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ABSTRACT
 

In this work, an implicit Lagrangian for the dual twin support vector regression is 

proposed. Our formulation leads to determining a pair of non-parallel E: -insensitive 

down- and up- bound functions for the unknown regressor by constructing a pair of 

unconstrained minimization problems in which each of them will be of smaller in size in 

comparision to a single large one as in the standard support vector regression (SVR) and 

solving them using Newton method. Numerical experiments were performed on a number 

of interesting synthetic and real-world benchmark datasets and their results were 

compared with SVR and twin support vector regression (TSVR). Similar or better 

generalization performance of the proposed method clearly illustrates its effectiveness 

and applicability. 
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CHAPTERl 

Support Vector Machines for Classification and
 
Regression problems
 

1.1 Introduction 

Support vector machines (SVMs) are supervised learning methods used for 

classification and regression problems proposed by Vapnik (Vapnik, 2000). Initially, 

SVMs were developed for classification problems and later extended for regression 

estimation problems. SVM is a powerful tool for data classification. Face detection 

(Osuna et aI., 1997), Gene prediction (Tong et aI., 2005), Drug discovery (Demiriz et aI., 

2001), Stock exchange prediction (Bao et aI., 2005), Time series forecasting (Brockwell 

& Davis, 2002; Cao, 2003; Mukherjee et aI., 1997; Muller et aI., 1999) are numerous 

classes of problems which fall under classification or regression problem domain. 

Generally machine learning methods determine the nonlinear function relationship 

between dependent and independent variables by learning from the input samples. One of 

the machine learning method namely Artificial Neural Networks (ANNs) trained with 

back propagation (BP) (Lawrence & Jeanette, 1994) is very popular which have many 

advantages like better approximation capabilities. However, it has certain disadvantages 

like selection of the number of hidden layer neurons, slow convergence, imprecise 

learning rate etc. Recently a novel machine learning method called Support Vector 

Machine (SVM) (Burges, 1998; Cristianini & Taylor, 2000; Vapnik, 2000), proposed by 

Vapnik (Vapnik, 2000) applied to classification and regression estimation problems. For a 

given a set of training examples with class labels { +1 or -I} an SVM training algorithm 

builds a model that predicts whether a new example falls in either positive or negative 

category. 

Initially SVMs were developed for classification problems and later extended for 

regression estimation problems. SVM is a powerful tool for data classification. In SVM, 

classification is achieved by constructing a linear or non-linear separating surface in the 

input space of the dataset or in a higher dimensional feature space. SVM formulation 

leads to the solution of a quadratic programming problem (QPP) with linear inequality 

constraints. Combined with the better generalization ability SVM becomes a powerful 

paradigm of choice for pattern classification. 
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The objective of regression problem lies in determining the underlying 

mathematical relationship between the given input observations and their output values. 

Vapnik (Vapnik, 2000) introduced &' -insensitive error loss function to SVM methods 

which has got successful application to regression problems (Mukherjee et aI., 1997; Tay 

& Cao, 2001). SVR has been applied to many problems of practical importance such as 

time series prediction (Tay et aI.,2001; Muller et aI., 1999, Mukherjee et aI., 1997), Drug 

discovery (Demiriz et aI., 2001), Civil Engineering (Dibike et aI., 2000). 

We assume all vectors are considered as column vectors. For any two vectors x,y 

in Rn 
, the inner product of the two vectors will be denoted by Xl Y where Xl is the 

transpose of vector. When X is orthogonal to y, we write x -l y. For a given vector 

Rnx=(xl'x2""'x,J' in , the plus function x+ is defined as: (x+), =max{O,x,} for 

i=I,2, ...,n and the step function x. will be defined as: (x.)/ =1 if x/ >0, (x.), =0 if 

Xi < 0 and (x.)/ = 0.5 if Xj =O. The 2-norm of a vector x and a matrix Q will be 

denoted by II x II and II Q II respectively. The column vector of ones of dimension m is 

denoted bye. For a matrix A E R mxn , Ai is the i lll row of A which is a row vector in R n. 

BE R nxk R mxn x wxkFor A E R mxn and be two matrices, the kernel K(A,B) maps into 

R mxk . If j is a real valued function of the variable x = (xl'x2,...,xn)1 ERn then we 

denote the gradient of j by Vj and it is a vector in Rn defined by: 

Of Of Of AI 0
2 I . h h' . f jI 2VI = (-,-,...,-). so V I = (--)~12.. 1St e eSSIan matnx o· .

ox) oX oX OX,OX, ',j " ,n
2 n 

Assume that a set of m input observation {(x"y,)},=I,2"m where 

x, = (XiI'X'2'''''Xm )( ERn and y, ={+1,-1} be given. The problem is in determining a 

classifier j(.) such that 

+ Ijor(x"Yi)withy, = +1 
j(x,) = , (I.I ){-ljor(x"y, )wlthy, =-1 

and the classifier j(.) has better generalization ability. 
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1.2 Linear SVM 
For the above set of input examples given, the linear SVM determines the separating 

hyperplane to be the form H: Xl w + b =0 such that the decision function is given by 

j(x) = sign(x'w+b) (1.2) 

where WE R n
, b E R are unknowns. The hyperplane H: Xl w + b =0 is constructed so 

that it has maximum margin between the two classes. For this, two parallel hyperplanes 

are constructed on both sides of the separating hyperplane having equal distance to the 

separating hyperplane with the condition that no data points between HI and H2 and 

the distance between HI and H2 is maximized where 

HI: x'w+b =+1 (1.3) 

H2: x l w+b=-1 (1.4) 

By normalizing the coefficients by means of applying suitable transformations, if 

necessary, we can always assume that HI and H2 will take the above forms. Also by 

vector geometry, the distance between two hyperplanes, called margin, is computed to 

2
be__, where 11.11 is'the Euclidean norm. See the Figure I. 

Ilwl\ 

• 

• 
• •

• 
• ••• 

•• •
• 
• • • 

• 

x:w"" b = 0 

x:"' .... b = .... 1 

Figure 1: Linear Separating plane 
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Thus the problem is formulated to be: 

2 
max--

Ilwll 

subject to: Y, (x1w + b) ~ 1 Vi = I, ... ,m 

or equivalently: 

min~2 
2 

subject to y, (x1w + b) ~ 1 Vi = l, ... ,m ( 1.5) 

The above primal problem can be formulated into its dual as follows. 

Introducing Lagrange multipliers al'a2 ,a3 ,oo.,am ~ 0, we find the following Lagrangian 

function: 

(1.6)
 

Equating the gradient of L(w, b, a) with respect to the primal variables wand b to zero, 

8L(w,b,a) =0 and 8L(w,b,a) = 0 
(1.7)

8w 8b 

we get, 

m m 

W = L a,Y,x, and La,y, =0 (1.8) 
'01 ,=1 

Substituting the above conditions into the Lagrangian (1.6), we obtain the following 

minimization problem in dual variables as: 

subject to: a, ~ 0 Vi = 1, ... ,m (1.9) 

Using the solution a, for the above dual problem, the primal variables wand b can be 

n 

determined. So the classifier function being f(x) = sign(L a,Y, (x: x) + b) 
,=1 

where b=y, -x:w for i=argmax(a) 
I 
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X~",T b = -1 

, 
x:w"';" b = 0 

1.3 Imperfect separation (Soft Margin SVM)
 
In the case of Linear SVM, data points are not allowed to lie between the two 

hyperplanes. The other direction to extend SVM is to allow for noise, or imperfect 

separation. That is, we do not strictly enforce there be no data points between HI 

and H2, but we definitely want to penalize the data points that cross the boundaries. In 

this case penalty C will be finite. (If C = 00, we come back to the original perfect 

separating case). 

