
A RELATIONAL DATABASE SYSTEM

IN PROLOG

DISSERTATION SUBMITTED TO THE JAWAHARLAL NEHRU UNIVERSITY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE AWARD OF THE DEGREE OF

MASTER OF TECHNOLOGY

· <COMPUTER SCIENCE>

KUO PAHAI

SCHOOL OF COMPUTERS & SYSTEMS SCIENCES

JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI - 110 067

1987

--
. "; ·~ !~ ":>

J

Teo rii'! • > pat·ent~ .

CERTIFICATE

This work, embodied in the dissertation titled, "A RELATIONAL

DATABASE SYSTEM IN PROLOG", has been carried out b~J Mr .Kuo

Pahai, a bonafide student of School of Computers and Systems

Sciences, JavJaharlal Nehru University, New Delhi- 110 067.

This work is original and has not been submitted for any

other degree or

in:.titute.

~~~~·-s 
Mr. C.Ravi Shankar, 
Systems Specialist, 
R & D Centre, 
CMC Ltd., 

diploma in any other university 

Dr. K.K.Nambiar, 
Professor, 
School of Computers & 
Systems Sciences, 

or 

115, S.D. Road, 
Secunderabad - 500 003. 

Jawaharlal Nehru University, 
New Delhi - 110 067. 

Pro~~hu, 
Dean, School of Computers & Systems Sciences, 

Jawaharlal Nehru University, 
· New Delhi - 110 067. 



ACKt·..JOWL E DGEMENT S 

This project would not have materialized without the 
kind consent of my guide Prof. K.K.Nambiar. I am grateful 
for the help and advice given by him during the tenure of my 
project, and many more things. 

My sincere thanks are due to Mr. C.Ravi Shankar, my 
guide at CMC Secunderabad, whose foresight and understanding 
of the time-bound nature of the project helped me choose an 
appropriate topic of work. I am also grateful to him for the 
help and advice offered whenever I needed it. 

I am thankful toM~. S.Kapoor, 
giving me this opportunity to work at 
Sec:undel· abad. 

Systems Manager, for 
the CMC, RS,D Centre, in 

Many thanks are due to some members of PACE (Parallel 
Architecture Computation Environment), notably, U.Bhaskar and 
Siva Prasad for clearing many of my nagging doubts about 
Prolog. 

I am grateful to Mr. Narasimha R5o, who patiently sat 
through a query session on the supplier-part-department 
database, and offered many helpful suggestions on what the 
shortcomings were and how they could be removed. Many of his 
suggestions, have given insight in the area of integrity 
constraints, and also other features offered on various 
DE:t1S' s. 

My thanks also go to the 'Operations' staff who bore my 
long houis at the terminal pleasantly and for booting VAX 
promptly, despite vagaries in power supply, particularly 
during the end of my project. 

Sincere thanks go to all friends sitting near my cluster 
in Parklane, for having accomodated me and also for many 
stimulating and informative discussions on computers and 
o then-..•i se. 

The list of all persons whom I 
very long. Any oversight on my part 
is fol·giuen. 

should acknowledge is 
in this aspect, I hope, 



PROLOGUE . 

CHAPTER 1 

1 .1 
1.2 
1.3 
1.4 

CHAPTER. 2 

( i ) 

COHTEt-JTS 

. . . . . . . . . . . 
INTRODUCTION TO LOGIC, RESOLUTION AND PROLOG 

PREDICATE LOGIC . 
BASIC NOTATIONS . 
RESOLUTION . . . 
PROLOG AS A LOGIC PROGRAMMING LANGUAGE 

RELATIONAL ALGEBRA - DEFINITIONS, THEORY 

1 

4 

• 4 
C" 

• • • .J 

. . 11 
1 -. . .:::.. 

. . . 17 

2.1 TERt··1It--JOLOG''( OF RELATI OHAL t10DEL . . . . . . . . 18 
2.2 THE RELATIONSHIP BETWEEN LOGIC AND DATABASES ... 23 
2. 3 OPERATIONS OF RELATIONAL ALGEBRA . . . . . . . 27 

CHAPTER 3 SYNTAX, INTERNAL REPRESENTATION AND 
PARSING THE QUERY . . . . . . . 

3. 1 THE LANGUAGE SOL . . . . . . . . . . . . . . . 34 
3.2 USAGE OF AGGREGATION OPERATORS (BUILT-IN FUNCTIONS) 39 
3. 3 STORAGE OPERATIONS . . . . . . . . . . . . 41 
~:. 4 
3.5 

CHAPTER 4 

4.1 
4.2 
4.3 

4.4 

CHAPTER 5 

5.1 
C' .-, 
._1 • &:.. 

5.3 
5.4 
1:" .,. 
._) • ._1 

5.6 

SYNTAX OF ~:QL 

QUERY PROCESSING . . 

TOP.LEVEL QUERY PROCESSING . 

'CREATION OF VARIABLES ..... . 
TREATMENT OF CONDITIONS 
TOP LEVEL IMPLEMENTATION CORRESPONDING 
TO RECURSIVE PROGRAMMING 
TRACE OF QUERY PROCESSING BY AN EXAMPLE 

NEGATION, AGGREGATION AND 
OTHER USEFUL PREDICATES 

. . . 

. . . 

. . . 

. . . 

. . . 

NEGATION AS t··.JONPROVABI LIT'{ . . . . . . . . . • 
THE PREDICATE "GROUP" . . . . .....•... 
THE PREDICATE II UPDATE II • • • • • • • • • • 

AGGREGATE FUNCTIONS ......... . 
It-·1PLEt"1ENTATI ON OF AGGREGATION FUNCTIONS . . . 
A LOOK AT SOME OTHER USEFUL PREDICATES • 

4 ·-=· ~· 

45 

c:-~ • 
._I C., 

c--~ 
._1 • .:1 
1:"1::' 
._1._1 

56 
E-~ •C.. 

68 

68 
71 
72 

74 



CHAPTER 6 

( i i ) 

SUGGESTIONS FOR I MPR.OVEt1ENT AND 
IDEAS FOR FUTURE WORK ..... 

APPENDIX 1 THE SAMPLE DATABASE . 

APPENDIX 2 SAMPLE QUERIES, THEIR ANSWERS AND 
THEIR RESPONSE TIMES ........ . 

APPENDIX 3 SYNTAX OF THE QUERY LANGUAGE 

APPENDIX 4 INTERNAL REPRESENTATION OF THE SAMPLE DATABASE, 
RELAT I Ot-..JAL SCHEHA AND I t·..JTEGR I TY COt-..JSTRA I NT:=: . 

APPENDIX 5 SOURCE CODE OF THE DATABASE PROGRAH 

APPENDIX 6 BIBLIOGRAPHY AND REFERENCES 

79 

88 

90 

103 

105 

107 

124 



Page 1 

PROLOGUE 

The following chapters describe in detail the creation 

of a relational database system in Prolog and some aspects of 

the formalism of logic and relational algebra. 

The idea of implementing a relational database system in 

Prolog is as old as the language itself, and is in fact an 

obvious consequence of the "database" nature of Prolog. I 

shall not offer a detailed argument to support this view -

suffice to say that, Prolog is an inherent tuple searching 

(database searching) language and backtracking ensures 

exhaustive database search till all possible solutions to a 

given query are found. 

Prolog is a recursive language and coding can be very 

compact. More importantly it is a highly descriptive 

language in that - specification regarding "what to do" and 

not "how to ao" is enough. In other words one need not give 

~.peci f i c control ~.tatemen ts f Col" pl·ogl· am execution. 

Con~.equen tly, it not only cuts down program development time 

but also make~. a pl·ogram more understandable and amenable to 

changes. The Prolog program itself executes like a database 

search where each sub-goal to be satisfied is searched and on 

matching with the appropriate head of the clause enters it 

and executes its body, which may be further sub-goals to be 

satisfied. In fact one might say here that the distinction 



Page 2 

between data and program is lost. 

The data manipulation language is very similar in syntax 

to the query language SQL. 'The database is created and 

stored as Prolog facts. The relational schema are stored as 

Prolog structures. 

Chapters 1 and 2 discuss some preliminaries of logic, 

predicate calculus, relational algebra and some important 

definitions involved in this algebra. 

Chapters 3 and 4 form the core of the project, where the 

query processor is discussed with the help of a complicated 

query. The functions ~f the top level predicates involved in 

this processor are explained. 

Chapter 5 deals with some aspects of representation of 

negative information in the database, some strategies 

involved in the construction of aggregation operators and 

other useful predicates. 

Chapter 6 discusses the implementation, its 

capabilities, its performance compared to other RDBMS systems 

its shortcomings and how one could remove them, and other 

pointers for future work. 



Page 3 

The appendices at the end contain a sample database, 

sample queries and their solutions, the syntax of the query 

language, internal representation of relational schema and 

integrity constraints and the source listing of the program. 



Page 4 

CHAPTER 1 

INTRODUCTION TO LOGIC, RESOLUTION AND PROLOG 

A brief introduction to logic, resolution and Prolog is 

given here. 

1.1 PREDICATE LOGIC 

Logic studies the relationship between assumptions and 

conclusions. I t was originally devised as a way of 

representing arguments formally, so that it would be possible 

to check .in a mechanical way whether or not they were valid. 

Thus we can use logic to express propositions, the relation 

between propositions and how one can validly infer some 

propositions from others (theorem proving). From the logic 

point of ~iew~ a generalised DBMS is just a general-purpose 

question-answering system in which the set of facts necessary 

for question-anst.-_•ering (ot· problem sol ... .oing), can be viet..._•ed as 

axioms of a theorem, and the question (or the problem) can be 

viewed as the conclusion of the theorem. Therefore the 

empha-:.is of such a databa-:.e management s~.•stem i-:. on its 

deductive power, which corroborates the assertion that logic 

plays a significant role in DBMSs. 



Page 5 

The predicate calculus is a formal language whose 

essential purpose is to symbolize logical arguments in 

mathematics. The sentences in this language are called 

well-formed formulas (wffs). By "interpreting" the symbols 

in a wff we obtain a statement which is either true or false. 

We can associate many different interpretations with the same 

wff and therefore obtain a class of statements where each 

statement is either true or false. However our interest is 

mainly in a very restricted subclass of the wffs, those that 

yield a true value for every possible interpretation. 

1. 2 BASIC NOTATIONS 

The symbols from which our statements are constructed 

are listed below. 

1.2.1 Quantifiers: 

The tt,.,tO quanti f i el·<::. used are: ~ ( un i ver<::.al quanti f i e_l·) 

and 3 (existential quantifier). 

1.2.2 A term is recursively defined as: 

1. A constant is a term. 



Page 6 

2. A variable is a term. 

3. Iff i~. an n-ary function symbol, and t1,t2, ... ,tn al-e 

terms, then f( t1, ... , tn) is a term. 

4. All terms are generated by applying the above rules. 

1.2.3 Atomic: formulas are defined as: 

If Pis an n-ary predicate symbol, and t1,t2, •.• ,tn are 

terms, then P(t1, •.• ,tn) is an atomic: formula. No other 

expression c:an be an atomic: formula. 

1.2.4 Hell formed formulas (HFFs) are recursively defined 

a c:• -·. 

1. An atomic: formula is a HFF. 

2. If F and G are HFFs then: 

-F, F & G, F # G, F -> G and F <-> G are HFFs, where 

-, &, #, -> and <-> are ,.negation,., ,.c:ordunc:tion,., 

,.disjunction,., 'implication,. and ,.equivalence' logical 

connectives respectively. 

3. IfF i~. a WFF, xis a free val"iable, then (~x)F and (3x)F 

are WFFs, where ~x and 3x are universal and existential 

quantifiers (quantity connectives) respectively. 



Page 7 

4. WFFs are generated only by a finite number of 

applications of (1), (2) and (3). 

In a WFF a connective can be expressed in terms of the 

other connectives. For instance : 

F <-> G -- (F -> G) & (G -> F) 

F -> G -- ~F * G 

~~p -- p 

~(F & G) -- -F * -G 

-cF * G) -- -F & ~G 

(3x)P -- -cc~x)(-P)) 

(~x)P -- ~((]x)(~P)) 

A functionally complete set of connectives in Predicate 

Calculus, which is sufficient to express any formula in an 

equivalent form, could be: 

<&,~,~x} or <F,->,~x}. 

As a result of the redundancy, there are many ways to 

express the same formula in an equivalent form (a similar 

situation to that in database query languages; different 

queries may express the same request). If we wish to carry 

out formal manipulations on Predicate Calculus formulas, this 

turns out to be very inconvenient. It would be much nicer if 

everything we wanted to say could only be expressed in one 

way. 



Page 8 

A special form called the Clausal Form alleviates this 

problem to a certain extent. 

1.2.5 The Clausal Form-

A clause is an expression of the form. 

81,82, ••• ,8m <- A1,A2, .•• ,An 

where 81,82, ••• ,8m,A1,A2, .•• ,An are.atomic formulas,· n >= 0 

and m >= 0. The atomic formulas A1 , A2 , .•• , An a·r e j o i n t 

conditions of the clause; 

alternative conclusions. 

and 81,82, .•• ,8m are the 

If the clause contains the 

variables xl,x2, ••• ,xk, 81 or 82 or ..• or 8m holds if Al 

and A2 and and An hold. Alternatively a clause may be 

defined as a finite disjunction of literals, a literal being 

an atomic formula or negation of an atomic formula. A wff is 

said to be in a clausal form if it is a finite conjunction of 

clause~ .. 

There are three special cases of clausal forms: 

1. If n=O, that is, 

81 , 82 , ... , Bm <-

then: for all x1,x2, ••• ,xk, 81 or 82 or ... 

unconditionally true. 

o1· 8m is 



Page 9 

2 . If m=O , that is, 

<- A1 ,A2, ••• ,An 

then: for all x1,x2, .•• ,xk, it is not the case that A1 

and A2 and and An are true. 

3. If m=n=O, that i:. the empty clau:.e: 

<-

then: this is a formula which is always false (a 

contradiction). 

1.2.6 Horn Clauses 

Clauses containing at most one conclusion are called 

Horn Clauses, (first investigated by logician Alfred Horn). 

For many applications of logic, it is sufficient to restrict 

the form of clauses to Horn Clauses. There are two types of 

Horn Cl au ~-E·:.: 

1. Headed Horn Clauses. 

8 <- A1 , A2 , .•• , An 

Ol" 

8 <-



Page 10 

2. Headless Horn Clauses. 

<- Al , A2, ... , An 

or an empty clause: 

<-

Any solvable Horn Clauses can be expressed in.such a way 

that, there is one headless clause, and all the rest of the 

clauses are headed. 

Mathematical Logic 

First Order Predicate Calculus 

Hcq· n Clause 

., ----------------------/ 

'--------~----------------------

'------------------------------------

----------------------------------------------/ 
Figure(l.l). The onion layer of logic programming. 



Page 11 

Thus, we can decide to view the headless clause as the 

goal which mu-:.t be present for a problem to be solvable and 

the other clauses as the hypotheses (axioms). Because 

resolution with Horn clauses is relatively simple, they are 

an obvious choice as the basis of a theorem prover which 

provides a p·ractical programming system. 

1.3 RESOLUTION 

Proving the satisfiability of wffs in predicate calculus 

can be done easily by a method known as resolution. 

Resolution techniques can be applied only to wffs which are 

in clausal form and all wffs can be reduced to the clausal 

form. Prolog also incorporates the idea of resolution for 

proving a theorem. 

1. (Robinson) A given wff S in clause form is unsatisfiable 

if and only if the empty clause can be derived eventually 

by repeated application of the resolution rule. 

2. Resolution: To prove the satisfiability of a wff S in 

clausal form, it is equivalent to prove that its negation 

-s is unsatisfiable. Therefore we repeatedly apply 

resolution rule to -s, until an empty clause is obtained. 

Resolution method says that if we have a clause A and its 

negation ...... A, 

empty clause. 

then• "resolvent" of A and -A yields the 

In Prolog such clauses may be interpreted 



Page 12 

as the sub-goals of a main goal, thereby reducing the 

problem of proving the main goal to that of resolving the 

sub-goals. If all the sub-goals are resolvable the the 

main goal is true. 

1.4 PROLOG AS A LOGIC PROGRAMMING LANGUAGE 

The language Prolog based on Horn Clauses can be seen d- c: -· 

the first step towards the ultimate goal of programming in 

logic [1). In fact Prolog can be summed up ""C: • "'-. 

PROLOG= Horn Clauses+ Extralogical facilities 

Prolog, based on Horn clauses ha~. to pt·ovide 

extralogical facilities in order to solve many problems. In 

fact the presence of these extralogical facilities may mean 

the difference between solving the problem or not solving it. 

Despite these "shortcomings" Prolog is a language with 

many outstanding features. It is a highly descriptive 

language - where the logic of the program is coded, and a 

programmer is not bogged down by the syntax and creation of 

data structures as in other more conventional procedural 

languages. Also Prolog is the mo%t widely available logic 

programming language. 



The version of Prolog I have used is C-Prolog which 

incorporates all features of the de facto standard 

Edinburgh Prolog apart from which it also provides many other 

facilities in the form of built-in predicates. 

A few of the bare essentials of Prolog are given here. 

The objects that are present in Prolog are: 

1.4.1 Terms 

The data objects of the language are called terms. A 

term may be a constant, a variable or a structure. 

1. Constants: A constant is thought of naming a specific 

object or a specific relationship. The constants include 

integers such 0 ' 1.3e3 and atoms which normally 

begin with a lower case such as: apple, john or special 

symbols such as?-, :-, ->etc. To improve readability 

the underscore character II II may be used such as 

book_name 

2. Variables: Variables are like atoms except that they 

begin with an uppercase letter or with an underscore e.g. 

London, _val. When we do not need to know what a 

variable is instantiated to while running a Profog 

program the underscore "_" is used and is referred to as 

.the anonymous variable. A variable may thus be thought 



Page 14 

of as standing for some definite but unspecified object. 

3. Structures : A structure comprises of a functor and a 

sequence of one or more terms called arguments. A 

functor is characterized by its name, which is an atom, 

and its arity being the number of argumenls. e.g. 

book(Title,Author_name,Language) may be thought of as a 

structure in Prolog where book is the functor of this 

structure with three arguments called Title,Author_name 

and Language. 

1.4.2 Headed Clauses 

There are two kinds of headed clauses - facts and rules. 

1. Facts: A fact is an assertion which is an axiom, such 

as; likes(john,mary) stating that john likes mary. When 

defining relationships about objects the order may be 

arbitrary but we must consistent about its 

interpretation and order. For instance, likes(john,mary) 

is not the same as likes(mary,john). 

2. Rules: A rule is a conditional assertion which consists 

of a head and a body. The head and the body are 

connected by the symbol ":-"which may be read as "if" 

e.g. Head ·. Goal1, Goal2, Goaln. For instance 

john likes anyone who likes wine in Prolog would become: 



Page 15 

likes(john,X) :- likes(X,wine). 

The head of this rule describes what fact the rule 

is intended to define. The body describes the 

conjunction of goals that must be satisfied, one after 

the other, for the head to be true. Suppose john likes 

any female who likes wine, we have: 

likes(john,X) :- female(X), likes(X,wine). 

Here unl es-:. the -:.ub-goals female(X) and 

likes(X,wine) are true 

succeed. The database 

