
OPTIMIZING QoS PARAMETERS IN COMPUTATIONAL

GRID USING ACO

Dissertation submitted to Jawaharlal Nehru University, in partial fulfillment of the

requirements for the award of the degree of

MASTER OF TECHNOLOGY

In
COMPUTER SCIENCE AND TECHNOLOGY

By

Pawan Kumar Tiwari

Enrollment No.08/l 0/MT/22

Under the Supervision of

Dr. D.P. Vidyarthi

SCHOOL OF COMPUTER & SYSTEMS SCIENCES

JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI- 110067, INDIA

JULY 2010

nr1
~

School of Computer & Systems Sciences

\JI q ~~~ '< cll (.i1 ;?J g '(I) ~ ~ q ~ Ell clll

JAWAHARLAL NEHRU UNIVERSITY
NEW DELHI-110067

Certificate

This is certify that the dissertation entitled "Optimizing QoS Parameters in

Computational Grid using ACO" is being submitted by Mr. Pawan Kumar

Tiwari to the School of Computer and Systems Sciences, Jawaharlal Nehru

University New Delhi-110067, India in the partial fulfillment of the requirements for the

award of the degree of Master of Technology in Computer Science and Technology.

This work carried out by himself in the School of Computer and Systems Sciences under

the supervision of Dr. D.P. Vidyarthi. The matter personified in the dissertation has not

been submitted for the award of any other degree or diploma.

Supe~\~O
Dr. D. P. Vidyarthi

School of Computer & System Sciences

Jawaharlal Nehru University

New Delhi -110067

Prof. Sonajharia Minz

School of Computer & System Sciences

Jawahar]al Nehru University

New Delhi-110067

Prof. Sooajhar!a Mine
Dean

SOOoql of Ccmptltei 3 Systems. Sciences
-'llawahaiial Nehru Univ~rsi\['···- ·

NevJ Delhl·1 i OQ.67 ...

SCHOOL OF COMPUTER & SYSTEMS SCIENCES
JA WAHARLAL NEHRU UNIVERSITY

NEW DELHI-110067, INDIA

DECLARATION

I hereby declare that the dissertation work entitled "Optimizing QoS Parameters in

Computational Grid using A CO" in partial fulfillment for the requirements for the

award of degree of "Master of Technology in Computer Science and Technology" and

submitted to School of Computer & Systems Sciences, Jawaharlal Nehru University,

New Delhi-11 0067, India is the authentic record of my own work carried out during the

time of Master of Technology in the supervision of Dr. Deo Prakash Vidyarthi. This

dissertation comprises only my original work. This dissertation is less than 100,000

words in length, exclusive tables, figures and references.

The matter personified in the dissertation has not been submitted by me elsewhere, in part

or full for the award of any other degree or diploma.

~?
Pawan Kumar Tiwari

Enroll No. 08/10/MT/21

M.Tech (2008-2010)

SC&SS,JNU

New Delhi- 110067

lll

For

Papa
Even though you left this mortal world,
I still feel your presence and that you stood behind me whenever I needed you the most.

It is impossible to forget your love, care and your dreams for us all. You were, you are
and you will be an inspiration to me forever. ·

Mom
Who sacrifices her life for her children while nurturing us and incorporating values of
life and responsibilities towards others.

Brother & Sisters
We should intact in the bright and dark period of our lives. You were and are the best
friends in whom I could always confide and count on.

Acknowledgement

First and foremost, I express my deep sense of gratitude to my supervisor Dr. D.P.

Vidyarthi for giving me an opportunity to work with him. His invaluable guidance has

not only helped to complete me my dissertation work, but also enabled me to develop

understanding of the interesting subjects like paralleLand distributed systems, graph

theory and--grid computing. I am highly indebted to him for his concerns and putting ext-ra

effort and time to grown me despite of his busy schedule.

I would like to express my thanks to Dean and to all the teachers of the SC&SS JNU, in

support to pursue my work in the School. I would specially like to thank Dr. Zahid Raza

for their encouragement and inspiration throughout the research work. I thank Mr. Sushi]

Kumar Dohre for providing me the hostel facility etc., at their personal level during

M.tech. first year. Also my thanks go to School administration and librarian of software

library and main library for supporting me, in whatever way they can, to make

dissertation a success.

I would like to thanks my friends Shiv Prakash, Pushpendra, Gyani Umesh, Hanuman,

Md. Tanveer, Akshansh, and Md. Anbar for their unselfish help whenever I was needed.

In the last one year life in hostel become joyous because of friends in the corridor.

And last but not the least, I thank God for giving me courageous and loving mother who

encouraged me all the times. I immensely thank my mother for her confidence in me.

' ~
Pawan Kumar Tiwari

IV

Table of Contents

Certificate .. .ii

Declarationiii

Acknowledgement .. .iv

Contents ... v

L . fF. . .. 1st o tgures ... vn1

List of Tables ... x

Abbreviations .. xi

Abstract. .. xiii

Chapter 1 Introduction 1

1.1 Computational Grid .. 5

1.2 QoS Parameters in Computational Grid .. 6

1.3 ACO ... 9

1.4 ACO as a Soft Computing Tool.. .. 11

1.5 Organization of Dissertation ... 16

Chapter2 Computational Grid .. 18

2.1 Distributed Systems . 18

2.2 Grid computing · ... 22

2.3 Types of Grid .. 24

2.3.1 Computational Grid .. 26

2.3.2 Data Grid ... , 26

v

2.4 Limitations of Grid ... 27

2.5 Issues in Computational Grid ... 27

2.6 The Problem ... 31

2.7 Concluding Remarks ... 34

Chapter 3 Ant Colony Optimization 35

3.1 AC0 .. 35

3;1.1 AS ... 36

3.1.2 ACS .. 37

3.2 Data Structure for AS and ACS in TSP ... 40

3.2.1 Psuedo Code for ACO .. .41

3.2.2 Terminating Condition of ACO42

3.3 Important Stepts to Solve a Problem by ACO 42

3.4 Challenges and Future Scope of Research . 43

Chapter4 Proposed Model ... 44

4.1 QoS Parameters : ... 44

4.2 Fitness Function ... 44

4.3 The Model. .. 48

4.3.1 The ACO Alg?-rithm for Computational Grid 50

4.4 Concluding Remarks · .. 51

Chapter 5 Experimental Evaluation .. 52

vi

5.1 Parallel Tasks Without Communication Cost.. 53

5.2. Observation .With Communication Cost. ... 63

5.3 Comparisons between ACO Based Model and GA Based Model 77

5.4 Concluding Remark ... ·.·· .. 79

Chapter 6 Conclusion and Future Scope 80

6.1 Conclusion ... 80

6.2 Future Scope .. 1 81

References .. 82

Vll

List of Figures

Fig. 2.1 Architecture of a Multi-processor System ... 20

Fig. 2.2 Architecture of a Multi-computer System ... 21

Fig. 2.3 Architecture of a Distributed Computing System 21

Fig. 2.4 Cluster Architecture ... 22

Fig. 2.5 Architecture of Grid .. 25

Fig. 2.6 Grid Scheduling Architecture.' .. .32

Fig. 2. 7 Queuing Architecture of Grid33

Fig. 2.8 Workflow Management. .. 34

Fig. 5.1.1 Turnaround time Observation Graph {1=50) .. 54

Fig. 5.1.2 Turnaround time Observation Graph (1=60) 54

Fig. 5.1.3 Turnaround time Observation Graph (I= 70) : 55

Fig. 5.1.4 Turnaround time Observation Graph (1=80) 55

Fig. 5.1.5 Turnaround time Observation Graph (1=160) 56

Fig. 5.1.6 Turnaround time Observation Graph (1=250) 56

Fig. 5.1. 7 Turnaround time Observation Graph (1=300) 57

Fig. 5.1.8 TAT Comparison Graph with Different Number ofTasks (I) 58

Fig. 5.1.9 TAT Comparison Graph with Different Number of Tasks (11) 58

Fig. 5.1.10 TAT Comparison Graph with Different Number of Tasks (III) 58

Fig. 5.1.11 Comparison of Min TAT with Increase in Number of task•...................... 59

Fig. 5.1.12 Comparison of Speedup with Increase in Number oftask 59

Fig. 5.1.1 3 Turnaround time Observation Graph (rii=60) : 60

Fig. 5.1.14 Turnaround time Observation Graph (m=70) 60

Fig. 5.1.15 Turnaround Time Observation Graph (m=lOO) 61

Fig. 5.1.16 TAT Comparison Graph with Different Number of Machine 62

Fig. 5.1.17 Speedup Graph with Increased Number·ofMachine 62

Vlll

Fig. 5.1.18 Min TAT with Different Number of Machine .. 63

Fig. 5.2.1 TAT Observation Graph (UMR=l5, MHD=4) 63

Fig. 5.2.2 TAT Observation Graph (UMR=30,MHD=l0) 64

Fig. 5.2.3 TAT Observation Graph (UMR=80, MHD=l5) 65

Fig. 5.2.4 Comparison Graph of Turnaround Time ... 66

Fig. 5.2.5 TAT Observation Graph (l=50,U MR=30, MHD=6) 67

Fig. 5.2.6 TAT Observation Graph (1=60, UMR=30,MHD=6) 67

Fig. 5.2.7 TAT Observation Graph (1=70, UMR=30,MHD=6) : 68

Fig. 5.2.8 TAT Observation Graph (l= I 00, UMR=30,MHD=6) 69

Fig. 5.2.9 TAT Observation Graph (1=150, UMR=30,MHD=6) 69

Fig. 5.2.10 TAT Observation Graph (m=60,UMR=l5,MHD=4) 71

Fig. 5.2.11 TAT Observation Graph (m=70,UMR=l5, MHD=4) 71

Fig. 5.2.12 TAT Observation Graph (m=80, UMR=l5,MHD=4) 72

Fig. 5.2.13 TAT Observation Graph (m=90, UMR=l5,MHD=4) 72

Fig. 5.2.14 Speedup and Min TAT with Increased Number ofMachine 74

Fig. 5.2.15 TAT Observation Graph with Increased Range of Tasks 75

Fig. 5.2.16 TAT Observation Graph ... 76

Fig. 5.2.17 TAT Observation Graph with Increased Arrival Rate 76

Fig. 5.2.18 Comparison Graph of TAT with Increased Arrival Rate 77

Fig. 5.3.1 Comparison Graph of TAT with ACO and GA (!) 78

Fig. 5.3.2 Comparison Graph ofT AT with ACO and GA (II) 78

IX

List of Tables

Table 5.1 Description of variables used in program .. 53

Table 5.1.1 Comparison of TAT and Speedup without Communication 61

Table 5.2.1 Comparison Table of Task with Communication in 50 Machine 70

Table 5.2.2 Comparison Table with different Number of machine 73

X

Abbreviations

ACO Ant Colony Optimization

ACS Ant Colony System

AS Ant System

CERN European Centre for Nuclear Research

CMS Compact Muon Solenoid

COP Combinatorial Optimization Problem

CPU Central Processing Unit

DB Data Base

DCS Distributed Computing System

FCFS First Come First Served

FIFO First In First Out

GA Genetic Algorithm

LHC Large Hadron Collider

LIFO Last In First Out

MBPS Million Bits per Second

MHD Maximum Hamming Distance

MIPS Million Instructions per Second

MPI Message Passing Interface

M/M/1 Single Server Multiple Client

M/M/S Multiple Server Multiple Client
-

NUMA Non Uniform Memory Access
.

OS Operating System

OSGA Open Service Grid Architecture

QoS Quality of Service

RAM Risk Assessment Model

XI

RB Resource Broker

RPC Remote Procedure Call

SJF Shortest Job First

SRTF Shortest Remaining Time First

SSI Single System Image

TAT Turnaround Time

TSP Traveling Salesman Problem

-l:JMA Uniform Memory Access

UMR Upper Limit of Message Range

vo Virtual Organizations.

