is the fidelity of cloning 
( F cWn.e) an arbitrary state. Any protocol that delivers a fidelity greater than the classical 
fidelity, Fclass, can be considered a basic quantum teleportation protocoL In the CV quantum 
teleportation formulated by BK, the two-mode quantum channel and the input state to be 
teleported are described by a joint Wigner function W(!, ~' 17) = Win b)® Wch(~, 1J). The 
Wigner function description can be more clearly stated in terms of the symmetrically ordered 
characteristic function [24, 29}. The average fidelity of BK quantum teleportation is [30} 

(A.25) 

where Xouth') = Xinbhch(!*,/) [31}. Xin and Xch being the characteristic functions of the 
input state to be teleported and the two-mode quantum channel, respectively. 

An important part of the calculation of the average fidelity of CV teleportation is to 
obtain the characteristic function of the two-mode nonclassical teleportation channeL The 
characteristic functions of the bipartite entangled GSP operated single-mode and two-mode 
input states are formulated below. 
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Figure A.4: Behavior of the average fidelity (F) of teleporting a single-mode coherent state 
(of any amplit ude) using two-mode output states generated from GSP operated single-mode 
input states interacting with a vacuum mode. F is shown as a function of (a) the amplitude 
(lal) of a coherent input state, (b) the average photon number (n) of a thermal input state. 
and (c) .A (= tanh z) , where z is the squeezing parameter of a squeezed input state. The 
plots are for different values of the GSP operator parameter: s = 0 (black crosses). s = 0.5 
(green triangles), s = 0.8 (brown circles) [shown only in (c)]. s = 1.0 (blue squares) . and 
unoperated states (red cont inuous line) . 

Single-mode states: We have considered three different single-mode input states for the GSP 
operation, namely. coherent . thermal and squeezed states. These input states undergo GSP 
operation and then interact via a symmetric beam-splitter with a vacuum mode Lo generate 
a two-mode bipartite entangled output state. as shown in Section A.2. The generated two-
mode nonclassical states are used as a quantum channel in CV teleportat ion . 

For a single-mode GSP operated coherent state coupled to a vacuum mode. the charac-
terist ic function of the state is given by 

Xch(~ , rJ ) N-1 (s2 + (s + t) 2 lal 2 {1 +(a+ X )(a* - X *)}+ s(s + t){a(a*- X*) 

+ a*(a +X)}) exp [~ (IXI 2 + IYI 2
)] exp (a*X- aX), (A.26) 

where X = (~- rJ)/V2 and Y = (~ + rJ)/ .f2. N is the normalization constant given by 
[s2 + (s + t)(3s + L)lal 2 + (s + L)2 1al4] . The fidelity can be calculated using Equation (A.25). 

For the GSP operated single-mode t hermal state. the characteristic function can be calcu-

lated using the density matrix expression for the truncated GSP operated two-mode density 
matrix given by Equation (A. lO). The characteristic function of any two-mode state with a 
density matrix p is given by 

00 

x(~, rJ ) = L Pnm,n'm'(nml l\ (~)Db( rJ )In'm'), (A.27) 
n' ,n,m' .m=O 

where Da is the displacement operator acting on mode a. The detai led derivation of the 

characteristic function fo r any two-mode density matrix in th< ~ number state basis is shown 
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in Appendix A of Reference (1]. 
The characteristic function of a single-mode GSP operated squeezed state interacting 

with a beam-splitter can be written as 

x({, 77) N-1 (s2 + s(s + t){2po- Pt(X'*2 + X 12
)} + s2 (s + t)2 {p~- PoPt(X'*2 + X 12 ) 

+ Pi{l - 2fX'l2 + lx;l4

}) exp [ -~(IX'I2 + IYI2
)] , (A.28) 

where X= ({- 7J)v'2 andY= ({ + 77)y'2. X'= X coshz- Y*sinhz. p0 = sinh2 z and 
p1 = sinh z cosh z. The normalization constant is N = s2 + 2s( s + t)p1 + ( s + t)2 (p~ + 2~)
The symbols s, t and z have the usual meanings as in Section A.2. 
Two-mode states: We again consider three two-mode input states in our analysis. The first 
two are the classical two-mode GSP operated coherent and thermal input state interacting 
via a symmetric beam splitter to generate a bimode entangled two-mode nonclassical output. 
The third is the GSP operated two-mode squeezed state. 

