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Abstract 

In Machine Learning and Pattern Recognition problems, the Support Vector 

Machines (SVM) has been a very successful model for producing computational efficient 

and accurate solutions. In problems where the information is uncertain we combine the 

concept of fuzzy uncertainty into the Support Vector Machine. This improvement for the 

Support Vector Machine model will solve the inexact nature of the information. Support 

Vector Machines solve both Classification and Regression problems. In this work we 

demonstrated the Lagrangian Support Vector Machine for Fuzzy Regression Problems 

with fuzzy input and fuzzy output data. 
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Chapter 1: 

Introduction to Support Vector Machine 

1.1 Foreword to Problem Solving 

Computers are des~gned to solve the human being problems by taking the inputs 

and giving the outputs. The simplest example for that is Printers. To result the required 

output in problem solving techniques we explicitly use programming and algorithms on 

the inputs. For a complex inputs or problems it's well-known that we would need 

algorithms to solve them but even so there might be no precise algorithm will produce the 

precise and less expensive output. For example, how to model a complex classifier to 

recognize the mood of person when the input is his portrait photo, where the precise faces 

of different people are not known, or classification of protein types based on the DNA 

sequence from which they are generated, or weather forecasting or prediction [ 1]. 

It's not possible to solve these tasks by only programming. That we cannot 

precisely specify the correct output that can be computed from the input data. Problems 

. like those can be solved by learning the input and output functionality from examples or 

what is called learning methodology to learn the inputs and outputs from the multiple 

examples happening so that the system will recognize the solution by its training. When 

the examples are input and output pairs it is called supervised learning. The examples of 

input and output functionality are referred to as the training data. 

The input/output pairings typically reflect a functional relationship mapping 

inputs to outputs. Function which forms a translation from inputs to outputs it is called 

the target function. The target function is learnt by the learning algorithm as well as it's 

· called the solution of the learning problem. 
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Classification is the case when the target function is making a decision to choose 

among multiple output options. In this case we can call it also the decision fimction. So, 

the solution in classification problem is chosen from a set of target functions find the 

proper output domain or Class. For example, so-called decision trees are a good 

classification example. Decision Trees use simple decision functions (if statements) at the 

internal nodes and output values at the leaves. Therefore, the leaves of the decision 

functions are the choice after passing the set of the functions and this is one of the key 

ingredients of the learning strategy. I mean; the algorithm which its inputs are the training 

data and selects the output through the functions is called here the learning algorithm. 

As a sensible example, the Classification learning methodology is in the same 

way that we ask a child to take out the foot-balls from a basket filled with different types 

of balls (i.e foot-ball, basket-balls, volley-balls ... etc). The easy way to teach this child 

how to distinguish the foot-balls is by telling him a number of the balls in the basket 

which are foot-ball ones and by giving him a precise specificatl.on of the foot-ball. 

Learning to distinguish foot-ball is simply making the output is a YES if the ball was a 

foot-ball or NO if the ball was not a foot-ball which is a binary output value. For that, the 

learning problem with binary outputs is called also a binary classification problem. 

When we ask the same child to take out not only the foot-balls from the basket but 

also the basket-balls, the volley-balls, and the cricket-balls by the same way of teaching 

him with the binary Classification we call these output values as regression. Thereby, the 

learning problem becomes with a finite number of categories as multi-class classification, 

while for real-valued outputs the problem becomes known as regression. With no doubt, 

it's considered that the binary classification is the simplest case and with having more 

output values that is to say having more complicated cases [1]. 
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1.2 Presenting the Support Vector Machine 

The Support Vector Machines (SVM) technique is a learning methodology proved 

its efficiency to perform input/output mapping which is applying the supervised learning 

methodology performing batch training data. This technique was introduced by Vapnik 

[4]. 

The strategy of the Support Vector Machine is to presume a decision plane that 

separates between a set of samples having different types of class memberships in the 

space. For example, as it's shown in Figure 1, we suppose that we have samples belong 

either to class Green or Red. The separating decision plane forms a boundary ori the right 

side of which all samples are Red and to the left of which all 

samples are Green. New objects falling to the right will be 

classified as Red or if they were falling to the left will be 

classified as Green [5]. 