Xll

Abstract

Computational Grids are a new trend in distributed computing systems, which allows the

sharing of geographically distributed resources in an efficient, reliable and secure manner

as well as extended the boundaries of what we perceive as distributed computing. It

supports both wide area parallel and distributed computing and many more issues. Uses ·

of Computational Grids is growing very rapidly in distributed heterogeneous computing

environment, for utilizing and sharing large scale resources to solve complex intensive

scientific and industrial problems.

Grid computing is gaining more significance in the high performance computing world.

Basically this concepts leads to provide the solution of complicated large, complex and

intensive scientific problems. There are many constraints associated with the

computational grid like job scheduling, resource management, information servtce,

information security, routing, fault tolerance and many more.

Scheduling of the job on proper grid nodes with the appropriate resources is a NP-class

problem even in already existed parallel and distributed computing systems. Scheduling

problem adds a further dimensionality of complexity in this new platform since the

capability and availability of the resources varies dynamically in the computational grid.

We, in our proposed work, have ap_plied a metaheuristic technique in particular Ant

colony optimization to solve this NP-class problem.

This dissertation includes brief discussion about Grid and ACO technique. The proposed

work presented a model for scheduling problem in computational Grid and also

formulated the objective function as well as fitness function in a nice mathematical form

for the turnaround time of the submitted job and speedup achieved by the grid. The

proposed formula supports two different type of scenario. One in which different tasks of

the job are parallel and not interactive and in the other one interactive modules of the job

has been considered. The model focuses on problem solving using Ant Colony

X Ill

Optimization technique. For optimizing QoS parameters (turnaround time and speedup)

simulation of the proposed model has been done in mat lab 8.4 by writing the program for

scheduling by ACO. For analyzing the results and extracting the conclusion of our

proposed model different graphs has been plotted for both types of job via varying the

different scenarios in computational grid perspective e.g. increasing the number of

resources or workload (i.e. increasing the arrival rates) as well as in user perspective like

increasing the number or size of tasks in the submitted job.

The dissertation also compares the result with one improvement heuristic technique

(GA). We found that the ACO not only gives the better solution in comparison toGA but,

also converges in lesser no of iteration since started solution itself is very good due to the

constructive and decision based policy adopted by ACO.

X1V

Chapterl

Introduction
The World Wide Web (www) provides seamless access to information that is stored

in millions of different geographical locations. Whereas, Grid is an emerging

infrastructure that provides seamless access to computing power and data storage

capacity distributed over the infrastructure across the globe. In fact, Computational

grids are on its way to become just as natural as electrical grid [IFC 1998].

The objectives of parallel computing were to minimize the job/task execution time,

and at the same time maximize the reliability and throughput of the system [DFL

1999]. Distributed Computing system was the integration of already existing

computing systems which had the objective as resource sharing and cooperative

engineering apart from exploring the parallel computing. In the last decade the

important evolutions in the design of distributed system have been accomplished by

the internet revolution. Many a time it may not be possible to provide the best

computing facilities e.g. processors, storage, data to a particular task or user as per

their requirement. It is because of various reasons. Reasons may be affordability or

availability of the resources. A possible solution for this is to integrate the

computing resources available at various places to enable authorized users to use it

in a well-defined transparent manner [AT 2002, DF 1989]. Same concept is applied

in Grid, a technology that is one step forward to that of the distributed systems

[FBG 2003].

Scheduling over the grid is altogether different from the scheduling of a
-

uniprocessor system which has a single objective of utilizing CPU maximally by

keeping it busy as much as possible [ZSJ 2006], however the grid has inherited the

concept of scheduling from uniprocessor system. Though it incorporates all the

aspect of challenges and constraint that occurs in the distributed environment e.g.

availability of resources, security and reliability as well as other user perspective

like deadline and cost and many others. Often in grid system two types of scheduler

1

are prescribed; one is local and the other is global scheduler. The second one tries to

meet the requirement of the different users and then send the job to different

clusters by keeping in mind the load balancing factor of different clusters [JYR

2005, YYX 2006). Local scheduler schedules the job/tasks .on different processors

by adopting some scheduling policy taking into consideration the local factors at

instantaneous time. Scheduling over the grid is a well known NP class problem

having a very huge search space of possible solution [MGD 1979]. To find the near

optimal solution there are many soft computing technique that have been proposed

in the literature. Thus, there is a possibility of applying soft-computing techniques

to optimize characteristic parameters of user preference keeping different

constraints in minds. In literature different models have been proposed for solving

this problem. We, in our work, have considered the finishing time of the job to be

optimized in a computational grid by using Ant Colony Optimization (ACO) based

scheduling policy. We have proposed two fitness functions for two totally different

scenario; one is applicable when there is no network congestion and the other in

which we are considering network bandwidth and load factor. Quantification of the

fitness function has been done both the ways. Contribution of the node in terms of

its clock frequency, previous workload on the node by considering existing modules

over the node, load on the link connecting the nodes and job's characteristics in

form of cost2 of communication incurred due to the interactive modules have been

accounted for in our quantification.

A scheduling model using ACO has been proposed. ACO, a Soft-Computing tech

nique, inspired by behavior of real ants was proposed by Dorigo [MDV 1991]. It

can provide a better optimal solution for all combinatorial optimization problems in

comparison to other but the mapping of the parameters of the techniques with the

tuned constraint of the problem is a tough task.

In the following sections, we will discuss briefly about the grids, motivation from

other distributed systems, types, requirement and its future. After that we will

2

introduce Ant Colony Optimization and its applications. Finapy, the organization of

the dissertation is presented.

Grid is an example of distributed systems, so to understand it we should introduce

the infrastructure and development of other distributed systems like railroads,

telephone, telegraph, power and electricity. These are few examples of distributed

systems that have different end users intermediate reservoirs and created hundreds

of millions of dollars in today's world market. We have seen that success of any

one of the distributed systems depends on its infrastructure, setupcast, and its

overall impact on the society in terms of many thing , that may be what facilities are

being provided and at which cost? Same is also true for grids. If nobody is going to

use the grid it will be a failure. So, on hand we are improving technologies and its

architecture and on the other way round we are searching where it is really needed.

Some well known areas where it can help are as follows [IFC 2003]:

I. Computational Scientists and Engineers needs the grid

2. Experimental Scientists need the grid

3. Corporation needs the grid

4. The environment needs the grid

5. Training and education need the grid

6. Nations and states need the grid

7. World needs the grid

8. Consumer needs the grid.

As mentioned earlier the idea of the grid is quite similar to that of electrical grid.

Computational Grid is an analogous to a power grid that provides consistent, pervasive,

dependable, transparent access to electricity in:espective of its source. End users just use

the computational power, but don't know (or care) where from the computational energy

comes. Allowing people, without any knowledge, to share advanced things like CPU

time, storage and algorithms just by plugging in their computer-device forces the service

to be simple. Things like how the technology works and where the resources are located

must be hidden from the end users. Many research projects requires huge CPU time,

3

some requires a lot of memory and some projects need the ability to communicate in real

time. Today super computers are not enough to solve those needs even if they have the

capacity, it would not be economically justifiable to use these resources.

Computational grids are the solution to all these problems and many more. They offer a

convenient way to connect many devices (e.g., processors, memory and I/O-devices) so

that end users are able, if allowed, to use combined devices computational powers for a

certain period of time. For example, if a researcher need to make some huge CPU

consuming calculations, he could occasionally borrow CPU time from a grid on much

lower cost than borrowing the time on super-computer. A grid could be created in all

environments where end users have a computer with memory and CPU. Computers are

often in idle state and over time they only use 5% of their capacity. Even in some

organizations servers are also often idle. Hence a lot of computational power goes waste.

On a computational grid each end user would be able to enjoy a lot of computational

power that otherwise would have gone waste.

Grid can be classified into the following categories on the basis of their uses [IFC 1998,

IFC 2003, J 2005).

• Scavenging Grid: In this type of grid system the grid management node

spontaneously gets the report from each individual machine as soon as it becomes

idle. Grid management node allocates a new job on this machine accordingly.

Scavenging is done in a way that normal user does not know it.

• Data Grid: It provides an infrastructure to support data storage, their discovery,

handling and manipulation of large volume of data actually stored in various

heterogeneous data bases and file system.

• Network Grid: In this type of grid each node-work as a data router between two

communication points for providing fault tolerant and high-performance

communication services.

• Utility Grid: In this type of grid not only data and computation cycles are shared

but it will also provide the facility to share software as well as any resource.

4

• Storage Grid: This type of grid is used for providing user to large storage space.

One of the examples is Amazon S3.

• Equipment Grid: Grids which were used to access physical resources are coming

under this category. One of the examples is e-star project which shares

astronomical telescopes.

• E-Science Grid: CMS is a high energy physics detector planned for the LHC at

CERN (the European centre for nuclear research) in Switzerland. It can read the

data from the highest proton -proton collision. Data from this collision will shed

light on many fundamental scientific issues like definitive research about higgs

particle, possible origin of mass in the universe, existence of new fundamental

symmetry of nature called super symmetry, possible symmetry of new spatial

dimension. The data will contain potential millions of individual elements within

the detector itself. CMS is producing several petrabytes of data per year itself .It is

a good example of understanding the e-science grid also can be given as a

example of many more.

• Collaboration Grid: CMS is also a good example of collaboration grid. Scientists

and institutions participating in the project CMS are located throughout the world

and they are not expected to live at CERN for its expected time period of 1 0

years. It is only possible since it contains all the facility of collaborative grid.

We, in our work, have considered computational grid and scheduling aspect of this.

1.1 Computational Grid

A computational grid deals primarily with the computational requirement of the job.

It is defined as a hardware and software infrastructure that provides dependable,

consistent, pervasive and inexpensive access to high ·end computational capabilities

despite the geographical distribution of both resources and the users. At one end of

the grid are the end users or the participant of the grid. These users may demand the

execution of a job using an intelligent interface. The grid middleware searches for

the appropriate resources for the job from the pool of resources registered in the

grid. Depending on the execution policies and the job requirements, the job will

5

eventually be scheduled on one of the suitable clusters which execute it and furnish

the result back to the user. Thus the grid users visualize the grid as an enormous

source of computational power in which any job can be executed efficiently on the

suitable resource of the grid.

A computational grid emphasizes on the allocation and execution aspect of the

submitted job in order to optimize one or more characteristics of the job like

minimizing the turn around, maximizing the reliability, maximizing the security or

maximizing other quality of service parameters. It does so by proper load balancing

of the jobs amongst the system's resources while meeting the desired objective.

1.2 QoS Parameter in Computational Grid

Grid is used for dynamic sharing of resources for Virtual Organization (VO). Ian

Foster defines Grid as a system that coordinates distributed resources using

standard, open, general purpose protocol and interfaces to deliver non trivial quality

of service [IFC 2003]. According to this definition, a distributed architecture is a

grid if it satisfies the following properties:

• Resources used for coordination are not subjected to centralized control

• It uses standard and general purpose open protocols

• It gives non trivial Quality of Service.

Evaluation of performance of different systems can be done on different scale of

parameters. In the case of computing system these parameters may be turnaround

time, reliability, security, speedup etc. Collectively all those parameters which

play a major/minor role in evaluating the performance of "Computational Grid in

any one perspectives of user are known as quality of service parameter [LV 2005].

Turnaround time of a job is defined as the time taken by the job immediately after

the submission upto its final execution. The first thing which has motivated the

scientists to move from uniprocessor system to parallel/distributed system was to

6

mmnmze the turnaround time as much as possible for the job execution. As

mentioned earlier grid is one step forward solution of distributed system towards

the next generation, we can obviously expect grid scheduler to allocate the job to

faster cluster/nodes (having lesser load) so that the turnaround time is reduced upto

some extent. Scheduler of the grid should always keep the following point in

consideration while allocating the job on a particular node.

