
ISSUES AND CHALLENGES IN

COMPUTATIONAL PROCESSING OF
-VYANJANA SANDHI

Dissertation submitted to Jawaharlal Nehru University

In partial fulfilment of the requirements

For the award of the

Degree of

MASTE~ OF PHILOSOPHY

By

DIWAKAR MISHRA

Special Centre for Sanskrit Studies

]awaharlal Nehru University

New Delhi, INDIA

2009

~ ti.fCli C1 Jrtlt lt C1 ~
"ial~<tti'tlti't ~ ~afcl<:~ltiilt

c:tt Rcr~ - noo~"

SPECIAL CENTRE FOR SANSKRIT STUDIES
JA WAHARLAL NEHRU UNIVERSITY

NEW DELHI- 110067

July 141
h, 2009

The dissertation entitled 'Issues and Challenges in Computational Processing

of Vyafijana Sandhi' submitted by Diwakar Mishra to Special Centre for

Sanskrit Studies, Jawaharlal Nehru University, New Delhi- 110067 for the

award of degree of Master of Philosophy is an original research work and has

not been submitted so far, in part or full, for any other degree or diploma in an0

University. This may be placed before the examiners for evaluation.

Prof. Sankar Basu

(Chairperson)

Dr. Girish Nath Jha

(Supervisor)
OR. GtRISH NATH JHA
~=S::nsk~tSt~dies
~ar\al Nehru umvers1ty
New Deihl • 110067 -

~ 'H.fq;(1 ~ ~

al c:t I ~'{(iii (i1 ~ fc.il c:t Rl CUI (i'lll

~ R ()'('1"1 - no o ~"'

SPECIAL CENTRE FOR SANSKRIT STUDIES
JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI- 110067

I declare that the dissertation entitled 'Issues and Challenges in Computational

Processing of Vyafijana Sandhi' submitted by me for the award of degree of

Master of Philosophy is an original research work and has not been previously

submitted for any other degree or diploma in any other institution/University.

(Diwakar Mishra)

With depth of heart, I acknowledge my guru, my teacher, my guide Dr. Girish

Nath Jha, who filled in me the competence of research, understanding of this

technical subject and skill of language programming, who always guided me in

academic and non academic matters in any circumstances. He has always paid

sincere attention on us students and our work and gave time for that. He always

encouraged us to proceed higher and higher in study and excellence.

After that I acknowledge for their cooperation, teachers of our centre, Prof

Shashi Prabha Kumar, Dr. Rajneesh Kumar Mishra, Dr. Hari Ram Mishra, Dr.

Santosh Kumar Shukla and Dr. Ram Nath Jha. They gave me time and attention

whenever I approached them. They provided me valuable suggestions and

criticism which have been useful in improving my quality of research. I am also

grateful to them for they leached me in M.A. and developed good understanding

of different desciplines of Sanskrit. I also acknowledge Chairperson Prof Sankar

Basu for his cooperation and paying attention on our work. I also acknowledge

office staff of the centre for their cooperation and help on various occasions.

My family's continuous support and cooperation has a great role in completing

the research work in this way.

I am thankful to the organizers of Sanskrit Computational Linguistics Symposia,

high standard papers of which helped me very much by providing quality

material for research. I also thank the organizers of AICL who provide us chance

to interact with great linguists.

I am very thankful to University Grants Commission for providing me fellowship

which provided me necessary financial help.

Here I mention those whom I never can thank for what they have done for me.

First of them is friend Surjit, who has always been with me in hot or cold days.

Then I mention the sincere support of my other classmates - Neha, Debashis,

Puran, Mohan, Shashikant, Sureswar, Sanatan, Ravish, Prachi and other former

classmates who left.

I acknowledge the contribution of my seniors Manji didi, Subash bhaiya,

Diwakar bhaiya, Sachin ji, Muktanand ji, Kuldip ji, Surjya Kamal bhaiya, Renu

didi and others. Among juniors, I would like to remember Alok, Ravi, Mukesh,

Mamta, who always have been prepared for any help. I also remember Pratima,

Rajnish, Baldev, Vishvesh, Jay, Devalina and Priyanka for encouraging and

supporting me. Again I should never forget those, who are more like friends than

junior students, and have always stood with me, Archana, Shashi, Nripendra.

I like to thank Jawaharlal Nehru University for providing such academic and

intellectual platform for me. I remember one, who should have been remembered

first, always with me ...

Diwakar Mishra

CONTENTS

Contents

Page No

* Acknowledgement

* Contents i

* Transliteration key used in the dissertation iii

* Introduction 1-2
Chapter -1 SANSKRIT MORPHOPHONEMICS: 3-30

A COMPUTATIONAL PERSPECTIVE
1.1 Introduction 3
1.2 Morphophonemics 3
1.3 Morphology 4
1.3.1 Words 4
1.3.2 Means of Knowledge ofWords 6
1.3.3 Concepts of Morphology 7

Simple and Complex Words/Morphemes 7
Morphemes 8
Parts of Speech 9
Neologism 10

1.3.4 Inflectional and Derivational Morphology 12
1.3.5 Problems in Morphological Analysis 12

Productivity 13
False Analysis 13
Bound Base Morphemes 13

1.4 Phonology 13
1.4.1 Distinct Features of Sounds 14
1.5 Morphophonemics: Computational Perspective 15
1.5.1 System of PaQini: A Model 16

Method of Analysis in A~fiidhyiiyf 16
Technical Devices of PaQini 19

1.5.2 Problems in Computing PaQini 20
1.5.3 Challenges in Morphophonemic Processing 23
1.6 A Survey of Research 25

1.6.1 Applied Research on Sandhi Analysis 25

1.6.2 Theoretical Researches in PaQinian Morphophonemics 27
1.6.3 Research on Formalizing of System of PaQini 29
Chapter- 2 THE SANDHI SYSTEM OF PANINI 31-54
2.1 Introduction 31
2.2 Sandhi in Sanskrit 31
2.3 Distribution of Sandhi Rules 32
2.4 Sandhi Rules of Sanskrit 33
2.4.1 Vowel Sandhi Rules 34
2.4.2 Consonant Sandhi Rules 40
2.4.3 Prak!tibhava Rules 48
2.4.4 Visarga Sandhi Rules 49
2.4.5 Svadi Sandhi Rules 53

Chapter- 3 COMPUTATIONAL PROCESSING OF SANDID: ISSUES 55-77
AND CHALLENGES

3.1 Introduction 55
3.2 Complexity of Sanskrit Sandhi 55
3.2.1 Infinitely Long String 55
3.2.2 Very Small Size of Words 56
3.2.3 Multiple Combinations Leading to one Result 57
3.2.4 Simple Concatenation of Sounds 57
3.2.5 Devanagari Unicode is not Phonemic 57
3.2.6 Inflections Within the Sandhi String 58
3.2.7 Varying Size of Affixation 58
3.2.8 Validation of Undesired Segments 59
3.2.9 Many Loops Causing Over-Generation 59
3.2.10 Convention of Continuous (Sarphita) Writing 59
3.3 Basic Algorithm of Sandhi Processing 60
3.4 Challenges and Efforts to Meet them 62
3.4.1 Series of More Than one Rule Applied at one Point 63
3.4.2 Over-Generation Necessary not to Miss Desired Result 63
3.4.3 Deficiencies in Rule Writing System 63
3.4.4 Horizontal vs. Vertical Processing 64
3.4.5 Covering all Possible Segmentations 65
3.4.6 Screening of Invalid and Undesired Segmentations 67
3.4.7 Difference in Approach of Human and Machine 68
3.4.8 Validation of Complex Words 68
3.5 Suggested Algorithm for Sandhi Processing 69
3.5.1 Macro Algorithm for Sandhi Processing 70

Pre-processing 70
Prepare each word for sandhi analysis 70
Applying the rules 71
Screening or validation of segmentations · 72
Statistical calculation for screening 73

3.5.2 Micro Algorithm for Sandhi Analysis 73
3.5.3 Illustration of a Vyafi.jana Sandhi Rule 74
3.6 Research Methodology of The Current Research 76
Chapter- 4 SANDHI ANALYZER SYSTEM DESCRIPTION 78-93
4.1 Introduction 78
4.2 Data Design 78
4.2.1 Example-Base of The System 79
4.2.2 Format of Rules 79
4.2.3 Customizing 'MWSDD' 80
4.2.4 Data Files of the Inherited System 81
4.3 System Modules 82
4.3.1 Front-End 82
4.3.2 Core Program Structure 84
4.4 Introduction of The System 91
4.4.1 How to Use the System 91
* Conclusion 94-95
* Appendices 96-113
* Bibliography 114-122

li

Transliteration key used in the dissertation

31 a ~ = ~h

3lT = a ur = I)
'

~ = ({ =

t = I ~ = th

'3" u ~ = d

"3> = ii q = dh
'

~ = r ~ = n

?It = f 1f = p
'

~ = "Ql = ph
'

1J: = e ~ = b

11: ai 'lt bh

3lT = 0 l=(= m

a1t au <{ y

Cf k ~ = r

<Q kh ~ '

~ g q
'

= v

'{ = gh ~ = s

~ = il ~ = ~

~ c ~ s

~ ch -;r h <{

~ P{{ = k~

~ jh '{ tr

-q ii ~ jfi

z s
'

0 !h ·. (Anusvara) rp

~ d : (visarga) I)

iii

INTRODUCTION

INTRODUCTION

Sandhi is an important aspect of any language because every language consists of vocal

sounds and those sounds are prone to change according to the environment and context. The

case of Sanskrit is somewhat special in this aspect. There are many reasons which make

Sanskrit sandhi more complex. There is a famous sloka related to sandhi use-

saqzhitaikapade nityii nityii dhiitiipasargayo!t I

nityii samiise viikye tu vtvalqiimapek~ate II

Sound changes according to rules are compulsory in within words but optional between

words. The tendency of Sanskrit language users has been to take recourse to sandhi liberally

between words where it is supposed to be optional. Thus theoretically the continuous sound

sequence in Sanskrit can be infinitely long, though not practically. Some Sanskrit scholars

have shown their excellence in writing very long words.

Seeing this important place of sandhi in Sanskrit, no complete language analysis system for

Sanskrit can be thought of. Also it is the toughest part of analysis system in the sub-sentential

category. Every morphological analyzer requires words as input to analyze, but there is no

word boundary marker in continuous string. Before morphological analysis, the text needs to

split sandhi and identify each and every distinct word. Thus sandhi analyzer needs to

recognize all meaningful words. The task becomes more difficult when word needs to be

identified not by lexical item but by its structure.

The present research aims at exploring the issues which arise in computational processing of

sandhi and solutions thereof. Though the most of the issues and challenges are common to all

types of sandhi processing, this research has special focus on vyaiijana sandhi. To closely

explore these issues and challenges, a small vymljana sandhi processing system has been

developed which has been integrated with the previously developed svara sandhi system.

This dissertation as the part of M. Phil. research is divided into four chapters. First chapter is

titled Sanskrit Morphonemics: a computational perspective" discusses the concepts of

morphophonemics, morphology, and phonology and general problems related to these. These

1

concepts are more general and less Sanskrit specific. Then there is discussion of morphology

from computational perspective. After that there is discussion about the formal structure of

Pa~inian system and study of it from formal and technical perspectives. There are discussed

problems in computing Pa~ini in general and sandhi in particular. In the end, there is a survey

of applied research and development in sandhi analysis in particular, Sanskrit language

technology in general and theoretical research of formalization of Pa~ini.

Chapter two is titled Sandhi System of Piif}ini. First there is the general introduction of

Sanskrit sandhi from the point of view of generative linguistics. The Paninian grammar

formalism of Sandhi has also been presented. Finally the chapter presents a phonological

representation of Paninian sandhi rules in the form phonological rule writing. After rules in

that notation, there is simple explanation of rules in prose.

Third chapter is titled Computational Processing of Sandhi: Issues and Challenges. First of

all, the chapter discusses the complexity of Sanskrit sandhi and what are the reasons which

make it so complex. After that the work of Sachin (2007) has been described. Then the

challenges which come in computational processing of sandhi have been discussed. In the

end, an algorithm and system design is suggested to overcome these challenges.

Fourth chapter titled Sandhi analyzer system description illustrates the system which is

developed as partial fulfilment of the research and to explore the issues closely. First the data

design is explained with sample. Then the system architecture and design is explained with

the sample code of JSP, HTML and Java. Finally, the introduction of implemented system is

given with development information and screenshots.

2

CHAPTER ONE

SANSKRIT MORPHOPHONEMICS:

A COMPUTATIONAL PERSPECTIVE

Chapter one

SANSKRIT MORPHOPHONEMICS:

A COMPUTATIONAL PERSPECTIVE

1.1 INTRODUCTION

This chapter presents an overview of Sanskrit morphophonemics, morphology, phonology

and morphophonemics in computational perspective. A survey of research in Sanskrit

morphophonemics and phonology. and formalization of system of PaQini has been given

followed by current R & D activities in the field of Language Technology for Indian

languages. The survey gives special emphasis to the various projects sponsored by Indian

government's Technology Development for Indian Languages (TDIL) initiative which started

in 1991-92.

1.2 MORPHOPHONEMICS

Morphophonemics is the study of sound changes and functions in the environment of various

word operations. This subfield involves two levels of linguistic study: study of word functions

(Morphology) and the study of sound change (Phonology). The sound change due to word

operations cannot be completely kept in morphology or in only phonology. The sound change

in this process is not independent of words. The other name of morphophonemics is sandhi.

Almost all kinds of morphology involve sound changes, it may be generation of forms or

phrases, or it may be deriving new words from already existing words. Sometimes the sound

change is so minute that it is ignored, but most of the times, the sound change is so significant

that it appears clearly. In some languages, where the written form of language is dominant,

many sound changes are not easily perceived by the speakers. But where the main form of the

language is spoken, and writing system follows the speech, such as Sanskrit, the sound

changes are easily apparent to common speakers of the language. That is why the detailed

study of sandhi has been done in Sanskrit grammar tradition. In Sanskrit, sandhi is defined as

'extreme closeness of sounds'. Sandhi is mainly of two categories- external sandhi and

internal sandhi. External sandhi is the sound change on the word/morpheme boundaries when
3

the two words come together. Internal sandhi is the sound change within the word which may

be caused due to combining of the words or due to any of word operations like derivation or

inflection. To understand the morphophonemics, a general look on phonology and

morphology is required. The Sanskrit morphophonemics will be discussed in detail in the next

chapter.

1.3 MORPHOLOGY·

To compute morphophonemics or sandhi, understanding morphology is necessary.

Morphology deals with the word and its structure. Morphological study becomes important

because what sandhi-splitting deals with is nothing but identification of distinct words.

Jurafsky and Martin (2005:85) define morphology as "Morphology is the study of the way

words are built up from smaller meaning-building units, morphemes. A morpheme is often

defined as the minimal meaning-bearing unit in a language."

1.3.1 WORDS

Words are one of the most fundamental units of linguistic structure. They play an integral role

in the human ability to use language creativity. The words are the phonetic codes to memorize

the information. But the human vocabulary is not the static repository of the memorized

information, it is a dynamic system. The dynamism comes in different ways, we can add

words, and we can expand their meaning into new domains or change the meaning (Akmajian

et. al., 2004:11).

Words are a dynamic system. No one makes effort to learn lots of words but can use infinite

ideas around one. The world represented by the words is realized to be infinite in scope and

vocabulary of human is finite, and very small in comparison with the scope of represented

world. Human uses finite number of words to represent potentially infinite number of

situations and ideas encountered in the world. This could be possible due to creativity of the

words and open-endedness of the human vocabulary. The list of words for any language

(though not a complete list) is referred to as its lexicon (Akmajian et. al., 2004:11).

The word in its physical speech form (that is the basic form of language) is nothing but a blur

of sound; the same will be said for a sentence or a paragraph. A human, generally, does not

4

feel difficulty in recognizing the words from a speech. The words seem to him to be natural

and obvious. This observation comes because most people hear only their native language or

other language which they know (have learnt). The reality comes to sight when a person hears

a foreign language (which he does not understand) speaker in his natural way. Hearer is

unable to recognize the words of that language. There is no realization of words for him but of

a blur of sound. It means the words are language relative. Thus lexicon or dictionary always

is of a language (or languages). The hearer can split the blur of sound into the words of

foreign language speaker only when the speaker slows down a little. But physical reality of

speech is that for the most part the signal is continuous, with no breaks at all between the

words. Pinker (1995: 159-160) notes, "We [native speakers] simply hallucinate word

boundaries when we reach the edge of a stretch of sound that matches some entry in our

mental dictionary."

What is the knowledge of word? It means what do we know when we know a word? Knowing

a word includes manifold information about the word. Akmajian et. al. (2004:12-13) list down

five-fold information bound with the knowledge of the word.

a) Phonetic/Phonological information- how the sounds in the word are pronounced and

in which order the sounds in the language can occur. Also, how the sounds change

when a word is pronounced with other words.

b) Lexical structure information- what are the components of the word and how a word

changes by replacing some components of word.

c) Syntactic information- how a word can be used in a sentence and what place can it

hold in sentence structure.

d) Semantic information- how the meanmgs of components of words constitute the

meaning of the word and what role words play in constituting meaning of sentence.

e) Pragmatic infonnation- how a word is used in sentences and which word is used in

which context.

There are some other aspects of words which linguists study. The native speaker may or may

not be aware of these. Words and their usage are subject to variation across groups of

speakers (language variation or dialectal study). A:jfiidhyiiyl records the example of usages in

5

eastern (priichiim)1 and northern (udfciim)2 regions. Words and their uses are also subject to

variation over time (language change or diachronic study). As asura word changed its usage

and meaning over time and its meaning became absolutely opposite.

1.3.2 MEANS OF KNOWLEDGE OF WORDS

The knowledge of words basically comes by hearing and interaction with the other language

speakers of the society. The most common means of knowledge of words is dictionary. But

that is not all about the word's knowledge which we find in its lexical entry. Dictionary gives

only basic information, sometimes detailed also, about the word and its meaning but we know

far more than that. For example, when we know the meaning of a word through dictionary, we

often get the meanings of all its forms or paradigm, and also know how different forms and

their meanings are related to the base word and its meaning and also how different forms are

related with each other. Besides, we also find parallels in the relations in paradigms of

different words. For example we know that the relation between run and runner is same as

wash and washer, but that relation does not exist between bet and better.

These, and a few others, are some extra information about the words which dictionary cannot

tell. First, sometimes in dictionary, some forms are given with the lexical entry of the base

word; it indicates that the two words are related. But what is the nature of relationship,

dictionary does not specify. Second, the words that have similar form, lime run-runner, walk

walker, and thus have similar relationship with their base word, cannot be captured with their

relatedness, because they all lie in separate entries. Tl)e separate entry approach fails to

capture what all these words have in common. Third, the dictionary is a finite list and the

information it contains is finite as well. How novel words behave cannot be accounted for

(Amajian et. al., 2004: 14). Fourth, dictionary does not tell how the language varies across the

group of speakers and across the geographical area. Fifth, dictionary also cannot tell what

have been the directions of the change in the meaning and usage of the words, and how a

particular word emerged, also cannot be easily found in the dictionary.

The information of word variation across different areas and across groups of speakers and

historic change over time mentioned above are the subject of different subfields of linguistics,

namely, language variation and language change. A wide range of information associated

1 e1i priidll!l de§e (P 1.1.75); illa{1 prtictim (P 2.4.60)
2 udfcti!JI mil1io vyatfhilre (P 3.4.19)

6

with words and how new words are created, is studied in some other subfield of linguistics

named morphology.

1.3.3 CONCEPTS OF MORPHOLOGY

The morphology is the identification, analysis and description of structure of words (Wikipedia).

Nature of words studied in morphology tries to find out the answers of some basic questions

which look simple but hard to answer. Akmajian et. al. (2004) list them as follows and

mention that no completely satisfactory answer to any of them is arrived at.

• What are words?

• What are the basic building blocks in the formation of complex words?

• How are more complex words built up from simpler parts?

• How is the meaning of a complex word related to the meaning of its parts?

• How are individual words of a language related to other words of the language?

Simple and Complex Words/Morphemes

What are words? Simply a word is a complex pattern of sounds which signifies a certain

meaning in the world. There is no necessary reason why the particular combination of sounds

represented by a certain word should mean what it does. Hence, the relation between a word

and its meaning is said to be arbitrary, though there are a few onomatopoeic words in all

languages which sound like their meaning in the real world. One of the initial definitions of

words can be as "A word is an arbitrary pairing of sound and meaning." (Akmajian et. al.,

2004:16). But the authors of the book themselves call it inadequate to correctly represent the

word. One other definition is given in Wikipedia that may be said to be more systematic "A

word is a unit of language that represents a concept which can be expressively communicated

with meaning. A word consists of one or more morphemes which are linked more or less

tightly together, and has a phonetic value."

It has long been recognized that words must be classed into at least two categories: simple and

complex. A simple word such as tree seems to be a minimal unit; there seems to be no way to

analyze it, or break it down further, into meaningful parts (Akmajian et. al., 2004: 16). On the

other hand, complex words are those which are formed by two or more meaningful parts and

can be analyzed or braked down into its components called morphemes. In some cases a

7

morpheme may not have an identifiable meaning, and yet it is recognizable in other words (as

-ceive in receive, perceive, conceive, deceive).

Morphemes

Morphemes are the minimal units of word building in a language; they cannot be broken

down any further into recognizable or meaningful parts (Akmajian et. al., 2004: 17). Simple

words are also morphemes as they cannot be further broken down into meaningful parts.

Morphemes are categorized into two classes: free and bound morphemes. A free morpheme

can stand alone as an independent word in a phrase or sentence such as tree. A bound

morpheme cannot stand alone but must be attached to another morpheme - as plural

morpheme-s. The bound morphemes can further be classified into affixes, bound bases and

contracted forms. Affixes may be prefix infix or suffix. The affixes are always attached to

some other morpheme, which is called a base. An affix is referred to as prefix when it is

attached to the beginning of the base such as re- (redo, recall). Affix is an infix when it is

attached within the base. Most of the languages do not have infixes. The affix attached to the

right of the base morpheme (in case of left to right script languages, otherwise left of base) is

referred to as suffix such as plural morpheme -s and past participle morpheme -en. Bound

bases are those which cannot stand indeQendently but should be attached to some other

morpheme. For example cran-, it does not have its independent meaning, it must be combined

with the name of some fruit -berry, -apple, -grape etc. Some auxiliary verbs in English get

contracted or shortened when come with some other word. They cannot stand independently.

They are said to be contracted forms of some words as -he'll for will, -I've for have, -they'd

for had or would.

Sometimes a distinction is made between open-classed words and closed-class words. The

open class words are those belonging to the major part-of-speech classes (nouns, verbs,

adjectives, and adverbs), which in any language tend to be quite large and open-ended. On the

other hand closed-class words are those belonging to grammatical or functional classes (such

as articles, quantifiers, and conjuncts etc.). For this, open and closed class words are also

referred to as content words and function words respectively.

8

MORPHEMES

FREE BOUND

--------------Open-class words Closed-class words Affixes Bound base Contracted forms

Prefixes Infixes Suffixes

Fig. 1.1: Classification of morphemes (Akmajian et. al., 2004:24)

Parts of Speech

For linguistic purpose, all words in a language are categorized into a few grammatical

categories. Each word belongs to a grammatical category. Grammatical categories and their

number may differ among different languages. This is why because all languages carry some

special features in them. According to Akmajian et. al., in English there are ten grammatical

categories or parts-of-speech or, in short, POS. those are as following:

Noun (such as brother), Verb (such as run), Adjective (such as tall), Adverb (such as

quickly); these four come under open class words. Conjunctions (such as- and, or), Articles

(a, an, the), Demonstratives (this, that), Prepositions (such as to, from, at), Comparatives

(such as more, less), Quantifiers (such as all, some), these six come under abovementioned

closed class words. Traditionally we have learnt eight parts-of-speech in English namely;

Noun (proper noun, common noun and abstract noun), Pronoun, Verb, Adjective, Adverb,

Preposition, Conjunction and Interjection. But this list of eight does not show the place of

some of categories like articles.

In Sanskrit, there has been long discussion about the number of categories of the words. In

this discussion the number of categories of words varies from one to five. One thought says

that there is only one category of words; whichever is meaningful, that is word (arthafl

padam). This is the view of Indra school of vyiikara~Ja. Other thought considers the two

categories of words- noun and verb. It is the view of Pal).ini's definition sup-tiiwntm[l padam

(P 1.4.14), though he recognizes all four or five categories of word. Rest otherwise famous

words can come under these two categories. The third thought of Nyaya philosophy in sabda-

9

iakti-prakiiiikii of Jagadish accepts only three categories of words- base, suffix and particles

(prak.rti, pratyaya and nipiita) (Nirukta, Rishi). Prefixes are one kind of particles. The fourth

thought agrees with four categories of words- noun, verb, particles and prefixes. This is the

view of Yaska and grammarians. The fifth thought adds one more category named as karma

pravacanfya. This view is accepted by later grammarians. The different views are mentioned

in Durga' s commentary on Nirukta on number of word categories.

Neologism

As earlier mentioned, according to Akmajian et. al. (2004), four grammatical categories

belong to open class words. It means, in these categories, the number of words can increase

and the role of existing words can change. This process of adding new words or changing the

role of existing words is called neologism. Apart from other techniques to add new words,

new words can enter a language through the operation of word formation rules, which is

studied in the field of linguistics named as derivational morphology. Some most popular

techniques of neologism are given as follows. (Amajian et. al., 2004:25-42)

Coined Words: These types of words are entirely new for the language and previously non

existent. These are often invented by the speakers.

Acronyms: acronyms are the words pronounced as common words and each of the letters that

spell the word is the first letter (or letters) of some other complete word. For example, radar

derives from radio detecting and ranging.

Alphabetic Abbreviations: These type of words are also formed taking first letter (or letters)

of other complete words but the difference from acronyms is that acronyms are pronounced as

common words while in abbreviations each letter of the word is individually pronounced. For

example, CD is used for compact disc.

Clipping: Clipped abbreviations are those shortened forms of words whose spellings are

shortened but the pronunciation of those is not changed. For example, Prof, MB and Dr. are

shortened forms of professor, megabyte and doctor respectively and are pronounced as full

words.

10

Blends: New words are also formed from existing ones by various blending (can say fusing)

processes, for example motel from motor hotel, bit from binary digit and COLING from

computational linguistics.

Generified Words: Sometimes new words are created by using specific brand names of

products as name of products in general. For example Xerox is the name of the corporation

that produces a photocopying machine, and now the term is used to describe photocopying

process in general. Similar is the case of Dalda, the name of a brand of vegetable ghee (in

many regions), and the use of word Moon for natural satellite of any planet. This time

tendency is seen of using Akash-ganga (Hindi name of Milky Way) for galaxy in general

(Hindi - Mandakini).

Proper Nouns: Sometimes the proper names of persons are generalized and become the part

of language and are used to denote some specific behavior of the person whose name it was.

Borrowing Direct and Indirect: Sometimes the words of other languages are adopted in the

language. When the word is taken as it is in its original language, then it is direct borrowing,

for example, kindergarten word is borrowed in English from German. In some other way, the

words of other language are literally translated into the native language. This type of

borrowing is called indirect borrowing of words.

Changing the Meaning of Words: Sometimes, a new meaning becomes associated with an

existing word in many ways: change in grammatical category or part of speech, vocabulary

extension of one domain to another domain (metaphorical extension), broadening of scope of

meaning, narrowing of scope of meaning, restricting the more general compositional meaning

of complex words (semantic drift) and change of the meaning of a word to the opposite of its

original meaning (reversal).