Thereby, the Support Vector Machines aim to create 

an efficient algorithm to learn the optimal separating planes 

using a number of samples. The first and simplest model of 

SVM is the Maximal Margin Classifier which is linearly' 

separating the space into classes. 
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I 

••• I 
I . . . : . . .I 

0 I 
• I 

• I 
• I 

0 I 

-------------------J 

Figure 1: Exposing the strategy 
of Support Vector Machines 

The Maximal Margin Classifier optimizes a bound separating the data with a 

maximal margin hyper-plane, whereas given that the bound is independent from the 

dimensionality of the space [1]. 
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Chapter 2: 

Linear and Dual Support Vector Machines Problem 

Throughout this work, all vectors are considered as column vectors. For any two 

vectors x, yin Rn, the inner product of the two vectors will be denoted by xty where xt 

is the transpose of x. For any vector x = (xv ... 1 Xnl E Rn, we define the plus function x+ 

as: (x+)i = max{O~xd fori = 112131 ... In. The column vector of ones of size equals to 

the number of input samples will be denoted by e. 

Consider the problem of classifying m points {(xi, ya}i=l .. m where 

xi= (xil,Xiz• ... , Xin )tin Rn and Yi = ±1. 

(

x11 x12 

Suppose A= ··· ··· 
Xml Xmz 

and D = diag(y11 y2 , •.. , Yn ) is the diagonal matrix. 

For this problem the standard support vector machine is given by the following quadratic 

program with parameter C > 0: 

. c tJ:; 1 t 
mm(w,b,() e '> + ZW W. 

Subject to D(Aw- eb) + ~ 2:: e, 

Here w is the normal to the bounding planes: 

where b ts determining the location of the bounding planes. The plane 

xtw = b + 1 bounds the positive class A+ points, with some error, and the plane xtw = b- 1 

bounds the negative class A_ points, also possibly with some error. The linear separating surface 

is the plane: 
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midway between the two planes xtw + b = ±1. The two planes bound the two classes with a 

"soft margin". That is, we bound each set approximately with some error determined by the 

nonnegative error variable (i: 

A·w + r · > b + 1 for D .. = + 1 l '>l - ll ' 

Now, using the Lagrangian multipliers a, ~' the Lagrangian function will be: 

N N 

m;xLdual = I ai-
1/z I aiajYiYjXi · xj 

i=l i'j 

Subject to: 0 ~ ai ~ C, 

The solution is given by 
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Recently, Mangasarian (Mangasarian & Musicant) [3] has proposed an "equivalent" SVM 

formation of the form: 

Subject to 

D(Aw- eb) + { ~ e 

The dual of this problem is: 

The variables (w, b) of the primal problem which determine the separating surface 

xt w = b are recovered directly from the solution of the dual above satisfying the relations: 

{=~ 
c 

Where a is the lagrangian multiplier. 

Now, note that the matrix appearing m the dual objective function is positive 

definite and that there is no equality· constraint and no upper bound on the dual variable 

a. Unlike the standard SVM formation, the only constraint present is a nonnegativity 

one. 

We define two matrices to simplify our notations: 

H = D[A- e], 

with these definistions the dual problem becomes: 

min f(a) := lj atQa- eta 
O:Sa ERm 2 
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By the result of optimization theory it can be verified that the above 

minimization problem is equivalent in solving the problem: 

0 :::; a l. Qa - e ;::: 0 

Since for any two real numbers a, b, 

o:::;aJ.b;:::o 

is equivalent to 

A= (a-ub)+ ,foranyu > 0 

and 

x+ =max {O,x} 

In our problem, for 

meamng, 

Therefore we have to solve the equivalent problem: 

(Qa- e)= (Qa- e- ua). 

i.e. we need to find a E Rm such that, 

Qa = e + (Qa- e- ua)+· Or 
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To solve this problem a simple iteration scheme of the following form is proposed for any 
input a1 E Rm: 

where i = 1, 2, ... 

a 2 = Q-1 [e + (Qa1 - e- ua1)+] 

a3 = Q-1 [e + (Qa 2 - e- ua2)+] 

The Langragian SVM algorithm requires the inversion of a positive definite 

n xn matrix, at the beginning of the algorithm followed by a straightforward linearly 

convergent iterative scheme that requires no optimization package. 

In the next chapter, we extend the above study of Lagrangian SVM to fuzzy 

regression problems for fuzzy input and fuzzy output samples. 
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Chapter 3: 

Lagrangian Support Vector Machines for fuzzy Inputs and Fuzzy Outputs 

3.1 Brief introducing to our new problem 

In many real world applications, the observed input data can not 
be measured precisely. For ·such cases, the concept fuzzy is introduced 
to characterize imprecision. 

In this chapter we study the extension of lagrangian support 
vector machines for classification problems proposed by Mangasarian 
and Musicant (2001) [3] to fuzzy regression problems. We assume that 
both the input and output of the given regression problem are triangular 
fuzzy numbers. 

