
Communication Between PC and VAX 11/780

Dissertation submitted to the Jawaharlal Nehru University

in partial fulfilment of the requirements for

the award of the Degree of

MASTER OF TECHNOLOGY

D. JAGADESH

School of Computer and Systems Sciences

Jawaharlal Nehru University

New Delhi

January 1988

CERTIFICATE

•

This work,embodied in the dissertation titled,

COMMUNICATION BETWEEN PC and VAX 11/780

has been carried out by Mr.D.Jagadesh ,bonafide student of school

of computer and systems sciences,Jawaharlal Nehru University,

New Delhi.

This work is original and has not been submitted

or any degree or diploma in any other university or institute.

Dr.S.Balasundaram
Asst.Professor

School of Computer and Systems Sciences
~ Jawaharlal Nehru University
~~~:\ New Delhi 

~: t ',);) .,u, 
Dr.Karmeshu 

Dean,School of Computer and Systems Sciences 
Jawaharlal Nehru University 

New Delhi 



ACICNOULEDGEI'IENTS 

My sincere thanks are due to Dr A.K.Dua, 

Systems 'Manager,CMC Ltd,New Delhi who initiated me to this 

innovative project. 

1 am very much indebted to my 

Dr.S.Balasundaram, Asst.Professor, who has been extremly 

helpful and encouraging throughout the project,without which 

it would have been very difficult to complete the project. 

Mr.Sanjiv Aggarwal, Systems Engineer, CMC 

Ltd,New Delhi played a very significant role by giving me 

timely and usefull suggestions and sparing his valuable time 

for discussions with me. 

1 e:< press my heartfelt gratitude to 

Dr.K.K.Nambiar, former dean of our school,for providing the 

required facilities and for his unfailing interest he has 

shown in this project,without which it would not have 

materialized. 

I am thankful to our dean Dr.Karmeshu,who 

has shown special interest in my work. 

)-1.---J-
(J. JA61A~Esrl) 



S Y N 0 P S I S 

If an institute or organization has more than one 

computer system,it is very much essential that these 

computers be interconnected,so that they can exchange 

information.My aim in this _project is to 

To establish communication between a TANDY1000 PC 

and VAX 11/780 system and then provide facilities to transfer 

files from PC to VAX and from VAX to PC.The PC acts as a 

termianal to VAX and runs most of the VAX software including 

the editor.The user can change the communication parameters 

of the terminal within the session.Files can be transferred 

from PC to VAX and from VAX to PC with simple commands.Error 

checking is incorporated and files are transferred using. one 

bit sliding window protocols. 

This PC to VAX connection can be improved with more 

facilities. 



CONTENTS 

1. Introduction 

2. PC and Communication 

2.1 8088 Architecture 

2.2 Interrupts and interrupt service routins 

2.3 Serial asynchronous communication 

2.4 RS~232C serial data transfers 

3. The VAX 11/780 system 

3.1 Hardware system 

3.2 Software system 

3.3 Peripheral controllers 

3.5 The VT220 terminal 

4. Terminal emulation of VT220 on PC 

4.1 Languages chosen 

4.2 Initializing the communication port 

4.3 The program RESIDENT 

4.4 The program CONNECT 

5. File transfer utilities 

5.1 Data link protocols 

5.2 Calculating the checksum 

5.3 Implementation details 

5.3.1 File sender 

5.3.2 File receiver 

5.3.3 Tracing errors 

i 

4 
g 

(5 

19 

2\ 

~'< . -~ 

~ 

zg 

3~ 

4{ 

,7). 

~d 



6. lAs~rwe~~eRs for Y•e 

~. F~tu1 e e~tcAsieR• aRd medifieation~ 

Appendix A 8088 instruction set 

Appendix B Programming 8250 UART 

Appendix c Escape and control sequences of VT220 

Appendix D Codes and scancodes of TANDY1000 

Appendix E ASCII character set 

Appendix F Interrupt vectors 

Program Listings 

")

\27 

l)b 

11~ 

113 

170 



INTRODUCTION 

As computers have become smaller,cheaper 

and more numorous,people have become more and more 

interested in connecting them together to form networks and 

distributed systems.Advanced computer and communication 

technology 

institutions 

has been the key to survival of a 

and organizations.The exciting tools 

many 

and 

techniques of this high technology are used in high 

technology base,for arriving at general solutions and for 

applications support.These approaches to the implementation 

of computer metworks are revolutionizing communications, 

business systems and manufacturing and technology. 

When different computers can communicate with each other and 

are interconnected into a network,we have many advantages 

like -

- greater reliability 

- sharing common resourses 

- better support facilities 

- faster response time 

- internetworking capabilities 

- flexibility in application programs and so on. 

Most of the terminals that connect office 

desks to mainframes are dumb.In contrast.the personal 

computer is fast developing into an intelligent user-



2 

programmable ter~inal.It is a monotask but multi processor, 

low cost,high capacity device.There is a significant_ trend 

toward multifunction work station as opposed to single 

function terminals.Interconnecting personal computers into a 

local area network and networking these with a main frame 

system offers many advantages. 

MOTIVATION FOR THIS PROJECT 

We,at JNU have very good computing 

facilities.The systems include a VAX 11/780,HP1000 and six 

DCM TANDY1000 pcs.So far these computers ~re isolated and 

there is no way a user working on one system can look into 

his files on the other machine.Our basic aim is to provide 

this facility.Since networking all these computers in not a 

task that can be completed with in a semester of six 

months,we started with a subset of it. 

We wanted to connect one of the pes as a 

terminal to VAX 11/780,so that a user sitting in a distant 

room working on a pc can get a connection to VAX and proceed 

by running a simple software,provided the terminal is 

provided with an RS-232C interface.At any time he can 

disconnect and use the pc in isolation.As the next step,we 

want to provide facilities for transferring files from pc to 

the VAX anf from VAX into his diskette.This file transfer 

must be reliable and has to be carried out with error 



3 

checking. 

The next step is to connect all the pes to 

the VAX through the above pc.This ne.eds interconnecting all 

the pes. As a first step towards this,we wanted to 

interconnect two pes through RS-232C,so that thay can 

exchange information.This can be extended to interconnect 

all the pes ,so that not only they can communaicate with 

each other,they can also commniacate with VAX through the 

master pc. Collision detection has to implemanted when more 

than two pes are interconnected.Ideally the master pc should 

be a PC/XT or a PC/AT. 



4 

II. PC and COMMUNICATIONS 

The brain of the personal computer is the 8088 

microprocessor.This chapter gives an introduction to the 

architecture and programming aspects of the INTEL 8088 

microprocessor and it's communication aspects., 

2.1 8088 Architecture 

Fig 2.1 shows the internal architecture of 8088 

microprocessor. The ciontrol unit and working registers are 

divided into three groups acco~ding to their functions. They 

are -

i. The data group ,which is essentially the .set of 

arithmetic registers, 

ii.The pointer group ,which includes base and index 

registers, but also contains the program counter and stack 

pointer, 

iii.The segment group which is a set of special purpose 

base registers. 

All the registers are 16 bit wide. 

The data group consists of AX,BX,CX and DX 

registers. These registers can be used to store both 

operands and results and each of them can be accessed as a 

whole,or lower and upper bytes can be accessed separately. 

In addition to serving as arithmetic registers, 



AX 

BX 

ex 

ox 

Data registers 

AH At 

BH BL 

CH CL 

OH OL 

PSW 

Control 
logic 

Pointers 

SP 

BP 

SI 

01 

IP• 

-, 

•For the 8086 the program counter is called the 
instruction pointer (IP). 

5 

Instruction 
queue 

Segment registers 

cs 
ss 
OS 

ES 

Add rea/data 

(20pim) 

Control 

(16 pins) 

+5V 
2 

Ground 

Clock 

FIG 2.1 8081 BLOCk DIAGRA.t1 



6 

ttie BX,CX and DX registers play special addressing,counting 

and I/0 roles. 

BX may be used as a base register in address 

calculations. 

CX is used as an implied· counter by certain 

instructions. 

DX is used to hold the I/0 address during certain 

I/O operations. 

The pointer and index group consists of 

IP,SP,BP,SI and DI registers.The instruction pointer 

and SP registers are essentially the program counter 

stack pointer registers,but the complete instruction 

stack addresses are formed by adding the contents of 

registers to the four bit left shifted contents of the 

segment{CS) and stack segment{SS) registers. BP is a 

register for accessing the stack and may be used with 

registers and/or a displacement,that is a part 

the 

{IP) 

and 

and 

these 

code 

base 

other 

of 

instruction.The SI and DI registers are for indexing. 

Although, they may be used by themselves,they are often used 

with the BX or BP registers and/or a displacement. Except 

for the IP,a pointer can be used to hold an operand,but must 

be accessed as a whole. 

To provide flexible base addressing and indexing, 

a data address may be formed by adding together a 

combination of the BX or BP register contents, SI or DI 



7 

register contents and a displacement. The result of such 

computation is called an effective address(EA) or offset. 

The final data address,however is determined by adding the 

EA to the four bit left shifted contents of the appropriate 

data segment,extra segment or stack segment registers. This 

enables the proceesor to generate a 20 bit address . 

The segment group consists of the CS,SS,DS and ES 

registers. The utilization of the segment rBgisters 

essentially devides the memory space into overlapping 

segments,with each segment being 64k bytes long and 

beginning at a 16 byte paragraph boundary , i.e beginning at 

an address that is divisible by 16. So the contents of the 

segment register is the segment address and the segment 

address multiplied by 16 is the beginning physical segment 

address. 

The advantages of using segment registers are to 

1. Allow the memory capacity to be one magabyte even though 

the addresses associated with the individual instructions 

are only 16 bits wide. 

2. Allow the instruction,data or the stack portion of a 

program to be more than 64k bytes long by using more than 

one code,data or stack segment. 

3. Facilitate the use of separate memory areas for a 

program, it's data and the stack. 

4. Permit a program and/or it's data to be put into 



8 

different areas of memory each time the program is executed. 

FLAGS The 8088's Program status word(PSW) contains 16 

bits,but seven of them are not .used.Each bit in the PSW is 

called a flag.The flags are divided into the conditional 

flags, which reflect the result of the 

involving the ALU, and control flags 

execution of special functions . 

previous operation 

which control the 

. The flags are summarized below.The lower byte in 

the PSW corresponds to the eight bit PSW in the 8085 and 

contains all of the condition flags,except the overflow 

flag(OF). 

The condition flags are -

SF (sign flag) is set if the result is negative,reset if 

positive. 

ZF (zero flag) is set if the result is zero and reset if 

the result is nonzero. 

PF (parity flag) is set if the lower order eight bits of 

the result contain an even number of ones,otherwise it is 

cleared. 

CF (carry flag) - an addition or subtraction causes this 

flag to be set if a carry in MSB or a borrow is needed. 

AF (auxiliary carry flag) is set if there is a carry out 

of bit 3 during an addition or a borrow by bit 3 during a 

subtraction.This is used exclusively for BCD arithmetic. 

OF (overflow flag) is set if an overflow occures. 



9 

I I I I I IDF,IF,TFISFjZFI . IAFI IPFI jCFI ---------'-· ,_,_,_,_,_,_, 
DF (direction flag) used by string manipulation 

insructions. If clear,the string is processed from it's 

beginning with t~.e first element .having the lowest 

address.Otherwise the string is processed from the high 

address towards the low address. 

IF (interrupt enable flag) - If set,a certain type of 

interrupt (a maskable interrupt) can be recognized by the 

CPU,otherwise these interrupts are ignored. 

TF (trap flag) if set, a trap is executed after the current 

instruction. 

The 8088 provide~ various addressing modes,for 

details see Microcomputer Systems: The 8086/8088 family by 

YU-CHENG LIU and GLENN A.GIBSON.See appendix A for the 

instruction set of 8088. 

• 
2.2. Interrupts and interrupt service routines 

It is sometimes necessary to have a computer 

automatically execute one of a collection of special 

routines,whenever certain conditions exist within a program 

or the computer system.The action that prompts the execution 

of one of these routines is called an interrupt and the 

routine that is executed is called an interrupt service 

routine. There are two general classes of interrupts and 



10 

associated routines. They are the interanl interrupts that 

are initiated by the state of the CPU or by an instruction 

and the external interrupts that are caused by a signal 

being sent to the CPU from elsewhere in the computer 

system.Typical internal interrupts are those caused by 

d i v i s i on by a z e r o or a spec i a 1 i n s t r u c t iQ. n 1 ike I NT and 

typical external interrupts are caused by the need of an I/O 

device to be served by the CPU.A complete list of interrupt 

vectors is· given in appendix F .. 

In general interrupts can be recognized in two 

ways 

a. By polling and b.Interrupt basis. In polling, the CPU 

regularly checks the I/0 ports for any pending interrupts. 

The disadvantage with polling is that the CPU time will be 

wasted, since the CPU has to regularly check the I/O 

devices.Not only that,data can be lost at the I/0 port if 

there is considerable delay in successive pollings. In the 

other mode, i.e.,interrupt basis the CPU recognizes the 

interrupt only when the I/O device sends an interrupt. 

An interrupt service routine is similar to a 

procedure,in that it may be branched to ,from any other 

program and return branch is made to that program after the 

interrupt service routine is executed.The interrupt service 

routine must be so written that,except for the lapse in 

time,the interrupted program will proceed just as if nothing 



11 

had happened.This means that the PSW and the registers used 

by the routine must be saved and restored and the return 

must be made to the instruction following the last 

instruction executed before the interrupt. An interrupt 

service routine is unlike a procedure in that, instead of 

being linked to a particular program,it is sometimes put in 

a fixed place in memory.Because it is not linked to other 

segments,it. can use only common areas that are absolutely 

located to communicate with other programs.Because some 

kinds of interrupts are initiated by external events,they 

occour at random points in the interrupted program.For such 

interrupts no parameter addresses can be passed to the 

interrupt routine.Instead, data communication can be made 

through variables that are directly accessible by both 

routines. 

Regardless of the type of the interrupt,the 

action that results from an interrupt are the same and are 

known as the interrupt sequense. Some kind of interrupts are 

controlled by the IF and TF flags and in those cases,these 

flags must be properly set or else the interrupt action is 

blocked. If the conditions for an interrupt are met and the 

necessary flags are set,the instruction that is ~urrently 

executing is completed and the interrupt sequence proceeds 

by pushing the current contents of the PSW,CS and IP on to 

the stack,inputting the new contents of IP and CS from a 



12 

double word whose address is determined by the type of 

interrupt and clearing the IF and TF flags.The new contents 

of the IP and CS determine the beginning address of the 

interrupt service routine to be executed.After the interrupt 

has been executed,the return is made to the interrupted 

program by an instruction called IRET which pops the IP,CS 

and PSW from the stack. 

The double word containing the new contents of IP 

and CS is called the interrupt pointer.Each interrupt type 

will be given a number between 0 and 255 inclusive and the 

address of'the interrupt pointer is found by multiplying the 

type by 4. These addresses are loaded by the operating 

system when the system is booted. 

l/0 operations that take place between I/O 

devices and CPU on an interrupt basis are called interrupt 

I/O.Since there is only one interrupt input to an 8088,in 

order to support more than one device, programmable 

' interrupt priority man?gement circuit (8259) is connected to 

INTR and INTA pins of 8088.1/0 devices are connected to the 

different levels of priority management circuit.Each level 

is assigned a unique interrupt vector. When an interrupt 

comes from a device on a particular level,priority 

management circuit checks for the priority.If any higher 

priority interrupt is in progress ,it keeps in 

pending,otherwise it interrupts the CPU on behalf of the I/O 



13 

device and sends the interrupt vector number which enables 

the CPU to respond to the interrupt. 

The interrupt priority management circuit 

contains the logic needed to assign priorities to the 

incoming requests.For example, the highest priority could be 

given to IRO, the next priority ~o IRl and so on. -When~an 

interrupt request is recognized by the priority logic as 

having the highest priority,then the three least significant 

bits of the type register are set to the number of the 

request line, a bit is set in the inservice register and an 

interrupt is sent to the CPU. If IF flag is set then the CPU 

returns an acknowledgement signal and the management circuit 

sends the CPU the type. All the requests having lower 

priority are blocked until! the bit in the inservice 

register is cleared,an action which is normally done by the 

routine.Therefore when IF is reenabled by an STI 

instruction,higher priority requests may interrupt the 

currently executing routine, but the lower priority requests 

will be blocked by the priority logic until the bit that was 

set in the in service register is cleared. This allows the 

lower priority interrupts to proceed. The priority 

management circuit is programmable. 

For details of programming the 8259 refer INTEL 

manu a 1. 



To 8282s and 82~h 

To 8:186 
transc~tYen 

+ 82&9A 

I 
I. 

-...lo.--lsP EN 

For an 8086 tt"trs 
lrrw as AI and lor 
an 8088 rt as AO 

. \ 

D1 DO 
.. I 

In $Hifrce 
rf'\II"E'f 
CISRI 

,. 
ICW1 tchcp corrtrull 

14 

8288 bus controlle< IORC ...... -+--
iowc .... ..--+--

Clt>ar rt>qu~t 

-~ 

Interrupt 
rt>qu~t 

A 
Pr10trfy 

A .regrst~r 

~ V' IIRRI 
"-. raolver '-... and 

masl<•f19 
logrc 

OCWI' II Fro"' 8:184' 
.-dd11•ss latcnn I -I -I I I ll TIM I AD( I SNGll IC41 l lntrrrupt mast. regaSIK tlMRJ 

. Htgh ordl'r boiS 
I I I t 

A1!1-A1 
tor A15-A2 

lor 80861 

ICW4 Crno<X conuoll 

JNTRr.-------------------IJNT 

'AO; 0 tor ~dre$$rng the forst ....ord UCWIIand 1 I<>' 
~O<-.ng ttw wccftdrng words. 

1 AO • 1 for .tdr-.ng the forst word ..-d 0 for iddtt•ssrng 
tl\t' succl!e<Jrng words. 

FIG 

OCW2 

R~~QUest level 
• t 

OCWJ 

1 Brls cvrrt'S!Jond to IR •r>puts. Brt • 1 muns IR rs masi<«< 
and Brl • 0 tnt' .. ns rl rs nol nwsi<ed. 

•11 B259A rs a rnutOL'f. Brt • 1 cndrCiles that I he corretPondrng 
IR rnpu1rsconrwc1ed 10 a slave. For a sl..,e, O•ls 3-7 are 0 
""d brts0-2 idenlrfy the~·-

82.59 %NT£RRUPT P~I;ORI1'Y 

t1A.aA6EMENT BLOCk .D~AGRAM 

IR 
IR 

IR 
IR 
IR 
(R 

IR 
IR 

J 



15 

In addition to the built in priority,a one ·byte 
\ 

mask register is provided to allow the masking of individual 
't• 

requests.Bit n in this register is for masking IRn. 

2.3 Serial asynchronous communication 

For two computers to exchange information,there 

should be proper interface between them.This is provided 

through a communicatio-n link,which facilitates the data 

transfer. 

Within the · compute~,data is transferred in 

parallel,because that is the fastest way to do it. For 

transferring data over long distances ,however parallel data 

transfer requires too many wires,which is not feasible when 

the computers are located far apart.Therefore data- to be 

sent to long distances .is usually converted from parallel 

form to serial form,so it can be sent on a single wire or a 

pair of wires. Serial data received from a distant source is 

converted to parallel form,so that it can be easily 

transferred to the computer bus. 

Serial data can be sent synchronously or 

asynchronously. For synchronous transmission,data is sent in 

blocks at a constant rate. The start and end of block are 

identified with specific bytes or bit patterns.For 

asynchronous transmission,each data character has a bit 

which identifies it's start and one or two bits which 

identifies it's end. Since each character is individually 



1{) 

identified,characters can be sent at any time. 

----, ll ~ J -t~ SPACE ' I LS8 MS8 &ETW.!:Et.l 
'----'----.J----~~----.1-- --- ~. Cf.\A~ACTERS 

) .... 5 TO 8 C:'-\A'lAC TER.S -e4 f 1 t4 o.., 2 
START &rr OPTrDWIU- ' ~ ~ 

PAR~TY 81:T ST'OP 8l:TS 
Fig 2.3 Asynchronous communication format 

Fig 2.3 shows the bit format often used for 

transmitting --<asyn-chro-nous data.When no data is being 

sent,the single line is in a constant high or a marking 

state.The beginning of a data character is indicated by the 

line going low for one bit time.This bit is called a start 

bit.The data bits are then sent out on the line one after 

the other. The least significant bit is sent out 

first.Depending on the system,the data word may consist of 

5,6,7 or 8 bits. Following the data bits, a parity bit is 

used to check for the errors in the received data. Some 

systems do not insert or look for a parity bit. After the 

data bits and parity bit ,the signal line is returned high 

for at least one bit time to identify the end of the 

character~This always high bit,is referred to as a stop 

bit.Some systems use 2 stop bits. 

The term baud rate is used to indicate the rate 

at which serial data is transferred.Commonly used baud rates 

are 110,300,1200,2400,4800,9600 and 19200. 

To interface a computer with serial data 

lines,the data must be converted to and from serial form.A 



17 
parrallel in,serial out shift register and a serial 

in,parallel out shift register can be used to do this.A hand 

shacking circuitry is needed .to ensure that the transmitter 

does not send data faster than it can be read in by the 

receiving system.There are available several programmable 

LSI devices which contain most of the circuitry needed for 

serial communication.A device such as the INS 8250 which 'can 

do asynchronous communication is referred to as a Universal 

Asynchronous Receiver Transmitter or UART. 

Fig 2.4 shows the block diagram of 8250. The 

status register would contain error and other information 

concerning the state of the current transmission,and the 

control register is for holding the information that 

determines the operating mode of the interface.The data in 

buffer is paired with data in shift register.During an input 

operation,the bits are brought into the shift register one 

at a time and after a character has been received,the 

information is transferred to the data in buffer 

register,where it waits to be taken by the CPU.Similarly the 

data out buffer is associated with a parallel output shift 

register.An output is performed by sending data to the data 

out buffer,transferring it to the shift register and then 

shifting it to the serial output line. 

Although there are several ways in which the four 

port registers can be addressed,.it has been assumed that the 



18 

Serial communication interlace 

Data bus 
driven and 
receivers 

.. 
Interrupt 
request 

Hendshaking 1--R_ead _ _.~ 
log~. 

Address 
decoder 

Write 

From .xfress--
bus 

82.50 

Status register 

Control register 

Receiver 
clock 

FIG 2.4 

UAR.T 

and/or 
Transmitter 

clock 

Modem 

Serial output 

&LOC.k J>IAGRAM 



1!1 

status register can only be read from and control register 

can only be written into.Therefore an active signal on the 

read line would indicate either the status or data. in buffer 

register.The interface has separate lines for 

receiving information.So it can be used as a 

channel. 

sending and 

full duplex 

The information can be read from data_in register 

either by polling or on an interrupt basis.In our 

implementation, the characters are. received on an interrupt 

basis.Accordingly the 8250 is programmed to interrupt 