For a two-mode coherent input state, the derivation of the characteristic function of the 
GSP operated output bimode state, given by Equation (A.18), is given in Appendix B in 
Reference [1]. Further, the characteristic function of the two-mode GSP operated thermal 
state and squeezed state is derived in Appendix A and Bin Reference [1], respectively. The 
average fidelity of teleportation of a state across the nonclassical two-mode GSP operated 
coherent input can be calculated using Equation (A.25). 

In the following subsections, we consider the CV quantum teleportation of two single-
mode states: (a) single-mode coherent state, and {b) single-mode squeezed state. 

A.4.1 Teleporting a single-mode coherent state 

We consider the quantum teleportation of a single-mode coherent state using the GSP op-
erated nonclassical two-mode states, discussed in Section A.2, as the teleportation channeL 
The teleportation is conducted using the BK protocoL The symmetrically ordered charac-
teristic function of the input coherent state ja) is 

(A.29) 

The fidelity of CV quantum teleportation of a coherent state input is independent of the 
amplitude of the state to be teleported. 

Let us consider the average fidelity of quantum teleporting a single-mode coherent state 
..,;a a two-mode output generated from a GSP operated single-mode input interacting with 
vacuum mode. The characteristic functions of the GSP operated single-mode coherent, 
thermal and squeezed inputs interacting with vacuum are given by Equations (A.26), (A.27) 
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Figure A.5: Behavior of the average fidelity (F) of teleporting a single-mode coherent state 
(of any amplit ude) using a two-mode output generated from GSP operated two-mode input 
states. F is shown as a function of (a) the amplitude (lad) of a coherent input state. and 
(b) the average photon number ( n) of a thermal input stat e. The plots are for different 
symmetric values of the GSP operator parameters. s1 = s2 = s: s = 0 (black crosses) . s = 
0.5 (green triangles). s = 1.0 (blue squares). and unoperated states (red continuous line). 

and (A.28) , respectively. Figure A.4 shows the variation of the average fidelity (F) with 
changing field parameters of the quantum channel at different values of the GSP operation 
parameter s . We observe in Figure A.4(a). that for the GSP operated single-mode coherent 
state channel , the maximum average fidelity is F max ~ 0.5. This value is the classical upper 

limit of teleportation. Fclass and is well below the the threshold of cloning fidelity. The 
maximum fidelity is achieved at very low values of the channel field amplitude lal and is 
independent of the GSP operator parameter s. Interestingly, the decay ofF with increasing 
lal for the GSP operated tate is always bounded above by the non-operated bipartite state. 
Hence, t he GSP operations is able to reduce the average classical fidelity. Figure A.4(b) 
gives us the fidelity for the GSP operated single-mode thermal state channel for varying 

average photon number. The maximum fidelity, Fmax ~ 0.5. vvhich. again. is the threshold 
for classical teleportation. 

The enhancement of the average fidelity, under the operation, is observed for the GSP 
operated single-mode squeezed channel. From Figure A.4( c). we can observe that a high 

fidelity, Fmax ~ 0.816, can be achieved for highly squeezed states. This value breaches the 
threshold for quant um cloning. Even at the low squeezing regime, GSP operation can highly 

enhance t he average fidelity. For low squeezing parameters , A ~ 0.2 , the GSP operated states 
at s ;::: 0.5 offer enhanced fidelity values, F ;::: 0.74. which is again higher than the cloning 
fidelity, Fclone = ~, and also higher than the non-operated squeezed channel. 

