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Chapter 1 

IR Using Metasearch 

Information Retrieval is the process of finding out of information (usually unstructured 

data) by giving the unstructured keyword. Textual data is usually unstructured. User gives 

their query in the form of a keyword. This is sent to the underlying IR system [SKS06]. 

The relevant documents are retrieved based on the relevance measure between the user 

query keyword and the underlying documents. 

In IR systems, textual data is unstructured. Information retrieval generally refers to the 

querying of unstructured textual data. Information retrieval has played a critical role in 

making a web document a productive and useful for researches. Keyword based 

information retrieval can be used not only for retrieving textual data, but also retrieved 

video and audio data[SKS06]. 

In IR system each query and document term have associated weight. The weight specifies 

the magnitude of role to select the document. Document term weight [SKS06] can be 

computed as wj = tfj * idfj that is product of term frequency and inverse document 

frequency 
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Term frequency [SKS06] of j 1h term tf = log(l + n(d,t)) 
. 

1 n(d) 
where n( d) denotes the 

number of term in the document d and, n ( d, t) denotes the number of occurrence of term 

fh in the document d. 

Inverse Document Frequency [SKS06] can be calculated as: 

. N 
uifj =log-

n; 

Where N is total number of document and n is the number of document that contain the j 1
h 

term 

S h . h f ·th . ·th d ,r l N o t e we1g t o J term m 1 ocument w ii = l.J ii x og-
n; 

Query term weight is the number of occurrence of a particular term over all query term 

[RB04]. For query term weight, Salton and Buckley [RB04] suggest 

0.5freq; N 
W; q = (0.5 + ,q ) X log-

, maxfreq;,q n; 

Where freq;,q the frequency of i'h term in query q and maxfreq;,q is the maximum 

frequency in query q 

Several retrieval methods exist namely Boolean model, Vector Space model, Probabilistic 

model, Language model, Inference model, impact factor model, connectivity model, 

mutual citation model, page rank model, HITS, SALSA model, Associative interaction 

model and Bayesian model. 

Boolean model (RB04] is based on the concept of set theory and Boolean algebra. User 

gives its query in the form of Boolean expression. Term weight in case of Boolean model 

is either {0, 1} means binary weight that's means term either present or absent. There is 

no concept of partial matching. The absence of partial matching is a major disadvantage 

of Boolean model. 
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In a vector space model [RB04] each query and document can be represented as a vector 

of query term weight and document term weight respectively. Similarity between the 

document and the query can be computed by a cosine similarity function. Each query 

term have some weight associated with it, which signifies the importance of a term. 

Weight is not usually binary as in the case of Boolean. So there can be partial matching. 

w3 ... wm) where w~, w2, w3 ... Wm are document term weight and m is the number of query 

term. The similarity between the document and query can be calculated by [RB04]: 

Where value of sim(q,d) lies between 0 and I. If sim(d,q)=O ,then not matched else if 

sim(d,q)=I,then perfectly matched else ifsim(d,q)=[O,l] ,then partial matched. 

The probabilistic model is based on probability ranking principle [RB04], which states 

that optimal retrieval performance is achieved when documents are ranked according to 

their probabilities of being judged relevant to a query. For the probabilistic model, the 

index term weight variables are all binary .A query q is a subset of index terms. Let R be 

the set of relevant document. Let R be the complement of R (set of non relevant 

R 
document). Let P(=) be the probability that the document dj is relevant to the query 

dj 

q and P( R ) be the probability that dj is non relevant to q [RB04]. The similarity 
dj 

sim(dj,q) of the document dj to the query q [RB04] is calculated as 

p(/d-) d. 
Sim(dj,q) = · 1 

p(R.L) 
I dj 

Using Baye's rule [RB04], 
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P(~)* P(R) 
Sim(di,q) = 1: J 

P(d IR ) * P(ii) 

d 
P(-1 

) denotes the probability of randomly selecting the document dj from relevant 
R 

d 
document R. P( ..!. ) denotes the probability of randomly selecting document dj from the 

R 

non relevant setR. Since p(R) and P(R) are the same for all document in the collection 

[RB04], therefore 

There are some basic problems with an IR system such as all the document need not exist 

in a single database. This limits the search area. Further it becomes difficult for IR 

systems to handle documents dynamically. This scalability issues is addressed by 

Metasearch engines. A metasearch engine is a search engine over search engines. A 

metasearch engine has large number of databases, containing documents, attached to 

them. Metasearch engine is discussed next. 

1.1 Metasearch Engine 

Metasearch engine [MYL02] can be defined as the search engine over search engines. 

Various collection/databases can be attached with the unified system called the Meta 

search engine. User send query to the Meta search engine, which is responsible for 

identifying useful subset of databases that may contain relevant documents. The 

documents retrieved from these identified databases are combined to form a unified single 
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ranked list ordered according to the relevance with most relevant document at the top. 

The metasearch engine architecture [MYL02] is shown in Figure 1.1. 

'""' ":-· •'1<:· \ ·.< '.,,·'':"'"' ""'-' <:,:user lriteface . 
... ' ' .. ,· "".ICC"+S;:.H• 

•••••• 

Figure 1.1: Two-level architecture of a Metasearch engine [MYL02] 

Database selector: The main objective of the database selector is to identify the 

potentially useful database from all the databases [MYL02]. 

Document Selector: Document selector selects relevan.t document from the databases 

that are selected. Various similarity measure methods such as Boolean, vector space 

model, probabilistic model are exit for calculating the relevance document with respect to 

user query [MYL02]. 

Query Dispatcher: It is responsible for the passing the query with necessary changes to 

the original query and forward the modified query to the appropriate databases [MYL02]. 

Result merger: It merges the document retrieved from the selected databases and 

arranges them in single rank list, which is ordered by relevance with the most relevant 

document appearing at the top. 

Metasearch engines increase the search coverage area, solves the scalability problem of 

searching the Web, facilitate the invocation and cooperation of multiple search engines 

and also improve the retrieval effectiveness. 
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1.1.1 Database Selection 

Metasearch engine on receiving a user query forwards it to a subset of database which 

may contain relevant document. Appropriate selection of database is carried out by using 

good database selection algorithms. These algorithms differ on the database 

representative which is used to indicate the content of database. There are three basic data 

representative approaches: 

Rough Representative Approach: In this approach content of each database is represent 

by using few keywords or paragraph [MYL02], which is mostly performed manually as in 

ALIWEB [KM94]. 

Statistical Representative Approach: In this approaches the content of each database is 

represented by detailed statistical information such as term frequency, document 

frequency [MYL02]. This approach allows more accurate estimation of database 

usefulness because of detailed statistical information. Main problem with this approach is 

scalability issue, like in D-WISE [YL96], CORI~Net [CLC95], gGLOSS[GGM95]. 

Learning Based Approach: In this approaches, the usefulness of the database for a new 

query is based on the past retrieval experiences with training query [MYL02]. There are 

three type of learning approach such as Static, Dynamic and Hybrid. In static learning 

approaches, the retrieval knowledge once learned can't be changed. This is not suitable to 

the changes in database and query patterns, like in MRDD Approach [VGL95b]. In 

Dynamic learning approach, problem due to static approaches can be overcome by using 

'·· real user queries and updating the retrieval experience like in Savvy Search Approach 

[DH97]. Hybrid learning approaches overcomes the weakness of the other two learning 

approaches by obtaining knowledge from training queries. This knowledge be further 

updated using the real user queries like in PROFUSION [FG99]. 
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Cost Based Approaches: In this approach, the usefulness of the database is based on 

various cost factors such as cost of accessing digital library, time, money and query 

evaluations cost [F97]. This approach allows only retrieval of document from databases 

that minimize the accessing cost. Like TRD-CS [ASB02] and ReDDE[SC03] etc. 

Several database selection models exist like D-WISE (Distributed Web Index Search 

Engine), gGLOSS (generalized Glossary Of Servers' Server Approaches), CORI-Net 

(Collection Retrieval Inference Network Approaches), MRDD (Modeling Relevant 

Document Distribution Approaches), SavvySearch, PROFUSION, TRD-CS (Top Ranked 

Document for Collection Selection Approaches), DTF (Decision theoretic framework 

Approaches), LWP (Light Weight Probes Approaches), ReDDE (Resource Selection that 

normalize database size) 

D-WISE (Distributed Web Index Search Engine) [MYL02] 

This approach uses statistical information of each database i.e. df;, which is the 

d fi f ·lh . ·lh d b . th b f d . ·lh d b ocument requency o J term m 1 ata ase t.e. e num er o ocument m 1 ata ase 

that cointain j'h term, and ni is the total number of document in the i1h database[MYL02]. 

