SYMBOLIC CALCULUS THROUGH PROLOG

Dissertation submitted to the Jawaharlal Nehru University in partial fulfilment of the requirements
for the award of the degree of

MASTER OE PEYEOSOPIYY

 (Computer Science)
B: EALECYEANDRA FAO

SCHOOL OF COMPUTER \& SYSTEMS SCIENCES JAWAHARLAL NEHRU UNIVERSITY
 NEW DELHI - 110067
 1987

CERTIFICATE

This work embodied in the dissertation titled, " Symbolic Calculus through Prolog", has been carried out by Mr. B. BALACHANDRA RAD, a bonafide student of School of Computer \& Systems Sciences, Jawaharlal Nehru University, New Delhi - G7.

This work is original and has not been submitted far any other degree or diploma of any other University.

$\frac{\text { KkBhemaduay }}{\text { Dr.K.K.BHARADWAT }}$ Associate Professor Section af Computer $\&$

Systems Sciences
Jabaharlal Nehru University
NEW DELHI - 67

$$
\begin{aligned}
& \text { Frof.K.K.NAMBIAE } \\
& \text { Dem, School of computer } Q \\
& \text { systems Siverices }
\end{aligned}
$$

$$
\begin{aligned}
& \text { NEW DELHi: - } \mathrm{EF}_{7}
\end{aligned}
$$

CONTENTS

chapt. TITLE page no. no.
ACHNOWLEDGEMENTS i
ABSTRACT ii

1. INTRODUCTION 1
2. 1 AI - LANGUAGES 1
1.1.1 L.ISF \& Frolog ב
1.1.2 Frolog V S Conventional languages 4
3. INTRODUCTION TO THE PRDJECT E
ت. DESCRIFTION OF THE PROGRAM 13
4. 1 Integration \& Differentiation 13
उ. 2 Simplification 23
5. LIKELY IMPROVEMENTS 30
6. LISTING DF THE FROGRAM 32
E. SESSION 1 51
7. SESSION 2 54.
REFERENCES $5 \in$

ACKNOWLEDGEMENTS

I convey my sincere thanks to my guide Dr．K．K゙．Eharadwaj， Assoc．Prof．，SC \＆5S，JNU for allowing me to work on this project and for his constant encouragement \＆ valuable guidance throughout the course of this project．

This project would never have been completed without the help of so many people to whom I am deeply indebted．

First I would like to thank Mr．S． M poor，Systems Manager，CMC Ltd，Sec＇bad for giving me am opportunity to do my dissertation work at CMC Ltd．

Words reflect poorly my gratitude to Sri．C．Ravishankar，Systems Specialist，CMC Ltd， Sec＇bad for initiating me into this project and his help throughout the project was warm and unstinting．

It has beer a great pleasure working with Mr．Sethuraman．His guidance especially at quelling moments of uneasiness was invaluable．

I thank Mr．U．Ehaskar for his valuable guidance at initial stages of this project．

Lastly I convey my sincere appreciation to all SUNFAY USERS for their abundant patience \＆tolerence，while I was＂Frologirg＂．

I would also i ike to acknowledge Frof．F．C．F．Ghat，Head， Dept of Computer Science，IIT Delhi \＆Frof．K゙．K゙．Nambiar， Dean，$S C \& S S$ ，JNU for taking interest in me and guiding me to CMC Ltd，Sec＇bad．

ABSIRACI

1. INTRQDUCTIQN

1. 1 AI LANGLAGES

AI programming lamguages have had a central role in the history of Artificial Intelligence, servirg two important fuctions. First, they allow comvemient implementation and modification of programs that demonstrate and test AI ideas. Second, they provide vehicles of thought: As with other highlevel languages,
they allow the user to concentrate on higher level concepts. Frequently, new ideas in AI are accompanied by a new language in which it is natural to apply these ideas. Some AI programing languages are IFL, LISF, PLANNER, CONNIVER, QLISF, FOF-2, SAIL, FUZZY, FROLOG, etc.

1.1.1 LISP \& PROLOG

represented as a list, the value of whose first element is the name of the function and the values of whose other elements are the arguments. Even though LISF is more suitable for $A I$ work than conventional dataoriented languages, it has some drawbacks. They are

Ugly syntax: A common complaint about the liststructure format of LISF programs is that it makes them difficult to read. The only syntactic items are separators, such as spaces and parentheses, which provide most of the structure. This way of representing structures is convenient for machine to read, but inconvenient for humans.

Lack of language standard: Unilike FORTRAN and other well Known programing languages, there has never been an attempt to agree on a standardized LISF. The absence of a language standard and the proliferation of incompatible versions make LISF badly suited to be a production language, and in AI researeh work there are severe difficulties in transporting LICF programg to machines rumning a different LISF.

The other alternative to LISF suited to AI and symbolic computing developed by Alan Colmeraur in Europe in the 1970 is FROLOG. Frolog originated as an attempt to design a language which would allow the programer to specify the objectives of a task interms of symbolic
logic. A major advantage of Frolog is that the expert systems concept of an inference engine working against a knowledge base, and seeking to satisfy assigned goals by fixing rules, maps very directly onto the language; in a sense any Frolog program can be seen as a sort of expert system.

A LISP program of a series of commands that manipulate symbols while a PROLOG program consists of statements of facts and rules. The powerful pattern matching capability and an automatic backtracking facility in PROLOG are an added advantage over LISF. FROLOG procedures are also flexible in the sense that the input and output parameters are not predetermined but may vary from call to call.

1.1.2 PROLOG Us CONVENTIONAL LANGUAGES

PROLOG differs from the conventional languages in
many aspects. A frolog program is predominantly
"DECLORATVE" in that it is concemed with stating WHAT
has to be done, in the form of rules (logic) and facts,
while a conventional program is more "FROCEDURAL" and
concerned with How the task should be done. The
conventional languages have similar data and program
structures such as arrays, if_then_else and loops. There
are mo such constructs in frolog. In conventional
languages the programer must specify step by step howa
result is to be computed. In constrast, in Frolog we describe what the relationships are among the entities. Prolog extensively uses recursion and a unique backtracking mechanism. Frolog variables do not represent storage locations. This means that all values assigned to variables are temporary for instantiation purposes and kept only for the duration of a specific execution of the clause. The programmer cannot increment a variable value as for example, $N=N+1$ is done in comventional languages. A Frolog procedure is a collection of rules rather than a single closed module of a subroutine.

2. INTRQDUCTION IO THE PRQJECT

Symbolic CAlculus Frogram (in subsequent sections, it is referred as SCAP, in brief) is a rule based program which identifies the input expression and evaluates the integral/derivative of the given expression. SCAF can be subdivided into two modules, integration \& differentiation module and simplifiction module.

For a given input expression SCAF responds to it by performing following functions:

1. It invokes the integration/differentiation module.
2. It classifies the given imput expression to one of the types and evaluates the integral/ differential of the input expression.
3. The integrated/differentiated expression is simplified, if meccessary.

Integration \& differentiation module consists of two subtasis, namely integration and differentiation. The integration problems that SCAF could handle have only elementary fuctions as integrals. The domain of symbolic integration consists of following four types of problems:

1. Standard integrals -- there are about zs standard integrals. A typoial one indicated
that if the integrand has the form $a^{*} \times d x$, the form of the solution is $\ln (a)^{*}(-1) * a^{*} \times$.
2. Constant and a function - integral of a constant and a fuction is constant and an integral of a function. This function can recursively be of ary of the four types again. Typically, integral of $(a * \cos (x)) d x$ is $a * s i n(x)$, where' a^{\prime} is a constant with respect to k .
3. Integral of sum or difference of functions that is, decomposing integral of suri/difference of functions into sum/difference of integrals. Here again each function can recursively be of any of the four types. Typically, integal of $\left(x+e^{*} x\right) d x$ is $2^{*}(-1) * x^{*} 2+e^{*} x$.
4. Froduct of integrals or integration by parts that is, given product of fuctions sother tham (2') which cam be integrable, its solution is evaluated by integration by perts, i.e.,
 differential(U)*integral(Vdx)dx). It may be noted here that differential of the first fumotion has to be evaluated for integration by parts. This means to say that whenever the problem of integration ty parts is encountered, differential routine is invoked and the respective furnction is differentiated. Typical
```
example is integral of (x*cos(x))dx is
x*sin(x)+\operatorname{cos}(x).
```

It may be moted here that most of the design effort has been spent on integration by parts ard the description of the program is in next chapter. The whole symbolic integration problem i.e., above four types can be visualized as a tree shown in fig 2.1.

