
INFORMATION RETRIEVAL USING METASEARCH

A dissertation submitted to the Jawaharlal Nehru University
in partial fulfillment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

IN

COMPUTER SCIENCE AND TECHNOLOGY

. '

I ,

BY

HEMANTARYA

II i
ilal· ":'

• .JNU

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI- 110067

JULY 2009

(})ecficated to

:My foving CJ>arents

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI- 110067

DECLARATION

This is to certify that the dissertation entitled "Information Retrieval using

Metasearch" is being submitted to the School of Computer and Systems Sciences,

Jawaharlal Nehru University, New Delhi, in partial fulfillment of the requirements for

the award of the degree of Master of Technology in Computer Science &

Technology, is a record of bonafide work carried out by me under the supervision of

Dr. T.V. Vijay Kumar.

The matter embodied in the dissertation has not been submitted in part or full to any

University or Institution for the award of any degree or diploma.

~-··Poo~
Hemant Arya

(Student)

~ . :

' JNU

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI- 110067

CERTIFICATE

This is to certify that this dissertation entitled "Information Retrieval using

Metasearch" submitted by Mr. Hemant Arya, to the School of Computer and Systems

Sciences, Jawaharlal Nehru University, New Delhi, for the award of degree of Master

of Technology in Computer Science & Technology, is a research work carried out by

him under the supervision of Dr. T.V. Vijay Kumar.

'Jv.v~~
Dr. T. v:ijay Kumar~~o'+--2-<.

(Supervisor)

-4L9L
Prof. S. Minz

(Dean)

Acknowledgement

As a student, we always dream doing something concrete and useful which can be

applicable. I fulfill my quest of creative thinking while working on this dissertation,

which involved expert guidance.

I express my sincere gratitude for Dr. T.V. Vijay Kumar for introducing me to the

fascinating area of Metasearch. His constant support and encouragement have been

available throughout the completion of the work. It has indeed been a privilege to carry

out this work under his supervision.

I would also like to thank Prof. S. Minz, Prof. S. Balasundaram, Dr. D.P. Vidyarthi

and Mr. Zahid Raza for their vast experience and array of qualification make me proud

with honor of being the student of this illustrious institution.

I express my heartily thanks to Vikram Singh and Ajay Kumar Verma for helping me

to design the solutions and in programming. And their consistent support to update my

modus operandi. I owe my indebtedness to Mohammad Haider and Santosh Kumar for

their wonderful suggestion and judicious guidance. I also want to extend my thanks to my

friend Manoj for their encouragement to peruse the M.Tech.Course. I would like to

mention the names of Callan and Garcia-Molina for their wonderful papers.

1 would be failing iii my duty if I did not acknowledge Anil Kumar Giri, Rajesh

Kumar and Kumar Dilip for their constant inspiring and support provided at all stages

of this work.

I owe my deepest gratitude to my family members for their love and care given to me

during the course of my work.

Hemant Arya

Table of Contents

Chapter 1: IR Using Metasearch .. 1 - 19

1.1 Metasearch Engine ... 4

1.1.1 Database Selection .. 6

1.1.2 Result Merging ... 16

1.2 Aim .. 19

1.3 Organization ... 19

Chapter 2: Database Selection .. 20-31

2.1CORI Collection Selection Model ... 20

2.1.1 An Example ... 21

2.2 vGLOSS Collection Selection Model ... 24

2.2.1 An Example ... 25

2.3 CVV Collection Selection Model .. 26

2.3.1 An Example ... 27

2.4 Experimental Results .. 29

Chapter 3: Result Merging ... 34 - 45

3.1LMS Result Merging Approach ... 34

3.1.1 An Example ... 36

3.2 CORI Result Merging Model .. 37

3.2.1 An Example ... 38

3.3 SR SCORE Merging ... 40

3.3.1 An Example .. 40

3.4 Experimental Results.- _ ... 41

Chapter 4: Metasearch Retrieval ... 46- 57

4.1 vGLOSS Collection Selection with LMS Result Merge 47

4.2 vGLOSS Collection Selection with CORI Result Merge 48

4.3 vGLOSS Collection Selection with SR Result Merge 49

4.4 CVV Collection Selection with LMS Result Merge 50

4.5 CVV Collection Selection with CORI Result Merge 53

4.6 CVV Collection Selection with SR Result Merge 54

4. 7 Experimental Results ... 55

Chapter 5: Conclusion .. 58

Reference

Chapter 1

IR Using Metasearch

Information Retrieval is the process of finding out of information (usually unstructured

data) by giving the unstructured keyword. Textual data is usually unstructured. User gives

their query in the form of a keyword. This is sent to the underlying IR system [SKS06].

The relevant documents are retrieved based on the relevance measure between the user

query keyword and the underlying documents.

In IR systems, textual data is unstructured. Information retrieval generally refers to the

querying of unstructured textual data. Information retrieval has played a critical role in

making a web document a productive and useful for researches. Keyword based

information retrieval can be used not only for retrieving textual data, but also retrieved

video and audio data[SKS06].

In IR system each query and document term have associated weight. The weight specifies

the magnitude of role to select the document. Document term weight [SKS06] can be

computed as wj = tfj * idfj that is product of term frequency and inverse document

frequency

1

Term frequency [SKS06] of j 1h term tf = log(l + n(d,t))
.

1 n(d)
where n(d) denotes the

number of term in the document d and, n (d, t) denotes the number of occurrence of term

fh in the document d.

Inverse Document Frequency [SKS06] can be calculated as:

. N
uifj =log-

n;

Where N is total number of document and n is the number of document that contain the j 1
h

term

S h . h f ·th . ·th d ,r l N o t e we1g t o J term m 1 ocument w ii = l.J ii x og-
n;

Query term weight is the number of occurrence of a particular term over all query term

[RB04]. For query term weight, Salton and Buckley [RB04] suggest

0.5freq; N
W; q = (0.5 + ,q) X log-

, maxfreq;,q n;

Where freq;,q the frequency of i'h term in query q and maxfreq;,q is the maximum

frequency in query q

Several retrieval methods exist namely Boolean model, Vector Space model, Probabilistic

model, Language model, Inference model, impact factor model, connectivity model,

mutual citation model, page rank model, HITS, SALSA model, Associative interaction

model and Bayesian model.

Boolean model (RB04] is based on the concept of set theory and Boolean algebra. User

gives its query in the form of Boolean expression. Term weight in case of Boolean model

is either {0, 1} means binary weight that's means term either present or absent. There is

no concept of partial matching. The absence of partial matching is a major disadvantage

of Boolean model.

2

In a vector space model [RB04] each query and document can be represented as a vector

of query term weight and document term weight respectively. Similarity between the

document and the query can be computed by a cosine similarity function. Each query

term have some weight associated with it, which signifies the importance of a term.

Weight is not usually binary as in the case of Boolean. So there can be partial matching.

w3 ... wm) where w~, w2, w3 ... Wm are document term weight and m is the number of query

term. The similarity between the document and query can be calculated by [RB04]:

Where value of sim(q,d) lies between 0 and I. If sim(d,q)=O ,then not matched else if

sim(d,q)=I,then perfectly matched else ifsim(d,q)=[O,l] ,then partial matched.

The probabilistic model is based on probability ranking principle [RB04], which states

that optimal retrieval performance is achieved when documents are ranked according to

their probabilities of being judged relevant to a query. For the probabilistic model, the

index term weight variables are all binary .A query q is a subset of index terms. Let R be

the set of relevant document. Let R be the complement of R (set of non relevant

R
document). Let P(=) be the probability that the document dj is relevant to the query

dj

q and P(R) be the probability that dj is non relevant to q [RB04]. The similarity
dj

sim(dj,q) of the document dj to the query q [RB04] is calculated as

p(/d-) d.
Sim(dj,q) = · 1

p(R.L)
I dj

Using Baye's rule [RB04],

3

P(~)* P(R)
Sim(di,q) = 1: J

P(d IR) * P(ii)

d
P(-1

) denotes the probability of randomly selecting the document dj from relevant
R

d
document R. P(..!.) denotes the probability of randomly selecting document dj from the

R

non relevant setR. Since p(R) and P(R) are the same for all document in the collection

[RB04], therefore

There are some basic problems with an IR system such as all the document need not exist

in a single database. This limits the search area. Further it becomes difficult for IR

systems to handle documents dynamically. This scalability issues is addressed by

Metasearch engines. A metasearch engine is a search engine over search engines. A

metasearch engine has large number of databases, containing documents, attached to

them. Metasearch engine is discussed next.

1.1 Metasearch Engine

Metasearch engine [MYL02] can be defined as the search engine over search engines.

Various collection/databases can be attached with the unified system called the Meta

search engine. User send query to the Meta search engine, which is responsible for

identifying useful subset of databases that may contain relevant documents. The

documents retrieved from these identified databases are combined to form a unified single

4

ranked list ordered according to the relevance with most relevant document at the top.

The metasearch engine architecture [MYL02] is shown in Figure 1.1.

'""' ":-· •'1<:· \ ·.< '.,,·'':"'"' ""'-' <:,:user lriteface .
... ' ' .. ,· "".ICC"+S;:.H•

••••••

Figure 1.1: Two-level architecture of a Metasearch engine [MYL02]

Database selector: The main objective of the database selector is to identify the

potentially useful database from all the databases [MYL02].

Document Selector: Document selector selects relevan.t document from the databases

that are selected. Various similarity measure methods such as Boolean, vector space

model, probabilistic model are exit for calculating the relevance document with respect to

user query [MYL02].

Query Dispatcher: It is responsible for the passing the query with necessary changes to

the original query and forward the modified query to the appropriate databases [MYL02].

Result merger: It merges the document retrieved from the selected databases and

arranges them in single rank list, which is ordered by relevance with the most relevant

document appearing at the top.

Metasearch engines increase the search coverage area, solves the scalability problem of

searching the Web, facilitate the invocation and cooperation of multiple search engines

and also improve the retrieval effectiveness.

5

1.1.1 Database Selection

Metasearch engine on receiving a user query forwards it to a subset of database which

may contain relevant document. Appropriate selection of database is carried out by using

good database selection algorithms. These algorithms differ on the database

representative which is used to indicate the content of database. There are three basic data

representative approaches:

Rough Representative Approach: In this approach content of each database is represent

by using few keywords or paragraph [MYL02], which is mostly performed manually as in

ALIWEB [KM94].