Let us now consider the average fidelity of teleporting a single-mode coherent state via 
a bipartite two-mode output generated from a GSP operated two-mode input state. The 
average fidelity (F ) for the two-mode GSP operated coherent and thermal state channel 
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Figure A.6: Behavior of the average fidelity (F) of teleporting a single-mode coherent state 
(of any amplitude) using a two-mode output generated from a GSP operated two-mode input 
squeezed state. F is shown as a function of A ( = tanh r) . where r is the squeezing parameter 
of the squeezed state input. The plots are for different symmetric values of the GSP operator 
parameters. s 1 = s2 = s: s = 0 (black crosses), s = 0.5 (gr en triangles) . s = 0.9 (brown 
circles), s = 1.0 (blue squares) , and unoperated states (red continuous line). 

can be observed in Figure A.5 as a function of the field parameters lad and fi . We have 

considered symmetric field parameters for the two modes. The behavior of the average 
fidelity for the two-mode case is similar to the results for the single-mode fidelity. The GSP 
operation on two-mode thermal and coherent state reduces the average classical fidelity 

across the channels. Figure A.6 gives us the average fidelity ( P) for a two-mode GSP 
operated squeezed state channel with varying field parameter A. where A = tanh r and r is 
the two-mode squeezing parameter. F is calculated for different values of the GSP operator 

parameter s. The maximum fidelity, Fmax = 1 is achieved for all values of sat high squeezing 
(A = 1). In the low-squeezing regime, for A ~ 0.2 , the highest fidelity, F::::::: 0.76 is achieved 
at s = 0.9. At higher squeezing. 0.2 ~ /\ ~ 0.8 , the highest fidelity, F::::::: 0.91 is achieved at s 

= 1.0. Figure A. 7 shows the variation of average fidelity F with the two-mode GSP operator 

F 
1 0 .85 

0.8 0.84 

0.6 0.83 
s2 0.82 

0.4 0.8 1 
0.2 0.8 

0 0.79 
0 0.2 0.4 0.6 0.8 

si 

Figure A.7: Behavior of the average fidelity (F) of teleporting a single-mode coherent state 
(of any amplitude) using a two-mode output generated from a GSP operated two-mode 
input squeezed state. F is shown as a function of the two-mode GSP operator parameters s1 
and s2 , with A ( = tanh r) fixed at 0.6, where r is the squeezing parameter of the two-mode 
squeezed input state. 



A.4. AVERAGE FIDELIT Y OF CONTINUOUS VA R IABLE TELEPORTATJON 

0.5 

0.4 

F 0.3 

0.2 

0. 1 

0 o~~o~.2~~0~.4~~0.6~~~~ 

tal 
(a) 

0.9 .---~~~-.----....-~-.--~-, 

0.8 

0.7 

F O.li 

0.5 

0.4 
><-->< s= O.O 
....._. s = 0.5 
..... s= J.O 
- squeezed 

0.4 0.6 0.8 

(b) 

138 

Figure A.8: Behavior of the average fidelity (F) of teleporting a single-mode squeezed state 
wit h squeezing parameter. r' = 0.1. using a t\vo-mode output generated from GSP operated 
single-mode input states interacting with vacuum mode. F is shown as a function of (a) the 
amplitude (Ia!) of a coherent input state , and (b) A ( = tanh z), where z is the squeezing 
parameter of a squeezed input state. The plots are for different values of the GSP operator 
parameter: 8 = 0 (black crosses), 8 = 0.5 (green t riangles). 8 = 1.0 (blue squares). and 
unoperated states (red continuous line). 

parameters 8 1 and 8 2 applied on a two-mode squeezed state, with A = 0.6. The average 

fidelity is independent of t he amplitude of the single-mode coherent state to be teleported. 
F varies over a small range of values (0.79- 0.85) for different values of 8 1 and 8 2 . with the 
higher range corresponding to higher values of the GSP operator parameters. Hence. for a 
fixed squeezing, A, the fidelity is not very sensitive to the operator parameters. 