The programstarts with the original problemas a goal, specified as an integrand and a variable of integration. For any particular goal, the strategy is to classify it as any one of the form types of integration, if it is in standand form then the solution is immediate, if it is mot, it ean be constant and a function, where function is a mew goal to which the same strategy is applied, if it is not comstant and a function, then it can be sumddifferemce of integrals, where two arguments of operators $,+\prime, \quad$ are again treated as two new goals and the same strategy is applied, if it is not sum/difference of integrals, it can be product of integrals and solution obtained and if it is meither of the above four types the progrem simply camot integrate.

The differentiation routine of SCAF gives the derivative of the given expression. The problem of differentiation is much simpler when compared to
integration as differentiation is much more systematic in nature than integration. Due to the systematic nature of the problem, there is only one type of rule in differentiation namely, $d(E x p, X$, Result $):$

> d - gives the derivative of expression
> (Exp) with respect to x as Result. Exp - expression whose derivative is to be evaluated.
> X - variable of differentiation.
> Result - derivative of the given expn.

Listing of the above type of rule can be found in page p.17. Here unlike integration the control for the selection of the type of differentiation is included in the differentiation routine itself, meaning to say that there is no separate search strategy to classify to particular type of differentiation.
Simplification module in SCAF consists of
different routines, each applicable for a particular
type of simplification, which is encountered in
integration/differentiation. While running the scaf
different simplification routines are invoked at
different levels of integration/differentiation
according to their need in the execution.
Two major rule types used in simplification are as
follows

RULE I
syirity1(Expn, Sexpn):
symty1 - this is a predicate name for
different types of
simplifications having two
arguments Expn \& Sexpn.
Simplification routines of this
type are simp ssimp \& sp.
Expn - expression to be simplified.
Sexpn - simplified expression.
Listing of these rules are given in pages p. $1-2, p . \epsilon-8$.

RULE II
Symtyz(Expm, Var, Sexpn):
Symtyz - this is a predicate name for different types of simplifications having three arguments, namely Expri, Var \& Sexpn. Simplification routimes of this type are simpl,trig_simp.

Expn - expression to be simplified.

Var - Variable of integration/
differentiation used in
simplification routines to
determine constants in the given
expression.
Sexpn - simplified expression.

Listing of these rules are given in pages p. $J-E$, and explanation is in mext chapter.

Standard integrals $-\mathrm{C}_{1}$
Constant and a function $-c_{2}: a x f(x)$
sum/difference of integrals $-c_{3}: f(x) \pm g(x)$
product of integrals $-C_{L}: u \times v$

fig 2.1

3. DESCRIPTION OF THE PROGRAM

3. 1 INTEGRATION \& DIFFERENTIATION

As explained in the previous chapter, given an expression how the integration module will classify it into one of the four types of integration. This classification to particular type of integration is dome by check_int (Expn, X, Result) routime: This routine checks the expression(Expn) for the type of integration and integrates the given expression with variable of integration as x to give integral as Result. Refer to page p. \mathcal{G} for 1 isting of this routine.

Rules for the four types of integration are represented as shown below:
typ_int (Expn, Var, Result):
typ_int - denotes predicate hame for
type of integration, namely, stand int - standard integral const_and_int - constant and an irtegral sum_of_ints of diff_of_ints integrals . int_by_parts - integration by parts Expr - given integrand Var - Variable of integration Result - integral of Expr

The above four types of integration mules are explained in detail below, each separately.

Standard integrals:

In this routime i.e. const_and_int, integral of the given expression is determimed only if the given expression is product of two terms and the left handside term (or the first term) is a constant with respect to variable of integration and right hand term (or the second term is agaim matched to either one of the three types, namely, stand_int, const_and_int, sum_of ints or diff_of_ints. The boundary condition for
this routine to succeed is that the second term is a standard integrand. It is to be noted here that user is always requested to give the imput expression in the cammonical form
i. e. [numbers]operator[constants]operator[f(x)]
so that the order of the teriss in the expression is maintained throughout integration/differentiation. Refer to page p. 11 for listing of this routine.

Typical example,
const_and_int $\left(2 * x^{*}(-1), x, 2 * 1 n(x)\right)$

Sum/difference of integrals:
In this routine i.e. sum_of_ints/diffof_ints,
given expression is examined if it is sum/differemce of
two terms. These two terms are treated as two subgoels
whinh can again recursively be of any one of the four
types of integration.

For example.
diff_of_irts $\left(\cos (2 * x)-e^{*} x, x, 2 \times(-1) * \sin (2 * x) \cdots x^{*}\right)$.

Refer to page p. 11 for listing of this routime.

Integration by parts:

In this routime i.e. int_by_parts, if the giveri expression is produrt of two terms, i.e. other than a constant and a function, then it $j s$ treated as a problem
of integration by parts and accordingly its integral is evaluated.

For an expression $U * V$ to be integrated by the method of integration by parts, first and foremost criteria is to select the order UV, such that
(i) integral of V be simple (ii) integral of du/dx be simple.

The routine, select_the_order(U*V, X, R) selects the order of the expression $U * V$ and instantiates the ordered expression to variable R. The method for ordering the expression is as follows

If $\{U=\sin (Y)$ or $\cos (Y)$ or $\tan (Y)$ or $\cot (Y)$ or $\sec (Y)$ or $\operatorname{cosec}(Y) \rightarrow O R$
\{ $U=e^{\cdots Y}$ or $a^{\cdots} Y$ (where ' a^{\prime} is a constant w. r.to $x)$ and $v=x \cdots z$ or
$\{U=\sec (Y) \cdots$ or $\operatorname{cosec}(Y) \cdots 2\}$ OR
$\{V=\ln (Y)\} \quad O R$
$\{V=\ln (Y) \cdots N\} O R$
$\left\{V=e^{\circ} Y\right.$ and $\left.U \backslash=X \sim Z \quad\right\}$
then

$$
\text { select_the_order }(U * V, x, V * U)
$$

else

$$
\text { select_the_order }(U * V, X, U * V) \text {. }
$$

Listing of this routine can be found in page p. 12.

Now the ordered expression is to be integrated and this is done by eval_int (Expm, X, Result) routine and the value of the Result is passed on to simplification routine ssimp(E,R) (this routine is explained in simplification module in mext section and the result "R' is the integral of the given expression.

The eval int (U*V, X, Result) procedure approach the problem of integration in two different ways depending upon two conditions, they are
(i) V is a standard integrand
(ii) V is not a standard integrand
i.e. here we consider certain problems like $e^{*} x *(\tan (x)-\ln (\cos (x))$, $e^{*} x^{*}((1+\sin (x)) /(1+\cos (x))$, $e^{\wedge} x^{*}((x-1) /(x+1)=3)$, etc., where ' V ' is not a standard integrand.

First consider the second case, here problems are of the type
integral ($e^{*} x *\left(f(x)+f^{\prime}(x)\right)=e^{*} x * f(x)$.
The method for this type of problems is. follows
(i) Check if the first term(U) in the expression (U*V) is e*x
(ii) if yes, check if the second term(V) is directly of the form "f(x)+f'(x)", if yes, $f(x)$ is passed on
and the integral of the given expression is $e^{\wedge} x * f(x)$.

The routine test_arg1_arg $2(V, x, R)$ will test if the second argument (f ' (x)) of V is the derivative of the first argument $(f(x))$ or vice versa and if it succeeds then R is instantiated to $f(x)$.

```
Typically
test_arg1_arg2(sin(x)+\operatorname{cos(x), x, sin(x)).}
Refer to page p.1E for listing of this routine.
(iii) if V is not directly of the form "f(x)+f'(x)",
    then if possible, it is transformed to this
    particular form and its integral is evaluated.
```

Typically,
$(1+\sin (x)) /(1+\cos (x))$
$->\cdot(1+2 * \sin (x / 2) \cdot \cos (x / 2)) / 2 \cdot \cos (x / 2) \cdots 2$
$--1 \quad 1 / 2 \cdot \sec (x / 2) \div 2+\tan (x / 2)$
$(x-1) /(x+1)<3--\rangle \quad(x+1-2) /(x+1) \cdots 3$
$--) \quad(x+1)^{\cdots}-2-2 \cdot(x+1) \cdots-3$

For example
eval_int $\left(e^{*} x *\left((1+\sin (x)) /(1+\cos (x)), x, e^{*} x * \tan (2 *(-1) * x)\right)\right.$

The above procedure is coded in the last three clauses of the eval_int routine and listed in pages p. 13-14. In this routine trig_simp(Expn, x, Sexpn) procedure is used to simplify the trignometric functions Expn (encountered
in the above type of problems) to Sexpn (This procedure is explained in detail in simplification modnle in next section).