the head likes(john,X) will not 

search is done left to right 

depth-fi r-:.t i . e. not until sub-goal female(X) is 

satisfied, will 1ikes(X,wine) be attempted. 

1.4.3 Headless Clauses 

H~adress clauses in Prolog are questions. A special 

symbol "?-" is always put before the question by the system. 

When a question is asked of Prolog, it will search thro~gh 

the .database, and look for facts and rules that match the 

question. Two facts match if their functors are the same and 

if each of their corresponding arguments are the same. Such 

a match is called unification of two terms. Unification 

algorithm is discussed well in [2]. In logic this method of 

matching may be interpreted as finding a proof of the 

question in the database by resolution, where the symbol "?-" 



Page 16 

stands for negation of the question, and hence if negation of 

the question is resolvable then the question is true- the 

basis for proof by resolution. 

For a more detailed account of the syntax and semantics 

of Prolog I suggest 

Prolog - W.F.Clocksin 

the 

and 

reader to peruse Programming in 

C.S.Mellish (3]. Chapters one 

through three of Mathematical Theory of Computation by Zohar 

Manna give an excellent introduction to predicate calculus 

and resolution [4). 



CHAPTER 2 

RELATIONAL ALGEBRA - DEFINITIONS, THEORY 

This chapter deals with relational 

important definitions and concepts. 

algebra, 

Page 17 

some 

One of 

installations 

the most critical problems facing database 

today is the rapidly increasing cost of 

developing and maintaining programs.Two fundamental problems 

in the use of files are: 

1. The data dependence problem: In nondatabase systems an 

application is data-dependent. It is impossible to 

change the storage (how the data is physically recorded) 

or access strategy (how it is accessed) without affecting 

the application. 

2. The data redundancy problem: The fact that each 

application has its own private files can often lead to 

considerable redundancy in stored data, with resultant 

waste in storage space and a high risk of inconsistency. 

The relational approach grounded in a well-established 

mathematical discipline, is a signifi~ant approach to the 

logic description and manipulation of data. Briefly speaking 

it views the logical database as a time-varying collection of 



Page 18 

normalized relations which are flat in that no repeating 

groups are involved. 

A relational database is manipulated by powerful 

operators for extracting columns and joining them, and 

inuolues no consideration of positional, pointer or access 

path aspects as in the case of the network and hierarchical 

approaches. 

2.1 TERMINOLOGY OF RELATIONAL MODEL. 

The relational approach carries a terminology of its own 

and a tendency to use terms which are rather mathematically 

oriented as it has a good theoretical foundation. A few 

important terms are defined below for convenience: 

1. RELATION : Given a collection of sets Dl,D2, ••• ,Dn, R is 

a relation on those n sets if it is a set of ordered 

n-tuples <dl,d2, •.. ,dn> such that dl belongs to Dl, d2 

belongs to D2, ••• ,dn belongs to Dn. It is normal to 

display relations as tables where the attributes head the 

columns and the rows are tuples. Hence the name table 

and relation are used interchangeably. 



Page 19 

R 
-

AA BB cc DD 

al bl cl dl 
al b2 c2 d2 
al bl cl d2 
al b2 c2 dl 
a2 b3 cl dl 
a2 b3 cl d2 

'------------------------------/ 
Figure(2.1). A Relation (or table) /R/ • 

TERt1 CORRESPONDING NAMES EXAMPLES 

1. relation table/file R 

2. relational table heading <AA,BB,CC,DD> 
scheme 

3. attribute column name/field type AA 

4. attribute under 1~· i ng domain al,a2 
values 

. 5. component value c2 

6. ar it~· degl·ee 4 

7. tuple row/entity/segment/record <al,b2,c2,d2> 

8. cardi na1 i ty 6 

9. FD BB --> CC 

10. Mt...JD AA ->-> <BB,CC> 

Figure(2.2). Terminology. 



Page 20 

2. RELATIONAL SCHEME: This is a set of attributes, which are 

names of columns for a relation. A relational scheme is 

assumed to remain constant over time, while the relation 

corresponding to it changes frequently. 

3. ARITY: The arity of a relation is the number of columns in 

the relation. Relations of arity two are binary, ... ' an.d 

relations of arity n are n-ary. 

4. ATTRIBUTE: An attribute of a relation is a column name in 

the relation; whereas the attribute values are the contents 

of the column. 

5. DOMAIN: A domain is the set of values from which the set of 

attribute values of a relation may be taken; that is, fl·om 

which a column of a table may be formed. It is important to 

appreciate the difference between a domain and columns; a 

column represents the use of a domain within a relation. 

6. TUPLE: We may consider a relation as being a mathematical 

set of tuples, a tuple is a row in the table. Each tuple in 

a row is unique since it i:. an element in a mathematical set. 

7. CARDINALITY: The cardinali t~~ of a l"elation R, denoted b~~ 

IRI, is the number of tuples in R. 



Page 21 

INTEGRITY CONSTRAINTS: Database consistency is enforced by 

constraints which are assertions that database 

are compelled to obey. Data dependencies are 

of integrity constraints. 

9. FUNCTIONAL DEPENDENCY (FD): A functional dependency X-->Y is 

an assertion about a relation scheme. It a-:.-:.ert-:. of any 

"legal" relation that two of its tuples tl and t2 that agree 

on a set of attributes. X, also agree on Y, that is, if 

tl[X] = t2[X] then tl[Y] = t2[Y]. 

10. MULTIVALUED DEPENDENCY (MVD): A multivalued dep en den c~, 

X->->Y is a statement that if tl and t2 are two tuples of a 

relation that satisfies X->->Y and X-->Y, then the relation 

must have a third tuple t3 that takes the Y-value from one of 

the tuples, say tl, and its value everywhere from the other. 

In other words, X->->Y means that the set of Y-values 

associated with a particular X-value must be independent of 

the values of the rest of the attributes. 

11. KEYS: In terms of FD and MVD of a relation, a minimum 

collection of attributes that can function as a unique 

identifier is called a candidate key. A relation may have 

more than one candidate key. 



Page 22 

12. NORMALIZATION: The theory of normalization relates 

dependency types to desirable properties of relation schemes. 

By normalization there can be no redundancy caused by 

dependencies of the given type in the relations for this 

scheme. 

13. NORMALIZED RELATION: A normalized relation is a table with 

non-decomposable values, which sometimes is called a base 

table, or a base relation. 

14. DATABASES: A database is a collection of relations, and 

their relation schemes collectively form the database scheme. 

To sum up a relational database DB is a collection R = 
{Ri>, describing certain objects of the world having certain 

attributes D, and the relationships among D, i.e. a set of 

dependencies F. Each relation Ri is characterised by a set 

of attributes Si = {DjiDj belongs-to D> called its scheme, 

and consists of a set of tuples. Each tuple is a map from 

the attributes of the relation scheme to their domains that 

satisfy all the dependencies of F. 

A relational database is accessed by a set of requests 

submitted by the user in order to retrieve, delete, insert or 

modify any subset of the data. In general, retrieval is an 

essential part of these processes. Users submit their 

requests for information in the form of queries, specifying 

the data which must be retrieved and the conditions which 



Page 23 

mu~t be satisfied by the desired data. The task of query 

processing is to determine the set of data, the proper order 

in which the data should be accessed and the types of 

mard pulat ions that must be performed on the data. This 

processing is referred to by different authors a~. query 

translation, access path finding, or optimisation. 

2. 2 THE RELATIONSHIP BETWEEt·..J LOGIC AND DATABASES 

Logic has been found to be highly useful both for 

describing static databases as well as for processing 

databases which change. On the other hand, the evolution in 

database technology, particularly in relational model, has 

been drifting more and more toward the use of logic. A 

considerable amount of programming logic theory can be 

transferred to databases. The use of logic for data 

description abolishes the di st i net ion bet1.-..1e'en databases and 

Strategies which apply to the execution of 

programs apply also to the retrieval of answers to database 

queries. Methods for proving properties of programs apply to 

verification of integrity constraints. Procedures for 

maintaining dynamically evolving databases apply to the 
' -

evolutionary development. 



Page 24 

As far as relational query languages and user-interfaces 

are concerned, there are many problems that can be 

conveniently transformed into logic, some of ~hich are: 

1. From the viewpoint of theorem proving, a database system 

can be considered as a question-answering system where 

facts at·e represented a<:. logic formulas, and answering a 

question from facts may be regarded as proving that a 

formula corresponding to the answer is derivable from the 

formulas representing the facts; and therefore deductive 

search becomes important [5]. 

2. If a query is written in a very high level non-procedural 

query language the execution of such a query is to 

perform tasks that would be called intelligent. The 

database system can be viewed as a knowledge-base system. 

Starting with an initial state, one tries to find a 

sequence of operators. that will transform the initial 

state into the desired state which is called knowledge 

information processing. In this case, we can describe 

the states and the state transition rules by logic 

formula-: .• In other words, logic programming languages, 

such as Prolog, can be applied to the task of writing 

compilers for high level query languages [6,7]. The major 

advantage of Prolog as a language for writing compilers 

is that it specifies algot·ithms in a human-oriented wa~J, 



Page 25 

Such specification can be interpreted as a uniform 

resolution theorem prover. I t is not a great 

exaggeration to say that specification is the 

implementation. In fact, logic programming can extend 

any query language to a programming language. 

3. Since a database may be viewed as a logic program, 

retr i.eval is automat i call~, taken care of through 

For instance, given a predicate definition 

for an n-ary predicate p, the retrieval of the jth 

argument corresponding to specific values of the others 

is simply obtained by posing the query: 

I ?- p(vl, ••• ,vj-l,X,vj+l, ••• ,vn). 

where vl are those specific values and X is a variable. 

Because of nondeterminism, more than one value for X may 

be retrieved. Because of the nondeterminism between 

input and output, any argument or combination of 

arguments can be chosen for retrieval. Thus retrieval 

operations 

databases. 

that usually needed in relational 

For the above example, projection and 

selection become :.o simple with logic programming. 

4. The link with logic was not only found at the language 

level and query evaluation. For instance, an equivalence 

between dependencies (FDs and MVDs) and a fragment of 

propositional logic has been found [8,9]. 



I l·l 

a a 

a 
d 
c: 

I r2 

a a 

a 
a 
b 
e 
e 
a 

I l·3 

a a 

1 
4 
7 

I r4 

a a 

a 
b 
c 

bb 

b 
a 
b 

bb 

b 
b 
c: 
d 
d 
b 

bb 

2 
5 
8 

bb 

b 
b 
a 

c:c: 

c: 
f 
d 

cc 

c 
e 
-e 
c 
e 
d 

c:c: 

3 
6 
9 

cc 

c 
f 
d 

dd 

d 
f 
f 
d 
f 
e 

I sl 

a a 

b 
d 

I s2 

cc: 

c 
e 

I s3 

dd 

3 
6 

I s4 

bb 

b 
b 
a 

bb 

g 
a 

ee 

1 
2 

cc 

c 
c: 
d 

F i gu l. e ( 2. 3) • MATHEMATICAL DATABASE 

dd 

d 
f 

c:c: 

a 
f 

dd 

d 
e 
b 

Page 26 



Page 27 

. 
A wider use of logic should have a positive effect on 

the database field, as it provides not only a conceptual 

framet..Jork for formulating various database concepts, but also 

(in the form of logic programming) a tool for implementing 

them. 

2.3 OPERATIONS OF RELATIONAL ALGEBRA: 

Some of the basic operations of relational algebra which 

are provided by standal-d DBMS/s are given below with 

illustrative examples. 

To give an examp1e o~ these operations the mathematical 

database given in Figure(2.3). is used. There are five 

basic operations that serve to define relational algebra. 

These are: union, set difference, extended cartesian 

product, pr6jection and selection. 

1. Union. The union of relations R and s, denoted R++S, is 

the -:.et of tuples that are in R or S or both. R and S 

must be union compatible, that is to say that they have 

the same arity. For example rl++sl is: 

rl ++ sl 

a a 

a 
d 
c 
b 

bb 

b 
a 
b 
g 

cc 

c 
f 
d 
a 



Pa9e 28 

2. Set difference. The difference of relations R and S, 

denoted R--S, is the set 6f tuples in R but not in S. R 

and S are required to be union-compatible. 

r1 -- s1 is: 

r1 -- sl 

a a 

a 
c 

bb 

b 
b 

cc 

c 
d 

For example 

3. Cartesian product. Let RandS be relations of arity m 

and n, respectively. Then R**S, the cartesian product of R 

and s, is the set of (m+n) tuples t's such that t is the 

concatenation of a tuple r belon9in9 to R and a tuple S 

belon9in9 to s. The concatenation of a tuple r = 

[ r 1 , r 2, ..• , rm] and a t up 1 e s = [ s1 , s2, .•. , sn] , in that 

ol·der, i<::. a tuple t = [l·1 ,r2, ••• ,rm,sl ,<::.2, ..• ,sn]. For 

example r1**s1 is: 

rl ** s1 

11 22 33 44 55 66 

a b c b 9 a 
a b c d a f 
d a f b 9 a 
d a f d a f 
c b d b 9 a 
c b d d a f 

4. Projection. The projection operator transforms one 

relation into a new one consistin9 of selected attributes 

of the first, includin9 duplicate elimination. Project 

relation r1 on attributes cc and aa, denoted rl[cc,aa], 



Page 29 

is formed by taking each tuple in rl and forming a new 

tuple from the third and first components of rl in that 

order. For example rl[cc,aa] is: 

rl [cc,aa] 

cc aa 

c a 
f d 
d c 

5. Selection. Let F be a formula involving: 

1. operands that are constants or attributes, 

2. the arithmetic comparison: =,,=,<,>,=<,>=, 

3. the arithmetic operators: +,-,*,/, 

then R:F is the set of tuples t in R such that when all 

attributes OCCUl"r i ng in F at·e sub~.t i tu ted by the 

corresponding components C•f t ' the formula F becomes 

tt·ue. Fat· example, to select tuples from r3 where bb>2, 

denoted r3: bb>2, we obtain: 

r3 : bb>2 

a a 

4 
7 

bb 

5 
8 

cc 

6 
9 



Page 30 

In addition, there are a number of useful algebraic 

operations that can be expressed in terms of the 

previously mentioned operations, but which have been 

given names in the literature and sometimes used as 

primitive algebraic operations. These are intersection, 

quotient, join, and natural join. 

6. Intersection. The intersection of two (union-compatible) 

relations R and S, denoted R: :S, is the set of all tuples 

t belonging to both R and S. We have: 

.R::S == R -- (R S) 

For example the intersection of rl and sl, rl::sl is: 

l"l : : sl 

a a bb c:c: 

d a f 

7. Quotient. Let R and S be relations of arity m and n 

respectively where m>n. Then R %% S is the set of (m-n) 

tuples t such that for all s-tuples u in S, the tuple tu 

is in R. Fot· example l"2%%~.2 i ~-: 

r2 %% s2 

aa bb 

a 
e 
b 

b 
d 
c: 



8. Join. The 0-join of R and s on columns 

r1,r2, .•• ,ri~sl,s2, .•• ,sj written as R**S:F where F is a 

formula involved with these columns and defined as th~ 

same as that in selection operation, is a set of tuples t 

in the cartesian product- of R**S such that when all 

attributes occurring in F are substituted by 

corresponding components of t the formula F becomes true. 

For example r3**s3 

r3 ** s3 

a 

1 
1 
4 

b 

2 
2 
5 

dd)bb [aa,bb,cc,dd,ee] is: 

dd > bb [aa,bb,cc,dd,ee] 

c 

3 
3 
6 

d 

3 
6 
6 

e 

1 
2 
2 

9. Natural join. If 0 is "=" in an 0-join operation, it is 

called an equi-join denoted by R <=> S. For example R 

<=> S is: 

r4 <=> s4: 

a a 

a 
a 
c 

bb 

b 
b 
a 

cc 

c 
c 
d 

dd 

d 
e 
b 

Many other functions like updating and deleting tuples, 

the ability to group tuples using the key of the relation, 

finding aggregation of certain attributes, like CNT, s~, 

AVG, MAX, MIN are also possible. The existential quantifier 

in clausal form is implicitly assumed. A lot of structural 

compatibility between the logic form and existing high level 



Page 32 

query language~ is achieved. Thus logic representation 

appears to be enough for implementation of many realistic and 

useful query languages. 

Additional information on relational algebra and other 

RDBMS's are found in [10,11]. 



Page 33 

CHAPTER 3 

SYNTAX, INTERNAL REPRESENTATION AND PARSING THE QUERY 

This chapter deals with the syntax of the query 

language, some of its important features and the first two 

steps involved in the processing of the query. 

The language which resembles SQL is simple in its 

structure, so that users without prior experience are able to 

learn a usable subset on their first sitting. At the same 

time when taken as a whole, the language provides the query 

power of the first-order predicate calculus combined with 

operators for grouping, arithmetic, an~Dther aggregation 

functions such as AVG, MAX, MIN. One of the good qualities 

of this language, as expressed by the users was the 

uniformity of its syntax across environments of application 

programs, ad hoc queries and definition of views. Languages 

like SQL provide a common core of features that will be 

required by all high level query languages. 

For these reasons, therefore, i~ is necessary that an 

understanding of the features provided by the query language 

be looked at. The query language chosen for this 

implementation is very similar to SQL (Structured Query 

Language), developed by IBM, on System R. For all practical 

purposes I shall call the language SOL itself. 



Page 34 

The following section illustrates some of the important 

features of SQL, based on the supplier-parts-department 

database given in the appendix. 

3.1 THE LANGUAGE SQL 

The fundamental operation for data manipulation in SQL-

is the SELECT-FROM-WHERE block. The SELECT clause specifies 

the attributes of the target result; the FROM clause 

specifies the names of relations which are in~olved in 