whenever there is a character in data_in register.It is also 

programmed to the appropriate baud rate,number of stop 

bits,number of data bits,and the parity. 

For details of programming the 8250, see appendix B. 

2.4 RS-232C serial data transfer standards 

Modems and other devices used to send serial data 

are often referred to as data communication 

equipment(DCE).The terminals or computers that are sending 

or receiving the data are referred as data terminal 

equipment(DTE).In response to the need for signal and hand 

shake standards between· DCE and DTE the Electronics 

Industries Association (EIA) developed HIA standard RS-232C. 

This standard describes the configuration and function of 25 

singnal and handshake pins for serial data transfer.It also 



20 

describes the voltage level,impedence level,rise and fall 

times,maximum bit rate and maximum capacitance for these 

signal lines.RS-232C specifies 25 signal pins and it 

specifies that the DTE connector should be a male and,the 

DCE connector should be a female.A specific connector is not 

given,but the most commonly used connectors are the DB25-P 

male and the DB25-S female.It is important to note the order 

in which the pins are numbered.See appendix B for RS-232C 

pin configuration. 

The voltage levels for all RS-232C signals are as 

follows-A logic .high or mark is a voltage between -3V and 

-15V under-load. A logic low is a voltage between +3V and 

+15V under load.Voltages such as +/-12V are commonly used. 



21 

III THE VAX 11/780 SYSTEM 

This chapter gives a brief introduction to the 

software systems of VAX 11/780 system. Of 

interest to us are the terminal controllers which 

of the terminals. 

The VAX 11/780 is a multi user,multi 

language,multi programming and high performance system.It 

combines a 32 bit architecture with a virtual memory 

operating sysytem (VAX/VMS) and a memory management system. 

The hardware (microcode) contains a native 

instruction set that includes integral floating point,packed 

decimal arithmetic,character and string instructions.The 

hardware also includes the compatibility mode instructon set 

that is a subset of the PDP 11/70. Programs can be executed 

concurrently in the native and compatibility modes.Some of 

the instructions in the native set are direct counterparts 

to high level language statements.The software system 

supports high level languages that use this instructions to 

produce compiled code. 

3.1 HARDWARE SYSTEM 

The VAX 11/780 system contains a CPU,a main 

memory system,an l/0 sub system,a console sub system and 

peripheral equipment.The overall block diagram is given in 



22 

Fig 3.1 

3 .1.1 CPU 

The VAX 11/780 CPU is high speed microprogrammed 

32 bit computer that provides a full 32 bit operational 

capability (32 bit data and 32 bit address). 

The CPU operates on data _,as gefin~,d by user 

program.'The CPU receives the program data and instructions 

via the main system interconnect and manipulated data is 

sent back to the storage. 

The two microprogrammed instructions (VAX 11/780 

native mode and PDP 11 compatibility mode) are contained in 

the writable diagnostic control store(WDCS).The· basic 

instruction sets are contained in ROM,but can be modified 

and added to in RAM. 

3.1.2 l/0 SUB SYSTEM 

The I/0 sub system contains the synchronous 

backplane interconnect(SBI),the mass bus and the uni bus.Fig 

3.2 is a functional diagram of the I/O sub system and the 

peripheral devices. 

3.1.2.1 SBI 

The SBI is the system's internal backplane and 

bus that conveys address,data and control information 

betweem the CPU,main memory and peripheral devices. The SBI 

includes several error checking and diagnostic mechanism 

such as -



CI•<TIIAl SBI 

L u·-· 

-
SBI MAIN 

CPU MEMORY 
SUBSYSTEM 

10 BUS 

CONSOLE 
INPUT/ 

SUBSYSTEM 
OUTPUT 
SUBSYSTEM 

,SBI -SYNCHRONOUS BACKPLAN~ INTfRCONNECT 
CPU- CENTRAL PROCESSOR UNIT 
10 BUS- INTERNAL DATA BUS 

fiG 3-1 
VA)( lt/710 6L6C." 

MEMORY 

SlJUtaY!.It M 

MASSBUS 
PERIPHERAL 
MASS STORAGE 
UNIT RECORDS . 

UNIBUS 
TERMINAL 

J)tAGilA~ 

rO a us I 
I 
I 

,N.,-m;QW'uT"'Wsmr;;;--~ DEVICES - UP TO 8 PEA MASSBUS 

MASS BUS CCl<SOU 
SUB!JVSTtM AOAP1Qn 

MASSBUS I -
I 

I i - ,:s:::u-; ~ MASSaus ~ 
~- ~~~0~ ~ I 

I 
I 

I 
UN:eus UNIBUS 

I 
I~ . i 

I 
L-

SBI- SYNCH~(;NOUS SACK PlANE INl( 
ID BUS _ INTE R"Al 04 T A BUS 

AOAPiOA 

i _____ _J 

RCONl<ECl 

1--

\f---. 

L-.. 

MAGTAPE 
fOnMATTER 

OISK 

DRIVE 

ONI ntouonto 

liNE 
PRINTERS 
UP TO 4lP11 
UP TO 16lA11 

CARD 
READERS 
TO 2 CA11 

HARO COPY 
TERMINAl 

VIDEO 
TERMINALS 

t:~& 5·2.. 

VA)( ·lt/7eft r/~ 

TE16 

t--
MAGTAPE 
1 T08 PER 
fOIIMAlHn 

AK06 DISK 
DISK DRIVE - RK06 

CONTROllER 
UP TO 8 

TERMINAl k~OR16 
liNE INTERFACE 

ASYNCHRONOUS 
SERIAl liNES 

UP TO 96 DEVICES 
COMBINED 



24 

parity checking on data,address and commands, 

protocol .checks in each interface, 

a history silo of the last 16 SBI cycles. 

3.1.2.2 MASSBUS 

Mass storage devices like disk drives and 

magnetic tapes are connected to massbus.The processor 

interface for a massbus peripheral is the mass bus 

adapter.The massbus adapter performs control arbitration,and 

buffering functions. Upto four massbus adapters can be 

placed on the SBI. 

3.1.2.3.- UNIBUS 

This is an asynchronous bidirectional bus.All 

devices other than disk drives and magnetic tapes are 

connected to the unibus.The unibus is connected to the SBI 

through the unibus adapter.The unibus adapter does priority 

arbitration among the devices on the unibus. 

3.1.2.4 MAIN MEMORY SUBSYSTEM 

The main memory sub system contains one or two 

memory controllers.Each controller can handle from one to 16 

MOS RAM arrays.Two memory controllers can be controlled to 

the SBI yielding a maximum of 8 MB of physical memory that 

can be available on the system. 

3.2 VAX SOFTWARE SYSTEM 

The VAX 11/780 softwar~ system includes the VAX 



25 

virtual memory operating system(VAX/VMS),file and record 

management facilities,I/0 drivers,the application migration 

executive batch capabilities,On-line diagnostics and error 

log utilities in the support languages and utility programs. 

3.3 PERIPHERAL DEVICES 

The VAX 11/780 supports four types of 

peripheral devices. 

1. Mass storage peripherals such as disks and tapes 

2. Unit record peripherals like line printers and card 

readers 

3. Interprocessor communication links 

4. Terminals and terminal line interface 

The mass 

RP05,RP06,RM03,RK06,RA60 

storage 

and RA81 

peripherals 

disk drives 

include 

and TE16 

magnetic tape transport.The unit record peipherals include 

LP11 and LA11 line printers and CR11 card reader. 

The interprocess communication link (DMC11) is 

designed for high performance point to point interprocessor 

connection based on the DIGITAL data communication 

protocol.The DMC provides local or remote connection of two· 

computers over a serial synchronous link.Both computers can 

include the DMC and the DECNET software,or both computers 

can include the DMC11 and implement their own communication 

software. For remote operations,a DMC11 can also communicate 

with a different type of syn~hronous interface,provided that 



2G 

the remote sytem has implemented the DDCMP protocal. 

3.4 TERMINAL CONTROLLERS 

The VAX has two types of termianl -controllers,the DMF32 and DMZ32.They can support different 

types of terminals like VT52,VT100 and VT220. 

3.4.1 DMF32 The DMF32 is an intelligent VAX family unibus 

controller that supports a combination of I/0 devices 

includung 

a. eight asynchronous lines 

b. one synchronous line 

c. one DMA line printer interface or one enhanced 

DR11-C functional parallel I/0 port 

The asynchronous multiplexer supports eight transmit 

and eight receive lines. Each pair of lines can be 

programmed to operate at one of 16 baudrates,ranging from 

50bps to 19.2 kbps.Line 0 and line 1 have split-speed 

capability and full modem control.The asynchronous 

multiplexer also supports the auto echo function. 

Transmission can be selected for DMA or SILO 

operation.In SILO mode,each line transmits characters from 

its own 32 bit character buffer.These buffers are loaded 

under host software control.In DMA mode,a transmit line 

transmits characters from the main memory location specified 

by the buffer address and the character count.All eight 

characters share a 48 character receive SILO.There is a 



27 
programmable SILO timeout period for the receive SILO.An 

interrupt can be generated when 

a. sixteen characters have entered the SILO 

b. The SILO has been nonempty for a time greater than 

a timeout period. The time out period can be set to zero. 

The asynchronous lines are connected either to a data 

terminal equipment(DTE) or data communication equipment(DCE) 

via standard EIA RS232-C 25 pin connector.The signal levels 

of the synchronous multiplexer are RS423 compatible. 

The synchronous interface is a single line DMA 

communication interface with full modem control.The 

interface supports various protocols like SDLC,HDLC and 

DDCMP.This line can transfer the messages,generate and check 

CRC and DMA these messages to and from host memory.The host 

level software performs all message acknowledgements and 

higher !eve~ network functions. 

3.4.2 DMZ32 The DMZ32 asynchronous multiplexer contains 

three octets of eight transmit and eight receive lines,each 

making a total of 24 lines available for- data.Those 24 

lines can be programmed to operate at one of 14 baudrates 

from 50bps to 19.2kbps.All 24 lines have the capability 

of operating with different receive and .transmit 

baudrates.All lines have modem control and each receive and 

transmit line can be independently enabled or disabled.Th~re 

is a separate receive and transmit interrupt vector for each 



28 

of the 3 octets.These vectors may be enabled or disabled 

independently.Separate TXReady and Rxdata available bits 

exist for each octet to allow for non interrupt driven 

device operation.These octets can be operated 

independently.For example,each octet can be reset without 

effecting any of the other octet.The DMZ32 may be programmed 

to echo all the received characters. 

3.5 THH VT220 TBRMIANL 

The VT220 is a general purpose video display 

terminal that lets you interact with a computer.The user 

sends characters to the computer by typing on th~ 

keypad.Characters sent by the application program appear as 

text on the terminal screen.The terminal operates by 

executing standard ANSI functions. 

Character set modes : The VT220 has two basic character 

modes,multinational and national.Multinational mode supports 

the DEC multinational character set(DECMCS).The DECMCS is an 

eight bit character set that contains most characters used 

in the major European languages.Thr ASCII character set is 

included in the DECMCS.National mode supports the natioanl 

replacement character sets(NRC sets).The NRC sets are a 

group of eleven 7 bit caharacter sets.the national character 

set available is determined by the keyboard selected in 

setup.Only one national character set is available for use 

at any time.National mode restricts compatibility to a 7 bit 



2~1 

environment in which the use of the DECMCS is disabled. 

Keyboard See Fig4.10(page 56) for layout 

keyboard.The keyboard consists of -

A main keypad - This keypad operates like a 

typewriter keyboard.The <:EJ (delete) key sends 

of the 

standard 

a DEL 

character.Normally erases one character to the left of the 

cursor. 

Editing keypad- This keypad is used to control the cursor 

and edit data that is already entered. 

Auxiliary keypad - This keypad allows us to enter numeric 

data.This set of keys have special purpose in application 

programs such as editor.The terminal sends different codes 

for normal mode and application mode. 

Function keys - The top row function keys have functions 

assigned by the application software. 

COMMUNICATION 

The terminal operales on full-duplex asynchronous 

lines only.It operates with the following national and 

international communication-standards. 

EIA standard RS232C/RS423 

CCITT V.24 

CCITT V.26 (V1.0) 

CCITT X.20 (V.21) 

The terminal can be either connected directly to a 



30 

local host computer or to remo.t host through modem. 

The terminal sends and receives cha~acters serially 

formatted.The character format is shown below -

I f tal I I I I I l~j t L 
tc 8 DATA SITS ~ \ 

ST'AR.T &rr ONe STOP 

Fig 3.3 
BIT 

The terminal stores incoming characters in a character 

input buffer and processes the character~ on a first-

in/first-out basis.The size of the input buffer is 254 

characters.When the input buffer fills to 64 or 128 

characters (sele~table in SET-UP),the terminal sends an XOFF 

character (if enabled) to stop the host computer from 

sending more characters.If the computer fails to respond to 

the XOFF character,the terminal sends a second XOFF 

character when the input buffer fills to 220 characters.The 

terminal sends a third XOFF ch<1racter when the buffer is 

ful 1. 

When the input buffer contents falls below 32 

characters,the terminal sends an XOFF character to tell the 

host computer to start sending characters again.If XON/XOFF 

is enabled, the terminal recognizes XON and XOFF 

characters.When it receives XOFF,it stops sending data. 

ESCAPE and CONTROL sequences : 



31 

VAX sends certain escape and control sequences 

for cursor positioning,window definition,inser~ing 

text,deleting text and so on.An escape sequence is an escape 

character(27) followed by an ASCII character.A control 

sequence is an 

square bracket 

escape character followed by an 

([) followed by a ·sequence of 

opening 

ASCII 

caharactters. The complete list of escape and control 

sequences is given appendix C. 

For example,ESCk stan~s for "cle~r the display 

from the cursor position to the end of line".Similarly the 

control sequence ESC[7m instructs that the following 

characters should be displayed in reverse video.The sequence 

ESC[n;mh instructs to position the cursor at row n and 

column m. 

Since we are writing our own routines for escape 

and control sequences,we can introduce our own 

sequences.When the application progrnm on VAX sends that 

sequence,our module traps that sequence and executes the 

code which is of interest to us.This idea is used in file 

transfer from PC to VAX and from VAX to PC and for getting 

back to MSDOS. 

When a file is to be transferred from PC to VAX,a 

program PCTOVAX has to be run on VAX.This program sends the 

sequence ESCT ,which is trapped by our CONNECT program and 

~he file transfer program is initiated on PC. 



32 

IV TERMINAL EMULATION 

In chapter 2,we discussed how asynchronous serial 

data can be sent or received with an 8250 on a polled or an 

interrupt basis.This chapter gives the implementation 

_,details o-f how the PC sends and receives characters- from_ the 

host (VAX) and how it emulates a VT220. 

4.1 LANGUAGES CHOSEN 

For writing interrupt service routines and 

adjusting the 

natural choice 

program. 

interrupt vectors,assembly language 

and we chose the same for our 

is the 

RESIDENT 

The rest of the module is developed in TURBO 

pascal.Pascal,as such is a good procedural language and it 

is much easier to debug a program written in 

pascal.Compiling and debugging with TURBO Pascal is very 

easy because of it's speed and inbuilt editor.TURBO also 

provides excellent and very useful features like interface 

to assembly language programs,executing MSDOS interrupt 

service routines,windowing,direct memory access,direct port 

addressing,efficient 

disabling l/0 errors. 

file handling and enabling and 



The assembly language interface is used in 

calling GETKEY and GETBUFF assembly functions.Many of the 

procedures like POSCUR.READMEM and so on utilize the 

software interrupt service routine execution 

facility.Windowing has a direct usage with minor 

modifications for cursor positioning.Direct port addressing:· 

capability is utilized in addressing the 8250 communication 

port. 

The language C would also have been a good 

choice,since it provides pointer arithmetic,which would have 

been very useful in file transfer.But at this time,we don't 

have a fast C compiler on PC with all or most of the above 

features. 

Since VAX supports C language,the programs 

developed on VAX are coded in C language.Due to the various 

features of C language like pointer arithmetic and post 

!ncrement operation,the code turned out tn be very compact. 

4.2 Initializing the communication port 

discussed 

COM1 and 

The theory and programming aspects of UART were 

in chapter2.The PC has two 

COM2.Each of ~hem can 

communication ports 

be independently 

programmed.For PC to VAX communication,COM1 is used.The 

interrupt output of this device is connected to the IR4 



34 

interrupt of the 8259A priority interrupt controller in the 

PC mother board.The 8259A itself is mostly initial~zed by 

BIOS when the system is booted.However,since the UART is 

connected to IR4 of the 8259A,that input has to be 

unmasked.To do this,the current contents of the 8259A 

interrupt mask register a~e read in fr6fu address 21H.The bit 

corresponding to IR4 (bit 4) is then ANDed with a 0 to 

unmask the .interrupt and the result put back in the 

register.· 

In this communication,only four wires are used 

(See Fig4.1). RXD (Receive Data), TXD (Transmit Data), 

protective ground and signal ground;and 8250 is programmed 

accordingly. 

First the divisor latch register is programmed 

for the appropriate baud rate.To program the baud rate,t~e 

devisor l~tch address bit(DLAB) of line control register has 

to be set.So SOH is output to line control register. 

Fig 4.1 



~ 

35 

Next, the divisor latch register 03F8H and 03F9H 

a~e programmed with the appropriate baud rate.For a baud 

rate of 9600,the values to be output are 00 to 03F9H and OC 

to 03F8H.Since the communtcation parameters can be changed 

with in the session using the setup option,this baud rate is 

programmable and can be changed at any time. 

Next, the line control register 'is programmed 

with the default parameters. For our communication,the 

parameters are 8 bit data,one stop bit and no parity.Hence 

03 is output to the line control register.Like baud 

rate,this is also programmable and is taken care in setup. 

basis, the 

Interrupt 

Since characters are received on an interrupt 

enable data available interrupt bit (bit 0) in 

enable register is set.So 01 is output to 

interrupt enable register. 

Why interrupt driven 

In this implementation,characters are received on 

an interrupt basis and buffered.These characters are later 

read from another program and processed.Let us consider a 

simple program where cahracters are received by polling the 

8250 and displayed,and input from the keyboard is sent to 

VAX. 



36 

Initialize 8250 

repeat 

if keypressed,then read key and send it 

if UART has a character,then read the 

character and display it 

forever. 

The above program works well at 300bd or 600bd. 

However for a baud rate of 1200 and above,the first 

character of each line of characters received from the host 

will be lost. After a carriage return is sent to the CRT,the 

display on the screen is scrolled up one line.Not only 

this,the input from the keyboard has to be processed and the 

received characte~have to processed for escape and control 

sequences,which takes considerable time.To avoid loss of 

characters during this time,the characters are received on 

an interrupt basis and stored in a circular buffer. 

4.3 The program RESIDENT 

See Fig4.2 for a flowchart of RESIDENT.This 

program is written in assembly language.It stores the 

characters in a circular buffer and another function 

GETBUFF(which is in another module) reads 

this buffer.Since both these functions 

characters from 

share certain 

parameters,there should be a way to access these common 



37 

RESIDEtJT 

START 

LOAD DS 
STORe J)S .rN o~:ott 

1-t&AD·PTA sO 

TAU-PTA. •O 

Ct\A~-ccUNT•O 

KOF'F-S&NT • 0 

tl- SE£ NEXT PA6& 

FIG 4.2. 



38 

parameters. In this implementation,the Data Segment of 

RESIDENT is stored in 0000:0184H. GETBUFF later loads the DS 

with the data in 0000:0184H and accesses different 

parameters as offsets with in the data segment. 

Since communication port is connected to TR4 of 

8259A,the 8259A will send interrupt vector OC to the 

processor.So the ~tarting address of the communication 

interrupt service routine is stored at vector OC,using DOS 

function call 25H. 

The communication interrupt service routine,which 

is resident all the time in memory, receives characters from 

VAX and stores them in circular buffer.The flow chart is 

given in fig 4.3. 

Since the interrupt can occour at any time,it is 

important to save the DS register and load the DS ~ith DATA-

HERE. 

The buffer used here is a circular buffer.The 

following figure attempts to show how this works. 

=-TA -:tL. POt:~ TE.R ___,.. 

ICEAJ>- Po'tWTER---

I 

l 

1000 

s 

0 

Fig 4.4 (circular buffer) 



ves 

C.OMM- INT 3~) 

ENA&LE lNTEQQUPTS 

SAVE A~8X1 C:X,J>)(,l)%_,J)S 

LOAD J)S WJ:.TM .DATA 

seGMENT OF ~EU.DE 

ves 

NO 

STOR.I! AL .hi C\UE.UF 

POJ:N'M) BV ~l-PT~ 

FIG 4., 



keep· 

40 

One pointer called the tail-pointer is used to 

track of where the next byte is written into 

buffer.Another pointer called the head-pointer is used to 

keep track of where the next character is to be read from 

the buffer.The buffer is circular because,when the tail-ptr 

reads the highest 'location in the memory space set aside for 

the buffer,it is wrapped around to the beginning of the 

buffer again.The head-ptr follows the tail-ptr around the 

circle as characters are read from the buffer.The checks are 

made on the tail-ptr before a charactar is written into 

buffer. 

First the tal-ptr is brought into a register and 

incremented.This incremented value is then compared with the 

maximum numbar of bytes the buffer can load.If the values 

are equal,the pointer is at the highest address in the 

buffer.So the register is reset to zero,after current 

character is put into the buffer.Tile value will be loaded 

into the tail-ptr to wrap around to the lowest address in 

the buffer. 

Secondly,a check is made to see if the 

incremented value of the tail-ptr is equal to the head

ptr.If the t~o are equal,it means that the current byte can 

be written,but for the next byte the buffer would be full.If 



41 

this happens,an XOFF character is sent to VAX to stqp it 

from sending · more characters and the xoff-sent flag is 

set.But some characters may be sent by VAX before we send 

XOFF.To avoaid this,every time a charecter is stored in 

buffer, a variable char-count is incremented.This char-count 

is compared with 950 and if they are equal,an XOFF is sent. 

and xoff-sent flag is set.This way the host is restrained 

from sending more characters before the buffer gets filled 

up. 

The other procedure which reads characters from 

this buffer(GHTBUFF) checks the xoff-sent flag after every 

read.If this flag is set,it checks the char-count to see if 

there is enough space in the buffer.If the char-count is 

less than 750,it sends an XON and resets xoff-sent flag.This 

assures that there is a buffer space of 250 characters and 

RESIDENT can ressume buffering. 

Finally before returning,an end of interrupt 

command must be sent to the 8259A to reset bit4 of the 

interrupt mask register. 

4.4 The main program CONNECT 

The main program is written in pascal.It 

basically repeats two steps.First it checks if there is any 



42 

input from the keyboard.It reads the input if there is 

any,processes it and sends the appropriate code.It then 

checks if there is any data in the buffer,reads and 

processes the data and displays it.The flow chart is given 

in Fig 4.5. The function GHTKHY checks if there is any input 

from the keyboard.The function GHTBUFF checks,if there is 

any data received from host.These are functions written in 

assembly language and are called from the pascal program 

CONNHCT.Let us see how assembly programs are called from 

Turbo pascal and how parameters are passed. 

When an assembly routine is to be called from a 

pascal program as a procedure/function,it should be defined 

as external procedure/function in the pascal program.The 

assembly program has to be separately assembled,linked and 

converted to binary form by using HXH2BIN utility. 

program. 

Let us consfder a pascal program and an assembly 

Pascal program 
program pascal assembly interface; 
function incr(var n :-integer) : integer; 

external 'incr.bin'; 
var i,j : integer; 