For those input data points that lie between the planes as shown in Fig.2, we 

introduce 'error' ~, (a slack variable) in classification as a penalty. 

•
 
Figure 2: Soft Margin Classifier 

With the introduction of penalty, the problem can be reformulated as follows: 

x'w+b:2:: +l-~/for Yi = +1, 

x' w + b :s; -I + ~/' for Yi =-I , 

~, :2:: 0, 'Vi = I, ... ,m (1.10) 

and further in this case we will have: 
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subject to: y;(x'w+b) +.;; -I ~ 0, Vi = I, ... ,m 

.;, ~ 0, Vi = I, ... ,m (1.11) 

where C > °is a parameter. 

By introducing Lagrange multipliers 

a, ~ 0,{3, ~ ° Vi = 1,...,m, the Lagrangian function for (1.11) can be defined to be 

Making the gradient of L(w,b,';, a, {3) with respect to the primal variables w, band .;, to 

zero,and proceeding in similar manner as in the previous case, we obtain: 

m m 

W= La,y,x, , La,y, =0 and C-a, -{31=0 (1.13) 
,=1 ,=1 

Substituting the above conditions in the definition of the Lagrangian function, the dual 

problem can be obtained and be stated as 

subject to: Os a, s C Vi = I, ... ,m (1.14) 

The only difference of (1.14) with linear separable case (1.9) is the upper bound 

C on a, instead of 00. 

1.4 Non-Linear SVM 
What if the surface separating the two classes is not linear? In this case we 

transform the data points to another high dimensional space such that the data points will 

become linearly separable. Let the mapping be 

¢:Rn~RP 

where p> n.
 

Using (1.11) and (1.14), in the high dimension space, we solve
 

subjectto C ~ a l ~ ° Vi = I, ... ,m (1.15) 

• 
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• ~(.) 
~(.) 

Feature spaceInput space 
Figure 3: Mapping into a higher dimension space 

Suppose in addition, ¢(Xj)' ¢(x .) =k(x x ) where k(x, x ) is a kernel function. 
J I, J , J 

That is the dot product in that high dimensional space is equivalent to a kernel function of 

the input space. This substitution allows us that we need not to know the transformation 

¢(.) explicitly as long as we know that the kernel function k(x"x) is equivalent to the 

dot product of some other high dimensional space. This is possible when the kernel 

function satisfies Mercer's condition (Cristianini & Taylor, 2000). There are many kernel 

function that can be used this way, 

• Polynomial Kernel with degree d:. . 

k(x,y)=(x1y+ly, d>O is a parameter 

• Gaussian Kernel function: 

k(x, y) = exp(-,u II x - y 11 2
) , ,u > 0 is a parameter. 

Thus the dual problem (] .15) can be reformulated as 

subject to: C:2: a , :2: 0 Vi = 1, ... ,m ( 1.16) 

with classifier function being 

f(x) = sign«L aIYlk(x" x)) + b) 

where b=W'XI-Yj(l-~,) fori=argmax(a/) 
/ 
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The Mercer's condition can be used to determine if a function can be used as 

a kernel function. There exists a mapping ¢ and an expansion 

k(x,y)=¢(xY¢(y) , 

ifand only if, for any g(x) such that
 

fg(X)2 dx is finite
 

and fk(x,y)g(x)g(y)dxdy ~ 0 must be satisfied. 

1.5 Linear SVR 
Objective of regression problems is to find out the mathematical 

relationship inherently lying between given input observations and their output values. 

With the introduction of li - insensitive error loss function by Vapnik (Vapnik, 2000), 

SVM methods are successfully extended to regression problems. 

Assume that a set of input samples {(x" Yi)} i=1,2, ... ,m be given where for 

Xi =(X'I'Xi2 ,. .. ,XiJ' E R" its observed output be y, E R. The linear SVR problem is the 

method in approximating the output by a function f (.) of the form 

( 1.17)
 

wherew E R" and bE R be the solution of the problem: 

min~wtw+C ~ If(x.)- Y.I (1.18)
2 . 1 1 1 

1 = li 

where, I f(xJ-Yilli = max{O, I f(xJ-Yil- li} is the li-insensitive error loss function and 

C > 0 is a parameter and li > O. 

We can write as: 

( 1.19) 

A E Rmxwhere " is the matrix whose if" row is denoted by A, = x; .The equivalent 

constrained minimization problem ofthe previous unconstrained problem is: 

minw'w+C(e'~ +e l
()
 

subject to: y - Aw - be:OS; lie +~,
 

•
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• • 

Aw + be  Y ~ Be +,( , ( 1.20) 

~,,( :::: 0 for i = 1,2, ..., m 

where ~=(~P~2""'~mY, ~'=(~I"~2"""~m')'are vectors of slack variables, 

Y=(YPY2""'YmY i~thevectorofobserved values and e=(I, ... ,I)' in R"'. 

Ts' • • 
•• 
• 

I 
•
 

•
• 

• !". = . b. . x:w 

.\'.. ~ x:w - b - E. 

Figure 4: Graphical reprsentation of the linear regression function and the epsilon bound. 

The dual of the above problem can be formulated as 

min ~(UI -u )' AA'(u -u )- y'(u -u,)+Be'(u +u,)2 l 2 1 l 
lI ,U2 ER 'UJ

2 - 

(1.21 ) 

where U p U 2 E R'" are the Lagrange multipliers. Further, for any example 

X E Rn its prediction is given by the following regression function 

f(x)=x'A'(u 
J 
-u2 )+b (1.22) 

1.6 Non-Linear SVR 

For the nonlinear case, the input data is mapped into a higher dimensional 

feature space via a kernel function k(.,.) and here in the feature space a linear SVR 

estimation is obtained. Let the input data be transformed into a higher dimensional feature 

space by the transformation ¢: Rn 
~ RP where p > n. Support vector regression 

approximation function in the higher dimensional space is given by 

f(x) = w'¢(x)+b 
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Like in Linear SVR, we convert non linear SVR formulation into constrained 

optimization problem of the form 

. 1 1 1 I):')mm-w w+C(e ~+e." 
2 

subject to: WI ¢(x,)+ b - Yi :5; /; +~" 

Y,-w'¢(xJ-b-:5;/;+( 

and ~i'~i' 20 for i = 1,2, ...,m, 

Y = (Yp Y2 ,... , Ym)1 is the vector of observed values and e = (1, ... ,1Y in R m
• 

In this case, the SVR method can be formulated as the solution of the following 

dual problem: 

subject to: (1.23) 

where k(.,.) is the kernel function and Up U 2 E R m are the Lagrange multipliers. As an 

example of a kernel function, the Gaussian kernel defined below can be taken: 

1 
k(x" Xl) =exp(---2 II x, - Xi 11 2) for i,j E {l,2,... , m} (1.24)20- . 

where 0- > 0 is a parameter. 