getting the result both in conditioning selection and in 

actually supplying result value; the WHERE clause specifies 

the condition(s) or the constraint(s) based on which the 

results are to be obtained. For example the user might like 

to see a display of supplier names and their status for 

suppliers in Paris. The query Q(3.1) which does this is: 

select [sname,status] 
from [supplier] 
where [city=paris]. 

Q(3.2) Get full details of all employees. 

select * 
from [employee]. 

The asterisk is a shorthand for an ordered list of all 

attribute names in the FROM table. At the moment this 

implementation allows only in "SELECT-FROM" queries. For 

instance the above query could be equivalently written as: 

select [ename,age,salary,dno] 
from [employee]. 



Page 35 

Qualified retrieval. Q(3.3). Get supplier numbers for 

suppliers in Paris with status >20. 

select [sno] 
from [supplier] 
where [status>20, city=paris]. 

The conditions following WHERE may include comparison 

operators like =, ,=, >, >=, < and =<. The comma specified in 

the WHERE list is implicitly assumed to be the AND operator. 

Join. Joining in SOL is described by placing attributes 

from more than one relation in the SELECT clause, placing 

multiple relation names in the FROM clause, and including a 

join criterion in the WHERE clause. For e.g. Q(3.4). For 

each part supplied, get the part number and names of all 

cities supplying the part. 

select [pno,city] 
from [shipment,supplier] 
where [shipment@sno = supplier@sno]. 

At present this implementation does not allow using the 

relation names in the select clause which is used to resolve 

any ambiguities in the query. 

To get the less join of some relation we have 0(3.5). 

List all suppliers names and locations for suppliers whose 

status is less than Smith's. 

select [sname,city] 
from [supplier] 
where [(status] < 

select [status] 
from [supplier] 
where [sname =smith]]. 



Page 36 

Retrieval using equi-join. Q(3.6) Get supplier names 

for suppliers who supply part p2: 

select 
from 
where 

[sname] 
(supplier,shipment] 
[supplier@sno = shipment@pno, 

shipment@pno = p2]. 

Since the result in the above query is entirely 

extracted from supplier, though use of two relations is made 

to determine the result, it should therefore be possible to 

express the query in the form: 

select [sname] 
from [supplier] 
where [[sno] = 

select [sno] 
from [shipment] 
where [pno = p2]]. 

The expression in the brackets is a sub-query. In 

general the condition 

f =[SELECT Sth FROM ..• ] 

evaluates to true if and only if the value of f is equal to 

at least one value in the result of evaluating the "SELECT 

Sth FROM " . . . . Similarly the condition 

f <[SELECT Sth FROM ... ] 

evaluates to true if and only if the value of f is less than 

at least one value in the result nf evaluating the "SELECT 

Sth FROM " . . . . The operators >, >=, '= and=< are analogously 

defined. 



Page 37 

Of the various comparison conditions the most useful is: 

f =[SELECT Sth FROM ..• ] 

which may be equivalently (and more clearly) written as 

f in [SELECT Sth FROM .:.] 

Retrievals with multiple levels of nesting. Q(3.7) Get 

supplier names for suppliers who supply at least one red 

part. 

select [sname] 
from [supplier] 
where [[sno] in 

select [sno] 
from [shipment] 
where [[pno] in 

select [pno] 
from [part] 
where [color= red]]). 

Sub-queries can be nested to any depth. It is also 

possible to retrieve with a sub-query where the same relation 

name is involved in both blocks. Refer example Q(3.5). 

Retrieval with negation. Q(3.8) Get supplier names for 

suppliers who do not supply part p2. 

select [sname] 
from [supplier) 
where [[sno] not in 

select [sno) 
from [shipment] 
where [pno = p2]]. 

The condition in the where clause: 

f not in [select Sth from ... ] 

evaluates to true if and only if for all values V's in the 



Page 38 

result of evaluating "SELECT Sth FROM " none of them is f. 

SQL uses the usual set operators - UNION, INTERSECT, and 

MINUS - to combine the results of independent SELECT-blocks. 

These operators are algebraic in nature, and are procedural 

components. In order to reduce the procedurality, SQL 

dispenses with INTERSECT and MINUS by using IN and NOT_IN 

combined with a set of attributes instead. 

For example for the mathematical database given. The 

intersection of relations rl and sl can be queried as Q(3.9): 

select [aa,bb,cc] 
from [rl] 
where [[aa,bb,cc] in 

select [aa,bb,cc] 
from [sl]]. 

To get the difference of relations rl and sl, we ask 

Q(3.10) 

select [aa,bb,cc] 
from [rl] 
where [[aa,bb,cc] not in 

select [aa,bb,cc] 
from [sl]]. 

Retrieval using union: Q(3.11). Get part number for. 

parts that either weigh more than 18 units, or are currently 

supplied by Jones or both. 

select [pno] 
from [part] 
where [wt > 18] 

union 
select [~·no] 
from [shipment] 
where [[sno] in 



Page 39 

select [sno] 
from [supplier] 
where [sname =jones]). 

3.2 USAGE OF AGGREGATION OPERATORS (BUILT-IN FUNCTIONS) 

The retrieval power of the basic language can be easily 

extended by provision of built-in functions. The functions 

currently supported b~' SQL a1·e: CNT, SUM, 1'1AX, AVG, MIN and 

grouped_by. 

Function in the SELECT clause. Q(3.12) Get the number 

of shipments for part p2. 

select [cnt(sno)] 
from [shipment] 
where [pno = p2]. 

Function in a sub-quel·y. Q(3.13). Get employee names 

for employees who earn more than the average of all employees 

in the department dl. 

select [ename) 
from [employee] 
where [[salary] > 

select [av9(salary)) 
from [employee) 
~A• here [ dn o = dl ] ] . 

Use of 9rouped_by. Q(3.14) For eac:h part supplied, 9et 

the part number and the total quantity supplied of that part. 

select [pno,sum(qty)) 
from [shipment] 
9rouped_by [pno]. 



Page 40 

The GROUPED_BY operator conceptually rearranges the FROM 

relation into partitions or groups, such that within any one 

group all tuples have the same value for the GROUPED_BY 

attribute. In the above example relation "shipment" is 

grouped such that the first group contains the tuples for 

part pl, the second contains the tuples for part p2 and so 

on. The SELECT clause is then applied to each group of the 

partitioned relation. Each expression in the SELECT clause 

must be single-valued for each group; that is it can be the 

GROUPED_BY attribute itself, or a function such as SUM that 

operates on all values of a given attribute within a group 

and reduces those values to a single value. Q(3.15) For each 

department, get the total number of employees with their 

average age and their average salary. 

select [dno,cnt(ename),avg(age),avg(salary)] 
from [employee] 
grouped_b~J [dno]. 

Use of HAVING and GROUPED_BY. Q(3.16) Get part number 

for all parts supplied by more than two suppliers. 

select 
fl·om 
group ed_b~1 
having 

[pno] 
[shipment] 
[pno] 
[en t ( sno) > 2] • 

The HAVING clause is only used to restrict a partitioned 

relation so HAVING is always used with GROUPED_BY. The 

expression in a HAVING clause mu~.t be single-valued for each· 



Page 41 

A comprehensive example. Q(3.17). How many people earn 

less than $8000 in each department ? 

select 
from 
grouped_by 
where 

[dno ,cnt(ename)] 
[employee] 
[dno] 
[salary < 8000]. 

It is important to make the distinction between HAVING 

and WHERE clauses. In comparison with Q(3.16), both the 

WHERE clause and the HAVING clause are followed 

GROUPED_BY, but they differ in that the expression in a 

HAVING clause involves a built-in function showing the 

proprerty of each group whereas a WHERE clause only specifies 

a simple condition in a grouped relation. 

3.3 STORAGE OPERATIONS 

The three storage operations are: updation, deletion and 

insertion of tuples. 

Update operation. Q(3.18) Change the color of part p2 

to yello~,.oJ. 

update [pal·t] 
set [color = yellow] 
where [pno = p2]. 

Within a set clause, any reference to an attribute on the 

right hand side of an equal sign refers to the value of that 

attribute before the updating has been done. Hence the query 

Q(3.19). Double the status of all the suppliers in Paris can 



be written as following. 

update [supplier) 
set [status = status*2J 
where [city= paris). 

Update with complex conditions. Q(3.20) 

quantity to zero for all suppliers in London. 

update [shipment) 
set [qty = OJ 
where [ [ sn o J i n 

<:.elect [sno] 
from [supplier] 
where [city =london]. 

Page 42 

Set the 

Single tuple insertion. Q(3.21) Add part p7 (name 

"WHEEL",color "GREY", weight 27, city= "Hyderabad") to table 

"PART". 

insert into [part] [p7,wheel,grey,27,hyderabad]. 

Single tuple deletion. Q(3.22) Delete all part records 

in which the weight is greater than 17. 

delete [part] 
where [a...Jt > 17]. 

Mul~iple relations deletion. 0(3.23) Delete those parts 

from relation "part" whose color is red, weight greater than 

10 and is supplied by people in London. 

delete [pal·t] 
where [color = red, 

wt > 10, 
[pno] in 

<:.elect [pno] 
from [shipment] 
where [ [ sn o J i n 

select [sno] 
from [supplier] 



Page 43 

where [city= london]]], 

From the discussion above, it can be seen that SQL is a 

self-contained, structured English keyword language that 

avoids the use of mathematical notations and concepts. The 

form SELECT ••• FROM ... is an expression which, as far as the 

user is concerned, produces a set of objects. 

such expressions great!~, simplifies the 

The us.e of 

process of 

constructing a query. Many problems can be expressed in SQL 

more easily and concisely. However the nonprocedurality of 

SQL is open to question. The designers of SQL describe it as 

nonprocedural (descriptive), since a SELECT-block specifies 

only what data is wanted, not a procedure for obtaining the 

data. Some others describe it as procedural because there 

are some pl·ocedural elements, such as. Ut·-HON, and GROUPED_B\', 

in that language. 

3.4 THE SYNTAX OF SQL 

In contrast to conventional languages, the syntax of SQL 

is not all that obvious. The definition of the syntax uses 

the Backus Naur Form meta-language. 

syntax of the query language. 

Appendix 3 gives the 

The difference between SELECT-block and SELECT-blocks is 

given in Figure(3.1) below. It is easy to see that the 

syntax specification is recursive, permitting a SELECT-block 



Page 44 

to be nested within an outer SELECT-block. In the vast 

majority of SQL retrievals we construct one or more "SELECT 

.•• FROM " blocks, and such a block specifies a set of 

tuples, that is a relation. To handle such relationships, we 

typically specify a tuple from one such block in another 

nested block, or that a block contains tuples of another 

block. 

SELECT-block SELECT-block 
' / 

I SELECT-block 
I . 

union I SELECT-block 
' / I 

I ' / 

I 
SELECT-block ' / 

/ 

union , _______ , 
. I 

SELECT-block 
' / 

SELECT-blocks SELECT-block 

Figure(3.1). SELECT-blocks and SELECT-block 



Page 45 

3.5 QUERY PROCESSING 

Figure(3.2). gives a schematic of the way a query is 

processed. 

The steps involved in query processing are: 

1. Input of task in SQL. 

2. Parsing the query. 

3. Intermediate form generation. 

4. Final form generation 

5. Execution of the final form. 

6. Output. 

3.5.1 Input Of Task In SQL 

The query is input by the user on a terminal and sent 

for processing. At the moment this implementation is a bit 

rigid in the sense that, all queries are to be input in the 

lower case, and the arguments like relation list, attribute 

list and condition list have to be enclosed specifically in 

"["and"]". 



An input query 

select [sname,city] 
from [supplier] 
where [ [ sn o] in 

select 
from 
where 

I 
v 

UNDERSTAt·-..IDING 

[sno] 
[shipment] 
[pno = p2, 
qty > 200]]. 

, _______________________________ / 

I v . 

Intermediate Form 

sub_q(supplier,[_12,_13,_14,_15],[),[), 
[[_12,sno),[_13,sname),[_l5,city)),!), 

sub_q (shipment, [_12, p2 ,_16], [_16>200], [], 
[[_12,sno),[_16,qty]],!). 

'-----------------------------------------------/ 
I 
\) 

Final Form I 
I 

an~.((_13,_15)) :- I 
shipment (_12, p2 ,_16), I 
_16>200, I 
supplier(_12,_13,_14,_15). I 

I 
'-----------------------------------------------/ 

Execution , _______________________________ / 

sname 

smith 
jones 

I 
v 

city 

lor.dor. 
paris 

Page 46 

Figure(3.2). A sample query processing and its answer. 



Page 47 

3.5.2 Parsing The Query 

This section i.s devoted to an implementation technique 

for the SQL parser. The technique employed is fairly general 

and can be employed for parsing other structured query 

languages. The emphasis is on those aspects which have been 

put to practical use in the programming language Prolog, 

showing how a structured query is understood by logic program 

solving. The advantage of writing a compiler in Prolog may 

be realised here. 

3.5.3 Considering Keywords As Operators 

Prolog can instantiate variables only to structures, 

atoms or numbers. As a result an arbitrary sentence cannot 

be read in using the "read(S)" predicate, because Swill fail 

to instantiate to the sentence. One elegant way to overcome 

this problem is to pre-declare the key-words of the query 

language as operators~ As a consequence of this declaration, 

read(S), may be able to read in the query and instantiate it 

to a structure if the input query is error-free. 

One of the important strategies in writing the parser of 

SQL is that each structured English keyword in SQL is 

considered as an operator in Prolog by declaring it in 

advance. These operators not only provide syntactic 

convenience when reading or writing, but also allow the use 



Page 48 

of simple expressions for what would otherwise have to be 

implemented through more complicated code containing explicit 

control structures such as iteration. Each operator has 

three properties: a position, precedence and associativity. 

The position can be postfix, prefix or infix, that is, an 

operatoT with one argument can go after or before it; an 

operator with two arguments can go between them. The 

precedence is an integer and makes expressions unambiguous 

where the syntax of the terms is not made explicit through 

the use of parentheses. The associativity makes expressions 

unambiguous in which there are two operators with the same 

precedence. If we wish to declare that an operator with a 

given position, precedence and associativity is to be 

recognised when terms are read and written, use of the 

built-in predicate "op" is made. If name is the desired 

operator (the atom that we want to be an operator), prec the 

precedence (an integer within the appropriate range), and 

spec the position/associativity specifier, then the operator 

is declared by providing the following goal: 

?- op(prec,spec,n~me). 

Given below is the declaration of operators in the 

implementation: 

:- op(40,xfx,in), op(40,xfx,not_in), 
op(40,xfx,''='), op(40,xfx,@), op(185,yfx,having), 
op(190,yfx,where), op(192,yfx,grouped_by), 



Page 49 

op(195,yfx,from), op(195,yfx,set), op(195,yfx,' :'), 
op(200,fx,select), op(200,fx,update), op(200,fx,insert_into), 
op(200,fx,delete), op(215,xfy,union), op(200,fx,create), 
op(200,fx,table), op(215,fx,'{'), op(200,xf,'}'). 

It is important to study how these operators have been 

defined. All querys will be read-in and appropriate 

structures for them will be constructed if the query is 

correct. 

It is this declaration that permits the nesting of 

operators and such a nesting may be carried to any depth, so 

that queries in SQL could be constructed with arbitrary 

complex it~·. By means of the declaration, an SQL query is 

internally represented as a function or function form. We 

shall use Ei to denote the internal representation of an SQL 

query Qi. A few of the results of the translation are 

illustrated below: 

Ql: SELECT [target list] FROM [relation] WHERE 
[conditions] GROUPED_BY [attribute]. 

El: get_sub_qs(select(from(TARGET_LIST, 
grouped_b>' ( [RELATION] ,l,Jhere( [ GROUPING_ATTRI BUTE] , 
CONDITION_LIST)))),Xs,Hash,ANSWER) :-

Q2: SELECT [target list] FROM [relations] 
WHERE [conditions]. 

E2: get_<.:.ub_q-:.( -:.elect ( from(TARGET _LIST ,t.-Jhere( RELATI ON_L I ST, 
CONDIT I ON_LI ST))) ,X-:., Hash ,ANS~-~ER) :-

Q3: SELECT [tal· get 1 i -:.t] FR0t1 [relation] GROUPED_BY 
[attribute] HAVING [function 
COMPARISON OPERATOR number). 

E3: get_sub_q:.(select(fl·om(TARGET LIST ,grouped_by( [RELATION], 
having( [GROUP _ATTRIBUTE], [function Cot-1PARI SOt·..J 



Page 50 

OPERATOR number))))),Xs,Hash,ANSWER) :-

Q4: SELECT [target list] FROM [relation] 
GROUPED_BY [attribute]. 

E4: get_sub_qs(select(from(TARGET_LIST,grouped_by([RELATION], 
[GROUPING_ATTRIBUTE]))),Xs,Hash,ANSWER) :-· 

Q5: SELECT [target list] FROM [relation]. 

E5: get_sub_qs(select(from(TARGET_LIST,[RELATION))), 
Xs,Hash,ANSWER) :-

Q6: DELETE [relation) WHERE [conditions). 

E6: get_sub_qs(delete(where([RELATION],CONDITION_LIST)), 
Xs,Hash,[]) :-

Q7: DELETE [relation]. 

E7: get_sub_qs(delete([RELATIONJ),Xs,Hash,[]) :-

Q8: UPDATE [relation) SET [attribute = 
arithmetic expression) WHERE [conditions]. 

E8: get_sub_qs(update(set([RELATION],where([ATTRIBUT[= 
EXPRESSION] ,CONDITON_LIST))) ,[[I...J.ar,Attr]],! ,[]) :-

Q9; UPDATE [relation] S[T [attribute=arithmetic expression] 

E9: get_sub_qs(update(set([RELATION],(ATTRIBUTE=EXPRESSION])), 
Xs,!,[]) :-

QlO:INSERT_INTO [relation] : [constants). 

ElO:get_sub_qs(insert_into(:([RELATION],CONSTANT_LIST)), 
Xs,Ha:.h,[]) :-

Qll:[select block] UNION [select block]. 

Ell:get_sub_qs(union(SELECT_BLOCKl,SELECT_BLOCK2), 
Xs,Hash,ANSWER) :-

Since the SQL parser has a different entry for each 

possible SQL query, unacceptable queries can be discarded on 

grounds of a mismatch. Thi :. technique allows the 



Page 51 

implementation to resolve query ambiguities with 

comparatively little effort. 

The subsequent chapter deals with the top level 

predicates inv61ved in query processing and the execution of 

the answer set of tuples. 



Page 52 

CHAPTER 4 

TOP LEVEL QUERY PROCESSING 

The top level predicates involved in nested query 

proce~.:.i ng discussed below. The rationale behind 

choosing this mode of processing should become clear as the 

predicates involved in the processing are discussed in 

detail. 

In this implementation of the query processor, the 

important points t6 be noted are the creation of variables, 

unification of variables and treatment of conditions. One 