• No of processor in the node

• Speed of the node

• Existing Workload

• Local Scheduling Policy of the node

• Degree of interaction in the Job

• Load on the network link

A fault is a mechanical or algorithmic defect that may generate an error. A fault in a

system causes failure. Depending on the manner in which a failed system behaves,

system failures are of two types; fail-stop failure and Byzantine failure. In fail stop,

system halts once a fault is detected whereas in Byzantine failure the system

continues to function but produces wrong result. To deal this type of failure is much

more difficult in comparison to the first one [PS 2005] Significantly, incorrect

performance of the computers may lead to several devastating effects. For obtaining

the higher reliability, the fault handling mechanisms of computational grid must be

designed properly to avoid faults, to tolerate faults, and to detect recover from

faults. In fact it is always desired to have a reliable system that is able to digest any

type of system failure (hardware/software).

Mathematical definition of reliability has been given as "The probability that a

system works properly over a given period of time". Reliability is the ability of the

system to perform and maintain its functions in routine circumstances, as well as

hostile or unexpected circumstances. During the construction of a grid, software and

hardware components which are used either in the middleware structure or at the

7

end system, have a specified rate of failure. These failure rates constitute the

reliability ofthe system, which is often desired to be high.

The dynamic nature of grid environments need secure communication. To provide

highest level of security in grid is a highly challengeable job since different types

of works are dealt by grid simultaneously e.g. sharing data, executing the code,

migrating the jobs as well as communication between them. Any compromise at

any level either at the construction or at the association level can provide a fertile

ground for viruses, torjan horses, and other attacks. Certificate authority is one of

the important aspects of maintaining strong grid security which will check about

confidentiality, authentication and authorization. Replication and integrity are the

other important issues of security [LFV 2003, RBD 2005, ECR 2008].

Authentication: Authentication deals with the problem of verifying the identity of a

user (person or program) before permitting access to the required resources. This

process will prohibit the use of grid (some resources) by unauthorized users

(programs) verifying the identity or password.

Confidentiality: Confidentiality assures that data or message transmitted is handling

by only authorized users. For implementing this, we use encryption and description

algorithms.

Authorization: A remote shared resources are protected by only allowing authorized

access.

Throughput is defined as work accomplished in unit time by the Grid as a single

unit.

Availability is defined as fraction of time that a resource/application is available for

use. In a multilayer context such as the one described for grid architecture, the

notions of availability differs for each layer.

8

Waiting time is amount of time to wait for a particular process in the system. In

other words waiting time for a job is estimated as the time taken by the job from its

submission to the end excluding the execution. The waiting time depend on the

parameters similar to turnaround time.

Response time is amount of time to get .first response in a time sharing system. The

response time depend on the parameters similar as turnaround time.

Cost /Budget/Deadline are the user preferred parameters. Different users have

different type of constraint. These are also important parameters while scheduling

the job on different machine to make the grid much more useful and attract the

larger market. For example suppose Mukesh Ambani submitted his job in the grid

and payed 1 million dollar then we will give the preference to this task even

ignoring the throughput of whole Grid.

We have considered only two basic parameter, turnaround time and speedup in our

dissertation work.

1.3ACO

Most of the social insect societies, found in the nature, behave like a distributed

system. We see that in a group they completed some complicated tasks very nicely

in spite of the less capability and simplicity of each individual. All the ant

algorithms are based on the behaviors of real ants. Initial ant algorithm was known

as Ant System (AS). ACO is one of the latest successful algorithms in the ant

algorithm category. In this algorithm artificial ants work as an artificial agents and

they select their new paths/tasks according to some given probabilistic rule.

Selection of path by artificial ant in ACO is a stochastic constructive phenomenon

that will build the solution step by step by obtaining the feedback from partial

solution construction.

9

There are two types of heuristic algorithms [L TS 2006, TM 1997]; one is

constructive heuristic and the other is improvement heuristic. Metaheuristic

algorithm uses both of them at different steps in the whole process. The

metaheuristic part permits the low level heuristic to obtain better solution. The

controlling mechanism is done by different methods; constraining or randomizing

the set of local neighbor solution or combining elements taken by different

solutions. ACO metaheuristic can be applied to any combinatorial optimization

problem for which a constructive heuristic can be defined. Only challenge is that in

applying ACO method how to map the considered problem to a representation that

can be used by artificial ants to build a solution.

The essential of ACO algorithm is the combination of prior information about the

structure of a solution with posterior information about the structure of a previously

obtained good solution. The first algorithm which can be classified within this

framework was presented in 1991 by Dorigo [MDV 1991] and after that so many

diverse variants and combination of ACO with different heuristic methods have

been reported in the literature by many authors including Dorigo [MDL 1997 A,

MDL 1997B, TSH 2000, MDT 2006]. This is a distributed learning process and

good quality solution can emerge as the result of colJective interaction among the

ants.

Informally, we can say that ACO is the interplay of three procedures:

ConstructAntsSolutions, UpdatePheromones, and DaemonActions [MDT 2006].

ConstructsAntSolutions manages a colony of ants that concurrently and

asynchronously visit adjacent states of the considered problem by moving through

neighbor nodes of the problem construction graph Gc. Ants will move by applying a -

local stochastic decision which is dependent on the value of pheromone trails and

heuristic information. Ant incrementally build solution to the COP. Path of each ant

against the fitness function are tested after the completion of the whole tour and

accordingly the decision of amount of pheromones deposition on the best paths

should be taken.

10

UpdatePheromones is the process by which the pheromones trails are modified. The

trail value can increase (due to deposit) or decrease (due to evaporation). The

deposition of new pheromones increases the probability of choosing that paths by

future ants. On the other hand evaporation implements a useful form of forgetting

and thus avoids quick convergence towards a local minimum.

DaemonActions: It is used- to implement centralized actions which can't be

performed by single ants.

The pseudo-code ofthe ACO is given below.

ACO()

{

While (terminating condition not reached)

{

While there is still ants in colony

{

For each ant, do

Pick up a path based on local heuristic and pheromone trail

Path is added into the partial solution

Until the tour is completed

Apply local decay

}

Evaluate the fitness of path of each ant

Update Global deposit

Apply evaporation

}

}

1.4 ACO as a Soft Computing Tool

11

A straight forward approach to the solution of Combinatorial Optimization

Problems (COP) would be exhaustive search, i.e. to find the best solution among all

possible solution of that problem. An instance of a combinatorial optimization

problem Jr is a triple (S, f, !l), where S is a set of candidate solutions, f is the

objectives function which assigns an objective function value f(s,t) to each

candidate solution s E S, and n is a set of constraints. Parameter t indicates that

the objective function and constraint can be time dependent (for example in

network routing problem cost of link is proportional to the traffic). The solutions

belonging to the set B which is a proper subset of S and satisfY the constraint are

called feasible solution. The objective is to find a globally optimal feasible solution

s*. In the case of minimization problem we finds* such that f(s*):::; f(s)Vs E B,

where as in the case of maximization problemf(s*) ~ f(s)Vs E B. ACO as a soft

computing tool is used to find the closest optimal solution of many NP-complete

problems in different fields like Routing (TSP, Vehicle Routing), Assignment

(Quadratic assignment, Graph Coloring) Scheduling (Job Shop, Open shop, Flow

shop, Total tardiness, group shop), Subset (Multiple knapsack, Max independent

set, set covering, Maximum clique), Machine learning (Classification rules,

Bayesian networks, Fuzzy systems) and in many others [MDT 2006].

The COP (S, f, !l) is mapped on a problem that can be characterized by the

following list of items [MDT 2006, JCH 1998]:

• A finite set C={c1, c2, cN} of components is given, where N is the total

no of component.

• The states of the problem are defined in terms of sequences x= < c1, c2,···ch >

of finite length over the element of C.

• Number of elements in a sequence is denoted by lxl.

• The set of all possible states is denoted by X. The set of solution S is a subset

of X.

12

• A set of feasible states B which is a proper subset of X, defined via a problem

dependent set that verifies that it is not impossible to complete a sequence

x E B into a solution satisfying the constraint .0.

• S ~X. And a non empty set S* of optimal solutions, with S* c B and S* c S.

• A cost g(s,t) is associated with each candidate solution s E S. In most

casesg(s,t) = f(s,t), V E S, where S c S is the set of feasible candidate

solution, obtained from S via the constraint O(t).

• In some cases a cost or the estimate of a cost, J(x,t) can be associated with

states other than candidate solution.

• J(xi,t)~ J(xj,t) whenever we add solution component xj to a state xi.

• J(s,t) = g(s,t).

After formulating the problem this way, we construct a graph Gc=(C,L), where C,

the set of components described above serves as a node of the graph and the set L

fully connects the component C. Now, we allow artificial ants to construct the

solution by randomized walk on this graph, or it can move according to some policy

which can take care of the constraints O(t) depending upon the COP considered.

In most cases we will try to construct feasible solution but some time it is necessary

or beneficial to allow them to construct infeasible solution.

Depending upon the problem some time we will associate pheromone trail r; with

each component Ci or we can associate pheromone trail r iJ with each connections /ij.

It encodes the long term memory about the entire ant search process and updated by

ants themselves.

We will associate heuristic information 1J; or 1JiJ to the corresponding part as earlier

depending upon the problem. It is the prior information about the problem instance

or run time information. It may be the estimation of cost, of adding the component

or connection to the solution under construction.

13

Each individual ant k has the following properties:

1. It exploits the construction graph Gc=(C, L) to search for optimal solutions.

2. A memory Mk will be associated to each individual ants which will be used

to:

• Build feasible solutions.

• Compute the heuristic values 1J

• Evaluate the solution against fitness function

• Retracing the path backward.

3. Each individual ant has a start state xk and one or more termination s

conditionsek.

4. It moves to a node j in its neighborhood Nk (xr) i.e. toxr+l =< xr,j >, if

termination condition is not satisfied in the state xr =< xr-J, i >. ·

5. Move of ant will be decide by probabilistic transition rule which is a function

of the following components

• Pheromone value 1

• Heuristic information 11

• Ants private memory storing its current state

• Problem constraints.

6. As soon as the ant has added the component c 1 to the current state, it can

update the pheromone trail r associated with it or with the corresponding

connection.

7. Ant can retrace the path in backward direction after building the solution if it

is found suitable against the fitness function and updates the value of r of

used component.

8. Each ants act concurrently and independently.

9. Good quality solution will be obtained afterthe interaction among the ants.

As said earlier, challenging part in ACO for solving COP is how suitably we map

the COP parameters to the ACO parameter. We will illustrate it by taking the

example ofTSP. The TSP is a well known NP-hard COP which has attracted a very

14

significant amount of research [MBG 1968, MGD 1979]. It has interesting

relationship with ACO because it was the application problem chosen when first

Ant Algorithm (AS) was proposed [MDV 1991]. TSP is also used as a test problem

for almost all ACO algorithms [MDT 2006, JYX 2008].

• TSP can be represented by a complete weighted graph G=(N, A) where N is the

no cities and A being the set of arcs fully connecting the nodes. Each arch

(i,j) E A is assigned a weight diJ which represents the distance between cities i

andj.

• The solution of TSP is to find a minimum length Hamiltonian circuit.

• A solution to the TSP can be represented as the permutation of city indices. Since

only relative order of city is important there will exist n permutations that will

map to the same solution.

• Construction graph Gc = (C,A) is identical to the problem graph G=(N, A).

• The set of component C corresponds to set of nodes N i.e. C=N. The connections

correspond to the set of arcs i.e. L=A. The states of the problem are the set of all

possible partial tours. .

