
QoS Parameters Optimization in Computational Grid

-Using Genetic Algorithm

Dissertation submitted to Jawaharlal Nehru University

in partial fulfillment of the requirements

for the award of degree of

Master of Technology

in

Computer Science and Technology

By

Shiv Prakash

Enrollment No.08/10MT/15

Under the Supervision of

Dr. D.P. Vidyarthi

School of Computer & Systems Sciences

Jawaharlal Nehru University

New Delhi lndia-110067

July 2010

Dedicated to Parents & Uncle

School of Computer & System_s Sciences

\JI415\lcll<.il 45"<'i ~~qfilEII(WI~
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI-110067

Certificate

This is certify that the dissertation entitled "QoS Parameters Optimization in

Computational Grid using Genetic Algorithm" is being submitted by Mr. Shiv

Prakash to School of Computer and Systems Sciences, Jawaharlal Nehru University

New Delhi-110067, India in the partial fulfillment of the requirements for the award of

the degree of Master of Technology in Computer Science and Technology. This work

carried out by himself in the School of Computer and Systems Sciences under the

supervision of Dr. D.P. Vidyarthi. The matter personified in the dissertation has not been

submitted for the award of any other degree or diploma.

Supervisor

fu\\·¥
Dr. D.F.\~ftii~.

1

School of Computer & System Sciences

Jawaharlal Nehru University

New Delhi -110067

Dean

Prof. Sonajharia Minz

School of Computer & System Sciences

Jawaharlal Nehru University

New Delhi-110067
Prof. Sooajharia Minz

Dear:
SQ!)ool rJ ror.""' ,~ ··- ,, ,., t c . "'~·· ... "·, •. at. c. ::::;s ems.~.~ciences

Jawc;h;;r\a! Nf;hru Universit'l.. ······-·
New Delhi-11DQ67

Gram: JAYENU Tel.: 2670 4767, 4768, 4769 Fax: 91-11-2674 2526

1

School of Computer & Systems Sciences

\JI<tl5'<cllcl Ji5~ ~~<t~EII(.il~
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI-110067

Declaration

I hereby declare that the dissertation work entitled "QoS Parameters Optimization in

Computational Grid using Genetic Algorithm" in partial fulfillment for the

requirements for the award of degree of "Master of Technology in Computer Science

and Technology" and submitted to School of Computer & Systems Sciences, Jawaharlal

Nehru University, New Delhi-110067, India is the authentic record of my own work

carried out during the time of Master of Technology in the supervision of Dr. Deo

Prakash Vidyarthi. This dissertation comprises only my original work. This dissertation is

less than 100,000 words in length, exclusive tables, figures and references.

The matter personified in the dissertation has not been submitted for the award of any

other degree or diploma.

S~--J~~
Shiv Prakash

Enrollment No. 08110/MT/15

M.Tech (2008-2010)

SC&SS, JNU

New Delhi India -110067

Gram: JAYENU Tel.: 26704767.4768.4769 Fax: 91-11-2674 2526

ii

Acknowledgement

I am very glad to express my sincere gratitude and thank to my supervisor Dr. D.P.

Vidyarthi for his guidance in completing this dissertation. I would like to express special

thank to Dr. D.P. Vidyarthi for many helpful discussions. His extensive and invaluable

academic and research experience was very helpful in my dissertation. The mythology,

philosophy and problem solving learn by him have been very beneficial in my

dissertation work. What I have learned in my research work will defmitely benefit in my

career and life.

I would like to express my thanks to Dean SC&SS JNU, Prof. Sonajharia Minz in support

to pursue my work in the School. Also my thanks go to School administration and

librarian of software library and main library for supporting me, in whatever way they

can, to make dissertation a success. Their support has been a real emphasize in

completing this dissertation.

I would like to accord my sincere thanks to Mr. Dinesh Prasad Sahu, Mr. Md. Anbar, Mr.

Pawan Kumar Tiwari and Mr. Sohan Kumar Y adav for their academic help for my

dissertation work.

My parents & uncle not only provided me economical but emotional support also towards

my endeavor for this project. I am grateful to them. Finally I would like to express thanks

to each persons & thing which is directly or indirectly related to my dissertation work.

~._j~~~"
Shiv Prakash

Enrollment No. 08/10/MT/15

M.Tech (2008-2010)

SC&SS, JNU

New Delhi India -110067

111

QoS Parameters Optimization in Computational Grid using
Genetic Algorithm

Abstract

Computational Grids have emerged as global cyber infrastructure for next generation

computing. Because next generation scientific researches are being carried out by large

collaboration of researchers distributed across the globe. Research communities are

utilizing Computational Grid to share, manage and process the large set of tasks. This

infrastructure supports the large, complex, compute intensive experiments that otherwise

would have been very difficult to solve.

The dissertation discusses about the key concepts of Computational Grid. It focuses on

the optimization of the QoS Parameters by scheduling the jobs in a computational grid ..

There are many constraints associated with the computational grid. Heterogeneity is one

of the major constraints. The scheduling problem with such constraints is an NP class of

problem. This problem adds further dimensionality by the grid platform which is highly

heterogeneous in nature. Soft computing techniques are well suited to solve this type of

problem. We, in our proposed work, have applied soft computing technique in particular

Genetic Algorithm to solve this problem.

The dissertation, after brief discussion about the Grid and Genetic Algorithm, proposes a

model for scheduling problem in Computational Grid. The proposed work also derives

formula for the fitness function which is the turnaround time of the submitted job and

speedup achieved by the grid. This function has been derived in two ways. One in which

the job has not been considered as interactive and in the other the interactive modules of

the jobs are considered. The model focuses on problem solving using Genetic

Algorithms. We simulate the model to optimize QoS Parameters (Turnaround time and

Speed up) using Genetic Algorithms by writing the program. The result has been

displayed in the graph and has been analyzed. It is found that the solution converges after

a finite number of generations by the experiments.

iv

The dissertation also compares the results with one other soft computing technique

(ACO). Though, it is found by the experiment of the time comparisons of results that the

ACO based model is giving better results than Genetic Algorithm based result for this

problem. Nonetheless, the study has been very useful in improving the model which is to

be taken as the next move. It is to explore how the techniques of GA can be improved to

suite the problem of interest and to.tune it for performing better.

v

Table of Contents

Certificate. i
Declaration .. ii
Acknowledgements ... iii
Abstracts ... iv
Contents .. vi
L . t fF' ... IS o 1gures . vn1
List of Tables · ... ix
Abbreviations .. : x

Chapter 1 Introduction .. 1

1.1 Computational Grid .. 3
J .2 Genetic Algorithms ... 6
1.3 GA as Soft Computing Tool. ... 8
1.4 Organization of Dissertation .. 10

Chapter 2 Computational Grid .. 11

2.1 Multi-processor, Distributed and Cluster .. 11
2.2 Grid computing ... 14
2.3 Types ofGrid .. l6
2.3.1 Computational Grid ... 16
2.3.2 Data Grid ... · 16
2.4 Issues in Computational Grid .. 17
2.5 The Problem ... 18
2.5 Concluding Remarks .. · 25

Chapter 3 Genetic Algorithm ... 26

3.1 GA Operators .. 27
3.11 Crossover ... 27
3.12 Selection .. 28
3.13 Mutation .. 30
3.14 Inversion ... 30
3.2 Why GA used .. 31
3.3 Concluding Remarks ... 31

Vl

Chapter 4 Proposed Model .. 32

4.1 QoS Parameters ... 32
4.2 Fitness Function ... 32
4.3 The Model. ... 34
4.3.1 Genetic Algorithm for Computational Grid ... 35
4.4 Concluding Remarks ... 36

ChapterS Experimental Evaluation .. 37

5.1 Parallel Tasks Without Communication Cost ... 38
5.1.1 Observation with 50 Machines ... 38
5.1.2 Observation with 60 Machines .. .43
5.2 Parallel Tasks With Communication Cost. .. 47
5.2.1 Observation with 50 Machines .. .47
5.2.2 Observation with 60 Machines ... ;47
5.2.3 Observation with 50 Machines increase in Communication Cost. 54
5.2.4 Observation with 50 Machines increase in Hamming distance 55
5.3 Summary Result. .. 56
5.4 Comparison between GA and ACO ... 58
5.3 Concluding Remark .. 60·

Chapter6 Conclusion and Future Scope ~ 60

6.1 Conclusion ... 60
6.2 Future Scope.: .. 61

References

vii

List of Figures

Figure 2.1 Architecture of a Multi-processor System 12
Figure 2.2 Architecture of a Multi-computer System 12
Figure 2.3 Architecture of a Distributed Computing System 13
Figure 2.4 Cluster Architecture .. 14
Figure 2.5 Grid Architecture-.. 15
Figure 2.6 Grid Scheduling Architecture ... 23
Figure 2.7 Queuing Architecture ofGrid ... 24
Figure 2.8 Workflow Management. .. 24
Figure. 3.1 Roulette-wheel Selection Method ... 29
Figure 5.1.1.1 Turnaround Time Observation with 50 Tasks 39
Figure 5.1.1.2 Turnaround Time Observation with 60 Tasks 39
Figure 5.1.1.3 Turnaround Time Observation with 70 Tasks 40
Figure 5.1.1.4 Turnaround Time Observation with 80 Tasks 40
Figure 5.1.1.5 Turnaround Time Observation with 90 Tasks 41
Figure 5.1.1.6 Turnaround Time Observation with 100 Tasks 41
Figure 5.1.1.7 Turnaround Time Observation with 110 Tasks 42
Figure 5.1.1.8 Turnaround Time Observation with 120 Tasks 42
Figure 5.1.1.9 Turnaround Time Observation with 130 Tasks 43
Figure 5.1.2.1 Turnaround Time Observation with 50 Tasks 44
Figure 5.1.2.2 Turnaround Time Observation with 60 Tasks 44
Figure 5.1.2.3 Turnaround Time Observation with 70 Tasks 44
Figure 5.1.2.4 Turnaround Time Observation with 80 Tasks 45
Figure 5.1.2.5 Turnaround Time Observation with 90 Tasks45
Figure 5.2.1.1 Turnaround Time Observation with 50 Tasks47
Figure 5.2.1.2 Turnaround Time Observation with 60 Tasks47
Figure 5.2.1.3 Turnaround Time Observation with 70 Tasks 48
Figure 5.2.1.4 Turnaround Time Observation with 80 Tasks48
Figure 5.2.1.5 Turnaround Time Observation with 90 Tasks 49
Figure 5.2.1.6 Turnaround Time Observation with 100 Tasks 49
Figure 5.2.1.7 Turnaround Time Observation with 110 Tasks 49
Figure 5.2.1.7 Turnaround Time Observation with 120 Tasks 50
Figure 5.2.1.8 Turnaround Time Observation with 130 Tasks 51
Figure 5.2.2.1 Turnaround Time Observation with 50 Tasks 51
Figure 5.2.2.2 Turnaround Time Observation with 60 Tasks 52
Figure 5.2.2.3 Turnaround Time Observation with 70 Tasks 52
Figure 5.2.2.4 Turnaround Time Observation with 80 Tasks 53
Figure 5.2.2.5 Turnaround Time Observation with 90 Tasks 53
Figure 5.2.3.1 Turnaround Time Observation with 100 Tasks 54
Figure 5.2.3.2 Turnaround Time Observation with 100 Tasks 54
Figure 5.2.4.1 Turnaround Time Observation with 100 Tasks 55
Figure 5.2.4.2 Turnaround Time Observation with 100 Tasks 55
Figure 5.4.1 Turnaround Time Observation with 12 Tasks 58
Figure 5.4.2 Turnaround Time Observation with 18 Tasks 59

Vlll

List of Tables

Table 5.1-Description of variables used in program ~ 37
Table 5.2-Comparison Tasks without Communication 56
Table 5.3-Comparison Tasks without Communication 56
Table 5.4-Comparison Tasks with Communication 57
Table 5.5-Comparison Tasks with Communication 57

ix

Abbreviations
ACO
ATA
ATM
ATM
CPU
ex
DB
DCS
FCFS
FIFO
FT
FTP
GA
IC
LHC
LIFO
LIGO
MBPS
MIPS
MPI
MIM/1
MIM/S
MST
NUMA
OS
OSGA
PMX
QoS
RAM
RPC
SDSS
SJF
SRTF
SSI
TA
TSP
UMA
vo

Abbreviations

:Meaning
: Ant Colony Optimization
: Average Turnaround
: Automatic Tailor Machine
: Asynchronous Transfer Mode
: Central Processing Unit
: Cycle Crossover
:Data Base
:Distributed Computing System
: First Come First Served
: First In First Out
: Finishing Time
: File Transfer Protocol
: Genetic Algorithm
: Insurance Company
: Large Hadron Collider
: Last In First Out
: Laser Interferometer Gravitational Wave Observatory
: Million Bits per Second
: Million Instructions per Second
: Message Passing Interface
: Single Server Multiple Client
: Multiple Server Multiple Client
: Minimum Spanning Tree
: Non Uniform Memory Access
:Operating System
: Open Service Grid Architecture
:Partially Mapped Crossover
: Quality of Service
: Risk Assessment Model
: Remote Procedure Call
: Sloan Digital Sky Survey
: Shortest Job First
: Shortest Remaining Time First
: Single System Image
: Turnaround Time
: Traveling Salesman Problem
: Uniform Memory Access
: Virtmil Organizations

X

Chapter 1

Introduction

Parallel computing system [5, 6] is the one that aims to the minimization in the job/task

execution time. Distributed systems [6] with multiple computing nodes also facilitate

parallel execution apart from the other objectives as resource sharing and cooperative

engineering. In the last decade the important evolutions in the design of distributed

system have been accomplished by the internet revolution. Many a time it may not be

possible to provide the best computing facilities e.g. processors, storage, data to a

particular task or user as per their requirement. It may be because of various reasons. One

reason may be affordability of the resources. Other may be availability. A possible

solution for this may be to integrate the computing resources which are available at

various places and enable authorized users to use it in a well-defined transparent manner.