Statistical Representative Approach: In this approaches the content of each database is

represented by detailed statistical information such as term frequency, document

frequency [MYL02]. This approach allows more accurate estimation of database

usefulness because of detailed statistical information. Main problem with this approach is

scalability issue, like in D-WISE [YL96], CORI~Net [CLC95], gGLOSS[GGM95].

Learning Based Approach: In this approaches, the usefulness of the database for a new

query is based on the past retrieval experiences with training query [MYL02]. There are

three type of learning approach such as Static, Dynamic and Hybrid. In static learning

approaches, the retrieval knowledge once learned can't be changed. This is not suitable to

the changes in database and query patterns, like in MRDD Approach [VGL95b]. In

Dynamic learning approach, problem due to static approaches can be overcome by using

'·· real user queries and updating the retrieval experience like in Savvy Search Approach

[DH97]. Hybrid learning approaches overcomes the weakness of the other two learning

approaches by obtaining knowledge from training queries. This knowledge be further

updated using the real user queries like in PROFUSION [FG99].

6

Cost Based Approaches: In this approach, the usefulness of the database is based on

various cost factors such as cost of accessing digital library, time, money and query

evaluations cost [F97]. This approach allows only retrieval of document from databases

that minimize the accessing cost. Like TRD-CS [ASB02] and ReDDE[SC03] etc.

Several database selection models exist like D-WISE (Distributed Web Index Search

Engine), gGLOSS (generalized Glossary Of Servers' Server Approaches), CORI-Net

(Collection Retrieval Inference Network Approaches), MRDD (Modeling Relevant

Document Distribution Approaches), SavvySearch, PROFUSION, TRD-CS (Top Ranked

Document for Collection Selection Approaches), DTF (Decision theoretic framework

Approaches), LWP (Light Weight Probes Approaches), ReDDE (Resource Selection that

normalize database size)

D-WISE (Distributed Web Index Search Engine) [MYL02]

This approach uses statistical information of each database i.e. df;, which is the

d fi f ·lh . ·lh d b . th b f d . ·lh d b ocument requency o J term m 1 ata ase t.e. e num er o ocument m 1 ata ase

that cointain j'h term, and ni is the total number of document in the i1h database[MYL02].

The Cue Validity (CV), which specify the proportion of document that contains relevant

j'h term in i1h database over all documents containing j'h term in remaining database, is

calculated as [MYL02]:

CV ij
n,

N

df" L df"
-- + -"'-"-'N'---1 --

n; "' L. n'
Jr.~ i

Where N is the total number of component database in metasearch engine. Now calculate

the distinguishing power of j'h term called CVVj, which is Variance of CVij of each term

ti over all the databases.

7

Where ACVi is the average of Cue Validity of the fh term in all databases [MLY02].

CVVj specifies the importance of a term ti over all other query terms. It helps in retrieving

relevant document. IfCVVr > CVVs then tr> ts where term tr has more weightage than ts.
'

Now the ranking [ML Y02] can calculated as.

M

r; = L:cvvj ·dfij
j=l

where M is number of query terms and ri is the ranking score of i'h database

GLOSS (Glossary Of Servers' Server approaches)[GGM95]

GLOSS can be categorised as vGLOSS, bGLOSS and hGLOSS.

vGLOSS (vector GLOSS[GGM95])

In case of vGLOSS the similarity between the document and the query can be calculated

as

Sim(q,d)= f,q1 · wj

j=l

Where ~ is weight of j'h term in query and wj is weight of j 1h term in document.

The Goodness of a database is computed as

Goodness= (l,q,db) = LSim(q,d)
dEdbASim(q,d)~/

The number of document in each database, with similarity to the query greater than

threshold i.e. 1 are used to find Goodness [GGM95].

bGLOSS (boolean GLOSS[GGM95])

Let Jdbil be the total number of document in database dbi and fij is the number of

document in dbi that contain tj. For a given database dbi and t1, t2, tn keyword pair and

8

any document d E db;. So the estimation number of document in db; that will satisfy all

query terms is given as

n

[Jfij
Estimate(t, A/ 2 1\ ... 1\ln,db;)=~

JdbJ

hGLOSS (hybrid GLOSS[GGM95])

Let us consider a number of GLOSS Server G1, G2 Gs. All servers are of

same type i.e. either they are bGLOSS or vGLOSS.

hGLOSS summarize the content of their GLOSS servers. hGLOSS can treat the

information about a database as tradition GLOSS server treat the information about a

document in the underlying databases. The document for hGLOSS will be the database

summaries at the GLOSS servers. GLOSS server stores hrj i.e. the number of database in

vGLOSS, Gr that contain term tj, drj is the total number of document that contain term ti

in each database in vGLOSS Gr.

CORI-Net (Collection Retrieval Inference Network Approaches) [CLC95]

CORI-Net [CLC95] is inference network based probabilistic approach. It uses the

document frequency and database frequency to select databases. If a term appears in k

document in the database, the term is repeated k times in the super document. As a result,

the document frequency of a term in the database becomes the term frequency in the

super document [CLC95]. Let D denote the database of all super documents. Note that the

database frequencies of term in the database become the term frequency in D. In each

super document is represented as a vector of weight tf*idf (term frequency weight times

inverse document frequency weight)[CLC95]. The cosine similarity function can be used

between stored super document and given user query. This similarity function can be used

to rank all component database (or super document).

9

Let N be the number of database in the metasearch engine, dtji is document frequency of

j'h term in i1h component database and dbj is database frequency of j'h term[SJ04].

First the belief that 0; contain useful document due to the j'h query term is computed by

[SJ04]:

Where

()
df ..

Tij = C 2 + I - C 2 " '
dfij + K

lo (N + 0.5)
g dbf j

log(N+!.O)

K = C ·(1-C)+C .~
J • •adw;

where dw; is number of words in 0; and adw; is average number of words. in a database.

The value of C1, C2, C3, C4 estimated empirically by performing experiment on the actual

text collection [SJ04]. p(;;;) is essentially the tf*idf weight of term ti in the super

document corresponding to database D; and can be estimated, for query term weight ti in

q. Now ranking score of each database with respect to given query can be calculated by as

[SJ04]:

where k is total number of query terms.

Learning based Approach:

Learning based approaches can be classified as Static based (e.g. MRDD), Dynamic

based (e.g. SavvySearch) and Hybrid based (e.g. PROFUSION)

10

MRDD (Modeling Relevant Document Distribution Approaches) [VGL95b]

In this approach, the knowledge once learned can't be changed. In learning phase, some

set of queries also called training query is used. These set of queries is forwarded to each

component database. From the retrieved documents, relevant documents are identified.

Distribution vector of all relevant documents is obtained [MYL02]. The user query is

matched with the k most similar training query. For each database D, the average relevant

document over the k vector for each k queries and D is obtained [MYL02]. These average

distribution vectors are then used to rank the database. The documents from higher rank

database are retrieved. In MRDD approaches, the representative of a component database

is the set of distribution vectors for all training queries. Main drawback of MRDD is that

the entire learning part is performed manually and it is very difficult to identify

appropriate training queries. The approach does not perform well when content of

database keeps changing dynamically.

SavvySearch Approach [DH95]

In SavvySearch Approach [DH95], weight vector (w~, w2 ••• wm) is maintained where each

w;'s corresponds to i'h term in the database. The weight wi is adjusted when a query

containing term t; is used to retrieve documents from the component database D. If no

document is retrieved, the weight is reduced by Ilk. If at least one document is

read/clicked by the user, the weight is increase by Ilk. Hence large positive value w;

indicates that the database D responds well to term t; and vice versa. Given a query q

containing term t~, tz, ,tk, the ranking score for each database D is calculated [MYL02]

as:

11

where Ph is the penalty for a search engine, which depends upon the retrieve results, Pr is

the penalty for a search engine, which depends upon the response time, log(N/fi) is

inverse database frequency weight of term ti , N is number of databases and fi is number

of database having a positive weight value for term ti . The Savvy Search have limitations

like terms in the previous queries are only considered, does not perform well for new

query term and also for query terms that are rarely used.

PROFUSION Approach [FG99]

The PROFUSION approach [FG99] use both static and dynamic approaches and is also

called hybrid Approach[FG99]. Problem due to only static features and only dynamic

features can be overcomes by using both the approaches together. The hybrid learning

approach utilized in 13 categories problems such as Science and engineering, Computer

science, Travel, Medical and Biotechnology, Business and Finance, Social and Religion,

Society, law and government, Animals and environment, History, Recreation and

entertainment, Arts, Music and Food. Some set of term is associated with each of the 13

categories to specify the type of document each category contains. For each of the 13

categories, a set of training queries are identified and for a given database D and a given

categories C each associated training query is submitted to database D. Score reflecting

the performance of D with respect to the query and the categories C is computed

[MYL02] as

10

c R _,_i=::_!.I __ x _
LN

10 10

where C is the constant and R is the number of relevant document in 1 0 top documents.

Value ofNi is calculated as

N; =){ , if i'h ranked document is relevant

= 0, otherwise

12

Score of all training queries associated with the category C is averaged for database D

and this average is the confidence factors of the database with respect to category. At the

end of the training, there is a confidence factor for each database with respect to each of

the above 13 categories [MYL02].

In the testing phase, the user query, containing a set of terms, is mapped to set of

categories based on query terms. The database is then ranked based on the sum of the

confidence factors of each database with respect to mapped categories. This sum of

confidence factor with respect to query is called the ranking score of the database for q.

The score of the database with respect to a given query is also updated dynamically based

on retrieved result. If the user considers document d to be relevant and d is not the

topmost document then the score of the database having document d is increased and

score of all other databases whose documents are ranked higher then d is

decreased[MYL02].

Cost Based Approach

Several cost based approaches exist in literature like TRD-CS, DTF, ReDDE, LWP etc.

TRD-CS (Top Ranked Document for Collection Selection Approach) [ASB02]

In TRD-CS [ASB02], the user query is broadcasted to all available databases. Each of

these databases retrieves n ranked documents. The retrieved documents are sorted based

on their scores. The databases containing the n-first documents are selected. The

document score can be calculated [ASB02] as

Score(d,q) = (c, · nbJ+ (C2 ·dis_ ind(d,q))+nbC occ
3

where nbd is number of search keyword included in the document d, nb occ is number of

occurrence of query terms in d and dis_ind(d,q) is the distance between two query

terms[ASB02] and is computed as

13

dis _ind(d,q) = Ldis(K,!),

where K& 1 are search keyword position within the document d delimited by i1h block and

dis (k, 1) is

d• (K ,i) ·li(K ;1),1 if

Document should be retrieved from the database having higher score [ASB02].