Now consider the first case where in ' V ' is a standand integrand.

We know that

E1
E2

R1
R2

In this case E1 is easily evaluated to R1, R1 is stored in a list, say Oldlist and E2 is evaluated to RZ. As one can notice, $R 2$ is again a problem of integration by parts, which is recursive, so a mew routine test 2 int is used which will append all R1's of R2 with Oldist to form Newlist.

The format of the rule is as follows
testz_int (NE, X, OE, OL, NL) :
NE - new expression which is to be integrated i.e. $R Z$
X - Variable of integration
OE - original expression i.e. U*V
OL - oldiist i.e. [R1] here
NL - new list formed by appending
oldlist with R1's obtained from NE

The boundary conditions for this recursive routine are 1. NE is either a constant and a function or a standard integrand
2. NE is equivalent to OE or
if NE $=$ Constant * NE1 then NE1 is equivalent to $O E$ here [Constant] is appended with, R1's to form Newlist This is particularly useful for integrands like, $e^{*} x * \cos (x), a^{\wedge} x * \sin (x)$, etc.

If NE $=-$ NE1, then $[-]$ is appended with oldlist to form Newlist. Refer to page p. 14 for listing of this routine.

For example
test2_int($3 * x^{\wedge} 2 * \sin (x), x, x^{\wedge}{ }^{3} * \cos (x),[x \cdots 3 * \sin (x)]$, $\left[x * 3 * \sin (x),-3 * x{ }^{*} 2 * \cos (x),-, 6 * x * \sin (x)\right.$, $-E * \cos (x)])$
test2_int $\left(e^{*} x * \sin (x), x, e^{*} x * \cos (x),\left[e^{*} x * \sin (x)\right]\right.$,

$$
\left.\left[e x x * \sin (x),-e^{*} x * \cos (x),-, 1\right]\right)
$$

Consider

$\operatorname{Int}(U * V d x)=U * \operatorname{Int}(V d x)-\operatorname{Int}\left(U^{\prime} * \operatorname{Int}(V d x) d x\right)$
It is to be noted here that the negative operator, -' is not an element in the Newlist, so when evaluating the list this negation must be considered. The order of the elements in the above list is reversed for evaluating the list. The eval_list(List, X, R) evaluates the reversed
list(List) to give the result as R. The head and tail list of the list (List) is obtained and the tail list is checked for four conditions given below by check_tail_eval routine and depending on the conditions satisfied, integral is evaluated which is passed onto eval_list routine.

Rule type
check_tail_eval (T, X, H, R) :

$$
\begin{aligned}
& \text { check_tail_eval - checks the tail list } \\
& \text { and eccordingly } \\
& \text { evaluates the list to } \\
& \text { give restlt as } R \\
& T \text { - tail list of the original list } \\
& X \text { - variable of integration used here to } \\
& H \text { - old result of the list } \\
& R-\text { final result of the original list }
\end{aligned}
$$

Refer to pages p. 15-1E for listing of this routine.

Let T be the tail list and H be the head of the original list again $T 1$ and $H 1$ be the tail and the head of the list T.
(i) if H is not a constant, $H 1 \quad 1==, \cdots, T 1$ is an empty list then evaluated result of the original list iss a boundary condition for check_tail_eval routine.
(a) if $T 1$ is an empty list, then $R=H 1$, $O R$ (b) if H 1 is equivalent to,- , , then eval_list(T1, X, R), OR
(c) if HI is not equivalent to ,-', then eval_list (T, X, R) and simplify $(1+H)(-1)$ and instantiate it to a variable(Const), then final result of list is Const*R.
(iii) if H i is not equivalent to ' ${ }^{\prime}$ ', T 1 is not an empty list, then $R=$ simplified $H 1-H$ and again evaluate the remaining tail list $T 1$ until it is empty by check_tail_eval(T1, $X, R, R e s u l t)$ routine to give final result as Result.
(iv) if $H 1$ is equivalent to ' -', then R is equal to $-(H)$ and again evaluate the ramaining tail list $T 1$ until it is empty by check_tail_eval(Ti, $X, R, R e s u l t)$ to give final result as Result.

For example
eval_list([-6*cos(x), E*x*sin(x),,$--3 * x^{\wedge} 2 * \cos (x)$,
$\left.x^{\wedge} 3 * \sin (x)\right], x, x^{-3} 3 \sin (x)-(-3 * x-2 * \cos (x)-$
$(\epsilon * x * \sin (x)-(-\epsilon * \cos (x)))))$.
eval_list([1,-,-e"x* $\cos (x), e^{*} x * \sin (x), x$,
$\left.2 \times(-1) *\left(e^{*} x * \sin (x)-\left(-e^{*} x * \cos (x)\right)\right)\right)$.

The result obtained above is simplified by ssimp routine and gives the integral of the given expression, i.e.
int_by_Parts(x"3*cos(x), x,x"3*sin(x)+ふ*x"2* $\cos (x)$
$-6 * x * \sin (x)-6 * \cos (x))$.
int_by_parts (e^x*cos (x), x, $\boldsymbol{z}^{\wedge}(-1) *\left(e^{\wedge} x * \sin (x)+e^{\wedge} x * \cos (x)\right)$

Differentiation routine of SCAF gives the derivative of the given expression and the type of the rule for this routine is already explained in the previous chapter.

Typically
$d\left(\ln (x), x, x^{\wedge}(-1)\right)-$ derivative of $\ln (x)$ is $x^{\wedge}(-1)$ with respect to x.

3. 2 SIMPLIFICATION

In SCAP, simplification module contains different routines each applicable for a paraticular type of simplifiction. Before proceeding to describe these routines, let us consider a procedure const (Y, X) which determines if ' Y ' is a comstant with respect to ' X '. ' Y ' is a constant with respect to ' X ' if 'Y' does rot contain ' X '. Refer to page p. 1 for listing of this procedure.
The routine simp(Expm, Sexpm) simplifies the
expression Expn to simplified form Sexpm. In this
routine, separate rules (\& facts) are written for
elementary simplifications, like
(i) $0 * 0=0$

```
(ii) X*1 = X, X*1 = X, X*X = X^2, etc.
(iii) }X+0=X,X+X=2*X, etc
(iv) }x-0=x,0-X=-X,X-X=0, etc
(v) (X^M)~N = X^(M*N)
    and so on.
In this routine, given expression is examined if it
matches into amy one of the elementary
simplifications(like those listed above) and if it does,
then the expression is immediately simplified. Otherwise
given expression is split into main operator(according
to precedence of operators) & arguments and
recursively for each argument the simp routine is
applied and the simplified expression of the original
expression is obtained.
```

For example
$\operatorname{simp}\left(x * x^{\circ} 2+x^{\circ} 0, x^{\wedge} 3+1\right)$
Listing of this type of routine is found in pages p. 1-2.

The routine, trig_simp transfoms trignometric functions such as $\sin (Y) \cdots(-N), \cos (Y) \cdots(-N)$, etc. to $\operatorname{cosec}(Y) \sim N, \sec (Y)^{\wedge} N$, etc. and vice versa. This type of trignometric transformations are used im some problems involving integration by parts in SCAF.

For example
trig_simp(sin(x)^(-1),x, $\operatorname{cosec}(x))$.

```
Refer to page p.J for listing of this routine.
    The routine, simpl(E,X,SimpE) simplifies product
of expressions E to SimpE, which is in the cammonical
form,
i.e. [numbers]*[constants]*[f(x)]
In this routine given expression is split into three
lists, namely numberlist, cơnstantlist(excluding
numbers) and nom constaritlist. Each element iri these
lists is again a list consisting of two elements, first
element is the base and the second element is the
exponent. Once the three lists are formed, each list is,
evaluated individually and the final simplified form of
the given expression will be
```

 value of numberlist * evaluated constantifist *
 evaluated mon constantlist
 To evaluate the muber list, each element'sin.e.
 (ist consisting of two elements) value is evaluated and
the product of all the elements values in the number
list will be the value of the mumber list.
For example
comsider a momber list be of the formi
$[[2,1],[3,2],[7,1]]$
value of each element is $2 \cdots 1=2$
$32=9$
$91=9$
and the value of the number 1 ist is
$2 * 9 * 9=162$

Procedure to evaluate constantlist and mon constantist:

First element of the list is taken. This element is a list consisting of two elements bi-base and elexponent i.e. [bi, el]. Now all the elements having bi as the base are taken and simplified to bi" (e1+ez+eJt...) and the remaining elements are stored in a newlist. Same procedure is applied for mewlist and it will contimue until the newlist is empty.

