
. I

Lagrangian Support Vector Machines for

Fuzzy Regression Problems

A dissertation submitted to the

School of Computer & Systems Sciences

Jawaharlal Nehru University, New Delhi

In the partial fulfillment of requirement for the award of the degree of

MASTER OF TECHNOLOGY

IN

COMPUTER SCIENCE AND TECHNOLOGY

by

HASAN Z. H. ALHAJHAMAD

School of Computer and Systems Sciences

Jawaharlal Nehru University- JNU

New Delhi -110067

JULY2010

DEDICATED TO

GOD, who gave me the divine love and blessings

JAWAHARLAL NEHRU UNIVERSITY

SCHOOL OF COMPUTER & SYSTEMS SCIENCES

NEW DELHI-110067(1NDIA)

CERTIFICATE

This is to certify that this dissertation entitled "Lagrangian Support Vector Machines

for Fuzzy Regression Problems" submitted by Mr. Hasan Z. H. Alhajhamad, to the

School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi,

in partial fulfillment of the requirements for the award of degree of Master of

Technology in Computer Science & Technology, is a bona fide work carried out under

my supervisiOn.

The study concerning to this dissertation is original and has not been submitted, in part or

in full, to any other University or Institution for the award of any other degree.

4-f/L
Prof. Sonajharia Minz

Dean

SC&SS, JNU, New Delhi

Prof. Sooajha:ia M~
Deer: .

SOOooi of Comput~!f ,<., Svstem:J._ Sciences
Jew~:~~-t~;ii:\:'~;1-~Q'~jorsXi' ---

Prof. S. Balasundaram

Supervisor

SC&SS, JNU, New Delhi

JAWAHARLAL NEHRU UNIVERSITY

SCHOOL OF COMPUTER & SYSTEMS SCIENCES

NEW DELHI-110067{1NDIA)

DECLARATION

This is to certify that the dissertation titled "Lagrangian Support Vector Machines for

Fuzzy Regression Problems", being submitted to the School of Computer & Systems

Sciences, Jawaharlal Nehru University, New Delhi, in partial fulfillment of the

requirements for the award of Master of Technology in Computer Science &

Technology is a bona fide work carried out by me. This research work has been carried

out the under the supervision of Prof. S. Balasundaram.

The study concerning to this dissertation is original and has not been submitted, in part or

in full, to any other University or Institution for the award of any other degree.

Hasan Z. H. Alhajhamad

M. Tech, SC & SS, JNU,

New Delhi - 110067

Acknowledgments

I would like to praise the Almighty, who gave me everything I needed and

sustained me with faith and blessings to complete this work.

I would like to express my truehearted gratitude and thankfulness to my thesis

supervisor, Prof. S. Balasundaram of the School of Computer and Systems Sciences for

his admirable help and support during the period of my study. The completion of this

research would not have been possible without his guidance and help.

I can never express m words my gratitude to my parents without whose

encouragement and support, I would never have been able to complete this work. I thank

my sisters for their support to me sharing me love and support.

I would like to show my gratitude to Mr. Ibrahim, Mr. Salaah and Madam Shadi,

and all the friends who made me countless favors.

I would like to express my sincere gratitude to Ms. Ainura Aitibaeva for her

support and generous kindness.

Abstract

In Machine Learning and Pattern Recognition problems, the Support Vector

Machines (SVM) has been a very successful model for producing computational efficient

and accurate solutions. In problems where the information is uncertain we combine the

concept of fuzzy uncertainty into the Support Vector Machine. This improvement for the

Support Vector Machine model will solve the inexact nature of the information. Support

Vector Machines solve both Classification and Regression problems. In this work we

demonstrated the Lagrangian Support Vector Machine for Fuzzy Regression Problems

with fuzzy input and fuzzy output data.

Table of Contents

Chapter 1: Introduction ..•. 2

1.1 Foreword to Problem Solving .. 2

1.2 Presenting the Support Vector Machine .. 4

Chapter 2: Linear and Dual Support Vector Machines Problem 5

Chapter 3: Lagrangian Support Vector Machines for fuzzy Inputs and Fuzzy

Outputs .. ; 10

3.1 Brief introducing to our new problem ... 10
3.2 Experiments and Results ... 22

3.3 Conclusion .. 24

Appendix I ... 25

References ... 39

Chapter 1:

Introduction to Support Vector Machine

1.1 Foreword to Problem Solving

Computers are des~gned to solve the human being problems by taking the inputs

and giving the outputs. The simplest example for that is Printers. To result the required

output in problem solving techniques we explicitly use programming and algorithms on

the inputs. For a complex inputs or problems it's well-known that we would need

algorithms to solve them but even so there might be no precise algorithm will produce the

precise and less expensive output. For example, how to model a complex classifier to

recognize the mood of person when the input is his portrait photo, where the precise faces

of different people are not known, or classification of protein types based on the DNA

sequence from which they are generated, or weather forecasting or prediction [1].

