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ABSTRACT 

The most important and complex organ in any living being is brain. The 

complex behavior of brain has always overwhelmed researchers, 

psychologists, and scientists. They are trying to draft its behavior right from its 

evolution but due to complexity lying in its behavior Jed to little success till 

today in this area. On the similar lines, we have put our concentration on the 

most basic unit of the brain. Spikes are generated whenever the potential 

activated due to stimulus of neuron reaches threshold value. Conceptual 

_ application of Information theory, Monte-Carlo technique to the inter spike 

interval distribution Jed to some exciting facts of brain and its behavioral 

aspects. 
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Chapter I 

Introduction 

Understanding of brain and nervous system 1s a fast emergmg 

interdisciplinary area. How do electrical and chemical signals 1n 

brain represent and process information is the ultimate goal of 

computational neuroscience. Sejnowski [2 I] in the foreword of 

computational neuroscience notes "Computational neuroscience is 

an approach to understanding the information content of neural 

signals by modeling the nervous system at many different structural 

scales, including the biophysical, the circuit and the system levels. 

Computer simulations of neurons and neural networks are 

complementary to traditional techniques in neuroscience". 

Computational models are being increasingly employed to provide 

insight into the neuronal mechanisms which informs the basis for 

information processing to the brain. Becker [1] discusses the three 

levels 

1. Sensory coding and perpetual processing 

2. High level memory systems 

3. Representations that guide actions. 

In the context of information processing by brain, one of the great 

success 1n the initial stages of information processing is its 
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realization that the brain can be modeled as a communication 

channel and thus the information theoretic framework as developed 

by C. E . Shannon [18] IS applicable. This realization led to 

application of information theory In neuroscience. 

The ma1n goal of computational neurosc1ence IS to develop 

computational models that may reveal the function of tissue. 

Sejnowski, Koch and Churchland [20] emphasize the need for 

minimal models which can reproduce the basic properties. This in 

turn w i 11 throw 1 i g h t on the co m p uta t i on a I co n s t r a i n t s w h i c h g o v e r n s 

the design of nervous system. The study of nervous system can be 

unde.rtaken at several levels ranging from a single neuron to several 

neuro.ns which group together. The number of neurons in human 

brain is 10 12 and the number of synapse is 10 15 which suggest that 

each neuron on an average has 10 3 synapses . For the purpose of 

illustration we show in figure (1 . 1) , the three parts dendrite tree, 

soma and axon which compnse a neuron. 

Dendrite 

t·.Jode ot 

F~an ··i ier· 

,!!.. x on tenninal 

Sch\•,..-ann cell 

Figure l . l:Structure of Neuron (Source: http: // en.wikipedia.org / w iki / Neuron) 
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The field of computational neuroscience can be regarded as an 

interdisciplinary field which requires interface between 

neuroscience, computational techniques and stochastic methods. 

Computational neuroscience requires detailed understanding of 

stochastic dynamics at molecular level, cellular level etc.[22]. 

Accordingly the fundamental description of a single neuron can be 

obtained in terms of ion channel. There are several models which 

accounts for such a description. The notable are well known 

Hodgkin-Huxley model which is governed by four coupled nonlinear 

differential equations [ 15,21 ]. These equations depict periodic 

behavior which mimics the spiking neuron pattern. Though this 

model has provided considerable insight into neuronal behavior, it 

is difficult to visualize its behavior in four dimensional phase 

space. Other models viz. Fitz-Hugh Nagumo, Morris-Lecar are based 

on two variable ODEs and require two dimensional phase space for 

their description[2]. They also show bifurcation and exhibit 

transitions from quiescent to periodic behavior like Hodgkin:Huxley 

model. In view of presence of non linearity and stochasticity, these 

models are intractable and therefore another class of models, 

described by single stochastic variable are in vogue and they are 

referred to as IF model which exhibits discontinuous behavior 

because of existence of threshold value of the membrane potential 

As membrane potential reaches the threshold value a spike is 
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generated [ 1 4]. Thereafter the potential is again reset at the initial 