The Cue Validity (CV), which specify the proportion of document that contains relevant 

j'h term in i1h database over all documents containing j'h term in remaining database, is 

calculated as [MYL02]: 

CV ij 
n, 

N 

df" L df" 
-- + -"'-"-'N'---1 --

n; "' L. n' 
Jr.~ i 

Where N is the total number of component database in metasearch engine. Now calculate 

the distinguishing power of j'h term called CVVj, which is Variance of CVij of each term 

ti over all the databases. 
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Where ACVi is the average of Cue Validity of the fh term in all databases [MLY02]. 

CVVj specifies the importance of a term ti over all other query terms. It helps in retrieving 

relevant document. IfCVVr > CVVs then tr> ts where term tr has more weightage than ts. 
' 

Now the ranking [ML Y02] can calculated as. 

M 

r; = L:cvvj ·dfij 
j=l 

where M is number of query terms and ri is the ranking score of i'h database 

GLOSS (Glossary Of Servers' Server approaches)[ GGM95] 

GLOSS can be categorised as vGLOSS, bGLOSS and hGLOSS. 

vGLOSS (vector GLOSS[GGM95]) 

In case of vGLOSS the similarity between the document and the query can be calculated 

as 

Sim(q,d)= f,q1 · wj 

j=l 

Where ~ is weight of j'h term in query and wj is weight of j 1h term in document. 

The Goodness of a database is computed as 

Goodness= (l,q,db) = LSim(q,d) 
dEdbASim(q,d)~/ 

The number of document in each database, with similarity to the query greater than 

threshold i.e. 1 are used to find Goodness [GGM95]. 

bGLOSS (boolean GLOSS[GGM95] ) 

Let Jdbil be the total number of document in database dbi and fij is the number of 

document in dbi that contain tj. For a given database dbi and t1, t2, .... tn keyword pair and 
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any document d E db;. So the estimation number of document in db; that will satisfy all 

query terms is given as 

n 

[Jfij 
Estimate(t, A/ 2 1\ ... 1\ln,db;)=~ 

JdbJ 

hGLOSS (hybrid GLOSS[GGM95] ) 

Let us consider a number of GLOSS Server G1, G2 .......................... Gs. All servers are of 

same type i.e. either they are bGLOSS or vGLOSS. 

hGLOSS summarize the content of their GLOSS servers. hGLOSS can treat the 

information about a database as tradition GLOSS server treat the information about a 

document in the underlying databases. The document for hGLOSS will be the database 

summaries at the GLOSS servers. GLOSS server stores hrj i.e. the number of database in 

vGLOSS, Gr that contain term tj, drj is the total number of document that contain term ti 

in each database in vGLOSS Gr. 

CORI-Net (Collection Retrieval Inference Network Approaches) [CLC95] 

CORI-Net [CLC95] is inference network based probabilistic approach. It uses the 

document frequency and database frequency to select databases. If a term appears in k 

document in the database, the term is repeated k times in the super document. As a result, 

the document frequency of a term in the database becomes the term frequency in the 

super document [CLC95]. Let D denote the database of all super documents. Note that the 

database frequencies of term in the database become the term frequency in D. In each 

super document is represented as a vector of weight tf*idf (term frequency weight times 

inverse document frequency weight)[CLC95]. The cosine similarity function can be used 

between stored super document and given user query. This similarity function can be used 

to rank all component database (or super document). 
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Let N be the number of database in the metasearch engine, dtji is document frequency of 

j'h term in i1h component database and dbj is database frequency of j'h term[SJ04]. 

First the belief that 0; contain useful document due to the j'h query term is computed by 

[SJ04]: 

Where 

( ) 
df .. 

Tij = C 2 + I - C 2 " ' 
dfij + K 

lo ( N + 0.5) 
g dbf j 

log(N+!.O) 

K = C ·(1-C )+C .~ 
J • •adw; 

where dw; is number of words in 0; and adw; is average number of words. in a database. 

The value of C1, C2, C3, C4 estimated empirically by performing experiment on the actual 

text collection [SJ04]. p( ;;; ) is essentially the tf*idf weight of term ti in the super 

document corresponding to database D; and can be estimated, for query term weight ti in 

q. Now ranking score of each database with respect to given query can be calculated by as 

[SJ04]: 

where k is total number of query terms. 

Learning based Approach: 

Learning based approaches can be classified as Static based (e.g. MRDD), Dynamic 

based (e.g. SavvySearch) and Hybrid based (e.g. PROFUSION) 

10 



MRDD (Modeling Relevant Document Distribution Approaches) [VGL95b] 

In this approach, the knowledge once learned can't be changed. In learning phase, some 

set of queries also called training query is used. These set of queries is forwarded to each 

component database. From the retrieved documents, relevant documents are identified. 

Distribution vector of all relevant documents is obtained [MYL02]. The user query is 

matched with the k most similar training query. For each database D, the average relevant 

document over the k vector for each k queries and D is obtained [MYL02]. These average 

distribution vectors are then used to rank the database. The documents from higher rank 

database are retrieved. In MRDD approaches, the representative of a component database 

is the set of distribution vectors for all training queries. Main drawback of MRDD is that 

the entire learning part is performed manually and it is very difficult to identify 

appropriate training queries. The approach does not perform well when content of 

database keeps changing dynamically. 

SavvySearch Approach [DH95] 

In SavvySearch Approach [DH95], weight vector (w~, w2 ••• wm) is maintained where each 

w;'s corresponds to i'h term in the database. The weight wi is adjusted when a query 

containing term t; is used to retrieve documents from the component database D. If no 

document is retrieved, the weight is reduced by Ilk. If at least one document is 

read/clicked by the user, the weight is increase by Ilk. Hence large positive value w; 

indicates that the database D responds well to term t; and vice versa. Given a query q 

containing term t~, tz, .... ,tk, the ranking score for each database D is calculated [MYL02] 

as: 
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where Ph is the penalty for a search engine, which depends upon the retrieve results, Pr is 

the penalty for a search engine, which depends upon the response time, log(N/fi) is 

inverse database frequency weight of term ti , N is number of databases and fi is number 

of database having a positive weight value for term ti . The Savvy Search have limitations 

like terms in the previous queries are only considered, does not perform well for new 

query term and also for query terms that are rarely used. 

PROFUSION Approach [FG99] 

The PROFUSION approach [FG99] use both static and dynamic approaches and is also 

called hybrid Approach[FG99]. Problem due to only static features and only dynamic 

features can be overcomes by using both the approaches together. The hybrid learning 

approach utilized in 13 categories problems such as Science and engineering, Computer 

science, Travel, Medical and Biotechnology, Business and Finance, Social and Religion, 

Society, law and government, Animals and environment, History, Recreation and 

entertainment, Arts, Music and Food. Some set of term is associated with each of the 13 

categories to specify the type of document each category contains. For each of the 13 

categories, a set of training queries are identified and for a given database D and a given 

categories C each associated training query is submitted to database D. Score reflecting 

the performance of D with respect to the query and the categories C is computed 

[MYL02] as 

10 

c R _,_i=::_!.I __ x _ 
LN 

10 10 

where C is the constant and R is the number of relevant document in 1 0 top documents. 

Value ofNi is calculated as 

N; = ){ , if i'h ranked document is relevant 

= 0, otherwise 
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Score of all training queries associated with the category C is averaged for database D 

and this average is the confidence factors of the database with respect to category. At the 

end of the training, there is a confidence factor for each database with respect to each of 

the above 13 categories [MYL02]. 

In the testing phase, the user query, containing a set of terms, is mapped to set of 

categories based on query terms. The database is then ranked based on the sum of the 

confidence factors of each database with respect to mapped categories. This sum of 

confidence factor with respect to query is called the ranking score of the database for q. 

The score of the database with respect to a given query is also updated dynamically based 

on retrieved result. If the user considers document d to be relevant and d is not the 

topmost document then the score of the database having document d is increased and 

score of all other databases whose documents are ranked higher then d is 

decreased[MYL02]. 

Cost Based Approach 

Several cost based approaches exist in literature like TRD-CS, DTF, ReDDE, LWP etc. 