Using the solution of the problem, the regression estimation function j(.) for 

any input sample X E R" for the nonlinear case is obtained to be 

j(x)=k(x l ,A1 )(u]-u2 )+b (1.25) 

where k(x' ,A I )= (k(x,x1h...,k(x,xm )) is a row vector in R m 
• 

• 
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CHAPTER 2
 

Twin Support Vector Regression 

2.1 Linear TSVR
 

In this section, an efficient approach to SVR tenned as Twin Support Vector 

Regression (TSVR) (Peng, 2010) has been introduced and it is proposed in our work to 

solve the problem in dual variables using Newton Method. 

Consider the input set of examples {(x" y,)L",m where for the example 

Xi =(x'l'x,z""'xmY ERn and its corresponding output being y, E R. The TSVR 

algorithm finds two function it (x) = x' w, + bj and 1z (x) =x'Wz + bz, each one detennine 

the &' -insensitive down-bound or up-bound regressor. Here the it (x)detennines the &',

insensitive down-bound regressor, while the function 1z (x) detennines the E:z -insensitive 

up-bound regressor. The end regressor is decided by the mean of these two functions. A 

geometric interpretation is shown in Fig. 5. The constraints require the estimated function 

.r.(x) or 1z(x) to be at a distance of at least E:] or E:z from the training points. That is, the 

training points should be larger than the function it (x) at least E:" while they should be 

smaller than the function 1z (x) at least &'z. The slack vector C;, or C; z is introduced to 

measure the error whenever the distance is closer than E:1 or E:z . The second tenn of the 

objective function minimizes the sum of error variables. 

The Twin SVR is proposed in ( Peng, 2010) for the linear problem which can be 

formulated as follows: 

min..!..(y-eE: j -(AWl +ebl)y(y-eE:] -(AWl +eb,))+C,e'C;j 
2 

subject to: y - (Aw] + eb]) ~ eE:] - C;p 

C;l ~ 0 (2.1 ) 

min..!..(y+eE:z -(Awz +ebz)Y(y+eE:z -(Awz +ebz))+Cze'c;z
2 

subject to: (Awz +ebz)-y~eE:z -C;z, 

C;z ~ 0 (2.2) 
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y 

Jt 

Figure 5: The geometric interpretation of TSVR 

where S I ' S 2 ~ 0 are inputs parameters; C I , C 2 ~ 0 are regularization parameters; 

Y =(YI ,...,Ym)' E R m is the output vector and A E R mxn is the matrix whose i'h row is 

denoted by A, = x: ,Vi = I, ... ,m and e' = (1, ... ,1) E Rm
• 

To derive the dual QPPs of TSYR, introducing Lagrangian multipliers 

corresponding to the primal problems (2.1) and (2.2) become 

LI (WI' bl' ~I' al' PI) =~ (y - eS I - (Awl + ebl ))' (y - eSI - (Awl + eb1 )) + Clef ~I . 2 

-al(y-(Aw1 +ebj)-es1 +~I)-Pi~1 

(2.3) 

L2(W2,b2'~2'«2,PJ=~(y+eS2 -(Aw2+eb2))f(y+es2 -(Aw2+eb2))+C2e'~2 

-a2((Aw2+eb2 )- y-es2 +~2)- P~~2 

(2.4) 

satisfying the condition al'a2 ,pl'P2 ~ O. Applying the necessary and sufficient KKT 

conditions for the optimality we get 
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-A'(y-Aw1-ebl-ec,)+A'a l =0, 

-e'(y-Aw1 -ebl-ecl)+e'al =0, 

C1e -a l - fJI =0, 

y-(AwI+ebJ~eCl-~l' ~I~O,
 

a;(y-(Aw1 +ebl)~ec, -~I)=O, a l ~O,
 

f3;~1 =0, fJI ~ 0.
 

Since fJI ~ 0, we have
 

(2.5)
 

-A'(y-Awz -ebz +ecz)-A'az =0, 

-e'(y-Awz -ebz +ecz)-e'az =0, 

Cze - a z - fJz = 0, 

(Awz+ebz)-y~ecz-~z, ~z~O, 

a~((Awz+ebz)-y~ecz-~z)=O, azzO, 

f3~~z = 0, fJz ~ 0. 

Since fJz ~ 0, we have 

(2.6)
 

Next, combining first two equation of (2.5) and (2.6) will lead to: 

-[::]{(y-e&,J-[A eJ[:,'JH:} ~O (2.7) 

-[::]{(Y+e&,J-[A eJ [:: J}-[:'} =0 (2.8) 

For the sake of simplicity of expression, let us define the following notation 

G = [A eL(n+l) , ~ = y  ec" u1 = [w; b]], , 

Then we have 

(2.9) 

Page 113 



i.e., (2.10)
 

and 

Le., (2.) I)
 

Here one can see that GIG is always positive semidefinite and it is possible that it may 

not be well conditioned in some situations. To overcome this ill-conditioning case, we 

introduce a regularization term a I , where a is a very small positive number, such as 

a = Ie - 7. Therefore, (2.10) and (2.11) is modified to 

U1 =(GIG+aItGI(j1 -a j ), (2.12) 

Uz =(GIG+aItG'(jz +az)· (2.13) 

Substituting (2.12) and the above KKT conditions (2.5) into (2.3) and discarding all 

constant terms, the dual problem of (2.1) is presented as follows 

()-I riamax--a'GI ()-IG'G G'a + riG GIG G'a 2 I I )1 I )1 1 

subject to: 0 ~ a l ~ eCI (2.14) 

Similarly, substituting (2.13) and the above KKT conditions (2.6) into (2.4) and 

discarding all constant terms, the dual problem of (2.2) can be written as 

I I ( I )-1 I f' ( I )-1 I Imax - - a zG G G G a z - zG G G G a z + /z a z 
2 

subject to: 0 ~ a z ~ eCz (2.15) 

Solving the equation (2.14) and (2.15) for a j and a z' the coefficients of down- and up

bounds, i.e., [ ;]1] and [;:], can be obtained by substituting the results into the following 

formula 

[;11]= (GIGt G'(jj -al~ 

[::] =(GIGtGI(jZ +aJ 

Thus, the training procedure ofTSVR has completed and for a new data sample, TSVR 

use the average of its down- and up-bounds to evaluate its value, which is presented by 

• 
Page 114 



h(X)=X'W) +b) =k 1][:J==k 1](C'ctc'Ct~ -a l ) (2.16) 

fz(x) = xlWZ +bz = k l] [::] == k 1](C ICtc l(j2 + a2) (2.17) 

Finally, the regression estimation function is defined to be: 

I
f(x)=-(1;(x)+f2(x)) for any xER". 

2 

2.2 Kernel TSVR 

As it was stated earl ier, the extension of the above study to nonlinear regressor is 

possible by mapping the input data into a higher dimensional feature space using a kernel 

function k(.,.) and applying the linear TSVR in the feature space. Any function satisfying 

Mercer's condition (Vapnik, 2000) can be used as a kernel function. In our analysis, the 

Gaussian kernel function defined by 

k(x,y)=exp(-~I_zllx-yI12) for x,YER"
20" 

is used, where 0" > 0 is a parameter. 

In order to extend our results to nonlinear regressors, following the approach 

of Mangasarian & Musicant (2001) the nonlinear regression estimation functions are 

obtained by: 

1; (x) = kk ,A')wl + bl and fz(x) = k(x', AI)wz + bz 

where k(x' ,A')= (k(x,x 1 ), ••• ,k(x,xm )) is a row vector and k(.,.) is a kernel function. 