• Only constraint in TSP is that all cities should be visited and that each city is

visited at most once. This can be enforced if feasible neighborhood M; of ant k

in city i, will contains only those cities which are still unvisited after each

construction step.

• Pheromone trail riJ will be the desirability of visiting city j after i.

• The heuristic information: 7JiJ =_I_~
dij

• Initially any ant can choose any city randomly.

• Solution construction terminates when all cities have been visited.

15

1.5 Organization of the Dissertation

This dissertation has been organized as follows.

In the first chapter the impact of computational grid on our society and why the

researchers are interested to improve the qualities of computational grid have been

discussed. In section 2 we have elaborated different parameters affecting the quality

and requirements and their brief definitions of our concerned. In section 3 and 4

there is a brief introduction of ACO and types of problems where -it is successfully

used.

In Chapter 2, firstly we have discussed about Computational Grid and their

construction in brief. In section 1 of chapter 2, we will make a very brief discussion

about the distributed system. Discussion started with Distributed Computing

System followed by Multi processor, Multi computer and Compute cluster. We

elaborated grid in general along-with specific discussion about computational grid.

In next two sections, the type of grids used in current scenario in different Grid

environment and some important issues in the computational grid ·in the current

competitive environment is discussed. In the last section concluding remarks of

chapter 2 is made.

In Chapter 3, first section mentions the historical background of Ant algorithms and

the chronological order of appearances of different ACO techniques have been

given. In this section a detailed discussion of two ACO techniques over TSP have

been elaborated. In section 2, data structure and pseudo code of ACO technique

over TSP is discussed. In section 3, important steps for solving NP-Class

combinatorial optimization problem by ACO techniques is notified. In last section

challenges occurred in ACO techniques is also mentioned.

In chapter 4 we have presented our proposed model and the QoS parameter

addressed. In section 2 of the chapter, the fitness functions are derived and shown

how it can be formulated for different type of graphs. In next two sections the

16

proposed model and the algorithm is described. Last section makes the concluding

remarks.

In chapter 5 the experimental results of the model on varying input is detailed. A

comparative study of the proposed method with another soft computing method is

also done.

Chapter 6 is about the conclusion and the future work.

17

Chapter2

Computational Grid

This chapter discusses about various types of distributed systems including grid.

Also, it elaborates about types of grid and research issues in computational grid.

A computational grid is a large scale, heterogeneous collection of autonomous

systems, geographically distributed and interconnected by low latency and high

bandwidth networks. The sharing of computational jobs is a major application of

the grid. Grid resource management provides functionality for discovery and

publishing of resources as well as scheduling, submission and monitoring of jobs.

However, computing resources are geographically distributed under different

ownerships each having their own access policy, cost and various constraints.

Grid computing is still in the development stage, and most projects are still from

academia and large IT enterprises; however, it has developed very quickly and more

and more scientists are currently engaged to deal with the challenges in grid

computing. Among these, improving its efficiency is imperative! The big question

is: "How to make use of millions of computers world-wide, ranging from simple

laptops, to clusters of computers and supercomputers connected through

heterogeneous networks in an efficient, secure and reliable manner?"

The above question is a real challenge for grid computing community.

2.1 Distributed Systems

After 90's, advancements in technologies m the area of microelectronics and

communication lead the use of interconnected multiple processors rather than single

high speed processors for optimizing the cost performance ratio. Other dependant

parameters have also been increased tremendously. Computer architecture which

18

consists of interconnected, multiple processors can be divided into two types viz.,

tightly coupled systems roughly referred as parallel processing systems and loosely

coupled systems roughly referred as distributed computing systems. In the former

one sharing is tight by means of a single clock and single memory and in the latter

system; processors do not share clock and memory.

A distributed computing system IS a collection of multiple_ processors

interconnected by a communication network in which each processors has its own

local memory and other peripherals and communication between processors is

possible by message passing over communication network. We refer a processor

and all its resources jointly as a site or machine of the distributed computing

system.

There are mainly five categories in which distributed computing systems can be

classified [PS 2005]:

1. Minicomputer Model: It is the extension of centralized time sharing system.

2. Workstation Model: It consists of several workstations interconnected by a

communication network (via high speed LAN).

3. Workstation-Server Model: It consists of few mini computers and several

workstations (most of which are diskless, but a few of which may be

diskful).

4. Processor-Poor Model: In this a pool of all the computational processors are

created to serve as a single computational unit.

5. Hybrid Model: It is based on the workstation server model with the addition

of a pool of processors. The processors in the pool can be allocated

dynamically at any time for computation whenever there is overload on

workstation for better execution.

Multi-processor system is essentially the tightly coupled systems that have more

than one processor on its motherboard. It shares the memory and the clock. The

architecture can be symmetric or asymmetric allowing all, some or only one CPU to

19

execute. If the operating system is built to take advantage of multi-processor

system, it can run different processes (or different threads belonging to the same

process) on different processors .. The architecture of the Multi-processor System is

shown in Figure 2.1 [AT 2002].

CPU CPU CPU CPU

r"-

I D B

I Memory ~
Figure 2.1 Architecture of a Multi-processor System

Multi-computer systems are a system made up of several independent computers

interconnected by intercommunication network .Multi-computer systems can be

homogeneous or heterogeneous: A homogeneous system is one where all CPUs are

similar and are connected by a single type of network. They are often used for

parallel computing. A heterogeneous system is made up of different kinds of

computers, possibly with vastly differing memory sizes, processing power and even

basic underlying architecture. They are in widespread use today, with many

companies adopting this architecture due to the speed with which hardware goes

obsolete and the cost of upgrading a whole system simultaneously [AT 2002, ATW

2004, MQ 2002, PS 2005].

20

CPU CPU CPU CPU

Memory 1 Memory2 Memory 3 Memory 4

Figure 2.2 Architecture of a Multi-computer System

Distributed computing is a method of computer processing in which different parts

of a program run simultaneously on two or more computers that are connected with

each other making communication through the interconnection network. In

distributed system multiple CPU's do not share memory and clock and work

independently making communication as and when required. The memory here is

distributed following the Non Uniform Memory Access (NUMA) model of memory

classification. Each processor (CPU) is an autonomous computer with its own OS

and communicates using Message Passing Interface (MPI) or Remote Procedure

Call (RPC). The job can be submitted at any node and is distributed to various

nodes as per their capabilities under a load distribution policy. These are used when

strong computational power is required along with a certain degree of independence

to the computational resources. The architecture of the Distributed Computing

System (DCS) is shown in Figure 2.3 [AT 2002].

Application Application Application

Monolithic Monolithic Monolithic

Kernel Kernel Kernel

I Network Interconnect l
Figure 2.3Architecture of a Distributed Computing System

DD 3 T St1 ~ tY-~p

21

Compute clusters are comprised of multiple stand-alone machines acting in parallel

across a local high speed network. Distributed computing differs from cluster

computing in that computers in a distributed computing environment are typically

not exclusively running "group" tasks, whereas clustered computers are usually

much more tightly coupled. Distributed computing also often consists of machines

which are widely separated geographically [AT 2002, ATW 2004, MQ 2002, PS

2005].

In cluster, multiple stand alone machines work in parallel connected by a high

speed local area network with a Single System Image (SSI). Architecture of the

Cluster Computing Network is shown in Figure 2.4 [AT 2002].

Applications

Availability and SSI Infrastructure

I OS I OS OS
----------------I NODE I NODE NODE

I Cluster Interconnect Network

Figure 2.4 Cluster Architecture

2.2 Grid Computing

Grid computing is the extension of the distributed computing upto the next

evolutionary level. Evolutionary steps in the field of technology on sharing the

resources, availability of high bandwidth of the network and standardization of

communication between heterogeneous systems by Internet have driven equally

evolutionary steps in grid computing. In this section, we will discuss about the

concepts, construction,_ ability, limitations as well as some good applications of the

grid.

22

Logically the whole grid computing system can be considered as composed of the

following three layers:

1. Application layer: It contains user interface and user will submit their job at this

portal system.

2. Grid resource management layer: As soon as user submit their job, user interface

portal send it to the resource management layer and resource management system

will select the appropriate resources available in the grid and submit the job to it.

3. Grid resource layer: It contains the resources available in the grid and after

completing the computation resources submit their result to the requesters.

We should always keep in mind that we are using grid computing for the fulfillment

of the user requirement at different level.

• Exploitation of unutilized processors: First thing which we have gained from

grid computing is exploitation of unutilized resources. In this system if any

job is running on a machine and due to an unusual peak in activity it is busy

then in this system it can run on any other machine which is idle. The simplest

examples is batch job processing which take some significant time in reading

the data as an input then produces output. If the amount of data is large more

new ideas and planning are required to efficiently use the grid. This data can

be replicated at different strategic point in the grid and then after doing this we

don't need to pass the data if we want to execute on some remote machine.

These replicated copies can be used as a backup in case of damage of the

primary data.

• Exploitations of extremely large amount of disk drive capacity: This is one of

the most important things which we are utilizing in the grid. Grid computing,

specially a data grid is used to aggregate these unused spaces into a extremely

large virtual data space.

• Access to additional resources: In addition to some regular resources

computational grid have a list of reliable donor's and whenever there is a

urgent need we can access these special equipment, software and other

services for improving quality of service.

23

• Balancing resource utilization: In general a grid balances the loads on its

geographically distributed federation of resources. Any unexpected load can

be routed to relatively idle machine in the grid. Even in some grid enabled

application partially completed jobs can also be migrated.

• Enabling collaboration among wider audience: With the evolution of

distributed computing we have achieved this goal up-to some extent but with

the emergence of grid computing we are achieving this goal up-to the next

level to an even wider audience by offering a facility to different

heterogeneous system to work together with the formation of a image of large

virtual computing system.

• Reserving resource facility: To improve quality of service user can reserve

some resources for certain time period after paying more cost.

• Offering management of priorities among different projects: In grid we are

dealing instantaneously if a project finds itself in trouble· by a11ocating it to

other sites or by attaching some extra resources on this site.

• Resource balancing, access to additional resources at the appropriate time,

increased reliability and having massive para11el CPU capability are the most

attractive features of the grid.

Grid Computing can integrate computational resources from different networks or

regional areas into a high computational platform and wi11 be used to solve complex

compute intensive problem. In grid computing, we utilize the idle time of thousands

of CPU which are spreaded geographically at a large distance, as a result we can

handle a large amount of data that would otherwise require the power of expensive

supercomputers or would have been impossible to analyze.

2.3 Types of Grid

The Grid is defined as a hardware and software infrastructure that provides

dependable, consistent, pervasive and inexpensive access to high end computational

capabilities. It became the main computing paradigm for resource intensive

scientific application but it also promises to be a successful platform for

24

commercial environment. This trend is confirmed by an alliance of leading

companies in different cons01tiums with the purpose to research and to develop

enterprise grid solutions, and to accelerate the deployment of grid computing in

enterprises.

The architecture of grid is multilayered in nature (Figure2 .5)[GF, GP]. These layers

are:

• Fabric layer

• Connectivity layer

• Resource layer

• Collective layer

• Application layer

Since the grid uses the internet infrastructure there is a relationship between the grid

layers and the architecture of Internet Protocol (JP).

•• 0 ~--- -.

Commerce Engineering , collaboratories
Grid

::: i.r.J•$1 Application

. ,
MPI

j 0 0

0 0

Workflow
- 0 0---- --- -- --·- -..-,

Resorse Broker Nimrod-G
~-- -4

_,
,.. 0 ooo OOo,.

Globus , -

0

Unicore -- -,
'

Fig 2.5 Architecture of Grid

'

0

X-parameter
. Framework

00

Grid service

Layer.

User Level
middle
ware

Broker .

Grid TR.FED~
0 .,

Grid M.D.