Derivational Morphology: When the previously existing words undergo under some word

formation rules that a new word is created, the process is called derivational morphology.

This process involves mainly two processes: Compounding and Affixation. Compounds are

formed by combining two or more pre-existing words in which the meaning of the compound

is related with them. In a compound, one word is the head word and the meaning of the

compound is of same part-of-speech as it, and other words are modifier of the meaning of

headword in compound. In affixation, several derivational affixes (mainly suffixes) are added

11

to the word to form a new word. Many times the part-of-speech in derivation gets changed but

it is not necessary for all time. The derivational morphology will be discussed in detail in

some following section.

Backformation: This process is of psychological interest that some common words apparent

as derived words from word formation rules are mistaken as derived words. Then the speakers

of the language apply word formation rules in reverse and get the apparent base form of the

original. The verb to beg is reversely derived from the previously existing word beggar. Such

are the verbs to hawk, to stoke, to edit etc. This process is called backformation.

1.3.4 INFLECTIONAL AND DERIVATIONAL MORPHOLOGY

In the study of word formation, a distinction is often made between inflectional and

derivational morphology. When base word goes through a process to form a final word ready

to use in sentence, it is inflectional morphology. It further can be categorized as verbal and

nominal. A verb root is attached to a class of eighteen suffixes together called tin, forms

verbal forms in ten lakiiras, three puru~as and three vacanas in iitmanepada and

parasmaipada. The word thus formed under verbal derivational morphology is called tilianta.

When a nominal base is attached to any of twenty one sup-suffixes to create nominal form in

seven vibhaktis and three vacanas is nominal inflectional morphology. The word thus formed

is called subanta (sup+anta ~ voicing).

When a base word goes through a process to derive another base is called derivational

morphology. It is again verbal and nominal. Verbal derivational morphology involves verb to

verb derivation- passive (verb root+yak), causative (root+~ic, ~ijanta), desiderative (root+san,

sannanta), ... (root+ymi, ya~wnta and ya~1luganta). It also includes formation of new verb

from nouns (niimadhiitu). Nominal derivational morphology includes krdanta, which is

primary derivative and derives from verb root; taddhita, derives one nominal base to another

nominal base; feminine forms, and compounds.

1.3.5 PROBLEMS IN MORPHOLOGICAL ANALYSIS

In doing morphological analysis, we find some exceptions of many aspects of a given

analysis. Three of these problems in isolating the base of a complex word involve

productivity, false analysis and bound base morphemes.

12

Productivity

Some morphological operations are found quite frequently with one category of words, but

exceptionally, some forms are also found to have similar operation. For example, able suffix

frequently occurs with verbs but it is found with some nouns also, like, knowledgeable,

fashionable, and marriageable. But exceptions are closed list words.

False Analysis

Sometimes it happens that a basic word appears similar to derived or inflected forms of other

words of a word category, and the speakers wrongly take it for being the same. They take it

for a derived or inflected form and wrongly analyze it and reach a new base which is not the

word of that language. This happens only due to accidental phonetic resemblance with the

similar forms. In these cases, the phonetic component (apparent morpheme attached to a

word) similar to the regular form of some morpheme, doesn't have similar meaning as the

regular morpheme. So the analysis on this basis is called false analysis.

Bound Base Morphemes

This case is slightly different from the case of false analysis that here the meaning structure of

the word similar to regular form is same as regular forms. The prefix or suffix attached to the

word is recognizable and has similar meaning also, but if the base is detached from that, the

base is not a meaningful word of the language. These types of bases are bound and can exist

only with some specific morphemes.

1.4 PHONOLOGY

Pal).ini defines sandhi as extreme closeness of sounds - para!z sannikar1a!z sa1J1hitii (P

1.4.109), and sound is subject of phonology. Phonology is the subfield of linguistics that

studies the structure and systematic patterning of sounds in human language. The term

phonology is used in two ways. On the one hand, it refers to a description of the sounds of a

particular language and the rules governing the distribution of those sounds. That can be said

phonology of a language. On the other hand, it refers to that part of the general theory of

human language that is concerned with the universal properties of natural language sound

system (i.e. properties related to many, if not all, human languages) (Akmajian et. al.,

13

2004:109). Speech sound in its original form is a continuum of waves in a certain range of

frequency which can be heard by human ear. We can write a language with discrete symbols.

However, speech is for the most part continuous; and neither the acoustic signals nor the

movement of the speech articulators can be broken into the kind of discrete units that

correspond to the units represented by written symbols. What is studied in phonology is the

distinctive features of speech sounds, external organization of the sounds- the syllable

structure, general framework for describing the sound pattern of human language, conditions

where a particular sound changes its form into another (Akmajian et. al., 2004:11 0).

1.4.1 DISTINCT FEATURES OF SOUNDS

Basic components of a language are the sounds (phones and phonemes). The sounds are

themselves composed of several features of articulation. These features are the constituents as

well as distinctive features of the sounds. These features distinguish one sound from another

and also make small classes of sounds. Some of these features are very important and others

are comparatively less. The importance of the features vary from one language to another on

the basis of how much role does it play in the statement of phonological rules and

distinguishing the different sounds.

Morris Halle and Noam Chomsky proposed a distinctive feature system to classify and

distinguish the sounds of a language in their work Sound Pattern of English (SPE) in 1968.

Their proposals in tum build on the pioneering work in distinctive feature theory carried out

by Halle and Roman Jakobson in 1956. In the SPE system the articulatory features are viewed

as basically binary, that is, as having one of two values: either plus value (+), which indicates

the presence of the feature, or a minus value (-), which indicates the absence of the feature

(Akmajian et. al., 2004: 114).

The sounds are primarily classified as vowels and consonants. According to SPE, the list of

distinctive features of sounds (particularly for English) is given as follows:

Distinctive Features of Vowels: Syllabic, High, Back, Low, Round, Tense or Long.

Distinctive Features of Consonants: Syllabic, Consonantal, Sonorant, Voiced, Continuant,

Nasal, Strident, Lateral, Distributed, Affricate, Labial, Round, Coronal, Anterior, High, Back,

Low.

14

Same list will not be sufficient for Sanskrit. In vowels, the additional features are rising

(udiitta), falling (anudiitta), level (svarita), nasality (anuniisikatii), extra-long (pluta). In

consonants, the additional features are aspirated (mahiiprii!Ja), unaspirated (alpaprii!Ja),

breath (iviisa), sound (niida), open (viviira), close (saiJlviira), slight open (f~ad-vivrta), slight

close (f~at-SaiJlVrta), stop (sparia). Some of the above features mentioned in SPE are not

applicable on Sanskrit sounds. The list of Sanskrit sound features famous in tradition of

vyiikara1Ja3 also may not be sufficient from linguistic point of view, though priitiiiikhyas4

have made deeper observation.

1.5 MORPHOPHONEMICS: COMPUTATIONAL PERSPECTIVE

Goal of morphophonemics is to study and explain the rules and patterns of sound functioning

in morphological process in a language. Computational morphophonemics differs from it in

many ways. The goal of computational morphophonemics is rather more practical and more

applied - to prepare a text for further linguistic processing/morphological-syntactic analysis,

and on other side (generative sandhi), to combine morphemes in their usual phonetic form as

occurring in the language. Second thing is its input and output. In general, morphophonemics

applies on a piece of a linguistic data. The studying person recognizes the words and also has

in mind their meanings. On the other hand, input and output for computational

morphophonemic processing, both are only strings of symbols. The third thing departing these

two is the methodology of processing. In general morphophonemics, human way of

processing is parallel processing. He minds the sound patterns, words, their meaning and the

context of use. He can also mind the pragmatic and cultural information. In contrary,

computer has to cut, paste and match the parts of string alongwith some statistical processing

of the intermediate results.

Sanskrit grammar has an advantage from computational view. That is the explicitly described

sandhi rules and excellent formal system of PaQini.

3
Yatno dvidhii- abhyantaro bahya§ca. Adyakaturdha- sprHqatspr~fa-vivrtaisa'!n'rla-bhediil. latra sprHw!l

prayatanw!l spar,siiniim. (wtsprHm!l al1/a(1Sthiiniim. vivrtamii~IIW(WIJI svarii(!illJI ca. hrasvasyiivar(wsya prayoge

SWJlV!Iam. prakriyii-da.fiiyillJl tu vivrtameva. (SK I 0)

bilhya-prayatJWStvekiida.faJhii- viviira(t, SGIJ!Vilra?J, SViiSO, niido, glzo~o'glzo~o'/papnt(lO mahc/prii(W
ud£11/o 'nudlilla(l svaritasceti. (SK 12)
4

Allen, W. S., 1965; Phonetics in ancient India

15

1.5.1 SYSTEM OF PA~INI: A MODEL

The system of PiiQ.ini consists of five major components: rule base (siitra-piiJha), verb

database (dhiitu-piiJha), nominal database (gaf}a-piiJha), gender rules (lingiinusiisana), and

special morphological rules (uf.liidi sutra) which work in the environment of its sound system

called Siva-sutra. The rule base named A~!iidhyiiyf being the main component~ the integerated

system PaQ.ini can also be called A~!iidhyiiyf.

Method of analysis in A~fOdhyiiyf

The grammar of PiiQ.ini is a generative grammar. It does not start analysis from ready form in

use to its building blocks. Starting point of PaQ.ini' s analysis is not meaning or intention of the

speaker, but word form elements as shown in initial stage of generation process. Here

morphemic elements obtained from analysis are put side by side in an order of previous and

next from left to right. Then by applying operations to these elements a derivation process

starts. The process results in a word fit for use. Thus we may say that PaQ.ini starts from

morphology to arrive at a finished word where no further rules become applicable (Joshi:

2009). We can recall here the basic assumption of Finite State Automata.

Organization of system of Pal}ini (Jha: 2004): PaQ.ini's grammar's main and central

component is A~fiidhyiiyf, the linguistic siitras divided into eight chapters with four

subsections each. The sutras are 4000 approximately (the actual number varying from 3975 to 4025). The

components of A~!iidhyiiyf can be grouped into three modules: Sound classes (Siva-sutra),

Rule base (A~fiidhyiiyf siitras and special morphological rules named as w;iidi-sutra) and

Lexicon (verb database- dhiitupiifha and nominal database- ga~wpiifha). This closely

corresponds to a fully functioning NLP system:

phonetic component -7 grammar component -7 lexical database.

The phonetic component- the 14 Siva-siitras are the phoneme inventory of Sanskrit with 43

elements with 9 vowels and 34 consonants including two times 'h '. These sutras do not show

the long and protracted vowels, accented vowels and nasalized vowels and some other

characters. The vowels enumerated in the sutras are vowel classes which represent all its

types based on length, accents and nasality. Other special characters are allophones of

anusviira (1?1) and visarga (?t) and they are assumed to belong to 'a!' group or sigla. The

16

siitras contain the sounds and one bounding sound which are not counted as phoneme. The

sigla are formed by taking any sound as start and any of the following bounding sound. Sigla

thus formed can be hundreds in number (305) but Piil).ini has used only 41 of them. Later

Piil).inian grammarians include one more 'ra' in this list. The arrangement of the sounds is so

systematic that any sigla formed has some unique property in common that puts them in a

class and thus becomes useful for rule writing on the basis of sound-features (This 1.3.1).

The grammar component- the siitra-piifha (SP) is composed of siitras in eight chapters of

four subsections each. Faddegon (1936) gave a general sketch of what is covered in different

sections of the grammar and also analyzed the subsections. In the arrangement of SP he noted

the "tendency towards dichotomy" and divided the rules into two main sections - Ch 1-5 and

6-8 which he called analytic and synthetic parts respectively. Kapoor (1992) has reduced the

treatment of subject matter into four divisions - Ch 1-2 dealing with classification an

enumeration of bases and categories, Ch 3-5 consist of prakrti-pratyaya enumeration, and

derivation of bases, Ch 6-8.1 deal with the synthesis of prakrti-pratyaya, and Ch 8.2-8.4 deal

with the rules of morphophonemics (cf. Jha: 2004). Sharma (2003) describes in detail the

distribution of topics in SP. The siitras are categorized into six types. It can be seven if

negation is taken independent of restriction.5

• Operational (vidhi) rules which state a given operation to be performed on a given

input. For example- akaH savarNe dlrghaH (P 6.1.101)- simple vowels [a i u RRi

LLi] will be lengthened when they are followed by a similar (savarNa) vowel.

• Definitional (sa-nj-nA) rules which assign a particular term to a given entity. For

example- vrddhiriidaic (P 1.1.1)6
- vowels [a ai au] are termed as vrddhi.

• Meta-rule (paribhaShA) rules which regulate proper interpretation of a given rule or

its application. For example- tasminniti nirdiHe piirvasya (P 1.1.66)7
- any operation

will be applicable to the component which is prior to that which is denoted by seventh

case like 'in that'.

5 Definitions of sutras are according to Rama Nath Sharma
6 Example different from source
7 Example different from source

17

• Heading (adhikAra) rules which introduce a domain of rules sharing a common topic,

operation, input, physical arrangement etc. For example, kiirake (P 1.4.32)8 states that

the rules about case start from here.

• Extension (atidesha) rules which expand the scope of a given rule, usually by allowing

the transfer of certain properties which were otherwise not available. Example

karturlpsitatamaM karma (P 1.4.49) tathA yuktaM cAnlpsitam (Pl.4.50) - that which

is the most desired by kartA (agent) is karma (P 1.4.49) and also undesired similarly

attached to the verb (P 1.4.50).

• Restriction (niyama) rules restrict the scope of a given rule. For example- patiH

samAsa eva (P 1.4.8)- the word 'pati' is termed as 'ghi' only in compound. This rule

restricts its previous rule- sheShoghyasakhi (P 1.4.7).9

• Negation (ni~edha) rules which counter an otherwise positive provision of a given

rule. For example- tulyAsya-prayatnaM savarNam (P 1.1.9) and nAjjhalau (Pl.l.lO)

savarNa is the class of sounds with comparable place and manner of articulation (P

1.1.9). This cannot be acros~ vowels and consonants even if they bear comparable

place and manner of articulation (P 1.1.1 0).

Ramanath Sharma mentions two more categories of rules 10

• Optional rules (vibhii~ii): rules which render the provision of a given rule optional. For

example- si tuk (P 8.3.31)- in sandhi, 'tuk' is augmented optionally before'§'.

• Ad hoc rules (nipiitana): rules which provide forms to be treated as derived even

though derivational details are missing. For example- k~ayya-jayyau §akyiirthe

(P6.1.81)- in the sense of 'liable to' or 'possible to' the derived forms of 'k~i' and 'ji'

with 'yat' suffix are 'k~ayya' and 'jayya' respectively.

The Lexicon- verb and nominal databases: first is the database of verb roots in Sanskrit. The

total number of the roots listed in it is 2014 out of which about 500 are yet found in actual use

in the Sanskrit corpus/literature. The roots are classified into ten classes (ga~ws). One eleventh

8 Example different from source
9 Explanation different from source
10 Examples not from source

18

class is the roots basically derived from nouns. The ten (or eleven) classes are named after the

first root of the class.

Second lexical database is of primitive nominal bases. This is the lists of groups of different

bases (including pronouns).

Recently Houben (2009)11 proposed a different architecture of Panini's System keeping

dhiitupii!ha as the central component. He gives a thesis of construction grammar in which data

is the central component and rules or procedure is supporting component. In support of his

thesis, he quotes the derivation process which starts with selection of a dhiitu with all its

grammatical information and then the rules apply.

Technical Devices of Pal)ini

Joshi in Background of A~!iidhyiiyf (2009) explains the nature of PaQ.inian derivation process

as "Starting point of PaQ.ini's analysis is not meaning or intention of the speaker, but word

form elements as shown in the initial stage of the prakriyii. Here morphemic elements

obtained from analysis are put side by side in an order of piirva and para from left to right.

Then by applying operations to these elements a derivation process starts. The process results

in a word fit for use in vyavahiira, the everyday usage of an educated Brahmin. Thus we may

say that PaQ.ini starts from morphology to arrive at a finished word where no further rules

become applicable. We have to bear in mind that Sanskrit is an inflecting language."

PaQ.ini's operational rules are generally substitution rules. Here the distinction between the

original (sthiinin) and the substitute (iidesa) is essential. As far as further rule application is

concerned, the substitute is declared to be like the sthiinin (P 1.1.56). An exception is made

for the rules which deal with the substitution of phonemes. An ingenuous idea of PaQ.ini was

to extend the concept of substitution to zero-substitution (lopa) also. Lopa is defined as

adarsanam "disappearance from sight" (P 1.1.60) (Joshi, 2009).

Three other techniques of PaQini have very much importance in A~fiidhyiiyf. Three of those

are inheritance (anuv!tti), utsarga-apaviida vidhi, and division of siitras in siddha and

asiddha kii~uja. Inheritance or anuv!tti on one side is important from point of view of

conciseness (liighava), it is also important from the view of formal structure. In a program, a

11 Third international Computational Linguistics Symposium, Hyderabad, India, 2009
' 19

definition or procedure is added some new aspects and elements by inheritance. Similarly,

anuvrtti brings its all aspects with it. This thing is well proved in the following example of

karma saiijiiii. In the rule karturfpsitatama'!l karma (P 1.4.49), kiirake (P 1.4.23) is inherited,

thus the indicated term has two names (saiijiiiis) - kiiraka and karma. Here word karma is

explicitly used while it is used in previous rule adhi-ifli-sthii- "siif!l karma (P 1.4.46), and it

could be inherited from here. But it is not inherited from there because there the karma-saiijiiii

was assigned to a locus (iidhiira). If the word karma was inherited form there, the sense of

locus also would have been inherited.

Second thing is utsarga-apaviida-vidhi. When two rules are applicable in same condition and

have equal strength of applicability, then relatively one of them becomes utsarga and other

apaviida. Apaviida is that which has less scope of applicability and its scope is proper subset

of the scope of utsarga siitra. In this condition, the utsarga siitra gives up its right (utsrjyate)

and leaves the scope for apaviida.

Third technique is the division of whole A~fiidhyiiyf into siddha and asiddha kii!Jtfa. Siddha

kiil}t/a is upto first quarter of eighth chapter. The rules of siddha kiil}t}a are recursively

applicable anytime it has scope for application. But the rules of asiddha kii!Jtfa are applicable

after rules of siddha kiiiJtfa have done their work. Technically, the result of asiddha rule is

invisible to siddha rule. It means, siddha rule cannot be applied after the application of

asiddha rule. In the asiddha kiil}t}a, every later rule is asiddha in respect of prior rules. The

rules of asiddha kiil}t}a, the last three piidas of last chapter (tripiidl) need to be applied in

sequential order. This system of asiddha regulates infinite or unnecessary recursion. Apart

from these, some part of A~!iidhyiiyf (6.4.22 to 6.4.175) is asiddhavat prakara~za which is not

included into siddha kii~ztja. The siitras of asiddhavat prakara~za that are all having same

condition, can be thought of as applied simultaneously. Siddha-asiddha structure is

graphically interpreted by Subbanna and Varkhedi (2009)12
.

1.5.2 PROBLEMS IN COMPUTING PA~INI

Pai:linian grammar is said to be the most technical and formal grammar of any natural

language in the world, though it is not fully computed after the researches and efforts of the

decades. There are some most common problems in computerizing PaQini's system.

12
Subbanna and Varkhedi, TISCLS-2009, Hyderabad

20

PaQinian grammar is a formal grammar yet not a computational grammar, but it is linguistic

grammar of a natural language written in formal version of natural language. It has common

weaknesses of natural language. One most common weakness of natural language is

ambiguity. Cases in AD have their technical meaning but sometimes different cases have

similar form and create ambiguity. For example, V and VI case singular have often same form

but V case means 'after it' whereas VI case means 'to it' or 'of it' or 'in the place of it'. One

such sutra is maya516 uiio516 vo1 vii (P 8.3.33)13
• One such viirtika is yal)o516 mayo516 dve112

viicye112 (v on P 8.2.23)14
• In the case of this viirtika, the ambiguity of I case and II case is not

the problem because II case is not assigned a meta-linguistic meaning and here its meaning is

simply of I case (as general).

Jha and Mishra (2008)15 explain the problems in implementation of kiiraka formalization. The

most part of the kiiraka involves complex semantics. Semantic representation of material

entities itself is very hard to implement with relation to other objects; kiiraka rules involve
~::::-..,_

semantics of abstract and subjective concepts. They classify implementation issues with/f~\J~~~

respect to kiirakas in three categories as follows: (#/~.~ .. · !

.···'\ i)
• Vivak.Jii dependent operations - as in sthalyii pacati, sthalf should be terme~\!:.;,·, '-:--::1·-(:

adhikarm.w (locus) as it is the adhara (iidharo'dhikara~Jam), but it is termed as karaf}a
-

by rule siidhakatammJt karaf}am because the speaker thinks it is the most instrumental.

• Viirtikas limiting/extending rules rule gati-buddhi-pratyavasiiniirtha-

sabdakarmiikannakiif}iim af}i kartii sa !}au, which allows kanna, is limited by viirtika

nlvahyorna, which itself is limited by another viirtika- niyantr-kartrkasya

vaheranisedhah.

• Semantic conditions necessary for implementing a rule - conditions like, sviitantrya,

fpsitata/fpsitatama/anlpsita, siidhakatama, abhipraiti, dhruva, apiiya, iidhiira etc.

The AD is generative grammar and not analytical grammar. Analysis is to be derived by

applying the Pal}.ini's rules of substitution in reverse. Madhava M. Deshapande notes that

Pal).ini's grammar "does not provide us with analytical tools to go from texts to their

13 Superscript numbers show case number of the word.
14 Sa1Jtyogc7ntasya fopa?z (P 8.2.23)

TJ-I-17g06
15 Second international Sanskrit Computational Linguistics Conference, Brown, (2008)

21

interpretation, or from sentences to morphemes and phonemes. It presupposes the result of an

analytical phase of scholarship, but is itself not representative of that analytical phase." (c.f.,

Anand Mishra, 2009)16
.

A~Jiidhyiiyf is not a grammar in western sense of the word. It is a device, a derivational word

generation device. It presupposes the knowledge of phonetics and it is based on morphemic

analysis. It derives an infinite number of correct Sanskrit words, even though we lack the

means to check whether the words derived form part of actual usage. Correctness is

guaranteed by the correct application of rules (Joshi, 2009)17
•

The technical terms in A~Jiidhyiiyf (smJljiiii) are mostly defined but not always. The non

defined sa!Jljiiiis are borrowed from various other branches of science supposed to be

generally known. Joshi (2009) mentions some important of them- mantra, yajus, napu!Jlsaka,

linga, kriyii, vartamiina, vibhakti, prathamii, jiiti, dravya, gwy,avacana, visarga, viikya, vidhi,

samartha and upamiina. Pratyiihiiras are also the technical terms of the A~Jiidhyiiyf but these

are well defined (Joshi, 2009).

A wider part in PaQ.ini' s grammar requires the meaning information. Some scholars claim that

semantics is not the subject matter of A~Jiidhyiiyf (Joshi, 2009) in the sense of meaning as

thing meant. A~!iidhyiiyf is no authority to decide that this word refers to this item. That comes

from the usage. The whole of taddhita-section testifies the more importance of lexical

meaning. Each taddhita suffix is used to derive a new word in a specific relation with base

word. Here meaning becomes of much importance. To compute this portion requires to some

extent the computing of the meaning of the suffixes. An example of complex meaning in rule

is- ~Jer-m;au yat karma ~zau cet sa kartii'niidhyiine (P 1.3.67) (which is kanna or object in

non-causative state, if becomes kartii or agent in causative state, then iitmanepada suffix is

used with the verb).

As earlier has been said that some of the technical terms of PaQ.ini are not defined in

A~!iidhyiiyf, they are borrowed from other fields of science and are presupposed to be already

known. Also there is not any medium in the system to check whether the word exists in the

usage. In other words, there is no way to restrict unlimited over generation of the correct

forms. Some words used in AD represent to a class of nouns (including all kinds of nominal

16 Mishra Anand, TISCLS - 2009, Hyderabad
17

Joshi, S.D., keynote address in TISCLS-2009, Hyderabad

22

bases), which are sometimes found in AD sutras itself, others are found in separately arranged

lexicons- daiituptifha and gaf}aptifha.

When more than one siitra are applicable on the same state of derivation, there is need to

resolve the conflict and to determine the exact siitra to be applied. There is no clear

specification in the A~!tidhytiyf, but a vtirtika specifies it- para-nityti-ntaratigti-pavadanam

uttarottaralJl balfya~ - where para is later in terms of order in A~!tidhytiyf; nitya is that which

is applicable in both conditions whether the conflicting siitra is applied or not; antaratiga is a

rule about verb root and prefix (dhatiipasargayo~ kiiryam antaratigam); and apavada is

exception rule, which has no scope of application outside the area of main siitra.

apavada > antaraiiga > nitya > para

The rules applicable in one condition or defining one technical term together form a rule

cluster or rule set.

After the computation of individual rules or rule clusters (rule sets), there is again complex

system of order of application of rules. From this view, the AD is divided mainly in two

sections- siddha-ktil}cja and asiddha-ktil}cja. In the siddha-kti~zcja, there are two ranges of

siitras asiddhavat (like asiddha). Siddha section contains siitras 1.1.1 to 8.1. 7 4 (end of first

piida) minus asiddhavat section. Asiddhavat section contains siitras 6.4.22 to 6.4.175 (end of

ptida and chapter). Asiddha section c,ontains the siitras 8.2.1 to 8.4.64 (end of the chapter and

the book). Subbanna and Varkhedi explain this system in somehow this way- In general,

whenever conditions for a siitra are satisfied, that siitra is applied. Only one siitra is applied at

a time. In other words no two siitras can be applied simultaneously. However, the siitras of

asiddhavat prakara~za that are having the same condition can be thought of as applied

simultaneously. The siitras in the last three ptidas, that is, triptidf need to be applied in the

sequential order.

1.5.3 CHALLENGES IN MORPHOPHONEMIC PROCESSING

Above we have seen the general problems in computing of Pal).inian system. The computing

of morphophonemic rules is more complex than other sectors of the grammar like

morphology, phonology or syntax. Computing of the process of morphophonemic analysis is

still more challenging. This sector requires the identification of all types of words, thus

understanding of the complete morphology, though not necessarily ability of analyzing all
23

words. Here are indicated some of the problems which will be discussed in detail in later

chapters.

If we assume that the sandhi analysis system gives results perfectly according to the Pat;Uni's

(including followers') sandhi rules, there are still many problems to reach the correct analysis.

First and major problem is ambiguity. It simply means that a string of Sanskrit word can be

split into many segments. As the number of segments increases, the number of sets of

segments increases, and not linearly but geometrically. First the challenge is to through away

invalid segmentation sets and then the challenge of selecting the desired result from the valid

ones.

This ambiguity is caused by many factors. The most complexity generating problem arises

from the nature of Sanskrit which is unique to this language, that is, theoretically, a

continuous string, without pause can be infinitely long. Between the words, the sandhi is

optional while it is essential within the word simple or complex. Also the minimum size of

valid word is Sanskrit is very small, that is, one character. This requires searching the

possibility of sandhi on each next character.

Next a few problems are related to application of rule. First thing is simple concatenation.