It's not possible to solve these tasks by only programming. That we cannot

precisely specify the correct output that can be computed from the input data. Problems

. like those can be solved by learning the input and output functionality from examples or

what is called learning methodology to learn the inputs and outputs from the multiple

examples happening so that the system will recognize the solution by its training. When

the examples are input and output pairs it is called supervised learning. The examples of

input and output functionality are referred to as the training data.

The input/output pairings typically reflect a functional relationship mapping

inputs to outputs. Function which forms a translation from inputs to outputs it is called

the target function. The target function is learnt by the learning algorithm as well as it's

· called the solution of the learning problem.

2

Classification is the case when the target function is making a decision to choose

among multiple output options. In this case we can call it also the decision fimction. So,

the solution in classification problem is chosen from a set of target functions find the

proper output domain or Class. For example, so-called decision trees are a good

classification example. Decision Trees use simple decision functions (if statements) at the

internal nodes and output values at the leaves. Therefore, the leaves of the decision

functions are the choice after passing the set of the functions and this is one of the key

ingredients of the learning strategy. I mean; the algorithm which its inputs are the training

data and selects the output through the functions is called here the learning algorithm.

As a sensible example, the Classification learning methodology is in the same

way that we ask a child to take out the foot-balls from a basket filled with different types

of balls (i.e foot-ball, basket-balls, volley-balls ... etc). The easy way to teach this child

how to distinguish the foot-balls is by telling him a number of the balls in the basket

which are foot-ball ones and by giving him a precise specificatl.on of the foot-ball.

Learning to distinguish foot-ball is simply making the output is a YES if the ball was a

foot-ball or NO if the ball was not a foot-ball which is a binary output value. For that, the

learning problem with binary outputs is called also a binary classification problem.

When we ask the same child to take out not only the foot-balls from the basket but

also the basket-balls, the volley-balls, and the cricket-balls by the same way of teaching

him with the binary Classification we call these output values as regression. Thereby, the

learning problem becomes with a finite number of categories as multi-class classification,

while for real-valued outputs the problem becomes known as regression. With no doubt,

it's considered that the binary classification is the simplest case and with having more

output values that is to say having more complicated cases [1].

3

1.2 Presenting the Support Vector Machine

The Support Vector Machines (SVM) technique is a learning methodology proved

its efficiency to perform input/output mapping which is applying the supervised learning

methodology performing batch training data. This technique was introduced by Vapnik

[4].

The strategy of the Support Vector Machine is to presume a decision plane that

separates between a set of samples having different types of class memberships in the

space. For example, as it's shown in Figure 1, we suppose that we have samples belong

either to class Green or Red. The separating decision plane forms a boundary ori the right

side of which all samples are Red and to the left of which all

samples are Green. New objects falling to the right will be

classified as Red or if they were falling to the left will be

classified as Green [5].

Thereby, the Support Vector Machines aim to create

an efficient algorithm to learn the optimal separating planes

using a number of samples. The first and simplest model of

SVM is the Maximal Margin Classifier which is linearly'

separating the space into classes.

I
I
I .I
I

••• I
I . . . : . . .I

0 I
• I

• I
• I

0 I

-------------------J

Figure 1: Exposing the strategy
of Support Vector Machines

The Maximal Margin Classifier optimizes a bound separating the data with a

maximal margin hyper-plane, whereas given that the bound is independent from the

dimensionality of the space [1].

4

Chapter 2:

Linear and Dual Support Vector Machines Problem

Throughout this work, all vectors are considered as column vectors. For any two

vectors x, yin Rn, the inner product of the two vectors will be denoted by xty where xt

is the transpose of x. For any vector x = (xv ... 1 Xnl E Rn, we define the plus function x+

as: (x+)i = max{O~xd fori = 112131 ... In. The column vector of ones of size equals to

the number of input samples will be denoted by e.

Consider the problem of classifying m points {(xi, ya}i=l .. m where

xi= (xil,Xiz• ... , Xin)tin Rn and Yi = ±1.

(

x11 x12

Suppose A= ··· ···
Xml Xmz

and D = diag(y11 y2 , •.. , Yn) is the diagonal matrix.

For this problem the standard support vector machine is given by the following quadratic

program with parameter C > 0:

. c tJ:; 1 t
mm(w,b,() e '> + ZW W.

Subject to D(Aw- eb) + ~ 2:: e,

Here w is the normal to the bounding planes:

where b ts determining the location of the bounding planes. The plane

xtw = b + 1 bounds the positive class A+ points, with some error, and the plane xtw = b- 1

bounds the negative class A_ points, also possibly with some error. The linear separating surface

is the plane:

5

midway between the two planes xtw + b = ±1. The two planes bound the two classes with a

"soft margin". That is, we bound each set approximately with some error determined by the

nonnegative error variable (i:

A·w + r · > b + 1 for D .. = + 1 l '>l - ll '

Now, using the Lagrangian multipliers a, ~' the Lagrangian function will be:

N N

m;xLdual = I ai-
1/z I aiajYiYjXi · xj

i=l i'j

Subject to: 0 ~ ai ~ C,

The solution is given by

6

Recently, Mangasarian (Mangasarian & Musicant) [3] has proposed an "equivalent" SVM

formation of the form:

Subject to

D(Aw- eb) + { ~ e

The dual of this problem is:

The variables (w, b) of the primal problem which determine the separating surface

xt w = b are recovered directly from the solution of the dual above satisfying the relations:

{=~
c

Where a is the lagrangian multiplier.