A.4 .2 Teleporting a single-mode squeezed state 

We now consider the quant um teleportation of single-mode squeezed vacuum state using the 
GSP operated two-mode output states. The symmetrically ordered characteristic funct ion 
of the input squeezed vacuum state. exp[(r' / 2)(a2 - a.t2)]IO) is 

( ) _ . [-cosh 2r' I !2 _ sinh 2r' ( ,2 *2 ) ] 
Xsqz "t - exp 2 "t 4 ') + "t . (A.30) 

For the teleportation of the single-mode squeezed state, we consider the single- and two-
mode GSP operated coherent and squeezed state quantum channels. The average fidelity of 
teleportation is not independent of the squeezing parameter r' of the squeezed state to be 

teleported. Figure A.8 shows the average fidelity (F) of teleporting a single-mode squeezed 
state, with squeezing parameter r'=O. l. using a GSP operated single-mode coherent and 
squeezed state input . For a single-mode GSP operated coherent state. as shown in Figure 
A.8(a), the maximum average fidelity is Fmax ~ 0.5. which is the threshold for classical 
fidelity, Fclass· The average fidelity is again bounded by the non-operated input state. The 
GSP operation again reduces the average fidelity of teleportation. Figure A.8(b) show the 
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Figure A.9: Behavior of the average fidelity (F) of teleporting a single-mode squeezed state 
with squeezing parameter. r' =0.5. using a two-mode output generated from a GSP operated 
two-mode squeezed input state. F is shown as a function of A (= tanh r). where r is the 
squeezing parameter of the input state. The plots are for different symmetric values of the 
GSP operator parameters. s1 = s2 = s: s = 0 (black crosses), s = 0.5 (green triangles) . s = 
0.8 (brown circles). s = 1.0 (blue squares) . and unoperated states (red continuous line) . 

average fidelity of teleportation using a single-mode GSP operated squeezed state channel. 
The maximum average fidelity is Fmax = 0.842 , at A = 1, for highly squeezed channels. At 
low squeezing limits, the GSP operations enhance the average fidelity over the non-operated 
state. For A :::; 0.2 , the highest fidelity is 0.752 for s ~ 0.5. Figure A.9 shows the average 
fidelity (F ) of teleporting a single-mode squeezed state. with squeezing parameter r' = 0.5 . 
using a GSP operated two-mode squeezed state input. The maximum fidelity is Fmax = 
1, achieved for highly squeezed channels with A ~ 1.0. At the mid-squeezing range, in the 
vicinity of A ~ 0.5. we observe that all GSP operated states have enhanced average fidelity 
over the non-operated state, with the highest fid elity, F = 0.785 , achieved at s = 1.0. The 
behavior of the average fidelity for a two-mode GSP operated coherent channel is similar to 

the single-mode coherent channel. 
We observe that the GSP operation. while enhancing the teleportation fidelity for the 

nonclassical two-mode squeezed input state channel. reduces the fidelity for channels formed 
by GSP operated classical thermal and coherent input states. In other words. the GSP 
protocol enhances efficient quantum teleportation while simultaneously reducing the low 
fidelity due to classical channels which could arise due to noise. Due to the linear nature 

of the characteristic function, a noisy quantum channel cau often be simulated using a low 
intensity thermal channel in the characteristic function of the two-mode channel [32]. Hence 
reduction of fidelities across classical channel will enhance the quantum fidelity of the noisy 
quantum teleportat ion protocol. 
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Figure A.10: Behavior of EPR correlations , .6. (x1 - x2 ) 2 + .6.(p1 + fj 2 ) 2 . for GSP operated 
(a) two-mode input coherent state. and (b) two-mode input squeezed state. with respect to 
varying (a) coherent field amplitude, and (b) ,\ ( = tanh r ) where T is the squeezing parameter . 
for different values of the GSP operator parameter: s = 0 (black crosses). s = 0. 5 (green 
triangles), s = 0.9 (brovvn circles) [not shown in (a) ], s = 1.0 (blue squares), and unoperated 
states (red cont inuous line) . 