Let x = (mx, sx, rx) and y= (my, Sy, ry) be two triangular fuzzy 

numbers where m is the centre, l > 0 is the left spread and r > 0 is the 
right spread. For the arithmetic operations and for the definition of a 
metric or triangular fuzzy numbers we follow the approach of Yan and 
Xu (2007) [10]. Let T(R) be the space of all triangular fuzzy numbers. 
For X, Y E T(R), we define: 

It is shown in Yan and Xu (2007) [11] that the distance d (.,.) 
between two fuzzy numbers X, Y can be obtained as: 

10 



In particular, when X and Y are symmetric triangular fuzzy 

numbers. 

where, 

Throughout this work, we assume that triangular fuzzy numbers 

always symmetric, i.e. Sx = rx and we denote a triangular fuzzy 

number X as: X= (mx, Sx). 

For the study of fuzzy regression problem, let us assume that a set of symmetric 

triangular fuzzy input data{(Xi, Yi)}l=t be given, where 

Xi= (Xil, ... Xin)t E T(R)n, Yi E T(R) 

be such that, 

Xi1· = (mx .. , Sx·. ) E T(R), 
l) l] 

Assume the regression estimation function f ( . ) will be defined in the following 
form: 

Such that, 

Xi= (mxi,Sxi) E T(R) (which are the inputs of the function) 

mx = (mxv ... , mxn)t ERn (mxi is the center of the fuzzy number) 

Sxi E R (the spread of the fuzzy number) 
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Here, 

w and b are the unknowns. 

Following the idea ofMangasarian and Musicant (2001) [3] definition of 

objective function, the E-insentive (Vapnik, 2000) [8] fuzzy support vector regression for 

the linear case is formulated as: 

Subject to: 

where c > 0 is the regularization parameter, and, 

Are the vectors of slack variables. 

Note that, for 
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and, such that, 

we have, 

By introducing the Lagrangian Multipliers, let us consider the Lagrangian 

function, given by: 

l 

+ I Uti[(myi + Syi)- (w. mxi + b + p(sxi)- & + (li] 
i=l 

l. 

+I u~i[ (w. mxi + b + p(sxa)- (myi + Syi)- & + (;d 
i=l 

l 

+ I u2i[(myi- Syi)- (w. mxi + b- p(sxi)- & + (zi] 
i=l 

l 

+I u;i[(w.mxi +b)- p(sxa)- (myi + Syi)- & + (;i] 
i=l 

Now, 

~=0 ow ' 

l l l -l 

~[2w + 0] +I uli(-mxJ +I u~i(mxJ +I Uzi(-mxi) +I u;iCmxJ = 0 
i=l i=l i=l i=l 
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l l 

w =I (mxi)(u1i + uu)- I (u~i + u;i)(mxJ 
i=l i=l 

befine the matrix: 

and the lagrangian vectors, 

l 

[

mxil (uli + Uzi)l 

mxin (u~i + UzJ 

I mxil (uli + Uza 
i=l 

l 

L mxin(Uli + Uzi) 
i=l 

_ ( )t * _ ( * * )t _ ( )t * _ ( * * )t Rl 
U1 - U1v ··· 1 U1l 1 U1 - U1v ... 1 ull 1 Uz - Uzv ··· 1 Uzt 1 Uz - Uz11 ··· 1 Uzt E 

Then, we will have: 
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Now, 

aL = 0 
ab ' 

l l l l 

~ [2b] +I u1 i( -1) + I u~i(1) +I u2i( -1) +I u;i(1) = 0 
i=1 i=l i=l i=1 

l 

b = I uli + Uzi - u~i - u;i 
i=l 

aL u* 
0 => ~1* = ____!. as-;= " c 
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Substituting the above relations in the lagrangian function and simplifying we can write 

the dual problem as a minimization problem in the following form: 

+ l[t + t + *t*+ *t*] - u1 u1 u2 u2 u1 u1 u2 u2 Zc 

where, 

- ( )t l my- myv ... ,my1 E R 

- ( )t l Sy- Syv ... ,Syt E R 

Let, 

[

mx1 t 1] 
G = [M e] = ... 

mxl t 1 l x(n+1) 

be an augmented matrix. Then the above dual problem as a minimization problem can be 

written as: 

, where, 
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(~ + (GGt)) (GGt) -(GGt) -(GGt) 

(GGt) (~ + (GGt)) -(GGt) -(GGt) 

Q= 
(~ + (GGt)) -(GGt) -(GGt) (GGt) 

c ) -ccct) -(GGt) (GGt) - + ccct) 
c (4lx41) 

, i.e. we can write the problem as: 

where, 

and 
) 
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The Karush-Khun-Tucker (KKT) necessary and sufficient conditions for the dual 

problem will be: 

0 :::;; u 1_ (Qu- r) ;::: 0 

However, since for any two real numbers or vectors a and b, we have: 

a= (a- ab)+ , a> 0 

is true, the KKT conditions will be equivalent to: 

(Qu-r)=((Qu-r)-au)+ fora>O 

The above condition on the solution u of the problem will lead to the following iterative 
scheme: 

To apply the above iterative scheme we need to compute Q-1 at the beginning of 
the iteration of the algorithm. 