Any word ending in consonant should be concatenated with the next word. It causes the neeg_

of judging if it is simple concatenation or sandhi, in other words, whether the sandhi rules are

to be applied or not. Then, if it is decided to apply the rules, similar looking pattern of sounds

(formally, a sequence of symbols) form the condition fit for application of many rules. This

problem to be solved needs computation of strength of siitra stated in previous heading. But

this solves the problem of generation side, which is the process of PaQ.ini. This is not equally

efficient for analysis process. Afterwards, when a rule is decided, the same rule applies on

different conditions and result in one form in generation. Thus, the same sequence of symbols

in reverse sandhi process should result in multiple splits. Then it needs to select the possible

ones from those multiple results. For this, the two splits are joined with left and right parts of

string and thus formed segments are then checked in the dictionary to validate their existence

in the used language. There is no more promising way than dictionary and corpus to verify

that the word exists in the language. The finite state automata for Sanskrit words validation is

too complex to implement.

24

Next few problems are related to the recognition of words. The whole exercise of sandhi

processing is the recognition of the distinct words. The segment is a valid word or not, this

can be judged by checking of the segment in the dictionary and corpus of the language. The

dictionary contains the words in base forms while words in text are inflected. Thus, before

validation, the inflectional analysis is required (both verbal and nominal). The inflectional

analyzer generally should be run before seeking for application of rules because the inflection

is must in Sanskrit words in sentence. But the inflections may occur within the string and may

not occur (in the case of compound where the suffixes are elided). Word is to be checked in

dictionary after analyzing or without analyzing? This may many times result to false analysis.

Finally the challenge is to arrive at all possible solutions and one (or a few) desired

solution(s). (Sometimes, more than one segmentation is intended in cases like sle~a usage.)

For collecting all possible solutions, each point of segmentation needs to be split thrice

without applying any rule (for simple concatenation), applying possible and relevant rules,

applying rules and then analyzing inflections. On each of three stages the segment needs to be

validated. In this exercise, whole dictionary is accessed several times. When human segments

sandhi, he accesses his active mental vocabulary, which is very small, so most of non-relevant

words do not come to access. But in computer's case, it has very large dictionary, and whole

dictionary is its active vocabulary resulting many unused and irrelevant words validated.

Also, computers cannot have sense or guess of meaning while searching for validating

segments whereas human has the sense earlier to applying the rule. The problem of large

vocabulary can be solved by indexing the dictionary and marking the popularity index to each

word. Processing the frequency of words can reduce number of solutions.

1.6 A SURVEY OF RESEARCH

1.6.1 APPLIED RESEARCH ON SANDHI ANALYSIS

Sanskrit Heritage site of Gerard Huet of INRIA, Paris, he has build segmenter which is online

available on his website. This program takes a continuous string without space and segments

all words whether they are simply joined or have sandhi within. This program gives many

solutions. It takes input in Roman transliteration scheme which stems from Velthuis devnag

TeX input convention and it displays result in lAST and Devanagari Unicode. Same site has

25

sandhi generator module also which takes two words and returns sandhi word. It does both

internal and external sandhi.

'Sandhi Splitter and Analyzer for Sanskrit: With Special Reference to ac Sandhi' is the M.Phil

research of Sachin Kumar in supervision of Girish Nath Jha, submitted to Special Centre for

Sanskrit Studies, Jawaharlal Nehru University, New Delhi (2007). A web based system is

developed under this research and is available on the website of Special Centre for Sanskrit

Studies. It works only for vowel sandhi splitting and takes Unicode Devanagari UTF-8 text as

input. A web based sandhi generation program is also developed there as the MA course

project of the students of the centre. This program takes input in i-trans encoding.

A sandhi splitter has been developed in Rashtriya Sanskrit Vidyapeetha, Tirupati and

Department of Sanskrit Studies, University of Hyderabad in guidance of Amba Kulkarni and

in consultancy with K. V. Ramakrishnamacharyalu. This program takes input a word in W-X

notation, I-trans, Velthuis, HK, SLP and Devanagari Unicode encoding. In its older version

available on the site, it gives analysis to the five levels of depth according to the wish of user.

They have also developed sandhi generation program, which is online and takes input in same

six notations and gives result in Unicode Devanagari with sandhi type and sutra.

Sanskrit library project under the guidance of Peter M. Scharf, Classics Department, Brown

University, is engaged i'n philological research and education in Vedic and classical Sanskrit

language and literature. Current research involves linguistic issues in encoding, computational

phonology and morphology. (cf. Surjit, 2008) 18
•

Department of Information Technology, Ministry of Communication and Information

Technology, Govt. of India had funded Jawaharlal Nehru University a CASTLE project

(Computer Assisted Sanskrit Learning and Teaching Environment) under TDIL program. This

is reported to have developed sandhi-viccheda system in DOS environment but it is not

available to public access.

Software developed by Indian Heritage Group of Centre for Development in Advance

Computing (C-DAC), Bangalore, DESIKA, is reported to have developed generation and

analysis module for plain and accented written Sanskrit text. It has exhaustive database of

18 Krdanta Recognition and Processing for Sanskrit M.Phil. Dissertation submitted to Jawaharlal Nehru

University by Surjit Kumar Singh under supervision of Girish Nath Jha, 2008

26

.-

Amarakosa, rule base using rules of A~fiidhyiiyf, and heuristics based on nyiiya and mfmiif!lsii

siistras for semantic and contextual processing. The version of this software available on

website does only nominal form generation.

1.6.2 THEORETICAL RESEARCHES IN PA~INIAN MORPHOPHONEMICS

Below are some theoretical researches in the direction of formal understanding of Pal}.ini's

phonology or sandhi. Girish Nath Jha in his M. Phil. research entitled "Morphology of

Sanskrit Case Affixes: a Computational Analysis" under the supervision of Kapil Kapoor and

G. V. Singh (in SLL&CS, JNU, 1993) introduces a formal way of writing Pal}.inian sandhi

rules. Here is an example of formal sandhi rule:

Retroflexization: ShTunAShTuH (8.4.41)

+cons-> +cons/- +cons

Dental retroflex retroflex

Example: rAma-s- + ShaShThaH -> rAma-Sh-ShaShThaH

Malcom D. Hymen wrote a research paper in First International Sanskrit Computational

Linguistics Symposium (2007) entitled "From Piil}inian Sandhi to Finite State Calculus". In

the paper he summarizes Pat:tini's handling of sandhi, his notational conventions, and formal

properties of his theory. Then he introduces an XML vocabulary in which Pal}.ini's

morphophonemic rules can be expressed.

Cardona has made detailed and analytical survey on Pat:tinian research in his two books

'Pii1Jini- A Survey of Research' (1976, 1980) and 'Recent Research in Piil}inian Studies'

(1999). The earliest work recorded in the book is Kshitish Chandra Chatterji' s 'Some Rules of

Sandhi' (1935). This deals with Piit:tini' s morphophonemic rules and comparable rules of

other descriptions. Cardona, in his two works, studied PiiQinian morphophonemic rules in

comparison with those of other treaties, seeking to extract Piit:tini's principles. His two works

are respectively 'On Pii~zini's morphophonemic principle' (published in Language; Journal of

the Linguistic Society of America, Baltimore 1965) and 'Studies in Indian grammarians, I:

the method of description reflected in fivasutra' (1969).

Madhav Murlidhar Deshpande in his work 'Critical Studies in Indian Grammarians, I: The

Theory of Homogeneity [Siivarl}ya]' (1975) contributed a monograph on PiiQini's concept of

homogeneity and sets of homogeneous (savar~Ja) sounds, in which he deals also in detail with

27

what Piil).iniyas say. James S. Bare studied A~fiidhyiiyf rules in connection with the feature

system considered to be reflected in the Pal).ini's phonological system. The work of Bare,

'Phonetics and Phonology in Piil}ini: The System of Features Implicit in the A~Jiidhyayi'

(1976) appeared in Natural Language Studies Vol. 21, University of Michigan. Work of

Shanti S. Dighe, 'saf!lhitiiyiim I A book on Piil}infya Rules of Sandhi' (1997), is a short and

elementary work concerning Piil).ini's sandhi rules. It is a useful presentation of a

representative group of sutras that concern operations which take place, or are disallowed,

when items are uttered continuously. In his article "Did Piil}ini have a private concept of gul}a

phenomenon?" (1991-92), Gajanana Balakrishna Palsule proposes the thesis that Piil).ini held

both an "official view" and a "private and intuitive view" concerning the gul}a class. After a

long discussion, Cardona disagrees with this thesis saying, 'Piil).ini's "official view" is

concerning his guf}a class is the only one we need deal with and that there is no cogent reason

for seeking to find a "private view" concerning this class'. Sandhi splitting aims at

recognizing the existing words and thus word boundary becomes important. Shivram

Dattatreya Joshi in his article 'The role of boundaries in the A~!iidhyiiyl' (1984) discusses the

boundaries which involve units Pal).ini calls miga, bha, and pada, as well as the boundary at

pause (avasiina). Introduction of miga boundary by Piil).ini he regards as a major step in the

linguistic analysis given by him.

Cardona's work 'Piif}ini: His Work and its Traditions' has organized the rules of A~!iidhyiiyf

according to the category of rules and their operations. The sandhi rules are not listed in

independent category because the phonological changes made by them are not independent of

morphology. The sandhi rules are covered in rules of substitution, augmentation, doubling and

rules of Piil).ini' s derivational system.

Whitney is one of the firsts who wrote Sanskrit grammar in English. Chapter III of his

grammar describes sandhi generation rules in detail. He calls sandhi 'euphonic combination'.

His organization of rules is too different from Piil).ini and his tradition. He has categorized the

sandhi processes according to the sounds which have to undergo change such as 'combination

of final s and r', 'conversion of s to ~' etc. He has also described some important aspects of

Sanskrit morphology which are not commonly seen in the Sanskrit tradition such as general

'principles' of sandhi, and 'permitted finals' in Sanskrit etc.

28

William Sydney Allen has discussed Sanskrit sandhi in part ill of his work Phonetics in

Ancient India (1961). He considers not only Pa~Pni and his followers but almost all works of

phonetics and phonology like sik~iis and priitiiiikhyas. His observation is minute and his view

is critical and comparative on the explanations of the Indian iiistras. He does not explain

those aspects, on which Sanskrit siistras do not say anything, but he discusses siistraic

explanations critically and he is honest in criticizing the siistraic view and its criticism. The

level of minuteness he goes into is necessary and useful for speech recognition and speech

synthesis, for which, grammarians' explanation is not sufficient. All his explanation is based

in PaQinian tradition, priitiiiikhyas, ii~iis and western grammarians who wrote Sanskrit

grammar, but his critical view is his own.

1.6.3 RESEARCH ON FORMALIZING OF SYSTEM OF PA~INI

The following two researches are concerning with formal language and structure of

A~!iidhyiiyf which is much important from the view of computation. S. D. Joshi and Saroja

Bhate in 'The Fundamentals of Anuvrtti' (1984) studied in some detail how anuvrtti operates

in the A~!iidhyiiyf. Pierre-Sylvain Filliozat, in his article "Ellipsis, lopa and anuvrtti" (1993)

first published in Annals of BORI 72-73 (1991 & 1992) goes over major features of natural

language observed in the siitras of the A~!iidhyiiyf. Features of natural language cause

difficulty in formalization of rules.

Anand Mishra (2007) proposes a model for simulating PaQinian System of Sanskrit grammar

in FISCLS. He first defines the sets of phonemes, morphemes and lexemes as basic

components. On the basis of these he defines process of forming sets of language

components. After that he describes models of basic operations. Then through examples, he

describes how his formal model defines different processes. In the last he gives overall layout

of his PaQinian simulator. In his other paper (2009) he extends the same model to a complete

grammatical circle formed by analysis and generation of forms. The process is completed in

mainly four modules- input, analyzer, synthesizer and output. It aims at analyzing input,

checking its siidhutva and generating the Sanskrit forms for use.

P. M. Scharf (2007 & 2009) published two papers in first and third International Symposia on

Sanskrit Computational Linguistics entitled respectively, 'Modeling Pii!Jinian Grammar' and

'Levels in Pa~zini's A~sfiidhyiiyl'. He throws light on the Paf.linian architecture and different

modern interpretation of Paf.lini. He examines the role of semantics and challenges in
29

computerizing them and possibility of modeling Pa.Qini's system in his first work. In both the

works, he discusses different views of levels in Pa.Qi.Qian grammar first introduced by Paul

Kiparsky and J. F. Staal and then by Huben and others. The second paper is mainly the critical

evaluation of different views on levels.

Paul Kiparsky and Staal have first interpreted the Pa.Qinian system from the view of the levels

in 1969. Then he proposed four levels as 'Semantic representations', 'Deep structures',

'Surface structure' and 'Phonological representation'. In 1982 Kiparski revised the levels as

'Semantics', 'Abstract Syntax (e.g. kanikas)', 'Surface structure (morphology)' and

'Phonology'. In 2002, he again revised the levels as 'Semantic information', 'Morpho

syntactic representation', 'Abstract morphological representation' and 'phonological output'

(c.f. Houben, 2009). Later Houben (2009, appendix) modifies this level-model of A~Jiidhyiiyf.

30

CHAPTER TWO

THE SANDHI SYSTEM OF PANINI .

Chapter two

THE SANDHI SYSTEM OF PANINI

2.1 INTRODUCTION

This chapter of the dissertation presents general concept of sandhi in Plil).inian system. The

siitras of sandhi are scattered in A~fiidhyiiyf. Siddhiinta-kaumudf (SK) has categorized them

under prakarm;as of different types of sandhi. However, there are many instances of sound

changes mostly of the internal sandhi type like !latva, are not covered in these prakara!las.

This chapter takes care of such issues and also presents sandhi rules, as much as possible, in

the form of phonological rule writing.

2.2 SANDHI IN SANSKRIT

The word used for sandhi in A~fiidhyayi is sar11hitii and first defined in first chapter as para~z

sannikar~a~z Sa1f1hitii (P 1.4.109). Para!z sannikar~a~ is extreme closeness of sounds, that is

var~1iiniim atiiayita~ sannidhi~z (SK 28). In PaQinian grammar it is not clearly defined whether

sandhi is sound change only on the boundary of morphemes or within the morpheme as well.

The explanation of the rules in the tradition throws some light on it in the examples. The

examples used in Kiiiikii and SK use either complete words (pada) or morphemes to illustrate

sound change. Thus we can say that traditionally sandhi is sound change which occurs when

the two morphemes come together. This area of linguistic study is called morphophonemics.

The traditional meaning of sandhi cannot satisfy the definition of morphophonemics because

morphophonemics includes those sound changes also which take place in distant sounds from

the point of juncture and that is within the morpheme. In other words, if we classify the

processes of sound change into 'external sandhi' and 'internal sandhi', the traditional meaning

of sandhi includes external sandhi only. The most important work which collects (almost all)

sandhi rules together, the Siddhiinta-kaumudi of Bhagoji-dik~ita, also supports this

31

hypothesis. Rules of internal sandhi are not explained in its sandhi prakarm;a. There are the

internal sandhi rules in A~fadhyayf but not in one place. SK also does not keep all of them

together but in different prakaral}as and some rules are scattered in other different

prakaral}as. For example two main sutras of retroflexisation of 'n' are stated under vowel

ending masculine nominal morphology (ajanta-pumlitiga-prakaral}a) - ra~abhya'!l no l}a~

samanapade (P 8.4.1, SK 235) and afkupvatinum-vyavaye'pi (P 8.4.2, SK 197).

2.3 DISTRIBUTION OF SANDHI RULES

The main rule which heads the sandhi topic is in chapter six of A~{adhyayf, and that is -

sm!lhitayam (P 6.1.72). It heads the rules upto P 6.1.158. Four rules (73-76) define conditions

of augmentation of 'tuk' ('t' attached with previous). Next few rules (77-83) are about vowel

to semi-vowel change (yal} and ayadi). Then there are the rules for merging sounds i.e.,

replacement of two sounds by one sound, ekadeia (84-111). gul}a, vrddhi and dlrgha sandhi

come under these. Three rules of 'u' replacement (112-114). Then there are fourteen rules of

no change or prakrtibhava (115-128). Six rules of non-category (129-134) and from 135 to

157 are the rules for augmentation of 'suf' ('s' attach~d to later sound sequence)1
•

Another group of sandhi rules is in the same chapter in third pada headed by similar sutra

smJ7hitayam (P 6.3.114). Rules in this group (P 6.3 .114-135) are applicable in the juncture of

words in formation of compounds. Most of rules do last vowel lengthening of the first word in

compound in specific meanings; the vowels are not lengthened in other meanings. That is why

SK keeps most of these rules in samasasraya-prakara~w and last five in vaidika-prakara~w.

The remaining clusters of sandhi rules are found in last three padas of the A~fadhyayf, that is

tripiidi or asiddha-ka~19a. The rules in P 8.2 are not the rules of sandhi but of morphology, but

some of them apply on sandhi also. Such as sm!1yogantasya lopa(t (P 8.2.23), sasaju~o ru{1 (P

8.2.66). The rules of P 8.3 and 8.4 are all about sandhi. Here it is not a heading rule as in

1 Pande, G. D. (2004:66,67)

32

previously mentioned rule groups, but the similar portion saf!lhitiiyiim inherits from the last

siitra of previous piida - tayor-yviivaci sa,.hitiiyiim (P 8.2.108) which goes till the end of the

chapter and the book (P 8.4.68). Most of the sandhi rules are kept in asiddha-kiilJtJa, which

are to be applied at the end and sequentially. The phonemic component gives the final form of

the language. This is also discussed in the previous chapter while discussing the work of

Kiparsky, Staal, Houben and others regarding levels in Paninian grammar. That is why most

of these rules are supposed to be applied at the end in language generation. These rules are

about consonant sandhi and the rules in chapter six are mainly of vowel sandhi. This section

also has the rules of internal sandhi, retroflexisation of 'n' and 's', doubling etc. The other

purpose of keeping these rules in asiddha section may be to check unnecessary looping and

backtracking. One possibility of such looping is in visarga cycle.

sa-sajiu~o ru~ (8.2.66) kharavasanayorvisatjaniy~

(8.3.15)
visatjaniyasya s~ (8.3.35)

-~~~~~:----- ----------~'-------------~ ,_____ ~::: ____________________ ~-------::::=~

Fig. 2.1 Visarga cycle without asiddha-system

The classification of SK is teaching and application oriented. Therefore many rules of sandhi

are included in other different topics (prakarQl;as) and sandhi topic·includes many of such

rules which are not describing a rule for sound change, but they support the sandhi rules either

by defining a term or as meta-rule.

2.4 SANDHI RULES OF SANSKRIT

Sandhi in Sanskrit is of five types - svara (vowel) sandhi, vyaiijana (consonant) sandhi,

visarga sandhi, prakrti-bhiiva, and sviidi sandhi. Two more types of internal sandhi should be

included as l}atva and :jatva. When last vowel of previous morpheme and first vowel of later

morpheme come together and sound change occurs, the case is called vowel sandhi. The case

of vowel sandhi may be of two types. One, in which one sound is changed and other remains

the same. Second, in which both sounds are replaced with another resulting sound. The latter

33

case is known as ekiideia. First type includes ya~ and ayiidi sandhi, and second type includes

gu~a, vrddhi and dfrgha sandhi, pilrvarilpa and pararilpa sandhi.

When two consonants, or one consonant and one vowel come together and experience change,

it is consonant sandhi. Like vowel sandhi, two sounds can result in two sounds or one sound,

and also some extra sounds can be inserted as the result of morphophonemic process. The

insertion of sound is called iigama. When visarga combines with some other sound, vowel or

consonant, and the sounds experience change, this is visarga sandhi. Nominal inflected forms

are formed by adding sup (su, au, jas, ...) suffixes with the base. When a nominal word ending

in sup suffix combines with other sounds following it, it is case of sviidi sandhi.

2.4.1 VOWEL SANDHI RULES

Vowel sandhi has mainly seven sub-types mentioned above. Prakrtibhiiva takes place in the

conditions of vowel sandhi, so SK keeps it under vowel sandhi topic. Following are the rules

of vowel sandhi.

Rule Al - vowel substituted by semi-vowel (ya~-sandhi)

The siltra is iko ym;aci (P 6.1. 77)

[i,u,r,JJ -7 [y, v,r,l](closest in place) I_ +vowel

Exception: rule A 7- vowel lengthening; rule C 1; rule C2; P 6.1.1 02

When any type of a vowel among [i,u,f,!J is followed by a vowel, it changes to a se~

vowel [y,v,r,l] similar in place of articulation. Exceptions are- when a vowel is followed by

similar (savan:za) vowel; when pluta or pragrhya is followed by a vowel, when first word is

in vocative case; and morphological rule of first two cases - prathamayoft pilrva-savar~w!z (P

6.1.102).

Rule A2- diphthong substituted by vowel + semi-vowel (ayiidi-sandhi)

The siltra is - eco 'yaviiyiiva!z (P 6.1. 78)

[e,o,ai,au] -7 [ay,av,ay,av] (Respectively) I_ +vowel

34

Extension rules - viinto yi pratyaye (P 6.1. 79)

[o,au] 7 [av,av] I _[y](of suffix)

Exception- dhiitostannimittasyaiva (P 6.1.80)~

k~ayyajayyau sakyiirthe (P 6.1.81)~ krayyastadarthe (P 6.1.82)

if([o,au](of dhatu) is due to suffix)

{[o,au](ofdhatu) 7 [av,av] I _[y](ofsuffix)}

[~i,ji](of dhatu)7 [k~ayya,jayya] (meaning liable to) I _[ya](of suffix)

[krl](of dhatu) 7 [krayya] (meaning purpose of)/ _[ya](of suffix)

Exception rule -lopa~ siikalyasya (P 8.3.19)

[y,v] 7 !i1 (optionally)/ [a,a] _+voiced

Exception rule- rule A6; sarvatra vibhii~ii go{z, avmi sphofiiyanasya (P 6.1.122, 123)

[go] 7 unchanged (optionally) or rule A6/ _[/a/]

[go] 7 [gava] (optionally) or rule A6 I _+vowel

When a vowel from [e,o,ai,au] is followed by a vowel, it is respectively changed to

[ay,av,ay,av]. [o,au] are changed to [av,av] also when it is followed by y-beginning suffix, but

if the suffix is after dhiitu, then this change takes place only if it comes due to that particular

dhiitu. [k~i,ji,kii] 7 [k~e,je,kre] 7 [k~ay,jay,kray] if followed by y-beginning suffix [ya] only

if the meaning is 'liable to', otherwise [e] will remain [e].

Rule A3- vowels substituted by gww (gu~w-sandhi)

The siitra is- iid gu~w(z (P 6.1.87)

[a] +vowel -7 [/a/,/e/,/o/] (closest in place)

35

Supporting meta-rule - ural} rapara~ (P 1.1.51)

if([r.U ~ [a,i,u])

{~ ~ [r,l] I [a,i,u] _}

Extension rule - vii supyiipisale~ (P 6.1. 92)

[a](ofprefix) ~ [ar] (optionally) I _[lrl](ofnominal verb)

Exception rules- rule A4; rule A5; rule A 7;

When any type of vowel [a] is followed by another vowel, both are replaced with a

gw:za [lal,/el,/ol] nearest in place of articulation. When [f] or Ul are replaced with [a,i,u], the

replacement is followed by [r] or [l] respectively. Rule A4 (vrddhl), rule A5 (parariipa) and

rule A 7 (dfrgha) are its exceptions. When prefix ending in [a] is followed by a nominal

derived verb (niimadhatu) beginning with [/f/], both vowels are optionally replaced with gw:za

[ar]. It is an exception of vrddhi-sandhi (rule A4).

Rule A4- vowel substituted by vrddhi (vrddhi-sandhl)

The sutra is vrddhireci (P 6.1.88)

[a] [e,o,ai,au] ~ [/at,/ail,/au/] (closest in place)

Supporting meta-rule - ural} rapara(z (P 1.1.51)

if([r,n ~ [a,i,u])

{ ~ -7 [r,l] I [a,i,u] _}

Extension rule- etyedhatyiifhsu (P 6.1.89); (v) ak~iidiihinyiimupasmikhyiinam;

(v) sviidfreri~w[z; (v) priidiiho~ho~hye~ai~ye~u

[a] [u,e,o,ai,au] (of-lin, -iedha, -.Iuthi]) . . -7 [/ai/,/aul]

36

[sva] [Ira,irin] 7 [svaira,svairin]

[a](of [pra]) vowel(of [uha,u<;lha,u<;lhi,e~a,e~ya]) 7 [/ai/,/au/] (closest)

Extension rule- (v) rte ca trtfyii-samiise

[a] [fr/] 7 [iir] /third case compound

Extension rule- (v) pra-vatsa-tara-kambala-vasaniin:za-dasiiniim!l}e

[a](of[pra, vatsa, vatsatara,kambala, vasana,P.la,dasa]) [r] (of[P.la])7 [ar]

Extension rule- upasargiidrti dhiitau (P 6.1.92)

[a](of prefix) [lrl](of dhatu) 7 [ar]

Extension rule- vii supyiipisale?t (P 6.1.92)

[a](ofprefix) [lrl](ofnominal verb) -7 [ar] (optionally)

Exception rules- rule AS; rule A 7;

This is the exception of rule A3. When any type of vowel [a] is followed by vowel

[e,o,ai,au], both are replaced with vrddhi [a,ai,au] closest in place of articulation. When [r] or

OJ is replaced with closest vrddhi [Ia!], it is followed by [r] or [1] respectively. Forms of

[iQ,edha] dhatus beginning with [e,ai] and dhiitu [u~hi] when follow vowel [a], both vowels

are replaced with closest vrddhi. When [sva] is followed by [Ira] or [1rin], the vowels are

replaced by closest vrddhi. When [pra] suffix is followed by [fiha,u9ha,u<;lhi,e~a,e~ya] the

concating vowels are replaced with vrddhi, if e~a and e~ya are forms of dhiitu [i~a]. If these

are forms of dhiitu [1~a], it will be replaced with gu~w [/e/]. In compound of third case, if [a] is

followed by short vowel [lr/], both are replaced with closest VTddhi. When vowel [a] of

[pra,vatsa,vatsatara,kambala,vasana,ma,dasa] is followed by [lr/] of [ma], both vowels are

replaced with closest of VTddhi. When vowel [a] of a prefix is followed by short vowel [lr/] of

a dhiitu, both are replaced by closest vrddhi followed by [r] - [ar]. And if dhiitu is nominal

derived verb (sup-dhiitu) then replacement will be optionally VTddhi [ar] and gw;a [ar].

37

Rule AS - merger in later vowel (parariipa-sandhi)

The sutra is- etii parariipam (6.1.94)

[a](of prefix) [e,o,ai,au](of dhatu) 7 [e,o,ai,au] (respectively)

Extension rule- (v) sakandhviidi~u pararupaf!l viicyam

Last vowel+coda (of [saka, ...]) _ +vowel(x) (of [andhu, ...]) 7 vowel(x)

Extension rule - omiitiosca (P 6.1.95)

[a]_ +vowel (of [om,ail]) 7 vowel (of [om,ail])

Extension rule - avyaktiinukaral)syiita itau (P 6.1.98)

Last[/a/]+coda(of onomatopoeic word) [i](of [iti]) 7 [i]

Exception rule- niimrefjitasyiintyasya tu vii (P 6.1.99)

Doubled word [i](of (iti]) 7 [i] (optionally)

When [a] ending prefix is followed by a dhiitu beginning in [e,o,ai,au], both are

replaced with later sound, or both sounds merge in later sound. [sakandhu, ...] is a fixed list of

fourteen words in which last vowel together with its coda, called !i is merged into later vowel.