The twin SVR for the nonlinear case will be formulated as a pair of minimization 

problems: 

min!(y-u l -(k(A,A1)w1 +ebJ),(y-ec l -(k(A,A1)w1 +ebl))+Clel~1 
2 

subject to: y - (k(A, AI)w1 + ebJ::~ eel - ~I , 

~1 ~ 0 (2.18) 

min~(y+ec2 -(k(A,A I)w2 +ebJ)'(y-eC2 -(k(A,A1)w2 +eb2))+C2el~2 
2 

subject to: (k(A,A I)w2 +ebJ- y~ec:2 -~2 ' 

~2 ~ 0 (2.19) 
• 
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where k(A, AI) is the kernel matrix whose (i, j)'" component k(A, A' } / == k(x, ,X / ). 

Proceeding as in the linear case and replacing [A e] bymx(n+l) 

[K(A,A') e]mx(m+l) the dual problem for the nonlinear case can be written as a pair of 

minimization problems of the fonn 

min Lj(u j)== ~U;QlUl -r/u l (2.20) 
O~UI ER m 2 

and 

(2.21 )
 

where 

and G == [K(A, AI) e ],,,"(m+l) is an augmented matrix. 

Further in this case, the primal variables can be expressed as 

and 

(2.22)
 

(2.23)
 

Now using the equation (2.16) & (2.17), we get 

ft(x)==k(x',A'}w1 +bl ==[k(x',A') 1][::] 

or J; (x)== [k(x l,AI) I](G IGt GI (y -eel (2.24) - U 1 ) 

and fz(x)==k(xl,A'}wz +bZ = [k(x',A I) d[::] 
or fz(x)=[k(xt,AI) I](G 'GtGI(Y+e£Z +U Z ) (2.25) 

In this case, the regression estimation function is defined to be: 
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CHAPTER 3
 

Implicit Lagrangian Twin Support Vector Regression (LTSVR)
 
By Newton Method 

3.1 Linear LTSVR 

Twin support vector regression (TSVR) (Peng, 20] 0) was proposed as a novel 

regressor that tries to find a pair of nonparallel planes, Le., & -insensitive up- and down

bounds, by solving two related SVM-type problems. It results in a pair of small sized 

QPPs rather than a single large one as in classical SVR. It is inspired by TWSVM 

(Jayadeva et a!., 2007) wherein a pair of nonparallel functions corresponding to the &

insensitive down- and up- bounds is determined. The TSVR formulation leads to the 

solution of a pair of dual QPPs of smaller size rather than a single large one as in the 

standard SVR. This strategy makes TSVR works faster than SVR with the added 

advantage of better generalization ability over SVR (Peng, 20 10). By making a slight 

change in the formulation of TSVR to become a strongly convex optimization problem 

and employing smooth technique, a new formulation called smooth TSVR (STSVR) has 

been proposed as an unconstrained minimization problem in (Chen et a!., 20] I) and its 

solution is obtained by the well-known Newton-Armijo algorithm. For the work on the 

fonnulation of TSVR as a pair of linear programming problems, we refer the reader to 

(Zhong et aI., 2011). 

Motivated by the study on implicit Lagrangian SVM for classification problems 

suggested by Fung and Mangasarian (2003) in this work we proposed its extension on 

TSVR by formulating a pair of unconstrained minimization problems in dual variables 

whose solutions will be obtained by Newton method. 

The Twin SVR is proposed in ( Peng, 2010) for the linear problem in I-norm 

which can be formulated as follows: 

min "!'-(y - e&l - (AWl +ebJY(y - eel - (AWl +ebl))+ Clef ~l
 
2
 

subject to: y - (AWl + ebl ) ~ e&1 - ~l ' 

(3.]) 
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subject to: 

~z ~ 0 (3.2) 

where e 1 , e z 2 0 are inputs parameters; C I , C z 2 0 are regularization parameters; 

y =(Yl""'Ym)' E Rm is the output vector and A E Rrnxn is the matrix whose lh row is 

ldenoted by A, =x;, \;fi =J,o .. , m and e =(l, ...,J) E Rm
• 

Following the approach of (Ba1asundaram & Kapil, 20 J0; Mangasarian & 

Musicant, 2001; Musicant & Feinberg, 2004) where 2-norm is considered instead of 1

norm, we propose to reformulate TSVR of the following form: 

min~(Y-e&1 -(AWl +eb1))'(Y-e&j -(Awl +ebJ)+S~lt~1 
2 2 

subject to: Y - (Awl + ebJ ) ~ eel - ~l (3.3) 
and 

(3.4)
 

By introducing the Lagrange multipliers 

Uz =(U ZI , ... , Uzm )' E Rm consider the Lagrangian functions: 

L,(w"b,,~J= ~(y -e&I)' (y - ee l )- (y - eeJ' (Awl +ebJ- (AWl +eb,)' (y - ee l )+
2 

~(Awl +ebJ'(Aw] +ebJ+ C1~i~l -u;(y-(Aw j +ebl)-eel +~I] 
2 2 

(3.5) 

L2(W2,bz,~z) = k(Y + e&z Y(y + eeJ- (y + e&zY(Awz + ebz)+ l(AWz + ebzY(Aw2 +eb})+ 

~} ~~~2 -U~[(AW2 +eb})- y-ee} +~zl 
(3.6) 

Now using the property that the partial derivatives of LI and L2 with respect to primal 

variables will be zero as the optimality condition i.e 

(3.7) 
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(3.8)e1[;: ]}. 

(3.7)& (38) ~ [:} ~ [::]{(y-eC,HA eJ[;"]} 

i.e. (3.9)[::] [A eJ [;:H::J(y -eo, - u, l} 

Define the augmented matrix G == [A eL(n+l). Then the equation (3.9) will become 

(3.10)
 

Assume (G' Gt exists. Then we have 

(3.11 )
 

Finally (3.12) 

Similarly for L ~ 

~: == 0 => AI [A e] [ :: ] == AI (y + {;2e + u2) (3.13) 

(3.13)&(3.14) ~ [:} eJ[;:H:}+F.,e+u,l 

aL2 -- 0 ---". el [A e] [w2] - el (y + <' e + u )ab 
2 

- b 
2 

- "2 2 

(3.15) 

(3.14) 

Then the equation (3.15) will become 

GIG [ ::] == G' (y + {;2e + u2) (3.16) 

Assume (GIGt exists. Then we have 

[ :: ] == (G I Gt G I (y + {;2 e + u2 ) (3.17) 

Finally (3.18) 

So using the equation (3.10), (3.11), (3.17), (3.18) in (3.5) & (3.6), finally we get 

• 
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max L, (u,) = ~[(y- et:,)' (y -et:I )- (y-et:J' G(G'Gt' G' (y -t:,e)] 
U l ~o,u\ ER'" 2 

+(y- t:te)' G(G'Gt' G'u, - (y - t:,e )'u, -~u:(!-+ G(G'Gt G' JUI
2 C, 

(3.] 9) 

max L2(U 2)= ~[(y -et:J' (y -et:J-(y -et:J' G(G1Gt G' (y+ t:2e)] 
m

l/2 :2:0,U 2ER 2 

-(y+t:2e)'G(G'Gt'G1u2+(y+t:2eyuz -~U{ ~2 +G(G'Gt'G
I JU2. 