Since, 

we have, 

[w] [mt(u1 + u2 - u~- u;)] [Mt] • • 
b = t( • *) = t Cut + Uz - U1 - Uz) e u1 + u2 - u1 - u2 e 

18 



where, 

M= 

and the regression estimation function will become: for any 

x = (x11 ... ,in) E T(R)n and xi= (mg
1

, Sg
1 

), 

f(x) = ( [m~ 1] [:].PC5x)) 

= ( [m/ 1] [{1 

in which, 

p(sx) =max {sx11 ... ,sxn} E R 
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Following the approach of Mangasarian and Musicant (2001) [3] the linear SVR 

formulation can be extended to nonlinear SVR formulation in dual variables of the form: 

. 1 tQ t 
mmo:suER4L 2 u u - r u, 

where, 

[
I 1 -+H -H 

Q - c 
- I 

-H -+H 
C (4ZX4l) 

such that, 

[

k( [mx1 t 1], [mx1 t 1] ) 
K( G,Gt) = 

k( [mx/ 1], [mx1 t 1] ) 

, and, k ( . , . ) is the given kernel function. 

Now, for any input sample x = (xv ... , Xn) E T(R)n 

p(sx) = max{sx11 ... ,sxn}, and mx = (mxv ... ,mxnl ERn, by defining: 

1] )] 

1] ) (lxl) 

K ( [m/ 1], [;:] ) = (k([m/ 1], [mx1 t 1]), ... , [m/ 1], [mx/ 1])1*z 

20 



, where, K ( . , . ) is the kernel function, the nonlinear regression estimation function is 

defined to be: 

f(x) = ( K ( [m/ 1], [;:] ) (u1 + u2 - u;_- ui),p(s.x)) 

Tl~1-1741o 

511.322 TH . 

Al39 La 

1111111111111111111111111111111 
TH17490 
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3.4 Experiments and Results 

In our experiment we used "Matlab" [7] code to show the 
outputs of the algorithm. 

For running the code, we fixed the following values for the parameters c = 100 , 
alpha a= 1.9/c, epsilon£= 0.01, mu = f1 = 1.0 (mu is a positive parameter for 

the kernel function), maxlter = 100 , and tol = 1e - 5 . 

The following three datasets has been used to generate the fuzzy 
outputs: 

Table 1. Dataset 1 with prediction 

mx Sx mv Sy 

Training data 

2 0.5 4 0.5 
3.5 0.5 5.5 0.5 
5.5 1 7.5 1 
7 0.5 6.5 0.5 

8.5 0.5 8.5 0.5 
10.5 1 8 1 

Testing data 

11 0.5 10.5 0.5 
12.5 0.5 9.5 0.5 

Predicted results for the linear case 

- - 8.96377 0.5 
- - 9.67762 0.5 

Predicted results for the nonlinear case 

- - 4.9482 0.5 
- - 1.1041 0.5 
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Table 2. Dataset 2 with prediction 

mx Sx mv Sy 

Training data 

1 0.5 -1.6 0.5 
3 0.5 -1.8 0.5 
4 0.5 -1 0.5 

5.6 0.8 1.2 0.5 
7.8 0.8 2.2 1 
10.2 0.8 6.8 1 
11 1 10 1 

Testing data 

11.5 1 10 1 
12.7 1 10 1 

Predicted results for the linear case 

- - 8.44548 1 
- - 9.81566 1 

Predicted results for the nonlinear case 

- - 7.68446 1 
- - 2.31451 1 

Table 3. Dataset 3 with prediction 

mx Sx my Sy 

Training data 

21 2.1 4 0.8 
15 2.25 3 0.3 
15 1.5 3.5 0.35 
9 1.35 2 0.4 

12 1.2 3 0.45 
18 3.6 3.5 0.7 

Testing data 

6 0.6 2.5 0.38 
12 2.4 2.5 0.5 

Predicted results for the linear case 

- - 1.8092 0.6 
- - 2.71367 2.4 

Predicted results for the nonlinear case 

- - 0.100228 0.6 
- - 3.02517 2.4 
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3.5 Conclusion 

In the beginning of this work, we proposed the concept of 
Support Vector Machines under the subject of Machine Learning and 
Pattern Recognition problems, the Support Vector Machines (SVM) 
which are successful models for producing computationally efficient 
and accurate solutions. We briefly described the mathematical · solution 
introduced by Mangasarian and Musicant (2001) [3]. We studied· in this 
work the Lagrangian Support Vector Regression to a regression 
problem with fuzzy input and fuzzy output data. Experiments were 
conducted on three available datasets. 
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Appendix I 

1. The Linear Support Vector Regression Matlab code: 

This code consists of three files: 

a. fsvr main.m: the main of the code. 

b. fsvr.m: contains the training algorithm function. 

c. testfsvr.m: contains the testing algorithm function and error extraction. 