[a] followed by [om] merges into its following vowel. [a] followed by prefix [ail] is merged

into later vowel whether it is in its own form or modified into other sound. When

onomatopoeic word is followed by [iti], its !i (last vowel with its coda) merges into following

sound but not if the word is doubled. In doubling only last sound is merged into the following

sound.

Rule A6- merger in prior vowel (parvarupa-sandhi)

The siitra is- ena(1 padiintiidati (P 6.1.1 09)

[e,o,ai,au]# (of inflected form) [/a/] -) [e,o,ai,au]

38

Exception rule - sarvatra vibhii~ii go~, avali sphoJiiyanasya (P 6.1.122, 123);

[o](of inflected form [go]) [/a/] 7 no change (optionally)

[o](of inflected form [go]) [/a/] 7 [o] (optionally)

[o](of inflected form [go]) 7 [ava] I_ [/a/] (optionally)

When vowels [e,o,ai,au] of inflected forms are followed short vowel [/a/], the later

sound is merged into prior sound. Inflected form of [go] when followed by short vowel [/a/],

optionally gets three forms - both unchanged, merger in prior vowel, and [o] changed to

[ava], which together with [/a/] forms [ava].

Rule A7- vowel lengthening (dfrgha-sandhi)

The sutra is- aka!z savan:ze dlrgha~t (P 6.1.101)

saval1)a(V1,V2) 7 place(V1)=place(V2) && manner(V1)=manner(V2)

[a,i,u,r,!] _ +vowel+savafl)a 7 +length+savafl)a

Exception rules- (v) rti savan;e r vii; (v) fti savan:ze! vii

[lr/,/V] [lrl] 7 [lrl]-length (optionally)

[lr/,11/] [/l/] 7 [/l/]-length (optionally)

Extension rule- prathamayo!z purva-savan;ab (P 6.1.1 02)

([a,i,u,r,!J +vowel)first two cases 7 +length+savan;a

Exception rule- niidici (P 6.1.1 04)

not(([a] _vowel-[a])first two cases 7 [a])

When vowel [a,i,u,f,!J is followed by a vowel with similar place and manner of

articulation (sava~w), the both vowels are replaced by long savanya vowel. Vowels [r,!J are

considered as savar~w and m has not long type, so these sounds together result in [f).

39

Optionally, when [r.n are followed by short [lri,IJII both are replaced with short [lrl,l!f] which

is the following vowel. Another rule of lengthening belongs to morphology. In the formation

of nominal forms of first and second case, if vowels [a,i,u,r,!J are followed by a vowel, both

are replaced with long type of prior vowel. This is not the case when [a] is followed by other

non-sava~a vowel.

2.4.2 CONSONANT SANDID RULES

Rule Bl- palatalization of dental (icutva-sandhi)

The siitra is- sto~ §cuniiicu~ (P 8.4.40) (palatalization)

+cons+sib+stop+dental -7 +palatal I_ +cons+sib+stop+palatal

+cons+sib+stop+dental -7 +palatal l+cons+sib+stop+palatal _

Exception rule- siit (P 8.4.44)

+cons+stop+dental -7 not(+palatal) I [s] _

When a dental consonant except semivowel comes in contact with palatal consonant

except semivowel, the dental changes to palatal closest in manner. But when [n] follows [s],

it does not change to palatal.

Rule B2 - retroflexisation of dental (~!utva-sandhi)

The siitra is- ~Junii~_tu~ (P 8.4.41) (retroflexization)

+cons+sib+stop+dental -7 +retroflex I_ +cons+sib+stop+retroflex

Exception rule - na padiintiiJJoraniim (P 8.4.42); to{z ~i (P 8.4.43)

+cons+stop+dental --7 not(+retroflex) I cons+stop+retroflex#_

[nam] --7 [nam] I cons+stop+retroflex# _

+cons+stop+dental --7 not(+retroflex) I_[~]

40

When a dental stop or sibilant consonant comes in contact with retroflex stop or

sibilant, the dental changes to the palatal closest in manner. But when dental follows retroflex

in the end of word, dental does not change into retroflex, but it changes when the following

morpheme is [nam]. Also dental stop does not change to retroflex when followed by retroflex

sibilant[~].

Rule B3 - voiced assimilation and voicinng (jastva-sandhi)

The siitras are - jhaliif!l jas jhasi (P 8.4.53); jhaliif!l jaso 'nte (P 8.2.39)

+cons+sib+stop-nasal7 +stop+voiced-aspirate I_ +stop+voiced-nasal

+cons+sib+stop-nasal 7 +stop+ voiced-aspirate I_#

Exception rule - viivasiine (P 8.4.56)

+cons+sib+stop-nasal 7 +stop+voiced-aspirate I_# (optionally)

+cons+sib+stop-nasal 7 +stop-voiced-aspirate I_# (optionally)

When a consonant except nasal and semivowel is followed by voiced stop except

nasal, or is in the end of word, it changes to voiced unaspirated non-nasal stop closest in the

place of articulation. In the end of sentence, this changes optionally to voiced or unvoiced

unaspirated stop.

Rule B4- unvoiced assimilation (cartva-sandhi)

The sfitra is- khari ca (P 8.4.55)

+cons-sibilant-nasal 7 +stop-voiced-aspirate I_ +stop-voiced-nasal

Exception rule - viivasiine (P 8.4.56) (repeated)

+cons+sib+stop-nasal 7 +stop+voiced-aspirate /_#(optionally)

+cons+sib+stop-nasal7 +stop-voiced-aspirate/_# (optionally)

41

When a consonant except nasal and semivowel is followed by voiced stop except

nasal, it changes to voiced unaspirated stop closest in the place of articulation. In the end of

sentence, this changes optionally to voiced or unvoiced unaspirated stop.

Rule BS- dental semivowel assimilation (t71)

The sutra is- torli (P 8.4.60)

+cons+stop+dental 7 [1] I_ [1]

When dental stop is followed by [1], it changes to [1]. When it is nasal [n], it changes to

nasal [1].

Rule B6 - nasal assimilation (anuniisika-sandhi)

The siltra is- mo'nusviira~ (P 8.3.23)

[m] 7 [rp.] I_#

[m] 7 [rp.] I_ +cons

Extension rule- naiciipadiintasya jhali (P 8.3.24)

[n] 7 [rp.] I_ +cons+stop-nasal+sib, not(end of word)

Extension rule- anusviirasya yayi parasavar~za?z (P 8.4.58)

[rp.] 7 +nasal+savarna(of following) I_ +cons+stop+semivowel

Exception rule- vii padiintasya (P 8.4.59)

[rp.] 7 (rp.] I_# +cons+stop+semivowel

Exception rule - mo riiji samab kvau (P 8.2.35)

[m] 7 [m] I_ r(of -v'raja+kvip=ra!)

42

Exception rule - he mapare vii (P 8.3.26)

[m] 7 [m] I_ [h] [m] (optionally)

Exception rule- (v) yavalapare yavala veti vaktavyam

[m] 7 [y,v,l]+nasal I_ [h] [y,v,l] (optionally)

Exception rule - napare na~ (P 8.3.27)

[m] 7 [n] I_ [h] [n] (optionally)

When [m] is followed by a consonant, or [n] follows a non nasal consonant except

semivowels within a word, it changes to anusvara [q1]. The anusvara changes to nasal stop

closer to the following consonant, but in the end of word, it may optionally remain anusvara

if it is followed by a sibilant or [h]. Anusvara or [m] is always anusvara when followed by

sibilant. When [m] is followed by [h], one, it changes to anusvara and optionally it changes to

nasal consonant similar (savan:za) to the consonant following [h]. i.e., if [h] is followed by

[m,n,y,v,l], [m] changes to [m,n] or nasal [y,v,l].

Rule B7- consonant insertion or augmentation (agama)

The siitra for 'k' and ·r insertion- lil}o~z kuk fuk sari (P 8.3.28)

[Ii] 7 + _[k] I_ +cons+sibilant (optionally)

I_ +cons+sibilant (optionally)

Extension rule- (v) cayo dvitlyii!z sari pau~karasiideriti viicyam

+cons+stop-voiced-aspirate 7 +aspirate I_ +cons+sib (optionally)

The siitra for 'dh' insertion -ifa!z si dhuf (P 8.3.28)

[s] 7 + [dh]_ I [9] _(optionally)

43

Extension rule - nasca (P 8.3.30)

[s] -7 + [dh]_ I [n] _(optionally)

The sutra for 't' insertio~ - si tuk (P 8.3.31)

[n] -7 + _[t] I _[s] (optionally)

Extension rule- che ca (P 6.1.73)

+vowel-length -7 + _[t] I .Jch]

Extension rule- iilimiilioica (P 6.1.74)

[a](of [an,man]) -7 + _[t] I _[ch]

Extension rule- dfrghat (P 6.1.75)

+vowel+length -7 + _[t] I _[ch]

Exception rule- padantadva (P 6.1.76)

+vowel-length _ -7 + _[t] I_# [ch] (optionally)

The sutra for 'Ii', 'Q' and 'n' insertion- namo hrasviidaci namu~mityam (P 8.3.32i

[Ii,Q,n] -7 + [Ii,Q,nL I +vowel-length_ +vowel

[Q]

[n]

-7 + [QL

-7 + [n]_

I +vowel-length_ +vowel

I +vowel-length _+vowel

The sutra for anusviira insertion- anuniisikiitparo'nusviiralz (P 8.3.4)

+nasal -7 + _[rp.] I _[ru]

2 This rule can be regarded as the rule of doubling

44

When [Ii,Q.] is followed by sibilant, similar (savaf7}a) unvoiced unaspirated stop is

inserted attached after it. According to pau~karasiidi, unvoiced unaspirated stop can

optionally become aspirated. When [s] is followed by [<;l,n], [dh] comes attached before it.

When [n] is followed by [s], [t] comes attached after it. After vowel followed by [ch], [t] is

always attached to it, but after long vowel in the end of word, it is optionally inserted. After

[a] of [aii,maii] followed by [ch], it is always inserted. Nasal stops of dental, retroflex and

velar group when followed by a vowel and follow a short vowel, insert a similar nasal before

them. This rule can be said of doubling. When a nasal is followed by [ru], an anusviira is

inserted between them.

Rule BS- consonant doubling (dvitva)

The siitra is - aco rahiibhyiif!l dve (P 8.4.46)

+cons-[h] -7 double I +vowel +[r,h] _

Extension rule- anaci ca (P 8.4.47)

+cons-[h] -7 double I +vowel -vowel

Extension rule- (v) saraf:z khaya!z

+cons+stop-voiced -7 double I +cons+sibilant

Exception rule - niidinyiikrose putrasya (P 8.4.48)

[t] -7 not double I in [putra adini] (meaning anger)

[t] -7 double I in [putra adini] (meaning other than anger)

Exception rule- triprabhrti~u siika_tiiyanasya (P 8.4.50)

+cons-[h] -7 double I_ +cons +cons (optionally)

+cons-[h] -7 double I_ +cons +cons +cons (optionally)

45

Exception rule - dfrghiidiiciiryiit;iim (P8.4.52)

+cons-[h] 7 not double I +vowel+length _ +cons

When a consonant except [h] comes after [r,h] followed by a vowel, it doubles. That

consonant if comes directly after vowel and is followed by consonant, it doubles. In the

similar environment, if there is cluster (smrzyoga) of three or more consonants, the consonant

is optionally doubled. Voiceless stops also double after sibilants. In compound with [adini],

the [t] of [putra] is not doubled if it gives sense of anger. In other senses, it also doubles.

Same is if other word followed by [putra]. Mter a long vowel, a consonant is never doubled.

Rule B9- nasal to ru 7 visarga (then to's' and other forms)

The main siltra for nasal to 'ru' change is- sama~ sufi (P 8.3.5)

[m](of [sam]) 7 [ru] I_ [s](inserted su~ before Iq)3

Extension rule- puma~ khayyampare (P 8.3.6)

[m](of [pum]) 7 [ru] I_ +cons-voiced +voiced-(+stops-nasal)

Extension rule- (v) Sa1J1pw,nkiiniir[l so vaktavya~1 samo vii-lopameke

[m](of [sam,pum]) 7 s I_ +cons-voiced

[m](of [sam,pum]) -) li1 I_ +cons-voiced

Extension rule- naschavyaprasiin (P 8.3.7)

[n]-) [ru] I_ +cons+stop-velar-labial-voiced +voiced-(+stops-nasal)

Extension rule - nj'n pe (P 8.3.1 0)

[n](of [nfn]) -) [ru] I _[p]

3 sam-paribhyiim karotau bhil,va~ze!sam-paryupebhya?z karotau bhii~a~ze (Pande:2004) (P 6.1.137)

46

Extension rule- kiiniimre{lite (P 8.3.7)

[n](of [kan]) -7 [ru] I _[kan] (doubled word)

When [sam] is followed by inserted [s] sound, as is added to [v'Jq] after [sam,pari], the

last nasal sound becomes [ru]. Last nasal of [pum] is also changed to [ru] if it is followed by

unvoiced consonant followed by vowel, semivowel, nasal stop or [h]. [m] of [sam,pum] is

optionally changed to [s] or elided also. [n] other than that of [prasan] becomes [ru] followed

by dental, retroflex, palatal voiceless stop. Last sound of [nfn] becomes [ru] when followed by

[p]. When [kan] is doubled, its last sound becomes [ru].

Rule BlO- consonant elision (lopa)

The siitra of ending consonant elision is- sa'!zyogiintasya lopaJ:t (P 8.2.23)

+cons -7 0 I +cons _#

Exception rule- (v) ya!J.a?z prati~edho viicya?z

+cons-semivowel -7 0 I +cons_#

Extension rule -lopaJ:t siikalyasya (P 8.3.19)

[v,y] -7 0 I [a]_# (optionally)

Extension rule- oto giirgyasya (P 8.3.20)

[v,y]-lax -7 0 I [lol] _#

[v,y]+lax -7 no change I [lol] _#

Extension rule- uiii ca pade (P 8.3.21)

[v,y] -7 0 I_# [u] (inflected [un])

Extension rule- hali sarveSiim (P 8.3.22)

[y] -7 s;; I o(of [bho,bhago,agho]) _ +cons

47

[y] ~ liS I [Ia/] _+cons

The sutra of within-word elision is - halo yamiif!l yami lopa~ (P 8.4.64)

+cons+sibilant+stop+nasal ~ liS I +cons _ +cons+sibilant+stop+nasal

Extension rule- jharo jhari savan:ze (P 8.4.65)

+cons+stop-nasal+sibilant -7 liS I +cons _ +cons+sava.n;ta

When there is cluster of consonants in the end, the last sound is elided but if that

sound is semivowel, it is not elided. After [a], [y,v] of word end is optionally elided if

followed by voiced sound. After [bho,bhago,agho] or short vowel [Ia/], the same are elided

when followed by a consonant, or by inflected form [u]. After [lol], they are elided if they are

lax, otherwise they are not changed.

2.4.3 PRAK],{TIBHAVA RULES

Rule Cl - pluta and pragrhya followed by vowel

The sutra is- pluta-prag_ryhii aci nityam (P 6.1.125)

+vowel+protracted -7 no change I_ +vowel

+vowel+pragrhya ~ no change I_ +vowel

The whole prakrtibhiiva applies in the environment similar to required for vowel

sandhi. When a pluta or protracted vowel, or pragrhya word is followed by a vowel, both

remain unchanged. Pluta is defined in 7 sutras including iikiilo 'jjhrasvadfrghapluta!z (P

1.2.27) and pragrhya is defined in 7 siitras.

Rule C2 - sandhi restriction and vowel shortening

The siitra is - iko 'savar~1e siikalyasya hrasvasca (P 6. 1 .127)

[i,u,r,n

[i,u,r,n

~ -length I_# +vowel-savan)a (optionally)

~no change I_# +vowe1-savarl)a (optionally)

48

Extension rule- rtJaka~ (P 6.1.128)

[a,i,u,r,n 7 -length I_# [lrl] (optionally)

[a,i,u,r,n 7 no change I_# [lrl] (optionally)

When a vowel from [i,u,f,!,J at the end of word is followed by non-similar vowel, it

does not conjunct and it optionally becomes short. When these vowels and [a] at the end of

word are followed by short vowel [lrl], then also they do not combine and first vowel

becomes short. This is also applicable in compound.

Rule C3 - sandhi restriction and nasalization

The siitra is - af}O 'pragrhyasyiinuniisika~ (P 8.4.57)

Primary vowel-pragrhya 7 +nasal I_# (optionally)

Primary vowel-pragrhya 7 -nasal I _# (optionally)

Primary vowels at the end of words other than pragrhya do not combine to the later

and optionally they become nasal.

2.4.4 VISARGA SANDHI RULES

Rule Dl - visarga to dental sibilant

The sutra is- visarjanfyasya sa!t (P 8.3.34)

[h) 7 [s] I_ +cons-voice

Exception rule- rule D2; rule D3; rule D5;

Extension rule- so'padiidau (P 8.3.38)

[~] 7 [s] I_ +cons+stop+velar+labial (not beginning of word)

Extension rule - namaspurasorgatyo!z (P 8.3.40)

[~](of [namaJ:l,puraJ:l]) 7 [s] I_ verb (compound)

49

Exception rule - tiraso 'nyatarasyiim (P 8.3.42)

[~](of [tira]).]) ~ [s] I_ +cons+stop+velar+labial (optionally)

Extension rule - at a~ krkamikar!'sakumbhapiitrakusiikaTI}f~anavyayasya(P 8.3 .46)

[~](not of indeclinable) ~ [s] /[/a/]_ [lq,kami ...] (in compound)

When visarga is followed by an unvoiced vowel, it changes to dental sibilant which

later gets other formations. But when it is followed by velar, it changes to jihviimiilfya and

when followed by labial stop, it changes to upadhmiinfya. When it is followed by sibilant, it

optionally changes to dental sibilant and optionally it may remain visarga. When visarga is

followed by a sequence of sibilant and unvoiced consonant, it is optionally elided. When

visarga is followed by velar or labial unvoiced stops, not in beginning of word, it changes to

[s]. In the same condition, visarga of [tiras] is optionally changed to [s] or remains visarga.

Visarga of [nama~,pura1).] change to [s] if they are gati i.e., indeclinable followed by verb

beginning with velar or labial stop. Visarga of a word other than indeclinable after short

vowel [/a/] is changed to [s] when followed by any word or form of [lq, kami, karp.sa,

kumbha, patra, kusa, kafi)I].

Rule D2 - visarga to retroflex sibilant

The siitra is- il:za!z ~a~ (P 8.3.39)

[}_1] -7 [~] I [i,u,r,!J _ +cons+stop+velar+labial (not beginning of word)

Exception rule- idudupadhasya ciipratyayasya (P 8.3.41)

[}_l](not of suffix) -7 [~] I [li!,lul] _ +cons+stop+velar+labial

Exception rule- dvistrifcaturiti krtvo'rthe (P 8.3.43)

[}_l](of [dvis,tris,catur]) -7 [~] I_ +cons+stop+velar+labial

(meaning times) (optionally)

so

Exception rule- isusoJ:t siimarthye (P 8.3.44)

[~](of [is,us]) 7 [~] I _ +cons+stop+velar+labial (meaning ability)

(optionally)

Extension rule- nityaf!l samiise'nuttarapadasya (P 8.3.41)

[~](of [is, us]) 7 [~] I_ +cons+stop+velar+labial (in compound)

(_is, _us is not following word/is first word)

Visarga after [i,u,r,n followed by a velar or labial stop only, not beginning the word

changes to retroflex sibilant. If the visarga follows short [Iii ,lui] of a word without suffix, then

it changes to [~] in the same condition in beginning of word also. Visarga of [dvis, tris, catur]

changes to [~] only in meaning of repetition (how many times) optionally, otherwise remains

visarga. Visarga of word ending in [is, us] changes optionally to the same in meaning of

ability only. But if the word is in compound and not following another word, it always

changes to[~].

Rule D3- visarga tojihviimullya and upadhmiinlya (':')

The sutra is- kupvo{t :ka:pau ca (P 8.3.37)

[~] -7 [:(k)] I_ +cons+stop+velar

[~] -7 [:(p)] I_ +cons+stop+labial

Visarga is when followed by velar stop (voiceless), it changes to jihviimi1llya4 and

when followed by labial stop, it changes to upadhmiinlya5
.

Rule D4- visarga to 'r'

The s1Jtra is- ro'supi (P 8.2.69)

[n](of [ahan]) -7 r I_ not(nominal inflection suffix)

4 Sound before k, kh similar to half visarga
5 Sound before p, ph similar to half visarga

51

Exception rule- (v) riipariitrirathantare~u rutvaf!l viicyam

[n](of [ahan]) 7 [ru] I_ [rupa,ratri,rathantara]

Extension rule- (v) ahariidfniif!l patyiidi~u vii rephal;

[n](of [ahan, ...]) 7 [r] I_ [pati, ...] (optionally)

Ending of [ahan] changes to [r] when followed by a word different from nominal

inflection suffix. Before nominal suffix, it changes to [ru]. When [ahan] is followed by [rupa,

ratri, rathantara] its last sound [n] changes to [ru]. When word from group of [ahan] is

followed by group of [pati] etc., it is optionally changed to [r] or [ru].

Rule DS - visarga unchanged

The siitra is - iarpare visarjanfyaJ; (P 8.3.35)

[~] 7 [~] I_ +cons-voice +cons+sibilant

Exception rule- vii sari (P 8.3.36)

[~] 7 [~] I_ +cons+sibilant (optionally)

When visarga is followed by a sequence of unvoiced consonant and sibilant, it

remains visarga, but if it is followed by sibilant, it optionally changes to dental sibilant and

optionally it may remain visarga.

Rule D6- visarga elision (/opa)

The viirtika is- (v) kharpare sari vii visargalopo vaktavya(1

[~] -7 Ill I_ +cons+sibilant +cons-voice (optionally)

When visarga is followed by a sequence of sibilant and unvoiced consonant, it is

optionally elided.

52

2.4.5 SV ADI SANDID RULES

Rule El - s of nominal suffix to ru

The sutra is - sasaju~o ru~ (P 8.2.66)

[s](of suffix [su]) -7 [ru] I_#

[~](of [saju~]) -7 [ru] I_#

Exception rule- elision of's'- so'ci lope cetpiidapurm:zam (P 6.1.134)

[s](of [tad+su]-7[sas]) -7 (I) I_# +vowel(elision required for prosody)

Exception rule- rule D4;

Sibilant endings of nominal inflectional suffix and word [saju~] change to [ru] when in

the end of word. If [s] of [tad s, etad s] form is required to delete to fit prosody, then it is

elided. Ending of word [ahan] also changes to [ru] when followed by nominal suffix. Other

places it changes to [r]. When [ahan] is followed by [n1pa, riitri, rathantara] its last sound [n]

changes to [ru]. When word from group of [ahan] is followed by group of [pati] etc., it is

optionally changed to [r] or [ru].

Rule E2 - ru to y or elision -7 u

The siitra is- (ru -7 y)- bhobhagoaghoapurvasya yo'si (P 8.3.17)

[ru] -7 [y] I [o](of [bho,bhago,agho]) _+voiced

[ru] -7 [y] I [Ia!] _ +voiced

Extension rule - vyorlaghuprayatnatara{z siikafiiyanasya (P 8.3.18)

[v,y] -7 [v,y]+lax I_# (optionally)

[v,y] -7 [v,y]-lax I_# (optionally)

Extension rule - lopa~z siikalyasya (P 8.3.19) (repeated from rule B 10)

53

[v,y] 7 S?) I [a]_# (optionally)

Extension rule- oto giirgyasya (P 8.3.20) (repeated from rule BlO)

[v,y]-lax 7 S?) I [/of]_#

[v,y]+lax 7 no change I [/of] _#

Extension rule- uiii ca pade (P 8.3.21) (repeated from rule BlO)

[v,y] 7 S?) I_# [u] (inflected [uii])

Extension rule- hali sarvesiim (P 8.3.22) (repeated from rule BlO)

[y] 7 S?) I [o](of[bho,bhago,agho]) _+cons

[y] 7 S?) I [Ia!] _ +cons

When [ru] follows [bho, bhago, agho] words or [/a/] of a word, and is followed by

voiced sound, it changes to [y]. When it is followed by a consonant, it is elided. After [a],

[y, v] of word end is optionally deleted if followed by voiced sound. In the end of inflection,

[v,y] optionally become lax, and after [/of], lax [y,v] is elided. [y,v] in the end of word is also

elided when followed by inflected word [u].

Rule E3- a+ru to a+u 7 o

The siitra is- ato roraplutiidaplute (P 6.1.113)

[r](of [ru]) 7 [u] /[/al]_[/al]

Extension rule- ha.fi ca (P 6.1.114)

[r](of [ru]) -7 [u] I [Ia!] _ +cons+voiced

After short vowel [/a/], [r] (of [ru]) is changed to [u] when followed by short [/a/] or a

voiced consonant.

54

CHAPTER THREE

COMPUTATIONAL PROCESSING OF SANDHI:

ISSUES AND CHALLENGES

Chapter three

COMPUTATIONAL PROCESSING OF SANDHI:

ISSUES AND CHALLENGES

3.1 INTRODUCTION

This chapter discusses the complexities inherent in the sandhi analysis of Sanskrit language.

Some of them may be applied to language in general but most are specific to Sanskrit because

of the unique properties of this language. The chapter also describes the basic algorithm for

reverse sandhi computation to develop a minimum working system for it. Thereafter certain

issues are presented which arise while processing sandhi through computer. An advanced

algorithm is also presented to meet these challenges. Finally, the chapter presents some still

un-resolved challenges.

3.2 COMPLEXITY OF SANSKRIT SANDHI

As as a language becomes more and more systematic, it tends to become more complex. The

sandhi formulations of Sanskrit as described by Panini are very complex from the point of

view of computer processing. Most of the problems of sandhi processing stem from the very

nature of Sanskrit language and the remaining are related to the limits of computer

processing. The significant problems in the sandhi processing by computers are the following.

3.2.1 INFINITELY LONG STRING

Sanskrit morphology allows very long words, which could, from the point of computer

algorithm, be infinitely long. . Sandhi will take place in most cases where more than one

word is used in continuum. There are however cases where just string concatenation occurs

without sound modification (sandhi). In many places, sandhi is compulsory but it is optional

in sentence .. Some prose texts of Sanskrit as Kiidambarf and Dafakumiiracaritam are good

examples of this feature of Sanskrit. A single sentence in Kiidambarf can run into several

pages. Some examples from Kadambari are as follows-

55

"1~s~crftffi1: (1 06 char) ... 1 (pg 30)

3.2.2 VERY SMALL SIZE OF WORDS

The Sanskrit language has a large number of small words. which makes the identification of

such words in continuous string very difficult. Almost all verbs are of single syllable and so

are many particles, prefixes etc of one letter only .-And these are often widely used cases

making it difficult to decide if they are independent words or part of other words. That a word

has to be of certain minimum length to qualify for Sandhi processing can be made in to a

useful criterion. But where the smallest wprd is one character long, the criterion will become

void every character in the the string will be tried for a word. Verb roots like ;rr7[; q'9, P!Tetc.

and pronouns like lf:, m; nc=[. a:r:, .#etc. are of one syllable but many are of one character as

the dhiitus ?, -'1[and indeclinables 4. ;;r, JfT, 3 etc .. Some longer dhiitus get reduced to one

character as dT, ;;r, c;etc. There are more interesting cases in which more than one morphemes

appears as one character after sandhi for example, prefix .JIT + dhiitu ~(U[}. Their separate

recognition is required in the places like siva+ehi = sivehi. Here 'e' sound is result of three

sounds combined into one.