For example
comsider constant 1 ist consisting of following elements $[[3, a],[a, 2],[3, b],[a, 4]]$

First consider the first element of the list i.e. ' $\mathbf{3}$, tate all elements having base as ' 3 ', they are
$[J, a]$ and $[J, b]$
and its value is $J^{\circ}(a+b)$

Now the newiist is $[[a, 2] .[a, 4]]$
base of the firtst element is 'e'.
comsider aì elements having bese as 'a', they are
$[a, 2]$ and $[a, 4]$
and its value is $a^{*}(2+4)=a *$
now the newlist is empty
so the simplified form of the evaluated constant list is S" $(a+b) * a \cdots$. Rules corresponding to the above method for

```
simpl routine are listed in pages p. S-E.
```

Example,
Let the given expression be

$$
2 * a^{\wedge} 2 * x^{\wedge} 2 * \sin (x) * 4^{*} 2 * \ln (a) * x^{\wedge}(-1)
$$

three 1 ists formed are as follows
Number list $\quad-[[2,1],[4,2]]$
Constant list - [$[a, 2],[1 \mathrm{~m}(a), 1]]$
Non constant 1 ist - $[[x, 2],[\sin (x), 1],[x,-1]]$
Numberlist:

```
    value of each element is 2^1 = 2
    4*2=1E
    value of number list is 2*1\epsilon=32
Constant list:
    all elements having base as 'a' = [a,2]
    its value is a*2
    new list is [[ln(a),1]]
    all elements having base as ln(a) = [ln(a), 1]
    its value is ln(a)*1= ln(a)
    new list is empty
    Simplified form of the constant list is a***ln(a)
Non constant list:
    all elements having base as ' }x\mathrm{ ' are [x, 2] and [x,-1]
    its value is x*(2+(-1))= x*1 = x
    new list is [[sin(x), 1]]
    all elements having base as 'sin(x)' = [sin(x), 1]
    its value is sin(x)*1= sin(x)
```

```
    newlist is empty
    Simplified form of the Nonconstant list is x*sin(x)
Simplified form of the given expression is
    32*a^2*ln(a)*x*5in(x)
    The routine ssimp(Expn, Sexpm) Simplifies the
signed expression Exph to Sexpm, with special reference
to sign simplification encountered in integration by
parts. First the given expression is simplified for
unary negation and for the primeipal negative operator.
This negative sign simplification is dome by nssimp
routine. Output of this routine is an expression
consisting of principal operator as plus. Now the pssimp
routine is invoked which simplifies the outputed
expression from nssimp routime to give the final
simplified expression.
```

For example
$\operatorname{ssimp}(x \times 3 * \sin (x)-(-3 * x) 2 * \cos (x)-(-E * * * \sin (x)$
$-(-(6 * \cos (x))))), x=3 * \sin (x)+3 * x \cos (x)-E * x * \sin (x)$
$+E * \cos (x))$.

	page (s)
integrate, integ	P. 9
check_int	P. 7
stand__int	
int	P. $7-10$
const_and_int	P. 11
sum_of_ints	
diff_of_ints	P. 11
int_by_parts	
select the order	P. 12
eval_int	P. 12-14
testzint	P. 14
eval_list	P. 15
check_tail_eval	P. 15-16
test_arg1_arg2	P. 16
differentiate, differ,	
diff , d	p. 1E-17
readfile	p. 18
const	P. 1
simp	P. 1-2
trig_simp	P. 3
simpl	P. $\square^{-}-E$
ssionp	ค. 7-8

4. LIKELY IMPROVEMENTS

SCAP has the flexibility to incorporate other methods of integration mot considered here, like, integration by substitution, integration by partial fractions, etc. For this, SCAP has to be enhanced with following routimes. They are
(i) New simplification routines:

New simplification routimes are to be incorporated in the simplification module which will simplify \& transform the given expression according to the type of integration to which it hes been classified by classification routine. Typically, if the given expression has been classified as a problem of integration by partial fractions, simplification rostines are to be invoked which will transform the expression to partial fractions for direct integration.
(ii) Classification routine:

This routine will identify and classify the given expression to one of the methods of integration.

Consider $\cos (x) \cdots$

```
integral of cos(x)* cammot be evaluated directly, so
    the new simplification routime should tramsform or
    substitute cos(x)x to
        cos(2*x)/2+1/2
```

how this transformed expression can directly be integrated to give the integral of $\cos (x) \curvearrowright$.

5. LISTING QE THE PROGRAM

```
const(Y, X):- atomic(X), atomic(Y),(X)==Y,!;!,fail).
const(X,X):-!,f`il.
const(E,X):- E=..[_,Z],1,const(Z,X).
const(E,X):- эrg(1,E,Left),!,const(Left,X),\operatorname{arg(2,E,Right),!,}
    const(Right,X).
const(_,_).
<----------------------------------------------------------------*/
Whke simp(E,SimpE): simplifies expression(E) to SimpE whk/
simp(E,E):- atomic(E),!.
{imp(E,SimpE):- E=,.[0,Z], =imp(Z,Z1),SimpE=. [0,Z1],!.
simp(E,SimpE):- E=,.[O,L,R],number(L),number(R),
    (
        (0==*&), name(R,[45|T1]),T1\==[],L\==1,L\==0,
        C
            <
                        name(L,[45|T2]), name(P,T1), name(Q,T2),
                                    Z is P/2,
            (integer(Z),SimpE = Q^R;SimpE = -Q^R)
            );
            SimpE = E
        )
    j;
    SimpE is E
        ),!.
simp(M+X+NkX,R):-
    (
        (number (M), number (N), K isM+N);
        (number(M), simp(M+N,K)):
        (number(N), simp(N+M,K));
        =imp(M+N,K)
    ),
    simp(Kc\,R),!.
simp(MkX-NkX,R):-
    (number(M); number(N),K is M-N);
    (number(M), =imp(M-N,K));
    (rumber(N), simp(N-M,K));
    =imp(M-N,K)
    ),
    =imp(Kd人,R),!.
```



```
三imp(X-Y,SR):- (( (Y=0,R=X;X=0,R=-Y);Simp(R,SR) ; X=Y,SR=0),!,
Eimp(XNY,O):- (X=0;Y=0),!.
三imp(XrY,SR):- (Y=1,R=X;X=1,R=Y; X=Y,R=XN2), mimp(R,SR),!.
=imp (X/X,1).
Eimp((-X)N(-Y),R):- Eimp(XNY,R),!.
三imp((-X)*Y,R):- Simp(XNY,R1),R = -R1;!.
Eimp(Xd(-Y),R):- Eimp(XAY,R1),R = -R1,!.
simp(X^0,1):-1.
Eimp(\mp@subsup{X}{}{\wedge}1,X):-1.
simp(XANNX,R):-
                        <
                        (number(N);K i S N+1);
                        simp(1+N;K)
                    )
                    #imp(X*K,R),!.
#imp(XNX<N,R): =imp(X^N+X,R),!.
simp(XNMRXNN,F):-
    C
        (number (M), number (N),K i\Xi N+M):
        (number (M); simp (M+N,K)):
        (number(N),simp(N+M,k));
            Eimp(N+N,K)
        y
        三imp(X*K,R),!.
simp((X^M)^N,R):-
    }
        (number(M), number (N),K is M*N);
        (number(N); 三imp(MNN,K));
        (number (N), simp(NNM,K));
                        simp(MNN,K)
    y,
    Simp(X^&,F),!.
Eimp((XNY)AN,R):-
        (X==Y, =imp((2NX) NN,R));
        (Simp(XNY,XAY),R = XNNKYAN);
        (simp(XNY,F), Eimp(F^N,F))
    )!.
\Xiimp(E,SimpE):- E=:.[O,L,F], \Xitomic(L), दtomic(R),SimpE=E,!.
\Xiimp(E,SimpE):-E=, [U,L,R];Simp(L,SL),Simp(R,SR),
    TimpE=. [0,SL,SR],
    (
    (L\==SL;P\==SR),
    simp(TimpE,SimpE);SimpE=TimpE
    y:!
#imp(E,E).
```

```
/k---------------------------------------------------------------------*/
CNH trig_simp(E,X,SimpE): simplifies trignometric expression
    (E) to SimpE whek/
trig_simp(E, X;SimpE):-
E=..[*,L,R],\operatorname{const(L,X),}
trig_\equivimp(R,X,SimpR1);
SimpE=..[%,L,SimpR1].
trig_simp(E,X,SimpE):-
E=,.[*,L,R1],mumber(R1);
L=:.[F,A];
(
    (F==sin,RZ=..[cosec,A]);
    (F==cos,R2=..[sec,A]);
    (F==tan,R2=..[cot,A]);
    (F==cot,R2=.,[tan,A]);
    (F==sec,R2=,.[cos,A]);
    (F==cosec,R2=..[siri,A])
O
Nis-(R1),
SimpE=.[^*,R2,N].
```



```
**k simpl(E,X,SimpE): simplifies product of expressions(E)
    to SimpE which is in the cannonical form
    i.e., [numbers]*[constante]N[f(x)] xt-k/
simpl(E,X,R):- simp(E,SimpE), simpll(SimpE,X,R).
simpll(-E,X,-R):- simpl1(E,X,R),!.
simpl1(E,X,R):-
    E =, [ [*,E1,E2],
    farmliste(El,X,[],Nlist1,[],Clist1,[],
                                    NClist1),
    formlists(E2,X,[],Nlist2,[],Clist2,[],
                                    NClist2),
    append(Nlist1,Nlist2,Nlist),
    append(Clist1,Clist2,Clist),
    gppend(NClist1,NCli\leqt2,NCli\equivt),
    eval_Nlist(Nlist,N),
    Eval_0list(Clist,C),
    eval_Olist(NClist,NC),
Y = NkC,simp(Y,SimpY),
Z = SimpYNNC,
```

```
simp(Z,R).
```