value and the membrane potential evolves till it again reaches the 

threshold value resulting in generation of another spike. This 

process continues resulting in generation of inter-spike interval 

statistics. In contrast to other models, IF model are piece-wise 

linear having discontinuous flow. The stochastic differential 

equation in these cases is modeled as Ornstein-Uhlenbeck process 

(OUP) and the associated lSI (inter spike interval) distribution is 

obtained as first passage time distribution. Recently Deco and 

Schurmann [3,4,5] have employed IF model based on OUP driven by 

Poisson input to gain 

mechanism. To this end 

framework [ 4,5] using 

insight into information processtng 

they employed information theoretic 

the concept of entropy and mutual 

information. In the following section, we briefly outline the 

information theoretic framework. 

The understanding of biophysical mechanism respon~_ible for 

generating neuronal activity is fairly well understood [2], these 

authors points out that the detailed descriptions involving several 

neurons may lead to a large number of coupled differential 

equations governing, interconnected networks. It ts found that 

mathematical models for single neuron based on electric circuit 

theory are useful for providing insight into the single neuronal 

dynamics. 
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Entropy: Discrete and Continous Random Variables 

The foundation of information theory was laid down by Claude 

Shannon in 1948 [ 18] in the context of communication theory. 

Shannon was interested in two issues pertaining to 

• What is the ultimate achievable data compression? 

• What is the ultimate achievable rate of transmission of 

Information? 

These questions led to the development of information theory 

through the classical paper "A Mathematical Theory of 

Communication" by Shannon [18]. 

For the two above mentioned questions, Shannon introduced 

entropy, mutual information and channel capacity etc. The 

contribution of Shannon provided a measure of uncertainty in the 

form of entropy. 1t is important to note that information theory 

deals with the surprisal element not the semantic aspect. 

Shannon considered the random variable X associated with random 

experiment which assumes values say{x1, x2, X3, ... , Xn} with 

corresponding probability distribution 

P = {pJ, P2, p3, ... ,pn} 

We have, 

k=l, 2, 3, ... ,n 
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Such that, 

LPk =1, O~pk ~1. ( 1. 1) 
k 

Shannon introduced a set of axioms and proved that the information 

associated with the event(X=xk) is -logpk. We have 

( 1.2) 

It is easy to see that for a 'certain' outcome, there 1s no surprise 

and 

Entropy 

The amount of average information is given by 

H(X) = H (PI, P2, P3 ··· ·Pn) 

n 

= -2: pklogpk ( 1. 3) 
k =I 

Shannon called this expres~ton as entropy as it is similar to entropy 

being used in statistical mechanism in physics [9]. 

We take OlogO=O. This implies that entropy remain unchanged if we 

introduce some impossible ev·ents in the scheme. 

It would be useful to know that the maximum entropy in ( 1.3) IS 

1 
equal to log n, where PI=P2=P3··· ·=Pn= -. 

n 
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This can be easily seen as follows. 

n 

Max H(X) = -:L Pk log Pk 
k=l 

Such that, 

We construct Lagrangian 

where/... is Lagrange's undetennined multiplier. 

Differentiating (4) w.r.t. Pk we have, 

Noting that, 

-log pk -I- (A. - 1) = 0 

1 
LPk = 1, we getpl = Pz = ... pn=­

n 

Using this, we get 

Max H(X) = Iogn 

This means that when all outcomes are equally, we get the maximum entropy. 