TRD-CS (Top Ranked Document for Collection Selection Approach) [ASB02] 

In TRD-CS [ASB02], the user query is broadcasted to all available databases. Each of 

these databases retrieves n ranked documents. The retrieved documents are sorted based 

on their scores. The databases containing the n-first documents are selected. The 

document score can be calculated [ASB02] as 

Score(d,q) = (c, · nbJ+ (C2 ·dis_ ind(d,q ))+nbC occ 
3 

where nbd is number of search keyword included in the document d, nb occ is number of 

occurrence of query terms in d and dis_ind(d,q) is the distance between two query 

terms[ASB02] and is computed as 
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dis _ind(d,q) = Ldis(K,!), 

where K& 1 are search keyword position within the document d delimited by i1h block and 

dis (k, 1) is 

d• (K ,i) ·li(K ;1),1 if 

Document should be retrieved from the database having higher score [ASB02]. 

DTF (Decision theoretic framework Approach) [F97] 

This is ,also called Cost based resource selection approach [F97] in which there is a 

retrieval cost C;(S;, q) associated with each digital library DL; where S; documents are 

retrieve for query q. There are following factor that include cost are Cost, Time and 

Quality. Cost may include money[F97]. Time may include computation time at digital 

library site, computation time for delivering the resultant document over the network, 

response time for several queries [F97]. Quality may include cost to retrieve high quality 

document [F97]. For a user query, and total n document to be retrieved, the task is to find 

an optimum solution. Let 

where m is the total number of digital libraries 

jsj= fsi =n 
i=l 

The overall cost is minimized 

If r; (S;, q) denotes the number of relevant document in the result set when S; document 

are retrieved from digital library DLi for query q, we obtain the cost function [F97]. 
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Where c+ is the cost of retrieving relevant document and c- cost of retrieving irrelevant 

document 

ReDDE (Resource Selection that normalize database size) [SC03] 

ReDDE[SC03] estimate the distribution of relevant document across the set of available 

database. For making its estimation ReDDE considers both database size and content 

similarity. ReDDE is the resource selection algorithm that normalizes the database size. 

For a query q posed on database C;, the number bf document relevant can be estimated as 

[SC03]: 

Where 

Nc,_samp is the number of sampled document from the i1h database, Nc, is the estimated size 

of the i1h database and P (relldj) is the probability of relevance for a specific document 

where P (relldj) is given as [19] 

if Rank _ central (d 1 } < ratio · L N c, 

0 otherwise 

Rank for the centralized sample database is the union of all sampled document from 

different database [SC03]. 

rank central ( d j) = L _N_c('-'d':....:..)_ 

d, N c(d,) _ samp 

rank _ sample ( d k ) < rank _ sample ( d 
1 

) 

The estimation is normalized to remove the query dependent constant, which provides the 

distribution of relevant document among the database. 

Dist ReI Q(i) = ReI Q(i) - - L ReI_ Q(j) 
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LWP (Light Weight Probes Approach) [HT99] 

The L WP approach, for large term queries that require more space and time to execute at 

the server side, forwards probe, instead of the entire query term, to the server. The probes 

are useful as they have low cost and are smaller in size thereby use low bandwidth and 

has low latency [HT99]. 

Let Di be the total number of document on the server, fprox be the number of documents 

containing the specified number of terms within a specified proximity with each other, 

fcooccur is the number of documents in which a specified number of the term co-occurs and 

f; is the number of documents containing each individual term ti then the score can be 

calculated as [HT99] 

where 

C, = .i=l 

otherwise 

where fij is the raw frequency of probe term ion server j. Term are weighted according to 

closeness of their total frequency to target total frequency ft. 

1.1.2 Result merging 

For a given query, the selected search engines return the relevant documents. The 

merging of these retrieved relevant documents in a single ranked list is referred to as 

result merging. The result merging problem is difficult because document scores returned 

by the different databases cannot be compared directly. The goal of a result merging 

algorithms to produce a single rank list that is comparable to what would have been 

produced if the document from all available databases were combined into a single 

database. 
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Several result merging methods exist in literature like CORI merging [NF03], Semi 

supervised Learning Approach to merge results (SSL) [SC003a], Hybrid Result merging 

[PSS07], LMS [RAS03], SORTED RANK SCORE [LXG03] etc. 

CORI result merging algorithm[NF03] 

The CORI algorithm[NF03] is based on a Bayesian Inference Network Model of 

information retrieval in which each resource is ranked by the belief P(Q/C;) that Query 

Q is satisfied given that resource C; is observed( searched) 

In CORI, the score of databases is normalized on the scale of [0, 1], where Cmin and Cmax 

are the maximum and minimum score of the database [NF03]. 

C'= 
ci- cmin 

cmax - cmin 
(Normalized document of ith database) 

This is followed by normalizing the score of document on the scale of [O,l],where Dmin 

and Dmax are the maximum and minimum score of the document[NF03]. 

D'= 
D- Dmin 

(Normalized database) 
D max - D min 

The score of the database are updated as follows[NF03] 

D"·.= 1.0 * D'+0.4 * C'*D' 
(Global normalized score of each document) 

1.4 

Finally, documents are ranked in decrease order of scoreD". 

Semi -Supervised Learning (SSL) [SC003] 

Semi-supervised learning (SSL) [SC003] is a result merging algorithm that is based on 

linear regression. It takes advantage of a centralized sample index, which comprises of 

the entire sampled document from remote databases. It relies heavily on the discovery of 
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a significant number of matching document relevance score returned from remote 

collections in order to function effectively. 

Hybrid Result Merging [PSS07] 

It combines both regression and downloadable methologies [PSS07]. It selectively 

downloads a limited number of documents that are used as training ·data for the regression 

method. The ranking of a document in the remote collection is based on a particular 

query. The centralized sample index is utilized as a reference statistics database that 

provides estimates of global collection statistics (global idf) [PSS07]. The decision of 

downloading document is incorporated into the algorithm thereby minimizing the 

produced overheads and maximizing the gained accuracy. 

Sorted Rank (SR) Score Merging [LXG03] 

In SR score merging [LXG03], all document for a particular databases are considered in a 

sorted form. The merging of the document is based on the document of the selected 

databases. Any documents that have higher score even from the less scored database must 

be ranked in final rank list. Database rank is only used to select subset of databases and 

documents from these selected databases are used to arrive at final rank merge list. Score 

of the document of selected database are updated by the product of original score of 

document and score of corresponding database. 

LMS Merging [RAS03) 

This merging approach uses result length to calculate merging score. Since this approach 

uses the document score and result length, this approach is simple to implement. In this 

approach, first the result length of each database is computed i.e. the number of relevant 

documents in the database are computed. The result length is then used to calculate 

database score 
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S = log 

Based on this database score, the weight for the i1h databases is computed as [RAS03]: 

.=l+[s.-s] w. s 

The basic idea behind the LMS merging approach [RAS03] is to increase the weight of 

those databases that have score less than the average score and decrease the score of those 

databases that have score higher than the average score. 

1.2Aim 

This dissertation aims to carry out the following: 

• Compare performance of database selection methods CORI, vGLOSS and CVV 

• Compare performance of Result merging methods LMS, CORI and SR Merge 

• Compare performance by combining the various database selection and result 

merging method. 

1.3 Organization 

The brief introduction ofJR System and Metasearch Engine is given in chapter l. The 

performance of database selection method CORI, vGLOSS and CVV are compared in 

chapter 2. This is followed by comparing performance of result merging method LMS, 

CORI and SR Merge in chapter 3. Chapter 4 compares performance by combining the 

various database selection and result merging method. Chapter 5 is the conclusion. 
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Chapter 2 

Databa-se Selection 

The main objective of the databases selection is to select only those databases which 

contain useful document for a given query. User query is sent only to the selected 

databases. In this chapter, the database selection algorithms CORJ, vGLOSS and CVV 

model are compared on performance parameters. The algorithms of each of these 

methods along with an example are discussed. It is followed by experimental based 

comparisons of these methods. 

2.1 CORI Collection Selection Model (MYL02] 

As discussed earlier CORJ selection model is based on Bayesian CORJ [MYL02] 

algorithm takes database information, like number of database m, number of documents n 

in each database and number of terms 1 in each documents, and query information, 

number of terms 1 in the query, as input. In step 1, document frequency of each term in 

each database is calculated. The database frequency of each term is evaluated in step 2. 

Step 3 calculates the inverse database frequency of each term. This is followed by 

calculating the weight of each term in database in step 4. In step 5, score of a database 

with respect to query is calculated. These databases are sorted with respect to their scores 
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in descending order and finally the top ranked databases are produced as output. Inference 

network [[SJ04]. The algorithm based on CORI [SJ04] is shown in Figure 2.1. 

Input: D [m, n, !],where m is number of database, n is number of document, I is number of terms, 

q[l] 

Output: Ranked list of topmost databases 

Method: 

Stepl: For each k'h term of the query 

For (each ith database) 

Calculate Fc,t[i] [k]; Number of documents containing k1h term in i1h database 

Step2: For each kth term of the query 

Calculate f,[k]; Number of databases contains the term. 