Eimpll(E, X,E):-!.
(kth formlists(E, $\left.\times, O_{\perp} N L, N _N L, O_{2} C L, N _C L, O _N C L, N _N C L\right):$ splits the expression E into three lists: Numberlist(NL), Constantlist(CL), Nonconstantlist(NCL). O \& N represents old \& New Lists whe/
formlists(FkQ, \times, Old_Nlist,New_Nlist, Old_clist,New Clist, Old_NClist,New_NCIist):-
farmlists(F, X, Old_Nlist,New_NlistF, Old_Clist,New_ClistP, Old_NClist, New NClistP), formlists(0, $\times,[], N e w _N i s t 0,[], N e w _C l i s t 0$, [],New NClisto),
append New_NlistF,New_Ni append New_ClistP,New_Clista,New_Clist),
 !.
formlistsé, X,Old_Nlist,New_Nlist,Old_Clist,New_Clist, 0ld_NClist,New_NClist):-

```
(
    (number(E),
    sppend(0ld_Nlist,[E],New_Nlist));
    (E =..[^,F,Q];
        number(F), number(Q),
        (P==1;F==0;name(Q,[_|T]),T==[]),R is E,
        append(01d_Nlist,[R],New_Nlist))
    ),
    append(01d_Clist,[[1,1]],New_Clist),
    append(Old_NClist,[[1,1]],New_NClist),!.
```

formliste(E, X, Old_Nlist,New_Nist, Old_Clist,New_Clist,
Old_NClist,New_NClist):-
(
($\mathrm{E}=\ldots\left[{ }^{*}, \mathrm{~F}, \mathrm{Q}\right]$,
const ($P, X), \operatorname{const}(Q, X)$,
append(0ld_Clist,[[P, Q]],New_[list));
(const (E, X), append(Old_Clist,[[E,1]],
New_Clist))
j,
append(Old_Nist,[1],New_Nlist),
append(old_NClist, [[1,1]],New_NCli三t), !.
formlists (E, X,Old_Nlist,New_Nist, Old_Clist,New_Elist, Old_NClist,New_NClist):-

```
not Eonst(E,X)s
&
    (E =.,[*,F,Q];
    \Xippend(Old_NC1ist,[[F,O]];NEw_NClist));
    Gppend(01d_NClist,[[E,1]],New_NClist)
)
ヨFPGחd(0ld_N1iEt,[1],NEw_N1ist),
#FPEnd(01d_Clist,[[1,1]],New_Clist),!:
```

Fhok eval Nlist(L, F) : evaluates the number list L to
give result as R the/
Evヨl_N1i
eval_Nlist([H|T],FEsult): testtail_evalNlist(T,H,Result).

list(L) and evaluقtes to give final result fR from
the initial result IR thof
testtail_evalNlist([],H,H):- !.
testtail_evalNlist([H1|T1],H,Result):-
Newh is HKHI .
testảil_evalNlist(Tl,Newh,Result).
(NW EvEl_Olist(L,R): Evヨluミtes the other lists
i.E., Constant \& Nonconst lists to give result as R thet
eval_01ist([],1):-!.
evヨl_olist(List, Result): Eualeache_withnextE(List, 1 , Result).
Evaleache wi thnextE([],R,R):- !
eyaleache wi thmextellist, IResult, FResult):-
first_two_Es_of(List,RList, E1, E2);
Equal_base_test(E1,E2, RList, [], NewLi三t,
Result) ;
Eimp(IResulthResult,Resulti):
Eugleache wi thmexter NewList, Resultis
FResult).
first_two_EE_of(List,NLi三t,P, D):-
first_E_of(Li三t,NLiEtI; F)
first_E_of(NListi,NList, D).
first_E_of([],[]g[]):-!.
first_E_of([H|T],T,H):-!.
equal_base_test([Bs1,Expl],[],[], Oldlist, OLdlist,F):-

```
    Eimp(Es1*Expl,R),!.
equal_base_test([Bsl,Expl],[Bs2,Exp2],RList,0ldlist,
                                    Newlist,Result):-
    \existstomic(Exp1), छtomic(Exp2),
    name(Expl,[45|T1]),T1\==[],
    name(Exp2,[451T2]),TZ\==[],
    (
    (number(Expl), number(Exp2),
            Exp is Exp1+Exp2);
    Eimp(Expl+Exp2,Exp)
    ),
    number(Es1), number(Be2), Es is Es1*Es2,
    first_E_of(RList,NewRList,ES),
    equal_tase_test([Bs,Exp],ES,NewRList,
                                    Oldlist,Neulist,Result).
Equal_base_test([Es1,Expl],[Bs1,Exp2],RList,Oldlist,
                                    Newlist,Result):-
    simp(Expl+Exp2,Exp),
    first_E_of(RList,NewRList,E3):
    equ:\mp@code{base_test([Es1,Exp],E3,NewRList,}
                                    Oldlist,Newlist,Result).
equal_base_test(El,E2,RList,0ldlist,Newlist,Result):-
    gppend(0ldlist,[E2],Oldlist1),
    first_E_of(RList,NewRList,ES),
    equal_tase_test(EI,E3,NEwRList,0ldlist1,
                                    Newlist,Result).
gppend([],L,L).
\nippend([X|L1],L2,[X|L3]):- append(L1:L2,L3).
```

EP(E,R):-
functor(E,-,),
arg(1, E, E1), arg(2,E,E2),
check_num(E1,Number1, At om1),
check_num(E2,Number2,Atame),
Number is Number1-Numberz,
Atom = Atom1-Atom2, simp(Atom, SAtom),
SimpE = Number+SAtom, Simp(SimpE,R).
Ep(E,E):-1.

```
check_num(E,E,O):- number(E);!.
EHEck_num(E,O,E):- \Xitomic(E),!.
check_rum(E,Number,SAtom):-
    functor(E,+;_),
    Grg(1,E,F),\existsrg(z,E,O),
    check,_num(P,NumberP,AtomP),
    check_num(Q,NumberQ,AtomD),
    Number is NumberF+NumberQ,
    Atom=AtomP+AtomQ, Eimp(Atom,SAtam).
check rum(E,Number,SAtom):-
    functar(E;-,_);
    arg(1,E,P), \Xirg(2,E,Q),
    check_rum(F,NumberF,AtomF),
    check_num(Q,NumberQ,Atom0).
    Number i = NumberP-NumberD,
    Atom = AtomF-Atom口, Eimp(Atom,GAtom).
```

```
/koh ssimp(E,SE): simplifies the signed expression
```

/koh ssimp(E,SE): simplifies the signed expression
E to SE Nok/
Ssimp(FkD,SPNSQ):- ssimp(F,SP),ssimp(Q,SQ).
ssimp(EXp,SEXp):- пEsimp(EXp,X),pEsimp(X,SEXp).
nssimp(-(-U+U),U1+R):-nssimpl(U,U1),nssimpl(-U,UL),
n=\Xiimp(U/,R).
nssimp(-(U+U),Ul+R):- n=simpl(-U,U1), nssimpl(-U,U1),
n}\leqslantsimp(U1,R)
\Pi=simp(-(-U-U);UI+R):- nssimpl(U,U1);nssimpl(U,Ul),
nssimp(U1,R).
n=simp(-(U-U),Ul+R):- nsEimpl(-U,U1), nssimpl(U,U1),
nssimp(U1,F).
nEsimp(U-U,U1+R):- nssimpl(U,Ul);nssimpl(-U,Ul),nssimp(Ul,R).
\Pis=imp(U,U):- !.
ns=impl(-(-U),R):- nsEimpl(U,R);!.
ns=impl(-(U),-U):- !.
nssimpl(U,U):- !.
Pssimp(U+(-U+W),R):- PSEimp(U-U+W,R).
PEsimp(L+(U+W),R):- PEsimp(U+U+W,R).
pEsimp(U+(-v),U-V):- !.
FEsimp(+(+U),U):- !.
pssimp(+(-U),-U):- !.

```
```