DTF (Decision theoretic framework Approach) [F97]

This is ,also called Cost based resource selection approach [F97] in which there is a

retrieval cost C;(S;, q) associated with each digital library DL; where S; documents are

retrieve for query q. There are following factor that include cost are Cost, Time and

Quality. Cost may include money[F97]. Time may include computation time at digital

library site, computation time for delivering the resultant document over the network,

response time for several queries [F97]. Quality may include cost to retrieve high quality

document [F97]. For a user query, and total n document to be retrieved, the task is to find

an optimum solution. Let

where m is the total number of digital libraries

jsj= fsi =n
i=l

The overall cost is minimized

If r; (S;, q) denotes the number of relevant document in the result set when S; document

are retrieved from digital library DLi for query q, we obtain the cost function [F97].

14

Where c+ is the cost of retrieving relevant document and c- cost of retrieving irrelevant

document

ReDDE (Resource Selection that normalize database size) [SC03]

ReDDE[SC03] estimate the distribution of relevant document across the set of available

database. For making its estimation ReDDE considers both database size and content

similarity. ReDDE is the resource selection algorithm that normalizes the database size.

For a query q posed on database C;, the number bf document relevant can be estimated as

[SC03]:

Where

Nc,_samp is the number of sampled document from the i1h database, Nc, is the estimated size

of the i1h database and P (relldj) is the probability of relevance for a specific document

where P (relldj) is given as [19]

if Rank _ central (d 1 } < ratio · L N c,

0 otherwise

Rank for the centralized sample database is the union of all sampled document from

different database [SC03].

rank central (d j) = L _N_c('-'d':....:..)_

d, N c(d,) _ samp

rank _ sample (d k) < rank _ sample (d
1

)

The estimation is normalized to remove the query dependent constant, which provides the

distribution of relevant document among the database.

Dist ReI Q(i) = ReI Q(i) - - L ReI_ Q(j)

15

LWP (Light Weight Probes Approach) [HT99]

The L WP approach, for large term queries that require more space and time to execute at

the server side, forwards probe, instead of the entire query term, to the server. The probes

are useful as they have low cost and are smaller in size thereby use low bandwidth and

has low latency [HT99].

Let Di be the total number of document on the server, fprox be the number of documents

containing the specified number of terms within a specified proximity with each other,

fcooccur is the number of documents in which a specified number of the term co-occurs and

f; is the number of documents containing each individual term ti then the score can be

calculated as [HT99]

where

C, = .i=l

otherwise

where fij is the raw frequency of probe term ion server j. Term are weighted according to

closeness of their total frequency to target total frequency ft.

1.1.2 Result merging

For a given query, the selected search engines return the relevant documents. The

merging of these retrieved relevant documents in a single ranked list is referred to as

result merging. The result merging problem is difficult because document scores returned

by the different databases cannot be compared directly. The goal of a result merging

algorithms to produce a single rank list that is comparable to what would have been

produced if the document from all available databases were combined into a single

database.

16

Several result merging methods exist in literature like CORI merging [NF03], Semi

supervised Learning Approach to merge results (SSL) [SC003a], Hybrid Result merging

[PSS07], LMS [RAS03], SORTED RANK SCORE [LXG03] etc.

CORI result merging algorithm[NF03]

The CORI algorithm[NF03] is based on a Bayesian Inference Network Model of

information retrieval in which each resource is ranked by the belief P(Q/C;) that Query

Q is satisfied given that resource C; is observed(searched)

In CORI, the score of databases is normalized on the scale of [0, 1], where Cmin and Cmax

are the maximum and minimum score of the database [NF03].

C'=
ci- cmin

cmax - cmin
(Normalized document of ith database)

This is followed by normalizing the score of document on the scale of [O,l],where Dmin

and Dmax are the maximum and minimum score of the document[NF03].

D'=
D- Dmin

(Normalized database)
D max - D min

The score of the database are updated as follows[NF03]

D"·.= 1.0 * D'+0.4 * C'*D'
(Global normalized score of each document)

1.4

Finally, documents are ranked in decrease order of scoreD".

Semi -Supervised Learning (SSL) [SC003]

Semi-supervised learning (SSL) [SC003] is a result merging algorithm that is based on

linear regression. It takes advantage of a centralized sample index, which comprises of

the entire sampled document from remote databases. It relies heavily on the discovery of

17

a significant number of matching document relevance score returned from remote

collections in order to function effectively.

Hybrid Result Merging [PSS07]

It combines both regression and downloadable methologies [PSS07]. It selectively

downloads a limited number of documents that are used as training ·data for the regression

method. The ranking of a document in the remote collection is based on a particular

query. The centralized sample index is utilized as a reference statistics database that

provides estimates of global collection statistics (global idf) [PSS07]. The decision of

downloading document is incorporated into the algorithm thereby minimizing the

produced overheads and maximizing the gained accuracy.

Sorted Rank (SR) Score Merging [LXG03]

In SR score merging [LXG03], all document for a particular databases are considered in a

sorted form. The merging of the document is based on the document of the selected

databases. Any documents that have higher score even from the less scored database must

be ranked in final rank list. Database rank is only used to select subset of databases and

documents from these selected databases are used to arrive at final rank merge list. Score

of the document of selected database are updated by the product of original score of

document and score of corresponding database.

LMS Merging [RAS03)

This merging approach uses result length to calculate merging score. Since this approach

uses the document score and result length, this approach is simple to implement. In this

approach, first the result length of each database is computed i.e. the number of relevant

documents in the database are computed. The result length is then used to calculate

database score

18

S = log

Based on this database score, the weight for the i1h databases is computed as [RAS03]:

.=l+[s.-s] w. s

The basic idea behind the LMS merging approach [RAS03] is to increase the weight of

those databases that have score less than the average score and decrease the score of those

databases that have score higher than the average score.

1.2Aim

This dissertation aims to carry out the following:

• Compare performance of database selection methods CORI, vGLOSS and CVV

• Compare performance of Result merging methods LMS, CORI and SR Merge

• Compare performance by combining the various database selection and result

merging method.

1.3 Organization

The brief introduction ofJR System and Metasearch Engine is given in chapter l. The

performance of database selection method CORI, vGLOSS and CVV are compared in

chapter 2. This is followed by comparing performance of result merging method LMS,

CORI and SR Merge in chapter 3. Chapter 4 compares performance by combining the

various database selection and result merging method. Chapter 5 is the conclusion.

19

Chapter 2

Databa-se Selection

The main objective of the databases selection is to select only those databases which

contain useful document for a given query. User query is sent only to the selected

databases. In this chapter, the database selection algorithms CORJ, vGLOSS and CVV

model are compared on performance parameters. The algorithms of each of these

methods along with an example are discussed. It is followed by experimental based

comparisons of these methods.

2.1 CORI Collection Selection Model (MYL02]

As discussed earlier CORJ selection model is based on Bayesian CORJ [MYL02]

algorithm takes database information, like number of database m, number of documents n

in each database and number of terms 1 in each documents, and query information,

number of terms 1 in the query, as input. In step 1, document frequency of each term in

each database is calculated. The database frequency of each term is evaluated in step 2.

Step 3 calculates the inverse database frequency of each term. This is followed by

calculating the weight of each term in database in step 4. In step 5, score of a database

with respect to query is calculated. These databases are sorted with respect to their scores

20

in descending order and finally the top ranked databases are produced as output. Inference

network [[SJ04]. The algorithm based on CORI [SJ04] is shown in Figure 2.1.

Input: D [m, n, !],where m is number of database, n is number of document, I is number of terms,

q[l]

Output: Ranked list of topmost databases

Method:

Stepl: For each k'h term of the query

For (each ith database)

Calculate Fc,t[i] [k]; Number of documents containing k1h term in i1h database

Step2: For each kth term of the query

Calculate f,[k]; Number of databases contains the term.

Step3: For each kth term of the query

For (each ith database)

Calculate Ic,t[i][k]= log((N +O.S)Iftl); which is inverse document frequency
log(N + 1.0)

Step 4: For each k'h term of the query

For (each i'h databas~)

Calculate Tc 1[i][k]=0.4+0.6*(fc,t) ; where k is 0.00039 and
' fc,t +50+150•k

Tct is weight of the term in the collection

L(0.4+0.6 • Tc t[i)[k)• Ic t[i)[k))
StepS: CORI (q, c)= teq&c , ,

lql
Step6: Sort the database in decreasing score of each database

Figure2.1: Algorithm based on CORI [SJ04]

An example illustrating the above algorithm is given next.

2.1.1 An Example

Table 2.1 gives database information, which contains information about five databases.

Each of the five databases contains five documents, and there are four types of keyword

in each document. The cell in the table gives information about the frequency of each

keyword in a document of each database.

Tr--i-17 4<67

21

oolrbi~
tp,-;rq 7

7-Y)

Database Doc0 Doc1 Docz Doc3 Doc4

DBo 6 ,0,2,0 6,7,5,5 8,6,4,8 1,9,2,0 2,1,3,7

DB 1 9,1,0,5 4,9,2,1 9,6,1,1, 5,3,4,0 9,5,1,2

DBz 9,8,6,4 2,3,6,4 9,1,7,0 5,2,8,6 7,2,4,9

DB3 9,3,6,1 0,8,5,9 0,3,3,9 5,2,3,7 6,8,0,8

DB4 6,0,2,2 7,5,6,8 6,9,8,9 1,7,5,1 5,0,0,1

Table 2.1: Database Information chart

The frequency and weight of terms in the user query are given in table 2.2.

To Tt TJ T4

Frequency 7 5 3 7

weight 0.497325 0.551531 0.618072 0.497325

Table 2.2: Query information chart

Term weight of the keyword in query can be computed using the following formula

[RB04]:

w;,q

0.5 freq . N = (0. 5 + •.q) x log -
max freq i,q n;

In the example, value of maxfreq and N are 7 and 22 respectively. The database

frequency, i.e. the number of databases containing each term is given in table 2.3.