Core grid
middle-ware

Grid fabric
soft ware

Grid
fabric
hard-

ware

25

Broadly, we identify two types of general purpose grid as follows.

2.3.1 Computational Grid

The primary thing about computational grid is that how we manage the

computational requirement of the job in the given system. In fact it is highly

sophisticated juncture of hardware and software technologies that will provide

economically bearable access to high end computational capabilities without seeing

the geographical distribution of resources and users. These accesses of high end

computational capabilities should also be dependable, consistent and pervasive in

nature. A layman user after seeing the grid makes an idea that it is infinitely

powerful source of computational power in which any job can be executed on

appropriate resources. Users submit their job at one end of the given system and the

middleware infrastructure from the given system decides the allocation of job on

particular resources according to nature and requirement of the job without taking

any further input from the user [IFC 2003, JJC 2003, J 2005, FBG 2003].

On allocating the job to the particular resources computational grid has the

capabilities to take all the effective consideration of the user defined objective

function into account [FNA 2006].

2.3.2 Data Grid

The Grid environment has enabled us to produce more efficient computational tools

which in tum has resulted more advanced research. These two factors have

produced software tool and applications that can handle complex computation.

Many a times these applications like high energy physics involving large Hadron

collider (LHC) at CERN, The Laser Interferometer Gravitational Wave Observatory

(LIGO), Slogan Digital Sky Survey (SDSS) requires generating and manipulating

tetrabytes and petabytes of data. Apart from these big applications even applications

like computational biology, remote sensing, environmental sciences, robotics etc.

demands churning and managing large databases. Thus the quality of data involved

26

the scale of the demand and complexity of the infrastructure poses great challenge

for the effectiveness of the current methods and tools. The integrating architecture

that address all these problem is the data grid which provides the accelerated

progress on petascale data intensive computing by enabling the integration of

various approaches adopted today while encouraging the deployment of basic

enabling techniques and revealing technology gaps that require further research and

deployment [LFV 2003, LFC 2000).

2.4 Limitations of Grid

Grid also has its own limitation. We can't expect that we will submit any job in th~

grid and it will return the result 1 000 time faster always without adding any

machine or software in the already existing system. Even there are limitations on

many programs that how much we can parallelize it. It is also a considerable fact

that it can affect the security of the donor's upto some extent. Also there is no

practical tool for transforming arbitrary application to explore the parallel capability

of the grid. Program can be written accordingly for the grid enabled application, yet

automatic transformation of application is a very difficult job.

2.5 Issues in Computational Grid

As we have seen there are many important issues in computational grid. These

issues are categorized with respect to user's, developers, as we11 as administrator

point of view. After emergence of OGSA (open grid service architecture) which

incorporate web services into the grid architecture provides a new height to the grid

technologies. In this new architecture many static and traditional algorithms failed

to achieve the goal upto the desired level. In fact for providing computational

resources there are"-many more grid service providers (GSPs) in the open market

under OGSA. One of the most important issues in computational grid is that how

we map each individual task to a appropriate service instances. Other important

issues are security as well as reliability of the resources of different GSPs. In order

to optimize the objectives of application, scheduler has to consider the tradeoff

27

between the grid environment and the need of the user i.e., deadline or cost into

account.

Sometimes before, in some organizations for increasing reliability of high-end

conventional computing system are using much expensive hardware. These

hardwares are made up of chips with redundant circuits for graceful recovery in the

case of hardware failure. Even machines are using duplicate processors with hot

plug-ability as well as duplicate processors and cooling systems.

Grid has given an alternate approach to reliability that relies more on software

technologies than expensive hardware. In this system since the different machines

are geographically distributed and dispersed so power failure or data tampering or

any type of inconsistency at one location does not affect the other so we are

achieving high reliability in relatively less expensive manner.

So increasing reliability in an inexpensive manner in grid system by applying new

software technology is also an issue in grid system. The other key issues regarding

the design of the grid e.g. data locality and availability, implementation, scalability,

anatomy, privacy, maintenance, fault tolerance, security, etc. need to be addressed

well before the commercialization of the grid. Some of these issues demanding new

technical approaches for the grid environment are discussed as follows.

Role of the End System

End system plays a major role m the grid system as today's end systems are

relatively small and they are connected to networks by interfaces and operating

system mechanisms that are originally designed for reading and writing slow

devices. Thus, these end systems needs to be developed to support high

performance networking of grid architecture.

Job Preprocessing Requirements

28

Grid involves number of virtual organizations (VO). Any query to the grid enters

through the corresponding virtual organization only. Though, it is difficult to have

common grid architecture as they are created to cater to different needs, at least a

basic set of services e.g. Querying, Submitting and Monitoring need to be

identified. Any process on a grid may proceed by

• Obtaining the necessary authentication credentials (connectivity layer

protocols): The user should be authenticated for entering the grid. This can

be done by the use of password or certificates. For this, a password may be

given to the authorized users keeping in mind the security of the user keys.

• Querying information (collective services): Since a grid is a dynamic system

it should be updated to keep track of the changes occurring inside it. Most of

the information is dynamic and should be updated from time to time,

whenever a job completes its execution or any resource participates or quits

the grid. Mechanism of discovering resources on the grid is itself a

challenging task for the designer. In the old schemes some centralized

services, e.g. Condor matchmaker were used that contained all the

information, but it had the problem of scalability and single point failure.

Later decentralized schemes were introduced e.g., MDS - 2 where the grid

information is stored and indexed by index servers that communicate via

registered protocols. The best approach is to have the information available

to all virtual organizations about the resources status so that load balancing

can be achieved.

• Submitting requests (resource protocols): Keeping in mind the

heterogeneity of the grid the request should be submitted for appropriate

machine, storage systems, and networks to initiate computations, move data

and so on. High selectivity in the-resources has an advantage of the best

possible allocation but may lead to lower match probability. High

regionalism may lead to non uniform distribution of the tasks but will

reduce the communication cost. Selectivity depends on the nature of the job

whereas regionalism is governed by how much communication overhead

and network delays the job can tolerate. Both these factors depend on the

29

existing load structure of the grid. In addition, access control should also be

exercised as the users are working in the shared environment and there can

be a number of resources over which the owner wants to have its complete

authority.

• Monitoring resources and computations (resource protocols): The progress

of the various computations and data transfers could be done by using

means such as check pointing. It notifies the user when all the tasks are

completed and detecting and responding to failure conditions. This brings

the security and fault tolerance features of the grid. Since large numbers of

virtual organizations are part of the grid, large numbers of resources need to

be monitored and tracked for various failures. These failures may range

from submission failure to hardware/software failures. The grid should be

able to meet out these failures gracefully.

Although after submitting the job, Computational grid provides authority to the user

for queering the progress of the job. But to date, as an output the computational grid

produces one graph/bar showing some averaged progress metric. It is an important

issue to tell exactly the user instantaneously that, which job/subjobs has failed to

execute and due to which what type of error has occurred. Possible errors are as

follows [LFV 2003]:

1. Programming error: Tells the user that error is due to user itself so that he can

modify their program accordingly.

2. Hardware or Power failure: Suppose due to any reason after allocation of the job,

hardware is failed. It is important to deal with this problem instantaneously so that it

will have Jess negative effect on the allocation of other dependent subjobs. At least

there should be a facility that tells the user that-llpto this level the program is

executed.

3. Communication problem: Due to excessive network load at the path used in
/

communication.

4. Excessive slowness: Due to any other type of problem etc.

30

From administrator point of view there are also few important Issues m grid

computing. Some of them are:

• Addition and removal of heterogeneous institutional resources in a dynamic

virtual organization in a reliable and secure manner.

• For ensuring high level security, Certificate authority, which is based on

public key encryption system, have the following responsibilities in VO

systems:

1. Issuing, removing and archiving certificates

2. Positively identifies entities certificates for donor's as well as users.

3. Logging activity etc.

It may be useful for developers to develop a small grid of their own so that they can

use debuggers on each machine to control and watch the detailed working of

applications.

2.6 The Problem

Scheduling of task is an integrated part of parallel and distributed computing

systems. An intensive research has been done in this area and the results of those

were widely accepted. But, with the emergence of OGSA in computational grid,

new scheduling models and algorithms are in demand for addressing new concerns

in grid environment. The complexity of the scheduling problem increases with the

size of the grid and becomes highly difficult to solve it effectively. In grid there are

three main phases of scheduling. Phase one discover the set of different resources

according to the specialty of the job/task. Phase two collect the information of

queuing length, reliability and the speed of the node and matching have been done

according to application. In third phase allocation and execution takes place.

A Global Grid scheduler, often called resource broker, acts as an interface between

the user and distributed resources and hide the complexities of grid computing. It

performs all the three phases of scheduling in grid environment. In spite of this it is

also responsible for monitoring and tracking the progress of application execution

along with adapting to the changes in the run time environment of the Grid,

31

variation m resource share availability, and failures. Grid environments are

composed by different types of processing nodes, storage units, scientific

instrumentation and information belonging to different research organizations. Each

time aVO user submits a job in the grid, it has to make a reference with Resource

Broker (RB). There is also a local scheduler on each site of the nodes which take

care the scheduling inside the element. In our problem we have assumed that local

scheduler works in FCFS manner [ZXX 2003, WCJ 2009, JYR 2005, YYX 2006,

Ia 2005, JA 2005].

The parameters which we have considered for scheduling problem are turnaround

time and speedup.The grid scheduling architecture is given in figure 2.6 in which

we allocate the grid resources in such way that the scheduling and resource

parameters should be optimized.

Grid services

Historical workload
information

Scheduling and
resource

management

Qos requirment

1---~ P~=~.::t"C:.~~o~-
Information

Advance
reservation

Performance
data

:==~''~~
:==~''~~
:==~"~~ '-------'' ''-----' Grid resources

Figure 2.6 Grid Scheduling Architecture [GP].

32

For understanding scheduling in grid we apply Queuing Theory [RC 1981, CH

1997]. Scheduling problem under computational grid falls in category of MIM/G

Model. It is because we assume that there are many systems/nodes/machines and

many jobs/sub-jobs to execute. Every system has its own capability to process the

job. If all the computing units have the same rate f.1 then the model degenerate to

the MIM/n model, and the results of multi-server queue with different service rate

should be identical with MIM/n model. In our simulation part we are assuming that

arrival of joo7task on on each node follow a poisson distribution with arrival rate A; ,

their execution process follow an exponential distribution with service rate Jl;, and

the task process in each individual machine is an M/M/1 queuing system.

Assume that average arrival rate and average service rate of the system are A; and

Jl; MIPS respectively. The queuing grid architecture is given in figure 2. 7. In this

figure various tasks are distributed in various resources among the grid. The figure

2.7 is shown below.

1-'n

Figure 2.7 Queuing Architecture of Grid

The workflow of tasks is to be linear or hybrid or parallel. If workflow is linear then

it executed in sequential otherwise we apply parallel execution model. In my

33

problem the workflow is parallel. The workflow management is shown in figure 2.8

[WCJ 2009].

Linear workflow

Hybrid workflow

Parallel workflow

Figure 2.8 Workflow Management

2. 7 Concluding Remarks

Concepts of grid is still evolving and most attempts to define it precisely end up

excluding implementation that many would consider to be grids. Today, grid

systems are still at the early stages of providing a reliable, well performing, and

automatically recoverable virtual data sharing and storage. A good mathematicians

and programmers are needed for giving techniques and programming for managing

resources, scheduling and scavenging. OGSA is an open standard at the base of all

of these future grid enhancements. Globus toolkit is a set of tools useful for building

toolbox. We can take more information about this from the websites

http//www.globus.org/ogsa.

This chapter deals thoroughly the concept of computational grid and research issues

involve in this.