begin 

i : = 1 ; 
j := incr(i); 
write( 'i = • ,i); 

end. 



eLOCk .DlAGQAM OF CONNECT 43 

NO 

ocess nee u Y lUI, 
UN) ANIUJHIA ff. 

~Dc.JSS n• .MTA 
HDLiu ~sc a;...,.waa 

FIG 4·5 

.... sEe J:UWtMART 

4·11t 



44 

Assembly program 
function incr(var n integer);integer; 
incr proc near 

PUSH BP 
MOV BP,SP 
LES DI,[BP+4] 
MOV AX,ES:[DI] 
INCR AX 
MOV ES:[DI],AX 
POP BP 
RET 6 
endp 

i is a variable in pascal initialized to l.The 

assembly function INCR is called with the parameter i.The 

function takes the variable i,increments it and returns the 

incremented value.The pascal program then prints this 

returned value. 

Let us see how the parameters are passed.Turbo 

Pascal passes parameters through stack.Fig 4.6 shows the 

state of stack when a function with a single parameter,say 

incr(i) is called. 

At entry,the stack pointer points to the stacked 

return address of the caller to this routine.The higher 

address (sp+2) contains the address of the parameter passed 

by the £aller.To. access the parameter, we use the BP 

register.Since this BP register would have been used in the 

calling program,we must save BP as the first step in the 



OC>n:Dt.lAL 
w~~K SPACe 
·sAver> &P 
~teGl:STeR ~6~ 

tteTO~N OR='SET' 

A~l>RESs 2.a-tres 

PAftAiiSTER p 

FIJNC.1'1X>N ~esULT 

Fig 4.6 

.,..._... 

.. 

..,__ 

45 

S P AF-TER t>US" 8P , 
6P AFT'S~ HOV &P~SP 

SP 0~ EtJTcl'( 

assembly program.In principle,all the registers that are 

being used in the assembly routine have to be saved,and then 

restored when returning control to the caller.Then the 

current stack pointer is assigned to BP. Both SP and BP now 

address the value of the saved BP register.The return 

address and the BP register values are each of two 

bytes,hence the parameter is found on the stack at location 

[BP+4].The parameter is taken from this area,incremented and 

put back at the same location. BP register is restored and 

control is returned to the caller by executing RET. RET 

pops only the return address from the stack. Since we must 

also pop the paremeter,we shold give RET 6. 

The main program contains the external functions 

GBTKBY and GBTBUFF ,and various other procedures. 

Function GHTKHY : This function checks,if there is any input 

from the keyboard and returns the data if any,to the 

called program.The flow chart is given in Fig 4.7. 



4{~ 

FUNCTION GETKEY 

SET 

SAVE BP 

BP.,._SP 

AH -+-Oi 

ZNT l6 

REsToRe SP .. 

FIG 4.7 

READ T~E P~ESSE.b 
l<.EV :tNTO AL. 

PUT Tl\E k.EY t'WT6 

EX l"ER ~Al.. 'IART.A BL E 



47 

INT 16H BIOS routine provides different 

functions,depending on the value loaded in reg AH. AH=O 

returns the code for a pressed key in AL. AH=1 returns 

the zero flag=O if a key has been pressed. INT 16 is 

called with AH=1. If zflag is set,there is no input from 

the keyboard and execution returns to the caller.If the 

zflag is O,the keyboard input is read into AL and the 

value returned. 

Function GETBUFF : This function checks if there is date in 

the circular buffer and returns the data,if there is 

any.The flow chart is given in Fig 4.8. 

All the registers are saved.The contents of 

[0000:0184] are loaded into DS,so that the variables of 

RESIDENT are accessible here.Once DS points to the data 

segment,the variables within the date segment are 

accessible as off sets using the registers BX and DI. 

By comparing the head and the tail pointers,a 

check is made to see if there are any characters in the 

buffer. If not,the execution is returned to the 

caller.If a character is available in the buffer,it is 

read and the head pointer updated to point to the next 

available character.If the pointer is at the top of the 

space allocated for the buffer,the pointer is wrapped 

around to the start of the buffer. The read character is 



'(ES 

S:UNC TION GET6U~F 

SAVE BP 
8P+-SP 

SAVE A')t,Bx.c.x. Dx.,J)t 

J)S .,_ Coooot. ot84l 

COPV TM£ BYTE A:>l:NTE 

BY M£Al>-Pfct TO f)c.T£R 

VAfU:A8LE 

RESET l(()FF-SE .. T. n.AG 

fiG 4.8 

48 

LOAI> J)ATA S£6MENT 

Cf REsr DENT I:NTO bS 

Y&s 



then passed on to the external variable. As discussed 

earlier,this function also checks the xoff sent flag and 

sends an XON if there is enough space in the buffer. 

Other procedure~ used in CONNECT 

. The program CONNECT contains many procedures. 

Cursor addressing in TURBO pascal is relative 

with respect to a predefined window.But the cursor 

addressing in VT220 is absolute.In order to come over 

this problem,two procedures are defined,one to position 
. 

the cursor anq the other to find the cursor position. 

FINDCUR Finds the position of the cursor by loading 03 

into AH, 00 into BX and executing interrup 10H.The 

column number is contained in DL and the row number in 

DH. Row number varies from 0 to 24 and column number 

varies from 0 to 79 in PC,while they vary from 1 to 23 

and 1 to 80 respectively in VT220,hunce a 1 is added to 

the row and column numbers determined above. 

POSCUR Positions the cursor at the given row and 

column,by loading 02 in AH,OO into BX ,rownumber-1 in 

DH,column number-1 in DL and executing interrupt 10H.A 

one is subtracted because of the same arguement as 

above. 

DISPLAY .. Is used in displaying a character with a given 



50 

attribute.When characters are to be displayed in a mode 

other than normal,the attribute byte is set and this 

procedure is called to display the character in the 

required 

tab, the 

rest,the 

attribute.For carriage return,line feed and 

characters are displayed as they are.For the 

character is loaded in AL,09 into AH,the 

attribute into BL,the number of characters into CL and 

interrupt 10H is executed.The cursor is moved to the 

next column. 

SET DISPLAY Displays a given string 

attribute.It repeatedly calls the above 

each character of the string.This is 

set up. 

with a given 

procedure for 

mainly used in 

SET BAUDRATE Calls the above procedure to display the 

baud rate in reverse video in set up. 

SET UP Enables the user to examine and alter the 

communication parameters.It also facilitates an online 

help for information on how to transfer files ,keyboard 

mapping etc.This menu is displayed when CONNECT is run 

or F3 is pressed. 

It displays a title 11 TANVAX VER 1.0 11 (a name 

we gave to our package),folloed by SETUP, followed by a 

menu to choose from.The first option for examining and 

altering the communicaton parameters.The second option 

is default par'ameters for cr)mmunication,the third is 



51 

help and the fourth is to exit from SETUP.The cursor can 

be moved with the up and down arrows.It is mooved to the 

required option and ENTER pressed to exercise that 

option.Only options 2 and 4 will take the user out of 

SETUP.The fi~st option displays the current 

communication pa-rameters.It displays the current 

baudrate,the number of bits,parity and the number of 

stop bits and an EXIT to quit this menu.The cursor is 

taken to the appropriate option and ENTER is repeatedly 

pressed to choose the next available option.When we quit 

SETUP,the 8250 is programmed to correspond to this 

settings.The cursor is also- programmed to a blinking 

block cursor. 

The second option programs the 8250 to the 

default settings and quits.The third option gives the 

help.In order to get help,the user should have NETHELP 

file on his floppy.The help text is read from this file 

and displayed.The fourth option is to quit from SETUP. 

GHTCHAR In some case it is necessary to wait till a 

character is received.This procedure waits till a 

character is received by repeatedly calling GHTBUFF. 

READKBD : Waits till there is input from· the keyboard,by 

repeatedly calling GHTKHY.This procedure is called in 

SETUP and is necessary because we need both the code and 

the scancode of the pressed key. 



52 

SEND Sends an integer to the host.It reads the line 

status register of COM1 and checks if bits 5 and 6 

corresponding to transmitter holding register empty and 

transmitter shift register empty are set.If they are 

set,then the data is sent to the output port [03F8]. 

SCROLL UP Scrolls the screen up,by one column.Register AH 

is loaded with 6 and register AL with 1 (the no.of lines 

to scroll),register ex is loaded with the top of scroll 

region,register DX is loades with the bottom of the 

scroll region and interrupt 10H is executed.The top and 

bottom margins are encountered when he termianl receives 

a control sequence to set the window limits. 

SCROLL DOWN : Same as above except it scrolls down.Register 

AH is loaded with 07. 

The above two procedures are used in 

scrolling a window,which is mostly used in editor. 

RBADMBM Reads a character from the display memory at the 

given cursor position.Reg.AH is loaded with 08,reg.BX 

with 0 and interrupt 10H is executed.Reg AL contains the 

character.This is used in inserting and deleting text. 

GBTINT To facilitate easy recognition of control 

sequences,this procedure is designed.For example,to 

position the cursor,the different combinations VAX can 

send are -

ESC h ~->position the cursor at 1,1 



53 

ESC [ ;10h --:s. posit ion the cursor at row 1 and 

col 10 

ESC [9;h --'> p o s i t i on the cursor at row 9 

and col 1 

ESC !5;13h ---...'position .*- the cursor at row 5 

and col 13 

In general,the sequence is ESC [n1;n2h where n1 

or n2 or both can be missing,in which case they shold be 

taken as 1. Also note that n1 and/or n2 can be either a 

single digit or a two digit number.This procedure walks 

over all these problms.See flowchart 4. 9. After 

encountering ESC and [,this procedure is called.It 

checks the next character in the buffer.lf it is not an 

integer,it returns -1 and that character. If the first 

character is an integer(n1),it reads the next 

character.If this character is not an integer,it returns 

n1 folowed by this charact8r.If the second charcter is 

also an integer,it computes the integer value out of 

these characters i.e. n1*10+n2, then reads the next 

character and both the computed value and the last 

character read are returned.When the prtogram calls 

GBTINT,it checks the returned integer and 

character.Basing on these two,it takes the next step.See 

the flow chart in Fig 4.9. 

: If the received control sequence does not match 



54 

PROCEDURE GETINT 

us 

8&T ANOTNit 
CIIM 12. FIIOM ...... 

ll&TURN ZN1 If 
AN.I CIWl ra 

FIG 4.9 

A&TURN •1 
AN.D UAR r2. 



55 

any of the routines provided,this procedure is called.It 

prints a message 'Unrecognized control sequence' 

followed by the sequence.This is usefull in future 

modifications and correcting errors where certain 

control sequences were not taken care of. 

The main program CONNECT 

The flow chart of the basic sequence in the 

main program was give in Fig 4.5. 

Initialization As described earlier,IR4 of 8259 is 

reset to allow interrupts.The communication port 8250 is 

programmed by calling set_up with the default parameters 

of 9600 baud rate,8 data bits,1 stop .bit and no 

parity.Since a colour monitor provides changing the 

colors of the foreground and baCkground,we gave an 

option to change these colors.ALTf changes the 

foreground color and ALT b changes the background color. 

The defaul~ colors are blue for background and megenta 

for foreground. 

Key board mapping : Since there are many differences between 

the VT220 keypad and the TANDY1000 keypad,these keypads 

have to be mapped.Since the number of keys on the PC is 

less than that of VT220,some control and alter 

characters have to be used for certain key strokes.The 

basic layout of the VT220 keyboard is shown in Fig 4. 10 

and that of TANDY1000 in Fig 4.11. 



5() 

~ D (]]QEJII I 
! D [I)0EJ~D 
~ D rnG~GJ[J 
~ D [I]EJEJG 0 . 

• 

G . [ill[i] [!] 
• lll11ll1EJG • [ll [[][]] [!] A 
• • c 

0 
:t D tUl!Jdoo • u. )t 

D 
.. • 

d D EJaEJ"' 0 
~u EJ fit 

D E] c-' fl 

~Bo ... 
BEJO > 

£ D 800£¥1 0 

D -f EI~GEJ • 
~ 

tO D Elci:JG0 " IL .... 
1"- D BEJ~El II. ll. 

.. D E10G:l~ u. 

ElciJG~ 
EJEJG~ 
E3G£3J0 
1-~1 ~ )l E1 i 



57 

0 
0 
0 -,.. 
A 
z 
~ 



58 

For the numeric keypad, the VT220 sends one code 

when in normal mode and another code when in application 

mode.This mode is set by an escape sequence.See Appendix 

C for the codes sent by the VT220 for each key. 

The mapping of the two keypads is given be!ow -

MAIN KEYPAD The keyboard of TANDY1000 is almost equivalent 

to the main key board (North american) on VT220,exgpt 

that 

1. There is no compose key on TANDY. 

2. The characters '~• \'.I and·~ are mixed with the 
I ;..-· 

, I 

numeric keypad on TANDY. 

3.~key on VT220 is mapped with the back space on 

TANDY1000.Back space produces the code 08,but 

7FH (erase character) is sent as is 

done by VT220. 

Rest of the keys produce the same codes and are sent 

as it is both in normal mode and application mode. 

EDITING KEYPAD : These keys are used in editing.Since TANDY 

has lesser number of keys,the mapping is 

VT220 

' ~ 
--> 

TANDY1000 

t 
\ 

--) 



5~) 

-;}- <i --
prev screen A ) pg up 

next screen .1'\pg dn 

insert here "insert 

remoove .I\ delete 

find · Ahome 

select A end 

TOP ROW FUNCTION KEYS : Since TANDY has only 12 function 

keys,it can recognize only uptp F12 compared to 

upto F20 of VT220. 

The mapping is-

VT220 TANDY1000 

-------------- ---------------
hold screen Fl 

print screen none 

set up F3 

data/talk none 

break none 

F6 to F12 F6 to F12 

AUXILIARY KEYPAD : This keypad produces the usual ASCII 

codes of the keys in normal mode. In application 

mode,they produce different codes,which are mainly used 

in editing.However TANDY produces the same· code for the 



GO 

ENTER key on the main keypad,and ENTER key1 on the 

auxiliary keypad.To distinguish between the two,the scan 

code is also considered.Each key has different scan 

code.When GETKEY is called,it returns a value,the lower 

byte of which contains the ASCII code and the higher 

byte contains the scan code.The complete list of codes 

and scan codes for the PC keyboard is given in Appendix 

D. 

The mapping for the keypad is -

VT220 

PF4 

PF3 

PF2 

PF1 

ENTER 

0 

1 

2 

3 

6 

5 

4 

TANDY1000 

BREAK 

DELETE 

INSERT 

ALT INSERT 

ENTER 

0 

1 

2 

3 

6 

5 

4 

'>4 



{)1 

FIG 4-12 TO 8£TBUFF 



9 

8 

7 

G2 

9 

8 

7 

~7 

In mapping this keypad,the physical position of 

the key is given importance compared to the key number. 

For example,the key below PF4 erases one wo~d from the 

display,similarly the key below BREAK does the same 

thing in TANDY. 

NOTE : Since this keypad produces ASCII codes for digits in 

VT220,the NUM LOCH key should be set on TANDY,so that 

this auxiliary pad produces codes for 

numbers.However,while entering """'~ j.' and r-d, the NUM LOCK 

should be reset, the required data entered and the NUM 

LOCK set again.The flowchart for the keyboard mapping is 

given in Fig 4.12. 

PROCESSING DATA IN BUFFER : The next part is to read a 

character from the circular buffer and process it for 

displaying ordinary characters as well as graphic 

characters.VAX sends code 14 or the escape sequence 

ESC{JJ to instruct the VT220 to enter graphics 

mode.Similarly the code 15 or the sequence ESC(B·· resets 

the graphics mode.The DEC special graphics character set 



63 

6 

DEC Special Graphics 

0 3 4 5 6 7 

BITS 
" r-

NULl: " !: !; •"" ·'"' ! ': 0 Dl£ ~ SP 0 0 , .. p ·"' . ' ,., . ., !oc ..,.., ~ 

SOH[: DC1 !:; !"' 
t']l !'4! ,,, 

" " A ~ Q i ,, I !~ '•t) 

"'""' 111 ) )! ,, 
STX! !" ,.., !'" ·n )'•1 

2 DC2 ,, !;; ;" a ' .. R :u I . ·" ,, '., " I<AA > " OC3 1 ~ • i~ ~~ c I'll j '4) il6l 

3 ETX I' IXOHII,l 
3 s " i .. 

scZ.t l ';~ !n ' " " ,. 
s I;: ... :'!: 1: j~ 4 '' EOT DC4 " 4 " 0 .. T 

!14 ~ " I " 
NAK I~ % i ~ ... 

u ! : '"' I'" 
5 ENO ' 5 " E 1·: I "1 

'" " 
,,. 

I ~ 

" .. ... 
v ! ·= . , ... 

6 ' ' ACK . SYN , • . 6 " F "' "' J,. "' . 1,. .. .. 
" I" w 1·:: I:~ 7 ' ':•' BEL ' ETB " 7 ·" G 

" 
., 

" " " 
.,. 

" t'~ !'" '" • ''' as . CAN 1 ~ ,;: 8 " H X " ! ·: '" . '" .. 
" I~ I',.,- f-·-t,,. i :: I '' HT EM " I " I i;; y i : s: ., . , 

sua\~ " 
.. , I,, I ·~1 i 

10 LF I ·: * " J z .. ... ~ ! •n .. ... ' ,, 
ESC!~ '" K l '3 ! '') 

11 VT • ., jw " •C. I I 

·~ ! •• ,. '" " .. 
FF l ~ ~ 

~~ 1: j ·~ '·~ 
12 '' FS " < L ' : '~ ;. 

I " ~ '"' ! ,, GS!:! !!: • ! ~ I "~ 
.,., 

'" ., 
13 CR , ·; 

., 
' II 

.,. ·~ ,,., ·., "' .~-----· " 
so I:: I . 1:: i 

.. ... . ,, 
14 RS ! " > " N ! " t .,. 

I l . ; .. " ------,;-
I" I " ' " ? l ~ i 'I' ,. 

15 Sl I ',~ us I " I I " 0 I ;-tlllAJio••j ., DEL •n 
I " y 

f-----<:o CODES 
GlCOOES 

(DEC SPECW.. GAAPtitCSI 

KEY 

'"'""'"'EIJJ "''"' ;: OfC""'"'' .... ,. 

FI·G 4·15 



G4 

is given in Fig 4.13. Since the ASCII characters between 

BOH and FFH are used for displaying graphic charact~rs 

in a PC,the DEC special graphic characters are mapped 

with these characters.See appendix E for a complete 

table of ASCII codes.The flow chart for escape amd 

control sequence identification and that of graphic 

charcater recognition is given in _Fig 4.14. The 

implementation of escape and control sequences is mostly 

self explanatory from the program. 

Among the important ones are -

Displaying characters with an attribute : 

When VAX sends the control sequence ESC[7m 

the characters have to be displayed in reverse 

video.Similarly it serids ESC[5;7m to display the 

following cahracters in blinking reverse video mode. 

MSDOS interrupt 10H provides a facility to display 

a character in given mode.The prcicedure diaplay uses 

this facility.The table below lists the options 

available on PC for the varios attribute values. 

attribute effect 

00 No display 



PROCESSING ])AlA IN BUFFfR. 65 

FIG 4-14 
TO 6ETKEY 



01 

07 

08 

09 

70 

71 

78 

79 

81 

87 

89 

FO 

F8 

GG 

underlined characters 

normal characters,white on black 

no diaplay 

underlined high intensity char. 

reverse video 

underline only,not reverse video 

reverse video,high intensity· 

high intensity underlined 

blinking underlined 

blinking noraml 

blinking underlined highintensity 

blinking reverse video 

blinking high intensity reverse 

video 

When the attribute is other than zero,it has to 

dispalyed in a mode other than normal.If the rerceived 

attribute is 7,then display is called with mode=70.If 

the received attributes are 5:7, then the mode is set to 

F7H and display is called.This attribute byte is reset 

to zero when ESC[m or ESC[Om is received. 

Defining windows 

When the control sequence ESC[3:22r is 

received,the window has to be set from row 3 to row 



G7 

22.This is accomplished with window command in TURBO 

pascal.The 

to the top 

variables wintop and winbottom are assigned 

row and bottom row respectively.These 

variables are usefull when deciding whether to scroll 

the display or not.Every time a window is defined,the 

cursor is positioned at home. 

Inserting and deleting characters 

If a character has to be inserted in a row, 

at a column,then the present cursor position is 

saved,the string of characters from the current cursor 

position tn the 80th column are read into a buffer by 

repeatedly calling READMEM.This string is reexamined and 

blank characters on the right side are discarded.The 

cursor is positioned at the same place,the new 

characters is inserted and the string is written back 

from the next cursor position.The cursor is restored. 

Similarly for deleting a character,characters from 

the next cursor position are read into the string and 

put back from the current cursor position.The last 

character is erased and the string is flushed. 



G8 

Coming back to DOS 

Since we chose to insert our own escape 

sequences,the escape sequence ESCq is introduced to 

abort CONNECT and return .back to DOS.A program TODOS on 

VAX,when run sends ESCq. CONNECT traps this and gives 

the user an option either to logout or still remain in 

session.Then CONNECT is aborted. 

The input ALTx also aborts CONNECT,but 

disconnecting by running TODOS· is more advisable,in 

order to avoid disconnecting while in editor or some 

application program. 



6~) 

V . FILE TRANSFER UTILITIES 

Since we could establish a connection between PC 

and VAX,the next step naturally is to exchange information 

from one system to the other.This chapter describes the 

protocols 

VAX and 

and utilities for transferring files from PC to 

fran VAX to PC.Error free file transfer is the 

backbone for other utilities like mail.The mail and phone 

facilities are provided in PC to PC communication. 

This error checking for communication between two 

computers is the job of the data link layer in a computer 

network,which is normally provided in hardware.Since this 

hardware is not available in PC,it is implemented by 

software. 

The basic idea in file transfer is as follows-

A program on the PC reads characters from a file and 

transmits them over the communication line.Another program 

on VAX receives the characters and stores them in a file.If 

the above scheme works well,without loosing any 

information,it would have been very simple.However real 

world communication circutes have the nasty property of 

making errors now and then,which causes transmitted data to 

get mangled or even get lost altogether.Furthermore,when 

data is transmitted continuosly at a baud rate of 9600 it is 



70 

very likely that the charecters will be lost,because the 

reciever has only a limited buffer space.To avoid this,we 

have to devide the data into frames,send them and make sure 

that they are recived properly at the other node . 

,5.1 PATA LINK PROTOCOLSP 

Let us consider that a file is to be transefered 

from PC to VAX. A program in PC reads data from the 

file.This data is devided into frames.The receiving program 

receives the frame,checks if the check sums and the sequence 

numbers match.If they match,an acknowledgement followed by 

the sequence number is sent,otherwise a negative 

acknowledgement followed by the sequence number is sent.A 

frame consists of sever.el fields. 

t f ... l ... t---64 C~R.ACTI!QS • tf . t 
STK SE& 1..10 ,-

l l f>A~ Fer.D /~ETJC 

[II : !Ill (b..) 

Fig 5.1 

The first field is the STX (Start of text) which 

is a control information to the receiver that a new frame is 

following.The second field is the SEQNO which tells the 

number of frame currently being transferred. This is 

necessary to detect missing frames or duplicate frames.Then 



71 

follows the data.Our frame size is set to 64 bytes.If there 

are as many characters in the file as the framesize,then all 

the 64 characters are put in the frame(Fig5.1a).However if 

an end of file is encounterd before 64 characters,an FEND 

{End of file) character is pu~ after the data(Fig5.2).Then a 

check sum is put in the frame followed by an ETX(End of 

text) character.The file transfer is complete,if zero or 

more frames of type a folled by one frame of type b are 

received at the other node. 

5.2 Calculating the checksum : In practice,cyclic redundancy 

code(CRC) method is used for error checking.However 

constructing and checking the CRC checksum is either 

provided in the hardware or carried out with a single 

machine code instruction(like the CRC in VAX).However the pc 

has neither the hardware to suppo·r t generation .and checking 

of CRC check sums,nor a single instruction to do the same.If 

this were implemented in software,it would be 

inefficient,since the PC is much slower than VAX. 

Since in our case,the actual problem is that 

characters are lost sometimes,but never mangled.Hence a 

simpler method is followed for computing the checksum.Before 

proceeding with the construction of a frame,a variable CHECK 

is initialized to zero.Eveytime we read a character,we 



72 

exclusive or this character with check.Then this character 

is put in the buffer.After we read 64 characters or 

encounter an end of file,the contents of check b~comes the 

checksum.Similarly on the receiving end,chech sum is 

calculated after receiving each character.If these two 

checksums match,data is not lost.However,this checksum can 

be any number between 00 to 127.ASCII values 00 to 31 are 

special characters.These cahracters,if sent as they are,will 

be interpreted by the operating system.Hence when the 

checksum is less than 31,the value 31 is added to 

checksum,so that the checksum is always greater than 

31.Similarly the character 121 is the BACKSPACE 

character.When sent,the previous character in the input 

stream is erased.To avoid this,the checksum is changed from 

127 to 126.A similar transformation is carried out at the 

other end.This protocal will fail if -

1. An even n11mber of characters change in·the same 

bit position. 

2. The check sum on the sender side turned out to be 