more point to be noted here is that the query processor 

converts the query into an intermediate form (called the 

CANONICAL LOGIC FORM [12]) which is then converted to the 

sub-clau:.es of the ans~.r,•el· goal. The:.e ~.ub-clau:.es are all 

elements of a list in this implementation. lt~hen the 

processing is complete the elements of this list are called 

one at a time, and if all the sub-clauses are called 

successfully then the answer is printed. 

By discussing the proce:.si ng of a quel·y of 

SELECT-FROM-WHERE type, I shall explain how nested queries 

are tackled (since this is the most general 

possible). The reader should not be unduly worried about the 



Page 53 

fact that only a specific query has been discussed. In fact 

the general strategy involved in processing the different 

queries (like- SELECT-FROM-GROUPED_BY-WHERE or DELETE-WHERE 

or other queries involving WHERE) is not much different. The 

queries not involving WHERE are much easier to process and in 

fact are a special case of queries having WHERE, where the 

condition list is empty. 

4.1 CREATION OF VARIABLES 

The query which has been parsed, is first processed to 

extract the attributes asked for by the user from the 

structure created for the query. Then the attributes are 

processed and variables are created for them. Specifically 

if the attribute is simple then, its variable sublist will 

have two elements and if the attribute is one involving 

function like AVG, CNT, MAX etc., then the variable sublist 

will involve three elements. A typical variable list would 

look like- ([_128,pno],[_271,qty,sum]]. Once this list is 

created the variables from this list are extracted into just 

a variable list and kept for writing the answer set. If the 

above list is the Xs list then the plain variable list is 

[_128,_271]. Now depending on whether the query is a SELECT 

or DELETE or INSERT_INTO or UPDATE the appropriate get_sub_qs 

predicate is matched. The get_sub_qs predicate has the first 

argument for the query structure, the second one is the list 



Page 54 

of Xs, the third one for whether the query was one involving 

negation or NOT and the last argument is the answer list 

which contains the various tuples to be satisfied for getting 

the an st,Jer ~-. 

In assimilating the function (query structure), we have 

the problem of dealing with the situation when a new 

attribute is discovered. If the attribute been 

encountered before, then the created variable corresponding 

to the attribute is a join variable that will appear in the 

intermediate form; otherwise we must ensure that the new 

variable we assign to it does not accidently coincide with 

one representing any othet· attt·ibute. In both cases it is 

important to keep the correspondence bltween 

and the variables. 

the at tribute~. 

While dealing with an attribute, it is helpful not only 

to remember whether the corresponding variable is desired by 

the user but also to understand whethef the vat' i able i ~- a 

join-variable or just an independent one. 

implementation there was no need to classify 

In the actual 

the diffet·ent 

variables because new variables were created as and when 

needed and if the attribute was already present then the 

~~ar i able 

variable. 

created was unified with the earlier created 



Page 55 

4.2 TREATMENT OF CONDITIONS 

In general, a SELECT-block will be translated into a 

sub-query in an intermediate form. The most difficult part 

in processing the query is to understand the WHERE-conditions 

on which the answer to a query is to be obtained. 

Consider the following example: 

select 
from 
where 

[attrll,attr21] 
[rell,rel2] 
[rell@attrll > rel2@attr21, 
rell@attr13 = 5, 
rel2@attr22 in 

select [attr31] 
from [rel3] 
where [attr32 = smith]]. 

It is easy to see that there are three kinds of 

conditions: 

1. Join conditions: The comparison between two attributes 

belonging to different relations, such as 

rell@attrll > rel2@attr21 

2. Chaining conditions: One of the chaining operators 

("in", or "=~, or "not in") is used in the comparison in 

order to select information from one relation based on 

the contents of another relation, such as: 

... rel2@attr22 in 
select [attr31] from [rel3] 
where [sname =smith]]. 



Page 56 

3. Simple conditions: Comparison with a constant, (integer 

or atom), such as 

l·ell@attr13 = 5 

The predicate "br~ak_off" splits the condition list into 

·two one containing simple and chaining conditions and the 

other containing join conditions. 

4.3 TOP LEVEL PROLOG I t1PLEt·1ENTAT I ON COR.RESPOt·...JD I NG TO 

RECURSIVE PROGRAMMING 

Given below are the top level predicates involved in the 

query processor and their functions: 

get_sub_qs(select(from(Attrs,where(Relations,Conditions))), 
Xs. ,Hash ,An-::.) :-

simplify_cols(Attrs,Cols), 
break_off(Cols4,Xs2,Conditions,S,V,F,FF), 
differ(Relations,S,V,F,FF,R), 
one_by_one(R,Ans). 

break_off(S,V,[],S,V,[],[)). 
bl·eak_off ( 81 ,t.)l, [A I 8], S ,\.J, F, [All FF]) :

join_cond(S1,V1,A,S2,V2,Al), 
break_off(S2,V2,B,S,V,F,FF). 

bt·eak_off ( ~;1 ,',.J1, [A I 8], S ,t.), [A IF], FF) :-
break_off(Sl,Vl,B,S,V,F,FF). 

diffe1·([] ,_,_,_,_,[]). 
differ([N11N2],S,V,F,FF,[(N1,S1,V1,F1,FF1)1RJ) :

pick_up(Nl,S,V,F,FF,Sl,Vl,Fl,FF1,V2,F2,FF2), 
differ(N2,S,V2,F2,FF2,R). 

one_b)J_C•ne( [ (N, S ,\.J, Fl, F2) I []] ,Ans) :
get_tuples(N,S,V,F1,F2,A,Ans). 

one_by_one([(N,S,V,F1,F2) IBJ ,Ansi) :
get_tuples(N,S,V,F1,F2,A,Ans), 
one_by_one(B,T), append(Ans,T,Ansl). 

get_tuple-::.(N,S,\.J,C,F2,Sth,Ans.) ·- relation(K), 



Page 57 

K = .. [NIL], 1ength(L,Num), get_ske1(Num,A), 
break_down(S,V,C,Ss,Vs,Fsl,F21,Ans2), 
reform_f2(Ss,Vs,F2,Sss,Vss,F22), append(F2l,F22,F~2), 
sort(L,A,Sss,Vss), get_sth(L,A,Vss,Sth), 
unific(L,A,Fsl,Fsll), remove(Fs2,Fs22), 
asserta(sub_q(N,A,Fs11,Fs22,Vss,Sth)), 
get_querys(sub_q(N,A,Fsll,Fs22,Vss,Sth),Ansl), 
append(Ans2,Ansl,Ans). 

bl·eak_dot.-Jn(S, 1·..J,[] ,S,V,[J ,[] ,[]) :- ! • 
break_down(Sl,Vl,[AIBJ,S2,V2,Fsl,Fs2,Ans) :- A= .. [I,J,K], 

(((atom(K) ; number(K)), simp1ify_re1atr([J],[J1]), 
cut_offl(Sl,Vl,I,Jl,K,S,V,Fl,F2,Ansl)) 
; 

cut_off(Sl,Vl,I,J,K,S,V,Fl,F2,Ansl)), 
break_down(S,V,B,S2,V2,F12,F22,Ans2), 
(Fl==!, Fsl=Fl2; F~.l=[Fl1F12]), 

(F2==!, Fs2=F22; Fs2=[F21F22]), 
append(Ans2,Ansl,Ans). 

cut_off(S,V,in,J,K,Sl,Vl,! ,! ,Ans) :
simp1ify_co1s(J,L), subst(S,V,L,Xs,Sl,Vl), 
arg(l,K,Temp), ext(Temp,[Atrl_]), 
create_var(Atr,Attrl), get_on1y2(Xs,Tem2), 
set_diff(Attrl,Tem2,Tem3), 
get_xs(Tem3,Xs,Xsl), get_sub_qs(K,Xsl,! ,Ans), 
extract(Xs,Tempo), extract(Xsl,Tempo). 

cut_off(S,\.},=,,J ,K,Sl ,t)l,!,! ,Ans) :
cu t_o f f ( S, \), in , ,J, K, Sl , \Jl , ! , ! , An s) • 

c:ut_off(S,t~),not_in,"J,K,Sl,Vl,~ ,~ ,Ans) :
simp1ify_co1s(J,L), subst(S,V,L,Xs,Sl,Vl), 
arg(l,K,Temp), ext(Temp,[Atri_J), 
create_var(Atr,Attrl), get_on1y2(Xs,Tem2), 
set_di ff (At trl, Tem2, Tem3), 
get_xs(Tem3,Xs,Xs1), get_sub_qs(K,Xsl,not,Ans), 
extract(Xs,Tempo), extract(Xsl,Tempo). 

cu t_o f f ( Sl , \.!1 , I , ,J, K, S, t.}, ! , F2, An~·) :- ! , ~·imp 1 if~~ _co 1 s ( J, .Jl) , 
subs t ( Sl , Vl , Jl , D< ~· J , S, t)) , ar g ( 1 , K, R) , ext ( R., [HIT J ) , 
H = [ Hll Tl], 
((atom(Hl), Xsl = [[Y21Jl]]) 

( Hl =. . ( Op , _] , 
append( ,Jl, [ Op] ,Att·l), X-:.1 = [ (Y21 Atrl]])), 

get_sub_qs(K,Xsl,! ,Ans), 
ex tl·act (Xs, [Yl]), F2= .. [I, Yl, Y2]. 

cut_offl(Sl,Vl,I,J,K,S,V,Fl,! ,[]) 
substitute(Sl~Vl,I,J,K,S,V), Fl 

·. 
= •• [J,._T,K]. 



Page 58 

break_off(S,V,C,Sl,Vl,F,FF) :-The predicate "break_off" 

is used to break off such a SELECT-block in which the FROM 

clause contains several relations. As a result, by creating 

join variables, the join conditions specified in the WHERE 

clause will be replaced by relevant formulas. 

This predicate breaks the input list of attributes S, input 

list of variables V and conditions C into output list Sl 

consisting of S plus those attributes obtained from C which 

are not already present in S, (same definition for V which 

gets converted to Vl). The conditions C get broken into two; 

F - the independent formulas and FF - the relevant formulas. 

F consists of all simple conditions and chaining conditions, 

whereas FF consists of all conditions involving comparison 

with the same attributes of other relations. For the moment 

all the chaining conditions are assumed to be simple ones. 

break_down(S,V,C,Sl,Vl,Fsl,Fs2,Ans) :- The predicate 

"break_down" is only used to break down such a SELECT-block 

in which the WHERE clause may contain chaining conditions. 
' 

As a result, by creating join variables, the chaining 

conditions will be broken down into pseudo-independent 

formulas and relevant formulas. 

Predicate break_down deals with the list of conditions 

C, containing simple conditions and chaining conditions. 

Each condition is tested to see whether it is simple or 



Page 59 

chaining. If the condition is simple predicate cut_offl is 

called else cut_off is called. As a result all new 

attributes that are found in C are added to S to give Sl, new 

variables are added to V to give Vl. New independent 

formulas and new relevant formulas that accrue from chaining 

conditions are put in Fsl and Fs2 respectively. Ans is the 

list of answers obtained so far from processing the nested 

sub querys. 

differ(N,S,V,F,FF,R) :- The function of the predicate 

"differ" is that from the coLlection of all attributes S, 

variab~es V, non-join conditions F, and relevant formulas FF 

which is the result of the execution break-off, each relation 

picks up its own attributes Sl, variables Vl, non-join 

formulas Fl, and relevant formulas FF1 respectively, and puts 

them in the box R in the particular order: 

[(Nl,S1,Vl,Fl,FF1),(N2,S2,V2,F2,FF2), ... ] 

The box R will be dealt by the predicate one_by_one. 

one_by_one(R,Ans) ·. This predicate takes the 

list R obtained above and processes the list of sub-querys 

(nested querys) for all the relations present in R, and gets 

the final list of answer templates for finding answers. 

get_tuples(N,S,V,Fl,F2,A,Ansl) :-As the sub-goal of the 

predicate one_by_one, the predicate get_tuples performs the 

storing of the query tuple in the intermediate form. 



Page 60 

Typically the intermediate form is: 

sub_ q (Name , A t t r _1 i s , I n de f _1 i ~- , R e 1 e f _1 i s , Val" _1 i s , G r p _a t r _1 i s ) 

Here Name is the name of the relation, Attr_lis the list 

of attributes involved in relation Name, Indef_lis is the 

list of independent formulas, Relef_lis is the list of 

relevant formulas, Var_lis is the list of variables involved 

and their associations with the attributes and whether they 

have any aggregation operations on them. Grp_atr_lis is the 

list containing the attribute whose aggregation is needed. 

This predicate performs the intent of one_by_one for each 

element of R. The Ansl obtained here is a sublist of Ans in 

the above predicate one_by_one. 'A' here is instantiated to 

a list containing any aggregation functions like grouped_by, 

SUt1, COUNT , AlJG , t·1AX , t·1 I t·..J • 

cu t_c• f f ( S, V, in, ,J, K, Sl , l.)l , ! , ! , An s) ·. Deals v.Ji t h 

sub-querys having 'in' as the chaining operator. J being the 

'target list' of the sub-quer> .. K. I have put tat· get 1 i ~- t in 

quotes to indicate that the target 1 i ~-t in the sub quer>-' K 

may not eactlv match; in the ~.en~.e that, fol· i n~.tance ,J 

might be [pno,qt}J] t.-.Jhet·eas the tat· get 1 i ~- t in K might be 

[pno,sum(qty)]. Ans is the answer obtained after processing 

the sub-querys K. S,V get modified to Sl,Vl containing all 

attributes and variables in J not already present in S and V 



cut_off(S,V,=,J,K,Sl,Vl,!,! ,Ans) . -. Here "=/ 

Page 61 

is used 

instead of 'in', and its meaning is the same as the cut_off 

given above. 

cut_off(S,~),not_in ,J ,K,Sl ,Vl,!,! ,Ans) ·. I:. the same 

as above but for the chaining operator which is 'not in'. 

cut_off(S,V,I ,J,K,Sl,Vl,! ,F2,Ans) . -. Deal:. v..li th 

all those chaining conditions where the chaining 6perator 

happens to be one of >, >=, <, =<, = 

cut_offl(S~V,I,J,K,Sl,Vl,Fl,! ,[]) ·. Deal:. 

all simple conditions. Fl gets instantiated to the simple 

condition comparison. 

If there exist nested queries embedded in the chaining 

condition then the predicate get_sub_qs will be called again 

and again until the break_off and break_down processing hits 

the bottom of the recursion. 

It would be relevant here to show into what intermediate 

form the nested query is reduced after a major part of the 

processing is over. 

In SOL: 

select [enamel 
from [employee] 
where [age < 35, 

[salat·y] > 
select [avg(sal~ry)] 
from [employee]]. 



Page 62 

In Intermediate Form: 

sub_q (employee, [ _13, _14 ,_15 ,_16] , [ _14<35] , [ _15> _24] , 
[ [_13, name], [_14, age], [_15, salar~1]],!), 

sub_q(employee,[_17,_18,_19,_20],[),[],[[_19,salary)], 
[[_24,salary,aug]]). 

In the final executable form: 

[aug(_19,employee(_17,_18,_19,_20) ,_24), 
employee(_13,_14,_15,_16), 

_14<35, _15>_24] 

It can be seen that the nested query is decomposed into 

a simple collection of query tuples in its intermediate form. 

Thi~ intermediate form is then converted into the final 

executable form, and will be ultimately e~ecuted. 

4.4 TRACE OF QUERY PROCESSING BY AN EXAMPLE 

It would be prudent here to discuss the function of the 

top level predicates with the help of an example. 

EXAMPLE: Find the names and ages for employees in 

department "dl" who earn more than the average salary of 

those who are in the same d~partment with age greater than 

30: 

~-elect 
from 
t-Jhere 

[ename,age] 
[ emplO)'ee] 
[ dnc• = dl, 

[-:.alary] > 
select [avg(salary)] 
from [employee] 
where [dna= dl, age> 30]]. 



Page 63 

The query is read through the built-in predicate 

"read(S)", where Swill now be instantiated to: 

S =select [ename,age] from [employee] where [dno=dl,[salary] > 
select [avg(salary)] from [employee] where [dno=dl,age>30]] 

whose internal representation is: 

S = select(from([ename,age],where([employee],[dno=dl,[salary]> 
select(from([avg(salary)],where([employee], 
[dno=dl,age>30])))]))) 

Then a predicate "create_var([ename,age],L)", creates a 

list of variables for final output. Here L is instantiated 

t 0: 

L = [[_412,ename),[_428,age]] 

Also a separate list of only these variables is kept in L1, 

which is done with the help of "extract(L,L1)" where L1 is: 

L1 = [_412,_428] 

Another list L2 is created from the attribute list in 

the query structure. 

L2 = [ename,age] 

After confirming is needed the 

"get_sub_qs(S,L,! ,_21)", is called, where _21 will ultimately 

be containing the an<.:.t_,.Jer tuples. 

From the fixed structure of S above, the list containing 

the relation names can be obtained. Therefore it is now easy 

to obtain a skeleton list containing variables, the length of 

the list being equal to the number of attributes of the 



Page 64 

relation in question. 

Now the predicate 

break_off(L2,L,[dno=dl,[salary] > select [avg(salary)] 
from [employee] where [age)30, dno=dl]] ,_542,_543,_544,_545) 

is processed, which gives the output d- <:: • 
~· 

break_off(L2,L,[dno=dl,[salary) > select [avg(salary)J 
from [employee] where [age>30, dno=dl)],[ename,age], 
[[_412,ename),[_42B,age]],[dno=d1,[salary]>select [avg(salary)] 

from [employee] where [age>30,dno=d1]],[]) 

Here the variable _542 is the same as the list L2, since no 

new attributes were discovered in the condition list - the 

third argument of break_off. Also it might be remembered 

here that the nested SELECT is ignored for the moment. 

Therefore there is no corresponding change in the fifth 

argument (_543) of break_off, and it is the same as L. _544 

is the same as the condition list, because the fi~al argument 

( 545) i<.:. the empt)J li~.t, i.e. the condition list is broken 

into the fifth and sixth arguments where the former contains 

simple conditions and nested "SELECT" and the latter contains 

join condition~ .. 

The predicate 

differ([employee],[ename,age],[[_412,ename),[_428,age)], 
[dno=dl,[salary]>select [avg(salary)) from [employee) where 
[age>30,dno=d1]],[],_546) 

become~. 

differ([employee],[ename,age],[[_412,ename] ,[_428,age]], 
[drio=dl,[salary]>select [avg(salary)] from [employee] where 
[age>30,dno=dl]],[],[(employee,[ename,age],[[_412,ename], 
[_428,age]],[dno=dl,[salary]>select [avg(salary)] from 
[ emplc·~~ee] t.-.Jhel·e [age >30, dno=dl]], [])] 



Page 65 

Here the last argument gets instantiated to the list whose 

elements are such that each element contains the attributes, 

variables and conditions for each relation. ~n this case 

since there was only one relation the final list likewise 

contains only one element. 

The predicate 

one_by_one([(employee,[ename,age],[[_412,ename),[_428,age]], 
[dno=d1,[salary]>select [avg(salary)] from [employee] where 
[age>30,dno=d1]),[))),_549) 

becomes 

one_by_one([(employee,[ename,age],[[_412,ename],[_428,age)], 
[dno=dl,[salary]>select [avg(salary)] from [employee) where 
[age>30,dno=d1)),[])),[avg(_1949,[employee(_1935,_1942,_1949,d1), 

_1942>30),_1224),employee(_412,_428,_1100,d1), _1100>_1224)) 

Here one_by_one, as the name suggests takes one element each 

of the list represented by _546, and processes them to give 

the final answer list _549. The predicate one_by_one makes 

use of predicates like "cut_off" and "cut_off1" which act on 

the nested SELECT and simple conditions (in the condition. 

list) respectively. 

Apart from this some other useful predicates remove 

simple conditions involving "equality". For instance if we 

have one of the answer tuples as: 

employee(_1935,_1942,_1949,_1956) 

and condition list d-~· -· 
[dno=dl) 

Then the answer tuple might as well be: 



Page 66 

employee(_1935,_1942,_1949,d1) 

and the condition list can now be made empty. 

Once the answer set is obtained, which is: 

[avg(_1949,[employee(_1935,_1942,_1949,dl),_1942>30],_1224), 
employee(_412,_428,_1100,dl), _1100>_1224] 

the predicate 

callingl([avg(_1949,[employee(_l935,_1942,_1949,dl), 
_1942>30],_1224),employee(_412,_428,_1100,d1),_1100>_1224]) 

calls each element of the list one at a time. In this case 

first 

av~(_1949,[employee(_1935,_1942,_1949,dl),_1942>30],_1224) 

is called which becomes: 

avg(_1949,[employee(_1935,_1942,_1949,dl),_l942>30],8050) 

It might be added here that "aug" finds the average of the 

first argument .which satisfies certain conditions in the 