FESimp(+(U),U):- !.
pssimp(U,U):- !.

```

```

integrate :- tell(t`),readfile(file),
repeat,
integ,nl:nl,
print('Do you want to integrate another expression? '',
read(Ans),
nl,
((Ans\==yes,true);fail).
integ:- nl,
print('Give the expression to be integrated : '),
read(E),Y =..[check_int,E,X,Result],
call(Y),nl,nl,
print('Integral of'),tab(3),
print('"'),print(E),print(""),
tab(2),print(' iE = '),tab(2),
print(Result),!.

```

```

ckhecheck_int(Exp,X,R): checks the expression(Exp) and
integrate Exp w.r.to }X\mathrm{ to give R whek/
check_int(-E,X,R):- check_int(E,X,R1),R = -R1.
check_int(U/U,X,R):- simp(U*U*(-1),E),check_int(E,X,R).
check_int(E,X,R):-
stand_int(E,X,R);
const_and_int(E,X,R);
sum_of
diff_of_ints(E,X,R);
int_by_-farts(E,X,F).
K--
Fk+k. Etand_int(Exp,X,R): Expression(Exp) is E standard
integrand integral of Exp w.r.to X is R **kt/
stand_int(E, X,R):- int(E, X,R1),simpl(R1,X,R),
/NkN int(Exp,X,R): gives integral of expression(Exp)
w.r.to X Bs R dww/
int(A,X,AXX):- const(A,X),!.
int(X^(-1),X,1n(X)):- !.
int(X,X,P):- int(X^1,X,P),!.
int(e^X,X,E^X):- !.
int(E^U,X,F):- int(E^U,U,R),diff(U,X,U1),con巨t(U1,X),!,

```
```

 F=U1*(-1)+F.
 int(X^N,X,M^(-1)NX^M):- const(N,X),
(number(N),M is N+1,!;M=N+1).
int(A*}X,X,ln(A)*(-1)*ANX):- const(A,X),!.
int(A*(U), X,P):- const(A,X),int(ANU,U,F),diff(U,X,UL),
const(U1,X),!,P=U1*(-1)NR.
int(-T,X,-F):- int(T,X,F).
int(sin(X),X,-EOE(X)):- !.
int(\operatorname{cos(X),X,Ein(X)):- !.}
int(sec(X)*2,X,tan(X)):- !.
int(sec(U)* z,X,F):- int(sec(U)* 2,U,R1),diff(U,X,U1),
corist(U1,X);F=U1*(-1)*R1,!.
int(cosec(X)^2,X,-cot(X)):- !.
int(cosec(U)*2,X,R):- int(cosec(U)*2,U,R1),diff(U,X,U1),
const(U1,X),R=U1^(-1)*R1,!
int(今ec(X)ttan(X), X,-sec(X)):- ! :
int(cosec(X)*cot(X), X,-cosec(X)):- !.
int(tan(X),X,ln(三ec(X))).
int(tan(X), X,-1n(cos(X))):-!.
int(cot(X), X, ln(sin(X))).
int(cot(X),X,-1n(\operatorname{cosec}(X))):-!.
int(SEc(X), X,ln(sec(X)+tsп(X))):-!.
int(cosec(X); X, Ln(\operatorname{cosec}(X)-\operatorname{cot(X))):-!.}

```

```

 diff(U,X,U1), canst(U1,X),!,R=U1^(-1)AR1.
 int(U^(-1),X,F):- int(U^(-1),U,R),diff(U,X,U1), const(U1,X),!,
F}=|\mp@subsup{|}{}{*}(-1)*R,!
int(U^N,X,F):- number(N),!,int(U^N,U,R),diff(U,X,U1),
const(U1,X),!,F=U1^(-1)NR,!.
int((1-\mp@subsup{x}{}{*}2)^(-(2^(-1))),x,arcsin(X)):- !.
int((A^2-<^2)^(-(2^(-1))), 人,F):- integer(A),
P}= \existsrcsin(X*(A)*(-1)).
int((1+X^2)^(-1), X, ョrctan(X)):- !.
int((\mp@subsup{x}{}{\wedge}2+1)*(-1), <, arctan(X)):- !.
int((X^2+A^2)^(-1), X,P):- integer(A),
F = ヨrctgn(Xh**(-1)d,A(-1)).
int((A^2+X^2)^(-1), X,P):- int((X^2+A^2)^(-1), X,P).
int((X^2+A)^(-(2^(-1))), X, 1n(X+(X^2+A)^(2^(-1)))):-
integer(A).

```

```

int((X^2-A)* (-(2^(-1))), X, ln(X+(X^2-A)* (2^(-1)))):-
integer(A).
int((X^2-A^2)^(-1), X,P):- integer(A),S i= 2*A,
F= S* (-1)*ln((X-A)*(X+A)* (-1)).
integer (A),S i= 2kA,
F= S^(-1)Nln((A+X)N(A-X)^(-1)).

```
／小h const＿and＿int（Exp，X，R）：Expression（Exp）is af the farm （constant）h（expression）dot／
```

const_and_int(E,X,Result):-
E =..[*,P,E1],
const(P,X),!,
test_int(E1,X,R1),
R = F*R1,
simpl(R,X,Result).
test_int(E,X,R):-
stand_int(E,X,R);
const_and_int(E,X,R);
sum_of_ints(E,X,R);
diff_of_ints(E,X,R).

```
/kkk sum_of_ints(EXp, X,R): expression(Exp) is of the form
    (expl+expa) i.E., sum of integrals thet
sum_of_ints(U+U, \(\times, U 1+U 1):-\)
test1_int \((U, \chi, V 1)\),
testi_int( \(4, \times, U 1)\).
Nkt diff_of_ints(Exp, X,R): expression(Exp) is of the form
    (expl-exp2) i.e.,difference of integrals dw/
diff_of_ints(U-U, X, UI-U1):-
    testr_int(U, \(\times, V 1)\),
    test1_int(u, \(x, U 1)\).
testi_int(U, \(\times\), Un):-
    \(U=,[/, F, Q]\),
    simpl( \(Q^{*}(-1) * F, X\), simpll),
    testr_int(Simpu, \(\times, \mathrm{Ul}),!\).
testi_int(U, X,U1):-


/heh int_by_parts(Exp, \(\times, R\) ): expression(Exp) is of the form \(p(x)+q(x)\) i.e.,integration by parts dwh/
```

int_by_parte(ukv,x,Result):-
select_the_order(UkU,X,R),
eval_int(R,X,R1),ssimp(R1,Result).
int_by_parts(Expr,X,Result):-
Expr =..[1n,X], Expr1 = Expr*1,
eval_int(Expr1,X,R),ssimp(R,Result),!.
int_by_farts(Expr, X,R):-R = " Sorry, I cannot integrate"s,

```

```

Wh* select_the_order(Exp,x,R): arders the expression(Exp)

```
Wh* select_the_order(Exp,x,R): arders the expression(Exp)
    to R 秋d/
select_the_order(UxU,X,R):-
    %
    U=.,[Op,_],
    \Op==sin;Op==cos;Op==tan;Op==cot;Op==sec;
                                    Op==cosec)
    %
    (
    arg(1,4,01),
    (U1==e;const(U1;X)),
    v=..[^,*,_]
    );
    (
        arg(2,U,U2),
    UZ==2,U1=..[0p1;_],
    (0p1==sec;0p1==cosec)
    );
    (
        U=.,[1\pi,_]);(arg(1,U,U1),
        C
        V1=:.[1n,_];(V1==e,U = .[A,L,_],L\== \)
    )
    )
),
R=VN|!,!.
Eelect_the_order(umv,x,ukU):- !.
<--------------------------------------------------------------------------
Thet eval_int(Exp,X,R): Evaluates the integral of ordered
    Exp to R k-k/%
eval_int(ukU,X,Fesult):-
```

```
stand_int(U,X,U1),!,simpl(LW,V1,X,R),
L1 = [R],
diff(U,X,U1); simpl(U1)U1,X;Expr1);
testz_int(Expr1;X,Nh%,Ll,Newlist),
rev(NE|liEt,List),
eval_Li三t(List,X,REsult).
```