( 1.4) 

(I. 5) 

( 1.6) 
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Differential entropy of continuous Random variable 

It is important to note that the entropy for a continuous random variable with pdf f(x) 

does not take the form - f f(x) lnf(x)dx analogous to discrete random variable. To 

understand the reason for this we closely refer to the both by [8]. Treating the continuous 

random variable X as the limiting form of discrete random variable, we write 

Pk = f(xk)~x 

Hence 

H(X) =-lim L:logf(x)~x 
/ll-->00 

= Jf(x)In f(x)dx-lim(log~x)Jf(x)dx 
Ill->"-' 

It may be noted that in the limit ~x _.0 the last term on r.h.s. tends to infinity which 

makes the entropy of continuous random variable infinitely large [8]. 

A pertinent question is:"How does one reconcile this discrepancy?" 

One can get rid of this by taking difference between entropies of 

two probability distribution viz. fx(x)andh-(Y) [10] of random 

variables X and Y. 

We find 

Iim[H(Xn)-H(Y,)] = h(X)-h(Y) ( 1. 7) 

Where the differential entropies h(X) and h(Y) are defined as 

h(X) =- fJx(x)Iogfx(x)dx (I. 8) 

h(Y) =- ffr(Y) log fr(y)dy ( 1.9) 
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These differential entropies (8), (9) have forms analogous to the 

entropies of discrete random variables. Using the concept of 

differential entropies, Kligr and Folger [I 0] defined Boltzmann 

information Transmission. 

Mutual Information 
,.· 

Consider discrete random variable X and Y which are join distribution with probability 

distribution 

pij = p(xi'y) = p(X = xi'Y = y), 

i=I,2, ... ,n 
(1.1 0) 

j=I,2, ... ,m 

The marginal distribution for random variables X and Y are given as 

p(x;) = P; = p(X = x;) = J;.pij 
J (1.11) 

Similarly, 

If X and Y are independently distributed, then 

9 



The joint entropy of random variable X and Y is defined as 

H (X ,Y) = -L: L: p(xi'y)log p(xi,yj) 
r J (I. 1 2) 

For independent random variables 

H(X,Y) = H(X)+H(Y) 

Conditional Entropy 

Jf one considers X as an input and Y as output of stochastic system, then H (XIY) 

represents the uncertainty about X .after the output Y is observed. 

In terms of conditional probability distribution, we define 

H(XjY = yj) = -I~p(x;!Yj)logp(x; !Yj) 
r J (1.13) 

Summering over all Yj with corresponding, probability q (yj) of realization, we get 

H(XjY) = -~q(y)H(X,y) 
} 

= -IIq(y)p(x;!Y)Iogp(x;IYj) 
J r 

= -IIp(xpy)Iogp(x; !Y) 
r J 

10 



In a similar manner, we can define 

H (Y IX)=- I I p(xi iY)log q(yj lx;) 
I J (1.14) 

Shannon defined a measure of dependence between X and y as mutual information given 

as 

It can be seen that 

l(X,Y)= H(X)-H(X IY) 

= LLPiflog pif 
i j pi.qj 

l(X;Y) ~ 0 and l(X;Y) = l(Y;X) 

The mutual information l(X : Y) can be rewritten as 

l(X,Y)= H(X)+H(Y)-H(X IY) 

( 1.15) 

( 1.1 6) 

Shannon used the concept of mutual information to define the notion of channel capacity 

as [9, 1 8]. 

C = arg maxl(X;Y) 
p(x) 

11 



Continuously random variable jointly distributed 

For correlated random variables X and Y with joint pdf f(x,y),the mutual information is 

defined in terms of differential entropies as [8]. 

II ( fx.r(x,y) ) l(X;Y)= f>: r(x,y)log ....:....:..:..:.:.." _:.....;,___ 
· · fx(x)f.,.(y) 

( 1.17) 

Following Kligr and Folger [10), (1.17) ts an appropriate form for information 

transmission given by 

-J fx (x) logfx (x)dx- J.t;. (y) log[.,. (y )dy + fJJ(x, y) logf(x, y)dxdy 
( 1.18) 

This is also the expression form for mutual information similar to ( 1.17). 