X (X ~ 31) and the checksum on the receiver turned 

out to be X + 31.Hence 31 will be added to X on 

the sender side,and X + 31 will be sent.The 

checksum at the receiver is already X + 31 and 

they do match and it will be presumed that the 



73 

frame is correctly received,though there is an 

error. 

But the above conditions rarely occour. 

SPECIAL CHARACTERS : The STX,ETX and FEND characters can 

not be ordinary text characters,otherwise they get mfxed up 

with the data.One way to avoid the problem is to use 

character stuffing.We chose to do in another way.These 

STX.ETX and FEND characters are predefined as equivalent to 

certain control characters.Since control characters can not 

be part of a text file,we can safely send them.However we 

should see that the operating system should not trap them. 

One more problem remains to be solved. The 

terminal controller of VAX is normally programmed to echo 

back whatever is sent from the terminal.Hence characters 

sent from the PC will be echoed back.However we want files 

to be transferred from PC to VAX,they need not be echoed 

back.In fact,they should not be echoed back,lest they should 

interfere with acknowledgements and frame numbers,that we 

will be receiving from the other side.To avoid the above two 

problems,we execute the VMS command 

$ set terminal/noecho 

When this command is executed,not only that the 

characters are not echoed back,certain control cahracters 



74 

are also handed over to the user program;without the 

operating system traping them. 

INITIALIZING THE FILE TRANSFER SESSION 

One way to transfer a file from PC to VAX is to 

run a program(FTPC) on PC to send frames and process 

acknowledgements, and another program(FTVAX) on VAX to 

receive these frames and process them. To . proceed this 

way,one has to get a connection to VAX on the PC,run the 

program PCTOVAX,then disconnect to come back to MSDOS and 

run the other progarm FTPC.Both programs will be running and 

the file will be transferred.However we chose to do it in 

another simpler way.Since we developed our own code to 

process escape sequences,we introduced our own escape 

sequences.The user gets a connection to VAX on the PC by 

running CONNECT.If a file is to be transferred from PC to 

VAX,the user runs a program PCTOVAX on VAX.This program will 

send the escape sequence ESCT and then will wait to receive 

frames.The program CONNECT traps this sequence,and then runs 

it's own program for file transfer,which constructs 

frames,serids 

program is 

them and procersses the 

a part of CONNECT 

acknowledgements.This 

and in fact is a 

subroutine.This is possible since ESCT is not one of the 

escape sequences sent by VMS.This procedure runs ori PC and 



75 

PCTOVAX runs on VAX.Once the file transfer is complete,we 

are back to the VMS prompt.Similarly the file transfer 

program from VAX to PC is initiated by a progarm VAXTOPC on 

VAX.It sends the escape sequence ESCF. 

5.3 IMPLEMENTATION DETAILS 

Since file transfer from PC to VAX and VAX to PC 

are almost similar,we describe here two algorithms,one the 

file sender and the other file receiver.For file transfer 

from PC to VAX,the sender program runs on PC and the 

receiver program runs on VAX.For file transfe from VAX to 

PC,the progarms will be interchanged.The flowchart for file 

transfer sender is given in Fig5.2 and the flowchart for 

file receiver is given in Fig5.3. 

5.3.1 FILESENDER 

This program first reads the name of the file to 

be transferred.If the file is availabe,it will send 

character C, instructin~ the receiver to continue,otherwise 

it will send the character Q,instructing the receiver to 

abort and gives a message that the file is not found.When a 

file is sent from PC to VAX,a file with the same file name 

will be created on VAX.However,the drive specification -that 



t:ILE TRANSFI!R • SENDER. 

F'IG 5.2 

Y£S 

S&M·SfaNo•40 
t:'T CC»t P&.eTE •O 

V&s 

S1'CWl& atMl D1 A&AHE 
ZNutet4ENt' tMA UMJM 

SfN. Glf"'seu.DifCl u 

If SIILCifiO. CJ2.. Alt .Sa 
~~ seti.CIIItk .. 2'7 • satJ.tiiUK.•I2C 

........ ,.AttJC 
%N FAAM' 

7B 

CONT.SNUEJ) IN N&•T ,Atl£ 



J"AAME SENt •O 
1'flliSaO 

RECEIVE £JJJIM Mit OR 

AEtEt'E UC·~NO 

-YES 

77 

NO 

~8S&NT•t 
~T'COM ~&.£TEa 1 

2 Nf='DaM UNSU«~SS 

TRANSt:Eit 

FIG 5.2,. (coNTP) 



78 

might have been given for the filename on the PC will be 

discarded.However when a file is transferred from VAX to 

PC,both the filename on VAX and the filename on the PC are 

read.This is necessary because -

1. The user may wish to give the drive 

specification,when giving the filename on PC. 

2. The user may give a different filename on PC so 

that,if a file with the same name as that of VAX 

may not get erased during file transfer.This is 

however not a problem when file is transferred 

from PC to VAX,since VMS creates a file with a new 

version number. 

Check is initialized to zero and the sequence 

number of the farme is initialized to 49 (character '1' ). 

The sequence number is incremented after a frame is 

successfully 

increment will 

received at the other end.However 

be modulo 9,so that after sequence 

8, the next sequence number will be 1. 

this 

number 

The first character in the frame is STX,the 

second character is the sequence number.Characters .are read 

in one by one,till either end of file is encountered or 64 

characters are read.Before the character is put in the 



7~1 

ferame,it is exclusuve ored with the check.Since VMS stores 

both a carriage return and a line feed when it receives a 

carriage return,line feeds with in the file on PC are 

discarded in file transfer fran PC to VAX.If an end of ile 

is encounterd,an FEND is put in the frame.Then the 

checksum is put in the frame,followed by 

computed 

the ETX 

character,signalling the end of the frame.This frame is then 

sent to the receiver,which processes it and sends 

acknowledgement followed by the sequence number.If an 

acknowledgement followed by the sequence number is received 

with in certain time limit,and the sequence numbar received 

matches with the sender's sequence number,then the frame is 

successfully transferred.It will increment sequence 

number.If an end of file was encountered earlier,file 

transfer is complete.Otherwise it will construct the next 

frame a~d repeat the process again.If it did not receive the 

acknowledgement and sequence number within certain time 

limit,or it received a negative acknowledgement or the 

sequence numbers are matching,then the frame is not properly 

re~eived at the other node.The frame will be transmitted 

again.It will try a maximum of four times,and if it could 

not succeed,signals an unsuccessful! transfer and aborts. 



80 

5.3.2 FILE RECEIVER 

This program reads the filename and creates the 

file with that name for writing.If it could not create a 

file,it will send a message to the sender to abort the file 

transfer.Then it will initilalize it•s sequence number to 

•t• .When it receives characters, it takes the appropriate 

action depending on what is received. 

If an STX is received,it means a new frame is 

following.So it will flush it•s internal buffer,resets it•s 

checksum and character count and reads the next character 

which is the sequence number of the sender. 

If an ETX is receivBd, it is an error.Sihce ETX 

can not be encountered before 64 characters,a negative 

acknowledgement followed by the sender•s sequence number is 

sent. 

If an FEND is received,it means that an end of 

file is received at the sender side and the current frame is 

the last frame.The next character will be checksum and the 

next will be ETX.It will compare the checksums and the 

sequence numbers.If they match,an acknowledgement followed 

by· the sequence number is sent.The file trsnsfer is 

complete,hence the file is closed.If the checksums do not 



aaser POJN 
TO ~U 

CMAA COUin'aO 

la'c&lYU 
CMCCitaO 

UA& SPI 
Sf.NO 

F'lLE TRANSFER -RECEIVER 

OPEN FJI.E Ill WRIT£ HD 

STO .. CMAQ 
sa. eu~a 

A&ciiVR ct1 
• uc.c.-ec& 110 

NCUME.~,._ 
CRAit- COUUT 

A80RT 

fTCOHN.EtE 

•i 

81 

r:ENJ) 

• CMICK-STo 

!J:" IWSUU'•I 

~Teat PIEri 
•i. 

CLOS& TME 
I=J.L£ 

FIG 5., 



FUNCTlON CHEC.I<-StORE 

82 

FIG 5., (UJNTJ>) 



match,a negative acknowledgement followed by the sender's 

sequence number is sent.If the sequence numbers do not 

match,this is a duplicate frame,hence an acknowledgement 

followed by the sender's sequence number is sent 

If an ABORT .is received, it means that the sender 

sent the same frame four times unsuccessfully and the file 

transfer is to be aborted.The file is closed and the program 

is aborted. 

If the character is none of the above,it should 

be data.It is stored in it's own frame,calculates it's own 

checksum,and the charactercount is incremented.If 64 

characters are received,the next character is checksum of 

the sender and the next is ETX.If the checksums and the 

sequence numbers match,the frame is correctly received and 

is stored ln the file.The sequence number is incremented and 

an acknowledgement followed by the sequence number is 

sent.If the checksums do not match, a negative 

acknowledgement followed by the sender's sequence number is 

sent.If the sequence numbers do not match,this is a 

duplicate frame,hence an acknowledgement followed by the 

sender's sequence number is sent. 



84 

5.3.3 TRACING ERRORS 

Let us consider two examples as to how errors are 

detected. 

a. Suppose that one character gets lost in th~ transfer -

The checksum of the sender will be received as the 

64' th character and ETX will be received as the 

chechsum.This is an error and will be trapped.A negative 

acknowledgement will be sent.Also note that the checksums do 

not match. 

b. The acknowledgement sent by the receiver gets lost -

The receiver has correctly received the frame and 

sent the acknowledgement followed by the sequence number. It 

increments it's sequence number.However,the acknowledgement 

got destroyed in between.The sender will wait for the 

acknowledgement for a finite time,then time out and sends 

the frame again.Since it could not receive the 

acknoeledgement,it will 

number.Hence a duplicate 

not increment 

frame will be 

i t I S sequence 

received at the 

receiver.This will be traced,since the sequence numbers do 

not match.The receiver then sends an acknowledgement 

followed by the sender's sequence number. 



111 

APPENDIX A 

8088 
. t , IIi 1ns ruction 



112 

ADD JAOO desttnatoon.source 
"•9• 

OOITSZAPC 
AddottOn X X X X )( X 

Operandi Cloclll Tran1ler1• ., ... COdln9 balftple 

•eo•~ter. reo•tter l - 2 ADD CX. OX 
regoster. memory I+EA I H ADD 01.18lll AlPHA 
memory. reg•ster II+EA 2 2·• ADD TEMP. Cl 
regoster. ommedoate • - l·• ADO CL. 2 
memory. ommed•ale 11+ EA 2 ).6 ADO ALPHA. 1 
accumul,.or. ommec:l•ate • - 2-l ADO AX ;>00 

AND 'AND destonatoon.aource 
Fla91 

OOITSZAPC 
Looocatand 0 X)( u )( 0 

Operandi Cloclll Tran11er1• lylel CocMnf h-pie 

regotter. reo•tter l - 2 AND Al.Bl 
reo•ater. memory 9+EA I 2·• AND CX,FLAG_WORD 
memory. regotter II+ EA 2 2·• AND ASCII)OI).Al 
reg111er. ommed~te • - ).4 AND CX.OFOH 
memory.1mmedoate 11+EA l )-1 AND BETA.OIH 
accumulatOf. ommedoate • - 2·3 AND AX. 010100008 

CALL ~~ALL target ,,... OOITSZAPC 
Can a procedure 

Operandi Cloclle Trettllera• I -,tel COdMfb_,..t 

near-proc 19 1 l CALL NEAR_ PAOC 
lar-proc n l s CALL FAA .PAOC 
rnemptr Ill 21 +EA 2 2~ CALL AAOC_ TABLE (SI) 
regl)lr Ill II 1 2 CALL AX 
rnemptr l2 l7+EA • 2~ CALL IBXJ.TASK ISIJ 

CBW I~ IW litO Clt)efeftdl) 
Convert byte to WOld 

,._, OOITSZAPC 

Operand a ClocU Tr-ten• lyt .. CM1119b.,..._ 

I roo operandi) 2 - 1 caw 

I ~LC litO operlfteft) 
I 

'lata ODITSZAPC CLC :--
Cl-canyhiO 0 

o,., .... c ..... TrMaten• . .,. .. C...,l ........ 

litO opetlndl) 2 - ' CLC 

CLD r CLD I no opereftda) c•- d~r.clioft '110 
" OOITSZAPC 
... 0 

Oper8ftft Cloclla ,,_,., .. ., ... Coe~Mtl•.,..._ 

lno operlndt) 2 - 1 CLO 

• for the 1016. ldcl four docb kw ..dt I 6-tllc --" fniWfw ~ 11t ocW ........_ for the 1011 • ..W 
four docb for each I 6-tllc _, fniWfw. Hnemollks 0 Intel. 1971. 



113 

Cll 1CL11no op~ranrl~J 
FlaQt 

0 0 J I .' AI PC 
Cte.lt oniPrrupl tlaq_ 0 

Operandt Clocks Transfers· Bytes Codon11 E oomple 

1no opE>rand$1 1 - I CLI 

CMC JCMC •noop~rand\J 
FlaQl 

0 0 I r s l A. p c 
Complpmf!'nt ~ -~" v flttQ l( 

Operands Clocks Transfers• Bytes Codong E oample 

1no operanas• 1 - I CMC 

CMP 1
1

CMP o!e,t•n.o'· ··n ~nurCt" 
Flag• 

00 I T s l A. p c 
Comparf! <1~' · ·•dllOn to so"'rce ( )( )( )( )( )( 

Operands Clocks Transfers• Bytes Codong Eumple 

rt~Q•\It•r '•:t~·,ft~' J -- 1 CMP ax ex 
,.. c4 ,-. u~ r 'nempry 9·EA I 2-4 CMP OH ALPHA. 
rr.,r••·•• • rt•(:•"'.!t•r 9•EA ' 1-4 CMP BP •2' St 
'•·r~- .,,., • .. 'l'•"1•.1tf• 4 - ).J CMP BL 02H 
n·o··•·, .•, ... ,,_, .. _,,,,,,. 10. t A. I ) 6 CMP BlC RA.OA.R 01 3410H 
,t• I .. .. · .. · rn•••t••!·,tft• 4 - 1 J CMP At 000100008 

L___. 

CMPS I CMPS olf'~l-~lronq ~ource-\tronq 
Flags 

OOITSZA.PC 
Ct)'TI(ldiP '•"'"Q )( )( :< X )( )( 

Operands Clocks Transfers• Byles Coding Eaample 

(jP\1 ·~U•f'IQ -.r,~~·.:~ '\tr,n<J n 1 1 CMPS BUFF1 BUH2 
lfCt>l•..ttl C.l{'\1 :.!r.''IJ ..,.-,u'f.•_'-'!'•no g. n '"" 2 r~p I REPE CMPS 10 KEY 

CWO I CWO (no operitnds) Flag a 
OOIYSZAPC 

Convert •ord IO doubte•ord 

Operand a Clock a Tranafers• By lea Coding Eaample 

tno oper .. ndsl ~ - 1 CWO 

DAA IDAA tno op~randsl Flag a 
OOITSZAPC 

DecimAl adtu~llor addoloon X X X X X X 

Operand• Clock a Tranaters• By tea Coding Eumple 

tno oper.ands• 4 - ' OAA 

DAS ~~AS 1no op~randsl Fl•ga 
OOtTSZAPC 

Oeclm<tl.tdtustlor ,ubtr.11ctoon u· X X X X X 

Operand• Clock a Tranafera• Byt .. Coding Eump .. 

tnooper.andsl 4 - , OAS 

• f« the 1016, add four clocks fOf' each 16-bit word rnnsfer with an odd addreu. For the 80N. add 
four cloctts f« each 16-bot word transfer. Mnemonics © Intel. 1978. 



114 

DEC I DEC •lt!~lon .. :oon Flags 
ODITSZA p c 

D"trrmpnl by I X X X X X 

Operands Clocks Transfers• llyles Coding Eumple 

't"f~ 'h 1 ·- I DEC AX 

'"Qtl J - 1 DE~ AL 
mpmoty ·~. E A 1 1·4 DEC ARR'A Y ISIJ 

DIV I OIV sour Co.' Flag a 
OOITSZAPC 

D•v•~·on uns•oned u u u uu u 
Operands Clocks Trans lara' llylea Codlftt lhample 

·~98 80-90 - 2 OIV CL 
reo•f> IU-IIi] - 1 OIV BX 
m~me 1&6·961 I 2-4 OIV ALPHA 

•EA , 
me-m16 (15()-1681 1 2·4 OIV TABLE lSI I 

•EA 

ESC I ESC e•1ern~l-opcooe.source 
Fl~a 

OOITSZAP c 
Escape 

Operands Clockt Tranal.,t' llylee CodlfttEaaMple 

•mmec1•ale memory I•.EA 1 1-4 ESC &.ARRAY ISII 
.mmed•ate reQ•Sier 1 - 1 ESC :IO.AL 

HLT I HL T tno ooer~r>d11 Flags 
OOITSZAPC 

Halt 

Operand a Cloclla Trant lara' 8yles Codln9 Eo ample 

I no operandsl 2 - 1 HLT 

IDIV I IDlY source Flaga 
OOITSZAPC 

lnteoer dt,.soon u u u uu u 
Operands Cloclta Tranalera• lyles Codlno Eaample 

reoa 
. 

101-11:1 - 1 IOIV BL 
reg II 16S-114 - 2 IOIV Clt 
merna 1107-lllt I 2-4 tOIV OtVtSOA_~YTE ·51 

•EA 
meonlll 1171·19()1 1 1·• tO IV 8JC OIVISOA_WOAO 

• EA 



115 

IMUL IIMUL \ource Ftava 
OOITSZAPC 

lnleger mulltphcatton )( U U U U X 

Operands Ctoclla Transfers• . ., ... Coclln9 Eumple 

regl 80-98 - 2 IMUL CL 
regiS 118-1~ - 2 IMUL BX 
mema 188-1~1 1 2·4 II.IUL RATE BYTE 

•EA 
memta 1134-1801 ' 2·4 IMUL RATE WOAD 'BPi ;011 

•EA 

IN I IN accumula101.port 
"ava 

OOtTSZAPC 
Input byte 01 word 

Operand• Clock a Tranalara• lytea Cocllnf b-ple 

accumulaiOI. •mmedl 10 I 1 IN Al. OFFEAH 
accurnulatOI. OX a I 1 IN AX.OX 

INC . f
1

1NC dealtnalton 

"" 11 

OOITSZAPC 
Increment by 1 )( X X X X 

Opera net. Clock a Tranalera• lyles Cocllnf ba,.._.e 

reg II 2 - I ,.~ - -x 
regl 3 - 2 INC Bl . 
memory IS•EA 2 2·• INC ALPHA . 01 BX 

INT liNT Interrupt-type ,... OOITSZAPC 
Interrupt . 0 0 ::-----

Operanct. Ctocka Trlftat.,.• lyt" Cocllnt la-ple 

tmmedlllype • ]) 52 5 ' INT) 

lrnmedlllype - 3) 5t 5 2 tNT 17 

INTRt I ~NTR ceaternal ~akabltlnlerrupt) ,. OOITSZAPC 
tnterruptlf tNT A and IF•t 00 

Operenct. Cloclla Trenelera• lytll Cocllntla.,..ae 

cno operand II 61 7 NtA HIA 

INTO I INTO cno operendat ,. ... OOITSZAPC 
Interrupt II overflow 0 0 

Operands_ Cloclla Tranafera• . ., ... Cocllnf bemple 

I no operlndSI 53 01. 5 I INTO 



116 

I RET l'"ET Cno ()9erandtl , .. ,. OOITSZAPC 
Interrupt Return RRRRRRRRR 

Operandi I Clocllt Tranalera• lytll Coding f .. mpte 

cno operandtl I ~· 3 , I RET 

JA/JNBE I JAI JH If ahorHabel Flegl 
OOITSZAPC 

I Jump of abOve I Jump of not below nor eQua 

Operandi Clock I Tllnlflfl" lyiH Coctlng faample 

anorl-lat>et 16or• - 2 JA ABOVE 

JAE/JNB J JAE/ JNI lhOrt-label Fletl 
OOITSZAPC 

Jump olabovt or tQuiiiJump of not below 

Opet~ncll Clocllt Tran1tera• lytll Coctlftt bample 

lhorl·llbel 16or 4 - 2 JAE ABOVE EOUAL 

JB/JNAE I JIIJNAE anort-labet · Fleg1 
OOITSZAPC 

Jump of belOw I Jump of not abOve nor eQull 

Operandi I Clock I I Tran1ters • Bytes Coding Eaempfe 

short-label I t6or • I - 2 JB BELOW 

JBE/JNA I JIE/ JNA shOrt-label Flegs 
OOITSZAPC 

Jump of below or eQuaiiJump If not above 

Operandi Cloclll Transtera• lytel Codlft9 Eaampte 

lhort-label t&or • - 2 JNA NOT ABOVE 

JC I JC short-label Flega 
OOfTSZAPC 

Jump of carry 

Operands Cloclll Trenster1" lylll Coctlnt Eaempte 

anort-llbel 16or • - 2 JC CARRY SET 

JCXZ l JCXZ short-label Fl191 
OOITSZAPC 

Jump of CX IS zero 

Operandi Clock I Tflnllert • jtytel Codlft9 Eaample 

anort-11Del HI or& - I 2 JCXZ COUNT DON F. 

JE/JZ l J E I Jl short-label Flett 
OOITSZAPC 

Jump of eQual/Jump of zero 

Operandi Clocka I Tran1tera• lylll Cocllnt fa ample 

short-label I 16 or • I - 2 JZ ZERO 



117 

JQ/JNLE fJG/JNlE ahort·label Flag a 
ODITSZAPC 

Jump II greater 1 Jump '' not ten nor equa 

o,..Ms Clockl Trattalera• lrtat Codlflt Eaafft9M 

lhotl-lebel 160<. - 2 JG GREATER 

JOE/JNL IJGl/JNL ahO<I-tabel , .... OOITSZAPC 
Jump II greater or equal/Jump il not leu 

o,--11 Cloctta Tranafera• lytea Codlfttba~~tpte 

atlort-bbel 160<. - 2 JGE GREATER_EOUAL 

JL/JNQE I JL/ JNGE short-label , .... OOITSZAPC 
Jump If leas I Jump 11 not greater nO< equa 

Operaflda Cloch Trattalera• . ., ... Codlfttb81ftple 

ahort-label 16or • -. 2 Jl LESS 

JLE/JNQ I Jll/JNG ahort-label ,.... 0 0 ITS l A ·p C 
Jump H le11 0< equal/Jump •I not grMter 

Opetaflda Clodla ,,_,.,.. . ., ... CoAtg(a_,.. 

ehort-label 110<4 - 2 JNG NOT_GREATER 

JMP IJMPtarget , .... ODITSZAPC 
Jump 

Operaflda Cloclla ,,_,.,.. lyiH Coding E._,.. 

lhort-labet ·~ - 2 JMP SHORT 
near-label IS - 3 JMP WITHIN_~EGMENT ..,....,.. IS - ~ JMP FAR_LABEL· 
-ptr11 II+EA I 2·• JMP IBXI TARGET 
regptrll 11 - 2 JMP ex 
~r32 24+ EA 2 2-• JMP OTHER SEG lSI I 

JNC 1 JNC shurt-tabel Ftava 
OOtTSZAPC 

Jump 11 not carry 

Opetaflda Clock a Tranaler~ • Bytes Cod1~ Eaample 

lhort-label 16 0;. - 7 JNC NOT .. CARRY 

JNE/JNZ I JNE/JNZ short-label 
Fle91 

OOITSZAPC 
Jump 1! not equal/Jump of notrero 

Opetaflda Cloch Tranafera• lytea Codlflt Eaample 

lhort-label 16or • - 2 JNE NOT_EOUAL 



118 

JNO I JNO ahort-label 
flat a 

OOITSlAPC 
Jump If not cwerflow 

()perancta. Clocta y,.,..,.,,. .,... Coding E__,.. 

lhort~bel 1lor 4 - 2 JNO NO OVERFLOW 

JNP/JPO 1JNP/JPO ahort-label Flets 
OOITSZAPC 

Jump If not patltyiJump II parity odd 

Operands Cloctt y,_..,.. 
'"" CodlfttE~ 

ahort-label tlor4 - 2 JPO 000 PARITY 

- I JNS ahor1-label OOITSZAPC JNS 
Jump II not aiOn f. 

Operancte Clocte y,_,.,,. 
'"" Codintb ...... 

·~·~bel tlor 4 - 2 JNS POSITIVE 

JO I JO lhort-label 
Jump If overflow 

F'lafa· OOITSZAPC 

o,.,encte Cloctle TraMiera• .,. .. Codint bample 

ahort~bel tlor 4 - 2 JO SIGNED OVRFLW 

JP/JPE I JP/JPE ahort-label 
flat• 

OOITSZAPC 
Jum!HI parity I Jump II parity even 

Operancta Cloclle Trenetera• '"" Cod'nf bample 

ahort-label tlor4 - 2 JPE EVEN PARITY 

JS I JS ahort-label 
flat• 

OOITSZAPC 
Jump1l11gn 

Operencte Cloclll Trenalera• .,. .. Coding e .. mple 

ahort-label HI or 4 - 2 JS NEGATIVE 

LAHF I LAHf cno operands) Fta11a 
OOITSZAPC 

Load AH from !lags 

Operencta Cloclll Tranalera• lytea Codint hample 

I no operands) 4 - 1 LAHF 

LOS I LOS deshnahon.source flail• 
OOITSZAPC 

Load poonler us•ng OS 

Opere net• Cloclla Tranalera lytea Codlnt hample 

regtl. mem32 16+ EA 2 1·4 LOS SlOAT A SEG 1011 



llB 

I LtA deattnat10n.-rce 
-

OOITSZAPC LEA 
Load eHectnoe addreu 

Flep 

()pereftcb Ctocb ,,......,.. .,... Coclintb_,.. 

~1l,tMtn11 hEA - ~ LEA BX,IBPIIOII 

LES I Lll destlftltiOfl,-rce ,... OOITSZAPC 
Load pOintet uatng ES 

OperMMts Cloch ,,..,.,.,.. 
'"" Cocllftt EUMpte 

reg11.1Nml2 11+EA ' 2-4 LES DI.IBXI.TEXT BUFF 

LOCK I LOCK (no operands) ,. OOITSZAPC 
Lock bus 

Opere net a Clock a Traneleta• 
·~ C\ocllllt ( ....... 

tno operenda) 2 - I LOCK XCHG FLAG.Al 

LODS ILODS aource-slrlng 
Fief a 

OOITSZAPC 
Load atrono 

O,.,enda Clock a ,,_,.,.. lrt•• Cocllnt la_,.. 

aource-llnng 12 I I LOOS CUSTOMER . NAME 
(repeal) IOurce-atnng 9+13/rep II rep I REP LOOS NAME 

LOOP J LOOP shorHabel 
Fief a 

OOITSZAPC 
loop 

Operanda Cloch Trenaten• '"" Cocllnt laample 

ahort-label 1715 - 2 LOOP AGAIN 

LOOPE/LOOPZ I LOOPE/LOOPZ short-label 
Fiefs 

OOITSZAPC 
Loop 11 IQualtloop '' zero 

Operands Clocks Trent leta• •rt•• CocllntEufftt161 

ahort-label 18or6 - 2 LOOPE AGAIN 

LOOPNE/LOOPNZ JLOOPNE/LOOPNZshorHabel Fief a 
OOITSZAPC 

Loop •I not equal I Loop'' not zero 

Operands Clocks Transleta• .,, .. Cocllnt Ea-plo 

short-label 19 or 5 - 2 LOOPNE AGAIN 

NMit I NMI flllernal nonmaskable tnlerrupl) 
Fiefs 

OSITSZAPC 
Interrupt tl NMI • I 0 0 

Operands Cloch Transfon• .,, .. CocNnt Ea_,.. 

tr.o operandS! 50 5 N/A NIA 

• For che 1086, add four docks fOf" each I t.-bit word ~er with an odd addrel&. For che 8088. add 



MOV 

memofy, accumulatOf 
accumulatOf. memory 
reQIIter. reg11ter 
regllter, memory 
memory, regtltet" 
regiltef. lfniMdlate 
memory,llftmedlate 
Mg-feQ, reg11 
eeo-reo. mern11 
reg11, eeo-reo 
memory. Mg-reg 

MOVS 

IMOV deaunatlon.aource 
Move 

Clocka Tra~~elet~• 

10 1 
tO 1 
2 -

I+EA 1 
I+EA 1 

4 -
10+ EA. 1 

2 -
I+EA 1 

2 -
t+EA 1 

IMOVS delt·ltring.aourc.-etrtno 
JMove etrtng 

delt·ltring,IOUrce·ltrlng 
(repeat) dell·ltrtng, aourc•atrlng 

18 
•• 17/Jef) 

2 
2/Jef) 

MOVSB/MOVSW 

(no operandi) 
(repeat) cno operlndl) 

MUL 

r
MOVSI/MOVIW (no operandi) 
Move 1trlng (byte/word) 

Clock1 Tr8Mfet"S" ,. 
i+ 17/rep 

2 
2/rep 

IMUL aource 
MultipliCatiOn, un1igned 

120 

'''" 3 
3 
2 

2-4 
2-4 
2-3 
w 
2 

2-4 
2 

2-4 

.,... 

Operendl Clock1 TriMiet'l • lyte1 

regl ' 
reg11 
mema 

mem11 

NEG 

reg111er 
memory 

Operlnch 

·o 11 dellinatiOn • o 

70-77 
118-133 
Cn-a31 
+EA 

(124-1381 
+tA 

I ~EG destination 
Negate 

Clock I 

3 
1I+EA 

Trenlfet"a• 

-
2 

2 
2 

2 ... 

lytn 

2 
2·4 

Flefa 0 0 I T S Z A P C 

MOV ARRAY 1811. AL 
MOY AX;TEMP .. RESULT 
MOV AX,CX 
MOV BP.STACK. TOP 
MOY COUNT 1011. CX 
MOY CL,2 
MOY MASK IBXIISII, 2Ctt 
MOY ES,CX 
MOV OS. SEGMENT_ BASE 
MOY BP,SS. 
MOY IBi<f.SEG_SAYE,CI 

f1etl OOITSZAPC 

MOVS LINE EDIT _DATA 
REP MOYS SCREEN, BUFFER 

Fleta ODITSZAPC 

MOVSB 
REP MOYSW 

F~ 0 D I T S Z A P C 
X UUUUX 

MUL BL 
MUL CX 
MUL MONTH lSI I 

M\;L BAUO_RATE 

Flefa 
ODITSZAPC 
)( X X X X 1' 

CocMngEumple 

NEG AL 
NEG MULTIPLIER 



NOP 

OR 

reg later, regiller 
reg11ter. memory 
metnor(. regoater 
accumulator. immed11te 
reglller, Immediate 
rnemory,lmmediate 

OUT 

Operand a 

lmmed8, accumulator 
OX. accumulator 

POP 

Operands 

register 
seg-reg cCS tllegat) 
memory 

HOP I no oper~ndsl 
HoOperauon 

121 

Cloclll Tranalert' tytea 

l 

NOT dellinatton 
logoctl not 

Cloclrt Transtera• lytes 

3 
1I+EA 

lOA deshnatoon.sou~ce 
·.,"">Ottallncluaove or 

2 
2 2~ 

Clocks Tranatera• tytes 

3 
8+EA 
16+EA 

• • 
17+EA 

f OUT port.accumulator 
I Output byte or word 

1 

2 

2 

Cloclll Tranatera• Bytes 

10 
8 

f POP destonatoon 
I Pop word oil alack 

2 , 

CkK:Ila Tranatert• lytn 

8 
a 

17+EA 

1 
1 
2 

, 
1 

2-4 

FIIQI 0 0 I 1· S l A P C 

Coding £umpfe 

NOP 

Flttl 0 0 I T S l A P C 

Codlnfb-ple 

NOT AX 
NOT CHARACTER 

F•~ 0 0 I T S l A P C 
..... 0 xxuxo 

Codlftt Eumpfe 

OA Al. 8L 
OR OX. PORT 10 lOti 
OA FLAG BYTE. Cl 
OR AL. 011011008 
0ACX.01H 
OR IBXI.CMO WORO.OCFH 

fla9l 0 0 I T S l A P C 

Codlnt Eumpfe 

OUT 44.AX 
OUT OX. Al 

Flttl 0 0 I T S l A P C 

Coding Eumple 

POP OX 
POP OS 
POP PARAMETER 

r----------------..---------------------~~-----------------
[POPF cno operands) 0 0 1 T S l A PC POPF 

Cno operand~} 

'---

Operand• 

I Pop flags ott stack Fltt• R R R R R R R R R 

Cloclla Transfers• llytel Coding faa,.... 

8 POPF 



122 

PUSH I PUSH aource , .... ODITSZAPC 
Puah word onto aleck 

Operand a . Cloclla ,,_,.,,. lytea Cocllnt~ 

regoster 11 1 1 PUSH Sl 
aeg-reg tCS legall 10 1 1 PUSHES 
memory II+EA 2 2-4 PUSH RETURN CODEISII 

PUSHF 1 PUSHf cno operlndal , .... ODITSZAPC 
Puah llaga onto aleck 

Operand a Clock a ,,_,.,.. .,... Cocllnt la_,.. 

(no operands) 10 -<: 1 1 PUSHF 