In Grid [1, 4, 5, 6, 8, 15, 16,17,18,29, 48, 49, 50, 51] the same concept has been adopted.

Scheduling over the grid is altogether different from scheduling [8, 12] of a uniprocessor

system. In uniprocessor systems scheduling has the objective of maximum CPU

utilization and thus tries to keep the CPU busy as much as possible. To achieve this

concept of multiprogramming, multitasking and eventually multi-user have been

developed. In Grid system, scheduling [9] exhibits cooperation from various resources

towards problem solving by assigning various jobs/ sub-jobs demanding execution to the

suitable grid resources. Normally the scheduler has the objective optimizing some

characteristic parameter for the job or of the system while ensuring the proper load

balancing of the grid. Job scheduling on a grid is known an NP-class problem [2, 3, 27].

Thus there is a possibility to apply soft computing techniques for solving this problem so

that it is possible to optimize the characteristic parameter. In literature, many models

have been proposed considering various optimization parameters for the scheduling

problem. We, in our work, have considered the finishing time of a job to be optimized in

the computational grid by adopting a GA based scheduling policy. We have designed a

1

fitness function for job completion time with two consideration; one in which we do not

consider the network congestion [13, 14] and the other in which we do consider it.

Quantification of the fitness function has been done both the ways. Contribution of the

node in terms of its clock frequency, previous workload on the node in terms of the

existing modules over the node, load on the link connecting the nodes and job's

characteriStics in terms of the cost of communication incurred due to the interactive

modules have been accounted for in our- quantification.

A scheduling model using simple Genetic Algorithm (GA) [2, 3] has been proposed.

GA is a search based procedure which both explores and exploits the solution search

space at the same time. It is based on the Darwin's theory of the "survival of the fittest"

of the species. For the probabilistic optimization problems [31 35 45], GA is one of the

best methods that offer a near-optimal solution.

We start by introducing basic concepts of Grid. Also, one of the soft computing

techniques Genetic Algorithm has been introduced. A brief discussion over GAs and its

applications has been done. Finally we have presented the organization of the

dissertation.

Idea of the grid is derived from Electrical grid [49]. Computational Grid is analogous to a

power grid that provides consistent, pervasive, dependable, transparent access to

electricity irrespective of its source. Same is expected from a computational grid. The

huge computational energy is expected to be available for the user. A user of the grid can

request for any service of the grid. Grid middleware will look into the appropriate
·.
resources for the service; execute the services while meeting the expected Quality of

Service (QoS). The whole process makes the availability of the computational power

ubiquitous irrespective of the actual location of the resources similar to an electric grid

which ensures power anywhere irrespective of location of the power generated.

2

A grid is classified based on its usage. For example, a data grid is expected to manage a

huge amount of data (data warehouse) and to process the data (data mining).

Computational grid is expected to serve the computational need of the application well

and thus emphasize on the compute capability of its constituent nodes. Other types of

Grid are bio grid, campus grid, collaboration grid, network grid, utility grid etc. As the

name implies a bio grid specializes in effectively handling the biological applications, a

collaboration grid may involve a number of people working on different parts of the same

project without even disclosing their identities; network grid provides efficient

communication links to the users with each node acting as a router between two

communication points etc. A utility grid tries to incorporate both the features of the

computational grid and the data grid by offering the computational and the data

management services.

We, in our work, considered computational grid and the scheduling aspect of this.

1.1 Computational Grid

A computational grid [5, 6, 8, 48, 49, 50, 51] deals, primarily, with the computational

requirements of the job. It is defined as a hardware and software infrastructure that

provides dependable, consistent, pervasive and inexpensive access to high end

computational capabilities despite the geographical distribution of both resources and the

users. The submitted a job for the execution over the grid, the grid middleware searches

for the appropriate computational resources for the job execution from the pool of

computational resources available with the grid. Depending on the exec_ution policies and

the job requirements, the job will eventually be scheduled on one of the suitable clusters

which execute it and furnish the result. Grid users visualize the computational grid as an

enormous source of computing Energy on which any job can be executed efficiently.

Computational grid couple geographically distributed resources such as PCs,

workstations, clusters, and scientific instruments. These have appeared as a next

generation computing platform for solving large scale complex problems in science,

3

engineering and commerce. However, application development, resource management,

and scheduling in these environments continue to be a complex research intensive job.

QoS Parameters in Computational Grid

Grid is used for dynamic sharing of resources for Virtual Organization (VO). Ian Foster

Grid [18] check list which defines that a distributed architecture is a grid if it satisfies the

following properties:

• Resources which are used for coordination are not to be in centralized control

• It uses standard and general purpose open protocols.

• It gives non· trivial Quality of Service.

The quality and performance of any system is evaluated using some parameters known as

Quality of Service (QoS) [1, 7, 16, 17, 15, 20, 21, 26] parameters. Some QoS Parameters

that are often useful in computational grid are Reliability, Make-Span, Cost, Security,

Turnaround Time and Speed Up.

Turnaround time [12] for a job is estimated as the time taken by the job from its

submission to the final execution. The prime objective of switching over from a uni

processor system to parallel/distributed system is to reduce the turnaround time for the

job execution. Thus, it is always expected from a computational grid scheduler to allocate

the job to those grid resources which results in the faster overall execution of the job i.e.

with minimum turnaround time. Turnaround time [1, 7, 16, 17, 15, 20, 21, 26] for a job

depends on various factors some of which are as follows.

• Node speed: The speed of the computing processor on which the job is to execute.

Faster job execution is expected on faster machine.

· • Number of processors in the node: A node may consist of multiple processors.

More the number of processors in a node better will be its performance.

4

• Existing workload: This refers to the number of modules Gobs) already allocated

on the node. More the pre-assigned workload, the higher will be the turnaround of

the current job.

• Local scheduling policy [6, 8, 12, 33] of the node: Grid scheduler schedules the

job on the appropriate nodes; however there is a local scheduler to all the nodes

that affects the local scheduling decision. Grid scheduler does not alter the local

scheduling policy of the node. It could be round robin, shortest job first or any

such scheduling policy independently governing to the node in order to provide

· the required autonomy.

• Degree of interaction in the job: This refers to the amount of interaction, required

by the job. If the job is interactive, the job modules require interaction for the data

exchange. This affects an increase in the turnaround time.

• Load on the network link: As there are many jobs for execution and they may opt

for making communication [13, 14] for interactive modules, load on the network

link may vary from time to time. This eventually may affect the performance

resulting in invariable turnaround time.

Apart from all the issues relating to maintaining the QoS and secured communication [13,

14, 24] it is always desired to have a reliable system that is able to digest system failures.

Significantly, incorrect performance of the computers may lead to several devastating

effects. A fault tolerant system [6] is one, which continues to perform even in the

presence of hardware and software faults. A fault is a physical defect, imperfection, or

flaw that occurs within some hardware or software component whereas an error is the

manifestation of a fault and is a deviation from accuracy or incorrectness. Specifically,

faults are the cause of errors and errors are the cause of failures.

Reliability [30, 31, 32, 34] is the ability of a system to perform and maintain its functions

in routine circumstances, as well as hostile or unexpected circumstances. Thus, more the

fault tolerance of the system more reliable it is. Reliability adds quality to the system

·so is an often desired parameter. Whenever a grid is designed, the hardware
•

components used are specified with the failure rate so are the software components

5

during the software design. These failure rates constitute the reliability of the system,

which is often desired to be high.

The dynamic nature of grid environments need secure communication. Therefore it

requires challenging security issues. [12, 13, 14, 20, 21, 22, 23] Key points for secure

communication are the following:

a) Confidentiality: Confidentiality assures that data or message transmitted is

handling by only authorized users. For implementing we use encryption and

description algorithms.

b) Integrity: Integrity is the intrinsic assurance that information is not tempered.

c) Authentication: Authentication assures that principal (user or resource) is

really operated. To implement this we ask username/password etc.

d) Authorization: A remote shared resources are protected by only allowing

authorized access.

e) Non Duplication: It assures that action performed by non duplicated can not

denied.

The turnaround time and the speed up are the most fundamental parameters. We have

dealt with these fundamental parameters in our present work.

1.2 Genetic Algorithm

GAs [2, 3, 25, 27, 28, 29, 45] is often used to solve the problem whose solution involves

identifying the solution from a big search space. The problem being addressed in this

work is the optimization of the QoS parameter in Computational grid that also involves a

big search space. We are applying GAs to handle this problem.

GA works on the basis of natural selection and evolution. The GA operators are applied

over a randomly generated population which comprised of a set of chromosomes

(solutions), in each generation. These chromosomes are evaluated against a fitness

function derived on the basis of the optimization objective. The chromosomes that offer

6

best finesses are selected for mating to reproduce offspring. This procedure is iterated

over the generations resulting in good parents to reproduce better offspring. The process

stops when the result converges. GA uses various operators to implement this operation

which are as follows.

Selection

Selection operator [2, 3] selects those chromosomes which satisfy the requirements

against the fitness function. It ensures that the chances of survival of the fittest

individuals are more than the weaker ones. Since selection process decides the

chromosomes selection for mating, it plays a vital role in exhibiting the performance of

the GA. A good selection leads to the faster convergence of the results. A number of

selection methods available are Roulette wheel selection, Tournament selection, Sigma

selection, Rank based selection, Random selection, etc.

Crossover

Crossover [2, 3] is the operator responsible for mating the chromosomes. Given the

chromosomes for mating, crossover site is selected and the strings from the selected site

are exchanged. There are various types of crossover available such as single point

crossover, multi-point crossover, uniform crossover etc. The characteristics of one parent

are carried over to the offspring till the crossover point with characteristics from the other

parent following the crossover point. This results in a generation of new offspring,

inheriting characteristics of both the parents. This operator helps mating the parents with

better fitness in the population leading to evolved children for the next generation. Some

popular crossover operators in use are Arithmetic, Heuristic, Intermediate, Scattered, OR,

PMX, CXetc.

Mutation

It prevents the population of chromosomes, generated over generations, from being too

similar to each other. Thus it prevents the solution to be caught in local optima. In spite

of climbing several peaks simultaneously by observing various chromosomes, the

possibility of attaining false peak cannot be denied. Mutation [2, 3] works by randomly

altering the gene pattern of the chromosomes thus helping in coming out of the local

optima. The probability of mutation is often very low. The result of mutation can result in

7

either a weaker individual or a stronger one but it can be surely established that it subtly

changes genes of the chromosomes thereby coming out of the local optima.

The pseudo-code of the simple GA is given below.