(3.20) 

and max L2 (u 2 ) will be same as the following minimization problem:max L, (u,) 

• ] '( 1 G ( I )-' I J ff )' ( )-1 ( )' }I ImIn -u] -+ G G G u1 - ty-et:\ G G G G - y-et:[ u\ (3.21 ) 
u,,,O 2 C\ 

. 1 'l( I G (G1 )-1 G' J f ( )' '( , )-1 1 ( )1 } (3.22)mIn-u2 --+ G u2-r- y+et:, G G G G + y+et:, u2 
u,;>O 2 C2 

which can be written in the following form: 

. l'Q 'mIn -U t lUI - r, u1 ' 
111 2:0 2 

(3.23)
 

where Ql = ~ +G(G1GtG', 
I 

(3.24)
 

and G = [A e] is an augmented matrix. 
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... 

Further in this case we have 

};(x)::::X'W] +b] = [x' l][~I]::::[x' 1](G1Gt'G'(y-e£,-uJ (3.25) 

1z(x)::::x'wz+bz::::[x' l][::]::::[x' l](GIGtGI(Y+e£z +uz) (3.26) 

Finally, the regression estimation function is defined to be: 

l1(x):::: -(};(x)+ 1z(x)) for any x ERn. 
2 

3.2. Non-Linear LTSVR 

In order to extend our results to nonlinear regressors, we consider the following 

kernel-generated functions: 

}; (x) :::: k(x' ,AI )wI + bl and 1z (x):::: k(x' ,A' )WZ + bz' 

where k(x', AI ):::: (k(x, Xl ), ... , k(X, x",)) is a row vector and k(.,.) is a kernel function. 

The primal TSVR in 2-norm is comprised of the following pair of constrained 

minimization problems: 

min ~(y-e£I-(k(A,A')wl +ebJ)'(y-e£, -(k(A,AI)w1 +ehJ)+ C j ~I'~l 
(w, ,h].f, )ER,'I+m 2 2 

subject to: y - (k(A, AI)w1 + ebJ~' e£l - ~p (3.27) 
and 

subjectto: (k(A,A')wz +ebZ)-y~e£2 -~2 (3.28) 

where k(A, AI) is the kernel matrix whose (i,Jt component k(A, AI}, :::: k(x;, x ).
J 

By introducing the Lagrange multipliers 

U z :::: (U2l' ...,uz",)' E R'" consider the Lagrangian functions: 

LI(Wl'bl'~]):::: l(y - e£j)' (y -e£,)- (y - e£j)' (k(A, Al }v] + eh])- (k(A,AI)w1 +ebJ 

(y - e£J +1(k(A, A' )wI + ebJ (k(A, AI )wI + eb]) 

+S~/~I - u; ~ - (k(A,At }v] +ebJ-e£, +~1] 
2 

(3.29) 
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Lz(wz,bz,~z) =~(y +et:J (y +ecJ- (y +et:2Y(k(A, AI }w2 +eb2)+ ~(k(A,A'}wz +ebJ 
2 2 

(k(A,A'}wz +eb2)+; ~~~z -u;[(k(A,A'}w2 +eb2 )- y-ec2+~2] 

(3.30) 

Following the same procedure as of the linear case and using the property that the partial 

derivatives of LI and L2 with respect to primal variables will be zero we get, 

(3.31 )
 

(3.32) 

which will be equivalent to the following minimization problem 

(3.34) 

(3.33) 

This can be written in the following simpler form: 

. I 'Q 'mln-u, ,U,-r,u,
U)~O 2 

(3.35)
 

where QI = ~ +G(G'GtG', 
I 

rl =(G(G1Gt G' -l)(y-et:,), 

Qz =: +G(G1GtG', 
2 

(3.36)
 
• 
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and G= [K(A,A') e]mx(m+l) is an augmented matrix. 

The primal variables can be expressed as : 

and 

[::] = (G'Gt G' (y + 6 ze + uz) 

Further in this case we have 

J; (x) =k(xt ,A' ~VI + bl= [k(x' ,AI) 1] [:,1] = [k(x', A') l](G'Gt G 1 (y -e61 - u )
J 

(3.37) 

/2 (x) = k(x' ,A' ~2 + bz= ~(xt ,A') 1] [::] = [k(x', A') I](G'Gt G' (y +e62+uJ 

(3.38) 

Finally, the regression estimation function is defined to be: 

Applying the Karush-Kuhn-Tucker (KKT) necessary and sufficient optimal 

condition for the dual TSVR will lead to the following pair of classical complementarity 

problems (Mangasarian, 1994): 

O~UI -l(Qlul-rl)~O and 0~U2 -l(Qzu2 -r2)~O. (3.39) 

However, using the well-known identity between two vectors U , v: 

o~ U -l v ~ 0 if and only if u = (u - av). for any a > 0 ,
 

the solution of the following equivalent pair of problems will be considered (Mangasarian
 

& Musicant, 2001): for any a j ,a2 > 0,
 

QjUj -rj = ((QI U\ -r\)-a1u1t and Q2U2 -rz = ((Qzuz -r2)-aZuZ)+' (3.40) 

It turns out that (3.40) become necessary and sufficient conditions to be satisfied by the 

unconstrained minimum of the following pair of implicit Lagrangian(Mangasarian & 

Solodov, 1993) associated to the pair of dual problems (3.35): for any a l .a2 > 0, 
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(3.41)
 

and 

3.3. Newton Method 

In this section we solve the pair of dual QPPs defined by (3.41) and (3.42) using 

the well-known Newton method (Fung & Mangasarian, 2003). 

For k = 1,2, the basic Newton's step of the iterative algorithm is in determining the 

Iunknown U +
1 at the (i + It iterative using the current i 1h iterative u' using 

Vi =0,1,2.... 

Now, for u E R m one can obtain the gradient of Lk (u) as : 

Note that for k = 1,2, the gradient VL k (u) is not differentiable and therefore the Hessian 

matrix of second order partial derivatives of L k (u) is not defined in the usual sense. 

However, a generalized Hessian of Lk (u) in the sense of (Hiriart-Urruty et aI., 1984) 

R mexists and is given by: for all u E , 

where diag(.) is a diagonal matrix oforder m. 

E RtrlXmUsing the property that the matrix Qk defined by (3.36) is positive-definite 

and choosing the parameter a k satisfying the condition (Fung & Mangasarian, 2003): 

a k > IIQk II where k = 1,2, the Newton's iterative step can be rewritten in the following 

simpler form: for i = 0,1,2, ... 

1+1 _ '-8h ( I)-lh ( i)U -U kU kU, (3.43) 

wherein for any vector U E R m 
, 

is a vector in R m and 8hk (u) is a matrix of order m defined by: 
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By defining the following diagonal matrices of order m: 

where k == 1,2, we can determine 

Now, we state the Newton iterative Algorithm with Armijo stepsize , 
(Balasundaram & Rampal, 20 I0; Fung & Mangasarian, 2003; Lee et al., 2005) for J 

1 
solving each of the pair of unconstrained minimization problems defined by (3.41) & 

(3.42). 

Newton Algorithm with Armijo stepsize for solving (3.41) & (3.42) with k =1,2. 