56

3.2.3 MULTIPLE COMBINATIONS LEADING TO ONE RESULT

There are many combinations and contexts of sounds where the resultant sounds appear

similar. One sound sequence is result of many sound orders, In the way of arriving basic

sounds from resultant sounds, many sound sequences correlate it. For example, a voiced

unaspirated stop results if a non-nasal stop consonant or a homorganic sibilant is followed by

a voiced non-nasal stop according to jhalii1rz jas jhasi (P 8.4.53). According to sto~ scunii

scu~ (P 8.4.40), the palatal sound results if a dental is followed by a palatal. Now both these

rules cam apply in the generation of a sound. For example, /j/ can be a result of 8.4.53 as well

as 8.4.40. Third consonant of palatal stop class also can be result of four consonants of dental

class and dental sibilant. This can lead to several many-to-one cases and therefore make

reverse processing more complex.

3.2.4 SIMPLE CONCATENATION OF SOUNDS

Generally sandhi is compulsory between morphemes within the word and optional between

words in the sentence. But there are the cases where- there is simple concatenation. This case

is different from prakrtibhiiva. In prak.rtibhiiva, there is a possibility of sandhi but it is

restricted by rules while in this cases of simple concatenation, the words are joined together

without sandhi. Mostly this is the case with consonant ending words followed by vowel in the

next word - ajjhlnm.n pare~Ja SaJJlyojyam. This condition requires checking the possibility of

occurrence of words in such environments before trying any sandhi rule. And this has to be

done after each character due to the fact that minimum possible length of the word could be

just a single letter. This is the problem of deciding whether a rule is to be applied here or not.

For example, ar=ci has two words (ar=ci fj1!fCi[JfllT<[DJ(f~iiviisyopani~ad)) and there is no sandhi

in fi&Jil?tf0?<Hiil\'i but simple concatenations of constituents 8lfTJ7 Jlfc'i-Frior 3CTR1.
..:J .:J .:'J

3.2.5 DEVANAGARI UNICODE IS NOT PHONEMIC

Unicode writing system is syllabic and not phonemic. There are some sounds which appear

differently, like vowel as in their nominal form and miitrii. Vowel /a/ not in the beginning of

the word does not appear as separate character. Pure consonants and consonants with /a/

sound have reverse situation in mapping the writing and the sound systems. Pure consonants

57

parallel to one phoneme appears as two characters, a nominal character with halanta; whereas

consonant with /a/ sound, two phonemes appear as single character, a nominal consonant

character. When a consonant is concatenated with consonant, it is convenient that though not

in display, previous consonant is separately recognizable by computer in the form of two

characters. But when consonant is concatenated by vowel sound, pure consonant with halanta

does not exist. In case of vowels except /a/, the presence of vowels is indicated by its miitrii,

but in the case of vowel /a/, no such marker exists. For example, in the examples above,

unlike ({ ({ in ''CI'FCf', Jt 3f and Jt 3 do not exist explicitly in lf and ~respectively.

3.2.6 INFLECTIONS WITHIN THE SANDHI STRING

Identification of word is made by vocabulary, both by human beings and machines. For a

machine, it is the lexicon given to it or automatically generated. Unlike humans, a machine

cannot have all words with inflected forms in its lexicon. To recognize inflected form,

recognition of inflection is required. Here again there are two possibilities- whether there will

be inflections or not. For example, clff:JOt.-01fCt and ~~- If the sandhi is within the word,

like in a compound, there may be inflection (as 31.-tol<'lit\1) or may not be (as ~~). But if

the sandhi is between the words, it is more likely that there is a suffix. The case of prefix is

similar. This requires any sandhi processing to identify the inflections prefixes/suffixes etc

before validating the word in case the word is not found in the dictionary.

3.2.7 VARYING SIZE OF AFFIXATION

When suffix identification is required, then the varying size of suffix causes difficulty. Size of

suffix can vary from zero to length one less than the word, because there is a possibility of a

chain of derivational and inflectional suffixes. Sometimes the length of suffix can be said to

be negative because they do not add anything after the base but reduce some sound or sounds

like inn-ending bases in neuter gender-~. ~-There is no such problem where the suffix

length is zero. Sometimes it is confusing how much of the end of the word is suffix. For

example in a bhyam-ending words, the possible suffix may appear to be any of bhyam (like in

haribhyam), yam (like in ramayam), am (like in satam) and m (like in vidyam). All possible

lengths are to be checked for identification of suffix to validate the segment. Identification of

58

2a

l_QJJOMGq !J1~2 COUAGll!!OU Ol_ Ml~!~U'fi 92 !JlG J9U'firm'fiG ~2 2bO](GU . .LJ19! ~2 MJ1A !JlG lfJjG2 Ol_ 29UqJ1~

HOW9U2 UGAGL 2bG9](MOLq p). MOLq· JU2!G9q !JlGA 2bG9](~U COU!)UflflW . .LJlG 29ll2](l~! Ml~!Gl2

.LJlG 2Ull2](l~! /1\l~!~U'fi 2A2!GW ~2 WOLG bJlOUG!!C rruq !ll !J1!2' !JlG 2C~b! l_OJJOM2 !JlG 2bGGcp·

~:r~·Jo COJAAEJAJJOJA O}i. COJAJJJADOD2 (2VIfiHIJ.V) Mffll.IJAC

ro q~cqourrtl.' pnr uor qG2!LGq·

:mq AUJ!qur~;q n ±1.9: ~~ ~ ~~ ±1.9: ~ 1l.lli: ~ ~ 1l.lli: ~ 1l.lli. VII 9LG couGq 9ccotq!ufi

!0 CJ1002G OUG 2Gr 2GG 9 2!WbJG GX9WbJG Ol_ OAGL A9J~qrrqou- If 2!WbJG 2!l!ll'fi ~ C9U pG 2bJ!!

2GJGC!Gq OU !JlG p92!2 Ol_ LGJGA9UCG rruq COU!GXf rrrtfiGL !JlG UOWpGl Ol_ 2G!2' P!fi'fiGL !JlG CJ19JJGUfiG

OUG Ofl!bO! !0 l_fll!JlGl 9U9JAS'G !JlG !GXf lflUOUfi !JlG UflWpGL2 Ol_ 2G!2' OUG 2G! Ol_ 2GfiWGU!2 ~2 !0 pG

!Ubnr 2!L!Ufi· .LJlG 2A2!GW2 9M9!!!llfi !JlG OO!bfl! Ol_ 29UqJ1! 9U9JAS'Gl' J!](G WOIDJ1-9U9JAS'GL2' UGGq

Ol_ A9J!q9!Gq 2GfiWGU!9f!OU2. lJlG UflWpGl Ol_ 2G!2 !2 q!LGC!JA bLObOL!!OU9J !0 !JlG JGUfi!Jl Ol_ !JlG

bO!ll!2' W9UA LOflUq2 Ol_ bLOCG22!llfi' A9J!q9f!OU Ol_ nuqG2!LGq MOLq2 - 9JJ !pG2G JG9q !0 9 J9LfiG 2G!

!qGU!!l_A!Ufi 9H.!X9!!0U !0 A9J!q9!G /1\0tq· ybbJA!llfi 9 UflWpGL Ol_ LnJG2' 2GAGL9J b022!PJG 29Uqp!

MOLq2 M!!POfl! 29UqJ1! 9U9JA2!2' l_!Uq!ufi MOLq2 p). 9bbJA!llfi LOJG 9Uq A9J!q9!!llfi 2GfiWGU!2' 9Uq

.LPG !qGU!!l_!C9f!OU bLOCG22 Ol_ MOLq2 !U 2!L!Ufi UGGq2 !0 LOU !U 9! JG92! !plGG M9A2 - l_!Uq!ufi

T~·() WVJAli. rOOh2 CVD2IJAC OAEK-CEJAEHV JJOJA

2!L!Ufi 9Uq !!JJ 9JJ !pG 2GfiWGU!2 9LG A9J!q9!Gq·

A9J!q9!Gq !pGU !qGU!!l_A!Ufi 9tt!X9!!0U rruq A9J!q9f!Ufi· .LP!2 !2 !0 pG COU!!UflGq !!JJ !pG GUq Ol_ !pG

!0 !pG JOOb l_Ol l_!llq!Ufi !pG MOLq M!!POfl! 29UqJ1!' 9bbJA!Ufi LnJG 9Uq A9J!q9f!Uli' ~JUq !l_ UO!

!U !pG JGX!COU 9Uq 9JJ Ol_ !pGW Wfl2! UO! pG qG2!l9pJG . .LPG MOLq lU9A 9fi9!U pG LGdfl!LGq !0 fio !U

bLOCG22 fiOG2 JOUfiGL 92 !PG 2!L!Ufi fiOG2 JOUfiGL . .LJ1fl2 W9UA MOLq2 M!JJ pG A9J!q9!Gq !l_ !pGA GX!2!

29Uqp! J!](G fl'l.?f";J.r-fa'J.Jfllf JU !P9! C92G' !pG J9!Gl 2GfiWGU! !2 9fi9!U bLOCG22Gq l_Ol 29Uqp! rruq !P!2

!ptOnfip q!Cf!OUSLA 9Uq Sl_l_!X CpGc](· .LJlGLG 9LG l_fll!pGL b022!P!Hf!G2 Ol_ lUOLG !p9U OUG bO!U! Ol_

JApGU 9 LnJG !2 9bbJ!Gq 9! 9 bO!Uf !! !2 q!A!qGq !ll!O !MO 2GfiWGU!2 guq porp 9LG !0 pG A9J!q9!Gq

J"S"S .A VriDV .LIOJA OE. flJADE2IKED 2ECJiiiEJAJ.2

!qGU!!l_!C9f!OU 9LG q!2Cfl22Gq !U MOL}(Of. 2np92p (:)()()(?)·

UGfi9!!AG JGUfi!p 2fltl.!XG2 lUGUf!OUGq 9pOAG !2 l9!pGL lUOLG q!l_l_!CflJf bJ.OpJGlU2 IU 2fltt!X

in Sanskrit are explicitly described and are applied in writing system also. On the one hand, it

makes thelanguage more compact and precise, on the other, it poses difficulties in formally

processing the written text. But from the view of speech processing, the correspondence of

speech and writing system has obvious advantages.

3.3 BASIC ALGORITHM OF SANDHI PROCESSING

Sachin (2007) presents a basic algorithm of sandhi analysis and its system constituents. The

modules of this system includes rule base, verb database, dictionary or lexicon, proper names

database, avyaya database and sandhi example base. It also includes supporting systems like

subanta analyzer, verb analyzer. Other constituents are technical - basic software and

programming language and objects. He has implemented only vowel sandhi analysis system.

Process flow of his system (as described in the dissertation) is as follows.

input Sanskrit text
1

viccheda eligibility tests
(pre-processing)

1
subanta processing

!
fixed list checking

!
search of sandhi marker and sandhi patterns

(sandhi rule base)
1

generate possible solutions
(result generator)

!
search the dictionary

!
search the results in the corpora (if not found in the dictionary)

l
output (segmented text)

Fig. 3.1 - vowel sandhi analysis system design by Sachin

Sachin (2007) in his dissertation under supervision of Dr. Girish Nath Jha describes the

implemented analysis procedure as following.
60

"The analysis procedure of the system uses lexical lookup method as well as

rule base method. Before sandhi analysis process, pre-processing, lexical

search of sandhi string in sandhi example base and subanta-analysis takes place

respectively. Pre-processing will mark punctuations in the input. After that, the

program checks the sandhi example base. This example base contains words of

sandhi exceptions (viirttika list) and commonly occurring sandhi strings

(example list) with their split forms. These words are checked first to get their

split forms without parsing each word for processing. Although the extent and

criteria of storing words in example database will always be a limitation, but

still this will be useful as it will save processing time for the stored words and

step-up the accuracy of the result. After lexical search, subanta analyzer gets

the case terminations (vibhaktz) separated from the base word (priitipadika).

Subanta analyzer also has a function to look into lexicon for verb and avyaya

words to exclude them from subanta and sandhi processing. The subanta

analysis will be helpful in the validation of the split words generated through

reverse sandhi analysis as the Sanskrit words in lexicon are stored in

priitipadika form. The reason to accumulate the words in priitipadika form is

that sandhi-derived words in input Sanskrit text may have any of the case

terminations. After subanta-normalization of input text, the system will look

for fixed word list of place name, nouns and MWSDD. The words found in

these resources will be let off from processing. The sandhi recognition and

analysis will be according to the process outlined in the chapter III."

His rule base is in the form of

Marker=pattern:(sandhi name, sandhi siJtra)

Some example from his rule base

s= +Jf:('tc§'6qfi~U, Q5-:qc;lcrrl1Cikl);c-r<::r=;~+ :(3-F41R\fl~ ~s<rcrmrcf:);

c-n::r=·:~+Jf:(3-ilfiR\tll?tr ~s<rcrmrcf:);<l=,~+ :(W:liR\fl~ ~s<rcrmrcf:);

'lf'=;)+Jf:(3-FliR\fl~ ~s~:);'lf'=;:\)+ :(~ ~ $Cfl)lfolfil);<l=di+Jf:(~ ~

$Cfl1lfolfil); <l=P+ :(~ ~ $chl 'lf'O'I'Rr);<l=P+Jf:(~ ~ $Cfi)lfolfil);

61

cr=;;+3f:('lJUI ~ ~ ~};C{=,:{+ :(~ ~ ~J.m;q qfunu)" 'tf};q:=cit+ :(~

~ ~)/= +~:(JIUFHfa'tr 3nc; 1JUT:);,)= +~:(JIOI{ifa'tr 3nc; 1JUT:);;)=oT~:(JIOI'Hfa:'tr
~ ~~ ~ ~~ ~

~ 1JUT:)·;)=Of+2";(JIOI{ifr'tr 3{g 1JUT:)·;)= H!:(4'<~4'Hfr'tr ~ ~/.,~;OR=:. ' y ..)')' ' ... J11CI"11:>.1 "T.I} -

+3!f:(1R'Hfa'tr 34'HJ~dd uratrcrr 'tJ."41ttl~ra:); of{=or+:ft:(i{R'Hfa'tr 34'HJI~"fd URI'trcrr
'HWllfCI~ra:);'<"= +:ft:(atot'Hf;\(~ 1JUT:);or=or+3IT:(eJd'Hfr'tr 3fcfl: 'HCfU'f ~:);

..)')',:)

or=or+3f:(eJd'Hf;l(3fcfl: ~ ~:);or= +3IT:(eJd'Hf;tr 3fcfl: ~ ~:);or=

+3f:(eJd'Hfr'tr 3fcfl: ~ ~:);

In the above process, first input is made ready for sandhi processing by pre-processing. This

step checks if the text is in proper encoding and Devanagari script. It recognizes punctuations

and removes extra, possibly undesired characters from within the strings and makes proper

string. Then it takes words one by one and first checks them in the example base where the

complex and less common sandhi words are stored with their correct manual segmentation.

Before segmentation, it is fruitful to decide what is not to be segmented. The sandhi analyzer

system takes help of subanta analyzer which, before suffix identification, prepares the string

as told above. Then it identifies verbs from database of simple verb forms and indeclinables

from avyaya database. These words are identified as single words, therefore not required for

segmentation. Then it analyzes the remaining words assuming them to be nominal forms. By

analyzing the nominal suffix, the validation of the last segment of string becomes easy.

Now the system applies rules, finds sandhi marker, replaces with corresponding pattern, splits

the string into two segments, and sends each segment for validation. For validation, a segment

is searched into the MWSDD (Monier William Sanskrit Digital Dictionary). If it is not found

there, it is searched into proper names database, which he calls place name list and noun list.

If there also it is not found, it is searched in Sanskrit corpus for validation. The purpose of

validation is to check if the segment is a meaningful word. This is not the only way of word

validation, but other reliable ways like finite state automata are too complex to implement.

3.4 CHALLENGES AND EFFORTS TO MEET THEM

In the above quoted primary algorithm for sandhi analysis, some problems and errors are

recorded.

62

3.4.1 SERIES OF MORE THAN ONE RULE APPLIED AT ONE POINT

Rules of sandhi often do not give the final fonn on applying one rule. Many sandhi rules

apply serially one by one to give resultant sound. For example, ~ -;;ra:r becomes ~

applying two rules sto~ icunii.Scu~ (P 8.4.40) and jhalam jash jhashi (P 8.4.53). For their

reverse application also, the rules in reverse will apply in reverse order. For rule writing, all

the rules which apply one by one at the same point should be collectively regarded as a single

rule.

3.4.2 OVER-GENERATION NECESSARY NOT TO MISS DESIRED RESULT

In generative sandhi, when rules are given with context, they result in one result; also if they

result in many results, all of them are possibly correct and desired provided rule is correct. In

contrast, in reverse sandhi rule, a resultant sound may be result of many sound combinations

and all those sound sequences should be recorded in rules as possible splits of resultant sound,

but, only a few of them will be correct and in most cases, only one will be desired. This will

certainly over generate the results otherwise there will be chances to miss the desired result if

all possibilities are not considered.

3.4.3 DEFICIENCIES IN RULE WRITING SYSTEM

In the rule writing method mentioned above, it is not clear how context is defined. More

problems are there where the presence of vowel /a/ is effective. Here the rules are written to

find the marker of sandhi, the resultant sound, in the string as it appears. In the Devanagari

Unicode writing system, vowel /a/ is not represented by any sign except in the beginning of

the word, though absence of any vowel can be identified by halanta, and other vowels are

identified by their miitrii. In this rule writing system, /a/ is represented by space or nothing.

This problem of identifying each phoneme is tried by small embedded java program of

phoneme splitting which splits the vowels, consonants, anusviira and visargas from a

Devanagari Unicode string. Now the string is transformed parallel to phonemic

representation. If the rules are written in phoneme split form and input string is split into

phonemic representation, each sound of rule can be found in the string if it occurs there. For

63

validation, the segments can be rejoined into Devanagari orthography. Phoneme splitter splits

Devanagari combinations as following:

Input: ~~

Output: ~3ff£3f Uf3rrC{3fC{3fC(3

Some rules are such that one marker is a substring of the marker of another rule. Some rules

are such that markers of both are similar and context of application of one rule is simpler and

that of another is complex. Thus scope of application of one rule is overtaken by another. In

cases like these two, if rule with wider scope is applied first, it leaves no scope for applying

rule of narrower scope. For these reasons, rule application ordering is to be carefully defined

keeping in mind their scope of application. One criterion is to keep rules with bigger marker

prior to rules with smaller marker. Another criterion is to keep rules of narrower scope prior

to rules of wider scope, in other words, apaviida prior to utsarga or general rule.

3.4.4 HORIZONTAL VS. VERTICAL PROCESSING

One question about rule application is horizontal or vertical processing. Here horizontal

means application of one by one rule along the string on all possible sandhi points of that rule.

In this method, one rule is taken and its marker is searched for application along the string left

to right, and it is broken according to rules at those points, and then the next rule is taken.

Vertical means application of all possible rules one by one on a possible point of sandhi. In

this method, string is taken, its first possible point of sandhi (a sound sequence) is considered

and rules are checked for application one by one. Whichever rules are applicable are applied

All the remaining rules are memorized/stored for further consideration. Then the next possible

point of sandhi is taken for the same vertical processing. Both of these methods have pluses

and minuses. In the horizontal method, if the same rule is applicable on all points, all the

segments are likely to be validated if it breaks at correct points. But if there are more later

(which are to applied after the present rule according to the sequence of application) rules

applicable, and that in between two points of the present rule, the segment within would not

be validated. The invalidated string would again be considered for search and application of

later rules. This was the case where the sandhi is broken on desired or correct points. But it

also may be broken on undesired or incorrect point. That undesired break will make the

64

desired word unavailable even if the correct rules are applied on both edges of that word (that

is wrongly broken). Wrongly broken word (not full word separated with space, but word

which had to be a segment) neither will be sent for validation with its broken parts, nor will it

be found in the dictionary or corpus to be validated. Solution for this problem can be found in

two ways, either by rejoining (optionally) segments on break points of prior rules before

applying the present rule or by trying the new rule on fresh unbroken string. This solution also

can have problems. If the new rule is applied on fresh unbroken string, no word would be

validated which has two rules applicable on both of its edge points. Only first and final word

and the word with same rule applicable on both of its edge points will be validated. If the

breaks of prior rules are optionally rejoined, then a rule will be applied taking each point of

break one by one as broken and unbroken. Then it would be a problem identify the sequence

of rule application, breaking string, rejoining previous breaks to cover all possibilities of

segmentations. No doubt, there is possibility of huge over generation.

Possible sandhi poinls

Rules Rules

Horizontal processi~g
Vertical processing

Fig. 3.1: horizontal and vertical rule application

3.4.5 COVERING ALL POSSIBLE SEGMENTATIONS

We have seen above that there are many reasons for generating many sets of segmentations.

There are many rules applicable on similar sound sequences. In a single rule, same sound

sequence may be split into more than one pair of sounds. Among the possible points of sandhi

splitting, some may be desirable and some may not be. If a point undesirably splits, it would

65

not let the correct word to be found. So in application of every new rule, the segmentation by

previous rules should be taken as done and undone optionally. Also not all can be taken as

done at a time and undone at another time, but one by one with combination of all others as

done and undone. That is the way to collect and recall all the permutations (and combinations

with order) of segments that correct combination should not miss. Taking each point of break

in two possible states- done or undone, the number of permutations will rise at least upto 2N,

where 'N' is the number of points of segmentation in the string. If this is counted by the

combination method, the number of segmentations remains the same. Assuming that each

possible point of break has one rule applicable, not overlapping and has one solution, the

number of permutations will be as following:

C(N,O) + C(N,1) + + C(N,N-1) + C(N,N)

Formula 3.1: calculating number of segmentation with one break at a point

Here 'N' is the number of possible points of break and 'C(N,r)' is the number of possible

combinations of 'N' items taking 'r' at a time. This is calculated by taking possibilities of zero

points broken,. one point broken; two points broken all points broken. Here the number

of permutations is calculated by combination because the order of segments is unchangeable.

The assumptions, on which the above cakulation of segmentations is based, are rare. In fact,

sandhi markers (resultant sounds of sandhi) can overlap, more rules can be applicable on one

marker and one rule can break a marker into many. So, the real number of possible

segmentations will be far more than this calculation. The calculation mentioned above is

illustrated here with an example of a string with five possible sandhi break points. In the

example, states of possible points of sandhi are indicated by 0 or 1 where 0 indicates point

unbroken and I indicates point broken. Thus the original string is 00000. Then the possible

segmentations including original one will be as following:

C(S,O) = 1-7 00000,

C(5,1) = 5 -7 1 0 0 0 0,

C(5,2) = 10-7 11000,

01010,

01000,

01100,

00101,

66

00100,

00110,

10010,

00010,

00011,

01001,

00001,

10100,

10001,

C(5,3) = 10-7 11100,

10110,

C(5,4) = 5 -7 1111 o,

C(5,5) = 1-7 11111,

01110,

01011,

01111,

00111,

11001,

10111,

11010,

10011,

11011,

Fig. 3.2: structure of segmentation sets of a string with five sandhi points

01101,

10101,

11101,

Thus the total number of segmentation sets in a string with five possible points of sandhi

under assumed conditions is 32 which is equal to 25
• In this calculation the possibilities of

simple concatenations are not calculated. The number of segmentations goes to 25 when there

are two conditions for each point possible. When there adds a third condition of break without

sound change, the number will go to 35 = 243. Here again it is assumed that simple

concatenation also may be only on possible points of sandhi.

Where the number of breaks on each break point is one or more than one, the calculation

formula for number of segmentations will be different.

(N(Bl)+2) . (N(Bz)+2) (N(Bn-1)+2) . (N(Bn)+2)

Formula 3.2: calculating number of segmentation with many breaks at a point

Here 'N' is the number of possible breaks at a break point and 'n' is the number of possible

break points and 'B' indicates break point. '+2' indicates two conditions of that point -

unbroken and broken without sound change (to resolve simple concatenation).

3.4.6 SCREENING OF INVALID AND UNDESIRED SEGMENTATIONS

After collecting the permutations of segments, next step is the screening of the permutations.

First to select the correct sets and then to find relevant, desired and popular permutation/set of

segments. The goal is to arrive at one desired solution, and then it is success of system. Many

of the sets would be screened off due to having invalidated segments.

67

3.4.7 DIFFERENCE IN APPROACH OF HUMAN AND MACHINE

Difference in the process of analyses by human and computer and computer's inability to

guess and intuition makes the task more challenging. The method of processing by the

computer is different from human's method in many ways.

First, human simultaneously applies rules and recognizes meaningful words while

processing of computer is linear. Computer can apply rules one by one and cannot

recognize words simultaneously but after that.

Second, human when sees a string, he applies all his linguistic knowledge including

the contextual and world knowledge simultaneously and therefore is able to see the

parts of the word instantly. On the other hand, computer sees string as a sequence of

symbols and it neither has intuition nor knows or can guess context.

Third, the size of active vocabulary of computer is different from that of human.

Human recognizes a meaningful word by his active vocabulary which is generally

smaller compared to what a computer can hold in its active memory. Human probably

organizes information based on popularity, frequency of use and pragmatics. He can

expand it according to need. Probably therefore, humans are able to recognize words

never before. In fact, human's active vocabulary is set in a~tive morphological

knowledge. On the other side, computer's vocabulary can be potentially very large,

theoretically containing all base words of the language. Also a computer's entire

vocabulary can be considered 'active'. By plugging in statistical data information with

respect to popularity, frequency etc can also be stored. The multi modal systems can

even have algorithms to accumulate new words (as humans do). But all this

knowledge is not available to!the machine simultaneously as it is to humans who have

common sense reasoning and unbelievable fast parallel processing capability.

3.4.8 VALIDATION OF COMPLEX WORDS

Validation of complex words/segments is also a challenge. Simple words can be validated by

finding their existence in the dictionary or corpus. In a complete system of Sanskrit analysis,

morphological analyzing tools require individual words to be identified, i.e., sandhi processed

or sandhi free text. And if sandhi analysis system depends on them, it is a vicious circle of

68

interdependency. Previously this chapter has discussed that what the problems in identifying

the suffixes are. When the word is with prefix and more than one suffix, identification and

validation becomes more difficult. There are more problems in identifying derived words.

They can be compound of two or more words, can have serial siffixation, prefixation etc.

Though they have a system and cannot come in random order, but their possible structures are

various. Complexjty of derived words is shown in the work of Smjit (2008) as follows -

tinanta I .. Dhatu (VR)

subanta

subanta

subanta

Fig 3.3: Nominal derivation from verb rooe

In the diagram above, only variety of nominal derivation from verb root is shown. Besides

there are verbal derivatives derived from both nominal bases and verb roots.

3.5 SUGGESTED ALGORITHM FOR SANDHI PROCESSING

New algorithm will consider the problems and challenges discussed above. It would have

strategy of two levels - wider and deeper. Wider level algorithm is called macro algorithm and

the deeper level algorithm is called micro algorithm. Macro algorithm deals with overall

1 Surjit (2008: 26)

69

applications of rules, how to prepare text for sandhi processing, how to find possibility of rule

application, how and in which order to apply rules, how to store all possible segmentations

and how to screen them and find the solution. Micro algorithm deals with application of an

individual rule on its possibility of application. Screening or validating is again a complex

process which also needs a separate micro algorithm.