File 1: fsvr main.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Fuzzy Support Vector Regression using LSVM % 
% (coded by: Hasan z. H. Alhajhamad) % 
% % 
% Jawaharlal Nehru Universiry, New Delhi 110067 % 
% Last modified: 09/6/2010 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% FSVR Fuzzy Support Vector Regression algorithm 
% FSVR solves an advanced LSVM regression problem 
% using fuzzy inputs and fuzzy outputs 

clc; 
clear all; 
close all; 

filel = fopen('results fsvr.txt', 'w+'); 

trainfile= strcat('dataset/fsvrdataset3 train.txt'); 
testfile = strcat('dataset/fsvrdataset3 test.txt'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

train_data= load(trainfile); 
[no_trainrows, no traincolumns = size(train data); 

train_inputs= train_data(:, l:no traincolumns-2); 
train_outputs= train_data(:, no traincolumns-l:no traincolumns); 
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% 

test_data= load(testfile); 
[no_testrows, no_testcolumns = size(test_data); 

test inputs= test_data(:, 1:no_testcolumns-2); 
test outputs= test data(:, no testcolumns-1:no_testcolumns); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

c= 100; %%% c = 1, 10, 100, 1000, 10000, 100000 
alpha= 1.9/c; %%% 
epsilon = 0.01; 
maxiter = 100; 
tol = 1e-5; 

A = train data; 

%%%%%%%%%%%%%% Training %%%%%%%%%%%%%%%%%%%% 

start training_time = cputime; 

[iter, w, gamma] = fsvr(·A, c, tol, maxiter ... 
, alpha, epsilon); 

finish_training time = cputime; 

training time finish_training_time start trainirig_time; 

%%%%%%%%%%%%%% Testing %%%%%%%%%%%%%%%%%%%% 

start_testing time = cputime; 

[error_rate_my, error_rate_sy, new_distance] 
test_outputs, w, gamma, filel); 

finish_testing_time = cputime; 

testfsvr(test inputs, 

testing_ time finish_testing_time - start testing time; 

%%%%%%%%%%%%%%%% Display & Write %%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%% the results %%%%%%%%%%%%%%%%%%% 
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fprintf(filel, 'CPU processing time for FSVR training: %g \n', 
training_time); 

disp(sprintf('CPU processing time for FSVR training:')); 

training_ time 

fprintf(filel, 'CPU processing time for FSVR training: %g \n', 
testing_time); 

disp(sprintf('CPU processing time for FSVR training:')); 

testing_ time 

fprintf(filel, 'Error-rate for my: %g \n', error~rate_my); 

fprintf(filel, 'Error-rate for sy: %g \n', error_rate sy); 
fprintf(filel, 'Max distance (error): %g \n', new_distance); 

disp(sprintf('Error-rate is: ')); 

error_rate_my 
error_rate sy 
new distance 

fclose(filel); %File close 
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File 2: fsvr.m 

function [iter, w, gamma] 
, alpha, epsilon) 

fsvr(A, c, tol, maxiter ... 

%%%%%%%%%%%%%%%%%%%%%%% 

[a rows, a columns] = size (A); -

train _inputs A (:I l:a columns-1); 
-

train _outputs A (:I 3:a columns); -

m inputs A(:, 1) i % matrix contains all the Centers -
s inputs A(:, 2) i % matrix contains all the Spreads 

[m_tuples, m columns]= size(m_inputs); 

m_outputs A(:, 3) i % matrix contains all the Centers 
s outputs A(:, 4) i % matrix contains all the Spreads -

in the input 
in the input 

in the output 
in the output 

% Max(sx) is the same like sx because x has one attribute in our 
dataset 
,s _ maxinputs s inputs; 

%%%%%%%%%%%%%%%%%%%%%%%%% 

e = ones(a rows, 1); 

G [m_inputs e]; 

GGT G*G'; 

H GGT GGT; ... 
GGT GGT ]; 

% To find inverse( Q ) we use the following steps: 

[Hrows, Hcolumns] = size(H); 