RCL IRCL deatlnatlon.count ,.... ODITSZAPC 
Rotate 1111 lhrough carry X X 

Ope: aneta Clock a ,,_,.,.. .,... Cocllnt~ 

regiater. 1 2 - 2 RCL CX,1 
reglater. CL 1+4/btl - 2 RCL AL.Cl 
rnemory.1 15+EA 2 2-4 RCL ALPHA. I 
memory,CL 20+EA+ 2 N RCL IBPJ.PARM. Cl 

4/bil 

RCR f~CR dealgnallon.c:ount ,.... OOITSZAPC 
Rotate right through earry X X 

Operande Clockl ,, .. ,.,.. .,.. CociiRt r....,.. 
regtster. 1 2 - 2 RCA BX.1 
regteter. CL 1+4/blt - 2 RCA BL.Cl 
memory. 1 15+EA 2 2-4 RCR IBXJ.STATUS, 1 
memory, CL 20+EA+ 2 2-4 RCA ARRAY lOCI. CL 

4/bll 

-
REP (REP Cno operandi) ,.... ODITSZAPC 

Repeat atring operation 

Operand• Clocb ,,_,.,.. .,... Cocllnt~ 
(no operands) 2 - I REP MOVS DEST. SRCE 

REPE/REPZ JREPE/REPZ cno oper1n<1s1' 
Flaoa 

OOITSZAPC 
~t'P~•' ~~'·"'0 O~'•t•on whtt~~Q'-ftii-"Mt- letq 

Operand a Clockl Tranaten• .. ., ... C~hample 

if'() 0PP.rdn<1S.I 2 - I REPE CMPS OA TA. KEY 



123 

REPNE/REPNZ I ~EPNE/AEPNZ cno operandi I , .... OOITSZAPC 

Rt9HIIIf'"O Ojle<IIIOII wflrle 1101 tqWIIIIOIIttO 

()peraiMia Cloclll Tranaten• lytel Coctint E .. tftPie 

(no operand a) 2 - , REPNE SCAS INPUT liNE 

RET 1
1
AET opltonal-pop-value ,. ... OOITSZAPC 

Relurn from procedure 

Opefencta Cloclll Tr_,.,.. lytea CocHftt Example 

hntra-Hgment. no 1>091 I 1 t RET 

(lntra-Hgment. pop) 12 1 
, RET 4 

(lnter-Hgment. no pop) 11 2 1 RET 

(lnter-aegmGnt. pop) 17 2 
, RET 2 

ROL ~~Ol dettinatiOn.count ,.... OOITSZAPC 

Rotate left 
X X 

OperaiMia · Clocllt Tr-ten lyt .. CodintE._mp~es 

regrater. 1 2 - 2 ROl BX. 1 

regrater. Cl 1+4/btt - 2 ROl OI.Cl 

memory.1 15+(A 2 2-4 ROl FlAG BYTE 1011.1 

memory.Cl 20+EA+ 2 2-4 ROl AlPHA . Cl 

4/blt 

ROR ~~OA ~atlnattOn.count ,. .... OOITSZAPC 

Rotate ttght 
X X 

OperaiMI Cloclll TraMiers• ay••• Codint Example 

regiater. 1 2 - 2 ROR Al.1 

register. Cl 11+4/bot - 2 ROR BX.Cl 

mem:>ry. 1 1S+EA 2 2·4 ROR PORT STATUS. 1 

memory.Cl 20+ EA + 2 2·• ROR CMO WORD.Cl 

41brl 

SAHF ~~AHF (no operands) , .... OOITSZAPC 

Store AH rnto flags 
R R R R R 

o,.,. •• Clocllt Tranatera• lytel Coding E~1mple 

(no operandi) 4 - 1 SAHF 

SAL/SHL I SAL/SHL deshn;rhon.count Fl191 
ODITSZAPC 

Shrlt arothmeltc It· II ISholtlogocal "'" 
X X 

Operand a Clock a Tranalert • .. , ... Cocllnv Eumplea 

regiater,1 1 - 1 SAL AL.l 

regiller, Cl 8 + 41br' - 1 SHL OICL 

memory.1 1S + EA 2 1 4 SHL !BXI OVERDRAW. 1 

memory,Cl lO•EA+ 2 ] . SAL STORE COUNT.CL 

41bol 



124 

I 

SAR f'A" dtatiNitoon.aource Flat• 
OOITSZAPC 

Shift arithmetiC right J X XU X X 

o,.,andl Cloch Tranalera• lytea Cocllnf Ea_,-. 
reoiater. 1 2 - 2 S~R OX. 1 
reoiater, CL •• 41blt - 2 SAR Oi.CL 
memory, 1 1~+ EA 2 2~ SAR N BLOCKS. I 
memory,"Cl 20+EA+ 2 2~ SAR N · BLOCKS. CL 

41bit 

SBB ISII deatonatoon.aource 
Flat a 

OOITSZAPC 
Subtract woth borrow X X X X X X 

o,.,anda Clocll.a Tranalera• lytee Coclln9 Eumpte 

reoiater. ;eoiater l - 2 sea ax. ex 
regiater. memory t+EA 1 2-• SBB Ot.JBXJ PAYMENT 
memory. regiater 1I+EA 2 2~ SBB BALANCE. AX 
aecumuiator. ommedlate 4 - 2-3 SBB AX. 2 
reoiater, immediate • - 3-• SBB CL. 1 
memory, immediate 17+ EA 2 3-6 SBB COUNT JSIJ. 10 

SCAS I SCAS desl-stnno Flag a 
ODITSZAPC 

Scan strong X X X X X X 

Operandi Clocll.a Translera• lytea Coclint Eumple 

dest-string ·~ 
, 1 SCAS INPUT LINE 

(repeat) deat-atring 9 + tStrep. II rep , REPNE SCAS BUFFER 

SEGMENTt 'SEGMENT cwerrlde pteh• Flag a 
OOITSZAPC 

Overrode to speciloed seon•enl 

Operand a Clocll.a Tranalera• By tea Cocllr'9 Eumple 

I no operands I 2 - , MOV SS.PARAME TER. AX 

SHR I SHA dtstonaloon.count 
Flat a 

ODITSZAPC 
Sholl logteal roght X X 

Operanda Cloch Tranalera• Bytes Cocllnt E aample 

reo•sler. 1 2 - 2 SHR $1.1 
regoster. CL 8 + 41bot - 2 SHR"St. Cl 
memory. 1 15 • EA 2 ] .. SHR 10 BYTE iSiiiBXI 1 
memory. CL 10•EA• 2 2·4 SHA INPUT WORD. Cl 

4'b•l 

SINGLE SlEPt -l SINGLE STEP oT•ap flaQ '"'"''UPII 
Fl191 

OOITSZAPC 
lnterr upt '' Tf • t 0 0 

Operands Clocks Transfers • Bytes Coding Eaample 

I no operanOsl '>0 ~ NIA NIA 
-~L-------

• For the 8086, add four cloclu for each 16-bit word tr&mfer with an odd address. For the 1018, add 

four docks for each 16-blt word transfet'. 



STC 

Operand a 

I no operands I 

STD 

Operanda 

1no operands) 

STI 

Operands 

STOS 

Operands 

delt-striflil 
crepe au dest·slriflil 

sua· 
Opeqnds 

register, register 
register, fMrnOfY 
met'IIOfy, register 
.ccurnutatot, lfnmedlate 
reglater,ifnmediate 
rnerncwy. Immediate 

TEST 

register. register 
regiater, memory 
ac:c:umuiator, Immediate 
reglater. Immediate 
memory,immediate 

125 

ISTC (no operands I 
Seturryl .. g 

Clocllt 

2 

ISTocnooper•ndsl 
l Sat dtreetlon hag 

2 

Tranalera• lytn 

Trenafera• lytaa 

ISTitno operands I · 
Set interrupt enable tt•o · ··-<-

Clocks Tranafera• lytea 

2 

ISTOS dest-llrong 
Store byte or word atrong 

Clocks Tranalera • 

II 1 
9 + 10/rep I/ rep 

I sua deallnatton,aource 
J Subtraction 

3 
t+EA 
1I+EA 

4 
4 

t7+EA 

1 
2 

2 

(
TilT dealinalion,aourc:e 
Teat or f\01\+destruc:llve loglc:allnd 

Clock a Transfers • 

3 
t+EA 

4 
5 

II +EA 

lyles 

lytea 

lyles 

Ft ODITSZAPC 
. at• 1 

Codlflt Eumple 

STC 

Fll9t O~tTSZAPC 

Cocllftt Eaample 

STO 

Codint Eumpte 

STI 

I OOITSZAPC 
Flat• 

Cocllft9 Example 

STOS PRINT LINE 
REP STOS DISPLAY 

Flep OO'ITSZAPC 
X XXXXX 

Codlftt Eaample 

sua ex. ax 
SUB OX,MATH_TOTALJSII 
SUB IBP+21.Cl 
SUB Al,10 
SUB Sl, 5210 
SUB IBPJ.BALANCE. 1000 

Fl OOITSZAPC 
at• 0 xxuxo 

TEST St. 01 
TEST Sl, END _COUNT 
TEST Al, 001000008 
TEST BX, OCC4H 
TEST RETURN CODE. 01H 



12(} 

WAIT I WAIT (no operand!l Flee a 
OOtTSZAPC 

W11ot whole TEST pon not nserted 

Ope,.nda Cloclll T,.natere• lytes Coctlftt Eaemple 

I no ope,.ndsl 3 + !In - I WAIT 

XCHG IXCHO dUtoNtoon.source Fleea 
OOITSZAPC 

hch•no~ 

Operandi Cloclo.l Tranatera• . ., ... Coctlftt EaalllpN 

accumulator. regtll 3 - 1 XCHG AX.BX 
memory. regoater 17+ EA 2 2~ XCHG SEMAPHORE. AX 
rego!ler. register • - 2 XCHG AL. BL 

XLAT IXLAT aour~e-table 
Tr•nslate 

F •• 0 0 I T S Z A P C 

Opet~~ndl Clock a Tranalera• . .,. .. · Coctlftt Eumple 

source-table II l 1 XLA T ASCII . TAB 

XOR . JxOR deatonatoon.aource 
F • 

OOITSZAPC . 
LOQiCIII ••elusive or 0 X XU X 0 . ' 

Operand a Clock a Tranetera • . .,. .. Coctlftt lhample 

regoslet. reo·st~r 3 - 2 xotf ex. ex 
regoster. memory 9+EA 1 2~ XOR CL. MASK_ BYTE 
memory. regoster 1II+EA 2 2~ XOR ALPHA (Sij, OX 
accumulator. ommedoate • - 2;3 XOR AL. 010000108 
reoosler. ommedoate • - 3~ XOR Sl. OOC2H 
memory. ommedollle 17+ EA 2 3-11 XOR RETURN_ CODE. 002H 



127 

APPENDIX 8 

I 

programming 
8S50 
UART 



128 
.. 

IBM Asynchronous ' 
Communications Adapter 

The asynchronous communications adapter system control 
signals and voltage r<:quiremems are provided through a 2 by 31 
position card edge tah. Two jumper modules are provided on the 
adapter. One jumper module selects either RS·232C or 
curn:ll! -loop operation The other jumper module selects one of 
rwo addrcs:--c:-. lor the ;~dapter. so two adapters may be used in 
one sy:-.tem 

·n1e at.lapter i:-. lull\ programmahlc and supports asynchronous 
communci:~ti,m:-- onh· It will add and remove start bits, stop bits, 
and parity bits .\programmable haud rate generator allows 
operation from 50 baud w 9600 baud. Five, six, seven or eight bit 
characters with I. 1-1/2. or 2 stop bits are supported. A fully 
prioritized interrupt syste~ controls transmit, receive, error, line 
status, and data set interrupts. Diagnostic capabilities provide 
loopback functions of transmit/receive and input/output signals. 

·me heart of the adapter is a INS8250 LSI chip or functional · 
equivalem. Features in addition to those listed above are: 

• Full double buffering eliminates need for precise 
synchronization. 

• Independem receiver clock input. . ,· 
• 'I 

Mod~m comrol functions: clear to $end (CTS). request to 
send (RTS), data set readf(DSR), ~ata.terminal ready (DTR), 

• 
ring_ indicator ( Rl ). and carrier deuTc;t. · · 

• False-start bit detection. ' 

• Line-break generation and detectioq. 

All communications protocol is a function of the system 
microcode and must be loaded before the adapter is operational. 
All pacing of the imerface and control signal stams must be 
handled by the system software. The figure below is ablock 
diagram of the asynchronous communications adapter. 

Asynchronous Adapter 1-185 



Address Bus Address 
Decode 

Data Bus 

A 

25-Pin O-Shell 
Connector 

12B 

Asynchronous Communications Adapter Block Diagram 

Modes of Operation 

The different modes of operation are selected by programming 
the 8250 asynchronous communications element. This is done by 
selecting the I' 0 address (hex 3F8 to 3FF primary, and hex 2F8 
to 2FF seco.ndary) and writing data out to the card. Address bits 
AO. A 1. and :\2 select the different registers that define the modes 
of operation. Also. the divisor latch access bit (bit 7) of the line 
control register is used to select certain registers. 

1-186 Asynchronous Adapter 



130 

1/0 Decode (in Hex) · 
Primary Alternate 
Adapter Adapter Register Sele~ed .. DLAB State 

3F8 2F8 TX Buffer OlAB=O (Write) 
3F8 2F8 RX Buffer DLAB=O (Read) 
3F8 2F8 Divisorl.atch lSB y ... DLAB=l 
3F9 2F9 ·Divisor ~tch MSB .... DLAB=l 
3F9 2F9 Interrupt Enable Register· .. .:.'i- .--- _, 

3FA 3FA Interrupt Identification Regiite~s 
3FB 2FB 

' 
line Control Register . · : i: ~ 

JFC 2FC Modem Control Register-~ .. - -·----': 

3FD 2FD line Status Register 
3FE 2FE Modem ~talus Register 

110 Decodes 

Hex Address 3F8 to JFF and 2F8 to 2FF 

A9 AS A7 A6 A5 A4 AJ A2 A1 AO DLAB R<)gister 

1 1/0 1 1 1 1 1 
~ 

X X 

0 0 0 0 Receive Buffer (rea~l. 
Transmit 
Holding Reg. (,Mite) 

0 0 1 0 \ Interrupt Enable 

0 1 0 X lnt~~rupt l~entif,ic~ti~n 

0 1 I X line C~trol 

1• 0 0 X M<>Qem Control 

1 0 1 )I, line Status 
,. 

4J 
-

1 1 0 X · Modem Status '-

1 1 1 )' X None 

0 0 ' DivisOr latch (lSBi 0 1 

0 0 1 1 Divisor latch (MSB) 

Note: Bit 8 will be logical 1 for the adapter designated as primary or a logical 0 fo~ 
the adapter designated as alternate (as defined by the address jumper 
module on the adapter). 

A2. A 1 and AO bits are ""don't cares·· and are used to select the different 
register of the communications chip. 

Address Bits 

Asynchronous-Adapter 1-187 



131 

. Interrupts 

Ont· intt"rrupt lint" is prm·itkd to the systt"m ll1i:-- intt"rrupt is 
IRQ-1 fur a primary adaptl"r or IRQ3 for an altt·rn:m· adapter. and 
is positive active. To allow the communications card w send 
interrupts to the system, bit 3 of the modem control register 
must he set to 1 (high). At this point, any interrupts allowed by 
thelhterrupt enahlt: rt"gister will cause an intnrupt. 

Thl" data format will hl" as follows: 

DO Dl D2 04 DS D6 07 

· Transmit Start Parity Stop 
Data Marking Bit Bit Bit 

Data bit 0 is the first bit-.10 be transmittl"d or recei\'nl · IH: 
adapter autOmatically inserts the start bit, the correct parity bit if 
programmed to do so, and the stop hit (I, I ·1/2, or 2 depending 
on the command in the line-control register). 

Interface Description 

The communications adapter provides an ELA RS·232C.like 
interface. Ont: 25-pin O-shell, male type connector is pro"ided w 
attach various peripheral devices. In addition, a current loop 
interface is also located in this same connector. A jumper block is 
pro,·ided to manually select either the voltage interface, or the 
current loop interface. 

The current loop interface is provided to attach certain printers 
provided by IBM that use this particular t)pe of interface. 

Pin IS+ receive current loop data 
Pin 25 -receive current loop return . 
Pin 9 + transmit current loop return 
Pin II - transmit current loop data 

1-188 Asynchronous Adapter 



132 
•5 Vdc 

I Transmit Circuit I 
T.xOata---~ 

~ 499 ohm 

1 oo ohm '----------1•~ Pin 9 

XJ--"""1\r"---------.-. Pin 11 

~5 Vdc 

Receive Circuit J 5.6k·ohm 
OPTO Isolator 

Pin 18 4---+--. 

•5 Vdc 

Current Loop Interface 

The voltage interface is a serial interface. It supports certain data 
and control signals, as listed below; ' 

Pin 2 Transmitted Data 
Pin 3 Received Data 
Pin 4 Request to Send 
Pin 5 Clear to Send 
Pin 6 Data Set Ready 
!>in 7 Signal Ground 
Pin 8 Carrier Detect 
''in 20 Data Terrninal Ready 
'in 22 Ring Indicator 

·he adapter converts these signals to/from Tfl levels to EIA 
oltage levels. These signals are sampled or genera~j!_d by the 
ommunications control chip. These signals can then be sensed 
y the system software to determine the state of the interface or 
eripheral device. 

Asynchronous Adapter 1-189 



Voltage Interchange Information 

Interface 
Interchange Voltage Binary State Signal Condition Control Function 

POSIIIV8 Voltage = Bmary (0) = Spacmg =On 

Negauve Voltage "" Bmary (I) ., = Mark1ng ~Off 

Invalid levels 

"'15 Vdc 

On Function 

•3Vdc -------------

OVdc Invalid Levels 

-3Vdc ----------- __ 

Off Function 

-15Vdc ------------

Invalid levels 

The signal will be considered in the "marking:· condition when 
the voltage on the interchange circuit. measured at the interface: 
p9fnf.- is-more negative than :3 Ydc-with -respect t-~ 
ground. The signal will be considered in the .. _~p_a_scii.-condition 
when the voltage is more positive than +3 Vdc with respect to 
signal ground. TI1c: region between + 3 Vdc and -3 Vdc is defined 
as the transition region. and considered an in\'alid level. The 
voltage that is more negative than -15 Vdc or more positive than 
+ 1 5 Vdc will also be considered an invalid level. 

During the transmission of data. the "marking" condition will be 
used to denote the binarY state"!" and "spacing·· condition will 
be used to denote the birury state "0." 

For interfan: control circuib, the function is "on" when the 
voltage is more posit in· than+ 5 Vdc with respect to signal 
ground and i~ "otl" when th(· voltage is mort' negative than 
-3 \'d<.· with respect to sign:1l ground. 

1-190 Asynchronous Adapter 



134 

INS8250 Functional Pin Description 

TIH: following:dcscrihes the: function of all INS8250 input/ output 
pins. Some of these descriptions reference internal circuits. 

Note: In the following descriptions, a low represents a logical 0 ·· 
( 0 Vdc nominal) and a high represents a logical I ( +2.4 Vdc 
nominal). · 

Input Signals 

Chip Select (C'iO, CSl, CS2), Pins 12-14: \X'hen CSO and CSl 
arc: high and CS2 i~ low. the: chip is selected. Chip selection is 
c<>mpkrc when the decoded chip select signal is latched with an 
active (low) address strobe (ADS) input. This enables 
communications between the INS8ZSO and the processor. 

Data Input Strobe (DISTR, DISTR)"Pins 22 and 21: When ~ 1 '· ::_::\ -- ~--DISTR is high or DISTR is low while the chip is selected, allows ';/ · · 
the processor to read status information or q~ta_fr.om a selected 
register of the INS8250. · 

Note: Only an active DISTR or DISTR input is required to 
transfer data from the INS8250 during a read operation. 
Therefore, tie either the DISTR input permanently low or the 
1':51"S'rn input permanently high, if not used. 

. 
Data-Output Strobe (DOSTR, DOSTR~, Pins 19 and 18: When y:,"· 
DOSTR is high or DOSTR is low while the chip is selected, allows · ·. 
the processor to write data or control ~or:ds into a selected fl';;) 
register of the INS8250. ! · 
Note: Only an active DOSTR or DOSTR input is required to 
transfer data to the INS8250during a w~ite operation. Therefore, 
tic..· either the DOSTR input.permam:ntly low or the DOSTR input 
permanently high, if not used. . 

Address Strobe (ADS), Pin 25:-Wherf low, provides latching for ,_ 
t~1e register select (AO. Al, A2) and chip select (CSO, CSI, C~ _ O 
swn:~Jo; · ·t--( • ... / . 

I' . r 

Asynchronous Adapter 1-191 



135 

Note: An active ADS input is required when th{· register select 
(AO, A 1, A2) signals are not stable for the duration of a n:ad or 
write operation. If not required, tie the ADS input permanently 
low. 

Register Select {AO, A1, A2), Pins 26-28: These three inputs 
are used during a read or write operation to select an INS8250 
register to read or write to as indicated in the table below. Note 
that the state of the divisor latch access bit ( Dl.AB), which is the 
most significant bit of the line controLregister. effects the 
selection of certain INS82SO registers. The Dl.AB must be set 
high by the system software to access the baud generator di\·isor 
latches. 

OLAB A2 A1 AO Register 

0 0 0 0 Receiver Buffer (Read). Transmitter 
Holding Register (Write) 

0 0 0 1 Interrupt Enable 

X 0 1 0 ·Interrupt Identification (Read Only) 

X 0 1 1 Line Control 

X 1 0 0 Modem Control 
-._; 

X 1 0 1 Line Status 

X 1 1 0 Modem Status 

X , 1 1 None 

1 0 0 0 Divisor Latch (least Significant Bit) 

1 0 0 1 Divisor Latch (Most Signiftcant Bit) 

Master Reset (MR), Pin 35: When high, clears all the registers 
(except the receiver buffer, transmitter holding, and divisor 
latches), and the control logic of the INS82SO. Also, the state of 
various output signals (SOUT, INTRPT, OUT I, OUT 2, RTS, OTR) 
are affected by an active MR input. Refer to the "Asynchronous 
Communications Reset Functions" table. 

Receiver aock (RCLK), Pin 9: This input is the 16 X baud rate . 
clock for the receiver section of the chip. 1 _ ., :: 1 ~;I-·. --T 

Serial Input {SIN), Pin 10: Serial data input from the 
communications. link (peripheral device, modem, or data set). 

1-192 Asynchronous Adapter 



Clear to Send (CTS), Pin 36: The CTS'signal is a modem . 
control function input whose condition: can be tested by the 
processor by reading bit 4 ( CTS) of the I modem status register. 
Bit 0 ( DCTS) of the modem status register indicates whether the 
CTS input has changed state since the previous reading of the 
modem status register. I 

Note:' Whenever the CTS bit of the modem status register· 
changes state, an interrupt is generated if the modem status 
interrupt is enabled. 

Data Set Ready (DSR), Pin 37: When low, indicates that the 
modem or data set is ready to establish the communications link 
and transfer data with the INS82SO. The DSR signal is a 
modem-control function input whose condition can be tested by 
the processor by reading bit S ( DSR) of the modem status 
register. Bit I ( DDSR) of the modem status register indicates 
whether the DSR input has changed since the previous reading of 
the modem status register. 

Note: Whenever the DSR bit. of the modem status register 
changes state, an interrupt is generated if the modem status 
interrupt i~ enabled. · · 

Received Une Signal Detect (RISD}, Pin 38:.When low, 
indicates that the data carrier had been detected by the ~odem _ 
or data set. The RLSD signal is a modem-control function irtput 
whose· condition can be tested by the processbr by reading bit 7 
( RLSD) of the modem status register. Bit 3 ( D RLSD) of the 
modem status register indicates whether the "RRSi5 input has 
changed state since the previous reading of the modem status 
register. "' 

Note: Whenever the RI.SD bit of the modem status register 
changes state, an interrupt is generated if the modem status · 
interrupt is enabled. · · 

Asynchronous Adap~er 1·193 



Ring Indicator (RI), Pin 39: When low. indicates that a 
telephone ringing signal hao; heen rece_ived hy tht: modem or data 
set. The lU signal is a modem-control function input \,·hose 
condition can be tested by the processor by rc:ading hit 6 ( Rl) of 
the modem status register. Bit 2 ( TERI) of the modc:r:1 status 
register indicates whether the RI input has changed from a low to 
high state since the previous reading of the modem status 
register. 

Note: Whenever the RI bit of the modem status register changes 
from a high to a low state, an interrupt is generated if the modem 
status interrupt is enabled. 

vee, Pin 40: +S ~de supply. 

VSS, Pin 20: Ground ( 0 Vdc) reference. 

Output Signals 

Data Terminal Ready {DTRJ, Pin 33: When low, informs the 
modem or data set that the INS8250 is ready to communicate. 
The DTR output signal can be set to an active low by 
programming bit 0 ( DTR) of the modem control register to a . 
high level. The DTR signal is set high upon a master reset 
operation 

·Request to Send (RTS), Pin 32: When low, informs the modem 
or data set that the INS8250 is ready to transmit data. The RTS · 
output signal can be set to an active low by programming bit 1 
(RTS) of the modem control register. The fiTS" signal is set high 
upon a master reset operation. 

Output 1 (OUT 1), Pin 34: User-designated output that can be 
set to an active low by programming bit 2 ( OOTl ) of the 
mQd~m cpmrol register to a high leve_l. The OOT1 signal is set 
high upon a master reset operation. .- ' ' 

Output 2 (OUT2), Pin 31: User-designate~ttput that can be 
set to an active low by programming bit 3 ( U 2) of the 
modem control register to a high level. The OUT 2 signal is•set 
high upon a master reset operation. 

1·194 Asynchronous Adapter 



taB--

Chip Select Out (CSOUT), Pin 24: When high, indicates that 1/, __ 
the; chip has ht:cn selected by active CSO, CS J. and CS2 inputs. No 
data transfer can be initiated until the CSOUT signal is a logical 1. 

Driver Disable (DDIS), Pin 23: Goes low whenever the 
proceSsor is reading data from the INS8250. A high-level DDIS 
output can be used to disable an external transceiver (if used 
between the processor and INS8250 on the D7-DO data bus) at 
all times, except when the processor is reading data. "v 
' 

Baud Out (BAUDOUT), Pin 15: 16 x clock signal for the 
transmitter section of the 1;-...'58250. The clock rate is equal to the 
main reference oscillator frequency divided by the specified 
divisor in the baud generator divisor latches. The BAUDOUT may 
also be used for the receiver section by ();Ping this output to the 
RCLK input of the chip. 

Interrupt {INTRPT), Pin 30: Goes high whenever any one of the 
following interrupt types has an active high condition and is 
enabled through the IER: re'ceivcr error flag, received data 
available, transmitter holding register empty, or modem status. 
The INTRPT signal is reset low upon the appropriate imerrupt 
service or a master reset operation. 

Serial Output (SOUT), Pin 11: Composite serial data output to 
the communications link (peripheral, modem or data set). The 
SOUT signal is set to the marking (logical 1 ) state upon a master 
reset operation. · 

Input/Output Signals 

Data {07-DO) Bus, Pins 1-8: This bus comprises eight tri-state 
input/output lines. The bus provides bidirectional 
communications between the .INS8250 'and the processor. Data, 
control words, and status information are transferred through the 
07-00 Data bus. 

External Clock Input/Output (XTALl, XTAL2), Pins 16 and 
17: These two pins connect the main timing·refcrence (crystal or 
signal clock) to the INS8250. 

Asynchronous Adapter 1·195 



13~t 

Programming Considerations 

The 1:\582'>0 has a numher of accessible registers. The system 
programmer may ac.:n-ss or control any of the INS8250 regis~ers 
through the processor. These registers are used to control 
1~58250 operations and to transmit and receive data. A table 
listing and description of the accessible registers follows. 

Register I Signal Reset Control Reset State 

Interrupt Enable Regoster Master Reset All Bits Low !0·3 Forced and 
4-7 Permanent) 

lnterru;>t ldentof:ca:oon Master Reset Bit 0 is High. Bits 1 and 2 Low 
Regos:er Bots 3· 7 are Permanently Low 

Lone Con1rol Reg•s1er Master Reset All Bits Low 

Modem Control Reg:ster Master Reset All Bits Low 

Lone S:atus Regos:er Master Reset Except Bits 5 and 6 are High 

Mode,.,., S:atus Reg•>···r Master Reset Bits 0·3 Low 
Bits 4· 7 · Input Sognal 

SOUT ' Master Reset High 

INTRPT (RCVR Errors} Read LSRIMR Low 

INTRPT (RCVR Data Ready) Read RBR/MR Low 

INTRPT (RCVR Data Ready) Read IIR/Write Low 
THR/MR 

INTRPT (Modem Status Read MSR/MR Low 
Changes) 

OUT 2 Master Reset High 

RTS Master Reset High 

DTR Master Reset, High 

OUTl Master Reset High 

Asychronous Communications Reset Functions 

1·196 Asynchronous Adapter 



14tL 

Line-Control Register 

The !!)'Stem programmer specifies the format of~ 3.synchronous 
data communications exchange through the line-control register .. 
In addition to controlling the format, the programmer may '· 
retrieve the contents of the line-control register for inspection. 
This feature simplifies system programming and diminates the · 
need for separate storage in system memory of the line 
characteristics. The contents of the line-control register are -
indicated and described below. 

AD.DRESS= O~FB 

'-------- Parity Enable (PEN) 

1...----'~--- Even Parity Select (EPS) 

'------------~-- Stick Parity 

L----------- Set Break 
L...-________ .....;.. ___ Divsior Latch Access Bit (DLAB) 

LiM-Control Register (LCR) 

Bits 0 and 1: These two bits specify the number of bits in each 
transmitted or received serial character. The encoding of bits 0 