GAO
{

Generate initial population
For each generation, do

{
Peiform Selection
Peiform Crossover
Peiform Mutation
Evaluate the fitness of the population
} Until the stopping condition

1.3 GA as a Soft Computing Tool

To express the GA for the types of problems, we have explained the TSP problem here.

The origins of the TSP [2, 3, 25, 27, 28, 29] are not known. In literature of TSP was

available from 1832 .The example tours through Germany and Switzerland, but have no

mathematical solution. Mathematical problems related to the TSP were given in the

1800s by the Irish mathematician W.R. Hamilton and British mathematician Thomas

Kirkman. Hamilton's Icosian Game was a puzzle based on finding a Hamiltonian cycle

[2, 3, 25, 28]. The general form of the TSP appears to have been first studied by

mathematicians during the 1930s in Vienna and at Harvard. Karl Menger defines the

problem. He tried to solve this problem using brute force method. He observes the non

optimality of the nearest neighbor heuristic.

The TSP [2, 3, 25] can be expressed in many different ways .One way is that a salesman

plans a trip that he takes to certain cities for the customers and then come back to the city

in which he started. Can he plan the trip so that he begins and ends in the same city while

visiting every other city only once and incur lowest cost? Another way a bank has many

8

ATM machines. Every day, a bank official goes from machine to machine gather

computer information and service the machines. In what order should the machines be

visited so that shortest possible route is obtained?

In TSP [2, 3, 25, 27, 28, 29, 45] the goal is to find the least cost route of 'n' different

cities. All the cities are to be traversed exactly once and have to return to the start city. In

doing so the cost of tour is the minimum. Testing every possibilities of tour of n cities

mathematically is as total n! routes are possible. Thus the problem will be infeasible for

large n. If for example 30 cities routes would be 30! = 2.65 x 10 32 different tours, which is

almost an impossible solution. To explore it, a method is applied that may not guarantee

the best solution but a near-optimal solution in lesser time. We call it soft computing as

the best result is not guaranteed.

Genetic Algorithm is one approach from the various soft-computing approaches which

can be used to find a solution in less time although it might not be the best solution. First

. create a group of many random solutions called population. For this a greedy algorithm

[57] may be used that gives preference looking for cities that are closed to each other.

Now pick two better (least cost) parents in the population and apply crossover to make

two new child routes. A small percentage of time a child is mutated also. This is done to

prevent all routes in the population looking identical. The new routes are inserted into the

population replacing two longer routes. The size of the population remains same. New

children routes are repeatedly created until the desired goal is reached.

The two complex issues using GAs to solve the TSP. One of them is encoding of tour

another crossover algorithm. The crossover uses to combine two parent routes to make

the child routes. For example, in 8 city problem where each city is visited in ascending

order, the tour can be as follows: [1 2 3 4 56 7 8]. If cities are visited in descending order

then the tour is represented as the following permutation [8 7 6 54 3 2 1].

9

1.4 Organization of Dissertation

The dissertation consists of five chapters which have been arranged as follows.

Chapter one discuss about Grid Computing in general. It also discusses a brief about GA

and its Applications. Various QoS Parameters expected from a computational grid has

also been explored in this chapter. It has been stated for what type of problems a Soft

Computing can be used.

Chapter two discuss about Grid Computing in general. We started with Distributed

Computing System· and discuss Multi processor, Multi com~uter and Compute cluster.

We elaborated about grid in general along-with the discussion about computational grid.

Finally, we discuss about types of grid, issues in computation grid and concluding

remarks.

Chapter three discuss about GA in general. This chapter discusses what is GA, how it

solve the problems, what are GA operators, along-with its Applications. A discussion

over the selection methods emphasizing one of the selection methods is done in this

chapter.

Chapter four carries our proposed model . This chapter discusses various QoS Parameters,

the one used in our model, quantification of the fitness function etc. An algorithm for the

model is also presented before making the concluding remarks.

Chapter five contains the experimental evaluation. Various parameters affecting the

objective have been tested through the experiments. Observation has also been drawn.

Conclusion of the work and Future possibility is given in chapter six.

10

Chapter 2

Computational Grid

Computational Grid is analogous to a power grid that provides consistent, pervasive,

dependable, transparent access to electricity irrespective of its source. For any service

requested by the user of the grid, grid middleware searches for the appropriate resources

to serve the service, execute the services meeting the expected Quality of Service (QoS)

and satisfying · other objectives of the application. The whole process makes the

availability of the computational power ubiquitous irrespective of the actual location of

the resources just like an electric grid which ensures power anywhere irrespective of

location of the power generated.

In this chapter, we have discussed about Multiprocessor System, Distributed Computing

System, Cluster and Grid. A discussion about grid is in general before emphasizing about

computational grid. We also have deliberated about types of grid, issues in computational

grid before making concluding remarks.

2.1 Multiprocessor, Distributed System and Cluster

Multiprocessor system [5, 6, 8, 12, 44] is essentially the tightly coupled systems that

have more than one processor on its motherboard. It shares the memory and the clock.

The architecture can be symmetric or asymmetric allowing all, some or only one CPU to

execute. If the operating system is built to take advantage of multiprocessor system, it can

run different processes (or different threads belonging to the same process) on different

processors .. The architecture of the Multiprocessor System is shown in Figure 2.1.

11

EJEJEJEJ ,.- -...
!-..._ _..

T T T T DB

'
l Memory I

Figure 2.1 Architecture of a Multiprocessor System

Multicomputer systems [5, 6, 8, 12, 44] are a system made up of several independent

computers interconnected by intercommunication network .Multicomputer systems can

be homogeneous orheterogeneous: A homogeneous distributed system is one where all

CPUs are similar and are connected by a single type of network. They are often used for

parallel computing. A heterogeneous distributed system is made up of different kinds of

computers, possibly with vastly differing memory sizes, processing power and even basic

underlying architecture. They are in widespread use today, with many companies

adopting this architecture due to the speed with which hardware goes obsolete and the

cost of upgrading a whole system simultaneously. The architecture of the Multicomputer

System is shown in Figure 2.2.

EJEJEJEJ
Memory 1 Memory 2 Memory 3 Memory4

Figure 2.2 Architecture of a Multicomputer System

Distributed computing [6] is a method of computer processing in which different parts of

a program run simultaneously on two or more computers that are connected with each

12

other making communication through the interconnection network. In distributed system

multiple CPU's do not share memory and clock and work independently making

communication as and when required. The memory here is distributed following the Non

Uniform Memory Access (NUMA) model of memory classification. Each processor

(CPU) is an autonomous computer with its own OS and communicates using Message

Passing Interface (MPI) or Remote Procedure Call (RPC). The job can be submitted at

any node and is distributed to various nodes as per their capabilities under a load

distribution policy. These are used when strong computational power is required along

with a certain degree of independence to the computational resources. The architecture of

the Distributed Computing System (DCS) is shown in Figure 2.3.

Application Application Application

Monolithic Monolithic Monolithic
Kernel Kernel Kernel

I Network Interconnect

I
Figure 2.3 Architecture of a Distributed Computing System

Compute clusters [5, 6, 8, 12, 33, 44] are comprised of multiple stand-alone machines

acting in parallel across a local high speed network. Distributed computing differs from

cluster computing in that computers in a distributed computing environment are typically

not exclusively running "group" tasks, whereas clustered computers are usually much

more tightly coupled. Distributed computing also often consists of machines which are

widely separated geographically.

In Cluster, multiple stand alone machines work in parallel connected by a high speed

local area network with a Single System Image (SSI). Architecture of the Cluster

Computing Network is shown in Figure 2.3.

13

Applications

Availability and SSI Infrastructure

OS OS OS ----------------------------------
Node Node Node

I Cluster Interconnect Network
J

Figure 2.4 Cluster Architecture

2.2 Grid Computing

Grid computing has roots in parallel and distributed computing, dating back to the 80s

and 90s. At the time, supercomputers dealt with problems including Grand Challenges

(such as climate modeling) and computing intensive simulations in weather forecasting.

The origin of the idea about grid computing was developed by scientific community. The

initial target was the processing power and storage intensive applications. The basic idea

in grid computing [19] is to support resource sharing among the individuals and research

organizations. It helps to utilize resources so as to increase the computational speed-up

and reliability.

The term Grid computing, or simply Grid, was introduced in 1998. The driving force was

the need to carry out compute intensive tasks. In response, the Grid was developed to

provide computing power on demand to every application which needed it. Originally,

Grid computing targeted supercomputing application users. In addition, the applications

can be even more computationally intensive than conventional supe~computing

applications i.e. if a single supercomputer or cluster can not manage the application

workload, several supercomputers [5, 6] or clusters connected via a wide-area network

can provide more CPU capacity.

Main aim of the supercomputers era was, to deal with the large tasks that typically appear

in computational science, engineering, and so on. A characteristic of such

14

supercoinputers was their homogeneous, typically expensive hardware. Several centers

worldwide provide computing power by means of supercomputers. lnterconnectivity

among processors within supercoinputers was usually good, even within a COinputer

center.

However, wide-area network connectivity among computer centers was often not very

good. Even a homogeneous programming and security model [13, 14, 24] to connect

these COinputing resources was not in place. Technologies such as MPI (Message Passing

Interface) [5, 6] were mainly designed to run on a single machine where CPUs and

networks have similar hardware and performance characteristics. Above all, super

computing technology is too expensive.

Architecture of grid is multilayered in nature. There are five layers in the' grid

architecture [54] which is shown in the figure 2.5 which is given below. They have

similarity with the internet protocol architecture.

Science I commerce I !Engineering!

MPI I workflow I
J::: !workflow Engl

~~

lml G,;d Bank I
.___X_;;g_ri_d___,l-·

Globus Unicore

Resource Nimrod G

Nordu G

Net GVM I I Condor

Windows Solaris I I Linux

EJEJ
World Wide Grid

I portals Frid rcP~~cation

X parameter framework ISer level
m1 01eware

Grid Service!

Grid Tr Fed I Core Grid

I
Middleware

Grid M.D ..

Libra I '---------' Grid Fabric

Mac software

Grid Fabric
Hardware

Figure 2.5 Grid Architecture

15

2.3 Types of Grid

We are considering only grid which are used in Computer Science. The two important

types of grid are the following.

2.3.1 Computational Grid

Computational Grid is used for sharing computation (CPUs) which have high

performance computability. The example of computational grid is Tera Grid which has

more than 750 teraflops. This aggregates computing power of millions of home

computers. The utility computing ventures such as Sun Grid computing Utility are also an

example of computational grid.

A computational grid deals primarily with the computational requirements of the job. It is

defined as a hardware and software infrastructure that provides dependable, consistent,

pervasive and inexpensive access to high end computational capabilities despite the

geographical distribution of both resources and the users. At one end of the grid are the

end users or the participants of the grid. These users may demand the execution of a job ·

using an iptelligent interface. The grid middleware searches for the appropriate resources

for the job from the pool of resources registered in the grid. Depending on the execution

policies and the job requirements the job will eventually be scheduled on one of the

suitable clusters which execute it and furnish the result back to the user. Thus the grid

users visualize the grid as an enormous source of computational power in which any job

can be executed efficiently on the suitable resources of the grid.

2.3.2 Data Grid

The grid environment has enabled us to produce more efficient computational tools

which in turn have resulted in more advanced research. These two factors have produced

software tools and applications that can handle complex computations. Many a times

these applications like high energy physics involving Large Hadron Collider (LHC) at

CERN, The Laser Interferometer Gravitati~nal Wave Observatory (LIGO), Sloan Digital

Sky Survey (SDSS) requires generating and manipulating terabytes and petabytes of data.

16

Thus the amount of data involved the scale of the demand and the complexity of the

infrastructure imposes enormous challenge for the effectiveness of the current methods

and tools. The integrating architecture that addresses all these problems is the data grid.

Data grid provides the excellent performance on petascale data intensive computing by

the integration of various approaches adopted while encouraging the deployment of basic

enabling techniques and revealing technology gaps that require further research and

development. Thus data grid deals with data, data abstraction, data access, replica

management, controlled sharing and management of large amounts of distributed data.

2.4 Issues in Computational Grid

The grid is essentially a heterogeneous collection of computational and other resource.