Step3: For each kth term of the query 

For (each ith database) 

Calculate Ic,t[i][k]= log((N +O.S)Iftl ); which is inverse document frequency 
log(N + 1.0) 

Step 4: For each k'h term of the query 

For (each i'h databas~) 

Calculate Tc 1[i][k]=0.4+0.6*( fc,t ) ; where k is 0.00039 and 
' fc,t +50+150•k 

Tct is weight of the term in the collection 

L(0.4+0.6 • Tc t[i)[k)• Ic t[i)[k)) 
StepS: CORI (q, c)= teq&c , , 

lql 
Step6: Sort the database in decreasing score of each database 

Figure2.1: Algorithm based on CORI [SJ04] 

An example illustrating the above algorithm is given next. 

2.1.1 An Example 

Table 2.1 gives database information, which contains information about five databases. 

Each of the five databases contains five documents, and there are four types of keyword 

in each document. The cell in the table gives information about the frequency of each 

keyword in a document of each database. 

Tr--i-17 4<67 
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Database Doc0 Doc1 Docz Doc3 Doc4 

DBo 6 ,0,2,0 6,7,5,5 8,6,4,8 1,9,2,0 2,1,3,7 

DB 1 9,1,0,5 4,9,2,1 9,6,1,1, 5,3,4,0 9,5,1,2 

DBz 9,8,6,4 2,3,6,4 9,1,7,0 5,2,8,6 7,2,4,9 

DB3 9,3,6,1 0,8,5,9 0,3,3,9 5,2,3,7 6,8,0,8 

DB4 6,0,2,2 7,5,6,8 6,9,8,9 1,7,5,1 5,0,0,1 

Table 2.1: Database Information chart 

The frequency and weight of terms in the user query are given in table 2.2. 

To Tt TJ T4 

Frequency 7 5 3 7 

weight 0.497325 0.551531 0.618072 0.497325 

Table 2.2: Query information chart 

Term weight of the keyword in query can be computed using the following formula 

[RB04]: 

w;,q 

0.5 freq . N = ( 0. 5 + •.q ) x log -
max freq i,q n; 

In the example, value of maxfreq and N are 7 and 22 respectively. The database 

frequency, i.e. the number of databases containing each term is given in table 2.3. 

Table 2.3: Database Frequency Chart 

The document frequency of each term in each database is given in table 2.4 

fc t DBo DBt DBz DB3 DB4 

To 5 5 5 3 5 

Tt 4 5 5 5 3 

Tz 5 4 5 4 4 

T3 3 4 4 5 5 

Table 2.4: Document Frequency Chart 
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Next inverse collection frequency is computed. That can be computed using the formula 

[SJ04] 

log((m + 0.5)/ft [k]) 
[i][k l = 

c, t log(m + 1.0) 

where m is 5(number of databases). The Ic,t values are given in table 2.5 

lc,t DBo DB1 DBz Db3 DB4 

To 0.053194 0.053194 0.053194 0.053194 0.053194 

T, 0.053194 0.053194 0.053194 0.053194 0.053194 

Tz 0.053194 0.053194 0.053194 0.053194 0.053194 

TJ 0.053194 0.053194 0.053194 0.053194 0.053194 

Table 2.5: Ic,t Values 

The weight of the term in collection Tc,t is calculated next. The weight Tc,t is computed as 

[SJ04] 

. [k] (---f---'-c,_t[_iH_k_l --J T [I] = 0.4 + 0.6 * 
c,t f [i][k]+50+150*k 

c, t 

where fc,t have there usual meaning. The Tc,t values are given in table 2.6 

Tc,t DBo DB1 DBz DB3 DB4 

To OA54487 0.454487 0.454487 0.433925 0.454487 

T, 0.444396 0.454487 0.454487 0.454487 0.433925 

Tz 0.454487 0.444396 0.454487 0.444396 0.444396 

T3 0.433925 0.444396 0.444396 0.454487 0.454487 

Table 2.6: Tc,t chart 

Next, the similarity of the user query with respect to the given database is computed using 

[SJ04] 

L (0.4 + 0.6 * Tc t [i][k] * I c t [i][k]) 
teq&c ' ' 

CORI (q, c) = ---''--------~q-~-----

where q is the number of query terms The database similarity is given in table 2.7 
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Databases Database Similarity 

DB2 0.414425 

DB1 0.414344 

DBo 0.414261 

DB3 0.414261 

DB4 0.414261 

Table 2.7: Database Similarity by CORI Collection Selection model 

The databases in the table are in descending order of their scores. The database at the top 

are selected for answering the user query. 

2.2 vGLOSS Collection Selection Model [GGM95] 

This model IS based on the vector space model. The algorithm based on 

vGLOSS[GGM95] is shown in Figure 2.2 

Input: D [m, n, 1], Q[l] where m is number of database, n is number of document and I is number of terms 

Output: Ranked list of topmost databases 

Method: 

Step 1: Repeat Step (I) to (6) 

Step 2: Calculate term frequency (tJ) ofk'• term in j'• document 

tfi[j][k] =log(!+ n(d, k)) 
n(d) 

Step 3: Calculate Inverse document frequency of k" term in j'• document 

idfi[j][k] =log(~); where n is the number of documents containing klh term 
nk 

Step 4: Calculate weight of k"' term in i" document 

Wi[j](k] = tfi[j](k]• idfi[j](k] 

Step S: for each databases 

Calculate document frequency of document 

I I 
; where q, is the weight of k'• term in query and w;, is the weight 

lqldj 

of k"' term in j"' document 

Step 6: Now, calculate goodness of each i'• database 

For (each i"' document) 

Goodnessi = (l,q,dbJ= . I: Similq,dj) 

djedbiASimi( q,dj)~T 

Add the similarity of all documents whose score is greater than T (Threshold) 

Step 7: Sort the databases based on the goodness 

Generate list of top-S database as output 

Figure 2.2: Algorithm based on vGLOSS[GGM95] 
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vGLOSS takes database information and user query q as input. The term frequency of 

each term in each document of each database is computed in step 1. In step 2, the 

document frequency of each term is computed. The weight of the term, based on the term 

frequency and inverse document frequency, is computed in step4. Step 5 evaluates the 

similarity between the document and query. In step 6, goodness of each database is 

computed using the documents having similarity greater than the threshold. The 

databases are sorted in descending order of their goodness scores in step 6. 

2.2.1 An Example 

The cosine similarity of all documents with respect to query is given in table 2.8. 

Do co Doc1 Doc2 Doc3 Doc4 

DB0 0.0000000 0.652078 0.596110 0.507540 0.494404 

DB1 0.457657 0.715162 0.725796 0.568774 0.667025 

DB2 0.457657 0.457657 0.000000 0.457657 0.457657 

DB3 0.605235 0.568774 0.568774 0.592228 0.457657 

DB4 0.568774 0.711777 0.680501 0.659872 0.000000 

Table 2.8: Display similarities of all document w.r.t query 

The goodness of database is calculated using the following formula [GGM95]: 

Goodness= (1, q, db)= L Sim(q, d) 

dEdbASim(q,d~l 

The Goodness of the databases with respect to query are given in table 2.9 

Databases Databae Goodness 

DB1 3.134414 

DB3 2.792668 

DB4 2.620924 

DBo 2.250131 

DB2 1.830628 

Table 2.9: Database Goodness w.r.t query 

The databases having high Goodness value are selected for answering user query. 
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2.3 CVV Collection Selection Model [YL96] 

This model is based on the distinguishing power of the term in the databases. The 

representation of the databases consists of the document frequency of each term and the 

cardinality of each database. The algorithm based on CVV [YL96] is shown in Figure 2.3 

Input: D [m, n, I] where m is number of database, n is the number of document, I is the number terms, q[l] 

Output: Ranked list of topmost databases 

Method: 

-Step 1: For each term jlh of a query 

For (each database ith database) 

df[i][k] = log(l +~) ; where df[i][k] is the document frequency ofkth term in ith database ,N 
N 

is the total number of documents and n, is the number of document containing k'" term 

Step 2: Calculate Cardinality of databases 

For (each i'" database) 

Card[i] =number of document in ilh database 

Step 3: Calculate Cue validity (CV) 

For (each k"' term) 

For (each ilh databases) 

CV ik 

Step 4: Calculate Average Cue validity (CV) 

For (each i'" database) 

M 
I;CVik 

ACVk = .i.::l__ · where M is the number of database 
M ' 

Step 5: Calculate Variance of Cue validity (CV;,) 

For (each i'" database) 

CWk = ~ (cvik - ACVk )2 
i=l M 

Step 6: Calculate rank i=l ..... m ing can bed by 

For (each i"'databases) 

I 
ij = I;CVVk •dfik 

k=l 

Step 7: Generate top-S databases 

Figure 2.3: Algorithm based on CVV [MYL96] 
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CVV algorithm takes the database information and query information as input. In step I, 

the document frequency of each query term in each database is computed. This is 

followed calculating the cardinality of each database in step 2. Step3 computes the Cue 

validity of each term. In step 4, the average cue validity (ACV) is computed. The variance 

of cue validity i.e. CVV is calculated in step 5. Based on the document frequency and 

CVV of each term, the databases ranking is done in step 6. This sorted rank of database is 

produced as output in step 7. 