Choose any intial guess UO E Rm 

(i) Stop the iteration if hk (u' )=0 

Else 

Determine the direction vector d' E R m as the solution of the following linear 

system of equation in m variables 

8hk (u'}r =-hk (u') 
(ii) Armijo stepsize: Define 

Lk (u i )_ Lk (u' + Aidi)~ -oAjVLk (u')' d i 

and 0 E (O'l} 
With the assumption that: for k =1,2, a k > IIQk II, the finite termination of the above 

Newton algorithm with Armijo step size will follow as a simple extension of the result of 

(Fung & Mangasarian, 2003). 

Note that the matrix G'G is positive semi-definite, It is possible that in certain 

applications the matrix may be ill-conditioned and therefore its inverse may not exist. In 

such cases, however, by introducing regularization term oj the modified matrix
• 

(oj + GIG) will be used where 0 is chosen to be a very small positive number. 
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___._4 

CHAPTER 4
 

Experimental Results
 

4.1 Introduction 

To demonstrate the performance of the proposed method we compare it with 

TSVR and the SVR on several synthetic and real-world benchmark data sets. In Table I, 

the list of functions considered for generating synthetic datasets were summarized. Also 

we carried out experiments on several real-world datasets- Box Jenkins gas furnace data; 

Google, IBM, Intel, RedHat, MS stock and S&P 500 financial time series data; Sunspot 

and SantafeA time series forecasting data; the data generated by the Mackey glass and 

Lorenz differential equations; and Machine CPU, Bodyfat, Concrete compression 

strength (CS), Abalone and Kin-fh data. 

All the regression algorithms are implemented in MATLAB R2009a environment 

on Windows XP OS with 2.8 GHz Intel P4 processor having 1.99 GB RAM. Although 

Newton-Armijo algorithm converges globally, all the experiments were performed 

without Armijo stepsize. TSVR was implemented using optimization tool box of 

MATLAB and for the implementation of standard SVR, however, LIBSVM (Chang and 

Lin, 2001) was used. for determining the optimal values of the regularization and kernel 

parameters, ten fold crossvalidation procedure is adopted in all our experiments. Gaussian 

kernel k(x,y) =exp(- 2~211x - y112) is used to construct nonlinear regressor. The value of 

c was taken to be 0.0 I. The 2-norm root mean square error (RMSE) was selected as the 

measure ofprediction performance and it was calculated using the following formula 

where P is the number of test samples and, Yi and y, are the observed and their 

corresponding predicted values respectively. Since more parameters are to be selected in 

the proposed implicit LTSVR and TSVR in comparison to SVR, which will result in 

slower model selection speed, in all experiments we set c\ :::: C 2 :::: 0.01 and C1 :::: C2 • For 

SVR, we assumed [;:::: 0.01. The optimal parameter values were determined by 

performing lO-fold cross validation methodology. In fact, for each dataset, the best 
• 
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prediction performance on the training set was obtained by varying the regularization 

parameter C1 =C2 =Cand kernel parameter (j from the sets ~0-3,1O-2, ...,103}and 

{2 -10 ,r9 
, •••,2 10 

} respectively and by choosing these optimal parameter values for training, 

the RMSE on the test set was calculated. 

4.2. Experiments on synthetic data sets 

In order to investigate the performance of the proposed implicit LTSVR on 

synthetic datasets, tabulated in Table 1, first we consider the following function for 

approximation (Li et ai, 2011): 

4
y(x) = -I1_- + cos(2x) + sin(3x), for x E [-10,10]. 

x +2 

In the experiments, 1200 samples are generated according to the functions listed 

in Table 1. In which we use 200 samples for the training and 1000 samples for testing. 

The constraints on the attributes are also shown in the Table I. Then, the observed values 

for the training data were polluted by adding two different kinds of noises namely: 

uniform noise over the interval [- 0.2,0.2] and Gaussian noise with mean zero and 

standard deviation 0.2. Test data was assumed to be noise-free. The approxiamtion 

functions obtained by the standard SVR, TSVR and the implcit LTSVR for uniform and 

Gaussian additive noises are illustrated in Fig.6a and Fig.6b respectively along with the 

exact function. The noisy training examples are indicated by the symbol '0'. The optimal 

parameter values and the final results obtained on the set were summarized in Table 2. 

To further analyze the performance of implicit LTSVR, another 5 synthetic 

datasets of 1200 samples each were generated using functions whose definitions are given 

in Table 1. Like in previous case, 200 samples were used for training and 1000 samples 

for testing. The observed value y, for the traning example x, was obtained as follows: 

y; = f(x,)+ r;i , r;, - U[- 0.2,0.2] 
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where U[a, b] means the unifonn distribution over the interval spanned by a and band 

N(P, (J2 ) represents a Nonnal distribution with means f.i and variance (J2 • By the tuning 

procedure explained above, the optimal parameter values were determined and using 

these values the RMSE on the test set was calculated. The results were summarized in 

Table 2. 

For function 2 defined by 

4
Y(X)=-II-+cOS(2x1 for x E [-10,10]. 

x +2 

the approximation functions obtained by the standard SVR, TSVR and the implicit 

LTSVR for uniform and Gaussian additive noises are illustrated in Fig. 7a and Fig. 7b 

respectively. 
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Name Function Definition Domain of Definition 

Function I ~114 +cos(2x)+ sin(3x) X E [-10,10]
X +2 

4 XE[-lO,lO]Function 2 ~I1-+ cos(2x)
X +2 

Function 3 0.79 + 1.27x j x2 + 1.56x j x4 + 3.42x2 Xs + 2.06x3 X 4 X S Xl E [-2,2],i E {I ,2,3,4,5} 

1+ sin(2x] + 3x2 ) 

Function 4 3.5 +sin(xj -x2 ) 

1.3356(e 3
(X,-OS) sin(4;r(x2 - 0.9)2) 

Function 5 
+ 1.5(1 - Xl) + e(2x,-I) sin(3;r(x] - 0.6/)) 

40e8((x,-OS)' +(x, -OS)'} 

Function 6 
81(x,-0.2)'+(x,-0.7)'} + 81(x,-07)'+(x,-02)'1e - e -

Table!: Functions used for generating synthetic datasets. 

Uniformly distributed noises Gaussian noises 

Datasets SVR TSVR Our Method SVR TSVR Our Method 

(Train size, Test size) (C,o) (Cj=Cz,a) (C1=CZ,a) (C, a) (C}=Cz.a) (C,=Cz,cr) 

Function I 0.07165 0.04892 0.04626 0.1021 0.07694 0.07085 

(200xl, IOOOx I) (101\3.2'J) (101\0,21\0) (101\1,21\0) (10"'3.21\0) (101\2,21\0) (10"2,21\0) 

Function2 0.06283 0.04631 0.04634 0.13271 0.08354 0.08337 

(200xl,1000xl) (101\3,21\ I) (101\2,21\0) (10"2,21\0) (101\0,21\0) (101\- 1,2"0) (10"-3,21\0) 

function3 0.04689 0.05968 0.05736 0.05289 0.07818 0.06996 

(200x5, I000x5) (10"3,21\ I) (l01\3,21\1) (101\2,21\1) (101\3,21\2) (101\],21\1) (10"1,21\1) 

function4 0.0216 0.01206 0.01107 0.05202 0.03384 0.03271 

(200x2.1000x2) (10"3.21\0) (101\ 1,21\0) (l01\2,21\0) (10"3,21\ I) (10"-1,21\0) (10"0,21\0) 

function5 0.06159 0.02062 0.02068 0.07926 0.0472] 0.04916 

(200x2,1000x2) (101\1,21\-3) (101\2,2"-3) (101\3,21\-3) (10"0,21\-4) (101\0,2"-2) (l01\0,2"-2) 

function6 0.09457 0.0228 0.02243 0.03978 0.04168 0.04225 

(200x2, 1000x2) ( 101\3,21\-2) (101\1,2"-1) (101\3,21\-1 ) (101\3,21\-1) (101\1,21\0) (101\1,21\0) 
Table 2: Performance comparison of our method with SVR and TSVR on synthetic dataset~ for uniform and Gaussian 

additive noises. RMSE was used for comparison. Gaussian kernel was employed. Bold type shows the best 
result. 
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b). Gaussian noises with mean zero and standard deviation 0.2. 