Eval_int(UNU, X,REsult):-
$U=.\left[{ }^{*}, E, \times\right]$;
test_ヨrgl_قrge (U, X, f); !
Result $=1 / h \mathrm{R}$ 。
eval_int(UhV, X,Result):-

```
\(U=,[\wedge, \in, X]\),
\(\vartheta=\ldots[/, \cup 1, \cup 2]\),
compare(《, Ul;UZ),
\(V 2=.\left[{ }^{\prime}, F, Q\right]\);
number ( 0 )
\(F=,[\ldots, F 1, F 2]\),
ヨtomic(Fl), ヨtomic(PZ),
\(D=U 1-F, E p(D, S i m p D) ;\)
```

number (SimpD),
N i $=1-\mathrm{a}$
01 is -0 :

test_ヨrgi_grg2(NewN, X,F): !
Result = Uhe.
eval_int(ukv,x,Result):-

```
U=.,[^,E,X];
v=,.[/,N,D],
    (
    D = , [Op1,1, cos(ArgD)];
    D =..[0p1,cos(ArgD),1]
    );
    NewArgD = 2^(-1)NArgD,
    simpl(NewArgD, X,GArgD),
    <
        (OFI==`+*,NewD = 2kcos(SArgO)* 2);
        (OpI=='-'NEwD = 2NEin(SArgD)^2)
    %
    (
    (N=, [OpZ;Ln;Ein(ArgD)],
    number(Ln),
    F=Ln*NewD*(-1));
    (N=..[Op2, =in(ArgD), Rn],
    number(Fn),
    F= FnNNEwD*(-1))
```

),

```
Eimpl(F,X,SimpF),
trig_simp(SimpP,X,SP),
(
    (OPL=='+*,Q = tan(SArgD));
    (Op1==*-*,Q = cot(SArgD))
    ),
NewU =:.[Op2, SP,Q],
test_argl_arge(NewU, X,R),!,
Result = UkR.
```


teste_int(-Expr, X, Urv, oldiast,Newlist):-
append(01diist,[-],01dlist1):
testz_int(Expr, \times, Ukt, Oldlistl,Newlist)

(
const_and_int(Expr, X,R1);
stand_int(Expr, $\times, R 1)$
),
Eimpl(R1, $\times, R)$,
$L=[R]$,
append(Oldiist,L,Newlist).
testz_int(Expr, \times, utu, Oldlist,Newlist):-
((Expr==UkU;Expr==(NU),!, Const = 1);
(Expr $=\ldots[*$ Expr1, Expr2],
const(Expri, X),
(Expre=-uku;Expre==(du), !, Const = Expr1)
),
$L=[\operatorname{Const}]$,
append(Oldlist,L,Newlist).
testz_int(Expr, \times, uku, Oldlist,Newlist):-
Expr $=. .[\%$, C,NewExpr],
((not $\operatorname{const}(\mathrm{C}, \mathrm{X}),!, \mathrm{E} 1=\mathrm{C}, \mathrm{E} 2=\mathrm{NewExpr}, \mathrm{EI}=1)$;
NewExpr $=. .[*, E 1, E 2], C 1=C),!$,
select_the_order (EINE2, X,NewEINNEWEZ),
stand_int(NewE2, \times, R), simpl(C1*NewE1KR, $X, R 1$),
$\mathrm{L}=$ [R1],
append(Oldlist,L,L1),
diff(NewE1, $X, D)$, simpl (C1KDKR,X,Expr2),
testz_int(Expr2, \times, UkU,L1, Nemiist).

```
Fkher reu(L,M): reverses the order of elements in list L
    into.list M d***/
rev([],[]).
rev([H|T],L):- rev(T,Z);append(Z,[H],L).
/k+k append(X,Y,L): ampends the list X with list Y to
    new li\equivt L dk+;
append([],L,L).
append([X|L1],Lz,[X|L3]):- append(L1,L2,L3).
<------------------------------------------------------------------*/
Akhe eval_list(L,X,R): evalustes the list L to give
    result as R wk*/
eval_list(List,X,Result):-
    hat(List,H1,Tl),
    check_tail_Eval(T1,X,H1,Result).
/wek hat(L,H,T): gives the head of list L as H and
        tail Es T 俎/
hat([H],H,[]):- !.
hat([HIT],H,T).
/kkt check_tail_eval(List,X,H,R): checks the tail list (List)
    whose head value is H and evaluates the list to
    give final result as R th-k/
check_tail_eval(T,X,H,Result):-
    het(T,H1,T1),
    not const(H,X),
    H1\=='-',T1==[],Result =..[-,H1,H].
check_tsil_Eval(T,X,H,Result):-
    const(H, X), Hat(T,H1,T1),
    (
        (T1==[],R = H1);
        (H1==-`,eval_list(T1,X,R));
        (H1\=='-*,Eval_li\Xit(T,X,R))
    ),
    simp((1+H)*(-1),Const),
    Result = Const%R.
check_tail_evョl(T,X,H,Result):-
```

```
    hat(T,H1,T1),
    H1\== <-, T1\==[],simp(Hl,GimpH1),
    R =..[-,SimpH1,H],
    check_tail_eval(T1,X,R,Result).
check_tail_eval(T,X,H,Result):-
    hat(T,H1,T1),
    H1 == '-', R =..[-,H],
    check_tail_eval(Tl,X,R,Result).
&------------------------------------------------------------------*/
/k+h test_argl_arge(Exp,X,R): tests 1st argument with the
    2nd argument of Exp to give result as R www/
test_argl_arg2(U,X,Result):-
    U=,[[Op,V1,V2],
    (Op=='+',
    (
        (diff(UL, X,F1), compare(=,R1,V2),
                            Result = V1):
        (diff(U2,X,R2),compare(=,R2,V1),
                            Result = v2);
        (test1_int(U1,X,R3), compare(=,R3,v2),
                    Result = V2);
    (test1_int(U2,X,R4),compare(=,R4,V1),
                            Result = U1)
    )
);
(Op==`-`,
    (diff(U1,X,R1), compare(=,R1,-V2),
                            Result = U1);
    (diff(-V2,X,R2), compare(=,R2,V1);
                                    Result = -v2);
    (test1_int(U1,X,RS), compare(=,R3,-V2);
                                    Result = -V2);
    (test1_int(-U2, X,R4), compare(=,-R4,U1),
                                    Result = V1)
    j
)
).
test_argl_arge(U,\times,R):- !,fail.
<<-------------------------------------------------------------------
differentiate :-readfile(file),
    repest,
```

differ,nl,nl,
print('Do you want to differentiate another expression? '), read (Ans),
nl.
((Ans才==yes, true);fョil).
differ : -
nl. print('Give the expressian to be differentiated :'), read(E),
$R=$. [diff, $E, x, R e s u l t], C a l l(R), n l, n l$, print('The differential of'), tab(3), print(""),print(E), print(""), tab(2),print(is =), tab(2), print(Result),
diff(E, X,Result):- simp(E, SimpE), d(SimpE, X,R), simp(R,Result).
/het d(Exp,x,R): gives differentisl of expression(Exp) w.r.to $X=\mathrm{R} \times \mathrm{kk} /$
$d(X, X, 1)$.
$d\left(e^{\wedge} \times, X, e^{\wedge} X\right):-1$.
$d\left(e^{\wedge} U, X, R\right):-d\left(e^{\wedge} U, U, R 1\right), d(U, X, U 1), R=U 1 * R 1,!$.
$d(\sin (X), X, \cos (X)):-1$.
$d(\cos (X), x,-\sin (X)):-1$.
$d\left(\tan (X){ }_{3} X_{9} \sec (X)^{\wedge} 2\right):-1$.
$d\left(\cot (X), X,-\operatorname{cosec}(X)^{\wedge} 2\right):-1$.
$d(\operatorname{cosec}(X), X,-\operatorname{cosec}(X) * \cot (X)):-1$.
$d(\sec (X), X, \sec (X) \tan (X)):-1$.
$d\left(\ln (X), X, X^{\wedge}(-1)\right):-1$.
$d(\ln (U), X, R):-d(\ln (U), U, R 1), d(U, X, U 1), R=U 1 * R 1$.
$d(K, X, 0):-\operatorname{const}(K, X)$.
$d(-T, X,-R):-d(T, X, R),!$,
$d(T, X, U 1 \times F 1):-T=.[F, U], U \backslash==X, d(U, X, U 1), d(T, U, R 1),!$,
$d(U+U, X, U 1+U 1):-d(U, X, U 1), d(U, X, V 1),!$.
$d(U-U, X, U 1-U 1):-d(U, X, U 1), d(U, \times, V 1),!$.
$d(K N U, X, K+U 1):-\operatorname{const}(K, X), d(U, X, U 1),!$.
$d(L \mathcal{L} V, X, U 1+U+V 1 * U):-d(U, X, U 1), d(U, X, U 1),!$
$d\left(X^{\wedge} N, X, N+X^{\wedge} M\right):-\operatorname{const}(N, X)$,
(number (N) , $N==0, M \quad i \leq N-1,!; M=N-1$).