34

Chapter 3

Ant Colony Optimization
ACO is an emerging soft computing technique having the capability of its greater

application for combinatorial problems. This chapter discusses the ACO along with

its application domain with specific application to TSP problem. The challenges in

applying ACO are also detailed in this chapter. The pseudo code of ACO and the

example of collaboration with other metaheuristics have also been given.

Many social insects like ants, bees, birds have attracted the attention of human .

being due to their complex social behavior. The most noticeable examples are ant

street, and the social democratic behavior of bees. The field of ant algorithm derives

models for complex problems taking inspirations from real ants behaviors and then

by transforming it into mathematical forms. ACO is one of the most successful

algorithms of the category "ant algorithms". Marco Dorigo gave the first ACO

algorithm with the collaboration of Alberto and Vittorioo in about 90's [MDV

1991]. Further, the field was not only strengthened by many researchers but they

also applied the algorithm in variety of fields [MDT 2006].

3.1 ACO

ACO algorithms according to their chronological order of appearances are listed
I

below [MDV 1991, LGM 1995, MDT 2006]:

System Year

Ant System (AS) 1991

Elitist AS 1992

Ant-Q 1995

Max-MinAS 1996

ACS 1997

Rank-based AS 1997

35

Hyper-Cube AS 2004

Some of these are discussed in the following sections.

3.1.1 AS

The behavior of real ants has inspired Ant System (AS), an algorithm in which a set

of artificial ants cooperate towards the solution of problem by exchanging

information with pheromone deposited on graph edges. They move by stochastic

local decision policy based on- two parameters, trails and attractiveness.

Furthermore, an ACO algorithm includes two more mechanisms: trail evaporation

and, optionally, daemon actions. Trail evaporation decreases all trail values over

time, in order to avoid unlimited accumulation of trails over some component. An

ant is a computational agent which iteratively constructs a solution for the instances

of problem to solve. Partial problem solutions are seen as states. Core of the ACO

algorithm contains a loop where in each iteration, each ant move from a state i to

state \}' , which corresponds to a more complete partial solution. At each step a

each ant k compute a set A: (t) of feasible extension to its current state, and moves

to one of these as per the computed probability. For each ant k, the probability

k pi'¥ of moving from state ito state\}' is given by [MDL 1997 A, MDL 1997B].

a p

1t + IJ,~) if ~tabu,
L T d + 1J f3 ------------------------------------(A)

tl•uabuk t[
o otherwise

In eqn tA) tabuk is the list containing all moves which are infeasible for ant k

starting from instantaneous state i. While parameter a and f3 specify the impact of

trail and attractiveness, respectively.

After each iteration trail are updated by the following formula (B) when all agents

have completed their desired work.

36

;r (t) = (1- r) ;r. (t -1) +!!. ;r. --(8)
"i'l' "t'l' "t'l'

Here l!.r;'l' represents the sum of contribution of all agents that used move (i'l') to

construct their solutiony, 0 :$ r :$},is the user defined parameter called evaporation

coefficient.

One point should be noted here that agent contributions are proportional to the

quality of solution achieved.

3.1.2 ACS

ACS differs from AS in three main aspects [MDL 1997 B]:

A new state transition rule provides a direct way to balance between exploration

and exploitation of new edges. A new Pseudo Random Proportional Rule (PRPR) is

introduced. PRPR is a compromise between the pseudo random state choice rule

typically used in Q- learning and random proportional action choice rule typically

used in Ant System.

The best state is chosen with probability q0 (usually fixed from 0. 7 to 0.9) and

with probability (l-q0) the next state is chosen randomly with a probability

distribution based on r],.'l' and T;'l' weighted by a , 0 :$ a :$ I and P, 0 :$ P :$} .

{
argmax<ildtabu) J a,.nPJ if q :$ qo

S = ~ 1- lr, • I il
RWS otherwise

Global updating rule is applied only to edge which belongs to the best ant tour.

While ants construct a solution, a local pheromone updating rule is applied.

Each ant generates a complete tour by choosing the cities according to a

probabilistic state transition rule. Ants prefer to move to cities which are connected

by short edges with a high amount of pheromone. Once all ants have completed

their tours a global pheromone updating rule is applied. A fraction of the

pheromone evaporates on all edges and edges that are not refreshed become less

desirable. Each ant deposits an amount of pheromone on edges which belong to its

tour in proportion to how short its tour was. The process is then iterated.

37

The state transition rule with which ant k in city r chooses to move the city s is

given by

pk (r,s) = ~)r(r,u)t .[1J(r,u)t
ueJ.<r)

-------------(3.1)
{

[r(r, s)t .[1J(r, s)t

0 otherwise

where r is the pheromone, 7J=.!_is the inverse ofthe distance d(r,s), Jk(r)is the
I d

set of cities that remains to be visited by ant k positioned on city r (to make the

solution feasible).

In ant system, when all ants completed their tour the global updating rule is

implemented as follows.

m

r(r' s) ~ (1- r)r(r' s) + L I!. T k (r' s) ------------------------------------ (3.2)
k=l

Where,

if(r,s) E tour done byant k.

otherwise

0 < r < 1 is the pheromone decay parameter, Lk is the length of the tour performed

by ant k, and m is the number of ants. Pheromone updating is intended to allocate a

greater amount of pheromone to shorter tours. This is similar to reinforcement

learning in which better solution get a higher reinforcement. This is good for small

TSP with (30) cities.

ACS State Transition rule:

An ant positioned on node r chooses the city s to move by applying the rule given

by(3.3)

s = { arg ;ax •• ,,,,,[r(r, u)]" .['l(r, u)]' if q ~ qo

otherwise
------'------(3 .3)

38

Where q is a random number uniformly distributed in [0,1], q0 is a parameter

(0 < q0 < 1) and S is a random variable selected according to the probability

distribution (3 .I).

ACS Global Updating Rule

Here Global updating is performed by equation (3.4)

r(r' s) +--- (1- r). r(r' s) + r . L1 r(r' s) --(3 .4)

Where,

if (r, s) E Global best tour;

otherwise

Where Lgh is the length of the globally best tour from the beginning of the trial.

Eqn (3.4) dictates that only those edges belonging to the globally best tour will

receive reinforcement in comparison to (3 .2). Another Global updating rule is called

iteration best denoted by Lib (the length of the best tour in the current iteration of

the trial). In this case edges which receive reinforcement are those belonging to the

current tour of the best iteration.

ACS Local Updating rule

While building a solution of the TSP, ants visit edges and change their pheromone

level by applying the local updating rule given by the following eqn (3.5).

r(r ,s) +--- (1- p) · r(r ,s) + p · L1 r(r ,s) ------------------------(3.5)

Where 0 < p <I is a parameter, L1r(r,s) can be defined in many ways which are

inspired from different evolutionary method for improving the results.

L1r(r,s) = K·maxzeJttsJ r(s,z) which is exactly the same formula used in Q-

learning, 0 < K <I is a parameter, L1r(r,s) = r 0 , where r 0 is the initial pheromone

level, L1r(r,s) = r 0(l- z":''- LB), where z is the average of the last k solutions
z-LB

and LB is the lower bound on optimal solution cast. If zcurr is lower than z, the

39

trail level of the last solution move is increased, otherwise it is decreased.

L\ r(r, s) = 0, and sometime local updating is not applied in many problems.

The role of ACS local updating rule is to shuffle the tours so that early cities in one

ants tour may be explored later in other ant tour. In other word, the effect of local

updating is to make the desirability of edges change dynamically; every time an ant

uses edge it becomes slightly less desirable (since it loses some of its pheromone).

In this way ants will make a better use of pheromone information. Without local

updating all ants would search in a narrow neighborhood of the best previous tour.

3.2 Data Structure and pseudo code for AS and ACS in TSP

TSP was the first Combinatorial Optimization problem solved by ACO. We will

explain it by taking the example of TSP.

Problem representation:

Intercity Distances: First, we compute the distances between each city and store

them in a symmetric distance matrix with n2 entries. In fact in symmetric TSP we

only need to store n<~-ll distinct distances.

Nearest Neighbor Lists: We will also provide it as an input for each city a list of

its nearest neighbors. For each city i, let di be the list of distances from a city i to all

cities j, j=l,2 n and i#j. Sort the list according to non decreasing distances and

obtained a sorted list dsi, with the assumption that dii=9999. The nn_list[i][r] gives

the identifier of r1
h nearest city to i. It can .be constructed in O(n2·logn) since we

have to repeat sorting algorithm over n-1 cities for each cities.

Pheromone Trails: We store the initial pheromone value riJ of each path (ij) in a

n2 matrix. However, we need only to store n<~-l) distinct values.

Heuristic Information: We store the heuristic information value 7JiJ = d1
·· of each
I)

path (i,j) in a n2 matrix. However, we need only to store n<~-J) distinct values.

40

Combining Pheromone and Heuristic Information: An ant located on city i

chooses the next city j with a probability proportional to [r ij t. [17 tit . This value

will be used by each of m ants so we will store it in an additional matrix of order n2
•

Representing Ants: An ant contains at least three structures

One variable viz. tour_length, to store the ant's objective (fitness) function value.

An array of dimension n+ 1 to store the ant's tour

A array of dimensional n to store the visited cities.

3.2.1 Pseudo code for ACO

Procedure Construct Solutions

{

k= 1 to Number of Ants do

{

}

for i =Ito Number of cities do

{

ant[k]visited[i] +--false

}

step+--1

for k= 1 to Number of Ants do

{

}

r +--rand { 1 ,2 n}

ant[k].tour[step] +-r

ant[k].visited[r] +-true

while (step<Number of cities)

{

step+-- step+ 1

for k= 1 to Number of Ants do

{

41

}

AS Decisionrule (k,step)

}

for k= 1 to number of Ants do

{

}

}

ant[k].tour[n+ 1] ~ ant[k].tour[i]

ant[k].tour _length~ compute tour length

The Roulette wheel scheme which is used in both ACO algorithms is described

here. Procedure of AS decision rule is as follows: first, we determine the current

city of the ant k. The choice of next city will be determined by RWS of

evolutionary computation. For each value choice of a city j that ant k has not visited

yet, construct a slice on a circular roulette wheel in proportional to their weight.

After this, spun the wheel and the city to which marker points is chosen as next city.

This can be done mathematically as follows:

• Summing the weight of the variable choices.

• Choose a uniform random number r from the interval 0 and sum.

• Going through the all feasible choices until the sum is greater or equal to r.

• Finally, the ant is moved to the chosen city, which is marked as visited.

3.2.2 Terminating condition of ACO

The possible termination condition of ACO algorithms can be as follows:

• Maximum number of iteration has reached.

• Maximum number of tour's construction can be given as a terminating

condition. Stagnation behavior occurred.

• Near Optimal solution is found within a predefined distance.

3.3 Important Steps to Solve a Problem by ACO

There are some points that should be addressed before applying ACO. They can

provide a rough guidance towards positive direction however real experience can be

42

obtained only after implementation which can enforce us to change the value of

parameters taken initially. The key points are the following:

• Transform the problem in the form of set of components and transitions on

which ant can build a solution

• A good definition of pheromone trail should be addressed and this part itself

requires deep insight into the problem

• Equivalently appropriate value of heuristic information is a key -point for the

success of the algorithm

• For solving NP-hard COP, implement an efficient local search algorithm

with ACO for best performance

• Choose the appropriate ACO algorithm according to the problem taking the

previous aspect into account

• Tune the parameter of the ACO algorithm. A good starting point produces

the good results for variety of problems.

3.4 Challenges and future scope of research

There exist a variety of problems e.g. graph coloring, job shop problem for which

other algorithms appear to be superior. It is the point of research that for which type

of problem ACO can be applied and whether there is some problem with tuning

parameters or not. There is no exact formula for estimating the optimal number of

ants after seeing the nature and size of problem [MDL 1997B]. In recent, ACO is

mixed with some other algorithm and they are giving good results for specific type

ofproblem [JAG 2009, THZ 2010].