This heterogeneity introduces many related challenges. The challenges include diversity

in terms of local resources, dynamic nature of the local resources, creation and

management of services and maintaining the Quality of Service (QoS). Since grid is

inherently a parallel and distributed system, the key issues regarding the design of the

grid e.g. data locality and availability, implementation, scalability, anatomy, privacy,

maintenance, fault tolerance, security, etc. need to be addressed well before the

commercialization of the grid. Some of these issues demanding new technical approaches

for the grid environment are discussed as follows.

Role of the End System

End system plays a major role in the grid system as today' s end systems are relatively

small and they are connected to networks by interfaces and operating system mechanisms

that are originally designed for reading and writing slow devices. Thus, these end systems

needs to be developed to support high performance networking of grid architecture.

Job Preprocessing Requirements

Grid involves number of virtual organizations (VO). Any query to the grid enters through

·the corresponding virtual organization only. Though, it is difficult to have common grid

architecture as they are created to cater to different needs, at least a basic set of services

e.g. Querying, Submitting .and Monitoring need to be identified. Any process on a grid

may proceed by

17

• Obtaining the necessary authentication credentials (connectivity layer protocols):

The user should be authenticated for entering the grid. This can be done by the

use of password or certificates. For this, a password may be given to the

authorized users keeping in mind the security of the user keys.

• Querying information (collective services): Since a grid is a dynamic system it

should be updated to keep track of the changes occurring inside it. Most of the

information is dynamic and should be updated from time to time, whenever a job

completes its execution or any resource participates or quits the grid. Mechanism

of discovering resources on the grid is itself a challenging task for the designer. In

the old schemes some centralized services, e.g. Condor matchmaker were used

that contained all the information, but it had the problem of scalability and single

point failure. Later decentralized schemes were introduced e.g., MDS- 2 where

the grid information is stored and indexed by index servers that communicate via

registered protocols. The best approach is to have the information available to all

virtual organizations about the resources status so that load balancing can be

achieved.

• Submitting requests (resource protocols): Keeping in mind the heterogeneity of

the grid the request should be submitted for a appropriate machine, storage

systems, and networks to initiate computations, move data and so on. High

selectivity in the resources has an advantage of the best possible allocation but

may lead to lower match probability. High regionalism may lead to non uniform

distribution of the tasks but will reduce the c_ommunication cost. Selectivity

depends on the nature of the job whereas regionalism is governed by how much

communication overhead and network delays the job can tolerate. Both these

factors depend on the existing load structure of the grid. In addition, access

control should also be exercised as the users are working in the shared

environment and there can be a number of resources over which the owner wants

to have its complete authority.

• Monitoring resources and computations (resource protocols): The progress of

the various computations and data transfers could be done by using means such as

check pointing. It notifies the user when all the tasks are completed and detecting

18

and responding to failure conditions. This brings the security and fault tolerance

features of the grid. Since large numbers of virtual organizations are part of the

grid, large numbers of resources need to be monitored and tracked for various

failures. These failures may range from submission failure to hardware/software

failures. The grid should be able to meet out these failures gracefully.

The important issues [4, 5, 6, 7, 8, 9, 10] in Computational Grid are Resource

Management, Scheduling, Latency, Throughput, Reliability, Availability and

Security. Few of them are discussed below in brief.

Resource Management [12] is a process in which we manage the resources

efficiently. Generally for the resource management we do the process management,

memory management, file management, 10 system management and secondary

storage management. Few of them as given in brief as follows.

Scheduling is a way in which processes assigned to run on suitable systems in such a

way the scheduling parameters are optimized. The scheduling parameters are

throughput, system utilization, and turnaround time, waiting time, response time and

fairness. The scheduling parameters are discuss below

•!• Throughput [12] is measured as number of tasks executed per unit time.

There are many possible throughput metrics depending on the definition of

unit of work. Examples of throughput metrics at the resource layer include

the effective transfer rate in Kbytes/sec under the Grid-FTP protocol used

to transfer files from different computes nodes involved in running RAMs

and the number of queries/sec that can be processed by the database server

of a law enforcement agency needed by the RAM application.

•!• System Utilization [12] is to keep system as busy as possible.

•!• Turnaround time [12] is amount of time to execute particular process. In

other words turnaround time for a job is estimated as the time taken by the

job from its submission to the final execution. The prime objective of

switching over from a uni-processor system to parallel/distributed system

19

is to reduce the turnaround time for the job execution. Thus, it is always

expected from a computational grid scheduler to allocate the job to those

grid resources which results in the faster overall execution of the job i.e.

with minimum turnaround time.

•:• Waiting time [12] is amount of time spend to wait by a particular process

in system for getting a resource. In other words waiting time for a job is

estimated as the time taken by the job from its submission to the get

system for execution. The waiting time depend on the parameters similar

as turnaround time.

•:• Response time [12] is amount of time to get frrst response in time sharing

system. The response time depend on the parameters similar as turnaround

time.

•:• Fairness [10] of system is defined as the time taken by each system in

grid environment is same.

Turnaround time for a job depends on various factors some of which are as follows.

• Node speed: The speed of the computing processor on which the job is to execute.

Faster job execution is expected on faster machine.

• Number of processors in the node: A node may consist of multiple processors.

More the number of processors in a node better will be its performance.

• Existing workload: This refers to the number of modules (jobs) already allocated

on the node. More the pre-assigned workload, the higher will be the turnaround of

the current job.

• Local scheduling policy of the node: Grid scheduler schedules the job on the .

appropriate nodes; however there is a local scheduler to all the nodes that affects

the local scheduling decision. Grid scheduler does not alter the local scheduling

policy of the node. It could be round robin, shortest job frrst or any such

scheduling policy independently governing to the node in order to provide the

required autonomy.

20

• Degree of interaction in the job: This refers to the amount of interaction, required

by the job. If the job is interactive, the job modules require interaction for the data

exchange. This affects an increase in the turnaround time.

• Load on the network link: As there are many jobs for execution and they may opt

for making communication for interactive modules, load on the network link may

vary from time to time. This eventually may affect the performance resulting in

invariable turnaround time [4, 5, 6, 7, 8, 9, 10, 48, 49, 50, 51].

Latency [7] is related to the time it takes to execute a task and is measured in time units.

Latency metrics can be defined at different granularities. For example, in the IC case, one

may be interested in the average time it takes to complete immediate quote requests or in

the 95-th percentile of the time to respond to non-immediate requests. Another example

of latency metric is the elapsed time to return a delayed quote to the user. Sophisticated

RAMs are typically complex parallel jobs that are decomposed into tasks allocated to

different computing resources in the grid.

Availability [7] is defmed as fraction of time that a resource/application is available for

use. In a multilayer context such as the one described for grid architecture, the notions of

availability differs for each layer.

Security [11] shows the dynamic nature of grid environments need secure

communication. Therefore it requires challenging security issues. Key points for secure

communication are the confidently, authentication, replication, integrity, and

authorization.

Reliability [1, 7, 16, 17, 26] is the probability of system works correctly for a given time

period. In reliability we check how system is working reliably. In other words Reliability

is the ability of a system to perform and maintain its functions in routine circumstances,

as well as hostile or unexpected circumstances. ()O Lf, 3 b

TH~ 174151 &::-6

::-<_;2:;:~ ~~\-.
~ ' ~ ~·- -:~;~::,>:: -- '---<J~,,,~,, ,,-_ j,

: \ "/£>)!
": ~-'

.. -, -.-- .. :_ y.
-~---R~.,

21

Cost/Budget/Deadline [1, 7] is the user preferred quality of service parameter. In Grid

environment applications are often described as workflows. A workflow is composed of

atomic tasks that are processed in specific order to fulfill a complicated goal. The

developm<?nt of the OSGA however makes the workflow _management more intractable

(OSGA introduces Web services into the 'grid interoperability model and soon become

. the predominant technology for grids). In the new architecture of OSGA, a task can be

executed by any one of a set of service instances provided by different grid service

providers. One of the most challenging ·problems is to map each task to corresponding

service instance to achieve the customer quality of service requirement as well as to

accomplish high performance of the work flow. This problem is found to be NP

Complete. Under the OSGA, the workflow scheduler has to balance several QoS

parameter such as make-span, cost, reliability, security and deadline at different

prospective.

2.5 The problem

Scheduling [9, 10, 12] is a fundamental issue for getting high performance in

computational grid. In computation grid there are large numbers of resources so that main

objective is optimizing global use of resources. The problem of local use resources is

already almost solved. We consider here two types of scheduler first is local scheduler

and second is global scheduler. Local scheduler takes care about the scheduling inside

each element of grid. In my problem we assume that local scheduler works in FCFS [12]

manner.

Here we consider few parameters of scheduling which are the turnaround time and speed

up. We have already described the parameter turnaround time in 2.4.

Initially global scheduler randomly distributes the task to nodes in grid environment. But

generally distribution of accordingly the processing speeds of each machine in grid. We

randomly generate the population i.e. initial population. We calculate the fitness of the

population using fitness function. Sort the population using sorting algorithm and select

22

the population using roulette-wheel selection. In this way half the population is selected.

After that crossover is performed 95% of time and mutation 5% of time of total number

of generations. In this way new population is generated which includes the old population

also. Now arrange the new population according to its fitness value and make it as old

population. Repeat this process until stopping criteria meets.

The scheduling problem in which average arrival rate and average service rate of the

systems are A, and ~MIPS respectively .The grid scheduling architecture is given in

figure 2.6 in which we allocate the grid resources in such way that the scheduling and

resource parameters should be optimized. The figure 2.6 is shown below [7]

Grid services

Historical workload
infonnation

~rid futures
~

1

ne ~1arket

Qos requirment

Performance Repository-
1+-----1 Historical Performance

Information

Advance
reservation

Performance
data

~~'~' =~
~:::=:::::'~'=~
~~'~' =~
~--'' 'L-----l Grid resources

Figure 2.6 Grid Scheduling Architecture

For understanding scheduling in grid we should apply Queuing Theory [30, 32, 34, 35].

Scheduling problem falls in category of MIMIS Model. It is because we assume that there

are many systems/nodes/machines and many jobs/sub-jobs to execute. Every system has

its own capability to process the job.

23

Assume that average arrival rate and average service rate of the system are A and ~

MIPS respectively. The queuing model [36] based on principle of real world queue which

is based on FCFS [12].The queuing grid architecture is given in figure 2.7. In this figure

various tasks are distributed in various resources among the grid. The figure 2. 7 [7] is

shown below.

l-In

Figure 2. 7 Queuing Architecture of Grid

The workflow of tasks is to be linear or hybrid or parallel. If workflow is linear then it

executed by sequential otherwise we can apply parallel execution model. In my problem

the workflow is parallel. The workflow management is shown in figure 2.8 [7].

24

Linear workflow

Hybrid workflow

Parallel workflow

Figure 2.8 Workflow Management

2.6 Concluding Remarks

Here we have discussed about Multiprocessor System, Distributed Computing

System, Cluster and Grid. A discussion about grid is in general before

emphasizing about computational grid. Here we find that there are two types of

grid. The most important grid is Computational Grid in which we identify the

issues. The most important and challenging issues are Resource Management,

Scheduling, Latency, Throughput, Reliability and Security. We discuss the

scheduling in detail. We also have deliberated about types of grid, issues in

computational grid before making concluding remarks.

25

Chapter 3

Genetic Algorithm

Scheduling has been identified to be an NP-class of problem as stated in chapter 1.

Evolutionary techniques are best suited for such problems. We have applied Genetic

Algorithm to solve scheduling problem of computational grid. This chapter makes

discussion about the Genetic Algorithm.

Few questions that have been dealt with in this chapter are as follows. What is GA? How

it solves the problems? What are the GA Operators? Why it is used for solving hard

computing problems?

Genetic Algorithms are evolutionary algorithm derived from the Darwin's theory of

natural genetics. It is based on the principle of "Survival of the Fittest". A best solution is

derived out of number of solutions in GA.

Genetic algorithm generates population of potential solution and explores the best

solution of the problem. The father of the GA is John Holland. He, along with his student

DeJong, introduced the concept of GAin the year 1975 at the University of Michigan.

He was influenced by the natural system. GA is derived from natural system. He thought

to involve computing in natural system and derived it. He was of the opinion that as the

natural system evolves, any computation may also evolve. This was the basis for the

development of the GA.