Electrical Model of Neuron 

Koch [ 14] in his classic book on "Biophysics of Computation" 

observed that Neuroscientist have discovered the principles in the 

design and operation of nervous system. In other words the brain 

receives sensory signals which get encoded into various physical 

/biophysical variables like membrane potential, neural firing rate 

etc. 

The membrane potential is a biophysical variable tn the nervous 

system which fulfills certain desired requirements for information 

processing system [22]. 

12 



Electrical Properties of Nerve Cell 

We give below the basic requirement to be fulfilled by a physical 

variable in the information processing context. Koch [II, 13] notes 

I. It must operate at high speeds. 

2. It must have a rich repertoire of computational primitives with 

the ability to implement a variety of linear and nonlinear, high 

gam, operations. 

3. It must interface with the physical world in sense of being 

able to represent sensory input pattern accurately and 

translated the result of the computations into action that Js 

motor output. 

Koch argues as to why membrane potential fulfills the required 

features. Membrane potential performs neuronal operations at a 

rapid rate in the brain. 

It is well established that the basic neuronal model consist of a 

resistance and capacitance i.e. RC circuit gives in figure ( 1.2). 

13 



Vm 

c 
Vrest 

I 

Figure 1.2: Neuronal circuit representation 

lc = dQ = C dVm 
dt dt 

Applying Kirchhoff's law, we get 

dVm Vm Vrest Jc 
--=---+--+-

dt RC RC C ( 1.19) 

where Q,R,C,V m and Ic represents, Charge collected on membrane, membrane resistance, 

membrane capacitance, membrane potential and current flow due to ions respectively. 
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Chapter2 

Dynamic Models of Neural System 

The development of mathematical models of neuronal system is vastly limited due to the 

present state of the available knowledge about the brain. Rabinovich et.al. [ 16] argue that 

the level of mathematical analysis will not be at the same level of sophistication as for 

other physical and electronic systems. This is due to the fact that our understanding of the 

brain is generally at the phenomenon level. The best one can do is to construct 

phenomenon models. It is known that input through synapses on dendrite tree are 

received which may or may not result in generation of spike. The underlying mechanisms 

are nonlinear. Thus nonlinear modeling approaches are useful in the study of nervous 

systems, for understanding the dynamics of neurons, it is better to develop 

phenomenological models as neurons are fairly complex entities [22].. 

2.1 Hodgkin-Huxley Model 

The fundamental contribution in the model building exercise has been due to Hodgkin 

and Huxley ( 1952). Their model referred to as Hodgkin and Huxley model is formulated 

as a system of four coupled ODEs and can be regarded as principal tool for 

computational neurosCience [ 16]. 

In terms of membrane potential V and variables m, h and n representing activation and 

inactivation ofthe ionic conductance's [16] present Hodgkin and Huxley model as 

15 



dm 
"' ( v ) -T m m m 

d t 

dh 
h"' (V ) - h T h d ( 

d.in 
(V ) -T n n "" n; 

d ( 

where m ,_. , h "' , n "' represent the steady state values of the conductance variables. 

Here I(t) denotes the external current. Further Rabinovich et.al. [16] pointout that 

inclusion of other ionic currents make model more realistic. Several variants of Hodgkin 

and Huxley model have been proposed in the literature. Hodgkin Huxley model describes 

the electrical potential through potassium and sodium activation variables, n(t) and m(t) 

respectively, and sodium inactivation variable h(t). 

2.2 Morris-Lecar Model 

Morris-Lecar (1981) proposed a model with two variables such that it is capable of 

potential generation .The model can be described as 

~ (~) -=gr((vL -v(t)]+n(t)gJvn -v(t)]+gmm«> - (vm -v(t)]+l 
~ ~ 

dn 
-=A.( v(t))[ n.., ( v(t))- n(t)] 
dt 

'( v-v J m..,(v)=- ]+tanh~ 
2 vm 

n.., (v) =.!..(]+tanh v -ovn J 
2 vn 

· v-v 
A.( v) = <I> n cosh __ o_n 

2vn 
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where v(t) is the membrane potential, n(t) describes the recovery activity of a calcium 

Current and I is an external current. 