and 1 is as follows: 

Bit 1 Bit 0 Word Length 

0 0 5 !3its 
0 1 6 Bits 
1 0 7 Bits 
1 1 8 Bits 

Asynchronous Adapter 1·197 



141 

Bit 2: ll1is hit specifies the number of stop hit.., 10 e:tch 
tran:>mittnl or rnxin:d st·rialt·haractcr. lfhit 2 i.-. a l•>gi~.. •l. 1>!1l" 

stop bit is genc:ratc:d or chn:kc:d in thc: transmit or rn-ein~ data. 
respecti\·ely. If bit 2 is logical 1 whc:n a 5-bit word length is · 
sekcted through bits 0 and 1, 1·1 I 2 stop bits arc: generated or 
checked. If bit 2 is logical 1 \vhen either a 6-, 7-. or 8-bit word 
length is selected, two stop bits are generatt:d or chc:ckc:d. 

Bit 3: This bit is the parity enablt: bit. When bit 3 is a logical I, a 
pari[)' bit is generated (transmit data) or checked ( recein: dina) 
bet\veen the last data word bit and stOp bit of the saial data. 
(The parity hit is used to produce an even or odd number of l's 
when the data word bits and the parity bit are summed. ) 

Bit 4: This bit is the even parity select bit. \Xnen hit 3 is a logical 
1 and bit 4 is a logical 0, an odd numher of logical l's is 
transmitted or checked in the data word bits and parity bit. ~'hen 
bit 3 is a logical 1 and bit -i is a logical 1, an even number of bits 
is transmittc:d or checked. · 

Bit 5: This bit is the stick parity bit. When bit 3 is a logical 1 and 
bit 5 is a logical l, the pari[)' bit is transmitted and then detected 
by the receiver as a logical 0 if bit 4 is a logical 1, or as a logical 1 
if bit 4 is a logical 0. 

Bit 6: This hit is the set break control bit. Wnc:n bit 6 is a logical 
1. the: serial output ( SOLT) is forced to the spacing (logical 0) 
state and n:mains thc:rc: n:gardkss of othc:r transmitter activi[)·. 
The set break is disablt:d by setting bit 6 to a logical 0. This 
feature c:nahks the processor to alert a terminal in a computer 
communications system. 

Bit 7: TI1is hit is the: divisor latch accc:ss bit ( Dl.AB ). lt must be" 
set high (logical l ) to access the divisor latches of the baud rate 
generator during a read or write operation. It must be set low 

. (logical 0) to access the: rect:ivc:r buffer, the transmittc:r holding 
regis_!__er. or ~e interrupt enable register; 

1·198 Asynchronous Adapter 



142 

Programmable Baud Rate.'Ge~erator 

Th~ INS82SO comains a programmable baud rate generator that 
is capable of taking th~ dock input ( 1.84 32 MHz) and di\'i<..ling it 
by any divisor from 1 to ( 2 1"·1 ). The output frequenq· of the 
baud generator is 16 x the baud rateY[ divisor • = (frequenq· 
input)/(~aud rate x 16)). Two 8-bit latches store the divisor in a 
16-bit binary format. These divisor latches must be loaded during 
initialization in order to ensure desired operation of the baud 
rate. generator. Upon loading either of the divisor latches. a 16-bir 
.baud counter is immediately loaded: This prevents long coums 
on initial load. 

Hex Address 3f8 DLAB = 1 

7 6 5 4 3 2 0 

·· r LBitO 

~B•tl 
Bn 2 

'--------- Bit 3 

'-----------+- Bit 4 

'----------~--- Bit 5 

'---------------- Bit 6 

'------------------- Bit 7 

Divisor Latch Least Significant Bit (OLL) 
.J--

Asynchronous Adapter 1·199 



Hex AC1dress 3F9 DLAB = 1 

7 6 5 4 3 2 

Divisor Latch Most Significant B~tj?LM) 

l4a--

0 

B•t B 

B•t 9 

B•t 10 
Bn 11 

B•t 12 
B•t 13 
B•t 14 
Bn 15 

The following figure illustrates the use of the baud rate generator 
with a frequency of 1.84 32 MHz. For baud rates of 9600 and 
belo\v, the error obtained is minimal. 

Note: The maximum operating frequency of the baud generator 
is 3.1 ~1Hz. In no case should the data rate be greater than 9600 
baud. 

Desired Divisor Used Percent Error 
Baud to Generate Difference Between 
Rate 1 6x Clock Desired and Actual 

(Decimal) (Hex) 

50 2304 900 -
75 1536 600 -

110 1047 417 0.026 
134.5 857 359 0.058 
150 768 300 -
300 384 160 -
600 192 oco -

1200 96 060 -
1800 64 040 -
2000 58 03A 069 
2400 48 030 -
3600 32 020 -
4900 24 018 -
7200 16 010 -
9600 12 ooc -

Baud Rate at 1.843 MHz 

·• ------- . 5 .,. 

1·200 Asynchronous Adapter 



144 

Line Status Register 

This H-hir r<::~isrer providc:s status information on the: procc:ssor 
nmn:rnin~ the: data rransfc:r. The contc:nts of the line status 
re~istc:r arc: indicated and described below: 

He~ Address 3FD 

81[ 7 6 5 3 2 0 

I I I I : ""' .... , lORI 

I 
I ~ 

Overrun Error (OR) 

._ Parity Error (PE) 

'---------+- Fram•ng Error (FE) 

'-----------~ Break Interrupt (61) 

'-------------.._ Transmitter Hold1ng 
Reg•ster Empty 
(T•HRE) 

'---------------- T)( Shift Reg•ster 
Empty (TSRE) 

l__ _______ ...,_ _______ = 0 

Line Status Register ( LS R) 

Bit 0: 1l1is bit is the receiver data ready (DR) indicator. Bit 0 is 
set to a logical I whenever a complete incoming character has 
been received and transferred into the receiver buffer.regist~r. 
Bit 0 may be reset to a logical 0 eith~r by the processor reading 
the data in the receiver buffer register or by writing a logical 0 
into it from the processor. 

Bit 1: 1l1is bit is the overrun error ( OE) indicator. Bit I indicates 
that data in the receive·r buffer register was not read by the 
processor before the next character was transferred into the 
rcu:in:r buffer register. thereby destroying the: previous 
character. lnc: OE indicator is reset whenever the processor 
reads the contc:nts of the line status register. 

Bit 2: 1l1is bit is the parity error ( PE) indicator. Bit 2 indjcates 
that the received data character does nor have the correct even 
or odd parity, as selected by the even parity-select bit. The PE bit 
is set ro a logical 1 upon detection of a parity error and is reset to 

a logical 0 whenever the processor reads th~ contents of the line 
status register. 

Asynchronous Adapter 1-201 



14t) 

Bit .3: ll1is hit i~ the lramin~ nror (I+) indicator Bit _1 indicatt:s 
th;ll th;- rc·L·ci,cJ c·harac·tn diJ not han· a ,-;tlid .... t<>p hit Bit _1 is 
St:t to J lo~icll I whc·nc·,-er.thc stop hit follo\\·in~ the l:L't Jata hit 
or p;.~rity i~ dc·tcctt:d a~ a zc·ro bit ( spacin~ kvd ). 

Bit 4: This bit i' the· hn:ak interrupt ( Bl) indicator Bit -i is st:t to 
a lo~icll I ,,-hcm·n·r tht: rL-cL·i,-ed data input is ht:ld in the 
spacin~ (logical o) ~tate for longer thJn a full word transmission 
tinw (that is. the total time of start bit+ data hits+ parity+ stop 
hits). 

~ote: Bih I through-! arc the t:rror condition~ that product: a 
ren:i,·n line ~tatu' interrupt whcnt:,·cr any of tht: corresponding 
condition.., arc· LktLTtnl. 

Bit 5: This hit i' tl1l' tran...mittcr holding register c·mpty (THRE) 
indicator. Bit .:; indicJto that tht: I:":SH2SO is n:ady_t9_]~c_qH a 
nnY clural'ler fpr transmi~sion .. In i!Jdition. this hit causes the 
I :-\SH2 -)() tu i ... sue an i ntcrrupt to the processor when the transmit 
holding regi~tcr empty interrupt enablt: is set high. lnt:: THRE bit 
is set to a logical I \d1en a charauer is transferred from the 
transmittn h()lding register imo the transmitrt:r shift register. 
The hit is reset to logical 0 concum:ntly with the loading of the 
transmitter holding register by the processor. 

Bit 6: This bit is the transmitter shift register empty ( TSRE) 
indicator. Bit 6 is set to a logical 1 whenever the transmitter shift 
register is idle. It is reset to logical 0 upon a data transfer from 
the transmitter holding register to the transmitter shift register .. 
Bit 6 is a read-only bit. 

Bit 7: This bit is permanently set to logical 0. 

Interrupt Identification Register 

The INS8250 has an on-chip interrupt capability that allows for 
complete flexibility in interfacing to all the popular 
microprocessors presently available. In order to prO\ide 
minimum software overhead during data character transfers, the 
INS8250 prioritizes interrupts into four levels: receiver line status 
(priority 1 ). received data ready (prioriry 2 ), transmitter holding 
register empty (prioriry 3 ). and modem status (prioriry 4 ). 

1-202 Asynchronous Adapter 



14H----

I nfor_mation intlicat ing that a priorit izt:tl interrupt is pmtling _Jntl 
t))t• type o(prioritizt:tl interri-tpt is storetl.in the interrupt ·· 
itlt:ntilic;~_~i<lD..~·g~-;t~r. Rdt:r tc> tht: "lnterrupt Control Funt·tions" 
tahk. ·n)t: intt·rrupt itlentifkation rl"gister ( IIR ). when addressed 
during chip-sdc:ct time. freezes the highest priority interrupt 
pt:nding. anti no othl"r interrupts are'1acknowkdged until that 
particular intc:rrupt is senicc:tl by the pr<K't:SSOr. The contents of 
tht: IIR art: intlicJtc:d and described below. 

Hex Address 3FA 

7 6 5 4 3 2 0 

I I ., 0 If Interrupt Pendong 

~ Interrupt 10 Bot (01 

Interrupt 10 Bit ( 11 

'------- =0 

'--------- =0 

'-----------· =0 
=0 

'--------------~~ = 0 

Interrupt Identification Register (IIR) 

Bit 0: This bit can be used in either a hard-wired prioritized or 
polled environment to indicate whether an interrupt is pending 
and the IIR contents may be used as a pointer to the appropriate 
interrupt service routine. When bit 0 is a logical 1, no interrupt is 
pending and polling (if used) is continued. 

Bits 1 and 2: These two bits of the IIR are used to identify the 
highest priority interrupt pending as indicated in the "Interrupt 
Control Functions" table. 

Bits 3 through 7: These five bits of the IIR are always logical 0. 

Async~ronous Adapter 1-203 



147 

Interrupt ID 
Register. Interrupt Set and Reset Functions 

'Priority Interrupt Interrupt Interrupt 
Bit 2 Bit 1 Bit 0 Level Type Source Reset Control 

0 0 1 None None 

1 1 0 H1ghes1 Receiver Overrun Error Read•ng the 

Line Status or L•ne 'Coatus 
Parity Error Reg•stcr 

or 

Framing Error 

or 
Break Interrupt 

1 0 0 Second Receoved Rece•ver Read•ng the 
Data Available Data Available Rece•ver Buffer i Reg•ster. I 

0 1 0 Th~rd Transml!ter Transmitter Read•ng tht IIR ! 
Hold1ng Hold•ng Reg•ster id 
Reg1ster Reg•s:er source of 
Empty Empty 1nierrupiJ 

or 

V'/rtttr•; ~ ·0 the 

T ra:-::.. ·· ... 
hold1ng Reg•ster 

I 
I 

0 0 0 Fourth Modem Clear to Send Read•ng the 

Status or Modem Status 

Data Set Ready Reg•ster 

or 
Ring lnd1cator - or 

Rece1ved L1ne 
Signal Direct 

Interrupt Control Functions 

1-204 :\..o;ynchronous Adapter 



148 

Interrupt Enable Register 

This eight-bit rc:gistc:r enables the four [)pes of interrupt of the 
INSB2SO to separately activate the chip interrupt ( INTRPT) 
output signaL l_!_§_p~U\4Jisable the imerrupt system 
hy ... r.cset tin g. bit~ 0 _through3. of.Jh c...int..e.r.rnpJ~DabJ~ .. .r~glster. 
Similarly, by setting the appropriate hits of this register to a 
logical 1, selected inkrrupts can be enabled. Disabling the 
interrupt ~.-ystem inhibits the interrupt idemification register and 
the: active (high) I;'\;TRPT output from the chip. All other system 
functions operate in their normal manner. including the setting of 
the line status and modc:m status registers. The contents of the 
intt:rrupt enable rc:gistn :1n: in<,licirc:d and described below: 

Hex Address 3F9 DLAB = 0 

7. 6 5 4 3 2 0 

L 1 = Enable Data 
Avarlable Interrupt 

1 = Enable Tx Holdrng Register 
Empty Interrupt 

1 = Enable Receive Line 
Status Interrupt 

'--------t~ 1 = Enable Modem Status 
lmerrupt 

'---------~=0 

'---------- = 0 
'---.---------~ = 0 

'-------------~ = 0 

Interrupt Enable Register (IER) 

Bit 0: This bit enables the received data available interrupt when 
set to logical 1.' · 

Bit l:.This bit enables the transmiHer holding register empty 
interrupt when set to logical I. 

Bit 2: This hit enables the receiver line s•atus interrupt when set 
to. logical I. 

Asynchronous Adapter 1-205 



14~} 

Bit 3: TI1is hit enahln tht: modem status interrupt when set to 
logical I. 

Bits 4 through 7: Thest: four hib are always logical 0. 

Modem Control Register 

This eight-bit rc:gist<:r controls the: interface with the modem or 
data set (or a pnipheral dn·icc: emulating a modem). The 
contents of the modern control register arc: indicated and 
described lx·lm' 

He• AdCr!:SS J~C 

7 6 5 4 3 0 

I l __ Data Term1nal Ready (OTR) 

L-=:_ Request to Send (RTS) 

Out 1 

Out 2 

Loop 

=0 

L---------- = 0 

L-----------~ = 0 

Modem Control Register (MCR) 

Bit 0: This bit controls the data terminal ready (DTR) output. 
When bit 0 is set to a logical 1, the 1Yf'if output is forced to a 
logical 0. When bit 0 is reset to a logical 0, the DTR output is 
forced to a logical 1. 

Note: The DIR output of the INS8250 may be applied to an EIA 
inverting line driver (such as the OS 1488) to obtain the proper 
polarity input at the succeeding modem or data set. 

Bit 1: This bit controls the request to send (RTS) output. Bit 1 
affects the RTS output in a manner identical to that described 
above for bit 0. 

1-206 Asynchronous Adapter 

--------------- ·-------- -·-



150 

Bit 2: This hit controls the: output 1 (OUT I ) signal, which is an 
auxiliary usc:r-dc:signatc:d output. Bit 2 affc:cts the: GUT 1 output 
in a mannc:r identical to that dc:scribc:d above for bit 0. 

Bit 3: This bit controls the: output 2 ( ODi'2) signal, which is an 
auxiliary user-designated output. Bit 3 "affects the ~ output 
in a manner identical to that described above for bit 0. 

Bit 4: This bit provides a loopback feature for diagnostic testing 
of the INS8250 .. When bit 4 Lo; set to logical 1, the following 
o~curs: the transmitter serial output (SOUT) is Set to the marking 
(logical 1 ) state; the receiver serial input (SIN) is disconnected; 
the output of the transmitter shift register is "looped back" into 
the receiver shift register input; the four modem control inputs 
( CTS, DSR. RLSD. AND Rl) are disconnected; and the four 
modem control outputs ( DTR, RTS, OUT 1, and OUT 2) are 
internally connected to the four modem control inputs. In t!:!_~ 
diago_Q~tic mQde, data that is transmitted is imm~qiately received . 
. This.Jeature allo~Xib~_procc:~r~~~~he--transmit:..~~d--
r~~j\'t:-d'!~~-Qf .tbe 11\:58250. · 

In the diagnostic mode. the receiver and transmitter interrupts 
arc: fully operational. The modem control interrupts are also 
operational but the interrupts' sources are now the lower four 
bits of the modem control register instead of the four modem 
control inputs. The interrupts are stiH controlled by the interrupt 
enable register. 

The INS8250 interrupt system can be tested by writing into the 
lower four bits of the modem status register. Setting any of these 
hits to a logical I generate$ me approprWe interrupt (if 
<.'rubJC\.1 ). The ~ring of~ interrupts is the~ as in 
normal 1NS8250 operation. To return to normal operation, the 
registers must be reprogrammed for normal operation arid then 
bit 4 of the modem control register must be reset to logical 0. 

Bits 5 through 7: These bits are permanently set to logical 0. 

Asynchronous Adapter 1-207 



151, 

~odem Status Register 

This eight-bit register provides the current state: of the control 
~lines from the modem (or peripheral 9evice) to the processor. In 
.:addition to this current-state information, four bits of the: modem 
·status register provide change information. These bits are set to a 
logical 1 whenever a control input from the modem char .. ~es 
state. They are reset to logical 0 whenever the processor reads 
the modem status register. 

The content of the modem status register are indicated and 
described below: 

Hex Address JFE 

Bit 7 6 5 4 3 2 0 

I L Delta Clear to Send (DCTS) 

~ Delta Data Set Ready (DDSR) 

Trailing Edge Rrng 
Indicator (TERI) 

L------ Delta Rx Lme Signal 
Detect (DRLSD) 

L...-------~ Clear to Send (CTS) 
._ ________ .,_ Data Set Ready (DSR) 

'------------ Ring Indicator (RI) 

"-------------- Receive Line Sognal 
Detect (RLSD) 

Modem Status Register (MSR) 

1-208 Asynchronous AdaQter 
(I)) 



152 

Bit 0: This hit is the ddt a dear to send ( DCTS) indicator. Bit 0 
incli(·ates that the ITS input to the chip has changed state since 
the last time it was read hy the processor:-. 

Bit 1: This bit is the delta data set ready (DDSR) indicator. Bit 1 
indicates that the lJSR input to the cpip has changcrd state since 
the last time it was read by the processor. ' 

Bit 2: This bit is the trailing edge of ring indicator (TERl) 
dt:tc:ctor. Bit- 2 indicates that the Rl input w the chip has changed 
from an On (logical I ) to an Off (logical 0) condition. 

Bit 3: This bit is the ddt a received line signal detecwr ( DRl.SD) 
indicawr. Bit 3 indicates that the RLSD input to the chip has 
chan~~:d state. · 

Note: \\rwn~ver bit 0, 1. 2, or 3 is set ro a logical I, a modem 
status inl<:irurt- is generated. · 

Bit 4: TI1is bit i.~ rhe complem,ent of the clear ro send (CiS) 
· input. If bit 4 ( lovp :1 f:!f the MCR is set to a logical I, this is 

equivalent to RTS in the MCR. 

Bit 5: This bit is the complement of the data set ready (~) 
input. If bit 4 of the MCR is set to a logical 1, this bit is equivalent 
to DTR in the MCR. . 

Bit 6: This bit is the complement of the ring indicator (Rl.) input. 
If bit 4 of the MCR is set to a logical 1, this bit is equivalent to 
OUT 1 in the MCR. . 

.• 'i 
Bit 7: This bit is the comple'ment of the received line signal 
detect (RLSD) input. If bit 4 of the MCR is .set to a. logical I, this 
bit is equivalent to OUT 2 of the MCR. · 

___ i 

Asynchronous Adapter 1-209 



153 

~e-ceiver Buffer Register 

; 

. The recei\'er buffer register contains the received character as 
'defined below: 

Hex Address 3FB DLAB = 0 Read Only 

Bit 7 6 5 4 3 2 0 

I I L ~::: :::~ 
~DataBot2 

Data B11 3 

'----------- Data Bot 4 

'------------ Data Bot 5 

'-----------.....- Data Bot 6 

'-------------- Data Bot 7 

Receiver Buffer Register (RBR) 

Bit 0 is the least signiJicant bit and is the first bit serially received. 

1-210 Asynchronous Adapter 



154 

Transmitter Holding Register 

Tht: transmitter holding register contains the character to be 
serially transmitted and is defined bdow: 

Hex Address 3F8 

Bit 7 6 

D0B = 0 Write Only ' 

5 4 3 2 1· 0 

I l_ Data Bit 0 

~ DataBitl 

Data Bot 2 

Data Bit 3 

Data Bit 4 

'----------~ Data Bot 5 

Data Bit 6 

Data Bit 7 

Transmitter Holding Reg'ister (THR) 

Bit 0 is che least significam bit and is the first bit serially 
transmitted. 

Asynchronous Adapter 1-211 



155 

lhc follo\\ing is an illustration of data terminal equipment 
connected to an external modem using connections defined hy 
the RS-232C interface standard: 

Data 
Terminal 
Equipment 

Communications 
Line 

.... , ',, 
Cable Conforming· ',, ', 
To RS-232C Standards ', ', 

' ..... , ~' 
.... ', 

_..EIA/CCITI Telephone Co. ', 
1----..( Line Number Lead Number 'T----, 

Data 
Terminal 
Equip· 
ment 

Protective Ground ---0-AA/101 

Signal Ground ~7 AB/102 

Transmitted Dat;o · 2 BA/ 103 

Re!:eived Data 3 BB/104 

Request to Send --@-cA/105 

Clear to Send @-cB/106 

Data Set Ready 6 CC/1 07 

Data Terminal Ready-----( Modem 

Connect Data Set to Line 

Received Line Signal Detector 

Speed Select 

Transmit Signal Element Timing~ DB/ 114 · 

Receive Signal Element Timing~ DD/115 

Select Standby 11 •• /116 

Ring Indicator -----'----( 

Test .. ;• .. 

External Modem Cable Connector 

13121110987654321 

\ o o o oo o oo o o . .0 o o/ 
\000000000000} 

2524 23 22 21201918171615 14 

-· 

r---- Data Termrnal 
Eqwpn1cnt 

·-- - Data Communications __j +(Modem) DCE 

Equrpment -·-l 

Pin Number 

"Not used when busrncss machine clockrng is used. 
••Not standardized by EIA (Electronics Industry Association). 

•••Not standardrzcd by CCITI 



15() 

APPEr~DIX C 

.vTsao 
terminal 



20 

Escape Sequences 
An escape sequence begins with the CO character ESC. 
followed by one or more ASCII graphic characters. For example, 

ESC # 6 

is an escape sequence that changes the current line of text to 
double-width characters. Escape sequences use only 7-bit 
characters, and can be used in 7-bit or 8-bit environments. 

Control Sequences 
A control sequence begins with CSI (9/11 ). followed by one or 
more ASCII graphic characters. CSI can also be expressed as 
the 7-bit code extension ESC(. So you can express all control 
sequences as escape sequences whose second character 
code is (. For example, the following two sequences are 
equivalent sequences that perform the same function (they 
cause the display to use 132 columns per line rather than 80). 

CSI ? 3 h 

ESC ? 3 h 

Whenever possible. use CSI instead of ESC ( to introduce a 
control sequence. CSI can only be used in an 8-bit environment 

Device Control Strings 
A device control stnng is a delimited string of characters used in 
a data st.' eam as a logtcal entity for control purposes. It consists 
of an opentng deltmtter OCS. a command string (data), and a 
closing delimiter ST. 

DCS ts an 8-bit control character that can also be expressed as 
ESC P when coding tor a 7-bit environment. 

ST 1s an 8-bit control character that can also be expressed as 
ESC I when coding for a 7-bit environment. 

157 

21 

TRANSMITTED CODES 

Main Keypad Function Keys 

Key 

Tab 

Return 

Ctrl 

Lock 

Shift 
(2 keys) 

Space bar 

Compose 
Character 

Editing Keys 

Key 

Find 

Insert Here 

Remove 

Select 

Prev Screen 

Next Screen 

Code Transmitted 

DEL character 

HT character 

CR character only or a CR character and 
an LF character, depending on the 
set/reset state of line feed/new line mode 
(LNM). 

Does not send a code. 

Does not send a code. 

Does not send a code. 

SP character 

Does not send a code. 

Code Generated VT100, 
VT200 Mode VT52 Modes 

CSI 1 None 

CSI 2 - None 

CSI 3 None 

CSI 4 - None 

CSI 5 - None 

CSI 6 - None 

Cursor Control Keys 

ANSI Mode• VT52 Mode• 
Cursor Key Mode 
Reset Set 

Key Normal Application Normal Application 

CSI A SS3 A ESC A ESC A 

CSI B SS3 B ESC B ESC B 

CSI c SS3 c ESC C ESC c 
CSI D SS3 0 ESC 0 ESC 0 

ANSI mode applies to VT200 and VTt 00 modes. VT52 mode 
is an ANSI-incompatible mode. 

·-·------- .. --.. ---------------------'------...----------------------



158 

22 23 

Auxiliary Keypad Keys Top Row Function Keys 

VT100/VT200 Code Generated 
ANSI Mode• VT52 Mode• VT100, 

Name on Generic VT200 VT52 
Keypad Keypad Keypad Keypad Legend Strip Name Mode Modes 
Numeric Application Numeric Application 

Key Mode Mode Mode Mode Hold Screen (F1 )+ 

Print Screen (F2)• 
0 0 SS3 p 0 ESC? p 

SS3 q 1 ESC? q 
Set-Up (F3)• 

:: Data/Talk (F4)• 
2 2 SS3 r 2 ESC? r 

Break (FS)• 
3 3 SS3 s 3 ESC? s 

F6 F6 CSI 7 -
4 4 SS3 t 4 ESC? t 

F7 F7 CSI 8 -
5 5 SS3 u 5 ESC? u 

F8 F8 CSI 1 9 -
6 6 SS3 v 9 ESC? v 

F9 F9 CSi 2 0 
7 SS3 w 7 ESC?w 

F10 F10 CSI 2 1 -
8 8 SS3 X 8 ESC? X 

F11 (ESC) F11 CSI 2 3 - ESC 
9 9 SS3 y 9 ESC? y 

F12 (BS) F12 CSI 2 4 - BS 
-(minus) SS3 m ESC? m 

F13 (LF) F13 CSI 2 5 - LF 
.(comma) SS3 I ESC? It 

F14 F14 CSI 2 6 -
.(period) SS3 n ESC? n 

Help (F15) CSI 2 8 -
Enter CR SS3 M CR ESC? Mt 

or or Do (F16) CSI 2 9 -

CR LF CR LF F17 F17 CSI 3 1 -
PF1 SS3 P SS3 P ESC P ESC P F18 F18 CSI 3 2 -

PF2 SS3 0 SS3 0 ESC 0 ESCO F19 F19 CSI 3 3 -

PF3 SS3 R SS3 R ESC R ESC R F20 F20 CSI 3 4 -
PF4 SS3 S SS3 S ESC S ESC St 

F1 through F5 are local function keys and do not generate . ANSI mode applies to VT200 and VT100 modes. VT52 mode codes. 

is an ANSI-incompatible mode. 

You cannot generate these sequences on a VT52 terminal. 

+ Keypad numeric mode. Enter generates the same codes as 
Return. You can change the code generated by Return with 
the line feed/new line mode. When reset, line feed/new line 
mode causes Return to generate a single control character 
(CR). When set. the mode causes Return to generate two 
control characters (CR, LF). 



24 

Keys Used to Generate 7-Bit Control-Characters 

Control Key Pressed 
Character With Ctrl Dedicated 
Mnemonic (All Modes) Function Key 

NUL 
SOH' 
STX 
ETX 
i::OT 
ENO 
ACK 
BEL 
BS 
HT 
LF 
VT 
FF 
CR 
so 
Sl 
OLE 
OCt 
OC2 
OC3 
OC4 
NAK 
SYN 
ETB 
CAN 
EM 
SUB 
ESC 
FS 
GS 
RS 
us 
DEL 

2. space 
A 
B 
c 
0 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
p 

Ot 
R 
St 
T 
u 
v 
w 
X 
y 

z 
3. I 
4, I 
5.) 
6. -
7.? 
8 

F12 (BS)' 
Tab 
F13(LF)' 

Return 

F11 (ESC)' 

Delete 

Keys F 11. F 1 2. and F 1 3 generate these 7 -bit control char-
• acters only when the terminal is in VT100 mode or VT52 

mode. 
These keystrokes are enabled only if XOFF support is 
disabled. If XOFF support is enabled. then CTRL·S is a "hold 
screen" local function and CTRL-0 is a "release screen" 
local function. 

25 

RECEIVED CODES 

Compatibility Level (DECSCL) 

Sequence Action 

CSI 6 1 .. p Set terminal for level 1 
(VT100 mode). 

CSI 6.2 .. p Set terminal for level 2 
(VT200 mode, 8-bit controls). 

CSI 6 2 0 .. p Set terminal for level 2 
(VT200 mode. 8-bit controls). 

CSI 6 2 1 .. p Set terminal for level 2 
(VT200 mode. 7-bit controls). 

CSI 6 2 2 .. p Set terminal for level 2 
(VT200 mode. 8-bit controls). 

CO (ASCII) Control Characters Recognized 

Mnemonic 

NUL 

ENQ 

BEL 

BS 

HT 

LF 

VT 

FF 

CR 

so 
(LS1) 

Name 

Null 

Enquiry 

Bell 

Backspace 

Horizontal 
tabulation 