Most of the terminology in GA [2, 3, 4] has been borrowed from genetic engineering. GA

uses the biological concept of "Natural Selection" and "Genetic Inheritance". For most of

the optimization problems, where a little knowledge about problem solving approach is

available, GA is beneficial. It is widely used for NP-class of problems. The examples are

26

TSP, Vertex Cover, Coloring, MST Problem and Scheduling Problems for which GA has

been used widely.

3.1 GA Operators

GA comprised of many operators that forms the basis for evolution. The following are

some operators [2, 3, 25, 29, 45] used in GA.

3.1.1 Crossover Operator

Crossover is a concept of genetics and has analogy of sexual reproduction. Crossover

chooses two individuals and swap segments of their code (bit-value). It produces children

that are combinations of their parents.

There are many types of crossover [2, 3, 4] discussed in literature.

1. In a single-point crossover one common point in the chromosomes is chosen

randomly. Chromosomes of the parents are cut at that point and the resulting sub

chromosomes are swapped.

Parenti: oooooooolooooooooooooooooooooooo

Parent2: IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

I is the crossover point chosen.

After the crossover the children produced are as follows.

Childi: OOOOOOOOIIIIIIIIIIIIIIIIIIII11I

Child2: 1IIIII1I 00000000000000000000000

2. In Multipoint Crossover more than one crossover point is chosen. For example in

two-point crossover two sites are selected and the sub-string between the bits is

swapped.

Parenti:

Parent2:

ooooo I ooo I oooooo I oooo

I1111111II11111111111

After the crossover the following children are produced.

Child 1: 00000 I 111 I 000000 I 1111

27

Child2: 111111000111111110000

3. In Uniform crossover [53] each gene of the offspring is selected randomly from the

corresponding genes of the parents. Single-point and two-point crossover produce two

children, whereas uniform crossover produces only one because bits in string are

compared with the two parents. The bits are swapped with fixed probability (typically

0.5). The ~xample for uniform crossover is given below.

Parent 1: 000000000000000000 Child 1: 010010110001011001

Parent 2: 111111111111111111 Child 2: 101100001110100110

3.1.2 Selection Operator

Selection [2] is a procedure of picking best individuals from a pool of population based

on their fitness value to reproduce offspring. It is an important step in GA. Many

different approaches for selection schemes have been proposed. Some of the approaches

are Roulette-wheel, Sigma, Scaling, Elitism, Boltzmann Selection, Rank Selection,

Tournament Selection and Steady State Selection.

One of the popular selection methods in Fitness-proportionate selection scheme is

roulette-wheel method often used in problem solving using GA. Holland's original GA

uses fitness-proportionate selection, in which the "expected value" of an individual that is

the expected number of times an individual occurs, will be selected to reproduce. The

expected value is the individual's fitness divided by the average fitness of the population.

To· implement this method a slice, circular in the size of circle being proportion to the

individual's fitness is assigned. The wheel is circulated N times, where N is the number

of individual in the population. In each circular motion the individual under wheel

makers is selected to be the pool of parents for the next generation. The algorithm is as

follows.

28

The pseudo-code [2] of the Roulette-wheel Selection Method is given below.

Roulette-wheel Selection Algorithm ()

{

}

Sum the total expected value of the individuals in the population and this sum. is S.

fori= 1 toN

}

{ Choose a random integer r between 0 and S.

Repeat through the individuals in the population, summing the

expected values until the sum is greater than or equal to r. The

individual whose expected value puts the sum over this limit is the

one selected.

For example roulette-wheel [2, 3] method, the chance of an individual's being selected is

proportional to the amount by which its fitness is greater or less than its competitors'

fitness. Each individual gets a slice of the wheel. More fit ones get larger slices than less

fit ones. The wheel is then spun and an individual "owns" the section on which it lands.

Suppose that there are four populations A, B, C and D having their fitness value 4, 6, 2

and 8 respectively. The roulette wheel for selection of these populations is as given in

Fig. 3.1. Obliviously D has more probability to be chosen than A, B and C as this has

wider allocation in wheel.

Figure 3.1 Roulette Wheel Selection Method

29

3.1.3 Mutation Operator

This operator randomly flips some of the gene in a chromosome. For example, the string

00000100 might be mutated in its second position to yield 01000100. Mutation [2, 3] can

occur at each bit position in a string with some probability, usually very small (e.g.,

0.001).

3.1.4 Inversion Operator

Inversion operator [2] was introduced in 1975 by Holland. It is similar to real genetic

operator. This is inverting part of chromosome. Used for single point crossover it deals

with the linkage problem of fixed length strings.

The detailed pseudo-code [2] for GA is as follows.

Genetic Algorithm ()

{

Generate the population of solutions randomly. //using any approach

Evaluate the fitness value of each individual against the fitness function.

Repeat while termination condition does not hold

{

Randomly pick two parents from the population

Perform the crossover over the parents to produce offspring

Mutate any offspring tf required II the probability is ~{ten very less

Evaluate the fitness of each new individual

}

}

The above algorithm is simple GA to solve the problems that falls in category of NP

class computing problems. In genetic algorithm the initial population is generated

randomly. After that the crossover is performed and then mutation is applied to generate

new population. Selection of the new population from the best population is done

thereafter. The process is repeated until stopping criteria is met.

30

3.2 Why to use GA

GA is a soft computing technique. QoS parameters optimization in Computational Grid is

an NP class of problem and thus GA may be applied to solve this problem. For the

scheduling problem the GA is not the best choice because of its decision making. But due

to the simplicity of GA people generally apply it. This method gives us nearly optimal

solution.

3.3 Concluding Remarks

GA is a soft computing technique. Scheduling in Gird for QoS Parameters Optimization

is an NP class problem and thus GA can be used for this. In this chapter, we have

discussed about GA and various GA operators. Crossover is done more frequently than

other GA operator mutation. Generally two GA operators are enough for solving soft

computing problem which are crossover and mutation. Selection plays an important role

in GA. A brief discussion over various selection methods of GA has been discussed.

Roulette-wheel selection is one of the often used selection method and has been

described in this chapter. We also have deliberated why to use GAin this chapter.

31

Chapter 4

The Proposed Model

This chapter discusses about Scheduling Problem [9, 10, 12], QoS parameters expected

from the scheduler [9, 10, 12] of the grid. It also discusses about the fitness function used

in the model. The proposed model is presented thereafter. Also the algorithm to solve the

scheduling problem of computational grid is described. Finally, we make the concluding

remarks.

Scheduling is a fundamental issue for getting high performance in computational grid. In

computational grid, there are large numbers of resources and the optimal global uses of

the resources affect both the grid system and the applications both. The problem of local

resources utilization is already solved to a greater extent. We consider here two types of

scheduler first is local scheduler and second is global scheduler. Local scheduler takes

care about the scheduling inside each individual node/processor of the grid. In the

proposed problem we assume that local scheduler works in any manner as described by

the various operating systems [12].

Here we consider only two parameters with scheduling which are turnaround time and

speed up. We have already described the parameter turnaround time in 2.4.

Initially global scheduler randomly distributes the task to the nodes in grid environment.

Generally distribution of the tasks is accordingly to the processing speeds of each

machine in the grid. This gives us a solution, called as population in GA terminology. We

randomly generate this type of many solutions i.e. initial population. We calculate the

fitness of the population using fitness function. We select half of the population using

roulette-wheel selection method. After that crossover is performed 95% of time and

mutation 5% of time of total number of generations. In this way new population is

generated which includes the old population also. Now arrange the new population

32

according to its fitness value and make it as old population. Repeat this process until

stopping criteria meets.

4.1 QoS Parameters

Various QoS Parameters have already been described in Chapter 3. Here, we

concentrated only on two QoS Parameters. One of them is Finishing Time of the job. It is

also known as Turnaround time. Another QoS Parameter is Speed Up. The Speed Up is

defmed as the ratio of the time taken by a single processor to that of many processors of

the computational grid. It lies between 1 ton where n is the number of processors in the

computational grid.

4.2 Fitness Function

To derive the fitness function we have applied Queuing Theory [30, 31, 32, 33, 34, 35,

36]. Our problem falls in category of MIMIS Model. It is because we assume that there

are many systems/nodes/machines and many jobs/sub-jobs to execute. Every system has

its own capability to process the job.

Assume that average arrival rate and average service rate of the system are A, and Jl

MIPS respectively. The average waiting time using M/M/1 is given below

A.!(,u- A.)---eqn.4.1

The average Service Time is

11 ,u----- -eqn.4.2

The total average waiting time in the system is given below

A.l(,u-A-)+11 ,u-eqn.4.3

When it is simplified, it gives total average waiting time by the system is given below

ll(,u- A,)--- -eqn.4.4

The scheduling problem discussed here falls in M/M/S Model. Therefore we assume that

the arrival rate and service rate of ith system is A,i and ,ui MIPS respectively. The waiting

time using M/M/S is given below

33

A1 /(fl-1 - A1)--- -:eqn.4.5

The Service Time of i1h system is ((L::~ Taskk) I f.l1).

Therefore total average waiting time ith system is given below

[(Ar(fl-1 -.1.)+(1/ JL;))*(L::~Taskk)]--eqn.4.6

Where r is total no of tasks allocated in a machine.

Now total time taken by the grid is given below

max;:~[[(A,(.LL1 - A,)+ (11 fl-1)) * <I::;raskk)]]--- eqn.4.7

Where i vary from 1 to m and m is the total no of machines. Assume that

Tj = max;:~[[(A.(fl-1 - A,)+ (1/ Ji;)) * <I::;raskk)]]--- eqn.4.8

mi~:r~ =max::uCA;(.u1 -A;)+(l/ ,u))*Cl::;rasl~)]]]------eqn4.9

Where, j varies from 1 to n, n being the population size.

Here in above fitness function we are not considering the communication cost. Adding

communication costs between various modules/subtasks of the application, we can

modify the above function.

Assume that average arrival rate and average network load in system are 1 and b MBPS

respectively. Similarly average waiting time using M/M/1 is given below.

ll(b -l)--- -eqn.4.10

The scheduling problem discussed here falls in MIM/S Model. Therefore, we assume that

the arrival rate and service rate of i1
h link is 11 and b1 MBPS respectively. The waiting

time using M/M/1 is given below

[b; l(b; -I;)* c:L::; messagek)] ----- eqn.4.11

Here r is total number of messages in i1
h link.

The Service Time of rh link is (<I::; message k) I b1) .

Therefore total average waiting time ith system is given below

[(((b1 -11) * z:::; messagek + (1/ b1) * z:::; messagek] ---eqn.4.12

34

Where, r is total no of messages in the network.

Now, the total time (the optimal function) is given below [55, 56]

Minimize

Nj = max;:acz;(b; -l;)* I::~messagek) + (d * :L::~messagek)I b;)]-eqn.~.13

Where, i varies from 1 to n. n is the total no of links and d is the hamming distance

between the nodes of the grid. The problem thus becomes as

min imizej~; [T1 + N 1]----- ~eqn.4.14

Where n is population size and j varies from 1 to n.

4.3 The Model

The model proposed minimizes the turnaround time of the job submitted for execution. It

applies GA for this purpose. The various modules of the GA specific to this problem are

as follows.

Chromosome Structure of the problem is given below

Struct task {int task_ no; double task_size ;} task;

Struct machine {int machine no; double_machine ;} machine;

Struct chromosome {task []; machine ; } ; ·

Initial Population is generated randomly. Each Chromosome of the population is

generated randomly. The random generation is based on the random permutation concept

in which we generate the permutation randomly. If we want to improve performance of

the algorithm then we generate the population based on minimum time which we will

discuss in future work.

Crossover, used single-point crossover one common site in the chromosomes is chosen

randomly. Chromosomes of the parents are cut at that point and the resulting sub

chromosomes are swapped.

35

Selection, used roulette-wheel selection method. In this chance of an individual's being

selected is proportional_ to the amount by which its fitness is greater or less than its

competitors' fitness. Each individual gets a slice of the wheel. More fit ones get larger

slices than less fit ones. The wheel is then spun and an individual "owns" the section on

which it lands.

4.3.1 Genetic Algorithm for Computational Grid

The pseudo-code of the algorithm for the proposed model is as follows.