second argument, and then puts its answer in the third 

argument. Once this is done, the predicate callingl talls 

its second element, which gets instantiated to: 

employee(john,34,8600,dl) 

Now callingl calls for the third time a~· -· . 
8600 > 8050 

It exits with all the elements of callingl, satisfied, and 

then the predicate "write_attr", does pretty printing on the 

desired output stream. Then fail is encountered, whereby 

different elements of callingl are resatisfied and thus 

ensuring exhaustive database search, until no more solutions 



are possible. 

The final answer table is printed 

ename 

john 
henry 

age 

34 
29 

d- c: • 
~. 

Page 67 

Mention must be made here of the predicate "break_down". 

In the query discussed since there are no join conditions, 

this is not of use, but in queries involving join conditions, 

break_down does analogously to join conditions what break_off 

does to the simple and chaining conditions. 

In concluding this chapter I must add that most of the 

query processing involves a lot of unification, and creation 

of variables. This observatibn makes the relevance of Prolog 

as a database language all the more significant. 



Page 68 

CHAPTER 5 

NEGATION, AGGREGATION AND OTHER USEFUL PREDICATES 

This chapter discusses negation involved in various 

queries, its interpretation and then goes on to discuss other 

facilities provided by SQL- namely aggregation operations, 

and also disc~sses some useful predicates. 

5.1 NEGATION AS NONPROVABILITY 

Many queries involve (explicitly or implicitly) the 

concept of negation. For e.g.l 

select [ sname] 
from [supplier] 
where [[sno] not in 

select [ sn o] 
from [shipment] 
where [pno = p2]]. 

5.1.1 The open and closed world assumptions 

Car·e must be taken repr·e<::.en t i ng negative 

information, as under certain circumstances, its operational 

and declarative in tel·pretat ion:. might not coincide. 

Basically, two assumptions are possible: the open and closed 

world assumptions. 



Page 69 

1. The open world assumption corresponds to the usual first 

order approach to query evaluation: Given a database DB 

and a query Q, the only answers to Q are those which 

obtain from proofs of Q given DB as hypotheses. With 

this definition we could represent negative information 

explicitly, f~r example, by adding assertions of the form 

"not(p?"· 

2. Under the closed world assumption, certain answers are 

admitted as a result of failure to find a proof. More 

specifically, if no proof of a positive ground literal 

exi<:.ts, then the negation of that literal is assumed 

true. This can be viewed as equivalent to implicitly 

augmenting the given database with all such negated 

1 i ter al '=·. 

The second order approach presupposes a complete 

knowledge of the domain being represented. For many domains 

of application, this assumption is appropriate. For example 

it is natural to assume that tho:.e employees t-,tho are not 

stated to work at department "dl", do not work there. In 

other words, the individuals named in the database are the 

only individuals there are. For such domains, an implicit 

representation is usually preferable, as negative information 

outnumbers by far positive information, and it would be 

redundant to represent it explicitly when it can simply be 



Page 70 

established by default. 

5.1.2 Negation as failure 

In dealing with how meaning can be assigned to answers 

to negative questions, the standard negation of first order 

logic is problematic to implement and seems inappropriate for 

man~· purpose~ .• By contrast, the great advantage of the 

closed world assumption is the ease with which it can be 

implemented. For pragmatic reasons Prolog provides a partial 

implementation of non-provability. To show that P is false 

we do an exhaustive search for a proof of P. If every 

possible proof fails, not Pis 'inferred'. 

the implementation of not P. 

not(P) :- call(P), 
not(P). 

, fail. 

Ther ef C•l" e the query, e.g.l J.,.JOUld be 

Given below is 

interpreted d- c: • -·. 
Find ~-uppl i er names f ot· suppliers who are not knot.-m tc• supply 

part p2. 

Unfortunately, dealing with closed world assumption does 

not itself guarantee negation by default to behave as 

expected within logic programs. Let us consider 

following database which contains the following facts. 

male(david). 
male(albert). 
female( susan). 
female(margaret). 

the 



Page 71 

Under the closed world assumption, "male(susan)" and 

"male(margaret)" must be considered to be false. But whereas 

the queries "not male(susan)" and "not male(margaret)" will 

be ~orrectly evaluated as "yes" since both "male(susan)" and 

"male(margaret)" will fail, the query "not male(X)" will just 

fail instead of just retrieving susan and margaret as values 

for X since male(X) can be proved by matching X with either 

david or albert. 

As this example shows, within the closed world 

databases, negated predicates are only safe to evaluate when 

they contain no free variables, i.e., when all the variables 

they contain have been replaced by ground terms. 

One possible solution to this problem is to dynamically 

postpone the evaluation of some atoms in a query, according 

to predefined criteria. The execution of a formal 

can be blocked until P contains no free variables. 

5.2 THE PREDICATE "GROUP" 

"not P" 

High level query languages very often involve the 

partition facility which conceptually rearranges a r~lation 

into groups such that in any one group all tuples have the 

same value for the grouped attribute. 



Page 72 

The predicate group can be implemented as: 

group(N,G,N) :- call(G), only(N). 
only(N) :- not(ffound(N)), asserta(ffound(N)), ! • 

where ffound is a functor to remember what has been grouped 

so far during a query execution. There is a difference 

between the two N's which are the arguments of the second 

order predicate "group". If and only if the sub-goal 

"only(N)", in which the N was instantiated by calling G 

succeeds, then the predicate group succeeds, and only at that 

time the second N can be matched. 

5.3 THE PREDICATE "UPDATE" 

As far as the storage operations are concerned, we 

introduce a predicate update with three arguments. We can 

consider update(Old,G,New) as saying that an 

instantiated tuple G in the database by a new tuple which is 

the same as G except that the occurrence of 01 d become-:. Net .. •. 

Given below is the "updat" predicate. 

updat(X,G,Y,Attt·) :-
(callingl(G) ; (not(is_list(G)), call(G))), 
updated(X,G,Y,Attr), fail. 

updated(X,G,Y,Attr) :- {find(Y,Yl)}, {integ(Attr,Yl)}, 
replace(Yl,X,G,New), nl, retract(G), 
asser ta( removable( G)), asser ta( sauable(Net-J)), 
asserta(New), write(G), 
write(' updated to '), write(New), ! • 

find(X,X) :- atomic(X). 
find(E,R) :- R is E. 

replac:e(New,Old,Old,New). 
replac:e(New,Old,Val,Val) :- atomic:(Val). 



Page 73 

replace(New,Old,Val,NewVal) :- functor(Val,Fn,N), 
functor(NewVal,Fn,N), 
subst_args(N,New,Old,Val,NewVal). 

subst_args(O ,_,_,_,_) :- ! • 
subst_args(N,New,Old,Val,NewVal) :- arg(N,Val,OldArg), 

arg(N ,NewVal ,NewArg), replace(New, Old, OldArg ,Net-JAr g), 
Nl is N-1, subst_args(Nl,New,Old,Val,Net-JVal). 

5.4 AGGREGATE FUNCTIONS 

One of the important function of DBMS's is the 

application of aggregation or statistical functions. The 

functions that are currently supported are CNT, SUM, AVG, MAX 

and MIN. For example to calculate the average s:.alaries in 

the relation EMPLOYEE in the department "dl", we can ask: 

select [avg(salary)] from [employee] where [dno = dl]. 

The execution could be in the way that, first the relation 

EMPLOYEE would be selected under the department "dl", then 

projected on the attribute "salary"; finally the projection 

would be sent to the AVG function. 

A formal definition of an aggregation function is: 

An aggregate function takes a set of tuples (a relation) as 

an argument and produces a single simple value (usually a 

number) as a result. 



Page 74 

5.5 IMPLEMENTATION OF AGGREGATION FUNCTIONS 

The implementation strategy is based on two principles: 

1. Any aggregate function is based on a base relation. 

2. The query tuple involving an aggregate function in 

intermediate form will introduce an aggregate-predicate 

which incorporates the expressive power of high-order 

predicate calculus in the intermediate form. 

Therefore the implementation of the above query would be 

a <:• 
~· 

avg(_45,employee(_43,_44,_45,d1),_50) 

where the variable _50 is instantiated to the average salary 

of the employee in depal·tment dl. 

In general, the extension allows goals of the form: 

aggregate_predicate(V,P,X) 

to be read the aggregate function specified 

"aggregate_predicate" on v~s such that P is provable is X, 

where P is a goal or a conjunction of goals. 

With this implementation strategy, let us consider a 

more sophisticated query: Find the employee names and ages 

for employees in depal·tment "dl" who eal·n mol·e than the 

average salary of those who are at the same department with 

age over 30: 



select [ename,age) 
from [employee) 
where [dno = dl, 

salary > 
select [avg(salary)J 
from [employee) 
where [dno = dl, age > 30)). 

whose final executable form would be: 

[avg(_41,[employee(_39,_40,_41,dl),_40>30],_50), 
employee(_51,_52,_53,dl), _53>_50] 

N.B. Here _51 and 53 are the variables which get 
ultimately instantiated to the answers - employee 
name and employee salary satisfying the cr i tet· i a. 

Page 75 

In this implementation, the second argument of all 

aggregation predicates can be instantiated to a list 

containing arbitrary number of conditions such that the 

anst--•et· which will be instantiated in the third argument 

sati~fies all these conditions. 

5. 6 A LOOK AT SOt"'E OTHER USEFUL PREDICATES 

The Prolog version of the query obtained so far 

incorprorates a simple proof procedure. Hov,•ev er , the 

extralogical primitives provided by the Prolog system such as 

cut, f ai 1, fork play an important role in improving 

efficiency, since they can decide how the proof can be 

cat·r ied out. 



Let us consider the execution of 

a :- b, c, d, e, f, 

Page 76 

Suppose we know that the sub-goal f fails, and suppose we 

also know that there is no point in trying to resatisfy a and 

e because they will anyhow fail. In such a case when 

backtracking occurs (when f fails), we would like the 

subgoals d and e to be skipped for resatisfying and the 

subgoal c to be resatisfied. 

To circumvent this problem we define a pair of prefix 

and postfix operators, "{"and"}" , whose intent is given in 

the following Prolog definition. 

{X} :- call(X), ! • 

The X here can be instantiated to any number of sub-goals, 

which we know are invariably going to fail on backtracking. 

By doing so these sub-goals will never be attempted to be 

resatisfied in the event of a backtrack. For the example 

given above we may include d and e as shown below: 

a:- b, c, {d, e}, f, 

Now when f fails, .e and d will not be resatisfied but 

directly the attempt to resat i sf~, c wi 11 be made. It means 

that these sub-goals d and e will only be entered from the 

"left" so to say. 



Page 77 

The advantages of having such an implementation are 

obvious. 

Since there is no in-built definition of the comparison 

opet·ator "=" it has been defined below: 

A'= B :-A= B, ! , fail. 
A '= B. 

I would like to highlight another simple predicate 

called "pick_up", which is the backbone of this 

implementation. It has been used to unify variables and for 

instantiating variables to atoms, and often to pick up 

certain elements of the list given the list and their 

positions in it from the beginning of the list. 

The implementation in Prolog of pick_up is given below: 

pick_up([],_,[]). 
pick_up([MIN] ,L, [XIY]) :- mem(t1,X,L), pick_up(N,L,Y). 

mem (1 , X, [X I_] ) . 
mem(N,X,[_IY)) :- mem(M,X,Y), N is t1+1. 

This predicate may best be explained by giving examples: 

e.g.1 pick_up([4,2),[a,b,c,d],L). 
gives L = [d,b] 

e.g.2 pick_up(L,[a,b,c,d],[c,a]) 
gives L = [3,1] 

e.g.3 pick_up([1,4),[a,b,c,d],[A,B)) 
gives A = a, 8 = d 

e.g.4 pick_up([2,1],[A,B,C,D],[F,G]) 
After this F shares with 8 and G with A 

e.g.5 However pick_up(L,[A,B,C,DJ,[C,A]) 
is meaningless, in the sense that 
L is instantiated to [1,1] 



Page 78 

Other predicates are extract_attr which dives deep into 

a list and extracts all atoms and numbers and collects them 

in a list. 

The implementation of extract_attr is given below: 

extract_attr([],[]). 
extract_attr(X,[X]) :- atomic(X). 
extract_attr(T,L) :- arg(l,T,X), 

extract_attr(X,Ll), arg(2,T,Y), 
extract_attr(Y,L2), append(Ll,L2,L). 

Apart from the top level predicates discussed in Chapter 

4 and some of the important ones discussed above there are 
I 

other predicates involved in various functions of finding 

aggregation of attributes and for simplifying the attributes, 

variables etc. during various stages of processing. It 

would be irrelevant to discuss them in detail as the purpose 

they serve is obvious from the implementation itself. 



Page 79 

CHAPTER 6 

SUGGESTIONS FOR IMPROVEMENT AND IDEAS FOR FUTURE WORK 

At the end of implementing any system, one invariably 

feels that there is room for improvement in almost every 

a~.pect c•f the implementation. I shall discuis a fevJ 

important points where I feel the performance of this system 

will be considerably improved. 

The idea that suggestions for imrovement and ideas for 

future work go hand in hand because both these aspects are 

interconnected. One might build over the already existing 

work or one might try to rectify the flaws in this and then 

go ahead by building over it. 

I shall specify the shortcomings of the implementation 

and a possible way to remove them as I list them: 

1. The existing implementation allows queries to be input in 

the lower case only, and the attribute list, relation 

list, and condition lists have to be specially enclosed 

in brackets ("[" and"]"), due to the peculiarities of 

the Prolog uesd. There is a possibility of including a 

pipe (a utility which helps in giving the output of one 

prograrn as the input of anothet·) wt·itten in any of the 

procedural languages, where the input can be more 

flexible in that the query may be specified in either 



Page 80 

upper or lower case and that elements of the attribute, 

relation, condition lists need not be specifically 

enclosed in brackets. In other words the job of this 

program is to mak~ query entry more elegant. 

2. After the processing of the query is over, a list of 

query tuples is created which have to be searched through 

the database. It can be shown that in certain cases, 

reordering the query tuples in the final list might mean 

the difference between getting almost instantaneous 

answers or having to wait for hours. Hence an optimizer, 

ensures that all queries are answered in a reasonable 

amount of time [1]. 

3. Improving the performance of this system can be done by 

designing more powerful predicates which involve less 

computation. This may be realized by using partial data 

structures called difference lists [6] and removal of 

redundant code. What I have'suggested will hopefully be 

clearer with the following example: 

We write append predicate as: 

append([],L,L). 
append([HIXJ,Y,[HIZJ) :- append(X,Y,Z). 

If the purpose of this predicate is just to append 
two lists then it might as well be done using: 

append(X,Y,Y,X). 

However now we need to write- append two lists L1 
and L2 to give L3 as: 



append([Ll1A],L2,A,L3). 

For e.g. append([1,2,31AJ,[c,d,e),A,Ans). 

gives Ans = [1,2,3,c,d,e). 

in one shot. 

such improvements a1·e possible 

Page 81 

in the 

implementation, and this will substantially reduce query 

processing time. Such optimizations and improvement in 

the style of writing the code wilY undoubtedly make it 

more understandable and amenable to changes without much 

difficulty. 

4. Comparison of the performance of this implementation in 

processing queries (i.e. time taken to process it) with 

that of SPREADS (Simple-to-use Pol· table RElAtional 

Database System). has been a bit difficult because this 

implementation is on the VAX 11/750 while SPREADS is on 

IMPACT. Hoeweuer, preliminary studies indicate that this 

implementation is much slower, maybe by three or four 

times than SPREADS because of a few unavoidable reasons 

and othen..Jise. 

Other possibilities for 

below. They are: 

improvements are discussed 



Page 82 

1. The implementation is working on a Prolog interpreter, 

whereas SPREADS is compiled and ready to execute. This 

is one major factor which prevents any really reasonable 

benchmarking to be done. 

2. The second and no less important factor is that there is 

some redundancy in the code and other suggestions for 

improvement mentioned above (use of partial data 

structures etc.), if implemented, should make it preform 

faster. 

3. One more problem which significantly effects performance 

is the hardware itself. Most hardware has been designed 

keeping in viet-J the programming language,':. it wc•uld 

support (usually procedural languages like Pascal or C), 

and since Prolog is a relatively new language none of the 

designs include any features germane to it. 

4. Also, it has been found that changing the output stream 

to write in a file instead of the screen significantly 

improves its processing time, by a factor of 

three, especially where lot of I/0 is involved. 

5. Man ~J o t heJ· improvements are possible like 

two or 

use of 

disjunction in the condition list of the query itself. 

For instance: Get all supplier names from suppliers who 

al·e either in P~ris or have status greater than 20, is 

not-J t.Jl"itten as: 



Page 83 

select [sname) from [supplier) where [city =paris) 
union 

select [sname) from [supplier) where [status> 20). 

but could be: 

select [sname) 
from [supplier) 
where [city =paris statu~. )20]. 

6. There is also the possibility of including, queries of 

the type: Get those supplier names who "only" supply red 

parts. Many such extensions can be included in the 

system to enhance its power. 

7. Integrity constraints is one more area where a lot can be 

done. At present the integrity checks are carried out 

only on the new value; i . e. to see whether the new 

value corresponding to a particular attribute violates 