Table 2.3: Database Frequency Chart

The document frequency of each term in each database is given in table 2.4

fc t DBo DBt DBz DB3 DB4

To 5 5 5 3 5

Tt 4 5 5 5 3

Tz 5 4 5 4 4

T3 3 4 4 5 5

Table 2.4: Document Frequency Chart

22

Next inverse collection frequency is computed. That can be computed using the formula

[SJ04]

log((m + 0.5)/ft [k])
[i][k l =

c, t log(m + 1.0)

where m is 5(number of databases). The Ic,t values are given in table 2.5

lc,t DBo DB1 DBz Db3 DB4

To 0.053194 0.053194 0.053194 0.053194 0.053194

T, 0.053194 0.053194 0.053194 0.053194 0.053194

Tz 0.053194 0.053194 0.053194 0.053194 0.053194

TJ 0.053194 0.053194 0.053194 0.053194 0.053194

Table 2.5: Ic,t Values

The weight of the term in collection Tc,t is calculated next. The weight Tc,t is computed as

[SJ04]

. [k] (---f---'-c,_t[_iH_k_l --J T [I] = 0.4 + 0.6 *
c,t f [i][k]+50+150*k

c, t

where fc,t have there usual meaning. The Tc,t values are given in table 2.6

Tc,t DBo DB1 DBz DB3 DB4

To OA54487 0.454487 0.454487 0.433925 0.454487

T, 0.444396 0.454487 0.454487 0.454487 0.433925

Tz 0.454487 0.444396 0.454487 0.444396 0.444396

T3 0.433925 0.444396 0.444396 0.454487 0.454487

Table 2.6: Tc,t chart

Next, the similarity of the user query with respect to the given database is computed using

[SJ04]

L (0.4 + 0.6 * Tc t [i][k] * I c t [i][k])
teq&c ' '

CORI (q, c) = ---''--------~q-~-----

where q is the number of query terms The database similarity is given in table 2.7

23

Databases Database Similarity

DB2 0.414425

DB1 0.414344

DBo 0.414261

DB3 0.414261

DB4 0.414261

Table 2.7: Database Similarity by CORI Collection Selection model

The databases in the table are in descending order of their scores. The database at the top

are selected for answering the user query.

2.2 vGLOSS Collection Selection Model [GGM95]

This model IS based on the vector space model. The algorithm based on

vGLOSS[GGM95] is shown in Figure 2.2

Input: D [m, n, 1], Q[l] where m is number of database, n is number of document and I is number of terms

Output: Ranked list of topmost databases

Method:

Step 1: Repeat Step (I) to (6)

Step 2: Calculate term frequency (tJ) ofk'• term in j'• document

tfi[j][k] =log(!+ n(d, k))
n(d)

Step 3: Calculate Inverse document frequency of k" term in j'• document

idfi[j][k] =log(~); where n is the number of documents containing klh term
nk

Step 4: Calculate weight of k"' term in i" document

Wi[j](k] = tfi[j](k]• idfi[j](k]

Step S: for each databases

Calculate document frequency of document

I I
; where q, is the weight of k'• term in query and w;, is the weight

lqldj

of k"' term in j"' document

Step 6: Now, calculate goodness of each i'• database

For (each i"' document)

Goodnessi = (l,q,dbJ= . I: Similq,dj)

djedbiASimi(q,dj)~T

Add the similarity of all documents whose score is greater than T (Threshold)

Step 7: Sort the databases based on the goodness

Generate list of top-S database as output

Figure 2.2: Algorithm based on vGLOSS[GGM95]

24

vGLOSS takes database information and user query q as input. The term frequency of

each term in each document of each database is computed in step 1. In step 2, the

document frequency of each term is computed. The weight of the term, based on the term

frequency and inverse document frequency, is computed in step4. Step 5 evaluates the

similarity between the document and query. In step 6, goodness of each database is

computed using the documents having similarity greater than the threshold. The

databases are sorted in descending order of their goodness scores in step 6.

2.2.1 An Example

The cosine similarity of all documents with respect to query is given in table 2.8.

Do co Doc1 Doc2 Doc3 Doc4

DB0 0.0000000 0.652078 0.596110 0.507540 0.494404

DB1 0.457657 0.715162 0.725796 0.568774 0.667025

DB2 0.457657 0.457657 0.000000 0.457657 0.457657

DB3 0.605235 0.568774 0.568774 0.592228 0.457657

DB4 0.568774 0.711777 0.680501 0.659872 0.000000

Table 2.8: Display similarities of all document w.r.t query

The goodness of database is calculated using the following formula [GGM95]:

Goodness= (1, q, db)= L Sim(q, d)

dEdbASim(q,d~l

The Goodness of the databases with respect to query are given in table 2.9

Databases Databae Goodness

DB1 3.134414

DB3 2.792668

DB4 2.620924

DBo 2.250131

DB2 1.830628

Table 2.9: Database Goodness w.r.t query

The databases having high Goodness value are selected for answering user query.

25

2.3 CVV Collection Selection Model [YL96]

This model is based on the distinguishing power of the term in the databases. The

representation of the databases consists of the document frequency of each term and the

cardinality of each database. The algorithm based on CVV [YL96] is shown in Figure 2.3

Input: D [m, n, I] where m is number of database, n is the number of document, I is the number terms, q[l]

Output: Ranked list of topmost databases

Method:

-Step 1: For each term jlh of a query

For (each database ith database)

df[i][k] = log(l +~) ; where df[i][k] is the document frequency ofkth term in ith database ,N
N

is the total number of documents and n, is the number of document containing k'" term

Step 2: Calculate Cardinality of databases

For (each i'" database)

Card[i] =number of document in ilh database

Step 3: Calculate Cue validity (CV)

For (each k"' term)

For (each ilh databases)

CV ik

Step 4: Calculate Average Cue validity (CV)

For (each i'" database)

M
I;CVik

ACVk = .i.::l__ · where M is the number of database
M '

Step 5: Calculate Variance of Cue validity (CV;,)

For (each i'" database)

CWk = ~ (cvik - ACVk)2
i=l M

Step 6: Calculate rank i=l m ing can bed by

For (each i"'databases)

I
ij = I;CVVk •dfik

k=l

Step 7: Generate top-S databases

Figure 2.3: Algorithm based on CVV [MYL96]

26

CVV algorithm takes the database information and query information as input. In step I,

the document frequency of each query term in each database is computed. This is

followed calculating the cardinality of each database in step 2. Step3 computes the Cue

validity of each term. In step 4, the average cue validity (ACV) is computed. The variance

of cue validity i.e. CVV is calculated in step 5. Based on the document frequency and

CVV of each term, the databases ranking is done in step 6. This sorted rank of database is

produced as output in step 7.

2.3.1 An Example

Using CVV algorithm, first the document frequency of each term is computed and is

given in table 2.10

Databases To T1 Tz TJ

DBo 5 4 5 3

DBI 5 5 4 4

DBz 5 5 5 4

DB3 3 5 4 5

D84 5 3 4 5

Table 2.10: Document freauencv
The cardinality of the databases i.e. the number of documents contained by each

database is computed. The cardinality of databases is shown in table 2.11.

Databases Cardinality

DB0 5

DBI .5

DBz 5
DB3 5

D84 5

Table 2.11: Databases and their cardinalities

The document frequency and the cardinality of each databases are used to compute th.e

the cue validity of each fh term in the i1h databases using the formula [MYL96]

27

cv ij

df ..
-~1)-+

ni

The cue validity of terms in databases are given in table 2.12

To Tl Tz TJ

DBo 0.523616 0.470588 0.530973 0.403361

DB1 0.526316 0.533333 0.475248 0.477612

DBz 0.526316 0.533333 0.535714 0.481203

DB~ 0.375000 0.519481 0.466019 0.529801

DB4 0.526316 0.393443 0.466019 0.529801

Table 2.12: Cue validity

Then average value of cue validity for each term over all databases can be computed and

is given in table 2.13

Terms Average CV

To 0.496053

T1 0.490036

Tz 0.494795

TJ 0.484356

Table 2.13: Average CV of terms

The variance of the cue validity is computed using the formula [ML Y96]

N (cv·· -ACV -~
CVV.·=L· IJ. J

· J i=1 · · N

The variance of cue validity of each term i.e. CVV is given in table 2.14

Terms cvv
To 0.003663

T1 0.002865

Tz 0.001004

TJ 0.002149

Table 2.14: CVV values of each term

28

The rank of a database is computed using the formula [MYL96]

r·
I

M
I cvv . * df ..
j= 1 J IJ

where M is the number of term. The databases and their ranks are given in table 2.15

Databases Ranks

DBo 0.041246

DB1 0.045256

DBz 0.046260

DB3 0.040078

DB4 0.041675

Table 2.15: Databases and their Ranks

The top databases are selected for answering the user query.

2.4 Experimental Results

The three database selection algorithms COR!, vGLOSS and CVV were implemented in

C Language on a data set consisting of 40 databases containing documents and terms.

First graphs were plotted one each for algorithm COR!, vGLOSS and CVV for selecting

top-10, top-20, top-30 and top-40 databases. These graphs are shown in Figure 2.4.

These algorithms were compared on database score. The database scores of the three

algorithms were compared for top-1 0, top-20, top-30 and top-40 databases. The graphs

are shown in Figure 2.4. It can be inferred from the graph that the database score increase

is close to be linear for selecting top-1 0, top-20, top-30 and top-40 databases for all the

three algorithms.

29

COR I

1
•· /

/.I . .
0.9 , /
0.8

, .
/ . , / ,

0.7 / , , ,.
---top-10 . ,

w 0.6 / . ,.
-- top-20 a: , .

0 0.5 I
, /

1.)
, . - - - - to p-30 rn 0.4 /

, ,. .
/

, ,
- - - top-40 0.3 , /

/ ·,. ,
0.2
0.1 ~y·

0
1 4 7 10 13 16 19 22 25 28 31 34 37 40

Number of Databases

vGLOSS

1 ,. - . - --
0.9 / -. . -, -0.8 / , , . . -0.7 / , , .

/
, - ---top-10

w 0.6 , ,
a: /

, , ,. -- top-20
0 0.5 , . ,.
1.)

0.4 / , , - - - - top -3 0 rn / , , . ,. -- -top-40 0.3
/, '.' / 0.2

0.1 /. •/ •
0

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Number of Databases

cvv

1 , -/ , . 0.9
/ , . -0.8 , , .

/ , .,. .
0.7 / , . .,.