2.3.1 An Example 

Using CVV algorithm, first the document frequency of each term is computed and is 

given in table 2.10 

Databases To T1 Tz TJ 

DBo 5 4 5 3 

DBI 5 5 4 4 

DBz 5 5 5 4 

DB3 3 5 4 5 

D84 5 3 4 5 

Table 2.10: Document freauencv 
The cardinality of the databases i.e. the number of documents contained by each 

database is computed. The cardinality of databases is shown in table 2.11. 

Databases Cardinality 

DB0 5 

DBI .5 

DBz 5 
DB3 5 

D84 5 

Table 2.11: Databases and their cardinalities 

The document frequency and the cardinality of each databases are used to compute th.e 

the cue validity of each fh term in the i1h databases using the formula [MYL96] 
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cv ij 

df .. 
-~1)-+ 

ni 

The cue validity of terms in databases are given in table 2.12 

To Tl Tz TJ 

DBo 0.523616 0.470588 0.530973 0.403361 

DB1 0.526316 0.533333 0.475248 0.477612 

DBz 0.526316 0.533333 0.535714 0.481203 

DB~ 0.375000 0.519481 0.466019 0.529801 

DB4 0.526316 0.393443 0.466019 0.529801 

Table 2.12: Cue validity 

Then average value of cue validity for each term over all databases can be computed and 

is given in table 2.13 

Terms Average CV 

To 0.496053 

T1 0.490036 

Tz 0.494795 

TJ 0.484356 

Table 2.13: Average CV of terms 

The variance of the cue validity is computed using the formula [ML Y96] 

N (cv·· -ACV -~ 
CVV.·=L· IJ. J 

· J i=1 · · N 

The variance of cue validity of each term i.e. CVV is given in table 2.14 

Terms cvv 
To 0.003663 

T1 0.002865 

Tz 0.001004 

TJ 0.002149 

Table 2.14: CVV values of each term 
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The rank of a database is computed using the formula [MYL96] 

r· 
I 

M 
I cvv . * df .. 
j= 1 J IJ 

where M is the number of term. The databases and their ranks are given in table 2.15 

Databases Ranks 

DBo 0.041246 

DB1 0.045256 

DBz 0.046260 

DB3 0.040078 

DB4 0.041675 

Table 2.15: Databases and their Ranks 

The top databases are selected for answering the user query. 

2.4 Experimental Results 

The three database selection algorithms COR!, vGLOSS and CVV were implemented in 

C Language on a data set consisting of 40 databases containing documents and terms. 

First graphs were plotted one each for algorithm COR!, vGLOSS and CVV for selecting 

top-10, top-20, top-30 and top-40 databases. These graphs are shown in Figure 2.4. 

These algorithms were compared on database score. The database scores of the three 

algorithms were compared for top-1 0, top-20, top-30 and top-40 databases. The graphs 

are shown in Figure 2.4. It can be inferred from the graph that the database score increase 

is close to be linear for selecting top-1 0, top-20, top-30 and top-40 databases for all the 

three algorithms. 
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Figure 2.4: Selection oftop-(10, 20, 30, 40) databases using COR!, vGLOSS and CVV 

To compare the three database selection algorithms on the database score for top-10, top-

20, top-30 and top-40 databases, graphs were plotted and are shown in Figure 2.5. It can 

clearly seen in these graphs that vGLOSS selects databases with higher scores as 

compared to CVV and CORJ. CORJ performs the worst when compared with the other 

two algorithms. 
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Figure 2.5: Comparison ofCORI, vGLOSS and CVV for selecting oftop-(10, 20, 30, 40) databases 
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The three database selection algorithms were compared on the number of databases in 

common selected by them while selecting top-5, top-10, top-15, top-20, top-25 and top-30 

databases. The graphs for these comparisons were plotted and are shown in Figure 2.6. 
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Top 15 Databases Top 20 Databases 

15 20 

12 16 

~12 
8 

9 

3 .4 

0 0 

Top 25 Databases Top 30 Databases 

30 

24 
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12 

Figure 2.6: Selection of databases in common by CORI, vGLOSS and CVV for top-(5, 10, 15, 20, 25, 30) databases 
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The graphs show that the algorithm CORI and CVV have high number of databases in 

common selected by them whereas vGLOSS differs with CORI and CVV in terms of the 

database selected by it. Therefore, it can be inferred that CORI and CVV selects almost 

the same databases whereas this difference is high with databases selected by vGLOSS. 

Further, to view this behavior graph were plotted showing the number of databases in 

common selected by the three algorithms. The graph is shown in Figure 2. 7. It can be 

clearly seen in the graph that CORI and CVV are similar with respect to the databases 

selected by them. 
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Figure 2.7: Comparing CORI, vGLOSS and CVV for selecting databases in common 
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Chapter 3 

Result Merging 

The main objective of the Result Merging is to merge the document from the selected 

databases in such a way so that the most relevant document appears at the top. The user 

query is posed on the selected databases. Based on the underlying similarity methods, 

each database produces relevant documents as output. Result merger component of 

metasearch engine is responsible to sort the list according to global similarity measure. In 

this chapter, the result merging algorithms LMS, CORI and SR Result merging are 

compared on performance parameters. The algorithms of each of these methods along 

with an example are discussed. This is followed by experimental based comparisons of 

these methods. 

3.1 LMS Results Merging Approach [RAS03] 

The LMS algorithm takes selected databases as input and produces sorted list of 

documents as output. The algorithm based on LMS Result Merging [RAS03] is shown in 

Figure 3.1. 
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Input: Sorted list of databases D[S, n, 1], Query with I terms q[l) 

Output: Sorted list of t documents d[t) 

Method: 

Step 1: Repeat step (I) to (5) for each selected i'h database, 

Step 2: Calculate the term frequency (tf) of each term in selected databases 

For (each selected jth databases) 

For (each k"' term in selected databases) 

tfjk =log(!+ n(d, I)); n (d, t) is number of occurrence of term tin document d and n(d) is total 
n(d) 

number of terms in document d 

Step 3: Calculate the inverse document frequency (idf) 

For (each selectedj" documents) 

For (each kth term in documents) 

idfi; = log(N/n;); N is the number of documents in i'h database and n; is the number of 

documents containing j'h term 

Step 4: For(each selectedj'h documents) 

For (each kth term in documents) 

w jk = dfjk • idfjk weight of each term in each document 

Step 5: Calculate cosine similarities of a document with respect to query 

I 
~qk'Wjk 

Sim i ~. d J= k -I lqlldl 

Step 6: Calculate the number of relevant documents in i'h database l[i) 

For (each ith database) 

For (each j'h document) 

if(Sim;(q,d;)>Tn.moold); 

l[i)=l[i)+l; 

Step 7: Calculate S; for each database i 

I· • k 
S; = log[l + icrl 

L li 
i = I 

K is a constant (set to 600 in evaluations) and Cis number of selected database 

Step 8: Calculate weight (w;) for each database i 

w; = 1 + [ s; i s] ; where S is the mean collection score 

Step 9: Final document score can be updated as 

New score[i)[j]=Sim; (q,d;) • w[i) ; 

Step 10: Sort the document based on new score values 

Generate top-t documents list as output 

Figure 3.1: Algorithm based on LMS Merging [RAS03] 

In LMS algorithm [RAS03], list of selected databases are given as input to the algorithm. 

In step2, the term frequency of each term of all document in selected databases are 

computed. The inverse document frequency of all term in each document is computed in 

step 3. Step 4 computes the weight of each term in each document. This term weight is 
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computed by multiplying tf and idf of each term in a document. In stepS, similarity of a 

document with respect to the query is evaluated and numbers of relevant document are 

identified in step 6. Step? assign score to each database based on number of relevant 

documents in a database. The weight for each database is calculated in step 8. The score 

of the document is multiplied with new weight to evaluate the new score for a document 

in step9. The documents are sorted in descending order of their scores in step 10. The top 

documents are then displayed to the user. 