I= speye(Hrows); 

IcH = (I/c) + H; 

%%%% In order to find inverse( I/c + 2H ) we suppose: %%%%%%%%% 

% to find inverse( I/c + 4GGT ) = temp_var 
I= speye(size(GGT)); 
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temp_var = inv(I/c+ 4*GGT); 

pstar 
qstar 
rstar 
sstar 

(I+2*c*GGT)*temp_var; 
-2*c*GGT*temp_var; 
-2*c*GGT*temp_var; 
(I+2*c*GGT)*temp_var; 

% so, inverse( I/c + 2H is temp_var2 

temp_var2 [pstar qstar;rstar sstar]; 

I speye(2*m_tuples); 

Q = [IcH -H;-H IcH]; 

ptilde 
qtilde 
rtilde 
stilde 

(I+c*H)*temp var2; 
c*H*temp_var2; 
qtilde; 
ptilde; 

%%%%%% then, inverser( Q ) is: 

Q_inv = [ptilde qtilde;rtilde stilde]; 

%%l%%%% To find ( r ) %%%%%%%%%%%%%%%%%%%%%% 

rl= speye(a rows, l) ; -
r2= speye(a rows, l) ; 

-
r3= speye(a rows, l) ; 

-
r4= speye(a_rows, 1) ; 

r1= m_outputs + s_outputs - s_maxinputs - epsilon*e; 
r2= m_outputs - s_outputs + s_maxinputs - epsilon*e; 
r3= -m_outputs - s_outputs + s_maxinputs - epsilon*e; 
r4= -m_outputs + s_outputs - s_maxinputs - epsilon*e; 

r = [r1;r2;r3;r4]; 

%%%%%%%%%1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

iter = 0; 

% oldu is a state to start comparison with newu 
oldu 10*ones(4*m_tuples,1); 
newu ones(4*m_tuples,1); % newu= [1 1 1 1 .. ] ' 

while(iter<maxiter&&norm(oldu-newu)>tol) 

oldu 
newu 

newu; 
Q_inv*(r+max((Q*oldu-r)-alpha*oldu,O)); 
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iter iter+l; 
end 

%%%%%% We divide newu into 4 parts to find alphal, alphalstar, alpha2, 
%%%%%% and alpha2star 

[u_tuples, u~colwmns] size(newu); 

ul length = u_tuples/4; 
ul = newu( l:ul length,l); 

u2 length = ul_length+u_tuples/4; 
u2 = newu( ul length+l:u2_length,l); 

u3 length = u2 length+u_tuples/4; 
u3 = newu( u2 length+l:u3_length,l); 

u4_length = u3 length+u_tuples/4; 
u4 = newu( u3 length+l:u4 length,l); 

w = m_inputs'*(ul+u2-u3-u4); 
gamma= e'*(ul+u2-u3-u4); 
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File 3: testfsvr.m 

function [error_rate_my, error_rate_sy, new_distance] 
testfsvr(test inputs, test outputs, w, gamma, filel) 

error_counter_my =0; 
error_counter_sy =0; 

distance = 0; 

[nof_tuples, no_columns] size(test_inputs); 

for i=l : nof tuples 

predicted_outputs(i, 1) 
predicted_outputs(i, 2) 

dot(w, test_inputs(i, 1)) +gamma; 
test inputs(i, 2); 

error counter my error_counter_my + (test_outputs(i, 1)
predicted_outputs-(i, 1))*(test_outputs(i, 1)-predicted_outputs(i, 1)); 

error_counter_sy = error_counter_sy + (test_outputs(i, 2)
predicted_outputs(i, 2))*(test outputs(i, 2)-predicted_outputs(i, 2)); 

new_distance = (test inputs(i,1)-test inputs(i,2))
(predlcted_outputs(i,1)-predicted_outputs(i,2)); 

fprintf(file1, 'Predicted(%g 
predicted_outputs(i,2)); 

fprintf(file1, '- Exact(%g , 
test outputs(i,2)); 

if(distance < new_distance) 
distance = new distance; 

end %End for 

I %g) predicted_outputs(i,1), 

%g)\n', test_outputs(i,1), 

.error_rate_my 
error_rate sy 

sqrt( error_counter_my/nof_tuples ); 
sqrt( error_counter sy/nof_tuples ); 

end 
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2. The Nonlinear Support Vector Regression Matlab code: 

This code consists of three files: 

a. fsvr main.m: the main of the code. 
b. fsvr.m: contains the training algorithm function. 
c. K.m: contains the kernel function. 
d. testfsvr.m: contains the testing algorithm function and error extraction. 