Figure 6: Results of approximation of -I_14~ + cos( 2x) + sin( 3x) with our proposed method, SVR and
 
x + 2
 

TSVR on noisy input samples. Gaussian kernel was employed. 
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bl. Gaussian noises with mean zero and standard deviation 0.2. 

Figure 7: Results of approximation of _14_ + eos( 2x) with our proposed method, SVR and' rSVR on noisy input 
. Ix + 2 

samples. Gaus6ian kernel was employed. 
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4.3. Experiments on real-world benchmark datasets 

In order to further experiment the effectiveness of method, we compare the 

proposed method with TSVR, and SVR on eighteen real-world data sets. As the first real

world example, we considered the Box and Jenkins gas furnace data (Box and Jenkins, 

1976). It consists of 296 input-output pairs of points of the form (u{t \ y{t)) where u{t) is 

input gas flow rate whose output y{t) is the CO2 concentration from the gas furnace. The 

output y{t) is predicted based on 6 attributes taken to be of the form 

x{t) =(y{t -1), y{t - 2), y{t - 3), u{t -1), u{t - 2), u{t - 3)), (Wang et aI., 2006). This makes 

the total number of samples become 293 where each sample is of the form (x{t), y{t)). 

The even samples were selected for training whereas the odd samples were taken for 

testing. The performance of the proposed method on the training and test sets were shown 

in Fig.8a and Fig.8b respectively. 

As examples of financial time series, we considered the datasets of Google, IBM, 

Intel, RedHat, MS stock and S&P 500. They were taken from the website: 

http://dailyfinance.com. In all the examples, 755 closing prices starting from 01-01-2006 

to 31-12-2008 were taken. Since we used five previous values to predict the current value, 

750 samples in total were obtained. Among them the first 150 samples were used for 

training and the remaining for testing. 

In addition, we compared implicit LTSVR with the standard SVR and TSVR on 

few more well-known time series datasets. In all of them considered, five previous values 

were used to predict the current value. 

The Sunspot dataset is taken from http://www.bme.ogi.edu/~ericwan/data.htmI.1t 

consists of 295 yearly readings from the year 1700 to 1994. As five previous values are 

used to predict the current value, 290 samples were obtained. We used 100 samples for 

training and the remaining samples for testing. The SantaFe-A time series dataset is taken 

from http://www-psych.stanford.edu/~andreaslTime-Series/SantaFe.html. It consists of 

1000 values from which we get 995 samples in total. Among them 300 were chosen for 

training and the remaining for testing. 

We performed our experiments on two time series generated by the Mackey-Glass 

time delay differential equation (Mukherjee et aI, 1997) given by 
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dx(t) _ -b () x(t - r) 
- x t + a ( )10 ' 

dt I + x t - r 

where the parameters a, b and time delay r were taken as: a =O.2,b = 0.1 and 

r = 17,30. They were obtained from http://www.bme.ogi.edu/~ericwan/data.html. The 

first 400 number of samples were considered for training and the remaining 1095 for 

testing. In this work, we denote the time series corresponding to r = 17 and r = 30 by 

MG and MG respectively.I7 30 

Consider the Lorenz differential equation (Casdagli 1989) given by 

x = p(y - x), y = rx - y - xz and z = xy - bz, 

where p,r and b are input parameters. By taking diffential sampling rates as: r =0.05 

and r =0.2 and the parameter values as p =10. r =28, b =8/3 the time series datasets 

Lorenzo 05 and Lorenz02 were generated. They consist of 30000 number of values. To 

avoid the initial transients the first 1000 of them were discarded. The next 3000 of them 

were taken for our experiment. With five previous values being used to predict the current 

value, we get 2995 number of samples. Among them the first 400 samples were 

considered for training and the remaining samples for testing. 

Finally, five commonly used bench mark datasets- Machine CPU, Bodyfat, 

concrete CS, Abalone and Kin-fh- were considered in this study for testing the 

performance of the implicit LTSVR. 

The Machine CPU dataset consisting of 209 samples having 7 continuous features 

is taken from UCI repository (Murphy and Aha, 1992). The first 100 samples were 

chosen for training and the remaining for testing. Bodyfat is a well-known dataset 

available in the Statlib collection: http://lib.stst.cmu.edu/datasets. It consists of 252 

samples having from the body density values. The first 150 samples were taken for 

training and the remaining for testing. 

In all the previos real-world examples, the original data is normalized with mean 

and satndard deviation equal to 0 and I respectively. However, in the following three 

datasets, the original data is normalized in the following manner: 
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where Xii is the (i,j)-th element of the input matrix A, Xu is its corresponding normalized 

value and x7" = min~~l (xu) and x~ax == max~~l (xu) denote the minimum and maximum 

values, respectively, ofthej-th feature of A. 

The concrete CS dataset (Murphy and Aha, 1992) contains 1030 samples having 8 

features. The first 700 samples were used for training and the remaining for testing. The 

goal of Abalone dataset (Murphy and Aha, 1992) is the prediction of the ages of the 

abalones using 8 physical measurements as their features. In our experiment we have 

chosen 1000 samples for training and the remaining 3177 samples for testing. The Kin-th 

dataset (DELVE, 2005) represents a realistic simulation of the forward dynamics of eight 

link all revolute robot arm. Its goal is the prediction of the end-effector from a target with 

32 features. The first 1000 samples were chosen for training and the remaining 7192 

samples for testing. 

The tenfold numerical results of the real-world datasets by the standard SVR, 

TSVR and the implicit LTSVR along with number of training and test samples chosen, 

the number of attributes and the parameter values were summarized in Table 3. From 

Table 2 and Table 3, it can be observed that implicit LTSVR is an effective and powerful 

tool for solving regression problems. 