---top-10 , .
w 0.6 / , /

top-20 a: . . --0 0.5 / , . /
1.) ,

- - - - top -3 0 rn 0.4 / . ,. .
/

, .
- - - top-40 0.3 , .,.

/. :. -,. . 0.2
0.1 ~'l'

0
1 4 7 10 13 16 19 22 25 28 31 34 37 40

Number of Databases

Figure 2.4: Selection oftop-(10, 20, 30, 40) databases using COR!, vGLOSS and CVV

To compare the three database selection algorithms on the database score for top-10, top-

20, top-30 and top-40 databases, graphs were plotted and are shown in Figure 2.5. It can

clearly seen in these graphs that vGLOSS selects databases with higher scores as

compared to CVV and CORJ. CORJ performs the worst when compared with the other

two algorithms.

30

1
0.9
0.8

e 0.7 0
u 0.6 "' ill 0.5 ..

0.4 ..,
J! 0.3 .. c

0.2
0 .1

0

0 .9
0.8

e 0.7 0
u 0.6 "' " 0.5

0.4 ..,
J! 0 .3 .. c

0 .2
0 .1

0

1
0.9
0.8

e 0.7 0
c)! 0.6

" 0.5
0.4 .., ..

1ii 0.3
c

0.2
0 .1

0

1
0 .9
0.8

e 0.7 0
u 0.6 "' " 0.5 "', .. 0.4
1ii 0.3 c

0.2
0.1

0

2

CORivs.vGLOSS vs.CVV

..... , .
/,,

/.,
/,.

/.~

3 4 5 6 7

top-10 databases

8 9

CORivs.vGLOSS vs.CVV

10

3 5 7 9 11 1 3 1 5 1 7 1 9

top-20 databases

CORivs.vGLOSS vs.CVV

3 57 911131517192123252729

top -3 0. d a Ia bases

CORivs.vGLOSS vs.CVV

---CORI

- - vGLOSS

----cvv

---CORI

- - vGLOSS

----cvv

---COR I
--vGLOSS

----cvv

---COR I

- - vGLOSS

----cvv

4 7 10 13 16 19 22 25 28 31 34 37 40

top-40 databases

Figure 2.5: Comparison ofCORI, vGLOSS and CVV for selecting oftop-(10, 20, 30, 40) databases

31

The three database selection algorithms were compared on the number of databases in

common selected by them while selecting top-5, top-10, top-15, top-20, top-25 and top-30

databases. The graphs for these comparisons were plotted and are shown in Figure 2.6.

Top 5 Databases Top 10 Databases

Top 15 Databases Top 20 Databases

15 20

12 16

~12
8

9

3 .4

0 0

Top 25 Databases Top 30 Databases

30

24

18

~
12

Figure 2.6: Selection of databases in common by CORI, vGLOSS and CVV for top-(5, 10, 15, 20, 25, 30) databases

32

The graphs show that the algorithm CORI and CVV have high number of databases in

common selected by them whereas vGLOSS differs with CORI and CVV in terms of the

database selected by it. Therefore, it can be inferred that CORI and CVV selects almost

the same databases whereas this difference is high with databases selected by vGLOSS.

Further, to view this behavior graph were plotted showing the number of databases in

common selected by the three algorithms. The graph is shown in Figure 2. 7. It can be

clearly seen in the graph that CORI and CVV are similar with respect to the databases

selected by them.

30

25

20

15

/

10

Databases Selected in Common

.....
/

/
/

/
/ ' /

/ ,... ' ..
........

CORI vs. vGLOSS CORivs.CW vGLOSS vs. CVV

--Top5

---Top 10

-- -Top 15

- - - -Top 20

-- Top25
--Top30

Figure 2.7: Comparing CORI, vGLOSS and CVV for selecting databases in common

33

Chapter 3

Result Merging

The main objective of the Result Merging is to merge the document from the selected

databases in such a way so that the most relevant document appears at the top. The user

query is posed on the selected databases. Based on the underlying similarity methods,

each database produces relevant documents as output. Result merger component of

metasearch engine is responsible to sort the list according to global similarity measure. In

this chapter, the result merging algorithms LMS, CORI and SR Result merging are

compared on performance parameters. The algorithms of each of these methods along

with an example are discussed. This is followed by experimental based comparisons of

these methods.

3.1 LMS Results Merging Approach [RAS03]

The LMS algorithm takes selected databases as input and produces sorted list of

documents as output. The algorithm based on LMS Result Merging [RAS03] is shown in

Figure 3.1.

34

Input: Sorted list of databases D[S, n, 1], Query with I terms q[l)

Output: Sorted list of t documents d[t)

Method:

Step 1: Repeat step (I) to (5) for each selected i'h database,

Step 2: Calculate the term frequency (tf) of each term in selected databases

For (each selected jth databases)

For (each k"' term in selected databases)

tfjk =log(!+ n(d, I)); n (d, t) is number of occurrence of term tin document d and n(d) is total
n(d)

number of terms in document d

Step 3: Calculate the inverse document frequency (idf)

For (each selectedj" documents)

For (each kth term in documents)

idfi; = log(N/n;); N is the number of documents in i'h database and n; is the number of

documents containing j'h term

Step 4: For(each selectedj'h documents)

For (each kth term in documents)

w jk = dfjk • idfjk weight of each term in each document

Step 5: Calculate cosine similarities of a document with respect to query

I
~qk'Wjk

Sim i ~. d J= k -I lqlldl

Step 6: Calculate the number of relevant documents in i'h database l[i)

For (each ith database)

For (each j'h document)

if(Sim;(q,d;)>Tn.moold);

l[i)=l[i)+l;

Step 7: Calculate S; for each database i

I· • k
S; = log[l + icrl

L li
i = I

K is a constant (set to 600 in evaluations) and Cis number of selected database

Step 8: Calculate weight (w;) for each database i

w; = 1 + [s; i s] ; where S is the mean collection score

Step 9: Final document score can be updated as

New score[i)[j]=Sim; (q,d;) • w[i) ;

Step 10: Sort the document based on new score values

Generate top-t documents list as output

Figure 3.1: Algorithm based on LMS Merging [RAS03]

In LMS algorithm [RAS03], list of selected databases are given as input to the algorithm.

In step2, the term frequency of each term of all document in selected databases are

computed. The inverse document frequency of all term in each document is computed in

step 3. Step 4 computes the weight of each term in each document. This term weight is

35

computed by multiplying tf and idf of each term in a document. In stepS, similarity of a

document with respect to the query is evaluated and numbers of relevant document are

identified in step 6. Step? assign score to each database based on number of relevant

documents in a database. The weight for each database is calculated in step 8. The score

of the document is multiplied with new weight to evaluate the new score for a document

in step9. The documents are sorted in descending order of their scores in step 10. The top

documents are then displayed to the user.

3.1.1 An Example

Consider the list of databases selected by CORI selection approach (table 2.7 in Chapter

2). The list of databases is given in table 3.1.

Databases Similarity of DB
DB2 0.414425

DBI 0.414344

DB0 0.414261

DB3 0.414261

DB4 0.414261

Table 3.1: list of databases

Consider the top three databases such as DB2, DB1, and DBo. Next, the document score of

these selected databases is computed using the cosine similarity [RB04] between the

document and query. The document score ofthese selected databases is given in table 3.2

Doc0 Doc1 Docz Doc3 Doc4

DBz 0.457657 0.457657 0.000000 0.457657 0.457657

DBI 0.457657 0.715162 0.725796 0.568774 0.667025

DBo 0.000000 0.652078 0.596110 0.507540 0.494404

Table 3.2: Similarities of all document w.r.t query

These document score will be updated by multiplying by a factor [RAS03]

where Si is the score of i1h database and is computed as

. 36

where li is the number of relevant document in ith database. 1[2]=4, 1[1]= 5 and 1[0]=4.

The top-five documents along with their scores are given in table 3.3

Document Scores

DB1:doc2 0.746078

DB1:doc1 0.735147

DB1:doc4 0.685665

DBO:doc1 0.642967

DBO:doc2 0.587781

Table 3.3: Top 5 documents

These 5 documents, which are considered to be relevant, are displayed to the user.

3.2 CORI Results Merging Model [NF03]

The algorithm based on CORI Result Merging [NF03) is shown in Figure 3.2.

Input: D [m, n,J) where m is number of database, n is number of documents and I is number ofterms,q[l)

Output: Ranked list of topmost databases

Method:

Stepl: Normalize, the database score on the scale of[O, I)

For (each ith database)

C' i := C i - C min ·; where Cmin is minimum collection score, Cmax is maximum
Cmax -Cmin

collection score and C', normalized score of i'• database

Step 2: Normalize, the documents score on the scale of [0, I)

For (eachj'h document)

'
D;J· -:omin · · · D ·

D ij ::;;: .,D-m-'<.ax-_-::Dc---m-in- ; where Dmin IS mlmmum document score, max IS

maximum document score and D',; is normalized score of jth document of ith

database

Step 3: Calculate, the new value of the document score

.. . J.OD' ij +0.4C' i .D' ij ; where D"•; is the new score of jlh document in i'•
D ij·= 1.4

database

Step 4: Sort documents on the basis of new document score (D")

Generate top-t documents

Figure 3.2: Algorithm based on CORI Result Merging [NF03]

37

CORI Results Merging Model takes top rank databases as input [NF03]. The score of the

databases is normalized on the scale of [0, 1] in step 1 and document similarity score

(based on the cosine similarity measure between document vector and query vector) is

normalized on the scale [0, 1] in step2. In step3, the new document score can be

calculated by [NF03]

l.OD'+0.4C'.D'
D" := -------

1.4

Finally, the documents are sorted based on the new score for the document in step4. The

algorithm produces the top-t documents as output.

3.2.1 An Example

The top five selected databases list, given in table 3.1, are normalized on the scale [0, 1].

The database and their normalized score are given in table 3.5.

Databases Normalized Score of DB

DBz 0.000000

DB1 0.509249

DBo 1.000000

DB3 0.000000

D84 0.000000

Table 3.5: Normalized Score on Scale [0, I)

Consider databases DB2, DB1 and DBo. The cosine similarity of a document of each these

selected databases with respect to query is given in table 3.6.