2.3 Fitzhugh Nagumo Model 

Rabinovich et.al. [16] has discussed several neural models. We describe briefly Fitzhugh-

Nagumo model which exhibits oscillating spiking neural dynamics. The differential 

equations are 

dx -- = px- ex~ - y +I 
dt 
dy 
-=x+by-a 
dt 

where x(t) is the membrane potential, and y(t)describes the dynamics of fast currents, 1 is 

an external current. The parameter values a, b, and c are constants and can be adjusted to 

allow spiking neuron. So for we have discussed deterministic models. How do we 

incorporate noise in deterministic selling? We briefly discuss a commonly adopted 

approach for associating SDE with deterministic model. 

2.4 Stochastic Differential equation: Study of noise effects 

A pertinent question is related to study of noise in dynamical system is its inclusion in 

order to fix our ideas let us consider a deterministic system given by the differential 

equation 

~~t) = a(X,t) 

In presence of noise, this differential equation gets modifies to 

17 



dX(t) . 
--= a(X,t)+ nmse 

dt 

How does one incorporate noise? It is customary to identify 'noise' as white noise ~(t) 

which can be interpreted as a formal derivative Wiener process {W(t)}.Physically, it 

means that the time scale of fluctuations is much smaller in relation to macroscopic time 

scale. 

Mathematically we can write 

dW(t)=W(t+dt)-W(t)= ~(t)dt 

[6]. 

The Wiener process is a solution of the Fokker plank equation 

with initial condition 

The solution ofFokker plank equation is given as 

Wiener process represents a Gaussian Such that 

E[W(t)J=Wo and E[(W(t))-Wo]=(t-to) 

Without loss of generality, we take to=O and wo==O. 
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Gardiner [6] gives an intuitive interpretation by pointing out that the variance of wiener 

process tends to infinity as t-7 oo. This means the sample paths are highly variable. The 

sample paths of wiener process are continuous but not differentiable. 

The Wiener process satisfies the .following [ 19]. 

1. {W (t), 0 ~ t < oo } has stationary independent increases. 

2. W (t) for t>O has Gaussian distribution. 

Noting that 

One can express 

where 

2.5 

-I 

Var[W(t)]= t, 

W(t)= X .Jt 

X- N(O,l). 

Figure 2.1: Wiener process 
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2.5 Neuronal models with Stochastic Noise in H-H Model 

Recently a number of papers have considered the effect on noise on the dynamics of 

Hodgkin-Huxley model. The electrophysiological activity has been formed to exhibit 

stochastic characteristics. Tuckwell reported the stochastic effects on Hodgkin-Huxley 

model neurons in the vicinity of bifurcation to periodic firing, noise will small magnitude 

can silence a neuron Tuckwell and Jost() point out the emergence of a new phenomenon 

called as inverse stochastic resonance. 

Tuckwell and Jost [23] formulated Hodgkin-Huxley equations with additive current noise 

having the form 

where, 

a 
dX1 = J; (X)dt +-dW c 

These authors define X1(t)=V(t1), ••• , n. 

a 
These notation used by Tuckwell and Jost [23]is sHghtly different. The term -dW(t) c 

represent stochastic noise which renders the variables Xi(t),i=l , ... .4 , stochastic. Here 

dW(t) represents Wiener increment process which will be discussed in next chapter. 
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The effect of including noise in Hodgkin-Huxley model enhances the complexity in the 

sense that the first order and second order moment equations results in fourteen coupled 

nonlinear differential equations .in order to have a feel of the complexity of the problem, 

we reproduce the equation as obtained by Tuckwell and Jost [23]. 