Algorithm ()

{ Intialize_population ();

{

}

Evaluate the fitness value of each individual against the fitness function using

calculate fitness (). //fitness is calculated according its turnaround time

Sort the population. //Sort Population using bubble sort according its fitness

Select the half best population

for (i=l; i<=no_of_generations; i++)

}

Initial individual of new population are mixed with old population

Randomly pick two parents from the population

Peiform the crossover over the parents to produce offspring based on the

probability of applying crossover (95%)

Mutate an offspring based on the probability of applying mutation (5%).

Store it in the rest part of new population

Evaluate the fitness of each new individual

Sort the new population

Select the half best population

36

4.4 Concluding Remarks

In this chapter, GA is applied to solve the scheduling problem of the Computational Grid.

Scheduling problem in computational grid is considered to be the most challenging

problem. Through scheduling the turnaround time offered to the job is optimized. Fitness

function considering the two situations; one in which non-interactive jobs are considered

and the other in which interactive jobs are considered have been described. The structure

of chromosome, initial population, crossover applied and selection method applied is also

discussed in this chapter. Finally, the pseudo code of the proposed scheduling problem in

grid using GA is presented.

37

Chapter 5

Experimental Evaluation

This chapter discusses about the experiments carried o~t for the model presented in this

work followed by the observations derived from the experiments.

The experiments have been performed for turnaround time and speedup. To represent the

result graph is plotted between generation verses turnaround time.

Based on the two fitness functions, proposed in the previous chapter, we have performed

the experiments for the two cases as follows.

Casel: We use fitness function described in equation 4.9.

Case2: We use fitness function described in equation 4.14.

Description of various input parameters used in the implementation ,of the algorithm

described in chapter 4 is as follows.

Sr. No. Variable Name Meaning Range

1 pop size population size 10-50

2 generations no of generation 100:.500

3 old pop old population 10-50

4 new pop new population 20-100

5 tempo temporary population 10-50

6 P[].miue speed of processor (in MIPS) 200-300

7 P[].lamda load of processor (in MIPS) 1-100

8 1 network load(in MBPS) 60-90

9 b bandwidth(in MBPS) 100-120

10 Task[].size Task Size(in MIPS) 2000-5000

Table 5.1-Descriptlon ofvartables used m program

38

5.1 Parallel Task without Communication Cost

Our ftrst set of experiments does not consider the interactive modules i.e. the execution of

the job without communication amongst them.

5.1.1 Observation with 50 Machines

Experiments have been carried out with 50 nodes/machines in the grid and variable

number of tasks as follows. Other parameters of the experiment are also given.

Number of Tasks =50, Number of Machines =50, Population Size =50, Range of Arrival

Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS,Range of Task Size 2000-

5000 MIPS.

Turnaround Time Observation
G)

~:} - ·-----------~--- J-series1j e 3o
(IS

E 20 -'------------
:::s

.... 1 25 49 73 97 121 145 169 193

Generation

Figure 5.1.1.1 Turnaround Time Observation with 50 Tasks

The achieved Minimum Turnaround time (TAT) =29.6295, Average TAT =30.7614, and

the Speed Up =37.8686.

39

Number of Tasks =60, Number of Machines =50, Population Size =50, Range of Arrival

Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS,Range of Task Size 2000-

5000 MIPS.

Turnaround Time Observation

-g 70 ~

p :1 1__:======---===========
1 24 47 70 93 116 139162

Generation

j-series1j

Figure 5.1.1.2 Turnaround Time Observation with 60 Tasks

The achieved Minimum Turnaround time (TAT)=42.9450, Average TAT =44.6660,

Spee~ Up =31.3683

Number of Tasks =70, Number of Machines =50, Population Size =50, Range of Arrival

Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS,Range of Task Size 2000-

5000 MIPS.

Turnaround Time Observation

! .§ ~~ "'--"---~ 'tl 80 1
E t- 50 '-------
~ 40~-------------------

1 7 13 19 25 31 37 43 49 55

Generation

!-series1j

Figure 5.1.1.3 Turnaround Time Observation with 70 Tasks

The achieved Minimum Turnaround time (TAT)=50.3140, Average TAT =51.2004,

Speed Up =31.0707

40

Number of Tasks =80, Number of Machines =50, Population Size =50, Range of Arrival

Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS,Range of Task Size 2000-

5000 MIPS.

Turnaround Time Observation

:::s Cl) 70
o E
-g 80~
~ i= 60 --
~ 50-'------------

1 27 53 79 105 131 157 183

Generation

I-Series1/

Figure 5.1.1.4 Turnaround Time Observation with 80 Tasks

The achieved Minimum Turnaround time (TAT) =57.9150, Average TAT =59.8608,

Speed Up =31.1236

Number of Tasks =90, Number of Machines =50, Population Size =50, Range of Arrival

Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS,Range of Task Size 2000-

5000 MIPS.

Turnaround Time Observation

-g 80~ :::s Cl) 70
o E
~ i= 60~ ------
~ 50-'--~----------

1 32 63 94 125 156 187 218

Generation

I-Series11

Figure 5.1.1.5 Turnaround Time Observation with 90 Tasks

The achieved Minimum Turnaround time (TAT) =57.9314, Average TAT =60.0707,

Speed Up =34.8792

41

Number of Tasks =100, Number of Machines =50, Population Size =50, Range of

Arrival Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS,Range of Task Sze

2000-5000 MIPS.

Turnaround Time Observation

"C
c

80

::s cu 70 e e
E i= 6o "'~--------
::s
~ so~-----------------

33 65 97 129 161 193 225

Generation

/-series1/

Figure 5.1.1.6 Turnaround-Time Observation with 100 Tasks

The achieved Minimum Turnaround time (TAT) =58.9151, Average TAT =60.1472, ·

Speed Up =38.7071

Number of Tasks =110, Number of Machines =50, Population Size =50, Range of

Arrival Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS,Range of Task Size

2000-5000 MIPS.

Turnaround Time Observation

i ~
1

E b~-----~ /-series1/

1 28 55 82 109 136163 190

Generation

Figure 5.1.1.7 Turnaround-Time Observation with 110 Tasks

The achieved Minimum Turnaround time (TAT) =69.6059, Average TAT =71.8027,

Speed Up =35.5703

42

Number of Tasks =120, Number of Machines =50, Population Size =50, Range of

Arrival Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS,Range of Task Size

2000-5000 MIPS.

Turnaround Time Observation

1:: ~ · -------
60~---------------------

1 34 67 100 133 166 199 232

Generation

/-series1J

Figure 5.1.1.8 Turnaround-Time Observation with 120 Tasks

The achieved Minimum Turnaround time (TAT) =79.4821, Average TAT =80.7782,

Speed Up =33.8668

Number of Tasks =130, Number of Machines =50, Population Size =50, Range of

Arrival Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS,Range of Task Size

2000-5000 MIPS.

Turnaround Time Observation

h :~~ ~----------
~ so~----------------------

1 28 55 82 109 136 163 190

Generation

J-series1J

Figure 5.1.1.9 Turnaround-Time Observation with 130 Tasks

The achieved Minimum Turnaround time (TAT) =88.9918, Average TAT =90.2364,

Speed Up =32.6597

43

5.1.2 Observation with 60 Machines

Experiments have been carried out making number of nodes/machines to 60 in the grid.

Other parameters are given.

Number of Tasks =50, Number of Machines =60, Population Size =50, Range of Arrival

Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS,Range of Task Size 2000-

5000 MIPS

Turnaround Time Observation
CD
E

i:t 2 30 -------..,. ... ___ _
CIS
E 20 ..L..-----------
::s
1- 1 14 27 40 53 66 79 92 105

Generation

l-series11

Figure 5.1.2.1 Turnaround-Time Observation with 50 Tasks

The achieved Min TAT =30.5804, Average TAT =31.5365, Speed Up =43.5056

Number of Tasks =60, Number of Machines =60, Population Size =50, Range of

Arrival Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS,Range of

Task Size 2000-5000 MIPS

Turnaround Time Obsevation

:}-------------~--~~
20~---------------------

l-series11

1 27 53 79 105 131 157 183

Generation

Figure 5.1.2.2 Turnaround-Time Observation with 60 Tasks,

The achieved Min TAT =30.1619, Average TAT =33.5950, Speed Up =53.5217

44

Number of Tasks =70, Number of Machines =60, Population Size =50, Range of

Arrival Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS,Range of

Task Size 2000-5000 MIPS

Turnaround Time Observation

h j~l ~-------l-series11 ~ 30 ...LL _________ _
1 27 53 79 105 131 157 183

Generation

Figure 5.1.2.3 Turnaround-Time Observation with 70 Tasks

The achieved Min TAT =42.7544, Average TAT =46.1048, Speed Up =43.6025

Number of Tasks =80, Number of Machines =60, Population Size =50, Range of

Arrival Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS,Range of

Task Size 2000-5000 MIPS

Turnaround Time Observation

-g 90~ ~ Q) 80
e E 70 I-Series11 a:s ·- 60 . . E t- 50 '--------
~ 40 -'------------

1 33 65 97 129 161 193 225

Generation

Figure 5.1.2.4 Turnaround-Time Observation with 80 Tasks

The achieved Minimum Turnaround Time (TAT) =54.9845, Average TAT

=56.5972, Speed Up =43.6325

45

Number of Tasks ==90, Number of Machines =60, Population Size =50, Range of

Arrival Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS,Range of

Task Size 2000-5000 MIPS, Min TAT

Turnaround Time Observation

-g 90~ :s 80
E E 70
cu ·- 60 ---------E t- so
~ 40~-------------------

l-series11

1 33 65 97 129 161 193 225

Generation

Figure 5.1.2.5 Turnaround-Time Observation with 90 Tasks

The achieved Minimum Turnaround Time (TAT) ==56.7327, Average TAT

=57.611, Speed Up =42.3705

From the above experiments we derive the following conclusions

1. Through the experiments we found that solution saturated average around 50

generations and also the saturation of result depends upon the initial solution.

2. If number of tasks increases, turnaround time also increases.

3. If number of machines increases then turnaround time decreases with same

number of tasks.

4. If number of task increases then speed-up increases but after certain time period

it starts decreasing. It is because now the grid is highly loaded and is not able to

offer much for the task execution.

5.2 Parallel Tasks with Communication Cost

We have preformed the same set of experiments considering the interactive modules i.e.

communication between the modules/subtasks of the task is effective.

46

5.2.1 Observation with 50 Machines

Number of Tasks =50, Number of Machines =50, Population Size =50, Range of Arrival

Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS, Range of Task Size 2000-

5000 MIPS, Load of Network Link 60 MBPS, Load of Bandwidth 100 MBPS, Maximum

Hamming Distance-1 0, Maximum Communication Cost -30 MBPS

Turnaround Time Observation

'0

:~t
1::
::I Q) e e -Without
co·- Communication I:: I-....
::I

-With 1- 20

1 31 61 91 121 151 Communication

Generation

Figure 5.2.1.1 Turnaround Time Observation with 50 Tasks

OUTPUT: Minimum Turnaround Time =32.6295, Average Turnaround
-

Time =33.7614, Speed Up =34.3869

Number of Tasks =60, Number of Machines =50, Population Size =50, Range of Arrival

Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS, Range of Task Size 2000-

5000 MIPS, Load of Network Link 60 MBPS, Load of Bandwidth 100 MBPS, Maximum

Hamming Distance-10, Maximum Communication Cost -30 MBPS

Turnaround Time Observation

'2

:~~ ~ ~ -Without
le F Communication E ~ :I
t- 40 -Wth

1 26 51 76 101 126 Communication

Generation

Figure 5.2.1.2 Turnaround Time Observation with 60 Tasks
OUTPUT:- Minimum Turnaround Time =45.9450, Average Turnaround

Time =47.6660, Speed Up =29.3201

47

Number of Tasks =70, Number of Machines =50, Population Size =50, Range of Arrival

Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS, Range of Task Size 2000-

5000 MIPS, Load of Network Link 60 MBPS, Load of Bandwidth 100 MBPS, Maximum

Hamming Distance-10, Maximum Communication Cost -30 MBPS

Turnaround Time Observation

'0

80 j 1:
:::s Q)

-Without e e
ctl ·- i~ _"- ~ Communication 1:1-...
:::s

-With 1- 40

1 8 15 22 29 36 43 50 Communication

Generation

Figure 5.2.1.3 Turnaround Time Observation with 70 Tasks
OUTPUT: Minimum Turnaround Time =53.3140, Average Turnaround

Time =54.2004, Speed Up ~29.3223

Number of Tasks =80, Number of Machines =50, Population Size =50, Range of Arrival

Rate 1-100 MIPS, Range ofProcessing Speed 200-300MIPS, Range of Task Size 2000-

5000 MIPS, Load of Network Link 60 MBPS, Load of Bandwidth 100 MBPS, Maximum

Hamming Distance-10, Maximum Communication Cost -30 MBPS

Turnaround Time Observation

Q)

E 80
i= -Without
'0 70 Communication 1: h :::s
0 60 "' -With ...
ctl Communication
1: ...