Doco Doc1 Docz Doc3 Doc4

DBz 0.457657 0.457657 0.000000 0.457657 0.457657

DB1 0.457657 0.715162 0.725796 0.568774 0.667025

DBo 0.000000 0.652078 0.596110 0.507540 0.494404

Table 3.6: similarities of document w.r.t query

38

The documents maximum similarity score and minimum similarity score are

Dmax: =0. 725796

Dmin: =0.000000

The documents scores are normalized using the formula [NF03]

I D-D .
D := mm

Dmax -D · mm

The normalized document score on [0, 1] is given in table 3.7.

Do eo DOCt Docz Doc3

DBz 0.630559 0.630559 0.000000 0.630559

DBt 0.542145 0.847188 0.859785 0.673775

DBo 0.000000 0.641736 0.586656 0.499491

Doc4

0.630559

0.790165

0.486563

Table 3.7: Normalize document score on [0, 1]

The document scores are updated using the formula [NF03]

D":= I.OD'+0.4C'.D'
1.4

The updated document scores are given in table 3.8

Do eo Doc1 . Doc2 Doc3

DBz 0.630559 0.630559 0.000000 0.630559
DBt 0.542145 0.847188 0.859785 0.673775
DBo 0.000000 0.641736 0.586656 0.499491

Table 3.8: Updated document score

The top five documents selected are given in table 3.9.

Documents Score

database[l]:doc[2] 0.859785

database[!] :doc[l] 0.847188

database[!] :doc[4] 0.790165

database[l):doc(3] 0.673775

database[l]:doc[l] 0.641736

Table 3.9: Top five Documents

These top documents are then displayed to the user.

39

Doc4
0.630559
0.790165
0.486563

3.3 SR SCORE Merging [LXG03]

The algorithm based on SR Score Merging [LXG03] is shown in Figure 3.3.

Input: Sorted list of databases

Output: Sorted list of documents

Method:

Step 1: databases should be rank based on the score only top rank document is to be selected for selecting

their document

Step2: document of the selected databases should be rank based on the document similarity measure of the

document and query.

Step3: update the document score based on the product of database score and document score with the

database.

Step4: sort the document list.and output the top t document list.

Figure 3.3: Algorithm based on SR Result Merging [LXG03]

In SR SCORE Merging [LXG03], the selected database information and query

information forms input to the SR merging algorithm. In step 1, databases are ranked

based on their scores and top databases are considered for selecting documents. In step2,

the similarity of all documents in selected databases with respect to the query is

computed. In step3, a score is assigned to document. This score is computed as the

product of document score and databases score. The documents are sorted and the top-t

documents are produced as output in step 4.

3.3.1 An Example

Consider the top-three databases DB2, DBt and DB0 from the databases selected, as given

in table 3.1, using the CORI Selection approach.

The similarity score of the document with respect to query is given in table in table 3 .I 0

40

Doc0 Doc1 Doc2 Doc3 Doc4

DBz 0.457657 0.457657 0.000000 0.457657 0.457657

DB1 0.457657 0.715162 0.725796 0.568774 0.667025

DBo 0.000000 0.652078 0.596110 0.507540 0.494404

Table 3.10: similarities of all document w.r.t query

Next, document score is computed as product of document score and databases score. The

new document score is given in table 3.11

Do cO Docl Doc2 Doc3 Doc4

DBz 0.189664 0.189664 0.000000 0.189664 0.189664

DB1 0.189627 0.296323 0.300072 0.235668 0.276377

DBo 0.000000 0.270130 0.246945 0.210254 0.204812

Table 3.11: New score of all document w.r.t query

The top five document produced by SR merging is given in table 3.12

Documents Score

database[l) :doc[2) 0.300072

database(l):doc(l) 0.189627

database[l]:doc[4) 0.276377

database[O] :doc(l) 0.270130

database[O) :doc(2) 0.246945

Table 3.12: Top five Documents

These top five documents are displayed to the user.

3.4 Experimental Results

The three result merging algorithms LMS, CORI, and SR were implemented in C

Language on a data set consisting of 40 databases containing documents and terms. First

graphs were plotted one each for algorithm LMS, CORI and SR for selecting top-1 0

documents using the top-1 0, top-20, top-30 and top-40 databases selected using CORI

database selection algorithm. These graphs are shown in Figure 3.4. The graphs show that

there is no significant change in the documents score of top-1 0 documents selected from

top-(10, 20, 30, 40) database selected by CORI database selection.

41

~
u ..
;:
• E

8
Q

~
u ..
;:
• E g

Q

0 .9

0.8

0.7

0.6

0.5

0.4

0 .3

0.2

0.1

0

0 .9

0.8

0.7

0 .6

0.5

0.4

0 .3

0 .2

0.1

0

0.9

0.8

0.7

0.6

0 .5

0 .4

0.3

0.2

0 .1

0

L M S

3 4

top·10 documents

C 0 R I

I ~
1:

!1
''

2

top·10 documents

SR

6

top-1 0 documents

1 0

1 0

8 9 1 0

D top -1 0 DB

D top -2 0 DB

1!ii1 top -3 0 DB

• top -4 0 DB

Dtop-1 0 DB

D top -2 0 DB

c::~top-30 DB

•top-40 DB

otop-10 D.B

D top -2 0 DB

mtop-30 DB

• top -4 0 DB

Figure 3.4: Selection oftop-10 documents using LMS, CORI and SR

To compare the three results merging algorithms on the document score for selecting top-

I 0 documents from top-(1 0, 20, 30, 40) databases selected by algorithm CORI. The

graphs were plotted and are shown in Figure 3.5. The graphs show that CORI result

merging algorithm performs slightly better than the LMS and SR merging algorithms.

42

§
"' E . s
8
c

1

0 .9

0 .8

.7

.6

0 .5

0 .4

0 .3

0 .2

0 .1

0 .9

0 .8

0 . 7

0 .6

0 .5

0 .4

0 .3

0 .2

0 .1

1

.9

0.8

5 .7
~ 0.6

f
8
"' E . s
8
c

0 .5

0 .4

.3

.2

0 .1

0 .9

0 .8

0. 7

.6

0 .5

.4

.3
0 .2

0 .1

LMS vs.CORivs.SR
(top-10 databases)

top-1 0 docum ants

LMS vs.CORivs.SR
(top-20 databases)

top-10 documents

LMS vs.CORivs.SR
(top-30 databases)

top-10 documents

LMS vs.CORivs.SR
(top-40 databases)

top-10 documents

1 0

1 0

1 0

1 0

Figure 3.5: Comparison ofLMS, CORI and SR for selecting oftop-10 documents

43

The three result merging algorithms were compared on the number of documents in

common selected by them while selecting top-5, top-10, top-15, top-20, top-25 and top-30

documents from top-40 databases selected by CORI. The graphs for these comparisons

were plotted and are shown in Figure 3.6.

Top 5 Docurn!nts Top 10 Docurn!nts

Top 15 Docwrents Top 20 Docurn!nts

20

16

8

4

0
U..SI.5.CCR CCR1.5.SR U..SioS.SR

Top 25 Documerts Top 30 Docurrent

3)

20 24

10

18

[;J
12

6

CCRioS.SR U..SI.5.SR

Figure 3.6: Selection of documents in common by LMS, CORI and SR for top-(5, 10, 15, 20, 25, 30) documents

44

The graphs show that the algorithm LMS and SR have high number of documents in

common selected by them whereas CORl differs with LMS and SR in terms of the

documents selected by it. Therefore, it can be inferred that LMS and SR selects almost

the same documents whereas this difference is high with documents selected by CORl.

Further, to view this behavior graph were plotted showing the number of documents in

common selected by the three algorithms. The graph is shown in Figure 3.7. It can be

clearly seen in the graph that LMS and SR are similar with respect to the documents

selected by them.

30

25

20

15

10

5

Document Selected in Common
(Database Selection using CORI)

- -------- ---- ..

--- ___ .,.,.,.,. ---
- - - - - - - - - - - - -

..
... -

---------------- -- ... -

--------------·- -------

0 +--------------r--------------,--------------,

LMS vs. CORI CORivs.SR LMS vs. SR

--TopS

-- -Top10

---Top 15

- - - -Top 20

-- Top25

--Top30

Figure 3.7: Comparing LMS, CORI and SR for selecting documents in common

45

Chapter 4

Metasearch Retrieval

Using the selection and the mergmg techniques given in chapter 2 and chapter 3

respectively, the following metasearch retrieval of documents are possible.

1. CORI Collection Selection [MYL02] with LMS Result Merge[RAS03]

2. CORI Collection Selection [MYL02] with CORI Result Merge [NF03]

3. CORI Collection Selection [MYL02] with SR Result Merge [LXG03]

4. vGLOSS Collection Selection [GGM95]with LMS Result Merge [RAS03]

5. vGLOSS Collection Selection [GGM95] with CORI Result Merge [NF03]

6. vGLOSS Collection Selection [GGM95] with SR Result Merge [LXG03]

7. CVV Collection Selection [MYL02] with LMS Result Merge [RAS03]

8. CVV Collection Selection [MYL02] with CORI Result Merge [NF03]

9. CVV Collection Selection [MYL02]with SR Result Merge [LXG03]

The metasearch retrieval options 1, 2 and 3 have already been dealt with in chapter 3. The

remaining combinations are discussed next.

46

4.1 vGLOSS Collection Selection with LMS Result Merge

First the vGLOSS Collection Selection [GGM95] is used to find out the top three

databases. The LMS Result Merging [RAS03] is then used to retrieve the top five

documents.

For selecting the top three databases, first the cosine similarity of all documents with

respect to query is computed and is shown in table 4.1

Doc0 Doc! Docz Doc3 Doc4

DBo 0.0000000 0.652078 0.596110 0.507540 0.494404

DBt 0.457657 0.715162 0.725796 0.568774 0.667025

DB2 0.457657 0.457657 0.000000 0.457657 0.457657

DB3 0.605235 0.568774 0.568774 0.592228 0.457657

DB4 0.568774 0.711777 0.680501 0.659872 0.000000

Table 4.1: Similarities of all Document w.r.t Query

Next, the goodness of the databases is computed and is given in table 4.2

Databases Goodness

DBt 3.134414

DB3 2.792668

DB4 2.620924

DB0 2.250131

DBz 1.830628

Table 4.2: Goodness score of database

Top three selected databases are DB1. DB3, and DB4• Next, apply LMS document merge

to merge the document of these top three databases. The cosine similarity between the

documents of these selected three databases and the query is computed. These are given

in table 4.3.