Mean Evolution Equation 

• 
Denoting by mi(t}=E[Xi(t)],i= I ,2,3,4, we have 

- - - -
- 4gKm:C12 - 3gNam;m 4 C13 - gNam;C14 + 6gKm:(vx- mJC22 

- -

+ 3gNam3m4 (VNa - mJC33 + 3g Nam; (VNa - ml )C34] 
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Variance Evolution Equations 

Denoting by C;j(t)=E[X;(t) Xj(t)], we have 

dC .. L4 

{ 8f } L4 

{ 2 } __ ,_, = 2 __ , c .. + g.k 
d a II I 

I i=J XI k=J m m 

2 

c 

6 - 2 2 - 3 (a )2 

+ -gNa m3m4(VNa- m1)C13+ -gNa m3 (VNa- mi)CI4 + -c c c 

d~122 = 2[(a~(m 1 )(1- m 2 )- P~(m 1 )m 2 )C12 - (an(mJ+ Pn(m 1))C 22 ] 

d~:3 =2[(a~(m 1 )(1-m 3 )-p~(m 1 )m 3 )C 13 -(am(m 1 )+Pn(m 1 ))C33 ] 

d ~144 = 2 [ (a~ ( m 1 ) (1 - m 4 ) - P ~ ( m 1 ) m 4 ) C 14 - (a h ( m 1 ) + Ph ( m 1 )) C 44 ] 

In a similar manner, Tuckwell and Jost [23] have obtained evolution of covariance 

equations. Therefore in order to study the evolution of first order and second order 

dynamics of stochastic HH model, one is required to solve fourteen coupled nonlinear 

equations. Our purpose to discuss this is to highlight that analytical study of stochastic 

nonlinear systems is quite complex. Therefore, we resort to Monte-Carlo simulation of 

such systems. The above mentioned models are generic in the sense that they can yield 

the spiking neurons. We describe below another class of models which are widely used. 

When the membrane potential reaches the threshold, a spike is generated. 
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Integrate and Fire model: Spiking Neurons 

The spiking neuron experimental data which is often collected in neurophysiology is 

about the arrival timing of action potential. Denoting by t;, the time corresponding to the 

arrival of the ith spike, we get a time series {t~, t2, t3, ... } of discrete events. As pointed in 

Gabbani and Koch [1 1, 13], temporal coding of infonnation in spiking patterns is useful 

in encoding of stimulus, such that the characteristics of neural code are closely linked to 

randomness in neuronal firing. 

Figure 2.2: Spikes 

This class of models captures basic biophysical properties of nerve cells viz. 

refractoriness, spike trains, infonnation transmission [I 1, 13]. We discuss two types of 

models: 

1) Perfect Integrate and Fire Neuron 

2) Leaky Integrate and Fire Neuron 
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1. Perfect IF model 

The stochastic dynamics of membrane potential is given by 

dV (t) = J.l{t) + adW (t), V (t = 0) = V0 

where W(t) is Wiener process. Here f.1 represents drift which is defined in terms of 

excitatory and inhibitory rates. The parameter a denotes the strength of fluctuations. In 

order that the membrane potential reaches the threshold with probability one, the drift 

parameter f.1 > 0. 

In order to obtain the Inter spike interval (lSI) distribution, we are required to compute 

the first passage time distribution (FPT) for the membrane potential to reach the 

threshold. 

Mathematically, FPT is defined as 

T = inf {t ~ 0 

It is important to note that for this model, the explicit form of FPT is known in terms of 

inverse Gaussian distribution i.e. 

f (t) 
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Figure2 .3: FPT- Monte -Car lo s imulation of membrane potential 

2. Leakv Integrate and Fire Model 

As early as 1907 Lapicque attempted to model membrane potential in terms of an RC 

circuit. The model reads as 

dV 

dt 

v 
- -+ f.1 + CJ¢(t), V(t=O)=V o 

r 

where T denotes the time constant (RC).1
. Hence s (t) is the white noise and ~represents 

the deterministic part of current. Mathematically the stochastic variate V(t) satisfies 

Ornstein-Unlenbeck process expressible as solution of SDE 

dV = ( -: + f.1 Jdt+ CJdw(t) 

The analytical solution for problem is not known in the literature. We have to resott to 

Monte-Carlo simulation. 
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Chapter3 

Information Transmission in Spiking Neurons 

Introduction 

Deco and Schurmann [3,4,5] have discussed information theoretic framework for 

measuring information transmission as mutual information when an external stimulus is 

applied. 