3.1.1 An Example 

Consider the list of databases selected by CORI selection approach (table 2.7 in Chapter 

2). The list of databases is given in table 3.1. 

Databases Similarity of DB 
DB2 0.414425 

DBI 0.414344 

DB0 0.414261 

DB3 0.414261 

DB4 0.414261 

Table 3.1: list of databases 

Consider the top three databases such as DB2, DB1, and DBo. Next, the document score of 

these selected databases is computed using the cosine similarity [RB04] between the 

document and query. The document score ofthese selected databases is given in table 3.2 

Doc0 Doc1 Docz Doc3 Doc4 

DBz 0.457657 0.457657 0.000000 0.457657 0.457657 

DBI 0.457657 0.715162 0.725796 0.568774 0.667025 

DBo 0.000000 0.652078 0.596110 0.507540 0.494404 

Table 3.2: Similarities of all document w.r.t query 

These document score will be updated by multiplying by a factor [RAS03] 

where Si is the score of i1h database and is computed as 
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where li is the number of relevant document in ith database. 1[2]=4, 1[1]= 5 and 1[0]=4. 

The top-five documents along with their scores are given in table 3.3 

Document Scores 

DB1:doc2 0.746078 

DB1:doc1 0.735147 

DB1:doc4 0.685665 

DBO:doc1 0.642967 

DBO:doc2 0.587781 

Table 3.3: Top 5 documents 

These 5 documents, which are considered to be relevant, are displayed to the user. 

3.2 CORI Results Merging Model [NF03] 

The algorithm based on CORI Result Merging [NF03) is shown in Figure 3.2. 

Input: D [m, n,J) where m is number of database, n is number of documents and I is number ofterms,q[l) 

Output: Ranked list of topmost databases 

Method: 

Stepl: Normalize, the database score on the scale of[O, I) 

For (each ith database) 

C' i := C i - C min ·; where Cmin is minimum collection score, Cmax is maximum 
Cmax -Cmin 

collection score and C', normalized score of i'• database 

Step 2: Normalize, the documents score on the scale of [0, I) 

For (eachj'h document) 

' 
D;J· -:omin · · · D · 

D ij ::;;: .,D-m-'<.ax-_-::Dc---m-in- ; where Dmin IS mlmmum document score, max IS 

maximum document score and D',; is normalized score of jth document of ith 

database 

Step 3: Calculate, the new value of the document score 

.. . J.OD' ij +0.4C' i .D' ij ; where D"•; is the new score of jlh document in i'• 
D ij·= 1.4 

database 

Step 4: Sort documents on the basis of new document score (D") 

Generate top-t documents 

Figure 3.2: Algorithm based on CORI Result Merging [NF03] 
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CORI Results Merging Model takes top rank databases as input [NF03]. The score of the 

databases is normalized on the scale of [0, 1] in step 1 and document similarity score 

(based on the cosine similarity measure between document vector and query vector) is 

normalized on the scale [0, 1] in step2. In step3, the new document score can be 

calculated by [NF03] 

l.OD'+0.4C'.D' 
D" := -------

1.4 

Finally, the documents are sorted based on the new score for the document in step4. The 

algorithm produces the top-t documents as output. 

3.2.1 An Example 

The top five selected databases list, given in table 3.1, are normalized on the scale [0, 1]. 

The database and their normalized score are given in table 3.5. 

Databases Normalized Score of DB 

DBz 0.000000 

DB1 0.509249 

DBo 1.000000 

DB3 0.000000 

D84 0.000000 

Table 3.5: Normalized Score on Scale [0, I) 

Consider databases DB2, DB1 and DBo. The cosine similarity of a document of each these 

selected databases with respect to query is given in table 3.6. 

Doco Doc1 Docz Doc3 Doc4 

DBz 0.457657 0.457657 0.000000 0.457657 0.457657 

DB1 0.457657 0.715162 0.725796 0.568774 0.667025 

DBo 0.000000 0.652078 0.596110 0.507540 0.494404 

Table 3.6: similarities of document w.r.t query 
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The documents maximum similarity score and minimum similarity score are 

Dmax: =0. 725796 

Dmin: =0.000000 

The documents scores are normalized using the formula [NF03] 

I D-D . 
D := mm 

Dmax -D · mm 

The normalized document score on [0, 1] is given in table 3.7. 

Do eo DOCt Docz Doc3 

DBz 0.630559 0.630559 0.000000 0.630559 

DBt 0.542145 0.847188 0.859785 0.673775 

DBo 0.000000 0.641736 0.586656 0.499491 

Doc4 

0.630559 

0.790165 

0.486563 

Table 3.7: Normalize document score on [0, 1] 

The document scores are updated using the formula [NF03] 

D":= I.OD'+0.4C'.D' 
1.4 

The updated document scores are given in table 3.8 

Do eo Doc1 . Doc2 Doc3 

DBz 0.630559 0.630559 0.000000 0.630559 
DBt 0.542145 0.847188 0.859785 0.673775 
DBo 0.000000 0.641736 0.586656 0.499491 

Table 3.8: Updated document score 

The top five documents selected are given in table 3.9. 

Documents Score 

database[l]:doc[2] 0.859785 

database[!] :doc[l] 0.847188 

database[!] :doc[4] 0.790165 

database[l):doc(3] 0.673775 

database[l]:doc[l] 0.641736 

Table 3.9: Top five Documents 

These top documents are then displayed to the user. 
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3.3 SR SCORE Merging [LXG03] 

The algorithm based on SR Score Merging [LXG03] is shown in Figure 3.3. 

Input: Sorted list of databases 

Output: Sorted list of documents 

Method: 

Step 1: databases should be rank based on the score only top rank document is to be selected for selecting 

their document 

Step2: document of the selected databases should be rank based on the document similarity measure of the 

document and query. 

Step3: update the document score based on the product of database score and document score with the 

database. 

Step4: sort the document list.and output the top t document list. 

Figure 3.3: Algorithm based on SR Result Merging [LXG03] 

In SR SCORE Merging [LXG03], the selected database information and query 

information forms input to the SR merging algorithm. In step 1, databases are ranked 

based on their scores and top databases are considered for selecting documents. In step2, 

the similarity of all documents in selected databases with respect to the query is 

computed. In step3, a score is assigned to document. This score is computed as the 

product of document score and databases score. The documents are sorted and the top-t 

documents are produced as output in step 4. 

3.3.1 An Example 

Consider the top-three databases DB2, DBt and DB0 from the databases selected, as given 

in table 3.1, using the CORI Selection approach. 

The similarity score of the document with respect to query is given in table in table 3 .I 0 
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Doc0 Doc1 Doc2 Doc3 Doc4 

DBz 0.457657 0.457657 0.000000 0.457657 0.457657 

DB1 0.457657 0.715162 0.725796 0.568774 0.667025 

DBo 0.000000 0.652078 0.596110 0.507540 0.494404 

Table 3.10: similarities of all document w.r.t query 

Next, document score is computed as product of document score and databases score. The 

new document score is given in table 3.11 

Do cO Docl Doc2 Doc3 Doc4 

DBz 0.189664 0.189664 0.000000 0.189664 0.189664 

DB1 0.189627 0.296323 0.300072 0.235668 0.276377 

DBo 0.000000 0.270130 0.246945 0.210254 0.204812 

Table 3.11: New score of all document w.r.t query 

The top five document produced by SR merging is given in table 3.12 

Documents Score 

database[l) :doc[2) 0.300072 

database(l):doc(l) 0.189627 

database[l]:doc[4) 0.276377 

database[O] :doc(l) 0.270130 

database[O) :doc(2) 0.246945 

Table 3.12: Top five Documents 

These top five documents are displayed to the user. 