 $d(U, \times, U 1), d(U, \times, V 1),!$.
$d(U A, X, R):-d\left(U N V^{\wedge}(-1), \times, R\right),!$

Whe const(Exp, X): determines if expression(Exp) is a constant w.r.to X or not $\% /$

```
const(Y, (): \Xitomic(X), #tamic(Y),(XN==Y;!,!,fail).
const(X,X):-!,fail.
const(E,X):- E=,.[_,Z],!,\operatorname{const(Z,X).}
const(E,X):- arg(1,E,Left),!,const(LEft,X),arg(2,E,Fight),!,
    const(Right,x).
Const(_,_):
```

\qquad
MkN readfile(X): reads the file X ket,
readfile(X):-seeing(01d), see(X), resdline(0), 今ee(0ld), !
readline(Cr):-read_in(S,C),Cl is Crtl,
$(\mathrm{C}(\mathrm{C}=-26 ; \mathrm{C}==4)$, EEEत, $)$)
($\mathrm{E} 1==23$, nl, write('You want more? ; tab(2),
seeing(01d), see(user), resd(Ans), see(0ld):
((Ans==yes, ((nonuar (S), writéS)); truey;
readline(0));
(seen; !)
)
):
(yヨr(S), nl, readline(di) ;
(write(S), nl, readline(El)
).
read_in(H, C2):- $-\mathrm{Get0}(\mathrm{C}), \mathrm{readword}(\mathrm{C}, \mathrm{N}, \mathrm{CZ})$.
readword(C,W, CZ):- inword(C,NewC); geto(CLy,

resdword $(\mathrm{C}, \mathrm{N}, \mathrm{C})$.
restward(C, [NewCICs], C2):- inword(C,NewC), ! geto(E1),
restword $(C 1, C=, C 2)$.
$r e s t w o r d(C,[], C)$.
inword($\mathrm{C}, \mathrm{E})=\mathrm{C}, 31, \mathrm{C}<127$.
inword(E, C$): \mathrm{C}==0$.
6. SESSION 1

＊	$/ /$ ADUICE TO THE USER／$/$	＋
\cdots		t
$火$		x
＊	Always give the input expression in the cannonical form，	大
号		大
x	that isy	x
＋		＊
k	［number］opergtor［constant］oper ${ }^{\text {atar }}[\mathrm{f}(x)$ ］．	x
大	\therefore ，	－
н		x
k	$4+\ln (3)+\cos (x)$ ．	＊
\cdots		$*$
\cdots	Any input must be terminated by 3 ，（ ${ }^{\text {a }}$（ot）．	＋
\cdots		\％
大	Exponential operator is A．	d
x		＊

Give the expression to be integreted：x^{\wedge} ．
Integral of＂x＾5＂$i \leq=\sigma^{\wedge}-1 \hbar x^{\wedge} G$
Do you want to integrate another expression？yes．
Give the expression to te integrsted ：sin $(x)+c o s(4 x x+3)$ ．

Do you want to integrate another expression？yes．
Give the expression to be integrated：ヨAxdoas（3dx＋4）．
 Nsin $(3 x+4))+\ln (3)+9^{\wedge}-2 k\left(3^{2} x \cos (3 k x+4)\right)$

Do you want to integrate another expression？yes．
Give the expression to te integrated ：ln（x）．
Integral of $\quad \ln (x)^{"} \quad i \leq=\ln (x) \ln -x$
Do you want to integrate another expression？yes．
Give the expression to be integrated ： $\ln (x) / x$ ．
Integral of $\quad \ln (x) / x^{\prime \prime} \quad i==\quad 2 \times-1+\ln (x) \wedge 2$

Do you want to integrate another expreseion? yes.
Give the expression to be integrated : $e^{\wedge} x t(\tan (x)-\ln (\cos (x)))$.
Integral of $\quad " e^{*} x k(\tan (x)-\ln (\cos (x)))^{\prime} \quad i==e^{\wedge} x k(-\ln (\cos (x)))$
Do you want to integrate another expression? yes.
Give the expression to be integrated : $e^{\wedge} x+((1+s i n(x)) /(1+c o s(x)))$.

Do you want to integrate another expressions yes.
Give the expression to be integrated : $e^{\wedge} \times$ 央 $\left.(x-1) /(x+1)^{\wedge} 3\right)$.
Integral of $\quad e^{\wedge} \times k\left((x-1) /(x+1)^{\wedge} 3\right) " \quad i \leq=e^{\wedge} \times k(x+1)^{\wedge}-2$
Do you want to integrate another expression? yes.
Give the expression to be integrated : $x^{\wedge} 4 * 1 n(x)^{\wedge} 4$.
Integral of " $x^{\wedge} 4 k \ln (x)^{\wedge} 4 " \quad$ is $=\quad 5 \wedge-1 *\left(\ln (x)^{\wedge} 4 k x^{\wedge} 5\right)-4 k 25^{\wedge}-2 k(\ln (x)$ $\left.{ }^{\wedge} 3 k x^{\wedge} 5\right)+12 k 125 \wedge-3 k\left(1 n(x) \wedge 2 k x^{\wedge} 5\right)-24 k 625 \wedge-4 k\left(1 n(x) k x^{\wedge} 5\right)+24 k 3125 \wedge-5 k x^{\wedge} 5$

Give the expression to be integrated : cos ($5 k x+4$) $k x^{\wedge} 6$.
 ($\left.x^{\wedge} 5 * \cos (5 k x+4)\right)-30 k 125^{\wedge}-3 k\left(x^{\wedge} 4 k \sin (5 k x+4)\right)-120 k 625^{\wedge}-4 k\left(x^{\wedge} 3 k \cos (5 k x+4)\right.$ $)+360 k 3125^{\wedge}-5 k\left(x^{\wedge} 2 k \operatorname{in}(5 k x+4)\right)+720 k 15625^{\wedge}-6 k(x * \cos (5+x+4))-720 \times 78125^{\wedge}-$ $7 \mathrm{~N} \equiv \mathrm{in}(5 k x+4)$

Do you want to integrete another expreseion? yes.
Give the expression to be integrated : sin(akx+b) $\mathrm{ax}^{\wedge} 5$.
Integral of \quad " $\sin (\exists k x+b) k x^{\wedge} 5^{\prime} \quad i \leq=\quad-\Xi^{\wedge}-1 *\left(x^{\wedge} 5 k \cos (\exists k x+b)\right)+5 k \Xi^{\wedge}-2 k$ ($\left.x^{\wedge} 4 k \operatorname{in}(a k x+b)\right)+20 k \exists^{\wedge}-3 k\left(x^{\wedge} 3 k \cos (a k x+b)\right)-60 k \exists^{\wedge}-4 k\left(x^{\wedge} 2 k \sin (a k x+b)\right)-120$

Do you want to integrate another expression? no.

ㄱ. SESSION 2

Give the expression to he differentisted acos(3kx). The differential of "cos(3kx)" is=-3ksin(3kx) Do you want to differentiate another expression? yes. Give the expression to be differentiated :x*7. The differential of " $x^{\wedge} 7^{\prime \prime}$ is = $7 k x^{\wedge} E$ Do you want to differentiate another expression? yes. Give the expression to be differentiated : $\exists^{*} x$.

The differential of "a*x" $i==\ln (\exists) * \Xi^{*} x$

Do you want to differentiate another expression? yes.
Give the expression. to be differentiated : $x^{\wedge} x$.
The differential of " $x^{*} x^{n}$ is $=x^{\wedge} x^{\wedge}(x-1)+1 n(x)+x^{\wedge} x$
Do you want to differentiate another expression? no.

REEERENCES

1. W.F.Clocksin \& C.S.Mellish, Programing in FROLOG, Springer-Verlag, Eerlin, Heidelberg 1981.
2. Edited by Avron Barr \& Edward A.Feigenbauir, The Handbook of Artificial Inte lligence, Vol I\&II, William Kaufimann, Inc 1981.
3. Any standard text book on Calculus.
4. Toshinori Munakata, Frocedurally Oriented Frogramring Techniques in Frolog, IEEE Expert, Summer 1986.