File 1: fsvr main.m 

%%%%%%%-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Fuzzy Support Vector Regression using LSVM 
% (coded by: Hasan Z. H. Alhajhamad) 
% 
% Jawaharlal Nehru Universiry, New Delhi 110067 
% Last modified: 27/07/2010 
% 

% 
% 
% 
% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% FSVR Fuzzy Support Vector Regression algorithm 
% FSVR solves an advanced LSVM regression problem 
% using fuzzy inputs and fuzzy outputs 

clc; 
clear all; 
close all; 

file1 = fopen('results fsvr.txt', 'w+'); 

trainfile= strcat('dataset/fsvrdataset3 train.txt'); 
testfile strcat('dataset/fsvrdataset3 test.txt'); 

% 

train_data= load(trainfile); 
. [no_trainrows, no_traincolumns = size(train_data); 

train_inputs= train_data(:, 1:no_traincolumns-2); 
train_outputs= train_data(:, no traincolumns-1:no traincolumns); 

% 

test_data= load(testfile); 
[no testrows, no testcolumns size(test data); 
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test_inputs= test_data(:, 1:no_testcolumns-2); 
test_outputs= test_data(:, no_testcolumns-1:no_testcolumns); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

c= 100; %%% c 1, 10, 100, 1000, 10000, 100000 
%%% alpha= 1.9/c; 

epsilon 0.01; 
mu= 1.0; 
maxiter = 100; 
to1 = 1e-5; 

%%% mu is a positive parameter for the kernel function 

[KM] = train_data; 

e = ones(no_trainrows, 1); 

G [KM e]; 

%%%%%%%%%%%%%% Training %%%%%%%%%%%%%%%%%%%% 

start training_time = cputime; 

[iter, u] = fsvr(KM, G, c, tol, maxiter, alpha, epsilon, mu); 

finish training_time cputime; 

training_time finish training time - start training_time; 

%%%%%%%%%%%%%% Testing %%%%%%%%%%%%%%%%%%%% 

start_testing_time = cputime; 

[error_rate_my, error_rate_sy, new_distance] 
train_inputs, test_outputs, mu, file1); 

testfsvr(u, test inputs, 

finish_testing_time = cputime; 

testing_ time finish_testing_time - start testing_time; 

%%%%%%%%%%%%%%%% Display & Write %%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%% the results %%%%%%%%%%%%%%%%%%% 

fprintf(file1, 'CPU processing time for FSVR training: %g \n', 
training time); 

disp(sprintf('CPU processing time for FSVR training:')); 
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training_ time 

fprintf(filel, 'CPU processing time for FSVR training: %g \n', 
testing time); 

disp(sprintf('CPU processing time for FSVR training:')); 

testing_ time 

fprintf(filel, 'Error-rate for my: %g \n', error_rate_my); 
fprintf(filel, 'Error-rate for sy: %g \n', error_rate sy); 
fprintf(filel, 'Max distance (error): %g \n', new_distance); 

disp(sprintf('Error-rate is: ')); 

error_rate_my 
error_rate sy 
new distance 

fclose(filel); % File close 
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File 2: fsvr.m 

function [iter, u] = fsvr(KM, G, c, tol, maxiter ... 
~ alpha, epsilon, mu) 

%%%%%%%%%%%%%%%%%%%%%%% 

[KM_rows,KM_columns] = size(KM); 

train_inputs 
train_outputs 

KM(:, l:KM_columns-1); 
KM.(:, 3 :KM_columns); 

m_inputs 
s_inputs 

KM(:, 1); %matrix contains all the Centers in the input 
KM(:, 2); %matrix contains all the Spreads in the input 

[m_tuples, m_columns]= size(m_inputs); 

m_outputs 
s outputs 

KM(:, 3); %matrix contains all the Centers in the output 
KM(:, 4); %matrix contains all the Spreads in the output 

% Max(sx) is the same like sx because x has one attribute in our 
dataset 
s_maxinputs s inputs; 

%%%%~%%%%%%%%%%%%%%%%%%%% 

time = cputime; 

e = ones(m_tuples, 1); 

GGT = K(G, G, mu); 

%%%%%%%%%%%%%% Finding H using K( G,G' ) %%%%%%%%%%%%%%%%%%%% 

H GGT GGT; ... 
GGT GGT ]; 

. % To find inverse( Q ) we use the following steps: 

[Hrows, Hcolumns] = size(H); 

I= speye(Hrows); 

IcH = (I/c) + H; 