Do co Doc! Docz Doc3 Doc4

DBt 0.457657 0.715162 0.725796 0.568774 0.667025

DB3 0.605235 0.568774 0.568774 0.592228 0.457657

DB4 0.568774 0.711777 0.680501 0.659872 0.000000

Table 4.3: Display similarities of documents w.r.t query

47

Documents that satisfy some threshold are considered relevant. Number of relevant

document selected from each databases is computed and for each databases a database

score is computed. Then database score is used to compute the weight of each database.

The document score is then updated as the product of the weight of the databases and

document score. The top five documents are given in table 4.4

Documents Score

database[l]:doc[2) 0.735933

database[l):doc[l) 0.725150

database[4]:doc[l) 0.691895

database[!) :doc[4) 0.676341

database[4):doc[2) 0.661492

Table 4.4: Top five Documents

4.2 vGLOSS Collection Selection with CORI Result Merge

First the vGLOSS Collection Selection [GGM97] is used to find out the top three

databases. The CORI Result Merging [NF03] is then used to retrieve the top five

documents. As mentioned above, the top three databases selected by vGLOSS are DB~,

DB3 and DB4. Next, apply the CORI Result Merging. First, the database is normalized on

the scale of [0, 1] as given in table 4.5.

DB Normalized Score of DB

DB0 0.321757

DBt 1.000000

DBz 0.000000

DB3 0.737881

DB4 0.606154

Table 4.5: Normalized database on scale [0, I)

The document score is normalized on the scale of [0, 1] and is given in table 4.6.

Doc0 Doc1 Docz Doc3 Doc4

DBt 0.630558 0.985348 1.000000 0.783655 0.919025

DB3 0.833891 0.783655 0.783655 0.815970 0.630558

DB4 0.783655 0.980684 0.937592 0.909170 0.000000

Table 4.6: Document score on scale [0, I]

48

The updated document score is given in table 4. 7.

Dmax:=0.725796, Dmin:=O.OOOOOO

Do co Doc1 Docz Doc3 Doc4

DB1 0.630558 0.985348 1.000000 0.783655 0.919025

DB3 0.771439 0.724966 0.724966 0.754861 0.583334

DB4 0.694957 0.870330 0.832087 0.806863 0.000000

Table 4.7: Updated document score

Sort the document list and output the top five documents as given in table 4.8

Documents Score

database [1]: doc [2] 1.000000

database[l]:doc[l] 0.985348

database[l]:doc[4] 0.919025

database[4]:doc[l] 0.870330

database[4] :doc[2] 0.832087

Table 4.8: Top five Documents

4.3 vGLOSS Collection Selection with SR Result Merge

First the vGLOSS Collection Selection [GGM95] is used to find out the top three

databases. The SR Result Merging [LXG03] is then used to retrieve the top five

documents.

As mentioned above, the top three databases selected by vGLOSS are DB1, DB3 and DB4.

Next, the SR Result Merging is applied. First, the cosine similarity of the document with

respect to query is computed as given in table 4.9.

Doco Doc1 Docz Doc3 Doc4

DB1 0.457657 0.715162 0.725796 0.568774 0.667025

DB3 0.605235 0.568774 0.568774 0.592228 0.457657

DB4 0.568774 0.711777 0.680501 0.659872 0.000000

Table 4.9: Similarities of documents in databases

49

The new score value is computed as a product of document score and the corresponding

database score and is given in table 4.1 0.

Doco Doc1 Docz Doc3 Doc4

DBt 1.434486 2.241613 2.274945 1.782773 2.090732

DB3 1.690220 1.588396. 1.588396 1.653896 1.278084

DB4 1.490713 1.865513 1.7835414 1.729474 0.000000

Table 4.10: New score of documents in selected databases

The documents are sorted baseq on the new scores. Finally, the top five documents are

produced as output. The top five documents are given in table 4.11.

Documents Score

database[l]:doc[2] 2.274945

database (I] :doc[l] 2.241613

database[l]:doc[4] 2.090732

database[4]:doc[l] 1.865513

database[4]:doc[2] 1.783541

Table 4.11: Top five Documents

4.4 CVV Collection Selection with LMS Result Merge

First the CVV Collection Selection [MYL02] is used to find out the top three databases.

The LMS Result Merging [RAS03] is then used to retrieve the top five documents. The

CVV collection selection algorithms first compute the document frequency of each term

as given in table 4.12.

To Tt Tz T3

DBo 5 4 5 3

DBt 5 5 4 4

DBz 5 5 5 4

DB3 3 5 4 5

DB4 5 3 4 5

Table 4.12: Document Frequency

The cardinality of the databases is then computed as the number of documents contained

in each database as given in table 4.13.

so

Database Cardinality

DBo 5

DB1 5

DBz 5

DB3 5

DB4 5

Table 4.13: Cardinality of each database

Using the document frequency and the cardinality of each database, the cue validity of

each term is computed and is given in Table 4.14

To TJ Tz T3

DBo 0.523616 0.470588 0.530973 0.403361

DB1 0.526316 0.533333 0.475248 0.477612

DBz 0.526316 0.533333 0.535714 0.481203

DB3 0.375000 0.519481 0.466019 0.529801

DB4 0.526316 0.393443 0.466019 0.529801

Table 4.14: cue validity of each tenn

Next, average of these cue validity (ACV) is computed for each query term over all the

databases. These are given table 4.15

Term ACV

To 0.496053

TJ 0.490036

Tz 0.494795

T3 0.484356

Table 4.15: ACV of terms

Next variance of cue validity CVV is computed and is given table 2 The CVV value are

given in table 4.16

Term ACV

To 0.003663

TJ 0.002865

Tz 0.001004

T3 0.002149

Table 4.16: CVV of terms

Using CVV and document frequency, the rank of the database is computed. The sorted

list of databases based on their rank is given in table 4.17

51.

Databases Rank

DBz 0.046260

DBt 0.045256

D84 0.041675

DBo 0.041246

D83 0.040078

Table 4.17: Top five database

The top three databases selected are DB2, DB~, and DB4. Next, the LMS document merge

to merge the document of these top three databases is applied. The cosine similarity

between the documents of these selected databases (DB2, DB1 and DB4) and the query is

computed. These are given in table 4.18.

Do eo Doc! Docz Doc3 Doc4

DBz 0.457657 0.457657 0.000000 0.457657 0.457657

DBt 0.457657 0.715162 0.725796 0.568774 0.667025

D84 0.568774 0.711777 0.680501 0.659872 0.000000

Table 4.18: Display Similarities of all document w.r.t Query

Documents that satisfY some threshold are considered relevant. Number of relevant

document selected from each databases is computed and for each databases a database

score is computed. Then database score is used to compute the weight of each database.

The document score is then updated as the product of the weight of the databases and

document score. The top five documents are given in table 4.19.

Documents Score

database[l]:doc(2) 0.746078

database[1) :doc[l) 0.735147

database[4) :doc[l) 0.701832

database(l):doc[4). 0.685665

database[4]:doc[2] 0.670992

Table 4.19: Top five document

52

4.5 CVV Collection Selection with CORI Result Merge:

First the CVV Collection Selection [MYL02] is used to select top three databases. The

CORI Result Merging [NF03] is then used to retrieve the top five documents.

As mentioned above, the CVV collection approach selects the top three databases as DB2,

DB1 and DB4. Next, CORI Result Merging is applied. First, the databases are normalized

on the scale of [0, 1] as given in table 4.20.

DB Normalized Score of DB

DB2 1.000000

DBI · 0.837593

DB4 0.258330

DBO 0 .. 188935

DB3 0.000000

Table 4.20: Normalized database on scale [0, 1]

The document score is then normalized on the scale [0, 1] and is given in table 4.21.

Do eo DOCt Doc2 Doc3 Doc4

DB2 0.630559 0.632559 0.000000 0.630559 0.630559

DBt 0.630559 0.985348 1.000000 0.783655 0.919025

DB4 0.783655 0.980684 0.937592 0.909170 0.000000

Table 4.21: Normalize document score on scale [0, 1]

The document score is updated. The updated document score is given in table 4.22.

Do eo Doc1 Doc2 Doc3 Doc4

DB2 0.630559 0.630559 0.000000 0.630559 0.630559

DBt 0.601294 0.939625 0.953598 0.747291 0.876380

DB4 0.617594 0.772871 0.738910 0.716511 0.000000

Table 4.22: updated score of documents on scale fO, 11

The documents are sorted base on updated document score and are given in table 4.23.

Documents Score

database(! I :doc[21 0.953598

database(! I :doc[l I 0.939625

database[! I :doc[41 0.876380

database(41 :doc[l 1 0.772871

database[! I :doc[31 0.747291

Table 4.23: Top five documents

53

4.6 CVV Collection Selection with SR Result Merge

First the CVV Collection Selection [MYL02] is used to select top three databases. The

SR Result Merging [LXG03] is then used to retrieve the top five documents.

As mentioned above, CVV collection selection approach selects the top three databases

as DB2, DB1 and DB4. Next, SR Result Merging is applied. The cosine similarity of the

document w.r.t query is computed and is given in table 4.24.

Do co Doc1 Docz Doc3 Doc4

DBz 0.457657 0.457657 0.000000 0.457657 0.457657

DB1 0.457657 0.715162 0.725796 0.568774 0.667025

DB4 0.568774 0.711777 0.680501 0.659872 0.000000

Table 4.24: Similarities of documents w.r.t Query

The new score for each database is computed as a product of the document score and the

corresponding database score and is given in table 4.25.

Do co Doc1 Docz Doc3 Doc4

DBz 0.046260 0.046260 0.000000 0.046260 0.046260

DB1 0.020711 0.032365 0.032846 0.025740 0.030186

DB4 0.023703 0.029663 0.028359 0.027500 0.000000

Table 4.25: New score of documents in selected databases

The documents are sorted on new score. The top five documents are produced as output.

The top five documents are given in table 4.26.

Documents Score

database[2):doc[O) 0.046260

database[2) :doc[l) 0.046260

database[2) :doc[J) 0.046260

database[l):doc[4) 0.046260

database[l):doc[2j 0.032846

Table 4.26: Too five documents

54

4. 7 Experimental Results

Graphs were plotted for top-k (k=5, 10, 15, 20, 25, 30) documents selection from

databases selected by vGLOSS and CVV algorithms. First, graphs were plotted for

selecting top-k documents using LMS, CORI and SR merging algorithms from databases

selected by vGLOSS. The graphs are shown in Figure 4.1.