the constraints or not. That means there are no temporal 

integrity checks. instance, when the age of an 

emplo~1ee is updated one -=-hould check that the net-,• age is 

greater than the earlier one. Othel- in teg1· i ty 

constraints may be in the form of ~ules. For instance 

If the employee is in depa1·tment dl, then his salary 

should not exceed $20,000 and if the employee is in any 

other department then no such constraints hold. At 

present the only integrity constraints are in the form of 

simple rules, where the body of the rule is the "cut". 



Page 84 

8. Another problem to be taken care of is that of incomplete 

databases, i . e. , certain attribute values in some 

relations may not be filled up. For such 

should be a consistent interpretation 

needs to be done during query processing. 

cases, there 

regarding what 

9. Another area of interest would be to take care of 

deleting relations where deleting certain tuples from a 

relation, may also effect other tuples in other 

relations. For instance after deleting suppliers who 

supply part p2, we might even delete tuples in relation 

shipment where part p2 no more exists because it is not 

supplied. The presence of this data is not useful in any 

way as it might be "inaccessible". Fot· the moment 

deleting tuples, is done only for a given relation. 

10. Many other appendages may be added to the progt·am which 

would make it more user friendly and make debugging of 

erroneous queries simpler. The debugging aids to check 

wrongly input queries are at the moment very primitive. 

11. To make the system really useful while updation and 

insertion and deletion of data is done, some work needs 

to be done in the area of file handling. Thi~. is of 

paramount importance because proper recovery procedures 

should be available in the event of a system crash. 



12. Other built-in predicates, 

manipulation of databases 

specific to the efficient 

like database search are 

available, but have not been made use of. There is a 

possibilty of improving database search using these 

built-in predicates which make use of keys for searching. 

13. At present queries involving WHERE allow only one 

aggregation operator, if the WHERE contains a nested 

SELECT. This can therefore be modified to include more 

than one aggregation operator. 

14. There is no implementation of undoing any updation, 

deletion or insertion operation when it has been found 

that the updation, deletion or insertion has been done 

v..rrongly. 

The implementation is raw and a lot of fin~ points and 

improvements need to be done. The one difference between 

thi..:. system and SPREADS is that l..Jhile SPREADS does not allol.-..t 

nesting of queries, one can ask nested nested queries, here -

theoretically to any depth. This feature is helpful in 

an~Jering the negative queries, like getting all suppliers 

name..:. who do nc•t suppl~-· pat·t p2, and in many places. where 

complicated queries may be used to get answers where it is 

not possible to do so on SPREADS. 



Page 86 

Testing of this system was done extensively on the 

supplier-part-depart~ent database and some of the times taken 

to answer the queries have been given. Paucity of time 

precluded testing this implementation on databa<E.es of any 

reasonable size, but there should be no problems. When 

writing answers, Prolog suffers from one drawback, in that, 

the attributes have to be written one at a time and a 

somewhat clumsy method of giving tab spacing has to be given 

(for an elegant output - refer to the predicates "write_attr" 

and ''1.-Jriteln" in the source listing). In SPREADS this 

problem does not exist, because it can write all values at 

once. 

One more test was carried out on a single relation 

database, 

attributes. 

fast. 

involving about a hundred tuples and ten 

It was found to work correctly and reasonably 

One area of interest in making the system more versatile 

would be in making it more user friendly. For instance by 

including fragments of natural language into it. Work in this 

area has already been done [13]. However this itself will be 

a part of another project. 



Page 87 

Work has also been done in the area of knowledge 

representation, and Prolog has been found to be quite a 

powerful tool. Use of Prolog for making database systems 

more intelligent involves the representation of knowledge in 

the fo~m of semantic networks. Here instead of just 

representing plain facts as has been done in conventional 

databases, rules can be used to implement databases, and 

thereby the transition from databases to knowledge bases is 

possible. 

Prolog at present can handle databases of limited size, 

and its performance in retrieving information from large 

databases is yet to reach the speeds of more conventional 

approaches. 

work. 

This can certainly be an interesting area of 

I would like to conclude with the comment that all these 

possibilities are exciting and a lot work can be done too. 



Page 88 

APPENDIX 1 

THE SAMPLE DATABASE. 

supplier 

sno sname statu~. city 

sl smith 20 london 
s2 jones 10 paris 
s3 blake 30 paris 
s4 clark 20 london 
s5 adams 30 athens 

shipment 

sno pno 

sl pl 300 
sl p2 200 
sl p3 400 
sl p4 200 
sl p5 100 
sl p6 100 
s2 p1 300 
s2 p2 400 
s3 p2 200 
s4 p2 200 
s4 p4 300 
~.4 p5 400 

part 

pno pname color wt cit~-· 

------------------------------------------------
p1 nut red 12 london 
p2 bolt green 17 paris 
p3 screw blue 17 rome 
p4 sct·ew t·ed 14 london 
p5 cam blue 12 pari~-
p6 cog red 19 london 



s t oc:k 

dept 

dl 
dl 
d2 
d3 
d3 

pno 

pl 
p2 
pl 
pl 
p4 

department 

dept 

dl 
d2 

employee 

en arne 

city 

london 
pet· th 
london 

age 

qty 

600 
350 
450 
500 
220 

managet· 

srni th 
long 
lee 

salat·y• dept 
-------------------------------------

john 34 8600 dl 
morgan 24 6300 d2 
lewis 42 9000 d3 
long 34 8500 d2 
henry 29 12300 dl 
thomas 31 7300 d.-, .::.· 

martin 45 7500 dl 

Page 89 



Page 90 

APPENDIX 2 

SAMPLE QUERIES, THEIR ANSWERS AND THEIR RESPONSE TIMES 

e.g.1 Get full details of all parts supplied. 

select * from [part]. 

pno pname color wt city 

p1 nut red 12 london 
p2 bolt green 17 paris 
p3 screw blue 17 rome 
p4 scret<J red 14 london 
p5 cam blue 12 paris 
p6 cog red 19 london 

Time taken: 4.9833s 

e.g.2 Find all parts, their weight and •the city where 
they are kept. 

select [ pname ,wt, cit~' J from [part J. 

pname wt city 

nut 12 london 
bolt 17 paris 
SCl"el.-J 17 rome 
scret ... • 14 london 
cam 12 pari-:. 
cog 19 london 

Time taken: 3.5s 

e.g.3 Find the average age, number of employees and 
average salary of all employees. 

select [avg(age),cnt(ename),avg(salary)] 
from [employee]. 

avg(age) en t ( ename) avg(salary) 

34.1429 7 8500 

Time taken: 2.75s 

e.g.4 For each part supplied, get the part number and 
the total quantity supplied of that part. 



select 
from 
grouped_by 

[pno,sum(qty)] 
[shipment] 
[pno]. 

pno sum(qty) 

p1 600 
p2 1000 
p3 400 
p4 500 
p5 500 
p6 100 

Time taken= 3.15001s 

e.g.5 Find the ~verage age, number of employees and 
average salary in each department. 

Page 91 

select 
from 
grouped_by 

[cnt(ename),avg(salary),avg(age)] 
[emplo~Jee] 

en t ( ename) 

3 
2 
2 

[ dn o) . 

avg( sal al· y) 

9466.66 
7400 
8150 

Time taken: 3.8334s 

avg(age) 

36 
29 
36.5 

e.g.6 Get part numbers for all parts supplied by more than 
two suppliers. 

~-elect 
from 
gl·ouped_by 
having 

pno 

p2 

[pno,sum(qty)] 
[shipment] 
[pno) 
[en t ( sn o) > 2] • 

sum(qty) 

1000 

Time taken: 2.6s 

e.g.7 Set the quantity to zero of all stocks. 

update [stock] set [qty = 0]. 



Page 92 

stock(dl,p1,600) updated to stock(dl,pl,O) 
stock(d2,p2,350) updated to stock(d2,p2,0) 
stock(d2,p1,450) updated to stock(d2,pl,O) 
stock(d3,p1,500) updated to stock(d3,pl,O) 
stock(d3,p4,220) updated to stock(d3,p4,0) 

Time taken: 2.70003s 

e.g.8 Enhance salary of all employees to aouble their 
original salary. 

update [employee] set [salary= salary* 2]. 

employee(john,34,8600,dl) updated to : 
employee(john,34,17200,dl) 

employee(morgan,24,6300,d2) : updated to : 
employee(morgan,24,12600,d2) 

employee( lewis, 42,9000, d3) : updated to : 
employee(lewis,42,18000,d3) 

employee(long,34,8500,d2) : updated to : 
employee(long,34,17000,d2) 

employee(henry,29,12300,dl) : u~dated to : 
employee(henry,29,24600,dl) 

employee(thomas,31,7300,d3) : updated to : 
employee(thomas,31,14600,d3) 

employee(martin,45,7500,dl) : updated to : 
employee(martin,45,15000,dl) 

Time taken: 5.06667s 

e.g.9 Change the color of all parts to red. 

update [part] set [color= red]. 

part(pl,nut,red,12,london) : updated to 
part(pl,nut,red,12,london) 

pat·t(p2,bolt,green,17,pat·is): updated to: 
part(p2,bolt,red,17,paris) 

part(p3,screw,blue,17,rome) : updated to : 
part(p3,screw,red,17,rome) 

part ( p4, sc:rew, red, 14, londc•n) : updated to : 
part(p4,screw,red,14,london) 

pat·t(p5,cam,blue,12,paris) :updated to: 
part(p5,cam,red,12,paris) 

part(p6,cog,red,19,lor.don) : updated to : 
part(p6,cog,red,19,london) 

Time taken: 4.31667s 

e.g.lO Add part p7 (name HHEEL, color BLACK, weight 24, 
city HYDERABAD) to table "pat·t". 



Page 93 

insert into [part] : [p7,wheel,black,24,hyderabad]. 

Fact: part(p7,wheel,black,24,hyderabad) 
inserted into the database 

Time taken: .866673s 

e.g.ll Find the name of employees, department and 
salaries who earn the most in their respective 
departments. 

select 
from 
grouped_by 

[ename,age,max(salary),dno) 
[employee] 

ename 

henq .. • 
long 
lewis 

age 

29 
34 
42 

[dno]. 

max (~-alar y) 

12300 
8500 
9000 

Time taken: 3.66667s 

dno 

dl 
d2 
d3 

e.g.12 Get maximum salary, age and department number from 
emplo~ee srouped by department number. 

select 
from 
gt· o up ed_by 

[max(salary),dno] 
[emplolr•ee] 
[ dn o] . 

max(salary) dno 

12300 
8500 
9000 

dl 
d2 
d3 

Time taken: 2.26667s 

e.g.13 Delete relation stock. 

delete [stock]. 

stock(dl,p1,600) deleted. 
stock(d2,p2,350) deleted. 
stock(d2,p1,450) deleted. 
stock(d3,p1,500) deleted. 
stock(d3,p4,220) deleted. 



Page 94 

Time taken: 1.50001s 

e.g.14 Get supplier name and status from suppliers having 
status greater than 20 and who are in Paris. · 

select [sname,status] 
from [supplier] 
where [status> 20, city= paris]. 

sname status 

blake 30 

Time taken: 1.85s 

e.g.15 Get supplier number and supplier name from supplier 
who are in Paris or who have status greater than 20. 

union 

select [sno,sname] 
from [supplier] 
where [city= paris] 

select 
from 
where 

[ sno, sname] 
[supplier] 
[statu=· > 20] . 

snc• sname 

s2 jones 
s3 blake 
s5 adams 

Time taken: 3.23334s 

e.g.16 Get part number whose weight is greater than 18, or 
located in Paris, or supplied by Jones. 

union 

union 

select [ pno] 
from [pa·rt] 
whet· e [ "'' t > 18] 

select [pno] 
from [part] 
where [city =paris] 

select [pno] 
from [shipment] 
where [ [ sn o] in 

select [:.no] 



Page 95 

[supplier] from 
where [ sname = j one~.]]. 

pno 

p2 
p5 
p6 
pl 

Time taken: 3.63334s 

e.g.17 Get supplier numbers for suppliers who supply both 
part pl and p2. 

selec:t 
frc•m 
where 

[sno] 
[shipment] 
[pno=pl, 

[ sno] in 
sel ec: t [~-no] 

from [shipment] 
where [pno ~ p2]). 

sl 
s2 

Time taken: 1.98334s 

e.g.18 Get supplier names and status for suppliers who 
live in London and supply at least one red part. 

selec:t 
from 
where 

[~.name,status] 

[ ~-uppl i er] 
[c:ity = london, 

[sno] in 
selec:t [sno] 
from [shipment] 
where [[pno] in 

sname statu~. 

smith 20 
c:lal-k 20 

selec:t [pno] 
from [part] 
where [c:olor =red]]]. 



Page 96 

Time taken: 3.81668s 

e.g.19 Get supplier numbers for suppliers not currently 
supplying any parts. 

select [ sno] 
from [supplier] 
where [[sno] not in 

sno 

s5 

Time taken: 1.41667s 

select [sno] 
from [shipment]]. 

e.g.20 List all the suppliers' names and locations for 
supplier who~.e ~.tatus i =· greater than Smith'=·. 

select [sname,city] 
from [supplier] 
where [[status] > 

:.name 

blake 
adams 

city 

pari=· 
athens 

:.elect [:.tatus] 
from [supplier] 
where [sname =smith]]. 

Time taken: 2.65001s 

e.g.21 Get supplier names and status for suppliers who 
do not supply part p2. 

select [sname,status] 
from [supplier] 
where [[sno] not_in 

~.name statu~. 

adams. 30 

select [sno] 
from [shipment] 
where [pno = p2)]. 



Page 97 

Time taken: 2.50002s 

e.g.22 Collect suppliers' names, part names and quantities 
supplied for suppliers in London. 

s e 1 e c t [ s name , p n am e , q t y ] 
from [supplier,shipment,part] 
where [supplier@city =london, 

supplier@sno = shipment@sno, 
shipment@pno = part@pno]. 

sname pname qty 
--------------------------------

smith nut 300 
smith bolt 200 
smith screw 400 
smith scret.-J 200 
~-mi th cam 100 
smith cog 100 
clark bolt 200 
clark screv-• 300 
clal·k cam 400 

Time taken: 6.03336s 

e.g.23 How many suppliers are there in London? 

select [cnt(sno)] 
from [supplier] 
where [city= london]. 

cnt(sno) 

2 

Time taken: 1.40002s 

e.g.24 How many people earn more than $8000 in 
department dl? 

select [cnt(ename)] 
fl·om [emplo~1ee] 

where [salary > 8000, dno = d1]. 

en t ( ename) 

2 



Page 98 

Time taken: 1.68336s 

e.g.25 Find the names of employees ..,,,ho are under 35 
years of age and are paid more than the average 
salary for all employees. 

select 
from 
v..there 

ename 

john 
henry 

[enamel 
[employee] 
[age < 35, 

[ sala1·v J > 
select [avg(salarv)J 
from [emplovee]]. 

Time taken: 2.06669s 

e.g.26 Find the employees names and their managers names 
for employees who are under 30 years of age, work 
in London, and are paid more than the average 
salary for all employees with age over 40. 

select. 
from 
where 

[ename,manager] 
[employee,department] 
[employee@dno = department@dno, 

c i t ~~ = 1 on don , 
[enamel in 

select [enamel 
from [employee] 
where [age < 30, 

[ salaq1] > 

--------~-------------
ename manager 

hen1·y -:.mi th 

Time taken: 4.11667s 

select 
from 
where 

[ avg( sala1·y)] 
[employee] 
[age> 40))]. 

e.g.27 How many people earn less than $8700 in each 
department. 

select [dno,cnt(ename)] 



from [employee) 
grouped_by [dno) 
where [salary < 8700). 

dno cnt(ename) 

dl 2 
d2 2 
d3 1 

Time taken: 2.78336s 

e.g.28 Double the salaries of all employees in the 
department "dl" . 

update [employee] 
set [salary = 2*salary) 
where [dno = dl). 

Page 99 

employee(john,34,8600,dl) : updated to : 
employee(john,34,17200,dl) 

employee(henry,29,12300,dl) : updated to : 
employee(henry,29,24600,dl) 

employee(martin,45,7500,dl) : updated to : 
employee(martin,45,15000,dl) 

Time taken: 2.80004s 

e.g.29 Delete parts supplied by Smith from table "part" 
whose color is red and weight is less than 15. 

delete [part) 
where [color = red, 

1,-..tt < 15, 
[pno] in 

select [ pno J 
from [shipment] 
where [ [ ~-no] i n 

select [~.no] 

from [supplier] 
where [sname =smith]]]. 

part(pl,nut,red,12,london) deleted. 
part(p4,screw,red,l4,london) deleted. 

Time taken: 3.53339s 

e.g.30 Set the quantity to zero for all suppliers in 
London. 



update [shipment] 
set [qty = 0] 
where [[sno] in 

select [sno] 
from [supplier] 
where [city= london]]. 

shipment(sl,p1,300) deleted. 
shipment(sl,p2,200) deleted. 
shipment(sl,p3,400) deleted. 
shipment(sl,p4,200) deleted. 
shipment(sl,p5,100) deleted. 
shipment(sl,p6,100) deleted. 
shipment(s4,p2,200) deleted. 
shipment(s4,p4,300) deleted. 
shipment(s4,p5,400) deleted. 

Time taken: 5.91672s 

Page 100 

e.g.31 Calculate the average salary at the department "d2". 

select [avg(salary)] 
from [employee] 
where [dno = d2]. 

aug( salary) 

7400 

Time taken: 1.38336s 

e.g.32 Find the emplo~Jee names and ages for employees at 
"dl" department who earn more than the average 
salary of those who are in the same department 
with age over 30. 

selec:t 
from 
where 

[ename,age] 
[employee] 
[dno = dl, 
[sal al· y) > 

ename age 

john 34 
henry 29 

select [avg(salary)] 
from [employee] 
where [age> 30, dno = dl]). 



Page 101 

Time tak~n: 3.11667s 

e.g.33 Find the ~aximum salary for young employees aged 
under 35 at each department. 

select 
from 
grouped_b~' 

where 

[dno,max(salary)] 
[employee] 
[dno] 
[age< 35]. 

dno max(salary) 

dl 12300 
d2 8500 
d3 7300 

Time taken: 2.90002s 

e.g.34 Ffnd the department and its location, where there is 
at least one part the quantity of which happens to 
be the total number of the same part supplied by all 
all suppliers. 

select [dno,city] 
from [department] 
~tJher e [ [ dn o] i n 

select [dno] 
from [ s;. to ck J 
where [[pno,qty] in 

dno cit~· 

dl london 

Time taken: 3.85003s 

select [pno,sum(qty)] 
from [shipment) 
grouped_by [pno]]]. 

e.g.35 Find average salary and number of employees in 
dep al- tmen t dl . 

select [avg(salary),cnt(ename)] 
from [employee] ' 
~;..there [ dno=dl J. 

avg(salary) cnt(ename) 



Page 102 

9466.66 3 

Time taken: 2.26672s 

e.g.36 Get the table for part. 

t ab1 e [par t] . 

pal· t 

pno pname color wt city 

Time taken: 1.75005s 

e.g.37 Create a new table by name emp_data having 
attributes name, age, wt, salary, dno 

create [emp_data) : [name,age,wt,salary,dno]. 



APPENDIX 3 

SYNTAX OF THE QUERY LANGUAGE 

<a task written in EL> : := 
<retrieval operation> 
<insert operation> 

<update operation> 
<delete operation> 

<retrieval operation> ::=<select-blocks> 

<update operation> ::= 

Page 103 

UPDATE <relation> SET <attribute> = <arithmetic expression> 
UPDATE <relation> SET <attribute> = <arithmetic expression> 

WHERE <conditions> 

<insert operation> : := INSERT_INTO <relation> : <constant:.> 

<delete operation> ::=DELETE <relation> I 
DELETE <relation> WHERE <conditions> 

<select-blocks> ::=<select-block> I 
<select-block> UNION <select-block:.> 

<select-block> ::= 
SELECT <target 1 i :.t > FROM <relations> I 
SELECT <target list> FROM <relations> WHERE <conditions> I 
SELECT <target list> FROM <relation> GROUPED_BY <attribute> 
SELECT <target list> FROM <relation> GROUPED_BY <attribute> 

HAVING <function> <comparison operator> <real number>! 

SELECT <target list> FROM <relation> GROUPED_B'{ <attl·ibute> 
WHERE <condition> 

<target list> ::= <target> I <target>, <target list> 

<target> ::=<attribute> I <relation)@(attribute> I· <function> 

<conditions> ::=<condition> I <condition>, <conditions> 

<condition> ::=<simple condition> I <chaining condition> 
<join condition> I <set requirement> 