%%%% In order to find inverse( I/c + 2H ) we suppose: %%%%%%%%% 
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% to find inverse( I/c + 4GGT ) 
I= speye(size(GGT)); 

temp_var 

temp_var = inv(I/c+ 4*GGT); 

pstar 
qstar 
rstar 
sstar 

% so, 

(I+2*c*GGT)*temp_var; 
-2*c*GGT*temp_var; 
-2*c*GGT*temp_var; 
(I+2*c*GGT)*temp_var; 

inverse( I/c + 2H ) is temp_var2 

temp_var2 = [pstar qstar;rstar sstar]; 

% I= speye(2*m_tuples); 
I speye(2*m_tuples); 

Q [IcH -H;-H IcH]; 

ptilde 
qtilde 
rtilde 
stilde 

(I+c*H)*temp_var2; 
·c*H*temp __ var2; 
qtilde; 
ptilde; 

%%%%%% then, inverser( Q ) is: 

Q_inv = [ptilde qtilde;rtilde stilde]; 

%%%%%%% To find ( r ) %%%%%%%%%%%%%%%%%%%%%% 

rl= 
r2= 
r3= 
r4= 

r1= 
r2= 
r3= 
r4= 

speye (KM_rows, 1) ; 
speye(KM_rows, 1) ; 
speye (KM_rows, 1) ; 
speye(KM_rows, 1) ; 

m_outputs + s_outputs 
m_outputs - s_outputs 

-m_outputs - s:__outputs 
-m_outputs + s_outputs 

r = [r1;r2;r3;r4]; 

- s_maxinputs 
+ s_maxinputs 
+ s_maxinputs 
- s_maxinputs 

- epsilon*e; 
- epsilon*e; 
- epsilon*e; 
- epsilon*e; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

iter = 0; 

% oldu is a state to start comparison with newu 
oldu = 10*ones(4*m_tuples,1); 

36 



newu ones(4*m_tuples,1); % newu= [1 1 1 1 .. ] ' 

while(iter<maxiter&&norm(oldu-newu)>tol) 

oldu 
newu 
iter 

newu; 
Q_inv*(r+max((Q*oldu-r)-alpha*oldu,O)); 
iter+1; 

end 

%%%%%% We divide newu into 4 parts to find u1, u2, u3, and u4 

[u_tuples, u_columns] size(newu); 

u1 length = u_tuples/4; 
u1 = newu( 1:u1 length,1); 

u2 length = u1_length+u_tuples/4; 
u2 = newu( u1 length+1:u2 length,1); 

u3_length = u2 length+u_tuples/4; 
u3 = newu( u2_length+1:u3_length,1); 

u4 length = u3 length+u tuples/4; 
u4 = newu( u3 length+1:u4 length,1); 

u = [u1 u2 u3 u4]; 

File 3: K.m 

%%%%%% Kernel Function %%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [K_output]= K(A, B, mu) 

%In case of training: A = G , B = G 
%In case of·testing: A= G, B test inputs 

for i 1:size(A,1) 

for j = 1:size(B,l) 

K_output(i,j) exp(-mu * norm(A(i, :)-B(j, :)) ); 

end 
end 
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File 4: testfsvr.m 

function [error_rate_my, error_rate_sy, new_distance] 
test inputs, train_inputs, test outputs, mu, file1) 

error_counter_my =0; 
error_counter sy =0; 

distance = 0; 

count = 0; 

[nof tuples, no_columns] = size(train_inputs); 
[nof_testtuples, no_testcolumns) = size(test outputs); 

K(train_inputs(:,1), test_irputs(:,1), mu) 

testfsvr(u, 

predicted_mx = K(train_inputs(:,1), test inputs(:,1), mu)' * ( 
U ( : 1 1) +U ( : 1 2) -u ( : I 3) -U ( : I 4) ) ; 

predicted_mx 

predicted_sx =test inputs(:, 2);.% maximum(sx) 

for i=1 : size(test outputs) 

fprintf(file1, 'Predicted(%g, %g) predicted_mx(i), 
predicted_sx(i)); 

fprintf ( file1, '- Exact ( %g , %g) \n', test_ outputs ( i, 1), 
test outputs(i,2)); 

error counter my = error_ counter_ my + (test_ outpu.ts ( i, 1)
predicted_mx(i))*(test_outputs(i, 1)-predicted_mx(i)); 

error_counter sy = error_counter_sy + (test_outputs(i, 2)
predicted_sx(i))*(test_outputs(i, 2)-predicted_sx(i)); 

new_distance = (test_inputs(i,1)-test inputs(i,2))
(predicted_mx(i)-predicted_sx(i)); 

end 

if(distance < new_distance) 
distance = new distance; 

error_rate_my 
error_rate sy 

sqrt( error_counter_my/nof_tuples ); 
sqrt( error counter sy/nof_tuples ); 

end 
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