From the timing of spikes, how can one reliable encode the input stimuli. Deco and 

Schurmann [3,4,5] asked the question of coding strategy for discrimination of input 

signals by single neuron. 

Representing the shot noise process by a Poisson stream cdf events with mean rate A such 

that the number of events at time t is 

e-J.t (A.t) n 

JOn(l) = , 
n! 

n = 0,1 ,2, ... 

The corresponding entropy is given by 

"' 
Hin = -I pn(t) In pn(t) 

n=O 

co e--<'(A.t)" 
=-I [-A.t+nlnA.t-ln(n!)], n=0,1,2, ... 

n=O n! 

Taking time precision £ such that A.c << 1, we find the entropy per spike of input train [3,4,5] 

IS 
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Hin=(A.)[l-ln(M:)] 

It is also well known that for Poisson arrivals with rate A., the inter arrival time is given by 

the probability density function 

f(t) = A-e-A' ,A~ 0 

where A. -J is mean time interval. 

Computation of mutual information 

The input spike is governed by realizations of a homogeneous Poisson process S(t) such 

that 

s(t) = dS(t) 
dt 

Here {t~, t2, •• , tn} are the time epoch of the input spike train. 

In LIF model, the membrane potential is reset to its resting potential .This makes the 

output train independent of input train. Denoting the output train { /~, t;, ... , t~, ... } . 

Such that O(t) = L t5(t- t~) 
k 

We now compute the mutual information between the input and output spike train per 

unit time i.e. 

l(S(t): O(t)) = 1( {t0 , t1, ••• } : {t~, t;, ... }) 

In order to compute this quantity, Deco and Schurmann consider spike times in the time 
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interval [1 ,1 + T] such that t can be regarded as the last output spike. Further the 

measurement of input spikes should be connected from t'· Denoting by the mean rate of 

output spikes as R = -
1
-. ; 

E[T] 

which simplifies to 

where H(T1
) and H(T'j10,t~. ... ) represent entropy and conditional entropies respectively. 

Deco and Schurmann assume that the distribution of random variable T' is also given by 

p(T ') = Re-RT' 

Such that 

Hmax(T')=R[ 1-(Re )] 

Accordingly, Loss of information is found to be 

L = H in- lio 

H in 
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Deco-Schrumann's Model: Monte-Carlo Based Study 

The SDE associated with Deco-Schrumann's Model [3,4,5] is as follows 

v 
dV = (--+ Jl)dt + adW(t) + wdS(t) 

r 

where the first two term on right hand side correspond to the well known LIF Model. The 

last terms corresponds to the input stimuli represented as homogeneous Poisson process 

having rate /,. 

As discussed in previous chapter, the analytical solution of this model is not available. 

Accordingly we have to resort to Monte-Carlo simulation ofSDE. 

The numerical procedure involves the discretization of the model using Euler Murayama 

scheme [7]. 

where h is the time step size and Zn is standard Gaussian variate and 

(n+l)h 

~S(nh)= J L;8(nh-t;)d(nh) 
nh 

which will give number of input spikes between nh and (n+ I )h. 

We thus obtain the output lSI having the probability distribution p(T' I 10 ,11 , ••• , 1;, ... ). 
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Based on the simulation study, the probability distribution of output spike is obtained. 

which provide the entropy H(T') per unit of the output spikes. 

The conditional entropy H(T'jto,t~, .... ) for a given realization to,t~,... is also computed. 