3.5.1 MACRO ALGORITHM FOR SANDHI PROCESSING

This algorithm controls overall process of sandhi splitting. The process is as follows-

Pre-processing

Pre-processing or preparing of the text for analysis. In this step, the text is checked for

proper encoding - whether the text is in Devanagari UTF-8 encoding. If it is, then

undesirable symbols like punctuation marks etc. Pass the text from subanta analyser

which analyses nominal inflections and identifies regular verb forms, indeclinables

and proper names from the verb database, avyaya database and names database.

Exclude verb forms, avyaya and proper nouns from sandhi processing. Bases of

subanta, unanalyzed subantas and unidentified words will be considered for sandhi

analysis.

Prepare each word for sandhi analysis

Take first/next string.

Split phoneme as in 3.4.3 above.

Count and mark the sandhi markers in the string with their serial number. Marker is

the set of sounds/sound sequence which appears as the result of a sandhi. Markers are

easy to count in phoneme split string than in continuous spelling (because each

phoneme is separately visible in phoneme split form. Markers are listed in a list in

which each marker is associated with a separate rule and they themselves are in

phoneme split form. More markers can be associated with one rule and more rules can

be associated with one sandhi marker but there should be one to one mapping not list

to one, one to list or list to list mapping.

70

While counting, first consider larger markers then smaller ones. Even if markers

overlap partly or fully, each marker should be marked. One marker may be substring

of other; even then it is to be marked. The serial number of every marker should be

different and should be memorized in all steps till the segmentation process ends

(before validation).

Counting of marker should start from second phoneme, though first phoneme can have

sandhi. Next round of marker counting should start from phoneme next to one from

which previous round has started.

Serial number of marker is in the form of la, lb, lc, 2a, 2b ... constitutes of round

number as natural number (1, 2, 3 ...) and marker number in that round as alphabet (a,

b, c ...).

Marker should be taken as prefix of the part of string starting from the phoneme of

counting.

Start a list of segmentations. First segmentation is string itself. Segmentation means a

set of possible segments in order after sandhi analysis of the string. List should have

all the possible segmentations of the string applying rules of Sanskrit sandhi.

List of segmentations has a serial number constituting of marker number and rule

number of applied rule in the form of la.(rule number).

Applying the rules

Take first sandhi marker.

Apply first rule associated with current marker and add segmented string to the list of

segmentations. If there are more than one result on applying the rule, add all of them

to the list. Other later sandhi markers marked on string will remain marked.

If there is any rule associated with the current marker, apply the rule on that marker,

not on other possible markers. Add the segmentation(s) to the list of segmentations.

If there is no other rule associated with the current marker, take the next sandhi

marker.

Loop: applying rule on next marker and add segmentation to the list

71

Repeat the process mentioned in above three points - applying rule on marker, and

add segmentations in the list of segmentations.

This process should be applied on all segmentations associated with prior round of

markers. Remember that marker serial number constitutes of round number and

marker number in a round of sandhi marker counting.

In all segmentations to be applied a rule, rule should be applied on the marker of same

serial number at a time.

In each round (not in each marker) one segmentation should be such that breaking the

string into two parts without any sound change. This is done to explore possibility of

simple concatenation.

All new segments thus found should be added in the list of segmentations.

List completes when there are no more markers and no other rule left to be applied on

the string.

Screening or validation of segmentations

Start validation process with verb database, customized corpus and customized Monier

Williams Sanskrit Digital Dictionary (MWSDD). They are customized by tagging

popularity of every word entry.

Remove the sandhi marker marks from all the segmentations.

Generate written forms of the word from phoneme split forms of segments by reverse

of phoneme splitter.

In all segmentations, take each segment and search in verb database, MWSDD and

customized corpus and tag with its popularity index (1 - 1 0) tagged with the entry in

the lexical source (database, dictionary and corpus).

The segments which are not found in the lexical sources and are with reasonable

length are sent for suffix identification (not analysis) and suffix removed segment is

again sent for validation to the lexical resources.

If validated in inflection suffix identification, then the segment (without removing

suffix) is tagged with popularity index one Jess than in the source because the

identification of suffix is probable to be wrong. If it is validated in derivation suffix

identification, then the segment is tagged with popularity index two Jess than in the

source because here is more probability of false analysis.

72

The segments which are not validated till this stage should be tagged with popularity

index -1.

Statistical calculation for screening

In the following steps, the data given in number is not static but can change depending

on tests and experiments.

In the list of segmentations, if contents are more than 50, reject all the segmentations

which have any of segments with -1 popularity index. If they are 10 to 49, then reject

all the segmentations which have at least two segments with -1 popularity index.

Don't reject any segmentation at this stage if they are less than ten.

If no segmentation has negative index or some of segmentations have one negative

index in their segments, take the average of popularity index of segments of all

segmentations. If the difference between highest and second highest average index is

more than a reasonable gap (here consider 0.6, which can change depending on tests

of its effect on correctness of selection), choose the segmentation of highest average as

correct segmentation.

If more than one segmentation come in the range of highest average and less than it by

reasonable gap mentioned above, choose by higher frequency of higher popularity

index. For it, increase the weightage of index by adding to each the mean deviation -

difference from 5.

Where there are segmentations with more than negative index, which may be the case

of less than ten segmentations, there will be different formula for selecting correct and

desirable solution. Here the reasonable gap is more than previously mentioned

condition (here consider 1).

Take the average of the popularity index of segments in all segmentations. If no other

segmentation comes in the range of highest average and less than it by reasonable gap,

choose the segmentation with highest average as the correct segmentation.

3.5.2 MICRO ALGORITHM FOR SANDHI ANALYSIS

Macro algorithm is applicable on individual rule so it can be somehow different for different

rules depending upon the nature of application and condition of the rule. But there is some

73

common process applicable on all rules. The rule specific process is to be defined in the rule

itself. This algorithm may need illustration with an example of a specific rule. The common

algorithm is as follows:

Take the string marked with the sandhi markers marked with their serial numbers on

which the rule is applied.

Select the first/next marker to apply the rule. The marker should be that with the serial

number provided by macro algorithm.

Select the first/next rule associated with that marker. The rule to be applied is also

decided at the macro level.

Obtain the definitions of technical terms used in the rule. Technical terms like

pratyiihiiras, vowel, consonant, voiced, unvoiced, velar, prefix, verb etc. are

separately defined as closed lists.

Check the conditions or environment of the sandhi point if they satisfy the conditions

as mentioned in the rule.

If yes, then make the replacement of sounds according to rule. If there is more than

one optional replacement, make all replacements and regard them all as separate

segmentations. Remove the mark on current marker from split string and leave the

other markers marked. Add this/these to the list of segmentations.

3.5.3 ILLUSTRATION OF A VYANJANA SANDHI RULE

Rule is in the form that may be applicable for both generative and analytical purpose. The

difference in both approaches will be that in the generative approach, LHS will be replaced by

RHS if the condition of LHS satisfy while in the analytical approach, RHS will be replaced by

LHS if the condition of RHS satisfies.

Obtain the definitions of technical terms- not applicable here

Make pairs of original and replacements

74

Check the condition for replacement (of RHS)

~is followed by ~or~

If satisfies, (as in~ 3f [~ ~ 3f "'[3f) replace replacement by corresponding original

Replace first j with all 5 corresponding originals in above pairs

Thus obtain 5 segmentations and add them to list of segmentations

[~ 3f [~ ~ 3f at 3f]

[~ 3f [~ ~ 3f at 3f]

Split string from start of marker and add it to the list of segmentations

[~ 3f- [~ ~ 3f at 31]

Stop.

Rejoining of phonemes into spelling and validation/screening are part of macro algorithm.

Here illustrated algorithm shows two siitras combined as one siitra. Those two siitras also are

independent rules from this combined rule. Purpose of keeping combined rule different from

constituent rules is that once a rule is applied, it should not leave scope of applying other rule

at the same point. There are already many points of rule applications causing wide over

generation. If analyzed points are again explored for new rule application, the process will

become endless. For example, in the above illustrated example, one replacement of [j j] is [j j]
75

itself. If it is again applied this rule, it will start uncontrolled chain reaction and infinite

recursion.

3.6 RESEARCH METHODOLOGY OF THE CURRENT RESEARCH

The present work is interdisciplinary in nature. The research methodology used in this

research involves the methodologies of linguistics, computational linguistics and software

development. Though these methodologies are interwoven and distinct portions of the

dissertation under each methodology cannot be clearly separated, they can be identified in

different tasks of research.

Linguistic methodologies - for understanding sandhi analysis, the study of Sanskrit sandhi is

required. As sandhi viccheda aims at recognizing all the distinct words in a continuous string.

Words in sandhi do not necessarily occur in base form. They can occur with all their

complexity of structure. So, for the recognition of the words, the recognition of word structure

is required. The thorough study of Sanskrit morphology is required, also the understanding of

complexity of morphology. Detailed concepts of morphology is given in the first chapter

which is less Sanskrit specific and more general. For the computational application of sandhi,

not only understanding of rules is sufficient, but to understand them from the perspective of

linguistics. In the second chapter, the sandhi system of Sanskrit is introduced and sandhi rules

are classified in different order from A~fiidhyiiyf and Siddhiinta-kaumudf and written in

phonological rule writing system as much as possible. All rules are categorized into five

categories and twenty eight rules.

Methodologies of Computational Linguistics - these are not independent from linguistic

methodologies but there is slight difference from computational perspective. Before writing

code of rules in formal language, they are to be written in formal way, which is closer to the

format which computer understands. Rules of AD are more formal than any documented

grammar of any natural language but they are not absolutely formal to write in formal

language. Study of possibility and problems in rule formalization with theories of

computational linguistics is needed. To explore the process of analysis to overcome the

problems, data designing, dictionary adapting, corpus customization according to the planned

76

strategy for sandhi analysis are also part of computational linguistics methodology. This is

discussed and presented in the third chapter of the dissertation.

Methodologies of software development - these involve algorithm development, tools

selection, data formatting, writing code of program, test and analysis of the system. The

algorithm is dived into two levels - macro and micro. It mentions and requires different

databases in a certain format. Both algorithms and data structure is given in the third chapter.

System is planned to develop in web architecture. The system tools are Java based. Front end

is done in Java Server Pages (JSP) running oh the webserver called Apache Tomcat. The

processing databases are in text format and the programming has been done in the Java

environment. The system design, modules etc are illustrated in the fourth chapter of the

dissertation.

77

CHAPTER FOUR

SANDHI ANALYZER SYSTEM DESCRIPTION

Chapter four

SANDHI ANALYZER SYSTEM DESCRIPTION

4.1 INTRODUCTION

This chapter presents the implementation part of the research. The topic of the research is to

explore the issues and challenges. To explore these challenges, a web based system has been

developed which will be illustrated here in this chapter. Vyaiijana sandhi processing system is

integrated with ac-sandhi analysis system developed by Sachin as his M. Phil. research

(2007). This is a partial implementation of the algorithm discussed in chapter three. That

algorithm, especially the screening section is subject to test and experiment. The numerical

values are even more changeable. The developed computational model uses Java based web

technology. The system depends upon the formalization of Pii7Jinian rules and their

description in Siddhiinta-kaumudi. The system accepts the Sanskrit text in Devanagari

Unicode UTF-8 format and returns output in similar format. The system takes the input in text

area, prepares it for processing, identifies possibilities of sandhi viccheda and segments from

those points. The segmentation is displayed as output only if all the segments are validated

either by their occurrence in the dictionary or occurrence of their stem after subanta analysis.

The present system also inherits the 'Subanta Recognition and Analysis System for Sanskrit'

developed as part of M.Phil. research by Subash (2006). The chapter also describes the codes

of the modules of the system.

4.2 DATA DESIGN

The system consists of front end of Apache Tomcat server, programming is done in Java and

back-end is in form of different data files. Here the formats of data files are briefly explained

with their sample from file.

78

4.2.1 EXAMPLE-BASE OF THE SYSTEM

First data file is the 'example_base' . This contains uncommon sandhi words with their

segmentation. There are some data which cannot be explained by general rules but there are

special rules for them. There are some special rules which apply for less data. Some rules are

such that their implementation is too hard and it is better to declare direct result than explain

the process. Such data from computational purpose are easier and comprehensive to process

through example based or statistical techniques. The nipatana technique used in Pal).inian

system does the same by directly declaring the result of process instead of explaining. There

are some rules in Pal).inian system as lqayya-jayyau sakyarthe (P 6.1.81); krayyastadarthe (P

6.1.82) and vartikas as sakandhvadi~u parariiparJl vacyam which directly declare the word

forms.

4.2.2 FORMAT OF RULES

Second data file is 'viccheda_pattern' . This contains the formal rules of the vyafijana

sandhi in a specific format. Rules of svara-sandhi from the system developed by Sachin

(2007) are also inherited and adapted in this format. These rules are of two types, static and

dynamic. Static rules have sounds themselves and dynamic rules consist of some technical

terms also which are in the form of Roman alphabet which have some meaning interpreted in

Java classes. The rule consists of 'marker', 'replacement' and sandhi name and siitra. Marker

and replacements together called 'pattern' are separated with each other by '=' sign and

together separated from sandhi name and siitra by ':' sign. The patterns are in phoneme split

form. The sample from viccheda_patterns is given as follows with both types of rules.

;;J:="l+;;J::(~ ;;n~ ~;01.: ;;:[=0[+;;:[:(~ -;;r~~ ~;0[0!=<1+0[:(~ ~~ ~ + «<T:

~'!if:);-;JT -;;r=c;+-;;r:c~ -;;r~r ~ + «<T: ~'lif:);-;JT ;;J:=o+;;J::(~ ~r ~ + «<T: ~'\1":);-;JT ..:>..:>:J.:Jj.:J

;;[=C_+;;[:(~ ~~ ~ + «<T: ~:);~ ~=~+~:(~ -;;r~~ ~);~ ~=~+~:(~ -;;r~~ ~;~

(f=~+{f:(~ ~~ ~;~ (f=~+<f:(~ -;;r~~ ~;~ ~={'[+~:(~ -;JT~[~ + ~:);~

79

~~+~:~ ~[¢W + ~:);~ ~=Q}~:(~ ~[¢W + ~:);~ ~=<1+~:~ ~[¢W +

~=)·sG"=G+G":(~~r~ + ~=)· J .,:) ,,, ... Yl'-u Y'II"tl .,:, .,:, ,

s=3 ~+s:csm €1f<l1C\Rt 5·JjfOG1<'4Jf);'f[~ ~ s='f[~+s:(sm €1fCIIC\RI 5·JjfUGi<'4Jf);~ ~ ~ s=~

~+S:(sm €1fCIIC\RI 5·JjfOG1<'4Jf);3f U[U[S=3f U[+s:csm €1f"C'IIC\RI s<~jfOG1<'4Jf);~ U[U[S=~

U[+s:csm €1fCIIC\RI 5·Jjfi1Gic-4Jf);3 U[U[S=3 U[+s:csm €>fCIIC\RI S"jfiJG1<'4Jf);b zy: s=b+~[

Here s=svara, v=vyafijana, a=semivowel, p=unvoiced stop, b=voiced stop

4.2.3 CUSTOMIZING 'MWSDD'

Third data file is th ecustomized Monier Williams Sanskrit Digital Dictionary (MWSDD).

Dictionary items have their popularity index from 1 to 10 to be marked with each as discussed

in the third chapter. This index depends upon the frequency of the lexical item in the corpus

and the complexity of word structure. This popularity index is needed in the screening of

undesired results. Current implementation does not use popularity index and dictionary is not

marked with that. The sample of dictionary is as follows.

~· 3{'[tif·3{1Cl'·J"n· 3ct1'· 3tRUf· ~· 3RR:3tlT{<f)· 3tll{OT:3illfto:r·3nl<T·3nl<T· ~·3tfrul·
' .,:) ' (,. -! \.' ' ' ' . ' ' _, ' ' --=»' '

3n'ioH<:!Cflkl:~:3@<:T:3t'lRur·3iiholq{11Cfl·~·3r<Nf:~·3fllldT·3(':Rl·m·m:3
(. . . . ' ' ' ' ' , ' '

('?[ffiCfl":~:30fC:·~:3?IT·3ffi81'fll·3?f:~·xm<'f·30ITU1:~·~:3
' . ..j _, ..j ' ' ' ' ' <..' . ..j '

80

4.2.4 DATA FILES OF THE INHERITED SYSTEM

Besides vowel sandhi, the system inherits subanta analyzer system developed by Subash

(2006). It is used in validating segment by analyzing subanta if it is not validated in its

original form. That system has two data files included in the present system - 'sup_EB'

(subanta example base) and 'sup_RB' (subanta rule base). Uncommon and irregular

nominal forms are analyzed by subanta example base. Subanta rule base contains patterns of

nominal endings and their analysis which are identified in each word. Sample of 'sup_EB'

is as follows:

Sample of 'sup_RB' is as follows:

QCf>cftlUi) ;c-==

(4f<;(>l5dl)
-" '

+

81

4.3 SYSTEM MODULES

System is developed in multi-tier web-architecture. Its front end is in JSP, a java based server

language. Back-end is data files in proper format containing data in UTF-8 Devanagari and

Roman characters and symbols. Programming is done in a few Java objects. Here it is

illustrated how different modules of the system function with the help of the sample code.

4.3.1 FRONT -END

Front end is Java Server Pages file named viccheda. j sp. The program is hosted on

Apache Tomcat 4.0, a java based web server. The page contains codes of HTML, JSP, Java

and J avascript languages. Following is the sample code of this page.

The following code sets the language, encoding and content type of the page and imports

package java.util.

<%@ page

language=" java"

pageEncoding="utf-8"

contentType="text/html; charset=utf-8"

import="java.util.*"

%>

82

The following code imports user defined java package for sandhi processing named

SandhiAPI

<%@page import="SandhiAPI.*" %>

The following code obtains values from checkbox and text area, to run in debug mode

decision from checkbox and input text from text area.

<%

request.setCharacterEncoding("UTF-8");

This code initializes input variables.

String itext = request.getParameter("itext");

int dbg = 1;

This code assigns values to input variables.

if (request.getParameter("debug")

dbg = 0;

String ch = "checked";

if (dbg == 0)

ch "". '

if (itext==null)

itext "". '

This code calls the main class 'Viccheda' to analyze sandhi.

Viccheda v new Viccheda(dbg);

83

null)

The following is the code of the form and text area to enter the input text, check debug mode

and submit button.

<FORM METHOD=get ACTION=viccheda.jsp#results name="iform"

accept-Charset="UTF-8">

<TEXTAREA name=itext COLS=40 ROWS=9><%=itext %></TEXTAREA>

Run in debug mode

<input type=checkbox name="debug" <%= ch %> value="ON">

<input type=submit value="Clicktosandhi-split(~ fch .. O>~ 'Cfit)">

This code calls main function splitText(itext) of main class Viccheda and displays the sandhi

segmentation result.

<% if (itext.length()>O) %>

<%=v.splitText(itext) %>

<% } %>

The following code displays the process of analysis of the text if the checkbox "Run in debug

mode" is checked.

<% if (itext.length()>O) { %>

<%=v.printErr() %>

<% } %>

4.3.2 CORE PROGRAM STRUCTURE

Programming part of the system is in Java objects packaged in SandhiAPI. Main class is

Viccheda and other classes are Preprocessor, Segmenter, RSubanta, SupAnalyzer,

84

MatraVowel, and STokenizer. RSubanta and SupAnalyzer classes are for analyzing subanta

of a segment to get its stem to validate if it is not validated.

viccheda.jsp

Segmenter.java

RSubanta.java MatraVowel.java

SupAnalyzer.java

Fig. 4.1: Structure of core Java program for sandhi analysis

The following is the description of sample code of the main class.

The following code makes the class part of package SandhiAPI

package SandhiAPI;

The following code imports java packages to be used in the class.

import java.util.*;

import java.io.*;

The class starts

public class Viccheda{

85

Declaration and initialization of different variables

Hashtable lex =null;

BufferedReader brl null;

BufferedReader br2 null;

BufferedReader br3 null;

Preprocessor pre null;

Segmenter s null;

StringBuffer examples null;

StringBuffer viccheda_patterns null;

StringBuffer lexicon null;

String errmsg="";

int debug 0;

This is the class constructor, creates new instance of the class when called.

public Viccheda(int dbg) {

debug dbg;

Within the class constructor, three buffered readers read three data files and assign the data to

three variables examples, viccheda_pattems and lexicon.

try{

86

brl = new BufferedReader(new

InputStreamReader(new FileinputStream("----"),"utf-8"));

br2 = new BufferedReader(new

InputStreamReader(new FileinputStream("----"),"utf-8"));

br3 = new BufferedReader(new

InputStreamReader(new FileinputStream("----"),"utf-8"));

examples= new StringBuffer(brl.readLine());

viccheda_patterns new

StringBuffer(br2.readLine());

lexicon= new StringBuffer(br3.readLine());

brl.close();

br2.close();

br3.close();

Within the class constructor, this code calls class Preprocessor and Segmenter

pre new Preprocessor(debug);

s new Segmenter(viccheda_patterns, lexicon,

examples, debug);

} //end of class constructor

This is the main function splitText(s) of the class

public String splitText(String s){

87

The following code obtains each word as separate token.

StringTokenizer st =new StringTokenizer(s, " ");

While loop to continue process till last token

while(st.hasMoreTokens()){

tkn = st.nextToken() .trim();

Calling preProcess function which prepares the raw text for segmentation by the class

Preprocessor.

tkn= preProcess(tkn);

When token is in appropriate format, then calling function split(tkn) which analyzes sandhi by

function segment(tkn) of class Segmenter.

if (............){ //not punc and a simple string

tkn = split(tkn);

Definition of function preProcess(tkn) which calls function preProcess(tkn) of Preprocessor.

private String preProcess(String tkn){

if (tkn.length()>O){

tkn pre.preProcess(tkn);

88

return tkn;

Definition of function split(tkn) which calls function segment(tkn) of class Segmenter.

private String split(String tkn){

if (tkn.length()>O)

tkn s.segment(tkn);

return tkn;

Function printErr() which prints the process of analysis when run in debug mode.

public String printErr(){

return errmsg + "
"+ s.printErr();

Besides main class, the most of the work of sandhi splitting is done by the 'Segmenter'

class. Here is brief description of functions of the 'Segmenter' class-

The following code 1s class constructor which carries inherited values of

'viccheda_patterns' , lexicon and example (example base). This also calls two classes

'RSubanta' and 'MatraVowel' .

public Segmenter(StringBuffer vp, StringBuffer lex,

StringBuffer ex, int dbg) {

viccheda_patterns=vp;

lexicon=lex;

89

examples = ex;

debug = dbg;

subanta =new RSubanta();

mw new MatraVowel();

Following is the main function of the class which checks token in example base. If not found,

it checks patterns in rule base. If segmented, it validates the segments by different function.

public String segment(String tkn){

Following code checks if token has an analysis in the example base and if found, gives result.

private String checkExampleBase(String tkn) {

The following function takes the token, splits into phonemes, checks applicability of rules

from rule base. If any rule is applied, it splits the string and sends for validation.

private String checkPatterns(String rs){

Following code inside checkPatterns(rs) calls function of class MatraVowel to split token into

· phonemes.

String ors mw.splitPhoneme(rs);

90

Following code takes the string with sign of segmentations, and picks one by one token to

validate by dictionary, otherwise by analyzing subanta and validating its stem. If all tokens

are validated, then only allows display as output.

private String validateSplit(String rs){

Following code inside validateSplit(rs) calls function of class MatraVowel to rejoin split

phonemes into Sanskrit spelling.

String ors = mw.joinSounds(rs);

Following code is inside the function validateSplit(rs) and gets subanta analyzed by

getStem(tl) function of class RSubanta.

tl=subanta.getStem(tl);

4.4 INTRODUCTION OF THE SYSTEM

The system developed as the partial fulfilment of the research, to explore the issues and

challenges in vyanjana sandhi processing, is available on the internet. The current web

address of the system is http://sanskrit.jnu.ac.in/sandhi/viccheda.jsp and can be tested there.

The system includes and extends the ac-sandhi analysis system developed by Sachin as his M.

Phil. research (2007) and subanta analysis system developed by Subash as his M. Phil

research (2006). The coding of the system has been done by Girish Nath Jha. Partial coding

and design change and adapting of vowel sandhi system has been done by Diwakar Mishra.

The Devanagari input mechanism has been developed in Javascript by Satyendra Kumar

Chaube, Dr. Girish Nath Jha and Dharm Singh Rathore.

4.4.1 HOW TO USE THE SYSTEM

The Sanskrit text for splitting can be entered in the text area as illustrated below. The text has

to be utf-8 Devanagari.

91

- ------ -- -- --- -----~~-----

Computational Linguistics R&D
Spectal Centre for SansL<.nt Studtes

Ja•:.al- ar a• \f:• "..., U " •, -: ' SI•f

N~w Oe1:il

'The-....t>""""(CONSONANTSANDHI)was&:-'<lopedasp..tcf~t.Pbil""'"doby!low-Mis!n(.!001-
~-Ihe_.,;,;.,.c{])L!.msloN~l!\!. Tbes-RdodoslhoVOWEl~-.,'DID.....,.m~b):S..U.
~as ap..tcfMI'bl (200l-:001)oockrlhe ._,-. cfDr. em.!~ N>llllba The """'fo< lbis~bas becodcoe
lr; Dr. Gnsb N ... lbaaod ,.....,.by !Jiy,._ >lis!n.

l [Jiftrs-kriftar ... ~pncuri-c~ftr'l:::diz: ~ ~

: C>m.t:""J-~OR rM nr ta"Utrfll.A.""s..ne.-pd
j .-...~mr...,.&ur~J(as

:"""""'

Screenshot 4.1: main page of sandhi analysis system

On clicking the button 'Click to Sandhi split' , the system will generate results for the input

text for those words which have sandhi situation inside them-

~ ~ri ~ ~ (CO.\'SQ;..:A!'\1 SA!\TJHt) wu de-•~d as pan dM.P':.l r«earcb. by Im.·abr" ~tt!:n (200'1-
}.009) '.nda the '>l¥"~ <lTh __ q_~J~~~;_@. Tk ~('In illdudo tbl= VOWEL S.A~"Drn ~~-dope-d by~~
~~ as a r;rt ci ~ .. t Phil (: 005-21XP) un.:b ~ supervi:sioo o([)r Gm ~ad! 1ha. n..e c.odn~ for tM aprlicatioc. bas~ doGe
hy Dl Coir t.h Xdl.ba :tt~d ~-~~ bJ Di~.Ja. ~fu!n.

I•tuS.uskruttnl&¥u-"loi p~'rlloJ{ltm- 'Rtt:ttl:: ~ ~

~ 11st., Xj~"""' L~t.nrl OR r•~ ·~~"" i.-lntlh lTR-\.. '\S-In• •~pri
~:~ •iroN <u•tnu for 1:u t ryJiat
tU~~=tlr-<

-:-JH3.,._ _, ,

Rt"sulls
~-=~·~¢'!?fl1l .. f?.t: ~~
~ ~ (src:r- a~! s;'ft'l-Fn'lc ~:)

Screenshot 4.2: result from sandhi analysis system

92

The Devanagari text can be either typed using the onscreen keyboard or by the Roman

keyboard of the computer in the !TRANS scheme.

Before clicking the 'Click to Sandhi split' button, if the user checks 'Run in debug mode'

checkbox, then the system displays all intermediate steps leading to the final results (please

refer to appendix for the result).