50 :::s
1-

1 28 55 82 109 136 163 190

Generation

Figure 5.2.1.4 Turnaround Time Observation with 80 Tasks
OUTPUT: Minimum Turnaround Time =60.9950, Average Turnaround

Time =62.8608, Speed Up =29.5928

48

Number of Tasks =90, Number of Machines =50, Population Size =50, Range of Arrival

Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS, Range ofTask Size 2000-

5000 MIPS, Load of Network Link 60 MBPS, Load of Bandwidth 100 MBPS, Maximum

Hamming Distance-10, Maximum Communication Cost -30 MBPS

Turnaround Time Observation

Q)

E

::~
i= -Without
'0 Communication c:
::s
0 -With ...
co Communication s:: ... 50 ::s
1-

1 33 65 97 129 161 193

Generation

Figure 5.2.1.5 Turnaround Time Observation with 90 Tasks
OUTPUT: Minimum Turnaround Time =60.8314, Average Turnaround

Time =63.0707, Speed Up =31.6815

Number of Tasks =100, Number of Machines =50, Population Size =50, Range of Arrival

Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS, Range of Task Size 2000-

5000 MIPS, Load of Network Link 60 MBPS, Load of Bandwidth 100 MBPS, Maximum

Hamming Distance-10, Maximum Communication Cost -30 MBPS

Turnaround Time Observation

'0

:~
s::
::s Q)

-Without ~ E
co ·- = Communication El-
::s

-With 1- 50

1 43 85 127 169 211 Communication

Generation

Figure 5.2.1.6 Turnaround Time Observation with 100 Tasks
OUTPUT: Minimum Turnaround Time =61.9151, Average Turnaround

Time =63.1472, Speed Up =36.8259

49

Number of Tasks =110, Number of Machines =50, Population Size =50, Range of Arrival

Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS, Range of Task Size 2000-

5000 MIPS, Load of Network Link 60 MBPS, Load of Bandwidth 100 MBPS, Maximum

Hamming Distance-10, Maximum Communication Cost -30 MBPS

Turnaround Time Observation

Cll

i 1~~ e 7o :::::::=====--1===1===
~ 60
~ 50 -'----------
1-

1 40 79 118 157 196 235

Generation

-Wihout
Communication

-With
Communication

Figure 5.2.1.7 Turnaround Time Observation with110 Tasks

OUTPUT: Minimum Turnaround Time =72.6059, Average Turnaround

Time =74.8027, Speed Up =34.1006

Number of Tasks =120, Number of Machines =50, Population Size =50, Range of Arrival

Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS, Range ofTask Size 2000-

5000 MIPS, Load of Network Link 60 MBPS, Load of Bandwidth 100 MBPS, Maximum

Hamming Distance-10, Maximum Communication Cost -30 MBPS

Turnaround Time Observation

Cll
E

i~~h i= -Without
"0 Communication
r::::
::s

-With 0 ...
IV 8o I Communication r:::: ...
::s 70
1-

1 40 79 118 157 1 96 235

Generation

Figure 5.2.1.8 Turnaround Time Observation with 120 Tasks

OUTPUT: Minimum Turnaround Time =82.4821, Average Turnaround

Time =83.7642, Speed Up =32.6350

50

Number of Tasks =130, Number of Machines =50, Population Size =50, Range of Arrival

Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS, Range of Task Size 2000-

5000 MIPS, Load of Network Link 60 MBPS, Load of Bandwidth 100 MBPS, Maximum

Hamming Distance-10, Maximum Communication Cost -30 MBPS

Turnaround Time Observation

Q)

E

:~~~
i=
"0 -Series1 c:::
::J

-Series2 0 ... co
c::: ...
::J 80
1-

1 26 51 76 101 126 151 176

Generation

Figure 5.2.1.9 Turnaround Time Observation with 130 Tasks

OUTPUT: Minimum Turnaround Time =91.8618, Average Turnaround

Time =93.2304, Speed Up =31.5942

5.2.2 Observation with 60 Machines

Number of Tasks =50, Number of Machines =60, Population Size =50, Range of Arrival

Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS, Range of Task Size 2000-

5000 MIPS, Load of Network Link 60 MBPS, Load of Bandwidth 100 MBPS, Maximum

Hamming Distance- I 0, Maximum Communication Cost -30 MBPS

Turnaround Time Observation

"0

501 c:::
::J Q)

E E I -Without
co ·- :~ -~ ,

Communication 1:1-...
::J -With 1- 20

1 16 31 46 61 76 91 Communication

Generation

Figure 5.2.2.1 Turnaround Time Observation with 50 Tasks

OUTPUT: Minimum Turnaround Time =33.5804, Average Turnaround

Time =34.5345, Speed Up =39.6198

51

Number of Tasks =60, Number of Machines =60, Population Size =50, Range of Arrival

Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS, Range of Task Size 2000-

5000 MIPS, Load of Network Link 60 MBPS, Load of Bandwidth 100 MBPS, Maximum

Hamming Distance-10, Maximum Communication Cost -30 MBPS

Turnaround Time Observation

'0

:~
r::::
::l Q)

-Without ~ E ===c ns ·- Communication r::::l-....
::l

-With 1- 20

1 35 69 103 137 171 Communication

Generation

Figure 5.2.2.2 Turnaround Time Observation with 60 Tasks

OUTPUT: Minimum Turnaround Time =33.1699, Average Turnaround

Time =36.5930, Speed Up =48.6810

Number of Tasks =70, Number of Machines =60, Population Size =50, Range of Arrival

Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS, Range ofTask Size 2000-

5000 MIPS, Load of Network Link 60 MBPS, Load of Bandwidth 100 MBPS, Maximum

Hamming Distance-10, Maximum Communication Cost -30 MBPS

Turnaround Time Observation

'0

sol r::::

~~ '== ::l Q)
-Without ~ E

ns ·- ~ Com m.unication r::::l-
50 l

::l
-With 1- 40

1 8 15 22 29 36 43 50 Communication

Generation

Figure 5.2.2.3 Turnaround Time Observation with 70 Tasks

OUTPUT: Minimum Turnaround Time =45.7544, Average Turnaround

Time =49.1028, Speed Up =40.7436

52

Number of Tasks =80, Number of Machines =60, Population Size =50, Range of Arrival

Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS, Range of Task Size 2000-

5000 MIPS, Load of Network Link 60 MBPS, Load of Bandwidth 100 MBPS, Maximum

Hamming Distance-10, Maximum Communication Cost -30 MBPS

Turnaround Time Observation

"C 70~ c: -Without
::I (1)

:~r~ ~ E Communication
(13 ·-C:l-..
::I

-With 1- 40

1 40 79 118 157 196 Communication

Generation

Figure 5.2.2.4 Turnaround Time Observation with 80 Tasks

OUTPUT: Minimum Turnaround Time =57.9845, Average Turnaround

Time =59.4936, Speed Up =40.8715

Number of Tasks =90, Number of Machines =60, Population Size =50, Range of Arrival

Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS, Range of Task Size 2000-

5000 MIPS, Load of Network Link 60 MBPS, Load of Bandwidth 100 MBPS, Maximum

Hamming Distance- I 0, Maximum Communication Cost -30 MBPS

Turnaround Time Observation

"C

~~
c:
::I (1)

-Without ~ E
(13 ·- communication C:l-..
::I

-With 1- 40

1 43 85 127 169 211 Communication

Generation

Figure 5.2.2.5 Turnaround Time Observation with 90 Tasks

OUTPUT: Minimum Turnaround Time =59.7327, Average

Turnaround Time =60.6110, Speed Up =40.2425

53

5.2.3 Observation with 50 Machines and More Communication Cost

Number of Tasks =100, Number of Machines =50, Population Size =50, Range of Arrival

Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS, Range of Task Size 2000-

5000 MIPS, Load of Network Link 60 MBPS, Load of Bandwidth 100 MBPS, Maximum

Hamming Distance-10, Maximum Communication Cost -50 MBPS

Turnaround Time Observation

"0

i~~
c:::: -Without
:::l Q) e e Communication
ItS ·-C::::l-...
:::l

-With 1- 40

1 43 85 127 169 211 Communication

Generation

Figure 5.2.3.1 Turnaround Time Observation with 50 MBPS

OUTPUT: Minimum Turnaround Time =64.4570, Average

Turnaround Time =65.7607, Speed Up =35.3736

Number of Tasks =100, Number of Machines =50, Population Size =50, Range of Arrival

Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS, Range of Task Size 2000-

5000 MIPS, Load of Network Link 60 MBPS, Load of Bandwidth 100 MBPS, Maximum

Hamming Distance-1 0, Maximum Communication Cost -80 MBPS

Turnaround Time Observation

"0 90
c::::
:::l Q) 80 e e 70 r-, -Without
ItS ·-C::::l- 60 I"-. Communication ...
:::l

50 -With 1-

1 48 95 142 189 Communication

Generation

'
Figure 5.2.3.2 Turnaround Time Observation with 80 MBPS

OUTPUT: Minimum Turnaround Time =66.5064, Average Turnaround

Time =67.7245, Speed Up =35.3736, Speed Up =34.4859

54

5.2.4 Observation with 50 Machines with increase in Hamming Distance

Number of Tasks =100, Number of Machines =50, Population Size =50, Range of Arrival

Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS, Range of Task Size 2000-

5000 MIPS, Load of Network Link 60 MBPS, Load of Bandwidth 100 MBPS, Maximum

Hamming Distance-20, Maximum Communication Cost -30 MBPS

Turnaround Time Observation

"C

~~
c:
::I Q)

l: E -Without
CIS ·- Communication C:l-...
::I

-With 1- 40

1 43 85 127 169 211 Communication

Generation

Figure 5.2.4.1 Turnaround Time Observation with Hamming Distance 20

OUTPUT: Minimum Turnaround Time =65.2589, Average Turnaround

Time =66.4273, Speed Up =34.9389

Number of Tasks =100, Number of Machines =50, Population Size =50, Range of Arrival

Rate 1-100 MIPS, Range of Processing Speed 200-300MIPS, Range of Task Size 2000-

5000 MIPS, Load of Network Link 60 MBPS, Load of Bandwidth 100 MBPS, Maximum

Hamming Distance-30, Maximum Communication Cost -30 MBPS

Turnaround Time Observation

"C

~~
c:
::I Q)

-Without l: E .
CIS ·-C:l- Communication ...
::I

-With 1- 40

1 48 95 142 189 236 Communication

Generation

Figure 5.2.4.2 Turnaround Time Observation with Hamming Distance 30

OUTPUT: Minimum Turnaround Time =68.4882, Average Turnaround

Time =69.3383, Speed Up =33.2916,

55

5.3 Summary Result

Experiments with varying number of tasks with 50 machines and then 60 machines have

been conducted. Results have been summarized in the tables given below. We have

considered two cases for obtaining turnaround- time; without communication and with

communication.