• 
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Datasets SVR TSVR Our Method 

(Train size, Test size) ((,0) ((1=(2,0) ((,=(2,0) 

Gas furnace 0.08614 0.08423 0.08422 

(147X6,146X6) (10"3,2"-9) (10"3,2"2) (10"3,2"2) 

Google 0.1381 0.1359 0.1378 

(150X5,600X5) (10"1,2"4) (10"-1,2"4) (10"-1,2"4) 

IBM 0.1494 0.1364 0.1362 

(150X5,600X5) (10"1,2"3) (10"-2,2"3) (10"-3,2"3 ) 

Intel 0.1541 0.1566 0.1506 

(150X5,600X5) (10"3,2"6) (10"0,2"4) (10"1,2"4) 

Red Hat 0.2031 0.17911 0.17907 

(150X5,600XS) (10"1,2"4) (10"0,2"4) (10"0,2"4) 

MS stock 0.2180 0.2183 0.2166 

(150X5,600X5) (10"1,2"4) (10"0,2"3) (10"·1,2"3) 

S&P500 0.1757 0.2606 0.2607 

(lS0X5,600X5) (10"3,2"5) (10"-3,2"3) (10"-3,2"3) 

Sunspots 0.3778 0.3742 0.3782 

(100X5,190X5) (10"1,2"2) (10"0,2"3) (10"0,2"3) 

SantafeA 0.1751 0.1802 0.1905 

(300X5,695X5) (10"1,2"1) (10"0,2"1) (10"3,2"0) 

MG17 0.0123 0.0151 0.0149 

(400X5,1095X5) (10"3,2"2) (10"·1,2"0) (10"3,2"0) 

MG30 0.1006 0.1025 0.1030 

(400X5, 1095X5) (10"1,2"1) (10"-2,2"0) (10"-3,2"0) 

Lorenzo.os 0.0152 0.02202 0.02189 

(400X5,2595X5) (10"3,2"5) (10"2,2"1) (10"3,2"1) 

Lorenzo.2 0.0234 0.0858 0.0808 

(400X5,2595X5) (10"3,2"6) (10"-1,2"1) (10"1,2"1) 

Machine CPU 0.1215 0.1537 0.1533 

(100X7,109X7) (10"3,2"5) (10"0,2"3) (10"3,2"3) 

Bodyfat 0.0594 0.0787 0.1057 

(150X14,102X14) (10"3,2"8) (10"0,2"5) (10"-1,2"S) 

Concrete CS 0.1770 0.16061 0.16062 

(700X8,330X8) (10"1,2"-1) (10"-2,2"1) (10"-3,2"1) 

Abalone 0.2097 0.1189 0.1174 

(1000X8,3177X8) (10"1,2"0) (1O"-1,2"1) (10"0,2"1) 

Kin-fh 0.0960 0.09523 0.09522 

(1000X32,7192X32) (1O"-1,2"1) (10"-3,2"3) (10"-3,2"3) 
Table 3: Perfonnance comparison of our proposed method with SVR and TSVR on real world datasets. RMSE was 

used for comparison. Gaussian kernel was employed. Bold type shows the best result. 
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Figure 8: Results of comparison for gas furnace data of Box-Jenkins.Gaussian kernel was used.
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Conclusion and Future Work 

A new implicit Lagrangian twin SVR in its dual was proposed as a pair of 

unconstrained minimization problems and their solutions were obtained by Newton 

method. The algorithm is very simple to implement and no specialized optimization 

software is required. Numerical experiments were performed on a number of interesting 

synthetic and real-world datasets. Comparision of results with SVR and twin SVR clearly 

demonstrates the effectiveness and suitability of the proposed method. As an extension of 

the proposed work, the study of the smoothing technique for the implicit twin SVR will 

be explored. 
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Appendix 

MATLAB code for implicit LTSVR using Newton's method 

'[clear; 
}~ 1 c; 

function [RMSE,final,iterl,iter2] = NTSVM_nonlinear ... 
(Data, Data test,mew,nu,epsilon,precision) 

% mew is kernel pararrleter. 

[m,n]=size(DataJ;
 
a=Data(:,l:n-I); input data
 
[input_row,input col]=size(a);
 
yl=Data (:, n) ;
 

alphal=lOOOOO.;
 
alpha2=100000.;
 

% kerr1el. fu~ J.0~
 

mewl=1/(2*mew*mew) ;
 
K=zeros(input_row,input row);
 
for i=l:input row
 

for	 j=l:input_row 
nom = norm( [a(i,:) 1] - [a(j,:) 1] ); 
K(i,j) = exp( (-1/(2*mew*mew)) * nom * nom); 

end
 
end
 

iterl=O;
 
ul=zeros(input row,l);
 
el=ones(input row,l);
 
hl=[K ell;
 
Ql=speye(input row)/nu + hl*inv( hl'*hl+O.OOOI* ...
 

speye(input_row+l))*hl'; 
rl=(hl*inv(hJ '*hl + O.OOOl*speye(input row+l) )*hl'- ... 

speye(input row))*(yl-epsilon*el);
 
hul=-max(( (QI*ul-rl) - alphal*ul) (0)+ Ql*ul-rl;
 
while norm(hul) > precision && iterl < 100
 

iterl=iterl+l; 
starl=sign(max(((Ql-alphal*eye(input row))*ul

rl) , 0) ) ; 
dhul=sparse((eye(input_row)-diag(starl))*QI ... 

+ alphal*diag(starl)); 
deltal=dhul\hul; 
unewl=ul-deltal; 
ul=unewl; 
hul=-max(((Ql*ul-rl)-alphal*ul) ,0)+Ql*ul-r1i 

end 
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iter2=0;
 
u2=zeros(input row,l);
 
e2=ones(input row,l);
 
h2=[K e2];
 
y2=yl;
 
Q2=speye(input row)/nu + h2*inv(h2'*h2 + 0.0001* ...
 

speye(input_row+l))*h2'; 
r2=(-h2*inv(h2'*h2 + 0.0001*speye(input_row+l))*h2' ... 

+ speye(input row))*(y2+epsilon*e2);
 
hu2=-max( ((Q2*u2-r2) - alpha2*u2),0)+ Q2*u2-r2;
 
while norm(hu2) > precision && iter2 < 100
 

iter2=iter2+l 
star2=sign(max(( (Q2-alpha2*eye(input row) )*u2

r2),0)); 
dhu2=sparse((eye(input row)-diag(star2) )*Q2 

+ alpha2*diag(star2)); 
delta2=dhu2\hu2; 
unew2=u2-delta2; 
u2=unew2; 
hu2=-max( ((Q2*u2-r2)-alpha2*u2),0)+Q2*u2-r2; 

end 
.- Testirlg part is dOf12 ~lere 

p_test=Data_test(:,l:n-l); 
[no_test,no_col_test]=size(p_test) ; 
y_test=Data_test(:,n); % Actual v value 
e = ones(no_test,l); 

KernE:"l fUI1C'.t.l<)n
 

K_test=zeros(no test,input row);
 
for i=l:no test
 

K_test(i) = 0.; 
for j=l:input row 

nom = norm( [p_test (i, :) 1] - [a (j, :) 1] ); 
K_test(i,j) = exp( (-1/(2*mew*mew)) * nom * nom ); 

end
 
end
 

Fl [K test e]*inv(hl'*hl + O.OOOl*speye(input row+l)) ... 
*hl'*(yl-el*epsilon - ul); 

F2 [K_test e]*inv(h2'*h2 + O.OOOl*speye(input row+l)) ... 
*h2'*(y2+e2*epsilon + u2); 

final=(Fl+F2l/2; % final regressor 

~:; C:j lcul~a. t t~l'tc: Ro:~)t r<~?arl ~:;;=1u.arl:: c r ~(jr (I?JvlSr;.-;) 

RMSE = norm(y_test-final)/sqrt(no test); 

• 
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