<simple condition> ::= 
<attribute> <comparison operator> <constant> 
<relation)@{attribute> <comparison operator> <constant> 

<chaining condition> ::= 
<attribute> <chaining operator> <sel~ct-block> 

(join condition> ::= 
<relation>@<attribute> <comparison operator> 

<relation>@<attribute> 



Page 104 

<set requirement> : := 
(<attributes>) <chaining operator> <select-block> 

<arithmetic expression> ::=<constant> 
<something> <arithmetic operator> <something> 

<chaining operator> ::=IN = NOT_IN I > I < I >= I =< I '= 

<comparison operator> ::= < > =< 

<arithmetic operator> ::= + - I * I / 

<function> ::=<built-in function>(<attribute>) 

<built-in function> ::= CNT I MAX I MIN I SUM AVG 

<something> ::=<real number> I <attribute> 

<relations> ::=<relation> I <relation>, <relations> 

<relation> ::~<relation name> 

<attributes> ::=<attribute> I <attribute>, <attributes> 

<attribute> ::=<attribute name> 

<constants> ::=<constant> I <constant>, <constants> 

<constant> ::=<atom> I <integer> 



APPENDIX 4 

INTERNAL REPRESENTATION OF THE SAt1PLE DATABASE 

supplier(sl,smith,20,london). 
supplier(s2,jones,10,paris). 
supplier(s3,blake,30,paris). 
supplier(s4,clark,20,london). 
supplier(s5,adams,30,athens). 

shipment(sl,p1,300). 
shipment(sl,p2,200). 
shipment(sl,p3,400). 
shipment(sl,p4,200). 
shipment(sl,p5,100). 
shipment(sl,p6,100). 
shipment(s2,p1,300). 
shipment(s2,p2,400). 
shipment(s3,p2,200). 
shipment(s4,p2,200). 
shipment(s4,p4,300). 
shipment(s4,p5,400). 

part(pl,nut,red,12,london). 
part(p2,bolt,green,17,paris). 
part(p3,screw,blue,17,rome). 
p a1· t ( p 4, scr ev..•, red, 14, 1 on don) . 
part(p5,cam,blue,12,paris). 
part(p6,cog,red,19,london). 

stock(dl,p1,600). 
stock(d2,p2,350). 
stock(d2,p1,450). 
stock(d3,p1,500). 
stock(d3,p4,220). 

department(dl,london,smith). 
department(d2,perth,long). 
department(d3,london,lee). 

~1ployee(john,34,8600,d1). 
emp1oyee(morgan,24,6300,d2). 
employee(let.-Jis,42,9000 ,d3). 
emplo~'ee(1ong,34,8500,d2). 
emp1oyee(henry,29,12300,d1). 
emp1oyee(thomas,31,7300,d3). 
emp1oyee(martin,45,7500,dl). 

Page 105 



INTERNAL REPRESENTATION OF RELATIONAL SCHEMA 
AND INTEGRITY CONSTRAINTS 

relation(supplier(sno,sname,status,city)). 

relation(shipment(sno,pno,qty)). 

relation(part(pno,pname,color,wt,city)). 

relation(stock(dno,pno,qty)). 

relation(department(dno,city,manager)). 

relation(employee(ename,age,salary,dno)). 

integrity(status,A,[A>=lO,A=<lOOO,integer(A)]) :- ! • 

integrity(qty,A,[A>=O,A=<lOOOOO,integer(A)]) :- ! • 

integrity( ..... •t,A,[A>O,A=<lOOO]) :- ! • 

integrity(age,A,[A>18,A=<62]) :- ! • 

integl"ity(salar~·,A,(A>=1000,A=<50000]) :- ! • 

Page 106 



APPENDIX 5 

/***********************************************/ 
/***** SOURCE CODE OF THE DATABASE PROGRAM *****/ 
/***********************************************/ 
/* CONSULTATION OF THE DATABASE, RELATIONAL SCHEMA */ 
/-J.: AND INTEGRITY FILES */ 

:- [database,relation,integrity]. 

Page 107 

/7o: OPERATOR DECLARATION PART */ 
/* TREATS ALL KEY-WORDS OF THE QUERY LANGUAGE AS OPERATORS */ 
/* WHICH SIMPLIFIES SYNTAX ANALYSIS AND PARSING OF QUERY */ 

:- op(40,xfx,in), op(40,xfx,not_in), op(40,xfx,''='), 
op(40,xfx,@), op(185,yfx,hauing), . 
op(190,yfx,where), op(192,yfx,grouped_by), 
op(l95,yfx,from), op(195,yfx,set), op(195,yfx,':'), 
op(200,fx,select), op(200,fx,update), 
op(200,fx,insert_into), Op(200,fx,delete), 
op(215,xfy,union), op(200,fx,create), 
op(200,fx,table), op(215,fx,'{'), op(200,xf,'}'). 

/* THE QUERY READ I t·..JG AND ANSWERING PART */ 
/* READS IN THE C!UER.Y, CREATES VARIABLEE: _FOR THE ATTRIBUTES *.1 
/* AND FINALLY FINDS THE ANSWERS TO THE TUPLES CREATED */ 

do :- nl, write('Output stream Screen or File (s./f.) ? '), 
read(Mode), {nl, nl, write(' QUERY:'), 
nl, write(' '), read(S), 
(((S =ex; S =exit), exit) ; true), 
arg(l,S,X), ext(X,[HITJ), length(H,Num), 
( (H =[:.1:]) 

; 

(S = update(_)) 
(S = delete( ) ) 
(S = insert_into( )) 
(S =create(_), Ll = []) 
(S =table(_), Ll = []) 

(for_write(H,Teml), nl, ~,o..tr·iteln(Num), nl, v,trite_attr(Teml), 

nl, writeln(Num), create_uar(H,Xs), extract(Xs,Ll), nl))}, 

{((Mode= s) ; (Mode= f, tell(file), nl, writeln(Num), nl, 
v,tr i te_at tr (Teml), nl, wr i teln (Num), nl))}, 

<get_sub_qs(S,Xs,! ,Ans), 
((H = [*], Ans = [BIT3], B = •• [_ILl]) ; H '= [*])}, 
callingl(Ans), <write_attr(Ll), nl}, fail. 

do :- retract(ffound(N)), fail. 
do :- told, do. 



Page 108 

/***********************************************************/ 
/**************** QUERY PROCESSING PART ********************/ 
/***********************************************************/ 

/***********************************************************/ 
/*** (1) SELECT <target list> FROM <relation> GROUPED_BY ***/ 
/************** <attribute> WHERE <conditions>*************/ 

get_sub_qs(select(from(Attrs,grouped_by([Name),where([Grp_atr], 
Condition:.)))) ,X:., Hash ,Ans) :-

!, {relation(K), K = .. [NameiL5), length(L5,Num2), 
get_skel(Num2,B), Tempo1 = .. [NameiBJ, 
simplify_cols(Attrs,Cols), pick_up(Num3,L5,[Grp_atr]), 
pick_up(Num3,B,[Var]), get_only3(Xs,Len3), 
length(Len3,Len3_num), get_only2(Xs,Len2), 
((Len3_num > 1, Tem is Len3_num- 1, 

; 

get_set_skels(Num2,Tem,Skel_lis), 
unify(Num3,Skel_lis,[Var]), Len3 = [H31T3], 
simplify(Attrs,Attr_lis,Aggr_lis), 
convert(Aggr_lis,[NNINew_lis]), Aggr_lis = [HeadiTail], 
form(New_lis,Skel_lis,L5,Name,Set), extract(Xs,Ll), 
pick_up(Nu,L5,Attr_lis), pick_up(Num_list,Attrs,Attr_lis), 
pick_up(Num_list,L1,Tempo), unify(Nu,Skel_1is,Tempo), 
pick_up(Nemo,Attrs,Aggr_lis), pick_up(Nemo,Ll,[_ITemp2]), 
unifier(Tai1,Set,Temp2), H3 = [_,Colo,Grp], 
append(Attr_1is,[Colo],Cols4), append(Len2,[H3],Xs2)) 

(Xs2 = Xs, Cols4 = Cols)), 
((member(Grp_atr,Cols4), extract(Xs2,L6), 
pick_up(Numl,Co1s4,[Grp_atr]), pick_up(Numl,L6,[Var]), 
Xsl = Xs2, Colsl = Cols4) 

; 
(append([Grp_atr) ,Cols4,Colsl), 
append([[Var,Grp_atr]],Xs,Xsl))), 

Ans2 = •. [group,Var,Tempol,Var], 
break_off(Colsl,Xsl,Conditions,S,V,F,FF), 
differ([Name],S,V,F,FF,R), one_by_one(R,Ansl), 
((Hash = ! , Ans3 = Ansl) 
; 
(Ansi = [HIT], Hl = •• [not ,H], Ans3 = [HliT])), 

append([Ans2],Ans3,Ans4), 
((Len3_num > 1, append(Set,Ans4,Ans)) 

; 
(Ans = An~.4))}. 

/*************************************************/ 
/*** (2) SELECT <target list> FROt"-1 <relations> ***/ 
/************""~* WHERE <condi t i c·n~.> **************""~/ 

get_sub_qs( select ( from(At tr s ,where( Relation <E., Condition:.))) , 
Xs,Hash,Ans) :-



Page 109 

length(Relations,Numb), simplify_cols(Attrs,Cols), 
((Numb= 1, Relations= [Namellist], 

j 

; 

Conditions= [HeaiTai], Hea = .• [0per,Hea1,Tai1], 
relation(K), K = •. [Namell5], length(L5,Num2), 

get_skel(Num2,B), Tempo1 = .• [NameiB], get_only3(Xs,Len3), 
length(Len3,Len3_num), get_only2(Xs,Len2), 
((Len3_num > 1, Tem is Len3_num - 1, 
get_set_skels(Num2,Tem,Skel_lis), pick_up(Num3,L5,[Heal]), 
unify(Num3,Ske1_lis,[Tail]), Len3 = [H31T3], 
simplify(Attrs,Attr_lis,Aggr_lis), 
convert(Aggr_lis,[NNINew_lis]), Aggr_lis = [HeadiTail], 
form(New_lis,Ske1_lis,L5,Name,Set), extract(Xs,Ll), 
pick_up(Nu,L5,Attr_lis), pick_up(Num_list,Attrs,Attr_lis), 
pi ck_up (Num_l i ~.t, Ll, Tempo), un if~~ (Nu, Skel_l i :. , Tempo) , 
pick_up(Nemo,Attrs,Aggr_lis), pick_up(Nemo,Ll,[_ITemp2]), 
unifier(Tail,Set,Temp2), H3 =[_,Colo,_], 
append(Attr_lis,[Colo],Cols4), . 
create_var(Attr_lis,Tem_lis), append(Tem_lis,[H3],Xs2)) 

(Xs2 = Xs, Cols4 = Cols))) 

(Len3_num = O, Cols4 = Cols, Xs2 = Xs)), 
{break_off(Cols4,Xs2,Conditions,S,V,F,FF), 
differ(Relations,S,V,F,FF,R), one_by_one(R,Ans1), 
((Hash = ! , Ansl = Ans4) 
; 
(An~.l = [HIT], Hl =.. [not, HJ, Ans4 = [ Hll T])), 

((Len3_num > 1, append(Set,An~.4,Ans)) 
; 
(An:. = An :.4) ) } • 

/"k********-;.=****-;.=********************************-J.:*-J.=*********/ 
/*** (3) SELECT <target list> FROM <relation> GROUPED_BY *-;.:*/ 
/*************-;.: <at t r i but e > HAVING <fun c t i on > *-J.=*******-J.:-J.:*-J.=*/ 

get_sub_qs( select (from(At trs, grouped_b~ .. ([Name], hao...' i ng( [ Grp_atr], 
[Fun])))),Xs,Hash,Ans) :-

{Fun= •• [Comp_op,Function,Something], extract(Xs,L1), 
Function= .. [Aggrop,Fun_Attr], conf([Name]), 
relation(K), K = .. 0-..JameiLJ, pick_up(Fun_Num,L,[Fun_Attr]), 
1ength(L,Num), get_ske1(Num,A), pick_up(ZX,L,[Grp_atr]), 
simp1ify(Attrs,Attr_1is,Aggr_1is), 1ength(Aggr_lis,Te)}, 
(({member(Grp_atr·,L), mernber(Fun_attr·,L), Te ',,= 0, 
pi ck_up(ZX ,A, [Variable]), pi ck_up (Num_l i st ,At trs ,At tr _1 is), 
convert(Aggr_1is,New_1is), 1ength(Aggr_1is,Aggr_lis_len), 
get_set_ske1s(Num,Aggr_1is_1en,Skel_lis), 
unify(ZX,Skel_lis,[Variable]), pick_up(Nu,L,Attr_lis), 
f orm(New_l is, Skel_1 i ~·, L ,Name, Set) , 
pick_up(Num~list,Ll,Ternpo), unify(Nu,Ske1_lis,Tempo), 
pick_up(Nemo,Attrs,Aggr_1is), pick_up(Nemo,Ll,Temp2), 
chec_at tr (At tr _1 i ~·, L), unifier (Aggr _1 is, Set, Ternp2), 



Page 110 

Al = .. [NameiAJ, get_skel(Num,C), pick_up(ZX,C,[Variable]), 
Bl = .. (group,Variable,A1,Variable], get_skel(Num,8), 
pi ck_up (ZX, B, [Variable]), pi ck_up ( Fun_Num, C, [ Func_At tr]), 
A2 -. . [Name I 8 J , A3 =. . [Name I C J , 

A4 = .. [Aggrop,Func_Attr,A3,Fun_ans], 
Cl = .. [Comp_op,Fun_ans,Something], 
append([811Set],[A4,Cl],Ansl)}) 
j 

({Te=O, pick_up(Number,L,Attrs), pick_up(Number,A,L1), 
chec_attr(Attrs,L), get_skel(Num,B), get_skel(Num,C), 
pick_up(ZX,A,[Variable]), pick_up(ZX,B,[Variable)), 
pick_up(Number,8,Ll), pick_up(Number,C,Ll), 
A 1 - . . [ Name I A ) , A 2 = . . [ Name I 8 J , p i c k _up ( ZX , C , [ t..J a r i a b 1 e ) ) , 
81 = .. [group,Variable,Al,Variable], A3 = .. [NameiCJ, 
A4 = .. [Aggrop, Func_At tr ,A3, Fun_ans.J, 
pick_up(Fun_Num,C,[Func_Attr]), 
Cl = .. [Comp_op,Fun_ans,Something), Ansl = [81,A2,A4,Cl]})), 
((Hash= ! , Ans = Ansl) 

(An~.l:: [HIT], Hl = .. [nc•t,H), Ans. = [HliTJ)), 

/-J.:Y.:*Y.:******-J.:"}.:*****•k****-J.:*-).:**************-).:********/ 
/*** (4) SELECT <tar9et list> FROM <relation> ***/ 
/**"}.:**-k*****"}.: GROUPED _BY <attribute> *******-).:****/ 

get_sub_qs(select(from(Attrs,grouped_by([Name],[Grp_atr)))), 
Xs, Hash ,Ans.) :-

{conf([Name]), relation(K), K = .. [NameiLJ, extract(Xs,Ll), 
length(L,Num), get_skel(Num,A), pick_up(ZX,L,[Grp_atr]), 
simplify(Attrs,Attr_lis,Aggr_lis), length(Aggr_lis,Te)}, 
(({ Te '= 0, member(Grp_atr,L), pick_up(ZX,A,[Variable]), 
pick_up(Num_list,Attrs,Attr_lis), pick_up(Nu,L,Attr_lis), 
convert(Aggr_lis,New_lis), length(Aggr_lis,Aggr_lis_len), 
get_set_skels(Num,Aggr_lis_len,Skel_lis), 
pick_up(Num_list,Ll,Tempo), unify(Nu,Skel_lis,Tempo), 
unify(ZX,Skel_lis,[Variable]), 
form(New_lis,Skel_lis,L,Name,Set), 
pick_up(Nemo,Attrs,Aggr_lis), pick_up(Nemo,Ll,Temp2), 
unifier(Aggr_lis,Set,Temp2), chec_attr(Attr_lis,L), 
Al = .. [NameiA], 81 ::,. [group,Variable,Al,Variable), 
get_skel(Num,8), pick_up(ZX,8,[Variable]), 

Ansl = [811Set]}) 
; 
({Te = 0, pick_up(Number,L,Attrs), pick_up(Number,A,Ll), 
chec_attr(Attrs,L), pick_up(ZX,L,(Grp_atr]), get_skel(Num,8), 
pick_up(Z~,A,[Variable]), pick_up(ZX,B,[Variable]), 
Al = .. [NameiA], A2 = .. [Namel8], pick_up(Number,8,L1), 
81 = .. (group,Variable,Al,Variable], Ansl = (81,A2]})), 
((Hash= ! , Ans = Ansl) 
; 
(Ansl =[HIT], Hl = .. [not,H], Ans = [HliTJ)). 



/***********************************************/ 
/*** (5) SELECT <attributes> FROM <relation> ***/ 
/***.;.~*******************************************/ 

Page 111 

ge t_sub_q :.(select ( fr om(At t r s., [Name])) ,X:., Ha:.h ,Ans5) :- ! , 
{conf( [Name]), relation( I<.), 1<. = •. (Name I L], 
length(L,Num), extract(Xs,Ll)>, 
(({Attrs = '*', get_skel(Num,An), 
nl, writeln(Num), nl, write_attr(L), nl, writeln(Num), nl, 
Ansl = .. [NameiAn], Ans = [Ansl]}) 
; 
({simplify(Attrs,Attr_lis,Aggr_lis), 
length(Aggr_lis,Te), Te '= 0, 
pick_up(Num_list,Attrs,Attr_lis), pick_up(Nu,L,Attr_lis), 
convert(Aggr_lis,New_lis), length(Aggr_lis,Aggr_lis_len), 
get_set_skels(Num,Aggr_lis_len,Skel_lis), 
pi ck_u p ( Num_l is t , Ll , Tempo) , pi ck_u p ( Nemo , At t r s., Aggr _1 is) , 
pick~up(Nemo,Ll,Temp2), unify(Nu,Skel_lis,Tempo), 
form(New_lis,Skel_lis,L,Name,Ans), 
unifier(Aggr_lis,Ans,Temp2), chec_attr(Attr_lis,L)}) 
; 
({pick_up(Number,L,Attrs), 
chec_attr(Attrs,L), get_skel(Num,B), pick_up(Number,B,Ll), 
A2 = .. [NameiBJ, Ans = [A2]})), 
((Hash= ! , Ans5 = Ans) 
; 

(An s = [ HIT J , Hl = . . [ not , H J , An s5 = [ Hl I T] ) ) . 

/**************.;.~******-}.:***-J.:-J.:*********-J.:**.,.~********/ 
/*** (6) DELETE <relation> WHERE <conditions>***/ 
/***-io:*-J.~************-J.:***:I{**************.,.~*****-J.:**** / 

get_sub_qs(delete(where([Name],Conditions)),Xs,Hash,[]) :- ! , 
{relation(!<.), 1<. = •. [NameiLis], create_var(Lis,Lisl), 
extract(Lisl,Lis2), break_off(Lis,Lisl,Conditions,S,V,F,FF), 
differ([Name],S,V,F,FF,R), one_by_one(R,Ans), 
reverse(Ans,[HITJ), reverse(T,Teml)}, callingl(Ans), 
find_all([Name1Lis2]). 

/*****-J.:-J.:**-}.:****-J.:-J.:-J.~**-J.:****-J.:*-}.:**-J.::J.~**********"k****-}.:/ 
/*******-}.:*** ( 7) DELETE (l·elat ion> *****-}.~*******/ 
/**********-}.~*******.,.:**********-}.:-}.:****************/ 

get_sub_qs( delete( [Name]) ,Xs, Hash, []) :-
{conf( [Name]), skeleton(Narne,B)}, find_all( [Name I 8]). 

get_sub_qs(delete(_),Xs,Hash,[]). 

/*********************************************************/ 
/******* (8) UPDATE <relation> SET <attribute> = *********/ 
/****** <arithmetic expres.s.ion> WHERE <conditions>*******/ 



Page 112 

get_sub_qs(update(set([Name],where([Attr=Exp],Conditions))), 
([Var,Attr]),! ,[]) :- ! , 

{break_off([Attr],([Var,Attr]],Conditions,S,V,F,FF), 
differ([Name],S,V,F,FF,R), one_by_one(R,Ans), 
substitute(Var,Exp,New_exp), reverse(Ans,[HITJ), 
reverse(T,Teml)>, callingl(Tem1), 
updat(Var,H,New_exp,Attr). 

/***********************************************/ /*** (9) UPDATE <relation> SET <attribute> = ***/ 
/********** <arithmetic expression> ************./ 
get_sub_qs(update(set( [Name], [Attr=Exp])) ,Xs.,!, [ J) :- ! , 

<conf([Name]), relation(K), K = •. [NameiL], length(L,Num), 
chec_attr([Attr] ,L), ! , get_s.kel(Nurn,A), 
pi ck_up (NUt1, L, [At tr]), pi ck_up(NUM ,A, [Var J), 
A1 = •. [NarneiA], subs.titute(Var,Exp,Ne'-'•_exp)}, 
updat(Var,A1,New_exp,Attr). 

/Y.:********Y.:**Y.:*******Y.:*Y.:-).:****-J.:*****************-J.:Y.:-J.:** / 
/*** (10) INSERT_INTO <relation> : <constants> ***/ 
/***Y.:**-J.:*****-}.:*****Y.::A:-J.:-kY.:*·k-}.:-}.:-).:*******Y.:*-J.:*Y.:Y.:*-}.:-k****-}.:*Y.:./ 
get_sub_qs(insert_into(:([Name],L)),Xs,Hash,[]) :

{{confirrn(Narne,L), A1 = .. [NarneiLJ, relation(K), 
not(A1), K = .. [Namellis.]}, {int(Lis,L)}, 
asserta(savable(Al)), assertz(A1), 
write('Fact: '), write(Al), nl, 
write(' inserted into the database ')}, ! • 

get_ sub_ q s ( i n s e ,.- t _ i n t o ( : ( [ Name ] , L ) ) , X s , Hash , [ ] ) : -
!, nl, write('Such a fact already exists- not entered'), 

/************************************************/ /*** (11) <select~block> UNION <select-block> ***./ 
/******************************************-}.:-/.:****/ 
get_sub_qs(union(A,B) ,Xs,Hash,Ans.) :- ! , {extract(Xs.,L1), 

get_sub_qs(A,Xs,Hash,Ansl), get_sub_qs(B,Xs,Hash,Ans)}, 
((callingl(Ans1), {write_attr(L1), nl}, fail) 
; 
tt·ue). 

/-J.:*-A--}o:**Y.:**************-}.:*Y.:***************"k**Y.:**Y.:********/ 
/*** ( 12) CREATE <relation-name> : <at tr i bu te-l i s.t > ***/ 
/******************************************************/ 
get_sub_qs(create( :([Name] ,Attrs)) ,[] ,_,[]) :

not(duplic(Narne)), B = •. [NameiAttrs], 
asserta(relation(B)), asserta(rel(relation(B))), 
write(' Do you want '), write(Attrs), write(' to have any 



integrity constraints? (y./n.) '), nl, read(Ans), 
create_integ(Ans,Attr~), al, nl, 

Page 113 

write('Have you finished creating relations? (y./n.)'), 
nl, read(Ans1), do_correct(Ans1). 

g e t _ s u b _ q s ( c r e a t e ( : ( [ Name ] , A t t r =· ) ) , [ ] , _ , [ ] ) : -
nl, write(' Such a relation name already exists 
-enter another name'). 

/***********-J.:*-J..-*******************************-}.:****/ 
/********** ( 13) TABLE <relation-name> ***-J.=**-J.:-J.=****/ 
/********-J.:-J.:-J.:**********-J.=****""=***""=*-J.=**-}.;-}.:1:-).:1:***-).:******/ 

get_sub_qs(table([Name]),[],_,[]) :-
relation(K), K = .. [NameiL], length(L,Num), nl, 
write(Name), nl, writeln(Num), nl, 
write_attr(L), nl, writeln(Num), nl. 

/***************1=********-).:-J.:*-).:*******-).:*-J.:********-J.:1:-).:*****-;.:*:k-J.:-k**/ 
/* MIDDLE LEVEL PREDICATES FOR QUERYS CONTAINING 'WHERE' */ 
/**-;.=**-;.=*******-A-***-;.=***•k:k-).:***-k********-J..-*********1=*******-k*****-).:/ 

break_ off ( S , \) , [ ] , S , \} , [ ] , [ ] ) . 
br ea~,_o f f ( Sl , Vl , [A I 8] , S, 'J, F, [All FF] ) :

join_cond(Sl,V1,A,S2,V2,A1), break_off(S2,V2,B,S,V,F,FF). 
bl-eak_off(Sl ,'-)1, [AI 8] ,S,t...J, [AI F] ,FF) :

break_off(Sl,Vl,B,S,V,F,FF). 

differ([],_,_,_,_,[]). 
d iff et· ( [ N1 I N2 J , S, V, F, FF, [ ( Nl , Sl , tJ1 , Fl , FFl) I R] ) :

pick_up(Nl,S,V,F,FF,Sl,Vl,Fl,FFl,V2,F2,FF2), 
differ(N2,S,V2,F2,FF2,R). 

one_by_one([(N,S,V,Fl,F2)1[]J,Ans) :
get_tuples(N,S,V,Fl,F2,A,Ans). 

one_b~}_one([(N,S,\.J,Fl,F2) 18] ,An-:.1) :
get_tuples(N,S,V,Fl,F2,A,Ans), 
one_by_one(B,T), append(Ans,T,Ansl). 

get_tuples(N,S,V,C.,F2,Sth,An=·) :- relation(K), 
K = .• [NIL], length(L,Num), get_skel(Num,A), 
break_down(S,V,C,Ss,Vs,Fsl,F21,Ans2), 
reform_f2(Ss,Vs,F2,Sss,Vss,F22), append(F21,F22,Fs2), 
sort(L,A,Sss,Vss), get_sth(L,A,Vss,Sth), 
unific(L,A,Fsl,Fsll), remove(Fs2,Fs22), 
asserta(sub_q(N,A,Fs11,Fs22,Vss,Sth)), 
get_querys(sub_q(N,A,Fs11,Fs22,Vss,Sth),Ans1), 
append(Ans2,Ansl,Ans). 

break_down(S,V,[],S,V,[],[],[]) :- ! • 
break_dot-m ( Sl ,Vl, [A 18], S2 ,\J2, F':.l, Fs2 ,An':.) :- A= .• [I, J, K], 

(((atom(K) ; number(K)), simplify_re~atr([J],[Jl]), 



cut_off1(Sl,Vl,I,Jl,K,S,V,Fl,F2,Ansl)) 
; 

cut_off(Sl,V1,I,J,K,S,V,F1,F2,Ans1)), 
break_down(S,V,B,S2,V2,F12,F22,Ans2), 
(F1==!, Fsl=F12; Fsl=[F11F12]), 
(F2==!, Fs2=F22; Fs2=[F21F22]), 
append(Ans2,Ansl,Ans). 

cut_off(S,V,in,J,K,Sl,Vl,! ,! ,Ans) :-

Page 114 

simplify_cols(J,L), subst(S,V,L,Xs,Sl,Vl), arg(l,K,Temp), 
ext(Temp,[Atrl_]), create_var(Atr,Attrl), 
get_only2(Xs,Tem2), set_diff(Attrl,Tem2,Tem3), 
get_xs(Tem3,Xs,Xs1), get_sub_qs(K,Xsl,! ,Ans), 
extract(Xs,Tempo), extract(Xsl,Tempo). 

cut_off(S, 1·...J,=,J,J<" .. ,S1,t...J1,, ,! ,An~.) :
cut_off(S,V,in,J,K,S1,V1,!,! ,Ans). 

cut_off(S,\.J,not_in,.J,K,Sl, 1·..Jl,! ,! ,An:.) :
simplify_cols(J,L), subst(S,V,L,Xs,Sl,Vl), arg(l,K,Temp), 
ext(Temp,[Atrl_]), create_var(Atr,Attrl), 
get_only2(Xs,Tem2), set_diff(Attrl,Tem2,Tem3), 
get_xs(Tem3,Xs,Xs1), get_sub_qs(K,Xsl,not,Ans), 
extract(Xs,Tempo), extract(Xsl,Tempo). 