Now, note that the matrix appearing m the dual objective function is positive

definite and that there is no equality· constraint and no upper bound on the dual variable

a. Unlike the standard SVM formation, the only constraint present is a nonnegativity

one.

We define two matrices to simplify our notations:

H = D[A- e],

with these definistions the dual problem becomes:

min f(a) := lj atQa- eta
O:Sa ERm 2

7

By the result of optimization theory it can be verified that the above

minimization problem is equivalent in solving the problem:

0 :::; a l. Qa - e ;::: 0

Since for any two real numbers a, b,

o:::;aJ.b;:::o

is equivalent to

A= (a-ub)+ ,foranyu > 0

and

x+ =max {O,x}

In our problem, for

meamng,

Therefore we have to solve the equivalent problem:

(Qa- e)= (Qa- e- ua).

i.e. we need to find a E Rm such that,

Qa = e + (Qa- e- ua)+· Or

8

To solve this problem a simple iteration scheme of the following form is proposed for any
input a1 E Rm:

where i = 1, 2, ...

a 2 = Q-1 [e + (Qa1 - e- ua1)+]

a3 = Q-1 [e + (Qa 2 - e- ua2)+]

The Langragian SVM algorithm requires the inversion of a positive definite

n xn matrix, at the beginning of the algorithm followed by a straightforward linearly

convergent iterative scheme that requires no optimization package.

In the next chapter, we extend the above study of Lagrangian SVM to fuzzy

regression problems for fuzzy input and fuzzy output samples.

9

Chapter 3:

Lagrangian Support Vector Machines for fuzzy Inputs and Fuzzy Outputs

3.1 Brief introducing to our new problem

In many real world applications, the observed input data can not
be measured precisely. For ·such cases, the concept fuzzy is introduced
to characterize imprecision.

In this chapter we study the extension of lagrangian support
vector machines for classification problems proposed by Mangasarian
and Musicant (2001) [3] to fuzzy regression problems. We assume that
both the input and output of the given regression problem are triangular
fuzzy numbers.

Let x = (mx, sx, rx) and y= (my, Sy, ry) be two triangular fuzzy

numbers where m is the centre, l > 0 is the left spread and r > 0 is the
right spread. For the arithmetic operations and for the definition of a
metric or triangular fuzzy numbers we follow the approach of Yan and
Xu (2007) [10]. Let T(R) be the space of all triangular fuzzy numbers.
For X, Y E T(R), we define:

It is shown in Yan and Xu (2007) [11] that the distance d (.,.)
between two fuzzy numbers X, Y can be obtained as:

10

In particular, when X and Y are symmetric triangular fuzzy

numbers.

where,

Throughout this work, we assume that triangular fuzzy numbers

always symmetric, i.e. Sx = rx and we denote a triangular fuzzy

number X as: X= (mx, Sx).

For the study of fuzzy regression problem, let us assume that a set of symmetric

triangular fuzzy input data{(Xi, Yi)}l=t be given, where

Xi= (Xil, ... Xin)t E T(R)n, Yi E T(R)

be such that,

Xi1· = (mx .. , Sx·.) E T(R),
l) l]

Assume the regression estimation function f (.) will be defined in the following
form:

Such that,

Xi= (mxi,Sxi) E T(R) (which are the inputs of the function)

mx = (mxv ... , mxn)t ERn (mxi is the center of the fuzzy number)

Sxi E R (the spread of the fuzzy number)

11

Here,

w and b are the unknowns.

Following the idea ofMangasarian and Musicant (2001) [3] definition of

objective function, the E-insentive (Vapnik, 2000) [8] fuzzy support vector regression for

the linear case is formulated as:

Subject to:

where c > 0 is the regularization parameter, and,

Are the vectors of slack variables.

Note that, for

12

and, such that,

we have,

By introducing the Lagrangian Multipliers, let us consider the Lagrangian

function, given by:

l

+ I Uti[(myi + Syi)- (w. mxi + b + p(sxi)- & + (li]
i=l

l.

+I u~i[(w. mxi + b + p(sxa)- (myi + Syi)- & + (;d
i=l

l

+ I u2i[(myi- Syi)- (w. mxi + b- p(sxi)- & + (zi]
i=l

l

+I u;i[(w.mxi +b)- p(sxa)- (myi + Syi)- & + (;i]
i=l

Now,

~=0 ow '

l l l -l

~[2w + 0] +I uli(-mxJ +I u~i(mxJ +I Uzi(-mxi) +I u;iCmxJ = 0
i=l i=l i=l i=l

13

l l

w =I (mxi)(u1i + uu)- I (u~i + u;i)(mxJ
i=l i=l

befine the matrix:

and the lagrangian vectors,

l

[

mxil (uli + Uzi)l

mxin (u~i + UzJ

I mxil (uli + Uza
i=l

l

L mxin(Uli + Uzi)
i=l

_ ()t * _ (* *)t _ ()t * _ (* *)t Rl
U1 - U1v ··· 1 U1l 1 U1 - U1v ... 1 ull 1 Uz - Uzv ··· 1 Uzt 1 Uz - Uz11 ··· 1 Uzt E