These results will yield mutual information, maximum entropy, input entropy and loss. 

We have carried simulation experiments for the following parameter 

I 
p = 0.5,- = 0.5,a = 0.2, w= 1.5 

r 

The step size is taken to be 0/0 I. The simulation runs range from t=O to t= 1 000 sec. 

Figure (3 .I) depicts the variation of mean, variance and coefficient of variation with 

respect to 1/A.. In figure (3.2) we have plotted variation of maximum output entropy, 

Hmax with respect to I /A.. This figure is in agreement with the numerical results given 

Deco and Schrumann [3, 5]. In the figure (3.3), we study variation of output spike rate 

with respect to A.. The mutual information in figure (3.4) is given in terms of H(X)-

H(XIY). 

where H(X)=H(T') and H(XjY)=< H(T'jto,t~. ... ) > to.t1, ... 

It may be noted that our results are not in agreement with the result of Deco and 

Schurmann [3, 5). 
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Chapter 4 

Effect of Variation in Drift on Information Transmission 

1. Introduction 

It is of interest to explore the effect of variation of drift parameter in information 

transmission. The drift parameter itself can vary from neuron to neuron and this 

investigation is of importance as large J.l may push sample realization of membrane 

potential towards threshold affecting FPT. 

Quantities of interest which needs investigation relate to output entropy, output rate, 

and mutual information. This analysis will also provide insight into issue related to 

sensitivity analysis of the model. 

We consider Deco and Schrumann [3, 5] model with varying parameter J.l, the model 

is discussed as 

v 
dV = (--+ p)dt + udW(t) + wdS(t) V(t=O)=V0 

T 

We have carried out simulation experiments for different value of J.l varying from 

0.01 to 0.96 with interval of0.05. 

2. (a) Effect of increasing p on entropy 

As noted earlier, the larger values of drift parameter J.l have a tendency to push 

membrane potential towards threshold. In other words, we can say the variability in 

the spiking pattern decreases resulting in reduction of entropy of the spiking neurons. 

This finding is also corroborated in figure ( 4. 1 ) and ( 4.2 ). 
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(b) Effect of Variation on lSI distribution 

Based on study of numerical results presented in figure (4.1) and (4.2), we expect the ISI 

of the model to reflect the variation of fl . we find in figure ( 4.3) the pdf of ISI without 

stimulus 
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Figure 4.3: l SI distribution(without stimuli) 
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Figure 4.4: ISI distribution (with stimuli) 
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input has smaller width and higher model values for increasing the value of drift. The 

inclusion of stimuli reveals the similar behavior with shifting model values. 
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(c) Effect of Varving u on CV and output rate 

It is noted in figure ( 4.5) that the variation of output rate increases with increasing f.l· In a 

similar manner, the coefficient of variation decreases with increas ing drift parameter. 

Thus the relative fluctuation decreases as the parameter f.l increases. · 
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3. Effect of variation of drift as Mutual Information 

This investigation would provide the effect of f.t on information transmission . It is 

found from figure (4.7) that for a g1ven value of 1/A., the muh1al information 

decreases as we increase f.t . This investigation is high for lower value of f.t. This is an 

interesting contribution of the study. 
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Chapter 5 

Conclusion 

We have adapted Deco-Schurmann's [3, 5) framework for study of information 

transmission in neuronal system under different environment. The drift parameter is 

likely to vary from neuron to neuron and its variation can affect the amount of 

information transmission. Such a study is also useful from sensitivity analysis of the 

model. 

The framework which we have adopted is easily generalizable when one or more 

parameters of the model are varied. It would be useful to study the effect of stochastic 

drift parameter (when subject to random fluctuations) on information transfer. 

Mathematically, the problem would have two noise sources intrinsic to the neuronal 

system in addition to stochastic stimuli. The time scale fluctuations of drift stochasticity 

is likely to play an important role. 
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