3.4 Experimental Results 

The three result merging algorithms LMS, CORI, and SR were implemented in C 

Language on a data set consisting of 40 databases containing documents and terms. First 

graphs were plotted one each for algorithm LMS, CORI and SR for selecting top-1 0 

documents using the top-1 0, top-20, top-30 and top-40 databases selected using CORI 

database selection algorithm. These graphs are shown in Figure 3.4. The graphs show that 

there is no significant change in the documents score of top-1 0 documents selected from 

top-(10, 20, 30, 40) database selected by CORI database selection. 
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Figure 3.4: Selection oftop-10 documents using LMS, CORI and SR 

To compare the three results merging algorithms on the document score for selecting top-

I 0 documents from top-(1 0, 20, 30, 40) databases selected by algorithm CORI. The 

graphs were plotted and are shown in Figure 3.5. The graphs show that CORI result 

merging algorithm performs slightly better than the LMS and SR merging algorithms. 
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Figure 3.5: Comparison ofLMS, CORI and SR for selecting oftop-10 documents 
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The three result merging algorithms were compared on the number of documents in 

common selected by them while selecting top-5, top-10, top-15, top-20, top-25 and top-30 

documents from top-40 databases selected by CORI. The graphs for these comparisons 

were plotted and are shown in Figure 3.6. 
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Figure 3.6: Selection of documents in common by LMS, CORI and SR for top-(5, 10, 15, 20, 25, 30) documents 
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The graphs show that the algorithm LMS and SR have high number of documents in 

common selected by them whereas CORl differs with LMS and SR in terms of the 

documents selected by it. Therefore, it can be inferred that LMS and SR selects almost 

the same documents whereas this difference is high with documents selected by CORl. 

Further, to view this behavior graph were plotted showing the number of documents in 

common selected by the three algorithms. The graph is shown in Figure 3.7. It can be 

clearly seen in the graph that LMS and SR are similar with respect to the documents 

selected by them. 
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Figure 3.7: Comparing LMS, CORI and SR for selecting documents in common 
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Chapter 4 

Metasearch Retrieval 

Using the selection and the mergmg techniques given in chapter 2 and chapter 3 

respectively, the following metasearch retrieval of documents are possible. 

1. CORI Collection Selection [MYL02] with LMS Result Merge[RAS03] 

2. CORI Collection Selection [MYL02] with CORI Result Merge [NF03] 

3. CORI Collection Selection [MYL02] with SR Result Merge [LXG03] 

4. vGLOSS Collection Selection [GGM95]with LMS Result Merge [RAS03] 

5. vGLOSS Collection Selection [GGM95] with CORI Result Merge [NF03] 

6. vGLOSS Collection Selection [GGM95] with SR Result Merge [LXG03] 

7. CVV Collection Selection [MYL02] with LMS Result Merge [RAS03] 

8. CVV Collection Selection [MYL02] with CORI Result Merge [NF03] 

9. CVV Collection Selection [MYL02]with SR Result Merge [LXG03] 

The metasearch retrieval options 1, 2 and 3 have already been dealt with in chapter 3. The 

remaining combinations are discussed next. 
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4.1 vGLOSS Collection Selection with LMS Result Merge 

First the vGLOSS Collection Selection [GGM95] is used to find out the top three 

databases. The LMS Result Merging [RAS03] is then used to retrieve the top five 

documents. 

For selecting the top three databases, first the cosine similarity of all documents with 

respect to query is computed and is shown in table 4.1 

Doc0 Doc! Docz Doc3 Doc4 

DBo 0.0000000 0.652078 0.596110 0.507540 0.494404 

DBt 0.457657 0.715162 0.725796 0.568774 0.667025 

DB2 0.457657 0.457657 0.000000 0.457657 0.457657 

DB3 0.605235 0.568774 0.568774 0.592228 0.457657 

DB4 0.568774 0.711777 0.680501 0.659872 0.000000 

Table 4.1: Similarities of all Document w.r.t Query 

Next, the goodness of the databases is computed and is given in table 4.2 

Databases Goodness 

DBt 3.134414 

DB3 2.792668 

DB4 2.620924 

DB0 2.250131 

DBz 1.830628 

Table 4.2: Goodness score of database 

Top three selected databases are DB1. DB3, and DB4• Next, apply LMS document merge 

to merge the document of these top three databases. The cosine similarity between the 

documents of these selected three databases and the query is computed. These are given 

in table 4.3. 

Do co Doc! Docz Doc3 Doc4 

DBt 0.457657 0.715162 0.725796 0.568774 0.667025 

DB3 0.605235 0.568774 0.568774 0.592228 0.457657 

DB4 0.568774 0.711777 0.680501 0.659872 0.000000 

Table 4.3: Display similarities of documents w.r.t query 
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Documents that satisfy some threshold are considered relevant. Number of relevant 

document selected from each databases is computed and for each databases a database 

score is computed. Then database score is used to compute the weight of each database. 

The document score is then updated as the product of the weight of the databases and 

document score. The top five documents are given in table 4.4 

Documents Score 

database[l]:doc[2) 0.735933 

database[l):doc[l) 0.725150 

database[4]:doc[l) 0.691895 

database[!) :doc[4) 0.676341 

database[4):doc[2) 0.661492 

Table 4.4: Top five Documents 

4.2 vGLOSS Collection Selection with CORI Result Merge 

First the vGLOSS Collection Selection [GGM97] is used to find out the top three 

databases. The CORI Result Merging [NF03] is then used to retrieve the top five 

documents. As mentioned above, the top three databases selected by vGLOSS are DB~, 

DB3 and DB4. Next, apply the CORI Result Merging. First, the database is normalized on 

the scale of [0, 1] as given in table 4.5. 

DB Normalized Score of DB 

DB0 0.321757 

DBt 1.000000 

DBz 0.000000 

DB3 0.737881 

DB4 0.606154 

Table 4.5: Normalized database on scale [0, I) 

The document score is normalized on the scale of [0, 1] and is given in table 4.6. 

Doc0 Doc1 Docz Doc3 Doc4 

DBt 0.630558 0.985348 1.000000 0.783655 0.919025 

DB3 0.833891 0.783655 0.783655 0.815970 0.630558 

DB4 0.783655 0.980684 0.937592 0.909170 0.000000 

Table 4.6: Document score on scale [0, I] 
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The updated document score is given in table 4. 7. 

Dmax:=0.725796, Dmin:=O.OOOOOO 

Do co Doc1 Docz Doc3 Doc4 

DB1 0.630558 0.985348 1.000000 0.783655 0.919025 

DB3 0.771439 0.724966 0.724966 0.754861 0.583334 

DB4 0.694957 0.870330 0.832087 0.806863 0.000000 

Table 4.7: Updated document score 

Sort the document list and output the top five documents as given in table 4.8 

Documents Score 

database [1]: doc [2] 1.000000 

database[l]:doc[l] 0.985348 

database[l]:doc[4] 0.919025 

database[4]:doc[l] 0.870330 

database[4] :doc[2] 0.832087 

Table 4.8: Top five Documents 

4.3 vGLOSS Collection Selection with SR Result Merge 

First the vGLOSS Collection Selection [GGM95] is used to find out the top three 

databases. The SR Result Merging [LXG03] is then used to retrieve the top five 

documents. 

As mentioned above, the top three databases selected by vGLOSS are DB1, DB3 and DB4. 

Next, the SR Result Merging is applied. First, the cosine similarity of the document with 

respect to query is computed as given in table 4.9. 

Doco Doc1 Docz Doc3 Doc4 

DB1 0.457657 0.715162 0.725796 0.568774 0.667025 

DB3 0.605235 0.568774 0.568774 0.592228 0.457657 

DB4 0.568774 0.711777 0.680501 0.659872 0.000000 

Table 4.9: Similarities of documents in databases 

49 



The new score value is computed as a product of document score and the corresponding 

database score and is given in table 4.1 0. 

Doco Doc1 Docz Doc3 Doc4 

DBt 1.434486 2.241613 2.274945 1.782773 2.090732 

DB3 1.690220 1.588396. 1.588396 1.653896 1.278084 

DB4 1.490713 1.865513 1.7835414 1.729474 0.000000 

Table 4.10: New score of documents in selected databases 

The documents are sorted baseq on the new scores. Finally, the top five documents are 

produced as output. The top five documents are given in table 4.11. 

Documents Score 

database[l]:doc[2] 2.274945 

database (I] :doc[l] 2.241613 

database[l]:doc[4] 2.090732 

database[4]:doc[l] 1.865513 

database[4]:doc[2] 1.783541 

Table 4.11: Top five Documents 

4.4 CVV Collection Selection with LMS Result Merge 

First the CVV Collection Selection [MYL02] is used to find out the top three databases. 

The LMS Result Merging [RAS03] is then used to retrieve the top five documents. The 

CVV collection selection algorithms first compute the document frequency of each term 

as given in table 4.12. 