A.5 EPR correlations 

The success of the CV teleportation protocol is dependent on the correlations developed 

between the phase-quadrature components of the GSP operated two-mode output states. 
These correlations also known as Einstein-Podolosky-Rosen correlations can be quantified 
in terms of the variance of the differences of the quadrature components of the two modes. 
The quadrature operators are defined as 

A - 1 (A At) A - 1 (A At) A - 1 (bA bAt) A - 1 (bA bAt) 
x 1 - ;r; a + a , p1 - . ;r; a - a , x2 - ;r; + , P2 - . ;r; - , 

v2 ·tv2 v2 ·tv2 
(A.31) 

for the two modes a and b, respectively. The EPR correlation is then defined as t he total 
variance of the operators x1 - x2 and fj1 + fj2 . The correlation for the EPR state [33] . 
which is a maximally entangled state, is .6. (£1 - x2 ) 2 = .6.(fj1 + p2 ) 2 = 0. For a two-mode 
vacuum state, the EPR correlation is .6. (x1 - x2 ) 2 + .6.(fj1 + fj2 ) 2 = 2. For states with 
classical EPR correlation t he variance difference is always greater than 2. Figure A.10 gives 
us t he variance of the EPR operator for the two-mode GSP operated coherent and squeezed 
state inputs. From the values of the variance, with changing field parameters. it is evident 

that the two-mode GSP operated coherent state is not EPR correlated at any field value. 
The variance for the two-mode non-operated coherent state is constant at 2.0. The EPR 
correlation patterns throw light into the teleportation fidelity plots of the two-mode coherent 

state [Figure A.5(a) and A.8(a)]. The maximum fidelity achieved for low lad- Fmax = 0.5. 
which is at the upper limit of teleportation using unentangled quantum channels (Fclass=~) 

and below the cloning fidelity (Fclone= ~). This is explained by the fa ct that the two-mode 
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state is not EPR correlated for all lnl and has no quadrature entanglement. Hence, the 
GSP operation is unable to introduce phase-quadrature entanglement in the GSP operated 
coherent state even though low intensity truncated states are entangled. In comparison, 
FigureA.lO{b) shows that the two-mode squeezed state is strongly EPR correlated, with the 
GSP operation enhancing the correlation. This results in high teleportation fidelity above the 
cloning fidelity limit even for relatively low squeezing values (>.). The variances in the EPR 
quadrature operators are equal and behave as exp[-2r], where r is the squeezing parameter. 
Hence, at maximum squeezing the GSP operated state is maximally EPR correlated. 

A.6 Discussion 

In the Appendix, we have used a generalized superposition of products of annihilation and 
creation operators to engineer nonclassical continuous variable field states. We have applied 
the GSP operator along with linear optical interaction on single- and two-mode CV states 
such as coherent, thermal and squeezed states to obtain entangled two-mode output states. 
By considering low field intensities, the infinite-dimensional CV field inputs can be truncated 
to form discrete system. Upon application of the GSP protocol, there is a heralded generation 
of bimode entangled optical states. 

The second aspect of the study is the application of the GSP operated states as quantum 
channels in CV quantum teleportation. We have observed that the GSP operations enhance 
average fidelity of teleporting single-mode coherent and squeezed states using two-mode 
entangled channels obtained from single- and two-mode squeezed state inputs. The optimized 
GSP operation outperforms most non-Gaussian operations, in the low-squeezing regime, with 
regard to fidelity enhancement in CV teleportation. Interestingly, the GSP operation reduces 
the classical fidelity of teleportation across the two-mode GSP operated classical thermal and 
coherent channels. The maximum fidelity achieved using the coherent and thermal channels 
is the maximum classical capacity that is achieved without entangled resources. Hence, the 
CV teleportation protocol is enhanced for the quantum channel with a reduction in the 
fidelity arising from the classical channels. This result could prove immensely fruitful in the 

control of noise in experimental application of CV quantum teleportation. The experimental 
advances in the generation of photon-added and photon-subtracted field states ensure that 
the advantages of non-Gaussian operations will be put to further applications in the future. 

In the light of such developments the importance of theoretical studies on non-Gaussian 
states cannot be over-emphasized. 
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