Linefeed 

Vertical 
tabulation 

Form feed 

Carriage 
return 

Shift out 
(lock shift 
G1) 

Action 

Ignored when received. 

Generates answerback 
message. 

Generates bell tone if bell is 
enabled. · 

Moves cursor to the left one 
charaCter position: if cursor is 
at left margin. no action occurs. 

Moves cursor to next tab stop. 
or to right margin if there are 
no more tab stops. Does not 
cause auto wrap. 

Causes a line feed or a new 
line operation. depending on 
the setting of new line mode. 

Processed as LF . 

Processed as LF. 

Moves cursor to left margin on 
current line. 

Invokes G1 character set into 
GL. G1 is designated by a 
select-character-set (SCS) 
sequence. 

------ --·-·-··"--···· 



160 

26 27 

CO (ASCII) Control Characters Recognized (Cont) C1 'control Characters Recognized 

Mnemonic Name Action Equivalent 
7-Bit Code 

Sl Shift in Invokes GO character set into Mnemonic Extension Name Action 
(LSO) (lock shift GL. GO is designated by a 

GO) select-character-set (SCSI IND ESC D Index Moves cursor down 
sequence. one line in same 

DC1 Device Also referred to as XON. If column. If cursor is 
control1 XOFF support is enabled, DC1 at bottom margin, 

clears DC3 (XOFF). causing screen performs a 
the terminal to continue send- scroll up. 
ing characters (keyboard NEL ESC E Next line Movescursortofirst 
unlocks) unless KAM mode is position on next line. 
currently set. If cursor is at bottom 

DC3 Device Also referred to as XOFF. If margin. screen per· 
control 3 XOFF support is enabled, DC3 forms a scroll up. 

causes the terminal to stop HTS ESC H Horizontal Sets one horizontal 
sending characters until a tab set tab stop at the 
DC1 control character is column where the 
received. cursor is. 

CAN Cancel If received during an escape or AI ESC M Reverse Moves cursor up 
control sequence. terminates index one line in same 
and cancels the sequence. No column. If cursor is 
error character is displayed. If· at top margin, 
received during a device screen performs a 
control string, the DCS is ter- scroll down. 
minated and no error character 

SS2 ESC N Single Temporarily invokes is displayed. 
shift G2 G2 character set 

SUB Substitute If received during escape or into GL for the next 
control sequence. terminates graphic character. 
and cancels the sequence. G2 is designated by 
Causes a reverse question a select-character-
mark to be displayed. If re- set (SCS) sequence. 
ceived during a device control 

SS3 ESC 0 Single Temporarily invokes sequence. the DSC is termi-
shift G3 G3 character set nated and reverse question 

into GL for the next mark is displayed. 
graphic character. 

ESC Escape Processed as escape sequence G3 is designated by 
introducer. Terminates any a select-character-
escape, control or device set(SCS)sequence. 
control sequence which is in 

DCS ESC p Device Processed as progress. 
control opening delimiter 

DEL Delete Ignored when received. string of a device control 
Note: May not be used as a string for device 
time till character. control use. 



28 

C1 Control Characters Recognized (Cont) 

Equivalent 
7-Bit Code 

Mnemonic Extension 

CSI ESC [ 

ST ESC I 

Name 

Control 
sequence 
introducer 

String 
terminator 

Action 

Processed as 
control sequence 
introducer. 

Processed as 
closing delimiter of 
a string opened by 
DCS. 

CHARACTER SET SELECTION (SCS) 

Designating Hard Character Sets 

Use the following list of escape sequence formats to designate 
hard character sets as GO through G3. 

Escape Sequence 

ESC 

ESC 

\final/ 

!final/ 

ESC • \final/ 

ESC + !final/ 

Designate As: 

GO 

G1 

G2 

G3 

The following is a list of available character sets and their 
associated final character. 

Character Sets 

ASCII 

DEC supplemental 
(VT200 mode only) 

DEC special graphics 

National replacement 
character sets 

British 

Dutch 

Finnish 

French 

French Canadian 

German 

Italian 

Final Character 

B 

< 

0 

NOTE 
Only one national character 
set is available for use at any 
one time (national mode). 

A 

4 

Cor 5 

R 

0 

K 

y 

161 
i. 

29 

Character Sets Final Character 

Norwegian/Danish E or 6 

Spanish z 
swedish H or 7 

Swiss = 
- J 

Examples 

ASCII as GO ESC B 

British as G3 ESC . A 

Designating Soft (Down·Line·Loadable) Character Sets 

Escape Sequence Designate As: 

ESC Dscs GO 

ESC Dscs G1 

ESC Dscs G2 

ESC + Dscs G3 

Dscs can consist of zero, one, or two intermediate characters 
and a final character. 

Intermediate characters are in the range of 2/0 to 2/15; final 
characters are in the range of 3/0 to 7/14. (See ASCII Code 
Table for column/row notation.) 

Invoking Character Sets Using Lock Shifts 

Control Name Coding Function 

LSO - lock shift GO Sl Invoke GO into GL 
(default). 

LS1 -lock shift G1 so Invoke G1 into GL. 

LS1 R -lock shift G1, ESC - Invoke G1 into GR 
right (VT200 mode only). 

LS2 - loc~ shift G2 ESC n Invoke G2 into Gl 
(VT200 mode only). 

LS2R- lock shift G2. ESC Invoke G2 into GR 
right (default.VT200 mode 

only). 

LS3 - lock shift G3 ESC o Invoke G3 into GL 
(VT200 mode only). 

LS3R- lock shift G3. ESC Invoke G3 into GR 
right (VT200 mode only). 



30 

Invoking Character Set!> Using Single Shifts 

Control Name Coding 

SS2 - single shift G2 SS2 
ESC N 

SS3 - single shift G3 SS3 
ESC 0 

Select C1 Control Transmission 

Control 
Name 

7-bit C1 
control 
transmission 
(S7C1n 

NOTE 

Sequence• 

ESC sp F 

Function 

Invokes G2 into GL 
for the next graphic 
character. 

Invokes G3 into GL 
for the next graphic 
character. 

Action 

Converts all C1 codes 
returned to the application 
to their equivalent 
7-bit code extensions. 

The S7C1 T sequence is ignored when the ter· 
minal Is in VT100 or VT52 mode. 

8-bit C1 
control 
transmission 
(S8C1n 

ESC sp G 

sp is a space character 

Returns C1 codes to the 
application without 
converting them to their 
equivalent ?·bit code 
extensions. 

162 

Terminal Modes 

Name 

Keyboard 
actiont 

Insertion· 
replacement 

Send
receive 

Line feed
new line 

Cursor key 

ANSI/VT52 

Column 

Scrollingt 

Screent 

Auto wrap 

Auto 
repeatt 

Print form 
feed 

.i. 

Print extent 

Text cursor 
enable 

Keypad 

Character 
set 

Mnemonic Set Mode 

KAM Locked 
CSI 2 h 

IRM Insert 
CSI 4 h 

SRM Oft 

LNM 

DECCKM 

DECANM 

DECCOLM 

DECSCLM 

DECSCNM 

DECAWM 

DECARM 

DECPFF 

DECPEX 

DECTCEM 

.DECKPAM 
DECKPNM 

DECNRCM 

CSI 12 h 

New line 
CSI 20 h 

Application 
CSi? 1 h 

N/A 
CSI? 2 I 

132 column 
CSI ? 3 h 

Smooth 
CSI ? 4 h 

·Reverse 
CSI ? 5 h 

On 
CSI ? 7 h 

On 
CSI ? 8 h 

On 
CSI ? 18 H 

Full screen 
CSI ? 19 h 

On 
CSI ? 25 h 

Application 
ESC= 

National 
CSI ? 42 h 

31 

Reset Mode• 

Unlocked 
CSI 2 I 

Replace 
CSI 4 I 

On 
CSI 12 I 

Line feed 
CSI 20 I 

Cursor 
CSI ? 1 I 

VT52 

80 column 
CSI? 3 I 

Jump 
CSI ? 4 

Normal 
CSI ? 5 

Off 
CSI ? 7 

Off 
CSi? 8 

Off 
CSI? 18 I 

Scrolling region 
CSI ? 19 I 

Off 
CSI ? 25 

Numeric 
ESC> 

Multinational 
CSI ? 42 I 

The last character of each sequence is lowercase L (6/12). 

t User preference feature 



32 

Cursor Positioning 

Control 
Name Character Sequence 

Cursor up CSI Pn A 

(CUU) 

Cursor CSI Pn B 

down 
iCUDi 

Cursor CSI Pn c 
forward 
!CUFI 

Cursor CSI Pn D 
bacl<ward 

. iCUBI 

Cursor CSI PI ; 
position 
(CUP) 

Horizontal CSI PI ; 

and vertical 
position 
(HVP) 

Index INO ESC 0 
(/NO) 

Reverse Rl ESC M 
index (RI) 

Action 

Moves cursor up 
Pn lines in the. 
same column. 

Moves cursor 
down Pn lines in 
the same column. 

Moves cursor 
right Pn columns. 

Moves cursor left 
Pn columns. 

Pc H Moves cursor to 
line Pl. column Pc. 
The numbering of 
the lines and col· 
umns depends on 
the sta_te (set /reset) 
of origin mode 
(DECOM). 

Pc f Moves cursor to 
line PI, column Pc. 
The numbering of 
the lines and col· 
umns depends on 
the state (set /reset) 
of origin mode 
(DECOM). Digital 
recommends using 
CUP instead of 
HVP. 

Moves cursor 
down one line in 
the same column. If 
the cursor is at the 
bottom margin the 
screen performs a 
scroll· up. 

Moves cursor up 
one line in the 
same column. If the 
cursor is at the top 
margin the screen 
performs a scroll· 
down 

'• 

Cursor Positioning (Cont) 

Name 

Next line 
(NEL) 

Save 
cursor 
(DECSC) 

Restore 
·cursor 
(DECRC) 

Control 
Character Sequence 

NEL ESC E 

ESC 7 

ESC 8 

33 

Action 

Moves the cursor 
to the first position 
on the next line. If 
the cursor is at the 
bottom margin the 
screen performs a 
scroll· up. 

Saves the follow· 
ing in terminal 
memory. 
• cursor position 
• graphic rendition 
• character set 

shift state 
• state of wrap flag 
• state of origin 

mode 
• state of selective 

erase 

Restores the states 
described for 
(DECSC) above. If 
none of these char· 
acteristics were 
saved: the cursor 
moves to home 
position, origin 
mode is reset, no 
character attributes 
are assigned, and 
the default char· 
acter set mapping 
is established. 



34 

Tab Stops 

NOTE 
These sequences are affected by the user 
preference lock in set-up. 

Control 
Name Character Sequence Action 

Horizontal HTS ESC H Sets a tab stop 
tab set at the current 
(HTSl column. 

Tabulation CSI g Clears a horizon-
clear tal tab stop at 
(TBC) cursor position. 

CSI 0 g Clears a horizon-
tal tab stop at 
cursor position. 

CSI 3 g Clears all hori-
zontal tab stops. 

Select Graphic Rendition (SGR) 
You can select n~e or more character renditions at a time using 
the followmg format. 

CSI Ps Ps m 

When you use multiple parameters. they are executed in 
sequence. The effects are cumulative. For example. to change 
from increased intensity to blinking-underlined, you can use: 

CSI 0 : 4 5 m 

When you select a single parameter. nodelimit<:r(3/11) is used. 

Ps Action 

0 All attributes off. 

Display at increased intensity. 

4 Display underscored. 

5 Display blinking. 

7 Display negative (reverse) image. 

2 2 Display normal intensity. 

2 4 Display not underlined. 

2 5 Display not blinking. 

2 7 Display pos•tive image. 

lf)4 

35 

Select Character Attributes (DECSCA) 
You can seleCt all subsequent characters to be erasable or not 
erasable using the following format. (See "Erasing" section.) 

NOTE 
This sequence is supported only in VT200 mode. 

: 

CSI Ps " q 

where: 

Ps Action 

0 All attributes off. (Does not apply to SGR.) 

Designate character as "not erasable" by 
DECSEL/DECSED (attribute on). 

2 Designate character as "erasable" by 
DECSEUDECSED (attribute off). 

Line Attributes 

Name 

Double-height line 
(DECDHL) 

Single-width line 
(DECSWL) 

Double-width line 
(DECDWL) 

.·· ,. 

Sequence 

Top Half 

ESC # 3 

Bottom Half 

ESC # 4 

The same character must be used on 
both lines to form full character. If the 
line was previously single-width. 
single-height. all characters to the 
right of center are lost. 

ESC # 5 

ESC # 6 



1{)5 

36 37 

Editing Erasing (Cont) 

Name Sequence Action Name Sequence Action 

Insert line (ll) CSI Pn L Inserts Pn lines at the cursor. Selective erase CSI? K Erases all "erasable" char· 

Delete line (Dl) CSI Pn M Deletes Pn lines starting at in line acters (DECSCA) from the 

the line with the cursor. (DECSEL) cursor to the end of the line. 

Insert CSI Pn @ Insert Pn blank characters 
(VT200 mode 

characters at the cursor position. 
only) 

(ICH) with the character CSI ? 0 K Same as above. 

(VT200 mode attributes set to normal. CSI ? K Erases all "erasable" char· 
only) acters (DECSCA) from the 

Delete CSI Pn P Deletes Pn characters beginning of the line to and 

character (DCH) starting with the character including the cursor position. 

at the cursor position. CSI ? 2 K Erases all "erasable" char· 
acters ( DECSCA) on the line. 

Erasing Selective erase CSI ? J Erases all "erasable" char· 

Name Sequence Action 
in display acters (DECSCA) from and 
(DECSED) including the cursor to the 

Erase character CSI Pn X Erases characters at the 
(VT200 mode end of the screen. 

(ECH) cursor position and the 
only) 

(VT200 mode next n-1 character. CSI ? 0 J Same as above. 

only) CSI ? J Erases all "erasable" char· 

Erase in line CSI K Erases from the cursor to acters (DECSCA) from the 

(Ell the end of the line. includ- beginning of the screen to 

ing the cursor position. and including the cursor. 

CSI 0 K Same as above. CSI ? 2 J Erases all "erasable" char· 

CSI K Erases from the beginning 
acters (DECSCA) in the 

of the line to the cursor, 
entire display. 

including the cursor position. Set Top and Bottom Margins (DECSTBM) 
CSI 2 K Erases the complete line. 

Erase in display CSI J Erases from the cursor to CSI Pt ; Pb r 

lED I the end of the screen. in-
eluding th.e cursor position. Selects top and bottom margins defining the scrolling region. Pt 

CSI 0 J Same as above. 
is the line number of the first line in the scrolling region. Pb is the 
line number of t~e bottom line. If you do not select either Pt or 

CSI J Erases from the beginning Pb, they default to top and bottom respectively. Lines are 
of the screen to the cursor, counted from 1. 
including the cursor position. 

CSI 2 J Erases the complete display. 



38 

Printing 

Before you select a print operation, check printer status using 
the print status report (DSR). (See "Reports'' section.) 

Name 

Auto print 
mode 

Printer 
controller 

Print cursor 
line 

Sequence 

CSI ? 5 i 

CSI ? 4 i 

CSI 5 i 

CSI 4 i 

CSI ? 1 i 

Action 

Turns on auto print mode. 
All following display lines 
print when you move the 
cursor off the line using a line 
feed, form feed, vertical tab, or 
auto wrap. The printed line 
ends with a carriage return 
and the character (LF. FF, or 
VT) which moved the cursor 
oft the previous line. Auto 
wrap lines end with a line 
feed. 

Turns off auto print mode. 

Turns on printer controller 
mode. The terminal sends 
received characters to the 
printer without displaying 
them on the screen. All 
characters and character 
sequences. except NUL. 
XON,XOFF,CSI5 i,andCS14 
i are sent to the printer. The 

terminal does not insert or 
delete spaces. or provide line 
delimiters, or select the 
correct printer character set. 

Printer controller mode has a 
higher priority than auto print 
mode. It can be selected dur
ing auto print mode. 

When in printer controller 
mode, keyboard activity con
tinues to· be directed to the 
host. 

Turns off printer controller 
mode. 

Prints the display line contain
ing the cursor. The cursor 
position does not change. 
The print-cursor-line 
sequence is complete when 
the line prints. 

------------------ 39 

Printing (Cont) 

Name Sequence Action 

Print screen CSi i Prints the screen display (full 
screen or scrolling region 
depending on the print extent 
DECEXT selection). Printer 
form feed mode (DECPFF) 
selects either a form feed ( FF) 
or nothing as the print termi
nator. The print screen se
quence is complete when the 
screen prints. 

CSi 0 i Same as above. 

User Defined Keys (DECUDK) 

The device control string format for down-line-loading UDK 
functions is: 

DCS Pc;PI Ky1 /st1 ;ky2/st2; ... kyn/stn ST 

where: 

Pc M~aning 

None Clear all keys before loading new values. 

0 

1 

PI 

None 

0 

Key 

F6 
F7 
F8 
F9 
F10 

F11 
F12 
F13 

Clear all keys before loading new values. 

Load new key values. clear old only where defined. 

Meaning 

Lock the keys against future redefinition. 

Lock the keys against future redefinition. 

Do not lock the keys against future redefinition. 

Value (kyn) Key Value (kyn) 

17 F14 26 
18 HELP 28 
19 DO 29 
20 
21 F17 31 

23 
F18 32 

24 
F19 33 

25 
F20 34 

Stn is a string· of hex pairs of ASCII characters that define the 
specified key. 

NOTE 
1 

To accei\S the programmed values of the keys, 
you type Shift- (function key). 



40 

Down-Line-loading Characters (ORCS) 
You can down-line-load your ORCS character set using the 
following DECDLD device control string format. 

DCS Pfn;Pcn:Pe:Pcms:Pw:Pt I Dscs Sxbp1 :Sxbp2; .. :Sxbpn ST 

Parameter descriptions are as follows. 

DECDLD Parameter Characters 

Parameter Name Description 

Pin Font 0 and 1. 
number 

Pen Starting Selects starting character in ORCS 
character font buffer to be loaded. 
number 

Pe Erase 0 = erase all characters in this 
control ORCS set 

1 = erase only the characters that 
are being reloaded 

2 =erase all characters in all ORCS 
sets (this font buffer number 
and other font buffer numbers) 

Character 0 = device default (7 x 1 0) 

Matrix 1 = (not used) 
size 2 = 5 X 10 

3=6X10 
4 = 7 X 10 

Pw Width 0 = device default (80 columns) 
attribute 1 = 80 column 

2 = 132 column 

Pt Text/ 0 = device default (text) 
full-cell 1 =text 

2 = full-cell (not used) 

Dscs defrnes the character set name for the soft font. and is 
used in the SCSI select character set) escape sequence. 

Sxbp1;S,bp2 .... Sxbpn are srxel bit patterns (1 to 94 patterns) 
for characters separated by semicolons. Each sixel bit pattern 
has the lorm: 

s.s; ... s 

where the frrst S .... S represents the up'per columns 
lsrxels) of the ORCS character. the slash advances 
the srxel pattern to the lower columns of the ORCS 
character. and the second S .... S represents the lower 
columns (srxelsl of the ORCS. 

1B7 

41 

Clearing a Down-Line-loaded Character Set 
You can clear a character set that you have down-line-loaded 
using the following DECDLD control sequence. 

DCS 1;1;21 sp@ ST 

Down-line-loadl!ld character sets are also cleared by the 
following actions. 

• Performing the power-up self-test. 
• Using the set-up "Recall" or "Default" features. 
• Using RIS or ESC c sequences. 

Reports 

Device Attributes (DA) 

Communication 

Host to VT220 
(primary DA 
request) 

VT220 to host . 
(primary DA 
response) 

Host to VT220 
(secondary DA 
request) 

VT220 to host 
(secondary DA .. 
response) 

Sequer.ce Meaning 

CSI c "What is your service 
or class code and what 
CSI 0 c are your attributes?" 

CSI ? 62; 1; 2; 6; 7; 8; 9 c "I am a service class 

CSI > c 
or 
CSI > 0 c 

CSI > 1; Pv; Po c 

2 (VT200 family) 
terminal (62) with 132 
columns (1 ), printer 
port (2), selective 
erase (6), ORCS (7), 
UDK (8). I support 
7-bit national re
placement character 
sets (9)." 

"What type of termi
nal are you, what is 
your firmware version, 
and what hardware 
options do you have 
installed?" 

"I am a VT220(identi
fication code of 1, my 
firmware version is 
__ (Pv), and I 
have PO options 
installed. 

EXAMPLE: CSI> 1; 1 O;Oc = VT220 version 1.0, no options 

NOTE 
If the terminal Is In VT100 mode and an ID other 
than VT220 ID Is selected, then the following 
primary exchanges apply. 

---- ·-·--· --- -----------------~---------~----



42 

Communication Sequence 

VT220 to host 
(VT100 ID 
selected in 
set-up) 

VT220 to host 
(VT101 ID 
selected in 
set-up) 

VT220 to host 
(VT102 10 
selected in 
set-up) 

ESC [? 1; 2 c 

ESC [? 1; 0 c 

ESC [? 6 c 

Device Status Report (DSR) 

Communication Sequence 

Host to VT220 CSI 5 n 
(request for 
terminal status) 

VT220 to host 
(DA response) 

Host to VT220 
(request for 
cursor position) 

VT220 to host 
(CPR response) 

CSI 0 n 

CSI 3 n 

CSI 6 n 

CSI Pv; Ph R 

Meaning 

"I am a VT100 termi
nal with AVO." 

"I am aVT101 
terminal." 

"I am a VT102 
terminal." 

Meaning 

"Please report your 
operating status 
using a DSR control 
sequence. Are you in 
good operating con
dition or do you have 
a malfunction?" 

"I have no 
malfunction." 

·•1 have a 
malfunction." 

"Please report your 
cursor pos1tion using 
a CPR ("not DSR) 
control sequence." 

"My cursor is posi
tioned at __ (Pv); 
____ (Ph)." 

Where: 

Pv = vertical 
position (row) 

Ph = horizontal 
position 
(column) 

16~ 

DSR- Printer Port 

Communl6atlon Sequence 

Host to V1220 CSI ? 15 n 
(request for 
printer status) 

VT220 to host CSI ? 13 n 

CSI ? 10 n 

CSI ? 11 n 

43 

Meaning 

"What is the printer 
status?" 

"DTR has not been 
asserted on the 
printer port since. 
power up or reset-in 
essence. I have no 
printer." 

"DTR is asserted on 
the printer port. The 
printer is ready." 

"DTR is not currently 
asserted on the 
printer port. The 
printer is not ready." 

DSR- User Defined Keys (VT200 mode only) 

Communication Sequence 

Host to VT220 CSI ? 25 n 
(request for 
UDK status) 

VT220 to host CSI ? 20 n 

CSI ? 21 n 

Meaning 

"Are User Defined 
Keys locked or 
unlocked?" 

"User Defined Keys 
are unlocked." 

"User Defined Keys 
are locked." 



44 

DSR- Keyboard Language 

Communication Sequence 

Host to VT220 CSI ? 26 n 
(request for 
keyboard 
language) 

VT220 to host CSI ? 27; Pn n 

Meaning 

"What is the key· 
board language?" 

"My keyboard lan· 
guage is __ (Pn)." 

where: 
Pn Language 

0 Unknown• 
1 North American 
2 British 
3 Flemish 
4 French Canadian 
5 Danish 
6 Finnish 
7 German 
8 Dutch 
9 Italian 

10 Swiss (French) 
11 Swiss (German) 
12 Swedish 
13 Norwegian 
14 French/Belgian 
15 Spanish 

Sent by a terminal that for some reason cannot determine 
1ts keyboilrd language. The VT220 will never send this 
response. 

Identification (DEClO) 

ESC Z 

Causes the terminal to send a primary DA response sequence. 
DEClO. however. is not recommended. You should use the 
primary DA request for this purpose. 

Terminal Reset 

Name 

Soft terminal 
reset (DECSTR) 

Hard terminal 
reset (RIS) 

Sequence 

CSI ! p 

ESC c 

Action 

Sets terminal to 
power· up default 
states 

Replaces all set-up 
parameters with NVR 
values or power-up 
default values if NVR 
values do not exist. 

45 

Tests (DECTST) 
The sequence format for invoking terminal tests is as follows. 

CSi 4 ; ..... ; Ps y 

where: 

Ps 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10andup 

NOTE 

Test 

Test 1, 2, 3, and 6 

1
Power·up self-test 

"EIA port data loopback test 
Printer port loopback test 
(not used) 
.(not used) 

.. 

''EIA port modem control line loopback test 
20 mA port loopback test 
(not used) 
;Repeat other test in parameter string 
'(not used) 

DECTST causes a communications line 
disconnect. 

Adjustments (DECALN) 

ESC # 8 Displays screen alignment pattern (full screen of 
E's). 

VT52 Escape Sequences 

Escape Sequence 

ESC A 
ESC B 
ESC C 
ESC D 
ESC F 
ESC G 
ESC H 
ESC I 
ESC J 
ESC K 
ESC Y Line Column 
ESC Z 
ESC= 
ESC> 
ESC< 
ESC 
ESC __ 
ESCW 
ESC X 
ESC! 
ESCV 

Function 

Cursor up 
Cursor down 
Cursor right 
Cursor left 
Enter graphics mode 
Exit graphics mode 
Cursor to home 
Reverse line feed 
Erase to end of screen 
Erase to end of line 

· Direct cursor address 
Identify 
Enter alternate keypad mode 
Exit alternate keypad mode 
Enter ANSI mode 
Enter auto print mode 
Exit auto print mode 
Enter printer controller mode 
Exit printer controller mode 
Print screen 
Print cursor line 



170 

- ' ~ ~ 

• "'--;'~ ~ I • ' ~~ ~ "'..,.~ • ..... -· - ;;;;_ ..... ~ J~)· 

APPENDIX F 

interrupt 
vectors 



171 

The MS-DOS Handbook 

Interrupt Vect<lrs OH through 1 FH 

Interrupt Add~s · 
Vector (Hex)· Purpose Notes 

0 "00-03 Divide by zer(J trap 

1 04-07 Sirtgle step 

2 08-08 Nonmaskable interrupt ROMB:OS 

3 . OC-OF Breakpoint trap 

4 10-13 Overflow dt?tection 

5 14-17 Print screen ROM BIOS 

6 18-18 

7 1C-1F 

8 20-23 Timer 

9 24-27 Keyboard 
A· 28-28 8259 

B 2C-2F interrupt 

c 30-33 !reserved for 
communications) vectors 

D 34-37 

E 36-38 

F 3C-3F (reserved for printer) 

10 40-43 Video 1/0 
11 44-47 Equipment check 

12 ~8 Memory size 

13 4C-4F Diskette access 

14 50-53 Communications 

15 54-57 Cassette 1/0 ROM BIOS 

16 58-SB Keyboard 1/0 vectors 

17 5C-5F Printer 1/0 
18 60-63 Cassette BASIC 

19 64-67 Bootstrap 

1A 68-68 Time of day 

18 6C-6F Ctrl-8reak hand!ing 

1C 70-73 Timer tick 

10 74-77 Video initialization 



lE 

lF 
78-78 

7C-7F 

172 

DiskE'tte parameters 

Video graphics 
. characters, ASCII 

Interrupt Vectors 

128-255 

MS-OOS Interrupt Vectors 20H through 27H 

Interrupt Address 
~or (Hex) Purpose 

20 80-83 General program termination 
21 84-87 DOS function reque5t 
22 88-88 Called program termination address 
23 8C-8F Ctrl-8reak terminc1tion address 
24 9C-93 Critical error handlef 
25 94-97 Absolute disk read 
26 98-98 Absolute disk write 

27 9C-9F Terminate bUt stay resident 



ASCII 
~ •. 

chal~acter 



Character Set (00-7F) Quick Reference 

DECIMAl .. 0 16 -32 48 64 80 96 I 12 VAtU! 

H!XA • DECIMAl 0 I 2 3 4 5 6 7 
'VALUI 

0 0 ILAIH ..... I lANK 0 @ p ' p !NULL I IS,AC!I 

I I ~ ~ I I A _Q a q . 
2 2 @) 1 II 2 B R b r 
3 3 • II # 3 c s c s •• 

4 4 • 9T $ 4 D T d t 
5 5 ... § % 5 E u e u 
6 6 • -& 6 F v f v 
7 7 • l_ ' 7 G w g w 
8 8 T ( 8 H X h X 

9 9 0 ! ) 9 I y . 
I y 

J z . 
10 A * 

. 
J ---+ . z 

(j + . 
K [ k ( II 8 +-- ' 

c Q L < L " 1 I 
12 ' I 

13 D } .---.. - - M ] m } 
14 E ~ • . > N 1\ n '\_, 

I .; F ¢ ,. / ') 0 0 6 . -
'-



1 ~, ,. < (.) 

Character Set (88-FF) Quick Reference 

OICt~lAI .. 128 144 thO 176 Jl) 2 20~ VAIUI 

IHIU H . 9 A B c • IDICI'-'Al D 
IVAIUI 

<; E , ... I 0 0 
... 

a ... ... ... ... 
•• , 