93

CONCLUSION

CONCLUSION

The research work had to explore the issues and challenges in computational processing of

vyaiijana sandhi. It is an important aspect of language processing because in case of Sanskrit,

sandhi has a very important place. Though, mostly, the issues of vyaiijana sandhi are common

to the other types of sandhi, yet it has some different issues too. To understand the issues in

computational processing, a close study of sandhi is required. Seeing the importance of

phonology and morphology in sandhi, both topics are studied from linguistics perspective.

Papers from first, second and third Sanskrit Computational Linguistics Symposia have been

very useful in understanding and conceptualizing the computational and mathematical aspects

of linguistics.

Before computation, formalization is a must step. In the second chapter, not only vyaiijana

sandhi rules, but also the rules of all five types of sandhi are written in phonological rule

writing system. Internal sandhi is discussed in the chapter but rules are not written. Some

issues are discussed in brief in first chapter and in detail they are explained in chapter three.

There are some issues which arise before starting formalization. Those are either in the nature

of sandhi or in the nature of Sanskrit language. Other challenges arise when one tries to

implement the system. Some of them can be guessed and studied before development but

some of them cannot come to sight until the system is implemented.

The main problem with sandhi analysis is to identify the correct constituent words .. The words

can be of any of the structures. The interdependency of sandhi system and morphological

analyzer system is a major problem. On one side, morphological analyzer system requires

sandhi free text, on the other hand, sandhi analyzer needs morphological analyzers to identify

correct words which cannot be identified by dictionary. Inclusion of subanta analyzer in

sandhi system is a good example of this. Other major problem is to select or identify the

desired result out of many correct answers. There are other ways of context recognition and

sense disambiguation, but they make the task more complex and difficult.

The usefulness of sandhi analysis system is for any Sanskrit language processing tool. It may

be on morphological, sentential or discourse levels. Syntax can only be parsed after morph-

94

analysis which in tum requires sandhi processing. Besides this, the system can be used for text

simplification, self reading and learning also.

The third chapter not only finds challenges but suggests methodology and algorithm also to

meet them. The suggested system is though not yet fully implemented but shows the path to

overcome the problems. The suggested system also does not claim to completely solve the

problems and to be a fool proof system. Some parts of the algorithm, especially the screening

of the segmentation could be subjective. Even there, the numerical values are not very

objective. This part is subject to change depending on the results of the tests and experiments.

95

APPENDICES

Appendix-1

Sandhi Splitting System Result

Results without debug mode

Input=

Output=

Results

~~(~~[~+FtTI:~:)

~~(~~[~+FtTI:~:)

Input=

~T:

Output=

Results

~"$"~r= (~~rrs<r<l)

~ ~r: (~~rrs<r<l)

96

Appendix-2

Result in debug mode showing process of sandhi splitting

Input= "''dlcrCI"'I(11

Output (in debug mode) =
Results
~ JJRIT (<ro"5Gj011ffi~5Gj011ffl<t11 CIT)

~ JJRIT (<ro"501011 ff1 ~501011 ffl q;) CIT)
' ~ ~

~ JJRIT (<ro"501011ffl ~501011 ffl <t11 ;:m ' ~ ~ ~•J

-----------------START 0 F Viccheda .splitT ext{)------------

-----------------START OF Viccheda. pre Process()------------

input-<Jld lcr<R ki I

output-,:liJI.,-Jll<'i I

-----------------END OF Viccheda. preProcess{}------------

-----------------START OF Viccheda .split()------------

input::: (!lJicrJll<il

output= 01dlcHiT<iT r~:.rUslli <11 I Rl <f; s<rkil Rl cp 1 CIT) - ~ ~

~mill (<Rl"Slli«11Rl<f1sllilli1Rl<hl CIT) - ~ ~

<JT<lToi mill («<1 sC:k"ll ffl <f; slli <11 I ffl Cfi) CIT) - ~ ~

-----------------END OF Vi cch ed a. split()------------

-----------------END OF Viccheda.splitText()------------

97

----------------------------START 0 F Segmenter. segment()------------------------

----------------------------START OF Segmenter.checkExampleBase()------------------------

----------------------------END 0 F Segmenter. check Exam pi eBase()----- -------------------

----------------------------START 0 F Segmenter. checkPa tte rns()---------- --------------

Split input rs=\J'Idi..-Jikll------------starting to process (C(~¥qfi\?q, "\!S:qC'\1..-(iiC'\kl) sandhi---------

rs ="\5'1.: 31 d(31a=p=[3rr <=PIT
VP=S= +31:(qa¥q{lfo=tr, 1JS:qC'\I..-<iiC'\kl)

"
!eftOfVP=S

rightOfVP= +31

------------starting to process {3i<llfuflfo=tr vtil"s <l C!l<liCI :) sandhi---------

rs ="\5'1.: 3f d(31 err d131T q: 31T

VP=CT<:r='~'+ :(3i <llfufi\?q vtirs'l!CII <:!ICI:)

leftOfVP=<:'T<:r

rightOfVP=c~+

------------starting to process {3i<llfufl~vtirs<JCli£!1Cl:) sandhi---------

rs :::-;][31 d(31 "'[d1 m (13fT

VP=CT<:r=,~+3f:(3i<llfufl~ vtirs'l!Cli<:!!C!:)

leftONP=CT<:r

rightOfVP=''\+3f

------------starting to process (3i£! IR\{ifo=tr vtil"sll Cl! <l !<'1:) sandhi---------

rs =q 3f d(31 o=[d131T {'[JrT

VP=<)-=,)+V:(.~-crtilsllCli<:!IC!:)

leftOfVP"'"<t

rightONP=<)+"Q"

------------starting to process (3-llll~:or;:u- vtirsll ell£! ICI:) sandhi---------

rs ="\51.: 3f "J[3f a:T._ J=t 31T (13fT

VP=<T=]+1T:(.3ill !R\flfo:.U l:f-y-rfsZJCII<:!!Cl: j

leftONP=<T

rightOfVP=:_s+zr

------------starting to process (31<JIR\{!fi:'tr -crtils <!:l Cll <l!Cl:) sandhi---------

r s = \5'1.: 3f "J[3f 01.: J=t 31T (=[31T

98

VP='lf=,)+ :(JF41R\flf;'tr ~s<OJCII<O!ICI :)

leftONP='lf

rightONP=·:)+

------------starting to process (3i<OJIR\flf;'tr~s<OJCII<Oll<'l :) sandhi---------

rs =~ 3f 6[3f 01 J{ 3iT q3iT

VP='lf=,~·+3f:(3i<OJ IR\flf;'tr ~s<OJCII<O!ICI:)

leftONP='lf

rightONP=,)+Jf

------------starting to process (<Oj'U(~~~) sandhi---------

rs =~ 3f d(3f 01 J{ 3iT q3iT

VP=<:;=·51+3:(<0j'U(~ ~ ~

leftONP='lf
.:>

rightONP=<~+3

------------starting to process ("<OJ'U(~ ~ ~) sandhi---------

rs =~ 3f 6[3f a:[J{ 3iT q3iT

VP='lf=C~+Jf:(<Oj'U(~~~

leftONP=<T

rightONP=df+Jf

------------starting to process(~~~~) sandhi---------

rs =Jt 3f 1'[3f a:[J{ 3iT <=[3iT

VP=c<:r= f0+3:{<0j'U(~ ~ ~)

leftONP=~
.;,

rightONP=D+3

------------starting to process r~:p:rp:rfa:'t.r~ ~) sandhi---------

rs =~ 3f d(3f 01 J{ 3iT <=[3iT

VP=~=D+3f:(<OllJ[~~~)

leftONP=~

rightONP= f0+ 31

------------starting to process (~~¢~)sandhi----------

rs 31 6[3f 01 J{ 3iT <=[.m
VP='2 <:[1! = :: $ + 1!: (<OllJI "fli7t:r ¢ <:fO'ffu)

leftONP='< <::[1!

rightOfVP=< $+1!

------------starting to process (<OllJ[~ ~ <:fO'ffu) sandhi---------

rs =q 31 d(31 c:r_: 'J[3iT (=(3iT

VP=·: <:[V=2 ~+V:(<OllJI~¢~l
99

leftOfVP='2 <:[V

rightOfVP='2 ~+V

------------starting to process(~: ~11Cf1<"'4f'4) sandhi---------

rs =~ 31 'J'[31 at 1{ 3IT (=[3IT

VP=<:f= + :(~: ~11Cf1<"'4f'4)

leftOfVP=<:f

rightOfVP= +

------------starting to process (Jl<Oilf?<'Hj';~ vms'4Cil'41CI :) sandhi----------

rs =~ 3f 'J'[3f at 1{ 3IT (=[3IT

VP=OTCI"=d·+ :(Jl<OIIf?<'H~ vqts<QCI1'41CI:)

leftOfVP=CfCI"

rightOfVP=Cl +

------------starting to process (3l'41f?<'H~vms'4CII'41Cf:) sandhi---------

rs =~ 31 'J'[31 at 1{ 3IT (=[3IT

VP=CTCI"=d+31:(J!'41f?<'H~ vms'4Cl 1'41CI:}

leftOfVP=CfCI"

right0fVP=·::l+3f

------------starting to process (3l'41f?<'Hfa:~vms'10lct!'41CI :) sandhi---------

rs =q 3f 'J'[3f at 1{ 3IT (=[3IT

VP=Cf=Cf+ :(J!'lllf?<'H~ vqTs<OJcti<OIICl :)

leftOfVP=Cf

rightOfVP=;::f+

------------starting to process (31'4!f?<'!'l~ vms'4Cli'41CI :) sandhi---------

rs =~ 31 'J'[3f at 1{ 3IT (=[3IT

VP=Cf=C::f+3f:(Jl<lllf?<'H~ vqTs'I:JCll'll!Cl :)

leftOfVP:Cf

right0fVP=·:l+3f

------------starting to process~~~~~) sandhi---------

rs =q 3f d[31 01. ;n:_ 31T (=[}i'T

VP=Cf=;::-+ :('"'~:JUT~~ ~l ~ - ~~'I ~

rightOfVP='i-_+

------------starting to process ("':JU[:nfa=tT ~ ~) sandhi---------

rs = q 3f d[3f "=[;n:_ 3IT (=[3IT

VP=Cf=':.(+3f:(~ ~ ~ <.fDTRT)

leftOfVPc~Cf

100

rightONP=(,(_+3f

------------starting to process (<:fU(~ ¢ ~) sandhi---------

rs =~ 3f d[3f at J:[3IT ([3IT

VP=<f=·:~+ :(<:fUL~¢~)

leftONP=<f

rightONP=j+

------------starting to process (<:fU(~¢~sandhi---------

rs =~ 3f d[3f at J=[3IT ([3IT

VP=<f=j+3f:(<:fUL~¢ ~

leftONP=<f

rightONP=j+3f

------------starting to process (NIT: ~liCfi('"'Q '81) sandhi---------

rs =~ 3f d(3f at J=[3IT ([3IT

VP=<f= + :(Nfcr: ~IICfi('"'Q 'R'I)

leftONP=<f

rightONP= +

------------starting to process(~ Pt ~/Jft.Cf qf{J•llo) :cT) sandhi----------

rs =~ 3f d(3f 01: J=[3IT ([3IT

vP=C[=:::f+ :{~m~;.m.:crqfhHo) :cr)

leftONP::-cC[

rightONP=<i+

------------starting to process(~ m~) sandhi---------

rs =~ 3f d(3f at 1[3IT ([3IT

VP=q=·::1+ :(<:!1..-<il Pt~)

leftOfVP=q

rightONP=·:1 +

------------starting to process { J I u i'f!f.r'tr 3-l'TC; df'OT:) sandhi----------
.:> -.:>

rs = ~ 3f 'J[31 ii=(J=[3IT {13IT

VP=c~= +$:(JiOI{lf.r'tr 3-!TC;"df'OT:)
.:> -.:>

leftOfVP=c\

rightOfVP"' +~

qq·-·q·-----starting to proG::ss (JJO!f!f.r'tr ~ dJOT=l sandhi- .. --------

rs = q: 3f 'J[3f o=[J.[3IT (=[311

VP= ~=c::ft~;(J!OR!P.tr 3-l'TC; dfGT:)
.:::> -.:::>

leftOfVP=c~·

rightONP=·::f +~

101

------------starting to process (JI01f!f?4 .3fT'C; dfOT:) sandhi----------
..:> ,.;:,

rs =q 3f d(3f 01: J{JIT <1: 3IT

VP=·:~=Gf+~:{JIOHif?4 .31T'C;dfOT:)
..::> '..::>

leftONP=·:~

rightONP=OT+~

-----------starting to process (JIOFHfirtr .31T'C;dfOT:) sandhi----------
..:> ' ..::>

rs =q 3f JI3f a=[J{JIT q 3IT

VP=,)= +~:(JIUif!f?q .31T'C;dfOT:)
..::> '..::>

leftONP=,~·

rightONP= +~

------------starting to process (4:J:~yflf?q m 4{~4Ji./~) sandhi--------

rs =q 3f d(3f 01: J{JIT {1: 3IT

VP=·:~= +V:(4H'>4flf?qvfu 4{~4Ji./~)

leftONP=·:~

rightONP= +\!

------------starting to process (Y{~qfif?qvfu 4'1:~4Jij~) sandhi-------·-

rs =q 3f d(3f a=[J=[3IT q 3IT

VP=,)=n+V:(4{~4flfirtr "C!fg. 4'1: ~4Jlj~l?tf)

leftONP=,:,

rightONP=Cf+V

------------starting to process (dJ~ .3fT'C; dJVT:) sandhi----------
..:> . -..:>

rs =q 31 d(3f 01.: J{3ff 0.: 3-lT

VP=C:f= +3':(JIUI{lf?4 ~dfOT:\
....) ... ,.) (

leftOfVP=cf

rightONP= +31

------------starting to process (JIO!'flfiitr ~dJVT:) sandhi----------
.:> '"'

rs =q 3f d(3f cr=[Jt3IT <'[311

VP=·::i= +3':{aiOI{lf;:tr 3f1'?;' JTOT:)
.;) - .;)

leftONP=::;I

rightONP= +3'

------------starting to process ("IUiflfo=tr 3-ffC;-dJVT:) sandhi----------
.;;, -.;;,

rs ''01: 3f d(3f O:C J[3ff <'[311

VP=::f=Gf+3':(<11D lflf;'tT 3frc;- JTOT:)
.::J - ..:>

leftOfVP=:::f

rightONP=·: r + 3'

------------starting to process (7JTOT~ 3flG; dJVT:) sandhi----------
,...:);)

102

rs =J[311(31 a:('Jl.31T q .m
VP=Cf=Cf+'3:(JIO!'Hfo:tr .3iT'G dfUT:)

.:> '.:>

leftONP=3t

rightONP=Of + '3

------------starting to process (4{'€'4fl~n:rfg. q'{~41Fjj3ID=rrsT'\T) sandhi---------

rs =J[311(31 a:('Jl.31T q .m
VP=Gf= +JIT:(4{'€'4flfa:trm 4'i:~4<Rj~)

leftONP=Cf

rightONP= +JIT

------------starting to process (q{~qfifo':tr m q{~qJ"jj~) sandhi---------

rs =J[311(31 a:('Jl.31T q .m
VP=dt=Cf+JIT:(q{~qfifu:'trmq{~qJV3ID=rrsTl!tf)

leftONP=dT

rightONP=Of+JIT

------------starting to process{~~~~ sandhi---------

rs =0'[311(31;T('Jl.31Tq.31T

VP=~=~+ :(~~¢~)

leftONP=M"

rightONP=ro+
<-

------------starting to process (<:fU[~~~)sandhi---------

rs =01 3i d[3i iT[J{3iT q .m
VP=~=~+31:(~~~~

leftONP=M"

rightONP=05+31
<-

------------startina to orocess (dfUf{i~ .3iT'G "JTOT:) sandhi----------
o ' .:> '.:>

rs =q 31 7[31 <r(J{ }lT q .m
VP=M"= +ro:(JIOiflfi:tr 3-ITi:';-"JTOT:)

.... (.. .::;_ .::>

leftONP=(>[

rightOfVP= +~

------------starting to process (:JiOiflfo::tr 3frc;-JTGT:) sandhi----------
.:> -.:>

rs 3i 7[31 <r(J{ 3iT (1.3-IT

VPcc"M:::·:+tro:(J I Olflf,;::'tf .3iT'G JTGT:)
.... {.. ...Ji;)

ieftOfVP=(>[

rightOfVP=UT +~

------------starting to process (1~flfu:'tr jqfldll~ fci trr?t;crr ~~Gi:) sandhi---------

rs =J[3-T 7[31 <r(Jf 311 q }lT

103

VP=CJ1:= +;ff:(i{Rflfi:tr 3Yf!Jfl£kl tJR1't(ciT '{jQIITq~~:)
I eftOfVP=':'J1:

rightOfVP= +;ff

-----------starting to process (Clf%flfi:tr jqf! a{t £kl trr<1't(ciT <"! QIITq~~:) sandhi----------
'- ..:>

rs =q 31 1"[31 01 d=[3IT (f3IT

VP=Oft=Of+;ff:(CIRf!fi:tr 34fldl'l£kl tJR1't(ciT f!C~Iyq~~:)
' t. ..:>

left0fVP=CJ1:

rightOfVP=CT+;ff

------------starting to process {JiOif!fi:tr 3ITC;JTUT:) sandhi----------
.:. -..:.

rs =q 3f d[3f ii=[d=[3IT t=f3IT

VP=~= +;ff:(JIUI('if;:tr 3ITC;JTUT:)
' ..:> -..:>

leftOfVP=\

rightOfVP= +;ff

------------startino to process (J I o lf!fi:tr 3ITC; JTUT:) sandhi----------
"' .::> '.::>

rs =q 31 d[3f 01 d=[3IT t=f3IT

VP=~= +~:(JIO!flfi:tr 3ITC;d!UT:)
' ..:> '.::>

leftOfVP=\

rightOfVP= +::tf

------------starting to process (JIOI~lfi:tr 3-fl'?;dfUT:) sandhi----------
.:. -..:>

rs = q 3f dJ: 3f ii=[d=[3-IT (13-IT

VP===T=Cf+3,f:(JIOI>H~ 3fl?;"d!UT:)
... ' ...:>?

leftOfVP=\

rightOfVP=CT +'5f[

------------starting to process (JIO(;[If;:tr 3-fl'?; JTUT:) sandhi----------
.:> -.::>

rs =q 31 d[3f ii=[Jf 3-lT (13-IT

VP="{o~;:f+3,f:(<JIOifl~ }ITC;' dfUT:)
..... ;:) --..,..J

leftOfVP="{

rightOfVP=CT+~

------------starting to process(~~~~) sandhi---------

rs =q 3i d[3i ii=[:l=(3-IT (1 .3-l'T

VP={=·i+ :(Gl'D'[~~~)

leftOfVP="{

rightOfVP=:;:+

------------starting to process (~ ~ ~ ~) sandhi----------

rs =q 31 'J'[3f ii=[J{ 311 '('(3-IT

VP=t='i+3i:{GfD'[~~~)

104

leftONP=~

rightONP='i+ Jr

------------starting to process {<::J'U[~¢ ~ sandhi---------

rs =q Jr d[Jr a:["J{ 3fT ([3fT

VP=~=C(+ :(<::J'U[~~~)

leftONP=~

rightONP=q+

------------starting to process (<::J'U[~ ¢ ~ sandhi---------

rs =q Jr d[31 a:["J{ 3fT ([3fT

VP=~=({+31:(<::J'U[~~~)

leftONP=~

rightONP=((+ Jr

------------starting to process (<lf%flTO=tr <lf%~fil) sandhi----------c. (..

rs = q 31 d[31 a:["J{ 3fT ([3fT

VP=·~:= +~:(Clf%tlTO=tr CIR~fil)
c. c.

leftONP=·:~

rightONP= +~

------------starting to process {ClR'HTO=tr Clf%~fil) sandhi----------c. (.

rs =q 31 d[Jr ~ J{ 3ff ([3ff

VP=,'\=Cf+~:(Clf%f!f;'trqf%~fil)
(.. (.

leftOfVP=,'\·

rightOfVP=Cf+~

------------starting to process (1f%'HT?tr CLR{fil) sandhi---------

rs =q 31 J'(31 "1. T[3ff ([3ff

VP='~'= +V:(Clf%flf;'tr Clf%{fil)
(. (.

leftOfVP='~'

rightOfVP== +V

- --- -·-·---starting to process (Clf%tlftr:tr ctf%{fil) sandhi----- -··-
c. c.

rs =q 31 J'(Jr ~ J{ 3ff ([3ff

VP=t'=z:f+'([:(1f%tlftr:tr CLM{fil)

lettOtVP=?·

rightOfVP::: :f+l:!

--- -· ----starting to process (Clf%fiP't:r Clf%{fil) sandhi
(. (.

rs =q Jr J'(Jr ?._: T[3ff ([3ff

VP=·:l= +3it:(1Rf!T?tr 1R'tfil)

leftOfVP=·:it

105

rightONP= +3tf

------------starting to process (tiTi\tlf.T:tr ti\%{RI) sandhi----------
'- {.

rs =q 3f d(3f a:[d{ JIT (=[JIT

VP=dt= +JIT:(<f\%tlr.r-tr1_\%{RI)

leftONP=dt

rightONP= +JIT

------------starting to process (CI\%flfa=tr CI\%{RI) sandhi----------
<- <-

rs =q 3f d(3f a:[J:[JIT <=[JIT

VP=·:::l=GT+3tf:(cp%flfa=tr i_\%{R!)

leftONP=cl

right0NP=UT+3tf

------------starting to process (tl\%tlf.T:tr CI\%{RI) sandhi----------" {.

rs =q 3f d(3f 01 d{ JIT (=[JIT

VP=·::1=·:::f+JIT:(Cl\%tlf.:'trCl\%{RI)
(.. (..

feftONP=·::1

rightONP=·:::f+JIT

------------starting to process (<fn:Stlf.T:tr ~: 'fl"Cl'UTtJU:) sandhi---------

rs =q 3f d(3f 01.: J:[3IT <=[3IT

VP=d'k:i4:(dh:ltlfa:ti 3fCfi: ~tJU:)

leftONP=::!f

rightOfVP=:i+~

··-··-------starting to process {~h~flf.T:tr ~: 'fl"Cl'UTtJU:) sandhi---------

rs =q 3f d(Jf 01.: J:[3IT (=[JIT

VP=,:i=,:i+~:(<f!tl+Jfa:.U ~: ~tJU:)

leftOfVP=·:1

rightONP=·:i+~

------------starting to process (2J£i'flf.T:tr ~: :rrqUtM:) sandhi---------

rs =q 3f 6[3f 01_J:[3ff (=[3fT

VP=<i=V+~:(if)tl~ifa:ti 3fCfi: 'fl"Cl'UTtJU:)
leftOfVP=:i

rightOfVP= V+~

------------starting to process (trEi-~""4 JfCF: t:rcrdf iJU:) sandhi----------

r s 3f 6[3f Ol11. 3IT <=[.311

VP=<i=8+~:(ifl£i.Hfa:ti :t'fCF>: ~iJU)

lettOfVP=·:lf

rightOfVP= 8+~

106

------------starting to process (@~'Hfa:tr 3-TCfl: "H'Cff't~:) sandhi---------

rs =q 31 1(31 at J:f3IT (=[3IT

VP=9,=':.(+3':(<fl~'Hj';:q 3-TCfl: "H'Cff't~:)

leftOfVP=9,

rightOfVP=0::)..+3'

-----------starting to process (<fl~'Hfa:tr 3-TCfl: "H'Cff't~:) sandhi---------

rs =q 311(31 D=(J=[3IT (=[3IT

VP=c:)..=C)..+3:(@~'Hfa:tr 3-TCfl: "H'Cff't~:)

leftOfVP=C;:_

rightOfVP=,:;:_+ 3

------------starting to process (<fl~'Hfa:tr 3-TCfl: "H'Cff't~:) sandhi---------

rs = q 31 1(31 at J=[3IT (=[3IT

VP=·::.(='j+3:(d\lO'flfa:tr 3-TCfl: "H'Cff't~:)

leftOfVP=·:i_

rightOfVP=·j+3

-----------starting to process (d\lO'flfa:tr .3f<F: "H'Cff't~:) sandhi---------

rs =q 3f 1(31 D=(J:f3IT (=[3IT

v p =(:;:_ ='.S + 3\: (d;) €i 'H fa:tr .3f<F: 'ffCl1lT <fl"tt:)
leftOf\/P=,:;:_

rightOfVP='j+ 3\

------------starting to process (d\l€i'HP"4 3-fi.F: 'ffC!U'f<f}"tt:) sandhi---------

rs =q 31 d[3f at JI 3IT (=[3IT

VP=+='i.+~:(ii'lU'HP't:r 3-fi.F: 'ffC!U'fcfr&:)

ieftOfVP=':~

rightOfVP=·;:+~

------------starting to process (ii)Of!P"4 3-f<'F: 'ffC!U'fcfr&:) sandhi---------

rs =q 3-f d[31 01 J=[3IT <1. 31T

VP=·}::·:~+;:ff:(2J€iflfi:tr 3fCF: ~cfr&:)

!eftOfVP=<

rightOfVP=':~+;:ff

------------starting to process (d\l€i:n1?4 3fCF: ~~:J sandhi---------

rs "'q 31 d[31 o=r: J:[3-lT (=[31T

VP= ~=i_+*f:(efQf!P"q Jfq:J: ~cfr&:)

leftOf\/P=C£

rightOtVP=·;_:+~

------------starting to process (c~h1'HP"4 3fCF: ~cflU:) sandhi----------

107

rs =q 3f d[3f 01_: J:[3IT (=(3IT

VP=::i_=Ci_+'3if:(~~f!fo=tr 3f<:F: ~~:)

leftONP=::{

rightONP=':{+'3if

------------starting to process (~~flfa:'tr 3f<:F: ~~:)sandhi---------

rs =q 3f d[3f 01_: J=[3IT (=(3IT

VP=G=Gro+'3i[:(~~f!fo:'tr 3f<:F: ~~:)
' ' <.

leftONP=::~

right0NP='2'£+'3if

------------starting to process (~~f!fa:'tr 3f<:F: ~~:)sandhi---------

rs =q 31 d[3f 01_:J:[3IT (=(3IT

VP=Cf=CT+3IT:(~~f!fo=tr 3f<:F: ~~:)

leftONP=·::r

rightONP=Of+3IT

------------starting to process {~~flfo=tr 3f<:F: ~~:)sandhi---------

rs =q 3f d[3f 01_: J:[3IT (=(3IT

VP=CT=d+3f:(4)~f!fo=tr 3f<:F: ~~:)

lettONP=Uf

rightONP=Cf+3f

------------starting to process (~H5f!fo:'4 3f<:F: ~~:)sandhi---------

rs "q 31 d[31 "1_ &=[3IT <1, 311

VP=Cf= +3fT:(J'l~flfo:'tr 3-]Cf): ~~:)

leftONP=CT

rightONP= +3fT

------------starting to process (J'lQf!fo=tr 3f<:F: ~~:)sandhi---------

rs "q 3f d[3f 0'('J1 3fT <1, 3fT

VP:::O:f= -t3f:(eJQf!fo:'<J 3f<:F: ~~:)

leftONP=Uf

rightONP= +.31

------------starting to process (d)t'rafo:'t.T 3-]Cf): flC!'OT~:) sandhi----------

rs 3f d[3f "1_ 'J:[3IT <1, 3;1

v r = 3fT" 3fT+ 3fT: (2:1 8, +t fo:'<J SJ<.:f1: flCllJ't ci .. !1:r: l

leftOfVP=3iT

rightOfVP=3ff+3fT

left token =q 3f d[3f "1_ &=[

right token = <1, 3ff

108

marked position =19

left token =q 3f JI3f 01. 6=[31T + 31T (=[

right token =
marked position =26

----------------------------START 0 F Segmenter. va I i dateSplit()------------------------

tokens to validate= q 31 JI31a:tJ:[31T+31T (=[31T+31T

joined tokens to validate = q 31 JI3f 01. 6=[31T+31T (=[31T+31T

'~3-IT (=[31T' not validated

validated=false

----------------------------END OF Segmenter. va lidateSplit()------------------------