Then, we will have:

14

Now,

aL = 0
ab '

l l l l

~ [2b] +I u1 i(-1) + I u~i(1) +I u2i(-1) +I u;i(1) = 0
i=1 i=l i=l i=1

l

b = I uli + Uzi - u~i - u;i
i=l

aL u*
0 => ~1* = ____!. as-;= " c

15

Substituting the above relations in the lagrangian function and simplifying we can write

the dual problem as a minimization problem in the following form:

+ l[t + t + *t*+ *t*] - u1 u1 u2 u2 u1 u1 u2 u2 Zc

where,

- ()t l my- myv ... ,my1 E R

- ()t l Sy- Syv ... ,Syt E R

Let,

[

mx1 t 1]
G = [M e] = ...

mxl t 1 l x(n+1)

be an augmented matrix. Then the above dual problem as a minimization problem can be

written as:

, where,

16

(~ + (GGt)) (GGt) -(GGt) -(GGt)

(GGt) (~ + (GGt)) -(GGt) -(GGt)

Q=
(~ + (GGt)) -(GGt) -(GGt) (GGt)

c) -ccct) -(GGt) (GGt) - + ccct)
c (4lx41)

, i.e. we can write the problem as:

where,

and
)

17

The Karush-Khun-Tucker (KKT) necessary and sufficient conditions for the dual

problem will be:

0 :::;; u 1_ (Qu- r) ;::: 0

However, since for any two real numbers or vectors a and b, we have:

a= (a- ab)+ , a> 0

is true, the KKT conditions will be equivalent to:

(Qu-r)=((Qu-r)-au)+ fora>O

The above condition on the solution u of the problem will lead to the following iterative
scheme:

To apply the above iterative scheme we need to compute Q-1 at the beginning of
the iteration of the algorithm.

Since,

we have,

[w] [mt(u1 + u2 - u~- u;)] [Mt] • •
b = t(• *) = t Cut + Uz - U1 - Uz) e u1 + u2 - u1 - u2 e

18

where,

M=

and the regression estimation function will become: for any

x = (x11 ... ,in) E T(R)n and xi= (mg
1

, Sg
1

),

f(x) = ([m~ 1] [:].PC5x))

= ([m/ 1] [{1

in which,

p(sx) =max {sx11 ... ,sxn} E R

19

Following the approach of Mangasarian and Musicant (2001) [3] the linear SVR

formulation can be extended to nonlinear SVR formulation in dual variables of the form:

. 1 tQ t
mmo:suER4L 2 u u - r u,

where,

[
I 1 -+H -H

Q - c
- I

-H -+H
C (4ZX4l)

such that,

[

k([mx1 t 1], [mx1 t 1])
K(G,Gt) =

k([mx/ 1], [mx1 t 1])

, and, k (. , .) is the given kernel function.

Now, for any input sample x = (xv ... , Xn) E T(R)n

p(sx) = max{sx11 ... ,sxn}, and mx = (mxv ... ,mxnl ERn, by defining:

1])]

1]) (lxl)

K ([m/ 1], [;:]) = (k([m/ 1], [mx1 t 1]), ... , [m/ 1], [mx/ 1])1*z

20

, where, K (. , .) is the kernel function, the nonlinear regression estimation function is

defined to be:

f(x) = (K ([m/ 1], [;:]) (u1 + u2 - u;_- ui),p(s.x))

Tl~1-1741o

511.322 TH .

Al39 La

1111111111111111111111111111111
TH17490

21

3.4 Experiments and Results

In our experiment we used "Matlab" [7] code to show the
outputs of the algorithm.

For running the code, we fixed the following values for the parameters c = 100 ,
alpha a= 1.9/c, epsilon£= 0.01, mu = f1 = 1.0 (mu is a positive parameter for

the kernel function), maxlter = 100 , and tol = 1e - 5 .

The following three datasets has been used to generate the fuzzy
outputs:

Table 1. Dataset 1 with prediction

mx Sx mv Sy

Training data

2 0.5 4 0.5
3.5 0.5 5.5 0.5
5.5 1 7.5 1
7 0.5 6.5 0.5

8.5 0.5 8.5 0.5
10.5 1 8 1

Testing data

11 0.5 10.5 0.5
12.5 0.5 9.5 0.5

Predicted results for the linear case

- - 8.96377 0.5
- - 9.67762 0.5

Predicted results for the nonlinear case

- - 4.9482 0.5
- - 1.1041 0.5

22

Table 2. Dataset 2 with prediction

mx Sx mv Sy

Training data

1 0.5 -1.6 0.5
3 0.5 -1.8 0.5
4 0.5 -1 0.5

5.6 0.8 1.2 0.5
7.8 0.8 2.2 1
10.2 0.8 6.8 1
11 1 10 1

Testing data

11.5 1 10 1
12.7 1 10 1

Predicted results for the linear case

- - 8.44548 1
- - 9.81566 1

Predicted results for the nonlinear case

- - 7.68446 1
- - 2.31451 1

Table 3. Dataset 3 with prediction

mx Sx my Sy

Training data

21 2.1 4 0.8
15 2.25 3 0.3
15 1.5 3.5 0.35
9 1.35 2 0.4

12 1.2 3 0.45
18 3.6 3.5 0.7

Testing data

6 0.6 2.5 0.38
12 2.4 2.5 0.5

Predicted results for the linear case

- - 1.8092 0.6
- - 2.71367 2.4

Predicted results for the nonlinear case

- - 0.100228 0.6
- - 3.02517 2.4

23

3.5 Conclusion

In the beginning of this work, we proposed the concept of
Support Vector Machines under the subject of Machine Learning and
Pattern Recognition problems, the Support Vector Machines (SVM)
which are successful models for producing computationally efficient
and accurate solutions. We briefly described the mathematical · solution
introduced by Mangasarian and Musicant (2001) [3]. We studied· in this
work the Lagrangian Support Vector Regression to a regression
problem with fuzzy input and fuzzy output data. Experiments were
conducted on three available datasets.

24

Appendix I

1. The Linear Support Vector Regression Matlab code:

This code consists of three files:

a. fsvr main.m: the main of the code.

b. fsvr.m: contains the training algorithm function.

c. testfsvr.m: contains the testing algorithm function and error extraction.

File 1: fsvr main.m

%%%
% Fuzzy Support Vector Regression using LSVM %
% (coded by: Hasan z. H. Alhajhamad) %
% %
% Jawaharlal Nehru Universiry, New Delhi 110067 %
% Last modified: 09/6/2010 %
%%%

% FSVR Fuzzy Support Vector Regression algorithm
% FSVR solves an advanced LSVM regression problem
% using fuzzy inputs and fuzzy outputs

clc;
clear all;
close all;

filel = fopen('results fsvr.txt', 'w+');

trainfile= strcat('dataset/fsvrdataset3 train.txt');
testfile = strcat('dataset/fsvrdataset3 test.txt');

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

train_data= load(trainfile);
[no_trainrows, no traincolumns = size(train data);

train_inputs= train_data(:, l:no traincolumns-2);
train_outputs= train_data(:, no traincolumns-l:no traincolumns);

25

%

test_data= load(testfile);
[no_testrows, no_testcolumns = size(test_data);

test inputs= test_data(:, 1:no_testcolumns-2);
test outputs= test data(:, no testcolumns-1:no_testcolumns);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

c= 100; %%% c = 1, 10, 100, 1000, 10000, 100000
alpha= 1.9/c; %%%
epsilon = 0.01;
maxiter = 100;
tol = 1e-5;

A = train data;

%%%%%%%%%%%%%% Training %%%%%%%%%%%%%%%%%%%%

start training_time = cputime;

[iter, w, gamma] = fsvr(·A, c, tol, maxiter ...
, alpha, epsilon);

finish_training time = cputime;

training time finish_training_time start trainirig_time;

%%%%%%%%%%%%%% Testing %%%%%%%%%%%%%%%%%%%%

start_testing time = cputime;

[error_rate_my, error_rate_sy, new_distance]
test_outputs, w, gamma, filel);

finish_testing_time = cputime;

testfsvr(test inputs,

testing_ time finish_testing_time - start testing time;

%%%%%%%%%%%%%%%% Display & Write %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% the results %%%%%%%%%%%%%%%%%%%

26

fprintf(filel, 'CPU processing time for FSVR training: %g \n',
training_time);

disp(sprintf('CPU processing time for FSVR training:'));

training_ time

fprintf(filel, 'CPU processing time for FSVR training: %g \n',
testing_time);

disp(sprintf('CPU processing time for FSVR training:'));

testing_ time

fprintf(filel, 'Error-rate for my: %g \n', error~rate_my);

fprintf(filel, 'Error-rate for sy: %g \n', error_rate sy);
fprintf(filel, 'Max distance (error): %g \n', new_distance);

disp(sprintf('Error-rate is: '));

error_rate_my
error_rate sy
new distance

fclose(filel); %File close

27

File 2: fsvr.m

function [iter, w, gamma]
, alpha, epsilon)

fsvr(A, c, tol, maxiter ...

%%%%%%%%%%%%%%%%%%%%%%%

[a rows, a columns] = size (A); -

train _inputs A (:I l:a columns-1);
-

train _outputs A (:I 3:a columns); -

m inputs A(:, 1) i % matrix contains all the Centers -
s inputs A(:, 2) i % matrix contains all the Spreads

[m_tuples, m columns]= size(m_inputs);

m_outputs A(:, 3) i % matrix contains all the Centers
s outputs A(:, 4) i % matrix contains all the Spreads -

in the input
in the input

in the output
in the output

% Max(sx) is the same like sx because x has one attribute in our
dataset
,s _ maxinputs s inputs;

%%%%%%%%%%%%%%%%%%%%%%%%%

e = ones(a rows, 1);

G [m_inputs e];

GGT G*G';

H GGT GGT; ...
GGT GGT];