43

Chapter 4

The Proposed Model
The problem considered in this work is scheduling of job, consisting of tasks, to a

computational grid for execution. Through scheduling the objective is to optimize

the turnaround time of the job. An evolutionary technique, known as ACO, has

been used for the purpose. This chapter discusses the QoS parameter, derives fitness

function and deliberates over the proposed model. The algorithm to solve the

problem is also elaborated. Finally this chapter is concluded.

4.1 QoS Parameter

We have already discussed about different QoS parameters in chapter 3. In this

chapter, we concentrated on only two parameters; turnaround time and speed up,

which we tried to optimize in our proposed model. Turnaround time is the time

when a job is submitted for the execution in the grid and finally completes the

execution. Through computational grid, the scheduler tries to allocate the job,

consisting of tasks/subjobs, onto computing nodes and optimizes the turnaround

time. Speed up of computational grid is defined as the ratio of the time taken by a

single computer to that of the computational grid. Speedup always lies between I to

n, where n is the number of resources available in the grid.

4.2 Fitness Function

In OGSA different users submit their jobs unaware of others. So there may be

queue length on each site or nodes of the computational grid. Taking into

consideration of queuing theory [RC I 981, CH 1997], scheduling problem in

computational grid as a single system, will fall in general under M/M/G system. We

are seeing it as a distributed systems and concentrated on processing of task on each

individual machine and assuming that arrival of job/task on each node follow a

. poisson distribution with arrival rate A;, their execution process follow an

44

exponential distribution with service rate /J;, and the task process in each individual

machine is an MIM/1 queuing system.

Let f.. and ll be the average arrival and service rate of an individual site at any given

time respectively then average waiting time is given by
' /,

(
,) and average

flfl-/,

A. 1
waiting time plus service time is given by +- which after simplification

p(p- A.) fl

gives (
1

) known as littile theorem.
p-A.

Let us assume that a user submits a job which have f tasks, on a computational

grid having m systems. Arrival and service rates of the ith system is A; and

f.1; respectively. Average waiting time including service time of the ith system can

be given by:

_

1

[A_; I J T.-~ f.1;{jl;-A.J+ f.1; -N~·X 1; ... (4.I)

where X .. is equal to I if fh task is allocated on ith machine otherwise 0 and Nj is
}I

the no of instructions in fh task. So finishing time T of the whole job in terms of

user according to this allocation will be following:

T=max:~<T) ... (4.2)

Substituting the values of T; from eqn (4.1) into (4.2) we get the following eqn:

m ([~ ;L 1 J J T=maxi=l f:t pJjli _ .AJ+ f-li ·NfX)i (4.3)

Since our objective is to minimize finishing time so the objective function in our

case will be

F = Min(T) .. (4.4)

45

where value ofT will be obtained from eqn (4.3) and minimum has taken over all

possible schedule of tasks i.e. all possible values of allocation .of tasks j with

machine i.

Therefore fitness function for our problem can be written as:

1
L =- ... (4.5)

T

According to eqn (4.5), L will be maximum for the schedule which have minimum

corresponding value of T.

In the above formula we are not considering the communication cost between the

different modules of the task. For this, we will provide as an input that what is the

complete list of module which requires communication to others and how much bit

of communications are required between them.

Let Ak; and Jlk; be the arrival rate and service rate of the network between the

link of k1
h node and i1

h node of the grid then the average waiting time on this link for

communication would be:

A II (U k~ A y Where, Ak; =A lk ; Jlk; = Jl,k (4.6)
rk; k1 k1

So if r1
h task is allocated on kth node and s1

h task is allocated on i1
h node then total

time on the link will be

(.u,t.&:> ..tX ~Jc" .. (4.7)

where C rs is the bit of communication between rth and sth task obtained from the

communication cost matrix C, lS r, s S 1; lSi, kS m, C .. =0.
II

Total communication elapsed for all possible tasks between link of i1h and k1
h node

can be obtained as

1 1

({ Ak; I JJ I I Crs·XkrXis (U _)+-. (4.8)
r=l s=r+l II Ak II

rk; ki ' rk,

46

Where 'V assigns a value I if rth task is assigned on machine k and 0 otherwise. I
A- kr

is the total number of module/tasks in the job submitted by the user.

Thus, total time Q taken by the computational grid for communication between the

modules will be following:

n= M..ax[± ± (~" r-I J·Crs·X X 1··························<4.9)
J<.k< J1 _ 1 J1 kr a
_I, _m r=J s=r+J /L,k·

k
ki ki I k1

I<

Where m is the total number of machines in the given computational grid, and I is

the total number of tasks in the submitted job.

In this case our objective function will be modified as:

F= Min[T+n] ... (4.10)
hi,k:Sm

i<k

Standard fitness function according to eqn (4.1 0) for our problem will be

I
l=-- ... (4.II)

T+D.

According to eqn (4.Il) L will be maximum for the schedule which have the

minimum (execution+ communication) time.

Let us consider that each node is not directly linked with each other. Further, let

h(k,i) be the set which consist of the node (necessary for establishing

communication between node k and i) in an increasing order starting from node k

and ends up with node i, in such a way that each predecessor in the set sequence is

directly connected with its successor and let hd(k,i) be the hamming distance

between kth and ith node. It can be written mathematically as

h(k,i) = {h0 (k,i),h1 (k,i), hc (k,i)}

Where c =hamming distance between node k and i, i.e. c=hd(k,i)

47

In this case 0 can be modified as follows:

_ '"' '"' '"' Ah'(ki)h,.
1
(ki) ,.

[

I I {hd(k.i)-1[') J)}
0-Max~~ ~ + ·Cr.<l1

i<k Jlh'(ki)h'"'(ki) (JLh'(ki)h .. '(kl) Ah (ki)h (kiJ Jlh'(ki)h'"'(ki)
J:;;;i,kSm r=] s=r+l 1=0 - , t.o.l

........................... ··· (4.12)

4.3 The Model

Let us consider a computational grid which consists of n nodes/machines. These

machines are distributed globally and situated at large distances. A user has

submitted his job which consists of I parallel task and wants to finish his job in as

minimum time as possible. Since in computational grid there are many jobs running

on the machines, we have considered arrival rate of task coming on each machine

and the service rate of the machine. According to arrival and service rate on each

machine there will be queue on each machine of certain length so in the first part of

our model we will allocate the tasks on different machines by applying ACO

method and improve it with each iteration.

Some assumptions laid down for the model are as follows:

• Each node has a single processor

• arrival of job/task on on each node follow a poisson distribution with arrival

rate A; , their execution process follow an exponential distribution with

service rate /-1;, and the task process in each individual machine is an M/M/1

queuing system.

• All the tasks in the submitted job are parallel

• We have not c~nsidered the setup time which will take place just before the

scheduling process

• Arrival rate of packets on each individual machine may vary with respect to

time however service rate of each node is same with respect to time

The various module of ACO for this purpose can be mapped as follows:

48

1. We construct the representing graph of our problem in the following notation:

G=((T,N), L),where T consist the set of subjobs/tasks i.e., T={T1, Tz, T1} and

N will consist set of machines/nodes i.e., N= {1 ,2, n} and, L ={ T11 , T12, ... T1n,

T21, T21, ... Tzn, ... Tn, T12, Tin}, where L will denote the set of all possible move

by the ant i.e.T1n will denote that task I is assigned on machine n.

2. Assigning a task to a particular machine will be seen as one step move of the ant.

3. Path of a single ant will be completed when it will assign all the tasks to some

machine.

4. Whenever the ant will allocate a task it will fall under allocated task, next task

will be chosen from non allocated task just like in TSP from non visited cities.

5. Initially ant can take any task Ti from the set T randomly and allocate it on a

machine m according to state transition rule. After allocation of the first task on

machine any other task k will update the corresponding 7J kJ value in the heuristic

matrix through the memory of ant s that one task is already allocated and decrease

the desirability upto the considerable remark.

6. Initial pheromone valuer;;= r0 ;'\li,j where r 0 =min
' Js;s/

7. We set q0 = .93.

8. Initially Heuristic information value 771, of allocating the task i to machine j will be

equal to 7JiJ = (1
) .Vie T,.j eN, where etm is the execution time of task i on

etm iJ

machinej.

9. Each individual ant will reach to their destination i.e will construct the whole path

and it can be seen as allocation of all the tasks to some machine. So there will be

exactly l steps in completing the whole tour, where l=cardinality(T).

10. Heuristic information value will be calculated in next step according to the

following formula:

49

lJ (step(h)) =
1

; where btp is the busy time period of
iJ (btp)1(step(h -1)) + (etm)iJ

machine j upto step (h-1). Here we see that the changes will be reflected in only m

values of T/iJ out of (l.m) entries.

11. Each machine has a busy time period array. In each move of the ant out of n

options only one btp of the corresponding machine will be updated which has

been selected according to ACO choice rule.

S/ = {argmax(,/etabu.J ~il·lJJ if q S qo
RWS otherwise

12. After each iteration calculate the fitness function for each complete tour

constructed by the different ants. Update the value of pheromones which are

responsible for the best tour by the amount T~'" to the edges belonging to the best
mm

schedule in each iteration from the following eqn:

1
r 'f- (1- r) · r + r · -. · o s r s 1 .

1J 1J T"e '
mm

4.3.1 ACO Algorithm for Computational Grid

The algorithm for the proposed model pseudo-code is as follows.

ACO Algorithm ()

{

for (i=1 ;i<=no _of_iterations; i++)

{

For each ant do

{

Generate sequences of task randomly

Ant will consider the preferences of task according to their order in

the sequence

Task will be allocated on the machine according to the State

transition rule

50

}

}

When tour of the ant is completed that each task has been allocated

on the machine we calculate the fitness function

}

By applying sorting techniques we see that which ant provides the

better solution

Update Pheromones value of edges belonging to the best schedule

4.4 Concluding Remarks

In this chapter, ACO is used to solve the scheduling problem of computational grid

in an efficient manner. A detailed description of the matching of the different

parameters of ACO has been notified with the computational grid problem in our

concern. It is beyond doubts that it needs a deep insight through the problem to

solve it using ACO. In most of the literature [YYX 2006, SFM 2006, SLM 2007,

WCJ 2009, JAG 2009] workload on the machine have been assumed to be static i.e.

already a fixed workload is assumed. They have done the experiment by providing

it as a static input. In the proposed work, we are assuming queuing theory approach

and derived the objective function and fitness function accordingly. In the next

chapter we will observe that only after change of range of arrival rates of machine

would increase or decrease the workload on the machine accordingly.

51

Chapter 5

Experimental Evaluation

After presenting the model and algorithms in the previous chapter, a large set of

experiments has been conducted to study the performance of the proposed model.

Different range of parameters is taken to plot the graphs between turnaround time and

number of iteration. In this dissertation work only two QoS parameters; turnaround time

and speedup have been considered. Different values of the input parameters are generated

randomly between its lower limit and upper limit. Summary of all the observations and

effect of varying the range of one parameter while keeping other constant over the

turnaround time have been studied.

Two different cases, given below, have been considered broadly for various experiments.

Case 1: In this case scheduling of only parallel independent tasks have been considered.

For evaluating the quality of solution of different schedules generated by different ants,

fitness function (4.5) as described in chapter 4, have been used in this case.

Case 2: This case considers different dependant parallel tasks of the job submitted by the

users. Thus in this routine, communication between different tasks of the job is effective.

Fitness function (4.11) of chapter 4 is used for evaluating the different solutions

generated by ants.

D~scription of different variables their notations, meanings, and prescribed range which

are used in implementation of the algorithms (described in chapter (4)) have been listed

below in the table 5.1.