cut_off(Sl,',.Jl,I,J,I<.,S,V,! ,F2,An:.) :-!, simplify•_col:.(.J,Jl), 
subst(Sl,Vl,Jl,[Xs],S,V), arg(l,K,R), ext(R,[HIT]), 
H = [ Hll Tl], 
((atom(Hl), Xsl = [[Y2IJ1]]) 

(Hl = .. [Op,_], append(Jl,[Op],Att·l), X:.l = [[\'21An1]])), 
get_sub_qs(K,Xsl,! ,Ans), 
ext l" act (X:., [ Y1] ) , F2= .. [ I , Yl , Y2] . 

cut_off1(S1,V1,I,J,K,S,V,F1,! ,[]) :
substitute(S1,V1,I,J,K,S,t)), Fl = [I,J,K]. 

get_xs([],A,A). 
9 e t _ x :. ( [ H I T ] , X:. , A ) : - H = [ I) a 1· , A t t r , 0 p ] , ex t 1· a c t (X s , T em 1 ) , 

extract_attr(Xs,Tem2), pick_up(Num,Tem2,[Attr]), 
pick_up(Num,Teml,[Var]), 
subst([Var,Attr],Xs,[Var,Attr,Op],Ans), get_xs(T,Ans,A). 

get_querys(sub_q(N,A,F,FF,Var,Sth),Temp1) :
{Tem =.. [t"..J I A], append( F, FF, Cc•nd:), 
((length(Sth,3), Sth = [Op,Atr,Ans], append([Tem],Conds,Tum), 
append([Atrl [Tum]] ,[An:.] ,Tum1), Temp2= .. [Op1Tum1], 
append([],[Temp2],Temp1)) 
; (Temp3 = Tem, append( [Temp3], Cor.ds, Temp1)))}. 

modify ( [] , []) • 
modif~J([H11T1],[H21T2]) :- H1 = .. [Comp_op,Relan1,Relatr2], 

Relatrl = .. [@,Rell,Atrl], Relatr2 = .. [@,Rel2,Atr2], 
H2 - .• [Comp_op,Atrl,Atr2], modify(Tl,T2). 



tab(N,H) :- re1ation(K), K = .. [t·-JIL], 
1ength(L,Num), get_ske1(Num~H). 

=·imp 1 i f ~J _ r e 1 a tr ( [ ] , [ ] ) . 

Page 115 

simplify_relatr([HIT],[HIT1]) :- atom(H), simplify_re1atr(T,Tl). 
sirnplif~,_relatr([HITJ,[HliTl]) :-not atorn(H), H = .• [@,_,Hl], 

simplify_re1atr(T,Tl). 

subst(S,V,[],[],S,lJ). 
subst(S,V,[HIT],Xs,Sl,Vl) :- member(H,S), extract(V,Vtem), 

extract_attr(V,Vatr), pick_up(Num,Vatr,[H]), 
pick_up(Num,Vtem,[Ans]), subst(S,V,T,Xsl,Sl,Vl), 
append([[Ans,H]],Xsl,Xs). 

sub:. t ( S, V, [HIT] , [ [ B, H J P< :.1 ] , 52, V2) :
append( [ H], S, Sl), append( [ [ B, H]] ,\J ,V1), 
subst(Sl,Vl,T,Xs1,S2,V2). 

substitute(Sl,Vl,I,J,K,Sl,Vl) :- member(J,Sl). 
substitute(Sl,Vl,I,J,K,S,V) :-not member(J,Sl), 

append([J],Sl,S), append([[M,J]],Vl,V). 

reform_f2(Ss,Vs,[] ,Ss,Vs,[]). 
reform_f2(Ss,Vs,[HIT],Sss,Vss,[HliT1]) ·-

<H = .• [O~,Relatr1,Relatr2], Relatrl = [@,Rell,Atrl]}, 
Relatr2 = •• [@,Rel2,Atr2], Hl = •• [0p,Atrl,Atr2], 
((member(Atrl,Ss), reform_f2(Ss,Vs,T,Sss,Vss,Tl)) 
;(append([Atrl],Ss,Sss), append([[B,Atrl]],Vs,Vss), 

reform_f2(Sss,Vss,T,Ssp,Vsp,T1))). 

sort(_,_, [] ,_). 
sort(L,A,Sss,Vss) :- get_only2(Vss,Temp1), extract(Templ,Temp2), 

extract_attr(Templ,Temp3), pick_up(Num,L,Temp3), 
pick_up(Num,A,Temp2). 

get_onl~-'2( [], []). 
get_only2([HIT],[HIT1]) :- length(H,2), get_only2(T,T1). 
get_only2([HIT],T1) ·-not 1ength(H,2), get_c•nl~-·2(T,T1). 

get_sth(_,_,[),[]). 
get_sth(L,A,[HIT],Sth) :- length(H,3), H = [Var,Attr,Op], 

pick_up(NU,L,[Attr]), pick_up(NU,A,[Ans]), Sth = [Op,Ans,Var]. 
get_sth(L,A,[HIT],Sth) :-not length(H,3), get_sth(L,A,T,Sth). 

join_cond(Sl ,\.-11 ,A,S2,\)2,A) :- <A = .. [Comp_Op ,Rell ,Rel2], 
R.ell = •• [Op,Rel_naml,Attrl], R.el2 = •• [Op,R.el_nam2,Attr2]}, 
Rel_naml \.= Rel_nam2, get_s2v2(Attrl,Sl,V1,S2,V2). 

get_s2u2(Attrl,Sl,Vl,Sl,V1) :- member(Attrl,Sl). 
get_s2u2(Attrl,Sl,Vl,S2,V2) :-not member(Attrl,Sl), 

append([Attrl],Sl,S2), append([[B,Attrl]J,Vl,V2). 



Page 116 

pick_up(Nl~S,V,F,FF~Sl,V1,F1,FF1,V2,F2,FF2) :-
t·elation(K), K = .. [NliLJ, 
get_indef(N1,F,F1,L), get_relef(Nl,FF,FF1), 
get_attt·(L,S,Sl), get_var(Sl,L,V,Vl), deal_l..,•it(FF1,l,),V2), 
set_diff(F,F1,F2), set_diff(FF,FF1,FF2). 

deal_l"-'i t( [ J ,V,V). 
deal_~Ji t( [HIT] ,• . ..J,l..J2) :- H = .. [=,_,_], deal_t,.-.. •i t(T ,I...J,V2). 
de a l_vJ i t ( [ H I T] , V , V 2) : - no t H = . . [ = , _, _ J , 

H = .. (Op,Relatt·l,Relan2J, Relatrl = .. [@,Rel1,Atr1], 
efface ( [A, At r 1] , 'v', V _temp) , deal_..,,, i t ( T, \.J, \)_temp) , 
append([B,Atr1],V_temp,V2). 

remove ( [ ] , [ ] ) . 
r em o v e ( [ H I T ] , T 1 ) : - H = • . [ = , _ , _] , r em o v e ( T , T 1 ) . 
remove([HITJ,[HIT1]) . remove(T,Tl). 

unific(_,_,[] ,[]). 
unific(L,A,[HITJ,Tl) :-

H = .. [=,Atr1,Atr2], pick_up(Num,L,[Atr1]), 
pick_up(Num,A,[Atr2]), unific(L,A,T,T1). 

unific(L,A,[HIT),[H11T1J) :-
not H =.. [ =, _, _] , H = .. [ Op , At r 1 , At l- 2) , 
pick_up(Num,L~[Atr1]), pick_up(Num,A,[TY]), 
H1 = .. [Op,TY,Atr2], unific(L,A,T,T1). 

set_ d i f f ( [ ] , _, [ ] ) . 
set_diff([HITJ,F,F2) :- member(H,F), set_diff(T,F,F2). 
set_diff([HITJ,F,[HIF2]) :-not member(H~F), set_diff(T,F,F2). 

get_var([],_,_,[]). 
get_var([HITJ,L,V,V1) :- member(H,L), 

(membel- ([A, HJ ,V) ; member ([A, H, B) ,l.})), get_var (T, L ,lJ ,V2) , 
((nonvar(B), append([[A,H,BJ],V2,V1)) 
; 
(append([[A,H]],V2,V1))). 

get_attr([],_,[]), 
get_attr([HITJ,L,[HIT1]) :- member(H,L), get_attr(T,L,T1). 
get_at~r([HITJ,L,Tl) :-not member(H,L), get_attr(T,L,T1). 

create_var([J,[]). 
ct·eate_var([HIT],[H11T1]) :- atom(H), 

append([A),[H],Hl), create_var(T,T1). 
create_var([HIT],[H11T1]) :-not atom(H), H = •• [B,CJ, 

append([AJ,[C,B],H1), create_var(T,Tl). 

get_indef(_,[),[],_). 
get_indef(Nl,[HITJ,[HIBJ,L) :- H = 

,((member(R1,L)) 
[Op,Rl,R2], 



(Rl - .. [@,Nl,Rl2])), get_ind~f(Nl,T,B,L). 
get_indef(Nl,[HIT],[HIBJ,L) :- H = •• [Op,Rl,R2], 

R2 =select(_), get_indef(Nl,T,B,L). 
get_indef(Nl,[HJT],Lis,L) :- get_in~ef(Nl,T,Lis,L). 

get_relef(Nl,[],[]). 
get_relef(Nl,[HIT],[HIB]) :- <H = .. [Op,Rl,R2]}, 

Rl = .. [@,Nl,N2], get_relef(Nl,T,B). 
get_relef(Nl,[HIT],Lis) :- get_relef(Nl,T,Lis). 

Page 117 

/***********************************************************/ 
/********* LOWER LEVEL PREDICATES ***************/ 
/***********************************************************/ 
{X} :-call(X), !. 

A'=B :- A=B, ! , fail. 
A'-=8. 

get_only3([],[]). 
get_only3([HITJ,[HIT1]) :- length(H,3), get_only3(T,Tl). 
get_onl>J3([HITJ ,L) :- get_onl~,J3(T,L). 

create_integ(n,_) :- al, assertz(integrity(_,_,[])). 
create_integ(y,[]) :- assertz(integrity(_,_,[])), 

nl, write(/ lntegl·ity checks O\Jel· /). 
create_integ(y•,[HIT]) :- nl, writeCintegrit)' con~.traint~. for:/), 

write(H), nl, nl, write(/ give list of conditions :/), nl, 
read(S), replace(Var,H,S,Lis), 
assertz(:-(integrity(H,Var,Lis),!)), 
((retract(:-(integrity(_,_,(]),!))) ; true), 
ass e r t z ( i n t e g r a ( : - ( i n t e gr i t y ( H , Va r , L i s) , ! ) ) ) , create_ i n t e g ( >J , T) . 

al :- retract(:-(integrity(_,_,[]),!)), fail. 
al :- retract(integrity(_,_,[])), fail. 
al :- assertz(integrity(_,_,[])). 

convert([],[]). 
co n v e r t ( [ H I T J , A g 9 r e 9 a t e _1 i ~- t ) : - H = . . L , co n v e l" t ( T , N et,J _a ·3 g r _1 i ~- ) , 

append([L],New_aggr_lis,Ag9regate_list). 

get_set_skels(Num,O,(]). 
get_set_skels(Num,Aggr_lis_len,Ans) :-A is Aggr_lis_len - 1, 

get_skel(Num,Al), get_set_skels(Num,A,A2), append([Al],A2,Ans). 

form([],[],_,_,[]). 
form([H11Tl],[H21T2],L,Name,Ans) :- Hl =[HIT], pick_up(Num,L,T), 

pick_up(Num,H2,[Al]), A2 = •• [NameiH2], A3 = .. [H,Al,A2,A4], 
form(Tl,T2,L,Name,A5), append([A3],A5,Ans). 



Page 118 

uni f~·(_, [) ,_). 
unify(ZX,[HITJ ,Var) :- pick_up(ZX,H,Var), unify(ZX,T,Var). 

unifier([],_,[]). 
unifier([HITJ ,[H11T1] ,[H2IT2]) :- H1 = •• [_,_,_,H2], 

unifier(T,T1,T2). 

calli n gl ( [ ] ) • 
e:allingl([HIT]) :- length([HITJ,Num), Num "-= 1, 

H = .. [not,_], reOJerse([HITJ ,L), callingl(L). 
e:alling1([HJT]) :- H = •• [Op,B1,B2,AN], (Op =max; Op =min), 

H, 81 =AN, (calling1(82) ; (not(is_list(82)), 82)), 
! , e:allir.gl(T). 

e:alling1([HIT]) :- H, calling1(T). 

for _wr i t e ( [ ] , [ ] ) . 
for _)"•r i t e ( [HIT] , [HI T1] ) :- at c•m (H) , f c• r _wr i t e ( T, T1) . 
for_v,•rite([HIT),[H11T1]) :-not atom(H), H = .• [A,B], 

name(A,Al), name(B,Bl), append(A1,[401Bl],Temp1), 
append(Templ, [ 41], Temp), name( H1, Temp), for _t,Jr i te(T, Tl) . 

skeleton(Name,A) :- relation(K), K = •. [NameiLJ, length(L,Num), 
get_skel(Num,A). 

deal ( L, Name, 8) :- n 1 , ! , Al = •• [Name I B] , Al , t-Jl" i t e ( / 
pick_up(L,8,Ll), write_attr(L1), nl, fail. 

/ ) ' 

deal_wi th(Num,A1 ,Exp) :- Al, A1 = •• [HIT], replace(Num,T ,Exp). 

find_all(A) :- nl, nl, J = •• A, ! , J, 
1·etract(J), asserta(removable(._T)), 
write(J), write(/ deleted./), nl, fail .• 

evaluate(Old,Exp,Exp) :- atom(Exp). 

evaluate(Old,Exp,New) :- Exp = •• [A,BiCJ, atom(B), 
Temp = •• [A, Old, C), t·.,Jet-,• i ~. Temp. 

evaluate(Old,Exp,New) :- Exp = •• [A,B,C], atom(C), 
Temp = •• [A,8,0ld], Net.._• is Temp. 

sub~. t (-' [ ] '-' [ J ) • 
subs t (X, [X I L] , A, [A I L J ) • 
subst(X,[YIL] ,A,[YIM]) :- subst(X,L,A,t1). 

pick_up([J,_,[]). 
pie:k_up([MIN] ,L,[X'IYJ) :- mem(M,X,L), pick_up(N,L,Y). 

merri ( 1 ., X , [ Xl_l ) • . 
mem(N,X,[_IY]) :- mem(M,X,Y), N is M+l. 

get_ske1(0,[]). 
get_sk·el(l,[H]) :- ! • 



Page 119 

get_skel(N,[HIT)) :- Nl is N-1, get_skel(N1,T). 

member(X,[XI_]). 
member (X, [_I Y] ) : - membet· (X , Y) • 

t-Jr i t e_a t t r ( [ ] ) • 
w r i t e _at t r ( [ H I T ] ) : - w r i t e ( H ) , n am e ( H , L ) , 1 en 9 t h ( L , N ) , 

Nl is 11 - N, tab(Nl), '"'ri te_attr(T). 

exit :- my_save(saved,savable), ~y_save(deleted,removable), halt. 
ex :- exit~ 

substitute(Var,Exp,Exp) :- atom(Exp). 
substitute(Var,Exp,Exp) :- number(Exp). 
sub<::.titute(Vat·,Exp,Ne~,.,,_exp) :- Exp - .. [Op,T1,T2), atom(Tl), 

New_exp = .. [Op,Var,T2). 
substitute(Var,Exp,New_exp) :- Exp - .. [Op,Tl,T2], atom(T2), 

New_exp = .. [Op,Tl,Var). 

conf([]) :- ! • 
conf([HIT]) :- relation(K), K = •• [HILJ, conf(T). 
conf (_) :- ! , nl, nl, write(/ Check relation name(<;:.) ·'), f ai 1. 

check(L,Attr<::.) :- relation(K), 
K = .. [LILis], chec_attr(Attrs,Lis). 

check(_,_) :- ! , write(/Check spelling of relation /), fail. 

duplic(Name) :- relation(K), K = .• [Name I_]. 

do_correct(y) :- my_save(integrity,integra), 
my_save(relation,rel), nl, my_save(relation,relation), 
write(/ Integrity(s) and relation(s) saved/). 

do_correct(n) :-do. 

chec_attr([],Lis). 
chec_attr([HIT] ,Lis) :- membet·(H,Lis), chec_attt·(T ,Lis). 
chec_attr([HIT] ,Lis) :- ! , 

write(' Attribute list is incorrect '), fail. 

confirm(Name,Args) :- relation(K), K= .. (Name! L], length(L,Nul), 
length(Args,Nu2), Nul= Nu2. 

/*************************"~c*******-J.:*****-A"*******-J.:**********/ 
/******* SAVE ALL UPDATED CLAUSES AND NEW FACTS **********/ 
/**********************************************************/ 
my~save(File,Y) :-

.tell (File) , save_J>redi cate(X, Y) , f ai 1. 
my_save(_,_) :- told. 



Page 120 

save_predic:ate(X,savable) :- savable(X), wri te(X), 
wr i t e ( ' • ' ) , tab ( 5) , fa i 1 . 

save_predic:ate(X,remouable) :- remouable(X), write(X), 
write('.'), tab(5), fail. 

saue_predic:ate(X,integra) :- integra(X), write(X), 
write('.'), tab(5), fail. 

sa1...•e_predi c:ate(X, rel) :- rel (X), t-,•r i teO<), 
t-Jr i t e ( ' . ' ) , tab ( 5) , fa i 1 . 

save_predic:ate(X,relation) :- relation(X), 
write(relation(X)), write('.'), tab(5), fail. 

sa~e_predic:ate(_,_). 

/**-}.:****************************"k**-}.:***-}.:*******1-:********/ 
/**********1-:*1-: ALL AGGR.EGAT I Ot-..J FUNCT I m,JS *-J.:*-k***1-:******/ 
/*"k**-J.:*************-}.:******"k******"k***:k:-J.:**-J.:****-J.:-J.:-J.:****").:** / 

c:nt(X,G,_) :- asserta(found(mark)), 
(c:allingl(G) 
; (not(is_list(G)), c:all(G))), asserta(found(X)), 
f ai 1. 

c:nt(X,G,C) :- c:nt_found(O,C), ! • 

sum(X,G,_) ·- t,11·i te_dot-m(X,G), fail. 
sum(X,G,S) :- sum_found(O,S), ! • 

avg(X,G,_) :- write_dot--m(X,G), fail. 
avg(X,G,A) :- avg_found(O,O,A), ! • 

max(X,G,_) :- wri te_dot.-m(X,G), fail. 
max(X,G,M) ·- max_found(O,M), ! • 

min(X,G,_) :- write_down(X,G), fail. 
min(X,G,M) :- min_found(1.0e38,M), ! • 

c:nt_found(I,J) :- getnext(X), K is 1+1, c:nt_found(K,J). 
cnt_found(K,K). 

surn_found(I ,._T) :- getnext(X), 1<. i~. I+X, sum_found(t<.,J). 
sum_found(K,K). 

avg_found(I,J,K) :- getnext(X), M is 1+1, 
N is J+X, avg_found(M,N,K). 

a •J 9_ f o u n d ( 1'1 , N , A ) : - A i ~- N/M , ! • 

max_found(I,J) :- getnext(X), 
(X>I, max_found(X,J); max_found(I,J)). 

max_found(K,K). 

min_found(I.,J) :- getnext(X), 
(X<I, min_found(X,J); min_found(I,J)). 



~-- ·~mi n_found( K, K). 
~/ j' t. 
:, €i ~Jrite_down(X,G) :- asserta(found(mark)), 

~~\. 1 7·} ~callingl(G) 
·~· 

1
'<not(is_list(G)), call(G))), asserta(found(X)), 

all(Ans,Q,_) :- asserta(found(mark)), 
(callingl(Q) ; (not(is_list(G)), call(G))), 
one_of_them(Ans), fail. 

all(Ans,Q,Set) :- collee:t_found([],Set), ! • 

one_of_them(Ans) :- found(Ans), ! . 
one_of_them(Ans) :- asserta(found(Ans)). 

Page 121 

collect_found(S,Set) :- getnext(X), collect_found([XIS],Set). 
collect_found(S,S). 

getnext(X) :- retract(found(X)), ! , X'== mark. 

updat(X,G,Y,Attr) :- (callingl(G) ; (not(is_list(G)), e:all(G))), 
updated(X,G,Y,Attr), fail. 

updated(X,G,Y,Attr) :- {find(Y,Yl)>, {integ(Attr,Yl)}, 
replae:e(Yl,X,G,New), nl, retract(G), 
asserta(removable(G)), asserta(savable(New)), 
asserta(New), write(G), 
write(~ updated to ~), write(New), ! • 

int([],[]). 
int([HIT],[HliTl]) :- integrity(H,Hl,Lis), 

chee:king(Lis)) int(T,Tl). 

integ(Attr,Yl) :- integrity(Attr,Yl,Lis), checking(Lis). 

integrity(_,_,[)). 

checking([)). 
e:hecking([HJTJ) :- H, ! , e:hee:king(T). 
checking([HIT)) :- ! , <nl, write(H), 

write(~ violates integrity constraints~), nl, 
write(~ No updation/insertion done for this tuple ~)}, fail. 

find(X,X) :- atomic(X). 
find(E,R) :- R is E. 

replace(New,Old,Old,New). 
replace(New,Old,Val,Val) :- atomic(Val). 
replace(New,Old,Val,NewVal) :- functor(Val,Fn,N), 

·functor(NewVal,Fn,N), subst_args(N,New,Old,Val,NewVal). 



Page 122 

subst_args(O,_,_,_,_) :- ! • 
sub~-.t_args(N,Ne,J,Old,Val ,Ne,JVal) :- arg(N,Val ,OldArg), 

arg(N,NewVal ,Net-JArg), replace(New,Old,OldArg,Net-JArg), 
Nl is N-1, subst_args(N1,New,Old,Val,NewVal). 

group(N,G,N) :- (callingl(G) ; (not(is_list(G)), call(G))), 
onl~1(N). 

only(N) :-not ffound(N), a~.serta(ffound(N)), ! • 

is_list([]). 
i s_l is t ( [ I J ) • 

writeln(O). 
writeln(l) :-write('-----------'). 
writeln(N) :- Nl is N-1, t-.•riteln(l), IAil·iteln(Nl). 

simplify([],[],[]). 
simplify([HIT],[HIAttr_lis],Aggr_lis) :- atom(H), 

simplify(T,Attr_lis,Aggr_lis). 
simplify([HIT],Attr_lis,[HIAggr_lis]) :-not atomic(H), 

not number(H), simplify(T,Attr_lis,Aggr_lis). 

simplify_cols([),[)). 
simplify_cols([HITJ,[HIAttr_lis]) :- atom(H), 

simplify_cols(T,Attr_lis). 
simplify_cols([HIT],[BIAttr_lis]) :-not atomic(H)~ not number(H), 

H = •• [_,B), simplify_cols(T,Attr_lis). 

/*************************************************/ 
/******* SOME USEFUL PREDICATES ********/ 
/*************************************************/ 
append( [] , L, L) . 

·append([Hill],L2,[HIL3]) :- append(L1,L2,L3). 

extt·act(X,[]) :...,- atomic(X). 
extract(X,[X]) :·- var(X). 
extr~ct(T,L) :- arg(l,T,X), extract(X,Ll), arg(2,T,Y), 

extract(Y,L2), append(Ll,L2,L). 

extract_attr(X,[]) :- var(X). 
extract_attr([J,[)). 
extract_attr(X,(X]) :- atomic(X). 
extract_attr(T,L) :- arg(l,T,X), extract_attr(X,Ll), 

arg(2,T,Y), extract_attr(Y,L2), append(Ll,L2,L). 

e~t(*,([*J]). . 
ext (X , ( ] ) : - at om i c (X) • 
ext(X,[X]) :- is_list(X). 



ext(T,L) :- {arg(l,T,X), ext(X,Ll)}, 
arg(2,T,Y), ext(Y,L2), append(Ll,L2,L). 

ext(T,L) :- arg(l,T,X), ext(X,L). 

efface(A,[AIL),L) :- ! • 
efface(A,[BILJ,[BIM)) :- efface(A,L,M). 

reverse([],[]), 
reverse([HITJ,L) :- reverse(T,R), append(R,[H],L). 

Page 123 



Page 124 

APPENDIX 6 

J; i ,.,.. . 8 I BL I OGRAPHY AND REFEREt·.JCES 
' C!' 'J: 

r:- ~- \ 
~ .... ! ~·· 

~~- l t/ 
'··':-6'r~~· R.A.Kov-•alski, "Prolc•g a<.:. a Logic Programming Language", 
·~A Congress, 23-25 Sept 1981, Vol 2, pp - 1029-34 . 

. ,ifl 

[ 2 ] . ,.J • W . L 1 o ~~ d , " F o u n d a t i on '=· o f L o g i c P r o g r amm i n g " , 
Symbolic Computation Serie<.:. in A. I., Springer-\)erlag, 1984. 

(3]. W.F.Clocksin & C.S.Mellish, "Programming in Prolog", 
Springer International Students Edition, Springer-Verlag, 
Berlin, Heidelberg, 1986. 

[4]. Zohar Manna, "Mathematical Theory of Computation, 
McGraw-Hill International Student Edition, 
McGraw-Hill Kogakusha Ltd., 1974. 

[5]. R.A.Kowalski, "Logic for Data Description", in Logic and 
Databases, edited by H.Gallaire and J.Minker, Plenum Press, 
Ne0 York, 1978, pp- 73-103. 

[6]. D.H.D.Warren, "Logic Programming and Compiler Writing", 
Software Practice & Experience, Vol 10, pp- 97-125, 1980. 

[7]. Leon Sterling & Ehud Shapiro, "The Art Of Prolog: 
Advanced Progt·amming Techniques", The MIT Pt·ess., Cambt·idge, 
Massachusetts, 1986. 

[8]. R.Fagin, "Horn Clauses and Database Dependencies", 
Proc. ACM Sigact symposium on Theory of Computation, 
pp- 123-134, 1980. 

[9]. Y.Sagiv, R.Fagin et al, "An Equivalence Between 
Relational Database Dependencies & a Fragment of 
Pl·opos.itional Logic, ,JAC:t-1, \..Jol 28, pp- 435-453, 1981. 

[10]. C.J.Date, "An Introduction to Database Systems", 
Addi son-Wes.le~,J/Nal·osa Indian Student Edition, 1987. 

[11]. J.D.Ullman, "Principles of Database Systems", 
Pitman Publishing Limited, 1983. 

[12]. Deyi Li, "A Prolog database System", Research Studies 
Press Ltd., Letchworth, Hertfordshire, England, 1984. 

[13]. R.N.Cuff, "HERCULES: Database Query Using Na~ural Language 
Fragments", Proc. of the Third British National Conference on 
Databases., 198 4:; · ·· · · · 

.) 


	TH23710001
	TH23710002
	TH23710003
	TH23710004
	TH23710005
	TH23710006
	TH23710007
	TH23710008
	TH23710009
	TH23710010
	TH23710011
	TH23710012
	TH23710013
	TH23710014
	TH23710015
	TH23710016
	TH23710017
	TH23710018
	TH23710019
	TH23710020
	TH23710021
	TH23710022
	TH23710023
	TH23710024
	TH23710025
	TH23710026
	TH23710027
	TH23710028
	TH23710029
	TH23710030
	TH23710031
	TH23710032
	TH23710033
	TH23710034
	TH23710035
	TH23710036
	TH23710037
	TH23710038
	TH23710039
	TH23710040
	TH23710041
	TH23710042
	TH23710043
	TH23710044
	TH23710045
	TH23710046
	TH23710047
	TH23710048
	TH23710049
	TH23710050
	TH23710051
	TH23710052
	TH23710053
	TH23710054
	TH23710055
	TH23710056
	TH23710057
	TH23710058
	TH23710059
	TH23710060
	TH23710061
	TH23710062
	TH23710063
	TH23710064
	TH23710065
	TH23710066
	TH23710067
	TH23710068
	TH23710069
	TH23710070
	TH23710071
	TH23710072
	TH23710073
	TH23710074
	TH23710075
	TH23710076
	TH23710077
	TH23710078
	TH23710079
	TH23710080
	TH23710081
	TH23710082
	TH23710083
	TH23710084
	TH23710085
	TH23710086
	TH23710087
	TH23710088
	TH23710089
	TH23710090
	TH23710091
	TH23710092
	TH23710093
	TH23710094
	TH23710095
	TH23710096
	TH23710097
	TH23710098
	TH23710099
	TH23710100
	TH23710101
	TH23710102
	TH23710103
	TH23710104
	TH23710105
	TH23710106
	TH23710107
	TH23710108
	TH23710109
	TH23710110
	TH23710111
	TH23710112
	TH23710113
	TH23710114
	TH23710115
	TH23710116
	TH23710117
	TH23710118
	TH23710119
	TH23710120
	TH23710121
	TH23710122
	TH23710123
	TH23710124
	TH23710125
	TH23710126
	TH23710127
	TH23710128
	TH23710129
	TH23710130