% To find inverse(Q) we use the following steps:

[Hrows, Hcolumns] = size(H);

I= speye(Hrows);

IcH = (I/c) + H;

%%%% In order to find inverse(I/c + 2H) we suppose: %%%%%%%%%

% to find inverse(I/c + 4GGT) = temp_var
I= speye(size(GGT));

28

temp_var = inv(I/c+ 4*GGT);

pstar
qstar
rstar
sstar

(I+2*c*GGT)*temp_var;
-2*c*GGT*temp_var;
-2*c*GGT*temp_var;
(I+2*c*GGT)*temp_var;

% so, inverse(I/c + 2H is temp_var2

temp_var2 [pstar qstar;rstar sstar];

I speye(2*m_tuples);

Q = [IcH -H;-H IcH];

ptilde
qtilde
rtilde
stilde

(I+c*H)*temp var2;
c*H*temp_var2;
qtilde;
ptilde;

%%%%%% then, inverser(Q) is:

Q_inv = [ptilde qtilde;rtilde stilde];

%%l%%%% To find (r) %%%%%%%%%%%%%%%%%%%%%%

rl= speye(a rows, l) ; -
r2= speye(a rows, l) ;

-
r3= speye(a rows, l) ;

-
r4= speye(a_rows, 1) ;

r1= m_outputs + s_outputs - s_maxinputs - epsilon*e;
r2= m_outputs - s_outputs + s_maxinputs - epsilon*e;
r3= -m_outputs - s_outputs + s_maxinputs - epsilon*e;
r4= -m_outputs + s_outputs - s_maxinputs - epsilon*e;

r = [r1;r2;r3;r4];

%%%%%%%%%1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

iter = 0;

% oldu is a state to start comparison with newu
oldu 10*ones(4*m_tuples,1);
newu ones(4*m_tuples,1); % newu= [1 1 1 1 ..] '

while(iter<maxiter&&norm(oldu-newu)>tol)

oldu
newu

newu;
Q_inv*(r+max((Q*oldu-r)-alpha*oldu,O));

29

iter iter+l;
end

%%%%%% We divide newu into 4 parts to find alphal, alphalstar, alpha2,
%%%%%% and alpha2star

[u_tuples, u~colwmns] size(newu);

ul length = u_tuples/4;
ul = newu(l:ul length,l);

u2 length = ul_length+u_tuples/4;
u2 = newu(ul length+l:u2_length,l);

u3 length = u2 length+u_tuples/4;
u3 = newu(u2 length+l:u3_length,l);

u4_length = u3 length+u_tuples/4;
u4 = newu(u3 length+l:u4 length,l);

w = m_inputs'*(ul+u2-u3-u4);
gamma= e'*(ul+u2-u3-u4);

30

File 3: testfsvr.m

function [error_rate_my, error_rate_sy, new_distance]
testfsvr(test inputs, test outputs, w, gamma, filel)

error_counter_my =0;
error_counter_sy =0;

distance = 0;

[nof_tuples, no_columns] size(test_inputs);

for i=l : nof tuples

predicted_outputs(i, 1)
predicted_outputs(i, 2)

dot(w, test_inputs(i, 1)) +gamma;
test inputs(i, 2);

error counter my error_counter_my + (test_outputs(i, 1)
predicted_outputs-(i, 1))*(test_outputs(i, 1)-predicted_outputs(i, 1));

error_counter_sy = error_counter_sy + (test_outputs(i, 2)
predicted_outputs(i, 2))*(test outputs(i, 2)-predicted_outputs(i, 2));

new_distance = (test inputs(i,1)-test inputs(i,2))
(predlcted_outputs(i,1)-predicted_outputs(i,2));

fprintf(file1, 'Predicted(%g
predicted_outputs(i,2));

fprintf(file1, '- Exact(%g ,
test outputs(i,2));

if(distance < new_distance)
distance = new distance;

end %End for

I %g) predicted_outputs(i,1),

%g)\n', test_outputs(i,1),

.error_rate_my
error_rate sy

sqrt(error_counter_my/nof_tuples);
sqrt(error_counter sy/nof_tuples);

end

31

2. The Nonlinear Support Vector Regression Matlab code:

This code consists of three files:

a. fsvr main.m: the main of the code.
b. fsvr.m: contains the training algorithm function.
c. K.m: contains the kernel function.
d. testfsvr.m: contains the testing algorithm function and error extraction.