------------starting to process (<rlljf!fo:tr 31Cfi: ~-ertt:) sandhi---------

rs =q 31 JI31 01. 6=[31T (=[31T

VP=JIT =3-IT + 31: (eJ !j fl f,;::'q }ltf): wroT <fm:)

leftONP=3-IT

rightONP=3-IT+Jf

left token =q 31 JI31 01. 6=[

right token = (=[3-IT

marked position =19

left token =q 3f d[31 a1_ J=[3-IT+Jf ('[

right token =
marked position =26

----------------------------START 0 F Segmenter. va lidateSpl it()---------------------~--

tokens to validate = q 3f dJ.: 3f01. J{ 3-IT+Jf ('[}i'T+Jf

joined tokens to validate = q 3f d[3f a1_ J=[3-IT+ 3f <'[3-IT+3f

'0fd1013-IT ('[3-IT' not validated

validated::::false

----------------------------END 0 F Segmenter. va I ida teSplit()------------------------

···· ·starting to process (alt5flf.i::"t.I .3icfi: ~ifr&:) sandhi-- --·---

rs =q 3f dJ.: 3f a1_ J{ 3-IT ('[3;1

VP=3-IT=3f+3-IT:(c\hJ{-I\?t:r 3ic:n: ~ ~)

leftONP=3IT

rightOfVP=3f + 3-IT

left token =q3fd[3fa1_J{

109

right token = (=[3ff

marked position =19

left token=~ 3f d[3f ii1. :F[3f+3ff (=[

right token =

marked position =26

---------------------------START OF Segmenter.validateSp!it()------------------------

tokens to validate = ~ 3f d[3f ii1. :F[3f+3ff (=[31+ 3ff

joined tokens to validate=~ 3f d[3f iil:Ff: 3f+3ff c=[3f+3ff

'~3ff c=[3f' not validated

validated=fa!se

----------------------------END 0 F Segmenter. validateSplit{)------------------------

------------starting to process (41Uflfo::'t:r 31cfi: ~~:)sandhi--------

rs =~ 3f d[3f ii1. J:[3ff (=[3ff

VP=3ff=3f+3f:{41Uflfo::'t:r JfCF: ~~:)

left0NP=3ff

rightONP=3f+3f

left token =~ 31 d[3f iT[:F[

right token = <-t 3ff

marked position =19

left token =:~3fd(3f"t:F[31+31('[

right token =

marked position =26

----------------------------START 0 F Segmenter. va I id ateSpl it()------------------------

tokens to validate= 01:31 d[3-101.: J=[31+31<1.: 31+31

joined tokens to validate= 01:31 d[31 ii1_ J=[31+31 <1.: 31+31

·~3ff ('[31' not vaiidated

va!idated=false

----------------------------END 0 F Segmenter. va lidateSp! it()------------------------

- - ---starting to process (CIT.~flCfllT3,[tcrr) sandhi--- ----

rs =q 31 d[31 ii1. J=[3ff <-t 311

VP=Ct=·:)+"'F":(CIT.=-?~~tcrr)· t,, ...,-<- Jt(_l Cl ... , c.. .

leftOtVP=:>t
'<-

rightOfVP''{+3.£

110

------------starting to process (<IT. ~~~<IT) sandhi---------

rs ='3'(3f d(3f 01: ~ .3IT q .3IT

VP=C~ro=n+ro:(<rr. rofa~ro<rr)
- <- l:.. <- <- <-

leftONP='2~

rightONP='{+~

------------starting to process (<rt'Ttmt%= ~sandhi---------

rs ='3'(3f d(3f 01: ~ .3IT (1 .3IT

VP=<T=f0+'Q':(<rt'Ttffit%: ~

leftONP=<T

rightONP=f0+'Q'

------------starting to process (<RTs<>iOi!Rl<tlsOiOiiUl<h) <IT) sandhi----------
.:> .::>

rs ='3'(3f d(3f a:[~ .3IT q .3IT

VP=a:J: o:{=(l+a:J::(<RTsGj,<>i1Rl4isOfi1Rl'l1) <IT)

leftONP=a:[a:[

rightONP=q+o:{

------------starting to process (<Rts01Gi!at<tls<>i011Rl'l1l <IT) sandhi----------
.:~ .:>

rs ='3'(3f d(3f ii1_ ~ .3IT (1 .3IT

VP=a:J:a:J:=?\.+a:J::(<R'tsa:t01tl?l41sa:t011ru<h1 m)

leftONP=a:J: a:[

rightONP=(~fii1_

------------starting to process cm:Ts<>iOi!Rl<tlsOiOilat<:fl) <IT) sandhi----------
.:> .:>

rs ='3'(3f d[3f iii: ;t1_ 3-i1 q .3IT

VP=a:r o:r =01+<Tf:(<RTs0101 1ru <tlsOi<>i I at <h) <rrJ
- - - - .:> .::>

leftONP=ii1_ ii1_

rightONP=a:[+ii1_

------------starting to process (<Rls<>i<>i tat4ls<>i<>i !Uli:fl <IT) sandhi----------
.:> ,:)

rs =q 3f d[3f if1 ;t1_ }IT q 31T

VP=o:r JT=<1+11:(<Rls<>i"11R'1ctls<>i<>i !Ul<h) <IT)
- - - - .::> .:>

leftONP=ii1_ J.l

rightOfVP=q +;t1_

left token =Vi_ 3f d[3f

right token = .3IT (i_ .3IT

marked position = 15

----------------------------START 0 F Segmenter. va I idateSp I it()------------------------

tokens to validate = q 3f d[3f q+;t1_ 31T q: 31T

111

joined tokens to validate = ~ .31 d[.31 q+J=[3ff (=[3ff

·~validated

'j:ffi1T' validated

validated=true

----------------------------END OF Segmenter. validateSp!lt()------------------------

~ 'ffi<1T validated

------------starting to process (<Rl"s<Tlirll~<tlsirllii!~Cfl) CIT) sandhi----------
.:> .;>

rs =~ .31 d[.31 01.:1{ 3ff (=[3ff

VP=<Ti.:J=[=~+J=[:(<Rl"sCij,irll~<tls"j,<Tll~<tl) CIT)

leftONP=<Ti.:J=[

rightONP=~+J=[

left token =~ .31 d[.31

right token = 3ff (=[3ff

marked position =15

----------------------------START 0 F Segmenter. validate Split()-----·-------------------

tokens to validate= q .31 d[.31 ~+J=[3ff q 3ff

joined tokens to validate = q 3f d[.31 C_+1{ 3ff (=[3ff

·~validated

'JlT(IT' validated

validated=true

-------- ·- ----------·- -·-----END 0 F Segmenter. vaiidateSp lit()-----------··---------··--

a;rrc;:_ JTI<iT v a I i dated

------------starting to process (<:ffis!ilirl !Ri<tisOi<iilffi'f) <IT) sandhi----------
.:> .;:,

rs '"q 3f d[3f 01 J=[3fT q 3fT

VP=c:t"Ji.:=c:t+J:J.::(mJS"j,oi ltfl'*>saj!il !ftlifil <IT)

leftONP=c:t"Ji.:

rightONP=<i=[+J:(

left token =q 3f d[31

right token .: 3fT q 31T

marked position =15

----------------------------START OF Segmenter.validateSp!it()------------------------

tokens to validate= q 3i d[3-Ta:t+J:J.: 3fT q 3-11

112

joined tokens to validate = ~ 3f d[3f a=[+J:(3IT c=[3IT

·;:;:mar validated

'mcrr' validated

validated=true

----------------------------END 0 F Segmenter. va I idateSplit()------------------------

~111(ITvalidated

----------------------------END 0 F Segmenter. ch eckPatterns()------------------------

segmented token=~ 111(IT (<R!SOJ,Oii~~SOJ,Oil~<h) CIT)

0fJT'C; 111(IT (<fUsOi Oi I~~ SOi Oi I~ q;) CIT)
- ~ J

~ 111(IT (<fUsOiOi ~~~SITIITII~<h) ;:m
- J J ~•J

----------------------------END 0 F Segmenter .segment()------------------------

113

BIBLIOGRAPHY

Bibiliography

Books

• Abhyankar, K.V., 1961, 'A Dictionary ofSanskrit Grammar', Gaekwad's Oriental

Series, Baroda.

• Bakharia, Aneesha. 2001, 'Java Server Pages', Prentice Hall of India Private

Limited, New Delhi.

• Ballantyne, James R., 1967, 'Laghukaumudf of Varadariija', Chaukhamba

Sanskrit Pratisthan, MLBD. Delhi.

• Bhandarkar, R.G., 1924, 'First book of Sanskrit', Radhabai Atmaram Sagoon,

Bombay.

• Bhandarkar, R.G., 1924, 'Second book of Sanskrit' Radhabai Atmaram Sagoon,

Bombay.

• Bharati, Akshar, Vineet Chaitanya and Rajeev Sangal, 1995, 'Natural Language

Processing: A Paninian Perspective', Prentice-Hall of India, New Delhi.

•

•

•

•

•

•

•

•

Cardona, George, 'Piinini: his work and its traditions', Motilalal banarasidass,

New Delhi.

Cardona, George, 1980, 'Panini- A Survey of Research', Motilal Banarasidass,

New Dalhi, First Indian Edition; First published: The Hague, 1975

Cardona, George, 1999, 'Recent Research in Piininfan Studies', Motilal

Banarasidass, New Dalhi.

Date, C.J., 1987, 'Introduction to Database Systems', Addison-Wesley, Reading .

Fromkin & Rodman, 2003, 'An Introduction to Language', Thomson Wadsworth .

Guru Prasad Shastri (ed). 1999, 'Vyakarana-Mahiibhiisya with Pradipoddhat tikii'

Pratibha Prakashan, Delhi.

Iyer, K.A.Subramania, 1969, 'Bhartrhari: A study ofthe viikyapadfya in the light

ofancient commentaries' Deccan College, Poona.

Joshi, Sivaram Dattatray & Roodbergen J. A. F., 1998, 'The Astiidhyiiyi of

Piinini', Sahitya Akademi, New Delhi.

114

• Jurafsky, Daniel & Martin, 2005, 'Speech and languages processing', Pearson

Education Pvt. Ltd., Singapore. ·

• Kale, M.R., 1972, 'A Higher Sanskrit grammar', Motilal Banarasidas, Delhi.

• Kapoor Kapil, 2005, 'Dimensions of Piinini Grammar: the Indian Grammatical

System', D.K. Printworld (P) Ltd., New Delhi.

• Katre, S.M., 1968, 'Dictionary ofPiinini', Deccan College, Poona.

• Kielhorn, F., 1970, 'Grammar for Sanskrit Language' Chowkhamba Sanskrit

Series office, V aranasi.

• Macdonell, A. A., 1997, 'A Sanskrit Grammar for Students', D. K. Printworld (P) ·

Ltd., New Delhi.

• Mishra, Narayan (ed.), 1996, 'Kiisikii of Pt. Viimana and Jayiiditya', Chaukhamba

Sanskrit Sans than, V aranasi.

• Muller, F. Max, 1983, 'A Sanskrit grammar' Asian Educational Services, Delhi.

• Nautiyal, Chakradhar Hans, 1995, 'Brhada-anuviid-candrikii', Motilal

Banarasidass, Delhi.

• Panashikar, Vasudev Lakshman Shastri (ed), 1994, 'Siddhiintakaumudf',

Chaukhamba Sanskrit Pratisthan, Delhi.

• Pandey, G. D., (ed.), 2003, 'Vaiyiikarana Siddhiintakaumudf', Chaukhamba

Surbharati Prakashana, V aranasi.

•

•

•

•

•

Pt.Brahmadatta jigyasu (ed.), 1998, 'Piinini-Astiidhviiyi', Ramlal kapoor trust,

Sonipat.

Reyle, U. and C. Rohrer (eds.), 1988, 'Natural Language Parsing and Linguistic

Theories', D. Reidel, Dordrecht.

Rishi, Uma Shankar Sharma (ed.); 'Yaska-pranitam niruktam', Vol. I- chapters 17;

Varanasi, Chowkhamba Vidyabhawan; reprint 2005; Vidyabhawan Sanskrit

Granthamala-57

Russell, Joseph P. 2002, 'Java Programming', Prentice Hall of India Private

Limited, New Delhi.

Sharma, Rama Nath, 2003, 'The Astiidhyiiyi of Piinini', Munshiram Manoharlal

Publishers Pvt. Ltd., Delhi.

115

• Shastri Charu Deva, 1991, 'Piinini: Re-interpreted' Motilal Banarasidass, Delhi.

• Singh, Jag Deva, 1991, 'Piinini: His Description of Sanskrit (An Analytical Study

ofthe Astiidhyiiyf)', Munshiram Manoharlal, Delhi.

• Stall, J. F., 1985, 'A Reader on Sanskrit Grammarians', Motilal Banarsidas, Delhi.

• Troast, Harald. 2003, 'Morphology', in 'The Oxford Handbook of Computational

Linguistics', Edited by Ruslan Mitkov, Oxford University press, New York, pp.

25-47.

• Vasu, Srisa Chandra (ed. & Translated into eng.), 1982, 'The Siddhiinta Kaumudf

ofBhattoji Dfksita. Vol. II, MLBD. Delhi.

• Whitney, William Dwigth, 1983, 'Sanskrit Grammar', MLBD, Delhi.

• Whitney, William Dwigth, 2004, 'Sanskrit Grammar: Including both the

Classical Language, and the older Dialects. of Veda and Brahmana', Munshiram

Manoharlal Publishers, Delhi, Reprint from the second edition of 1889.

• Williams, Monier, 'A Practical Grammar of the Sanskrit Language', Clarendon

Press, Oxford

• Wilson, H. H., 1841, 'An Introduction to the Grammar of the Sanskrit Language',

J. Madden & Co., London.

Articles and Papers

• Bharati Akshar, Amba P. Kulkarni Vineet Chaitanya, 1996, 'Challenges in

developing word analyzers for Indian languages', Presented at Workshop on

Morphology, CIEFL, Hyderabad.

• Bharati, A., Sangal R., 1990, 'A karaka based approach to parsing of Indian

languages', proc of the 13th COLING vol3, pp 30-35, Finland.

• Bharati, Akshar and Rajeev Sangal, 'Parsing free word order languages using the

Paninian framework', In ACL93: Proc.of Annual Meeting of Association for

116

Computational Linguistics, Association for Computational Linguistics, New York,

1993.

• Bharati, Akshar, Vineet Chaitanya and Rajeev Sangal, 'A computational

framework for Indian languages', Technical Report TRCS-90-1 00, Dept. of CSE,

liT Kanpur, July 1990b. (Course Notes for Intensive Course on NLP for Linguists,

Vol.l)

• Bharati, Akshara, Amba Kulkarni and V. Sheeba, 'Building a wide Coverage

Sanskrit Morphological Analyzer: A Practical approach, MSPIL-06.

• Bhate, Saroja and Subhash Kak, 1993, 'Piinini's Grammar and Computer

Science' Annals of the Bhandarkar Oriental Research Institute, vol. 72, pp. 79-94.

• Cardona, George, 2004, 'Some Questions on Piinini's Derivational system' In

SPLASH proc. of iSTRANS, pp. 3.

• G.V. Singh, Girish Nath Jha, 'Indian theory of knowledge: an AI

perspective' proc. of seminar, ASR, Melkote, Mysore, 1994

•

•

•

•

Houben, Jan E. M., 'Panini's Grammar and its Computerization: A Construction

Grammar Approach', m Third International Symposium of Sanskrit

Computational Linguistics, Springer, LNAI-5406, p.p. 6-25

Huet, Gerard, 'Towards Computational Processing ofSanskrit'

Hymen, Malcolm D., 2007, 'From Paninian Sandhi to Finite State Calculus' in

proceedings ofFISSCL, INRIA, Paris, p.p. 13-21

Jha Girish N, 1994, 'Indian theory of knowledge: an AI perspective' (proc. of

national seminar on "Interface Mechanisms in Shastras and Computer Science",

Academy of Sanskrit Research, Melkote, Mysore, April, 1994)

117

• Jha Girish N, 1995, 'Proposing a computational system for Nominal Inflectional

Morphology in Sanskrit' (Proc. of national seminar on "Reorganization of Sanskrit

Shastras with a view to prepare their computational database", January, 1995)

• Jha Girish Nath, Mishra, S K, Chandrashekar R, Subash, August, 2005,

'Developing a Sanskrit Analysis System for Machine Translation' presented, at the

National Seminar on Translation Today: state and issues, Deptt. of Linguistics,

University of Kerala, Trivandrum.

• Jha Girish Nath, November, 2005 'Language Technology in India: A

survey' Issue of C.S.I. magazine

• Jha Girish Nath, October 2003, 'A Prolog Analyzer/Generator for Sanskrit

Subanta Padas', Language in India, Volume 3: 11.

• Jha Girish Nath, February 2004, 'The System of Panini', Language in India,

volume 4:2

• Jha Girish Nath, March 2004, 'Generating nominal inflectional morphology in

Sanskrit' SIMPLE 04, IIT-Kharagpur Lecture Compendium, Shyama Printing

Works, Kharagpur, WB,

• Jha, Girish Nath, December, 2003, 'Current trends in Indian languages

technology', Langauge In India, Volume December.

• Jha, Girish Nath. 'Regional & linguistic perspective on internationalization: the

case of Hindi/Sanskrit', 2007.

• Jha, Girish Nath. 2007, 'Introduction to Computational Morphology', Lecture

delivered on 5 January 2007 at CDAC, Noida.

118

• Joshi, Shivram Dattatreya, 'Background of Ashtadhyayi' in Third International

Symposium of Sanskrit Computational Linguistics, Springer, LNAI-5406, p.p. 1-5

• Kapoor, Kapil, 1996. 'Panini's derivation system as a processing model' (to

appear in the proc. of "A Symposium on Machine Aids for Translation and

Communication, 11-12 April, School of Computer & Systems Sciences, J.N.U.

New Delhi, 1996)

• Kiparsky, P. and Stall, J. F., 1969, 'Syntactic and Semantic Relation in Panini'

(Foundations of Language, Vol.5, 83-117).

• Mishra, Anand, 2009, 'Modelling the Grammatical Circle ofthe Paninian system

of Sanskrit Grammar' in Third International Symposium of Sanskrit

Computational Linguistics, Springer, LNAI-5406, p.p. 40-55

• Mishra, Anand; 2007, 'Simulating the Paninian System of Sanskrit Grammar' in

proceedings of FISSCL, INRIA, Paris, p.p. 89-95

• R.M.K. Sinha, 1989, 'A Sanskrit based Word-expert model for machine

•

•

translation among Indian languages', Proc. of workshop on Computer Processing

of Asian Languages, Asian Institute of Technology, Bangkok, Thailand, Sept.26-

28, 1989, pp. 82-91.12.

Ramakrishnamacharyulu, K.V., 'Paninian Linguistics and Computational

Linguistics', Samvit, Series no. 27. Pp. 52-62, Academy of Sanskrit Research,

Melkote, Kamataka (India), 1993.

Scharf, Peter M., 2007, 'Modeling Paninian Grammar' in proceedings of FISSCL,

INRIA, Paris, p.p. 77-87

119

• Scharf, Peter M., 2009, 'Levels in Panini's AstadhyGyi' in Third International

Symposium of Sanskrit Computational Linguistics, Springer, LNAI-5406, p.p. 66-

77.

Thesis and Dissertations

• Agrawal, Muktanand, 2007, 'Computational Identification and Analysis of

Sanskrit Verb-forms ofbhviidigana', submitted for M.Phil degree at SCSS, JNU.

• Bhadra, Manji, 2007, 'Computational Analysis of Gender in Sanskrit Noun

Phrases for Machine Translation', submitted for M.Phil degree at SCSS, JNU.

• Chandra, Subash, 2006, 'Machine Recognition and Morphological Analysis of

•

•

•

•

•

Subanta-padas', submitted for M.Phil degree at SCSS, JNU.

Chandrashekhara, R., 2006, 'POS Tagging (or Sanskrit', submitted for Ph.D

degree at SCSS, JNU.

Jha Girish N, 1993, 'Morphology of Sanskrit Case Affixes: A Computational

analysis' Dissertation of M.Phil submitted to Jawaharlal Nehru University, New

Delhi-110067.

Kumar, Sachin, 2007, 'Sandhi Splitter and Analyzer for Sanskrit' (with special

reference to aC sandhi), submitted for M.Phil degree at SCSS, JNU.

Mishra, Sudhir Kumar, 2007, 'Sanskrit Karaka Analyzer for Machine Translation',

submitted for Ph.D. degree at SCSS, JNU.

Singh, Surjit Kumar, 2008, 'Krdanta Recognition and Processing (or Sanskrit',

submitted for M.Phil degree at SCSS, JNU.

120

Web References

• Academy of Sanskrit Research, Melkote,

http://www.sanskritacademy.org/About.htm (accessed: 22 April2009).

• Anusaaraka, http://wwlv·.iiit.net/ltrc/Anusaaraka/anu home.html (accessed:

1 OApril, 2009).

• AU-KBC Research Centre - http://www.au-kbc.org/(rameresearch.html (accessed:

25 April 2009).

•

•

Baraha, http://www.baraha.com/BarahalME.htm (accessed: 6 July 2009) .

Brown University research http://research.brown.edu/research/ (accessed: 15 June,

2009).

• C-DAC, http://www.cdac.inlhtmllihglactivity.asp (accessed: 20 Apri12009).

•

•

Computational Linguistic R&D, J.N.U., http://sanskrit.jnu.ac.in!index.jsp

(accessed: 2 May 2009).

Department of Sanskrit UOHYD >> sandhi

http:/ /sanskrit. uoh yd.emet. in/ -anusaaraka/sanskrit/samsaadhani i/sandh i/i ndex. htm

l (accessed: 20 April, 2009).

• Desika, http://tdil.mit.gov.in!dmvnload!Desika.htm (accessed: 10 May, 2009).

• http://en. tvikipedia.org/wiki!Clav Sanskrit Lib ran· (accessed: 2 July 2009).

• http://tdil.mit.goF.in/languagetechnologvresourcesapril03.pd[(accessed: 20 April

2009).

• http://www.acroterion.ca/lvlorplwlogical Analysis.html (accessed: 15 April 2009).

• http:!!wwl-v.cfilt.iitb.ac.in!wordnetllt'ebhwnlwn.php (accessed: 25 April 2009).

• http:!!www.comp.lancs.ac.uklucrel!clmvs (accessed: 20 April2009).

121

• http://www.languageinindia.coml(eb2004/panini.html (accessed: 2 May 2009).

• http://"!-~,;ww.sas.upenn.edu/-vasur/project.html (accessed: 18 April 2009).

• http://www.sil.orglpckimmo/ (accessed: 18 April2009).

• liT, Bombay, http://www.cse.iitb.ac.in (accessed: 25 April2009).

• Java Server Pages, http://java.sun.com/products/jsp/ (accessed: 5 July, 2009).

• Java, Servlet, http://java.sun.com/products/servlet/ (accessed: 5 July, 2009).

• John Clay, http://lvww.claysanskritlibran'.Org/ (accessed: 2 July 2009).

• Language Processing Tools: TDIL website, http://tdil.mit.gov.in/nlptools/ach-

nlptools.htm (accessed: 20 April2009).

• Oflazer,Kema1,http://{olli.loria. (r!cds/2006/courses/Oflazer. Comput(lfionalM or ph

ology.pd((accessed: 15 April2009).

• Peter M. Scharf and Malcolm D. Hyman, http://sanskritlibrary.org/morph/

(accessed: 18 April, 2009).

• RCILTS, School of Computer & System Science, http://rcilts.jnu.ac.in JNU, New

Delhi. (Accessed: 20 April 2009).

• RCILTS, Utkal University, http://www.ilts-utkal.org!nlppage.htm (accessed: 15

April 2009).

• RSV Tirupati, http://rsvidyapeetha.ac.in and http://wltw.sansknet.org (accessed:

22 April 2009).

• Sanskrit heritage site >> Sanskrit Reader http://sanskrit.imia.fr/DICO/reader.html

(accessed: 10 April, 2009).

• The Web server, Apache Tomcat, http:/lwH:w.apache.org/ (accessed: 5 July 2009).

• Wikipedia, http://en. wikipedia.orgAviki/Natural language processing (accessed:

15 April 2009).

122

	TH178060001
	TH178060002
	TH178060003
	TH178060004
	TH178060005
	TH178060006
	TH178060007
	TH178060008
	TH178060009
	TH178060010
	TH178060011
	TH178060012
	TH178060013
	TH178060014
	TH178060015
	TH178060016
	TH178060017
	TH178060018
	TH178060019
	TH178060020
	TH178060021
	TH178060022
	TH178060023
	TH178060024
	TH178060025
	TH178060026
	TH178060027
	TH178060028
	TH178060029
	TH178060030
	TH178060031
	TH178060032
	TH178060033
	TH178060034
	TH178060035
	TH178060036
	TH178060037
	TH178060038
	TH178060039
	TH178060040
	TH178060041
	TH178060042
	TH178060043
	TH178060044
	TH178060045
	TH178060046
	TH178060047
	TH178060048
	TH178060049
	TH178060050
	TH178060051
	TH178060052
	TH178060053
	TH178060054
	TH178060055
	TH178060056
	TH178060057
	TH178060058
	TH178060059
	TH178060060
	TH178060061
	TH178060062
	TH178060063
	TH178060064
	TH178060065
	TH178060066
	TH178060067
	TH178060068
	TH178060069
	TH178060070
	TH178060071
	TH178060072
	TH178060073
	TH178060074
	TH178060075
	TH178060076
	TH178060077
	TH178060078
	TH178060079
	TH178060080
	TH178060081
	TH178060082
	TH178060083
	TH178060084
	TH178060085
	TH178060086
	TH178060087
	TH178060088
	TH178060089
	TH178060090
	TH178060091
	TH178060092
	TH178060093
	TH178060094
	TH178060095
	TH178060096
	TH178060097
	TH178060098
	TH178060099
	TH178060100
	TH178060101
	TH178060102
	TH178060103
	TH178060104
	TH178060105
	TH178060106
	TH178060107
	TH178060108
	TH178060109
	TH178060110
	TH178060111
	TH178060112
	TH178060113
	TH178060114
	TH178060115
	TH178060116
	TH178060117
	TH178060118
	TH178060119
	TH178060120
	TH178060121
	TH178060122
	TH178060123
	TH178060124
	TH178060125
	TH178060126
	TH178060127
	TH178060128
	TH178060129
	TH178060130
	TH178060131
	TH178060132
	TH178060133
	TH178060134
	TH178060135
	TH178060136
	TH178060137
	TH178060138
	TH178060139