To Tt Tz T3 

DBo 5 4 5 3 

DBt 5 5 4 4 

DBz 5 5 5 4 

DB3 3 5 4 5 

DB4 5 3 4 5 

Table 4.12: Document Frequency 

The cardinality of the databases is then computed as the number of documents contained 

in each database as given in table 4.13. 

so 



Database Cardinality 

DBo 5 

DB1 5 

DBz 5 

DB3 5 

DB4 5 

Table 4.13: Cardinality of each database 

Using the document frequency and the cardinality of each database, the cue validity of 

each term is computed and is given in Table 4.14 

To TJ Tz T3 

DBo 0.523616 0.470588 0.530973 0.403361 

DB1 0.526316 0.533333 0.475248 0.477612 

DBz 0.526316 0.533333 0.535714 0.481203 

DB3 0.375000 0.519481 0.466019 0.529801 

DB4 0.526316 0.393443 0.466019 0.529801 

Table 4.14: cue validity of each tenn 

Next, average of these cue validity (ACV) is computed for each query term over all the 

databases. These are given table 4.15 

Term ACV 

To 0.496053 

TJ 0.490036 

Tz 0.494795 

T3 0.484356 

Table 4.15: ACV of terms 

Next variance of cue validity CVV is computed and is given table 2 The CVV value are 

given in table 4.16 

Term ACV 

To 0.003663 

TJ 0.002865 

Tz 0.001004 

T3 0.002149 

Table 4.16: CVV of terms 

Using CVV and document frequency, the rank of the database is computed. The sorted 

list of databases based on their rank is given in table 4.17 
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Databases Rank 

DBz 0.046260 

DBt 0.045256 

D84 0.041675 

DBo 0.041246 

D83 0.040078 

Table 4.17: Top five database 

The top three databases selected are DB2, DB~, and DB4. Next, the LMS document merge 

to merge the document of these top three databases is applied. The cosine similarity 

between the documents of these selected databases (DB2, DB1 and DB4) and the query is 

computed. These are given in table 4.18. 

Do eo Doc! Docz Doc3 Doc4 

DBz 0.457657 0.457657 0.000000 0.457657 0.457657 

DBt 0.457657 0.715162 0.725796 0.568774 0.667025 

D84 0.568774 0.711777 0.680501 0.659872 0.000000 

Table 4.18: Display Similarities of all document w.r.t Query 

Documents that satisfY some threshold are considered relevant. Number of relevant 

document selected from each databases is computed and for each databases a database 

score is computed. Then database score is used to compute the weight of each database. 

The document score is then updated as the product of the weight of the databases and 

document score. The top five documents are given in table 4.19. 

Documents Score 

database[l]:doc(2) 0.746078 

database[ 1) :doc[l) 0.735147 

database[4) :doc[l) 0.701832 

database(l):doc[4). 0.685665 

database[4]:doc[2] 0.670992 

Table 4.19: Top five document 
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4.5 CVV Collection Selection with CORI Result Merge: 

First the CVV Collection Selection [MYL02] is used to select top three databases. The 

CORI Result Merging [NF03] is then used to retrieve the top five documents. 

As mentioned above, the CVV collection approach selects the top three databases as DB2, 

DB1 and DB4. Next, CORI Result Merging is applied. First, the databases are normalized 

on the scale of [0, 1] as given in table 4.20. 

DB Normalized Score of DB 

DB2 1.000000 

DBI · 0.837593 

DB4 0.258330 

DBO 0 .. 188935 

DB3 0.000000 

Table 4.20: Normalized database on scale [0, 1] 

The document score is then normalized on the scale [0, 1] and is given in table 4.21. 

Do eo DOCt Doc2 Doc3 Doc4 

DB2 0.630559 0.632559 0.000000 0.630559 0.630559 

DBt 0.630559 0.985348 1.000000 0.783655 0.919025 

DB4 0.783655 0.980684 0.937592 0.909170 0.000000 

Table 4.21: Normalize document score on scale [0, 1] 

The document score is updated. The updated document score is given in table 4.22. 

Do eo Doc1 Doc2 Doc3 Doc4 

DB2 0.630559 0.630559 0.000000 0.630559 0.630559 

DBt 0.601294 0.939625 0.953598 0.747291 0.876380 

DB4 0.617594 0.772871 0.738910 0.716511 0.000000 

Table 4.22: updated score of documents on scale fO, 11 

The documents are sorted base on updated document score and are given in table 4.23. 

Documents Score 

database(! I :doc[21 0.953598 

database(! I :doc[l I 0.939625 

database[! I :doc[41 0.876380 

database(41 :doc[l 1 0.772871 

database[! I :doc[31 0.747291 

Table 4.23: Top five documents 
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4.6 CVV Collection Selection with SR Result Merge 

First the CVV Collection Selection [MYL02] is used to select top three databases. The 

SR Result Merging [LXG03] is then used to retrieve the top five documents. 

As mentioned above, CVV collection selection approach selects the top three databases 

as DB2, DB1 and DB4. Next, SR Result Merging is applied. The cosine similarity of the 

document w.r.t query is computed and is given in table 4.24. 

Do co Doc1 Docz Doc3 Doc4 

DBz 0.457657 0.457657 0.000000 0.457657 0.457657 

DB1 0.457657 0.715162 0.725796 0.568774 0.667025 

DB4 0.568774 0.711777 0.680501 0.659872 0.000000 

Table 4.24: Similarities of documents w.r.t Query 

The new score for each database is computed as a product of the document score and the 

corresponding database score and is given in table 4.25. 

Do co Doc1 Docz Doc3 Doc4 

DBz 0.046260 0.046260 0.000000 0.046260 0.046260 

DB1 0.020711 0.032365 0.032846 0.025740 0.030186 

DB4 0.023703 0.029663 0.028359 0.027500 0.000000 

Table 4.25: New score of documents in selected databases 

The documents are sorted on new score. The top five documents are produced as output. 

The top five documents are given in table 4.26. 

Documents Score 

database[2):doc[O) 0.046260 

database[2) :doc[l) 0.046260 

database[2) :doc[J) 0.046260 

database[l):doc[4) 0.046260 

database[l):doc[2j 0.032846 

Table 4.26: Too five documents 
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4. 7 Experimental Results 

Graphs were plotted for top-k (k=5, 10, 15, 20, 25, 30) documents selection from 

databases selected by vGLOSS and CVV algorithms. First, graphs were plotted for 

selecting top-k documents using LMS, CORI and SR merging algorithms from databases 

selected by vGLOSS. The graphs are shown in Figure 4.1. 
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Figure 4.1: Selection of documents in common by LMS, CORI and SR for top-(5, 10, 15, 20, 25, 30) documents 

It can be observed from the graphs that LMS and SR algorithms retrieve almost same 

documents whereas CORI selects lesser documents in common with LMS and SR. This 

difference can also be seen clearly in the graph, shown in Figure 4.2. 

Graphs were plotted for selecting top-k documents using LMS, CORI and SR merging 

algorithms from databases selected by CVV. The graphs are shown in Figure 4.3. 
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Figure 4.2: Comparing LMS, COR! and SR for selecting documents in common 
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Figure 4.3: Selection of documents in common by LMS, CORI and SR for top-(5, 10, 15, 20, 25, 30) documents 
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It can be observed from the graphs that LMS and SR algorithms retrieve almost same 

documents whereas CORI selects lesser documents in common with LMS and SR. This 

difference can also be seen clearly in the graph, shown in Figure 4.4. 
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Figure 4.4: Comparing LMS, CORI and SR for selecting documents in common 
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Chapter 5 

Conclusion 

Most of the information on the Web is unstructured and dynamic in nature. Information 

retrieval systems are used to query such unstructured data. One of the main problems 

with information retrieval systems is scalability. This problem can be overcome using 

metasearch engine. Metasearch engine is a search engine over search engines. This 

dissertation focuses on retrieving information using metasearch. Metasearch engine 

comprises of two components namely database selection and result merging. In 

database selection, database relevant to a query are selected to limit the search space. 

The result merging merges relevant documents based on global similarity measure. In 

this dissertation, database selection and result merging techniques are studied with 

emphasis on database selection techniques like CORI, vGLOSS and CVV and result 

merging techniques like LMS, CORI and SR. 

First, the database selection techniques CORI, vGLOSS and CVV were experimentally 

compared on parameters like database score and number of database in common 

selected by these techniques. The comparison shows that vGLOSS select databases with 

higher score as compared to CVV and CORI. Further, it was observed that CORI and 

CVV selected almost the same databases. 
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Next, the result merging techniques LMS, CORI and SR were experimentally compared 

on document score. It was observed that result merging technique CORI performed 

slightly better than LMS and SR result merging techniques. 

Further, metasearch retrieval of information using all possible combination of the 

above-mentioned database selection and result merging techniques were experimentally 

compared on number of documents in common retrieved by these combinations. It was 

observed that LMS and SR retrieved almost same documents irrespective of the 

techniques used for database selection. 
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