~~~~~ I I u ~ 1 
-=·=·

2 2
,

)E
, l ! e 0 I

J J ~ 1\ , ~LL 0 u
4 4 ••_, b a 0 n - r----

' '
-..,.,.

5 5 a 0 N C::::: ~ ~ F
6 6

0 1\ a HI F= a u .--
-

7 7 <(' 0 hl ·u -
A •• .

8 8 e y L ~
•• bJ 9 9 •• 0 r rr= e -

'
•• 6LL 10 A e u I

11 B •• c Y2 Fil I F"

I 2 c 1\ £ ~ biT 1
'

. u I J D I ¥ ' 14 E A n « bd ~
15 F A f)) h

224 2-lO

: F F

-ex= --

f3 + -
I~ > -
1T < -
:E r
(]' J
y . -.
T ~ ~

Q 0

e •
n •
0 " 00 n

cJ> 2

E I J

n Bl A'-K I
II j

:TKhnical Ref..-ence Manuol. pp.7-12-7-1), © 19&4 ln<~toonal 8usinHs M;och;nes Corporation

17{)

• j}

01

177

Appendix B

ASCII AND SCAN CODES

The following table lists the keys, in scan code order, and the .
ASCII codes generated by each (which depends on the shift sta
tus). The entries in the table are:

• SCAN CODE- a value in the range 01H-5AH (hexadecimal)
that uniquely describes which key is pressed.

• KEYBOARD LEGEND- the physical markinglsl on the key.
If multiple markings exist, they are listed from top to bottom.

• NORMAL - the normal (unshifted) ASCII value (returned
when only the indicated key is pressed).

• SHIFT - the shifted ASCII value (returned when I SHIFT I is
also pressed). ·

• CTRL - the control ASCII value (returned when I CTRL l is also
pressed).

• ALT - the alternate ASCII value (returned when [ill] is also
pressed) ..

• REMARK -· any remarks or special functions.

All numeric values in the table are expressed in hexadecimal.
Those values preceded by an x are extended ASCII codes (they
are preceded by an ASCII NUL [== 00]).

A marking of - indicates that no ASCII code is generated. A
marking of ** indicates that no ASCII code is generated and
that, instead, the special function described in the REMARK
column is performed. \

"

297

178

Appendix B

SCAN KEYBOARD ASCII CODES
CODE LEGEND "NORMAL SHIFT CTRL ALT REMARK

01 ESC 018 018 018
02 ! 1 031 021 X078
03 (a 2 032 040 X000 X079
04 # 3 033 023 X07A
05 $ 4 034 024 X078
06 % 5 035 025 X07C
07 . 6 036 05E 01E X070
08 & 7 037 026 X07E
09 * 8 038 02A X07F
0A (9 0:l9 ~)28 XOHO
0B) 0 o:lo vl29 XOHI
0C 020 0i'iF ~l 1 F X082
00 + = 030 028 XOR3
0E BACK SPACE 008 008 ~l7F XOHC
0F TAB 009 X00F xwm XORE
10 Q 071 051 011 X01vl
11 w 077 057 017 XOll
12 E 065 045 005 X012
13 R 072 052 012 X013
14 T 074 054 014 X014
15 y 079 059 019 X015
16 u 075 055 015 X016
17 I .069 049 009 X017
18 0 06F 04F 001<' X018
19 p 070 050 010 X019
lA [{ 05B 078 018
18 l } a050 07D 010
1C ENTER 000 00D 00A X08F (mail keybonrdl
1D CTRL * control modP.
1E A 061 041 001 X01E
lF s 073 053 013 X01F
20 0 064 044 004 X020
21 F 066 046 006 X021
22 G 067 047 007 X022
23 H 068 048 008 X023
24 J 06A 04A 00A X024
25 K 068 04B 008 X025
26 L 06C 04C 00C X026
27 03B 03A
28 027 022
29 .1' X048 X085 X09 X091 .
2A LEFT SHIFT * SHIFT
2B E-·· X04B X087 X073 X092
2C z 07A 05A 01A X02C ·
2D X 078 058 018 X02D
2E c 063 043 003 X02E
2F v 076 056 016 X02F
30 B 0a62 042 002 X030
31 N 06E 04E 00E X031

298

Appendix B

SCAN KEYBOARD ASCII CODES
CODE LEGEND NORMAL SHIFT CTHL ALT REMARK

32 M 06D 04D 00D X032
33 ,< 02C 03C
34 .> 02E 03E
35 I ? 02F 03F
36 RIGHT * SHIF'T

SHIFT
37 PRINT olt X072 X046 print S(reen

SCREEN
38 ALT alternate mode
39 SPACE BAR 02\l 020 (\2() x\12()

3A CAPS LOCK caps lock
38 Fl X03B XI\;>-! XOSE X06d
3C F2 xo:lc xoss XO!'JF XvH>9
3D F3 xo:m XOS6 XOti(l X0nA
3E F4 X03E xo.:,7 XOtil X06B
3F F5 X03F X05H X062 X06C
40 F6 X040 X0!19 X063 X06D
41 F7 X041 X05A X064 X~l6E
42 F8 X042 X05B X06S X06F
43 F9 X043 X05C X066 .X070
44 Fl0 X044 X05D X067 X071
45 NUM LOCK * number lock
46 HOLD * * * freeze display
47 7 \ 037 05C X093 ...
48 8N 038 07E ·x094 ...
49 9 pG UP 039 X049 X084 ...
4A 4- X050 X086 X096 X097
4B 4 I 034 07C X095
4C 5 035

'
4D 6 036 +
4E _,_ X04D X088 074
4F END 1 031 X04F X075
50 2 ' 032 060 X09A •
51 3PGDN 033 X051 X076 •
52 0 030 X09B X09C
53 - DELTE 02D X053 X09D X09E
54 BREAK 000 000 * X400 control break

routine liNT
lBHl

55 + INSERT 02B ><052 X09i'' X0A0
56 02E X0A1 X0A4 X0A5 1 numeric

keypad I
57 ENTER 000 - 000 00A X08F 1 numeric

keypad I
58 HOME X047 X04A X077 X0A6
59 Fll X098 X0A2 X0AC X0B6
SA Fl2 X099 X0A3 X0AD X0B7

* Indicates special functions performed

299

1 Rn

Appendix B

means this key combination is suppressed in the keyboard
driver

X values pre-ceded by X are extended ASCII codes (codes pre
ceded by an ASCII NUL)

t The (Till key provides a way to generate the ASCII codes of
decimal numbers between 1 and 255. Hold do\vn the I ALT I
key while you type on the numeric keypad any decimal
number between 1 and 255. When you release ALT, the
ASCII code of the number typed is generated and displayed.

Note: When the NUM LOCK light is ofT, the Normal
and SHIFI' columns for these keys should be reversed.

ASCII Character Codes
The ASCII and Scan Codes table listed the ASCII codes (in hex
adecimal) generated by each key. This table lists the characters
generated by those ASCII codes.

Note: All ASCII codes in this table are expressed in
decimal form.

You can display the characters listed by doing either of the
following:

• Using the BASIC statement PRINT CHR$(code), where code is,
the ASCII code.

• Pressing I ALT I and, without releasing it, typing the ASCII code
on the numeric keypad.

For Codes 0-31, the table also lists the standard interpreta
tions. The interpretations are usually used·· for control fuiJc-
tions or communications. -. 1

300

i,

Note: The BASIC program editor has\ its own special
interpretation of some codes and may riot display the
character listed. · · ·

181

Appendix B

ASCII CHARACTER CODES

Chr Dec Hex Chr Dec Hex

NUL 000 00H SPACE 032 20H
·oH 001 01H 033 21H
STX 002 02H 034 22H
ETX 003 03H # 035 23H
EOT 004 04H $ 036 24H
ENQ 005 05H o/r 037 25H
ACK 006 06H & 038 26H
BEL 007 07H 039 27H
BS 008 08H (040 28H
HT 009 09H) 041 29H
LF 010 0AH * 042 2AH
VT 011 0BH + 043 2BH
FF 012 0CH 044 2CH
CR 013 0DH 045 -2DH
so 014 0EH 046 2EH
SI 015 0FH I 047 2FH
DLE 016 10H 0 048 30H
DC1 017 llH t 049 31H
DC2 018 12H 2 050 32H
DC3 019 13H 3 051 33H
DC4 020 14H 4 052 34H
NAK 021 15H 5 053 35H
SYN 022 16H 6 054 36H
ETB 023 17H 7 055 37H
CAN 024 18H 8. 056 38H
EM 025 19H /119 057 39H
SUB 026 1AH 058 3AH-
ESCAPE 027 lBH

'
059 3BH

FS 028 1CH < 060 3CH
GS 029 lDH 061 3DH
RS 030 lEH > 062 3EH
us 031 1FH ? 063 3FH

301

182

Appendix B

Chr Dec Hex Chr Dec Hex
(ci 064 40H 096 60H
A 065 41H a 097 61H
B 066 42H b '098 62H
c 067 43H c 099 63H
D 068 44H d 100 64H·
E 069 45H e 101 65H
F 070 46H f 102 66H
c 071 47H g 103 67H
II 072 48H h 104 68H
I 013 49H 105 69H
J 074 4AH J 106 6AH
K 075 4BH k 1071 6BH
L 076 4CH I 108 6CH
M 077 4DH m 109 6DH
N 078 4EH n 110 6EH
0 079 4FH 0 111 6FH
p 080 50H p 112 70H
Q 081 51H q 113 71H
R 082 52H r 114 72H
s 083 53.H s 115 73H
T 084 54H t 116 74H
u 085 55H u 117 75H
v 086 56H v 118 76H
w 087 57H w 119 77H
X 088 58H X 120 78H
y 089 59H y 121 79H
z 090 5AH z 122 7AH
[091 5BH { 123 7BH
\ 092 5CH I 124 7CH
] 093 5DH } 125 7DH

094 5EH 126 7EH
095 5FH DEL 127 7FH

Dec= decimal, HexadecimaHHl, CHR =character,
LF =Line Feed, FF = Form Feed, CR = Carriage Return,
DEL= Rt1b out

302

183--

Appendix B

ASCII CHARACTER CODES

ASCII Cotltrol
Code Cbaracter Cllaract•
-~----~~~--~----------~

000
001
002
003
004

005
006
007

DOll

009
010

011
012

013
014

015
016
017
Oi8

019

020
021

022
023
024
025 /

026
027 .

028

029
030

031

(null)

©
e
<:f

• •
+
(beep)

a
(tab)

(tir-8 feed)

(r.:. 8)

(term feed)

· (camage rc:urn)

= --
II

~

§

,_(cursor ngllt)

(curso; lett)

(cursor up)

(cursor dcwn)

NUL

SOH
STX

::::Tx
EOJ

ENO

t,CK

3EL

BS

HT

LF

VT

FF

CR

so
si
OLE

DC1

DC2

DC3
DC4
NAK

SYN
ETB
CAN

Etv1

SL'B

ESC
FS

GS
RS

us

303

184

Appendix B

ASCII CHARACTER CODES

ASCII ASCII
eon Character Code Cllafacter

032 (space) 067 c
033 ! 068 D
034 069 E
035 # 070 F

036 - $ 071 G
0:37 % 072 H

033 & 073 I

039 074 J
040 075 K

041 076 L
042 077 M
043 + 078 N
044 079 0
045 080 p

046 081 0
047 082 R

048 0 083 s
049 1 084 T

050 2 085 u
051 3/ 086 v
052 4 087 w
053 5 088 X
054 6 089 y

055 7 090 z
056 8 091 [

057 9 092 \
058 093 J
059 094 II

060 < 095
061 =· 096
OG2 > ~7 a

063 ? 098 b

064 @ 099 c

065 A 100 d

066 8 101 e

304

18~)

Appendix B

ASCII CHARACTER CODES

ASCII ASCII
Code Character Code Character

102 137 e

103 g 138 e ..
104 h 139 I

105 140

106 J
141

107 k 142 A
108 143 ll
109 m 144 E
110 n ~45 a!

111 0 146 I(

112 p 147 0
113 q 148 0

114 149 0
115 s 150 \.J

116. 151 u
117 u 152 y

118 v 153 0
11 !J w 154 u
120 X 155 ¢

121 y 156 £

122 z 157 l
123 158 Pt

124 159

125 160 a
126 161

127 Q 162 6

128 c 163 u
129 l.i 164 n
130 e 165 N

131 a 166 ~
132 a 167 <2

133 a 168 L
0

134 a 169 r-

135 c 170 --,

136 e 171 '12

305

18()

Appendix B

ASCII CHARACTER CODES

ASCII ASCII
Code Character Code Character

172. 1/4 207 ~

173 i 208 .J.L

174 ((209 =T=

17~.
!) 210-

17€ ~ 211 tL

177
.,
~ 212 '=

178 ~ 213 F

179 I 214 rr

180 -1 215 *
181 '9 216 *
182 -11 217 _J

183 --n 218 r

184 "" 219 • 155 ~I 220 -18G 221 I
187 :;! 222 I
188 ~ 223 •
189 _II 224 ()

190 ,.j 225 fJ
191 -, 226 r
192 L 227 n

1'J3 ..J... 228 ~

194 I 229 0

195 1- 230 I'

196 231 T

!97 + 232 ¢

198 F 233 e
199 II- 234 f1
200 & 235 d

201 rr 236- 00

202 8 237 0
203 :;;= 238 (

204 If 239 n
205 240 -
2013 .JL 241 ± .,r

306

18'7

AppendixB

ASCII CHARACTER CODES

ASCII ASCII
Code Character Code Character

242 ?.. 249 •
. 243 ~ "' 250 •
244 r 251 v
245 J 252 I')

246 253
247 :::: 254 •
248 0 255 (blank 'FF')

307

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

.(' .

BIBLIOGRAPHY

Microprocessors and interfacing -

Prgramming and hardware by Douglas V. Hall

Micro computer Systems The 8086/8088

family by Yu-Cheng Liu and Glenn A. Gibson

Computer Networks by Andrew S. Tanenbaum

Turbo Pascal manual

The MSDOS handbook by Richard Allen King

Assembly Language Techniques by Alan R. Millar

IBM pc Technical reference manual

VAX 11/780 hardware reference manual

Programmer's guide to the IBM pc by Peter Norton

The VT220 user manual

DOS reference manual

Designing and implementing Local Area Networks

by Chorafas

	TH23660001
	TH23660002
	TH23660003
	TH23660004
	TH23660005
	TH23660006
	TH23660007
	TH23660008
	TH23660009
	TH23660010
	TH23660011
	TH23660012
	TH23660013
	TH23660014
	TH23660015
	TH23660016
	TH23660017
	TH23660018
	TH23660019
	TH23660020
	TH23660021
	TH23660022
	TH23660023
	TH23660024
	TH23660025
	TH23660026
	TH23660027
	TH23660028
	TH23660029
	TH23660030
	TH23660031
	TH23660032
	TH23660033
	TH23660034
	TH23660035
	TH23660036
	TH23660037
	TH23660038
	TH23660039
	TH23660040
	TH23660041
	TH23660042
	TH23660043
	TH23660044
	TH23660045
	TH23660046
	TH23660047
	TH23660048
	TH23660049
	TH23660050
	TH23660051
	TH23660052
	TH23660053
	TH23660054
	TH23660055
	TH23660056
	TH23660057
	TH23660058
	TH23660059
	TH23660060
	TH23660061
	TH23660062
	TH23660063
	TH23660064
	TH23660065
	TH23660066
	TH23660067
	TH23660068
	TH23660069
	TH23660070
	TH23660071
	TH23660072
	TH23660073
	TH23660074
	TH23660075
	TH23660076
	TH23660077
	TH23660078
	TH23660079
	TH23660080
	TH23660081
	TH23660082
	TH23660083
	TH23660084
	TH23660085
	TH23660086
	TH23660087
	TH23660088
	TH23660089
	TH23660090
	TH23660091
	TH23660092
	TH23660093
	TH23660094
	TH23660095
	TH23660096
	TH23660097
	TH23660098
	TH23660099
	TH23660100
	TH23660101
	TH23660102
	TH23660103
	TH23660104
	TH23660105
	TH23660106
	TH23660107
	TH23660108
	TH23660109
	TH23660110
	TH23660111
	TH23660112
	TH23660113
	TH23660114
	TH23660115
	TH23660116
	TH23660117
	TH23660118
	TH23660119
	TH23660120
	TH23660121
	TH23660122
	TH23660123
	TH23660124
	TH23660125
	TH23660126
	TH23660127
	TH23660128
	TH23660129
	TH23660130
	TH23660131
	TH23660132
	TH23660133
	TH23660134
	TH23660135
	TH23660136
	TH23660137
	TH23660138
	TH23660139
	TH23660140
	TH23660141
	TH23660142
	TH23660143
	TH23660144
	TH23660145
	TH23660146
	TH23660147
	TH23660148
	TH23660149
	TH23660150
	TH23660151
	TH23660152
	TH23660153
	TH23660154
	TH23660155
	TH23660156
	TH23660157
	TH23660158
	TH23660159
	TH23660160
	TH23660161
	TH23660162
	TH23660163
	TH23660164
	TH23660165
	TH23660166
	TH23660167
	TH23660168