File 1: fsvr main.m

%%%%%%%-%%
% Fuzzy Support Vector Regression using LSVM
% (coded by: Hasan Z. H. Alhajhamad)
%
% Jawaharlal Nehru Universiry, New Delhi 110067
% Last modified: 27/07/2010
%

%
%
%
%

%%%

% FSVR Fuzzy Support Vector Regression algorithm
% FSVR solves an advanced LSVM regression problem
% using fuzzy inputs and fuzzy outputs

clc;
clear all;
close all;

file1 = fopen('results fsvr.txt', 'w+');

trainfile= strcat('dataset/fsvrdataset3 train.txt');
testfile strcat('dataset/fsvrdataset3 test.txt');

%

train_data= load(trainfile);
. [no_trainrows, no_traincolumns = size(train_data);

train_inputs= train_data(:, 1:no_traincolumns-2);
train_outputs= train_data(:, no traincolumns-1:no traincolumns);

%

test_data= load(testfile);
[no testrows, no testcolumns size(test data);

32

test_inputs= test_data(:, 1:no_testcolumns-2);
test_outputs= test_data(:, no_testcolumns-1:no_testcolumns);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

c= 100; %%% c 1, 10, 100, 1000, 10000, 100000
%%% alpha= 1.9/c;

epsilon 0.01;
mu= 1.0;
maxiter = 100;
to1 = 1e-5;

%%% mu is a positive parameter for the kernel function

[KM] = train_data;

e = ones(no_trainrows, 1);

G [KM e];

%%%%%%%%%%%%%% Training %%%%%%%%%%%%%%%%%%%%

start training_time = cputime;

[iter, u] = fsvr(KM, G, c, tol, maxiter, alpha, epsilon, mu);

finish training_time cputime;

training_time finish training time - start training_time;

%%%%%%%%%%%%%% Testing %%%%%%%%%%%%%%%%%%%%

start_testing_time = cputime;

[error_rate_my, error_rate_sy, new_distance]
train_inputs, test_outputs, mu, file1);

testfsvr(u, test inputs,

finish_testing_time = cputime;

testing_ time finish_testing_time - start testing_time;

%%%%%%%%%%%%%%%% Display & Write %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% the results %%%%%%%%%%%%%%%%%%%

fprintf(file1, 'CPU processing time for FSVR training: %g \n',
training time);

disp(sprintf('CPU processing time for FSVR training:'));

33

training_ time

fprintf(filel, 'CPU processing time for FSVR training: %g \n',
testing time);

disp(sprintf('CPU processing time for FSVR training:'));

testing_ time

fprintf(filel, 'Error-rate for my: %g \n', error_rate_my);
fprintf(filel, 'Error-rate for sy: %g \n', error_rate sy);
fprintf(filel, 'Max distance (error): %g \n', new_distance);

disp(sprintf('Error-rate is: '));

error_rate_my
error_rate sy
new distance

fclose(filel); % File close

34

File 2: fsvr.m

function [iter, u] = fsvr(KM, G, c, tol, maxiter ...
~ alpha, epsilon, mu)

%%%%%%%%%%%%%%%%%%%%%%%

[KM_rows,KM_columns] = size(KM);

train_inputs
train_outputs

KM(:, l:KM_columns-1);
KM.(:, 3 :KM_columns);

m_inputs
s_inputs

KM(:, 1); %matrix contains all the Centers in the input
KM(:, 2); %matrix contains all the Spreads in the input

[m_tuples, m_columns]= size(m_inputs);

m_outputs
s outputs

KM(:, 3); %matrix contains all the Centers in the output
KM(:, 4); %matrix contains all the Spreads in the output

% Max(sx) is the same like sx because x has one attribute in our
dataset
s_maxinputs s inputs;

%%%%~%%%%%%%%%%%%%%%%%%%%

time = cputime;

e = ones(m_tuples, 1);

GGT = K(G, G, mu);

%%%%%%%%%%%%%% Finding H using K(G,G') %%%%%%%%%%%%%%%%%%%%

H GGT GGT; ...
GGT GGT];

. % To find inverse(Q) we use the following steps:

[Hrows, Hcolumns] = size(H);

I= speye(Hrows);

IcH = (I/c) + H;

%%%% In order to find inverse(I/c + 2H) we suppose: %%%%%%%%%

35

% to find inverse(I/c + 4GGT)
I= speye(size(GGT));

temp_var

temp_var = inv(I/c+ 4*GGT);

pstar
qstar
rstar
sstar

% so,

(I+2*c*GGT)*temp_var;
-2*c*GGT*temp_var;
-2*c*GGT*temp_var;
(I+2*c*GGT)*temp_var;

inverse(I/c + 2H) is temp_var2

temp_var2 = [pstar qstar;rstar sstar];

% I= speye(2*m_tuples);
I speye(2*m_tuples);

Q [IcH -H;-H IcH];

ptilde
qtilde
rtilde
stilde

(I+c*H)*temp_var2;
·c*H*temp __ var2;
qtilde;
ptilde;

%%%%%% then, inverser(Q) is:

Q_inv = [ptilde qtilde;rtilde stilde];

%%%%%%% To find (r) %%%%%%%%%%%%%%%%%%%%%%

rl=
r2=
r3=
r4=

r1=
r2=
r3=
r4=

speye (KM_rows, 1) ;
speye(KM_rows, 1) ;
speye (KM_rows, 1) ;
speye(KM_rows, 1) ;

m_outputs + s_outputs
m_outputs - s_outputs

-m_outputs - s:__outputs
-m_outputs + s_outputs

r = [r1;r2;r3;r4];

- s_maxinputs
+ s_maxinputs
+ s_maxinputs
- s_maxinputs

- epsilon*e;
- epsilon*e;
- epsilon*e;
- epsilon*e;