Top 5 Documents

Top 15 Documents

LMS vs. CORI CORtvs. SR LMS vs. SR

a not common

onotcommon

ocommon

10

20

16

12

Top 10 Documents

Top 20 Documents

Top 25 Documents Top 30 Document

15 18

Dnotcommon
[<I common

a not common
a common

o not common a not common

Ccommon
10 12

lMS vs. CORI

Figure 4.1: Selection of documents in common by LMS, CORI and SR for top-(5, 10, 15, 20, 25, 30) documents

It can be observed from the graphs that LMS and SR algorithms retrieve almost same

documents whereas CORI selects lesser documents in common with LMS and SR. This

difference can also be seen clearly in the graph, shown in Figure 4.2.

Graphs were plotted for selecting top-k documents using LMS, CORI and SR merging

algorithms from databases selected by CVV. The graphs are shown in Figure 4.3.

55

15

12

Document Selected in Common
{Database Selection using vGLOSS)

30 --25

---------- ----· --TopS
20

- • -Top10 -.........
.

15 - • -Top15
----------- .- .. -· .. ---

·- • ·Top20

10 ----- -- Top25

-----------·-·· --Top30

5 --
0

Ltv'S w. Cffil Cffilw. SR L1v1S w. SR

Figure 4.2: Comparing LMS, COR! and SR for selecting documents in common

Top 5 Documents

Top 15 Documents

onotcommon
a common

Onotcommon

Top 10 Documents

10

Top 20 Documents

20

16

12

Top 25 Documents Top 30 Document

15 18

onotcommon

onotcommon

onolcommon onotcommon
0 common o common

10 12

Figure 4.3: Selection of documents in common by LMS, CORI and SR for top-(5, 10, 15, 20, 25, 30) documents

56

It can be observed from the graphs that LMS and SR algorithms retrieve almost same

documents whereas CORI selects lesser documents in common with LMS and SR. This

difference can also be seen clearly in the graph, shown in Figure 4.4.

Document Selected in Common
(Database Selection using CVV)

30

25

--- ---· --Top5 --------20 - · · Top10 . . .
.. -·-Top15

15 -----------· -·---- • • · ·Top20

10 ___ _ .. -- Top25 ------------- --Top30

5

0
LIVIS vs. COO Crnlvs.SR LIVISvs. SR

Figure 4.4: Comparing LMS, CORI and SR for selecting documents in common

57

Chapter 5

Conclusion

Most of the information on the Web is unstructured and dynamic in nature. Information

retrieval systems are used to query such unstructured data. One of the main problems

with information retrieval systems is scalability. This problem can be overcome using

metasearch engine. Metasearch engine is a search engine over search engines. This

dissertation focuses on retrieving information using metasearch. Metasearch engine

comprises of two components namely database selection and result merging. In

database selection, database relevant to a query are selected to limit the search space.

The result merging merges relevant documents based on global similarity measure. In

this dissertation, database selection and result merging techniques are studied with

emphasis on database selection techniques like CORI, vGLOSS and CVV and result

merging techniques like LMS, CORI and SR.

First, the database selection techniques CORI, vGLOSS and CVV were experimentally

compared on parameters like database score and number of database in common

selected by these techniques. The comparison shows that vGLOSS select databases with

higher score as compared to CVV and CORI. Further, it was observed that CORI and

CVV selected almost the same databases.

58

Next, the result merging techniques LMS, CORI and SR were experimentally compared

on document score. It was observed that result merging technique CORI performed

slightly better than LMS and SR result merging techniques.

Further, metasearch retrieval of information using all possible combination of the

above-mentioned database selection and result merging techniques were experimentally

compared on number of documents in common retrieved by these combinations. It was

observed that LMS and SR retrieved almost same documents irrespective of the

techniques used for database selection.

59

References

[ASB02] Abbaci, F., Savoy, J, and Beigbeder, M., A Methodology for Collection

Selection in Heterogeneous Contexts.

[CLC95] Callan, J. Lu, Z. and Cropt, W.l995.Searching distributed collection with

inference networks. In Proceeding of the ACM SIGIR Conference (Seattle, W A

Julyl995), 21-28

[DH97] Drelinger, D. and Howe, A. 1997. Experience with Selecting Search engine

Using Metasearch.ACM Trans. Inform. Syst. 15, 3(July), 195-222.

[FG99] Fan, Y. and Gauch, S. 1999. Adaptive agent for information gathering from

multiple, distributed information source. In Proceeding of the 1999 AAAI Symposium on

Intelligent Agent in Cyberspace, March 1999,40-46.

[F97] Fuhr, N. A Decision-Theoretic Approach to Database Selection in Networked IR.

[GGM95] Gravano, L., and Garcia-Molina, H.l995. Generalizing gloss to vector space

databases and broker hierarchies' .In proceeding of the International Conferences on Very

Large Data Bases, August 1997, 196-205.

[GGM97] Gravano, L., Garcia-Molina AND Tomasic, A. GLOSS: Text Source

Discovery over the Internet.

60

[HT99] Hawking, D. AND Thistlewaite, P. Methods for Information Server Selection,

ACM Transaction on Information Systems, Vol.17, Jan 1999, Pages 40-76.

[LXG03] Lu, C., Xu, Y.AND Geva, S.Collection Profiling for Collection Fusion in

Distributed Information Retrieval System

[MYL02] Meng, W., Yu C and Liu K. Building effective and efficient metasearch engine

ACM Computing Surveys, Vo1.34, No.1, March 2002.

[NF03] Nottelmann, H. AND Fuhr, N. Combining CORI and decision theoretic approach

for advanced resource selection

[PSS07] Paltoglou, G., Salampasis, M.AND Satratzemi, M. Hybrid Result

Merging.CIKM'07, Nov 2007

[RAS03] Rasolofo, Y., Abbaci, F. AND Savoy, J.Approaches to Collection Selection and

Results Merging for Distributed Information Retrieval.

[RB04] R.Baeza-Yates and B.Ribeiro-Neto, Modem Information Retrieval, Pearson

Education.

[SJ04] Souza, D.Zobel, J.Thom, A, J.Is CORI effective for Collection Selection? An

Exploration of Parameter, Queries, and Data, In Proceeding of the 91
h Australasian

Document Computing Symposium, Dec 2004.

[SC03a] Si, L. and Callan, J. A Semi supervised Learning Method to Merge Search

engine Results. ACM Transactions on information System, Vol.21, No.4, Oct 2003, pages

457-491.

[SC03b] Si, L. and Callan, J. The Effect of Database Size Distributed on Resource

Selection Algorithms. SIGIR 2003 Ws Distributed IR LNCS 2924, pp.31-42, 2003.

61

[SC002a] Si, L., Jin, R, Callan, J., and Ogilvie, P. A Language Modeling Framework for

Resource Selection and Results Merging, CLKM'02, Nov 4-9, 2002.

[SC03] Si, L. and Callan J.Relevant Document Distribution Estimation Method for

Resource Selection, SIGIR'03 July 28-Aug 1, 2003.

[SKS06] Silberschatz, A., Korth, H.F and Sudershan S.Database Management System

Concept, Fifth Edition, McGraw- Hill International Edition.

[VGL95b] Voorhees, E., Gupta,N.K, and Laird, B.L. 1995b. Learning Collection fusion

Strategies in Proceeding of the ACM SIGIR Conference (Seattle, W A July 1995), 172-

179.

[WMY01] Wu, Z., Meng, W. Yu,C. and Li,Z., Towards a highly scalable and effective

metasearch engine. In proceeding of the tenth World Wide Web Conference, May 2001,

386-395.

[YL96] Yuwono, B. and Lee, D.1996. Search and ranking algorithm for locating resource

on the World Wide Web. In Proceeding of the 5th International Conference on Data

Engineering, Feb. 1996, 164-177.

[VGL95a] Voorhees, E.M., Gupta, N.K. and Laird, B.J. The Collection Fusion Problem.

In Proceeding of the Third Text Retrieval Conference, March 1995.

[WC02] Wu, S. and Crestani, F. Data Fusion with Estimated Weights, CIKM'02, Nov

2002

[NF03] Nottelmann, H. and Fuhr, N.Evaluating Different Method of Estimating Retrieval

Quality for Resource Selection, SIGIR'03, July 2003.

62

[TVG+95] Towell, G., Voorhees, E.M., Gupta, N.K.and Laird B.J. Learning Collection

Fusion Strategies for Information Retrieval. Proceeding 1995 ACM SIGIR Conference on

Research and Development in Information Retrieval.

[SC02) Si, Luo and Callan, J. Using Sampled Data and Regression to Merge Search

Engine Results, SIGIR'02, Aug 2002.

[GGM94] Gravano, L., Garcia-Molina, H. and Tomasic, A., the Effectiveness of GLOSS

for the Text Database Discovery Problem. In Proceeding of the 1994 ACM International

conference on management of data (SIGMOD'94), May 04.

[KM94] Koster, M.1994.Aliweb: Archie-like indexing in the web. computer network and

ISDN system.27 ,2 172-182.

63

	TH174870001
	TH174870002
	TH174870003
	TH174870004
	TH174870005
	TH174870006
	TH174870007
	TH174870008
	TH174870009
	TH174870010
	TH174870011
	TH174870012
	TH174870013
	TH174870014
	TH174870015
	TH174870016
	TH174870017
	TH174870018
	TH174870019
	TH174870020
	TH174870021
	TH174870022
	TH174870023
	TH174870024
	TH174870025
	TH174870026
	TH174870027
	TH174870028
	TH174870029
	TH174870030
	TH174870031
	TH174870032
	TH174870033
	TH174870034
	TH174870035
	TH174870036
	TH174870037
	TH174870038
	TH174870039
	TH174870040
	TH174870041
	TH174870042
	TH174870043
	TH174870044
	TH174870045
	TH174870046
	TH174870047
	TH174870048
	TH174870049
	TH174870050
	TH174870051
	TH174870052
	TH174870053
	TH174870054
	TH174870055
	TH174870056
	TH174870057
	TH174870058
	TH174870059
	TH174870060
	TH174870061
	TH174870062
	TH174870063
	TH174870064
	TH174870065
	TH174870066
	TH174870067
	TH174870068
	TH174870069
	TH174870070