52

Sr. No. Variable Name Meaning Range

1 m Number of nodes in the grid 20 to 600

2 I Number of tasks in the job 50 to 1000

3 Ant Number of artificial ants 3 to 10

4 Itn Number of iteration 20 to 200

5 p;[] Speed of processors in(MIPS) (200-900)

6. A;[] Load of processors in (MIPS) (1-600)

7. A,s[] Network load in (MBPS) 60-90

8. Jlrs [] network bandwidth (in MBPS) 100-120

10 Task[].size Task size (in Million Instructions) (2000-5000)

(1 00-90000)

11 C,s[] Message size (in Mega Bits) 0-90

12 r Pheromone decay parameter 0.1-0.3

13 qo State selection threshold point 0.90 to .95

Table 5.1-Description ofvariables used in program

5.1 Parallel Task without Communication Cost

Case 1: This experiment considers number of machines in grid to be fixed, and number

of tasks varying. Various experiments with varying tasks are as follows. Number of

Machine (m) =50, Ant =3, Range of Arrival Rate 1-100 MIPS, Range of Processing
-

Speea 200-300 MIPS, Range of Task Size 2000-5000 Million Instructions.

53

5.1.1 Number of Tasks =50.

30.5

30

29.5

~
29 -g

g
28.5

E
:>
f-

28

27.5

iteration

Fig. 5.1.1 Turnaround time Observation Graph (!=50).
OUTPUT: Min TAT without communication=27.131l31

Average TAT without communieation=2.727794e+OO 1

Speed UP without communication=2.145632e+001

5.1.2 With other input parameters to be same and number of Tasks =60

36

35

'" 34
.§
" c
:> 33 e
"' E
:> 32 f-

31

10 20 30 40 50
itera tion

Fig. 5.1.2 Turnaround time observation Graph (1=60).

OUTPUT: Min TAT without communieation=30.224597

Average TAT without communication=3.071358e+001

Speed UP wi thout communication=2 .286744e+001.

60

54

5.1.3 Number of Tasks =70

36

35.5

35
QJ

E 34.5 :;:;

l:l
c
::J 34 e
"' E 33.5
::J

1-

33

32.5

10 20 30
iterat ion

40 50

Fig. 5.1.3 Tumaround time Observation Graph (/=70).

OUTPUT: Min TAT without communication=32.137871
Average TAT without communication=3 .304940e+OO I
Speedup without eommunication=2.479312e+001

5.1.4 Number of Tasks =80

42.5

42

41.5
QJ

E

"0 41
c
::J e
"' 40.5
E
::J

1-
40

39.5

5 10 15 20
iterat ion

25 30 35

Fig. 5.1.4 Turnaround time Observation Graph (1=80).
OUTPUT: Min TAT without communication=37.565280,

Average TAT without communication=3.788680e+OO I

Speedup without communication=2.471718e+OO J.

60

40

55

5.1.5 Number of Tasks =160

69

68.5
<1>

.s
"0
c

68 :::>
e
"' E
:::>

1--

67.5

5 10 15 20
iteration

25 30 35

Fig. 5.1.5 Turnaround time Observation Graph(!= 160).

OUTPUT: Min TAT without communication=67 .114948

Average TAT without communication=6.737207e+001

Speedup without communication=2.779950e+001

5.1.6 Number ofTasks=250

104

103. 5

"' 103
Jj
-o
c:

102.5 ::> e
"' E
::> 102 >--

101.5

5 10 15 20
iteration

25 30 35

40

40

56

Fig. 5.1.6 Turnaround time Observation Graph (/=250) .

OUTPUT: M in TAT without communication=l00.661579

Average TAT without communication= 1.0 14198e+002

Speedup without communication=2.885453e+OOI

5.1.7 No ofTasks=300

120

Q) 119
E

"0

; 118
e
co
~
::l

1- 117

5 1 0 15 20 25 30 35 40 45 50
iteration

Fig. 5 .1.7 Turnaround time Observation Graph (/=300).

OUTPUT: Min TAT without communication= ! 09.122812

Average TAT wi thout communication= 1.096821 e+002

Speed UP without communication=3.20 1712c+OO I

5.1.8 Comparison of All Results

We observe tha t as the number of tasks in the job submitted by the user increase

Turnaround time also increases in the computational grid . Speed up of computational grid

also increase with the increase in no of tasks upto certain stage but after a critical stage it

starts decreasing slightly or the rate of increase of speed up is moderated and almost

becomes constant. We have depicted the comparison graph corresponding to the different

tasks on the same number of machine in the following three figures.

57

"' E

"0
c
::l e
"' E
::l
f-

"' E

"0
c
::l e
"' E
::l
f-

"' E

-o
c
::l e
"' E
::l
f-

45

40

35

30

70

60

50

40

30

120

100

80

60

40

10 20 30
iterat ion

40 50 60

Fig. 5.1.8 TAT Comparison Graph with Different Number of Tasks (I).

10 20 30 40 50 60
iteration

Fig. 5. 1.9 TAT Comparison Graph with Different Number of Tasks (U).

10 20 30 40 50 60
iteration

Fig. 5.1.1 0 TAT Comparison Graph with Different Number of Tasks (III).

58

250 --~----------------~------~------------------------~

Q.)

E
f-

200

-g 150

ro

~ 100
f
c

:2 50

--without communication

Q L---~
0 100 200 300

Number of tas ks

400 500 600

Fig. 5 .1.11 Comparison of Min TAT with Increase in Number of Task.

~ --~
32

30

g. 28
"0
Q)

~ 26
(f)

100 150 200

- Wi thout commun1cat1on

250 300 350 400 450
iterat ion

Fig . 5.1.12 Comparison of Speedup with Increase in Number of Task.

500

Case 2 In thi s case number of machines varies . Other parameters arc given below.

Number of Tasks =300, Ant =5, Range of Arrival Rate (1-1 00) MIPS, Range of

Processing Speed (200-300) MIPS , Range ofTask Size (2000-5000) M illion Instructions

for each experiment from section 5.1.9 to 5.1.12. Min Turnaround, Average Turnaround,

and Speedup of each experiment for different number of machines arc written just below

each individual graph. From comparison point of view, Fig 5.1.16 also takes into account

previous graphs . In these graphs each line is represented by different color for more

visibility.

59

5.1.9 Number ofMaehines=60

99.8

99. 6

99.4

Q) 99.2

~
"0 99
c
:J e 98.8 "' E
:J

1- 98.6

98.4

98.2

10 20 30
itera tion

40 50

Fig. 5.1.13 Tumaround time Observation Graph (m=60) .

OUTPUT: MinTA T without eommunieation=98 .158341

Average TAT withou t eommunieation=9.865624e+OO I

Speed UP without eommunieation=3.559537e+001

5.1.1 0 Number of maehine=70

86

85.5

85
Q)

s
"0

84 .5
c
:J
e

84 "' E
:J

1-
83.5

83

10 20 30
iteration

40 50

Fig. 5.1.1 4 Tumaround time Observation Graph (m=70).

OUTPUT: Min TAT without eommunieation=82 .865116

Average TAT without eommunieation=8.4031 02e+OO 1

Speed UP without eommunieation=4.179059e+OO 1

60

60

60

5.1.11 Number ofmachinc=100

65

64.5

64

Ql

~ 63.5
"0

§ 63
e
"' ~ 62.5
I-

62

61 .5

10 20 30 40 50 60
iteration

Fig. 5.1.15 Turnaround time Observation Graph (m= 1 00).

OUTPUT: Min TAT without communication=61.253834

A vcragc TAT without communication=6.224690c+OO 1

Speed UP without communication=5.641575c+001

70

5.1.12 Rest of the outputs ofthc experiments arc given in the form of table given below

No ofMachinc Average TAT Min TAT Speed-Up

110 57.9622 57.1981 60.5860

120 54.3105 54.0031 64.6597

200 37 .3908 36.5697 93.9186

250 31.9877 31.9380 109.7829

300 28.7960 28 .5673 121.9523

350 27.7861 27 .1698 126.3832

400 25.7606 25.4873 136.3241

500 24.4598 24.4534 142.7920

600 23 .8753 23.4875 147.3882

Table 5.1.1- Comparison of TAT and Speedup without Communication

61

From the above experiments we observe that the Tumaround time of a job (which

consists of fixed number of tasks) submitted by the user in the computational grid

decreases wi th the increase in the number ofmachines/nodcs (of the same range of speed

and load) very rapidly but after a certain number of increase in the machines (usually

after m>l) rate of decrease of Tumaround time is very slow. The above situation is

depicted in the following two figures given below. Speed up increase initially rapidly

with the increase in the number of machines but after a certain stage Speed up increases

very slightly (figure 5.1. 17) .

"' :§
u
c
::> e
ro
c

" f-

a..
::J

al
"' Q.

(J)

300

250

200

150

100

50

0 10 20 30 40 50 60 70
itera tion

Fig. 5.1.16 TAT Comparison Graph with Different Number of Machine.

160

140 - --- --

120 - - - - -

100

80

60

40

1

I

I

___ .l ---

1

I --- -- - --- -- ----
1

1

---, ---

-- ----
1

20~~--~--~~~----------------L-------~~------------~
50 100 150 200 250 300 350 400 450 500

Number of machines

Fig. 5.1.1 7 Speedup Graph with Increased Number of Machine.

62

100

90

80
Q)

.~ 70
-o
c
:J
e 60
"' E
:J
1- 50 c
~

40

30 ----- - -

20
50 100 150 200 250 300 350 400 450 500

Number of machines

Fig. 5.1.18 Min TAT with Different Number of Machine.

5.2 Observation with communication cost

Case 1 Range of communication and Hamming distance arc varying. Other parameters

arc as below.

Number of Machines =60, Number of task=300, No of Ants=5, Range of Arrival Rate

1-100 MIPS, Range of Processing Speed 200-300 MIPS, Range of Task Size 2000-5000

Million instructions, Range of Load of Network 60-90MBPS, Range of Load of

Bandwidth 100 -120MBPS .

5.2.1 Range of Message bit 0-15 MB, Hamming Distance Range 0-4

101.5

101

100.5
Q)

·~ 100 -o
c:
:J
0

ro 99. 5
c:
::;

1-

99

98. 5

10 20 30 40 50 60
iteration

Fig .5 .2.1 TAT Observation Graph (UMR=l5 , MHD=4).

63

	TH174910001
	TH174910002
	TH174910003
	TH174910004
	TH174910005
	TH174910006
	TH174910007
	TH174910008
	TH174910009
	TH174910010
	TH174910011
	TH174910012
	TH174910013
	TH174910014
	TH174910015
	TH174910016
	TH174910017
	TH174910018
	TH174910019
	TH174910020
	TH174910021
	TH174910022
	TH174910023
	TH174910024
	TH174910025
	TH174910026
	TH174910027
	TH174910028
	TH174910029
	TH174910030
	TH174910031
	TH174910032
	TH174910033
	TH174910034
	TH174910035
	TH174910036
	TH174910037
	TH174910038
	TH174910039
	TH174910040
	TH174910041
	TH174910042
	TH174910043
	TH174910044
	TH174910045
	TH174910046
	TH174910047
	TH174910048
	TH174910049
	TH174910050
	TH174910051
	TH174910052
	TH174910053
	TH174910054
	TH174910055
	TH174910056
	TH174910057
	TH174910058
	TH174910059
	TH174910060
	TH174910061
	TH174910062
	TH174910063
	TH174910064
	TH174910065
	TH174910066
	TH174910067
	TH174910068
	TH174910069
	TH174910070
	TH174910071
	TH174910072
	TH174910073
	TH174910074
	TH174910075
	TH174910076
	TH174910077
	TH174910078