%%

iter = 0;

% oldu is a state to start comparison with newu
oldu = 10*ones(4*m_tuples,1);

36

newu ones(4*m_tuples,1); % newu= [1 1 1 1 ..] '

while(iter<maxiter&&norm(oldu-newu)>tol)

oldu
newu
iter

newu;
Q_inv*(r+max((Q*oldu-r)-alpha*oldu,O));
iter+1;

end

%%%%%% We divide newu into 4 parts to find u1, u2, u3, and u4

[u_tuples, u_columns] size(newu);

u1 length = u_tuples/4;
u1 = newu(1:u1 length,1);

u2 length = u1_length+u_tuples/4;
u2 = newu(u1 length+1:u2 length,1);

u3_length = u2 length+u_tuples/4;
u3 = newu(u2_length+1:u3_length,1);

u4 length = u3 length+u tuples/4;
u4 = newu(u3 length+1:u4 length,1);

u = [u1 u2 u3 u4];

File 3: K.m

%%%%%% Kernel Function %%%%%%%
%%

function [K_output]= K(A, B, mu)

%In case of training: A = G , B = G
%In case of·testing: A= G, B test inputs

for i 1:size(A,1)

for j = 1:size(B,l)

K_output(i,j) exp(-mu * norm(A(i, :)-B(j, :)));

end
end

37

File 4: testfsvr.m

function [error_rate_my, error_rate_sy, new_distance]
test inputs, train_inputs, test outputs, mu, file1)

error_counter_my =0;
error_counter sy =0;

distance = 0;

count = 0;

[nof tuples, no_columns] = size(train_inputs);
[nof_testtuples, no_testcolumns) = size(test outputs);

K(train_inputs(:,1), test_irputs(:,1), mu)

testfsvr(u,

predicted_mx = K(train_inputs(:,1), test inputs(:,1), mu)' * (
U (: 1 1) +U (: 1 2) -u (: I 3) -U (: I 4)) ;

predicted_mx

predicted_sx =test inputs(:, 2);.% maximum(sx)

for i=1 : size(test outputs)

fprintf(file1, 'Predicted(%g, %g) predicted_mx(i),
predicted_sx(i));

fprintf (file1, '- Exact (%g , %g) \n', test_ outputs (i, 1),
test outputs(i,2));

error counter my = error_ counter_ my + (test_ outpu.ts (i, 1)
predicted_mx(i))*(test_outputs(i, 1)-predicted_mx(i));

error_counter sy = error_counter_sy + (test_outputs(i, 2)
predicted_sx(i))*(test_outputs(i, 2)-predicted_sx(i));

new_distance = (test_inputs(i,1)-test inputs(i,2))
(predicted_mx(i)-predicted_sx(i));

end

if(distance < new_distance)
distance = new distance;

error_rate_my
error_rate sy

sqrt(error_counter_my/nof_tuples);
sqrt(error counter sy/nof_tuples);

end

38

References:

1. Cristianini, N., & Shawe-Taylor, J., 2000, "An Introduction to Support Vector

Machines and Other Kernel-based Learning Methods". Cambridge University

Press.

2. Gunn, S. R., 1998, "Support Vector Machines for Classification and Regression",

University of Southampton.

3. Mangasarian O.L. and Musicant D.R., 2001, "Lagrangian Support Vector

Machines", Journal of Machine Learning Research, vol.l, pp.161-77.

4. Vapnik, V. N., 1995. "The Nature of Statistical Learning Theory". Springer, New

York.

5. (Electronic Version): StatSoft, Inc., 201, "Electronic Statistics Textbook", Tulsa,

OK: StatSoft. WEB: http://www.statsoft.com/textbook/support-vector-machines/,

(Printed Version): Hill, T. & Lewicki, P.,2007, "STATISTICS Methods and

Applications", StatSoft, Tulsa, OK.

6. Yan H.S., and Xu D., 2007. "An approach to estimating product design time

based on fuzzy v-support vector machine", IEEE Transactions on Neural

Networks, 2007, 18(3), pp. 721-731.

7. MATLAB 7.0.1., 2004, "User's Guide". The Math Works, Inc., Natik, MA

01769,

8. Vapnik V. N., 2000, "The Nature of Statistical Learning", Springer, New York.

--~ - ,--.,{"· -

'"''L\j'l~~ :;c.~/'-:

39

	TH174900001
	TH174900002
	TH174900003
	TH174900004
	TH174900005
	TH174900006
	TH174900007
	TH174900008
	TH174900009
	TH174900010
	TH174900011
	TH174900012
	TH174900013
	TH174900014
	TH174900015
	TH174900016
	TH174900017
	TH174900018
	TH174900019
	TH174900020
	TH174900021
	TH174900022
	TH174900023
	TH174900024
	TH174900025
	TH174900026
	TH174900027
	TH174900028
	TH174900029
	TH174900030
	TH174900031
	TH174900032
	TH174900033
	TH174900034
	TH174900035
	TH174900036
	TH174900037
	TH174900038
	TH174900039
	TH174900040
	TH174900041
	TH174900042
	TH174900043
	TH174900044
	TH174900045