Case 1: Parallel Tasks without Communication

No of Tasks Generations Average TAT Min TAT Speed-Up

1. 50 145 30.7614 29.6295 37.8686

2.60 90 44.6660 42.9450 31.3683

3. 70 30 51.2004 50.3140 31.0707

4. 80 160 59.8608 57.9150 31.1236

5. 90 220 60.0707 57.9314 34.8792

6. 100 220 60.1472 58.9151 38.7071

7. 110 170 71.8027 69.6059 35.5703

8.120 165 80.7782 62.3883 33.8668

9.130 115 90.2364 88.9918 32.6597

Table 5.2- Comparison Tasks without Communication in 50 Machines

No of Tasks Generations Average TAT Min TAT Speed-Up

1. 50 70 31.5365 30.5804 43.5056

2.60 190 33.5950 30.1619 53.5217

3. 70 110 46.1048 42.7544 43.6025

4. 80 70 56.5972 54.9845 43.6325

5.90 50 57.611 56.7327 42.3705

Table 5.3- Comparison Tasks without Communication in 60 Machines

56

Case 2: Parallel Tasks with Communication

No of Tasks Generations Average TAT Min TAT Speed-Up

1. 50 150 33.7614 32.6295 34.3869

2.60 95 47.6660 45.9450 29.3201

3. 70 35 54.2004 53.3140 29.3223

4. 80 165 62.8608 60.9950 29.5928

5.90 162 63.0707 60.8314 31.6815

6. 100 250 63.1472 61.9151 36.8259

7. 110 173 74.8027 72.6059 34.1006

8.120 165 83.7642 82.4821 32.6350

9.130 190 93.2304 91.8618 31.5942

Table 5.4- Comparison Parallel Tasks with Communication

No of Tasks Generations Average TAT Min TAT Speed-Up

1. 50 75 34.5345 33.5804 39.6198

2.60 192 36.5930 33.1699 48.6810

3. 70 30 49.1028 45.7544 40.7436

4. 80 50 59.4936 57.9845 40.8715

5.90 50 60.6110 59.7327 40.2425

Table 5.5- Comparison Parallel Tasks with Communication

From the above experiments we derive the following conclusions.

1. Through the experiments we observe that the solution converged around 50

generations and saturation of result depends upon the initial solution.

2. If number of tasks increases then turnaround time increases.

3. If number of machines increases then turnaround time decreases.

4. If number of task increases then speed-up increases but after a certain time it

starts decreasing.

5. If hamming distance increases then TAT increases and speedup decreases and

solution is saturated after more number of generations.

57

6. If communication cost increases then TAT increases and speedup decreases

and solution is saturated after more number of generations.

5.4 Comparisons between ACO and GA

We make a comparison between the two methods to solve the same problem. One using

GA (proposed and experimented by me) and the other using ACO (proposed and

experimented by my batch-mate).

5.4.1 Number of Tasks =12 Number of Machines =4, Arrival Rates are 0 MIPS

Processing Speed 1,2,3,4 MIPS

Tasks Size are 5,10,12,14,8,6,5,10,20,18,15 MIPS

Population Size =10, Generation =50 using GA

No of Ants =2, lteration=50 using ACO

Turnaround Time Observation

40

~~~~~------------
5 9 13 1 7 21 25 29 

Generation/Iteration 

Figure 5.4.1 Turnaround Time Observation with 12 Tasks 

OUTPUT: Minimum Turnaround Time =20.5, Speed Up =1.656 

58 



5.4.2 Number of Tasks =18, Number of Machines =4, Arrival Rates are 0 MIPS 

Processing Speed 1,2,3,4 MIPS 

Tasks Size are 2,4,6,8,10,12,14,14,16,18,18,18,20,20,22,24,24,4,6 MIPS 

Population Size =10, Generation =50 using GA 

No of Ants =2, Iteration=50 using ACO 

Turnaround Time Observation 

~ 90 l 
! ~ ~~1~~·~-----------------
~ 10 -'--~ --------------

1 4 7 10 13 16 19 22 25 28 

Generation/Iteration 

!=GAl 
~ 

Figure 5.4.2 Turnaround Time Observation with 18 Tasks 

OUTPUT: Minimum Turnaround Time =30, Speed Up =1.7976 

In above two experiments we took same number of tasks, machines, same A & ).l and 

same workload. We observe that the ACO [54] performs better than GA. The reason may 

be drawn as because ACO is decision based technique and scheduling is decision based 

problem it performs better. We also find that ACO converges faster than GA. Therefore 

ACO performs better than GA. We are not considering communication cost based 

experiments for comparison. 

Finally we conclud~ from above observation and above experiments we conclude that 

ACO gives better performance than GA. Because of ACO is decision based technique 

and scheduling is decision based problem. For detail about ACO we will discuss in future 

work. 

59 



Chapter 6 

Conclusion & Future Scope 

Over past few years, developments in Grid Computing are enormous. Still, being a highly 

heterogeneous system, Grid poses a lot of constraints. The research in the area of grid 

computing is going on. If the problems pertaining to the grid are handled effectively the 

grid will be widely available for solving the future high performance demanding 

applications. In fact the future will be governed by the grid. 

This dissertation work deals with QoS parameters optimization with scheduling in 

Computational Grid. This dissertation handles only two QoS parameter of Computational 

Grid; turnaround time and speed up. Two cases have been considered for obtaining 

turnaround time. 

Case 1: Parallel Tasks without Communication 

Case 2: Parallel Tasks with Communication 

The following conclusions are derived from the overall study. 

1. Most of the experiments depicts that solution converges at around 50 generations 

and convergence of result depends upon initial solution. 

2. When number of tasks increases, turnaround time also increases. 

3. W'p.en number of machines increases, turnaround time decreases. 

4. Most of the results show that when number of task increases, speed-up linearly 

increases, though after certain time it starts decreasing. 

5. The effect of hamming distance is also observed. When this distance is more the 

Turnaround time increases and speedup decreases. 

6. Communication Cost between interactive modules increases the Turnaround Time 

and decreases the speedup. 

7. ACO based scheduling model performs better than GA based model. 

60 



6.1 Future Scope 

There are many QoS parameters that can be handled while scheduling the job for 

execution on computational grid. We are able to handle only two in this work. In future, 

we plan to consider other QoS parameters and therefore many more models for this 

purpose. Also, there is vast possibility of applying other evolutionary methods to solve 

the scheduling problem. We also plan to apply other evolutionary methods towards this. 

A comparative study will give us the insight for which type of problem which method 

will be more appropriate. The comparison of ACO and GA based models shows that 

ACO gives better performance than GA. It is to be explored further in our future work. 

61 



References 

1. Daniel A. Menasce and Emillano Casalicchiop, "QoS in Grid Computing", IEEE 

Computer Society, 2004. 

2. Melariie Mitchell, "An Introduction to Genetic Algorithms", PHI, Third Edition, 

1996. 

3. D. Goldenberg, "Genetic Algorithms m Search Optimization and Machine 

Learning", Pearson Education, 2005. 

4. David Abramson, Rajkumar Bunya and Jonathan Giddy, "An Architecture for 

Resource Management and Scheduling system in Global computational Grid", HPC 

Asia 2000,China,IEEE CS Press,USA,2000. 

5. Michael J. Quinn, 

Edition, 2002. 

"Parallel Computing: Theory and Practices", TMH, Second · 

6. Andrew S. Tanenbaum, "Distributed Systems: Principles and Paradigms", PHI, 

Second Edition, 2002. 

7. Daniel A. Menasce and Emillano Casalicchiop, "Quality of Service Aspects and 

Metric in Grid Computing", IEEE Computer Society, 2004. 

8. AndrewS. Tanenbaum "Modem Operating Systems", PHI, Second Edition, 2004. 

9. J.H. Abawajy, "Automatic Job Scheduling Policy for Grid Computing", Springer

Verlag Berlin Heidelberg, 2005. 

10. Keqin Li, "Job Scheduling for Grid Computing on Meta-compu.ters", IEEE 

Computer Society, 2005. 

11. Kaufmann, Perlman and Speciner, "Network Security", PHI, Second Edition, 2004. 

12. A. Silberschatz, G. Ganges and Peter Galvin, "Operating Systems Concepts", Wiley 

& Wiley, Sixth Edition, 2006. 

13. Behrouz A. Forouzan "Data communication and Networking", PHI, Fifth Edition, 

2005. 

14. AndrewS. Tanenbaum "Computer Networks", PHI, Second Edition, 2004. 

15. R.Buyya, D.Abramson and S.Venugopal, "The Grid Economic," Proc. IEEE, vo.93, 

no.3, pp.698-714, Mar.2005. 



16. Xian-He Sun &Ming Wu "QoS of Grid Computing: Resource sharing", The Sixth 

International Conference on Grid cooperative Computing IEEE 2007. 

17. Luca Valcarenghi "QoS in Global Grid Computing", Proceeding of the 13th 

Symposium on High Performance Interconnects IEEE 2005. 

18. I. Foaster and C. Kesselman, Grid: Blueprint for Computing Infrastructure, San 

Mateo, A Morgan Kaufmann, ISBN July 1998. 

19. R. Stienmetz and K Wehrley "P2P Systems and Applications LNCS 3485" pp 193-

207 2005, Springer-Verlag Berlin Heidelberg 2005. 

20. J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut, "Quality of service for 

workflows and web service processes," J. Web Semantics, vol. 1, pp. 281-308, 

2004. 

21. Wei-Neng Cheng "Ant Colony Optimization Approach to Grid work Flow 

scheduling Problem with various QoS Requirements," IEEE Trans Jan 2009. 

22. Syd Chapman, Alistair Dunlop, Peter Henderson and Steven Newhouse "OMII Grid 

Security Technology Overview", Open Middleware Infrastructure Institute 

University of Southampton UK, July 2005. 

23. Butler, R. Engert, D.Foster, I Kesslman ,Tuckie ,S. Walmer and J. Whelch " VA 

National authentication Infrastructure", IEEE Computer 33(12) 60-66 2000. 

24. Charlie Kaufman, Radian Perlman and Mike Speciner, "Network Security", Pearson 

Education, 2004. 

25. Rich E. and Knight "Artificial Intelligence" Second Edition TMH 1991. 

26. R.Buyya, D.Abramson and Jonathan Giddy "An Economy Driven Resource 

Management Architecture for Global Computational Power Grids", IEEE, vo.93, 

no.3, pp.698-714, Mar.2005. 

27. N.J. Nilsson "Artificial Intelligence New Synthetic Approach", Morgan Kaufmann 

Publishers Inc., 1998. 

28. Russell and Novel "Artificial Intelligence, a Modem Approach", Pearson Education 

Inc. Third Edition 1995. 

29. Michael Paul and team "Grid Services Programming and Applications" IBM 

Cooperation May 2004. 

30. J.N. Sharma "Operation Research," Macmillan Publication Third Edition 2004. 



31. Gupta and V. Kapoor "Mathematical Statistics" S. Chanda Publications Eleventh 

Edition 2003. 

32. S.D. Sharma "Operation Research," Macmillan Publication 2004. 

33. A. Grama, A. Gupta, V. Kumar and G. "Introduction to Parallel Computing" 

Addison Wesley, Second Edition, 2003. 

34. A.Hamdy Taha "Operation Research: An Introduction", Pearson Education Seventh 

Edition 2005. 

35. Robert B. Cooper "Introduction to Queuing Theory", Second Edition North Holland 

Publications. 

36. Kanti Swarup and Gupta "Operation Research" Second Edition, PK & Man Mohan 

Publication 2004. 

37. R.G. Dromey "How to solve it by computer", Third Edition, PHI, 2004. 

38. Niklas Wirth "Data Structures+ Algorithms= Programs", PHI, 2003. 

39. E.Balaguruswamy "Object Oriented Programming using C++", TMH, Third 

Edition, 2006. 

40. B. Lipman &J. Lasoie "C++ Primer" TMH, Third Edition, 2004. 

41. B. Struostrup "Programming Principles and Practices using C++", TMH, Third 

Edition. 

42. Dennis Ritchie and B. Kernighan "C Programming Language", PHI, 2002. 

43. E.Balaguruswamy "Programming inC", TMH, Third Edition, 2006. 

44. Pradeep .K. Sinha "Distributed Operating Systems Concepts and Design" PHI, 

2005. 

45. Zbigruiew Michalewicz "GeneticAlgorithms+Data Structures=Evolution Programs", 

Springer-Verlag Berlin Heidelberg, 1992. 

46. Aaron M. Tanenbaum "Data Structures using C" PHI, Second Edition, 2004. 

47. Kenneth E. Kendall and Julie E. Kendall "System Analysis and Design", Pearson 

Education, Third Edition, 2003. 

48. Jaraskiram "Grid Computing" Pearson Education, Third Edition, 2005. 

49. Ian Foster & Karl Kesselman "Grid 2: Blueprint for New Grid Computing 

Infrastructure", Morgan Kaufmann Publishers Inc. San Francisco, CA, USA an 

Imprint of Elsevier, Second Edition, 2003. 



50. Fran Berman, Geoffrey Fox, Anthony J.G.Hey, "Grid Computing: Makingthe 

Global Infrastructure a reality", John Wiley & Sons, 2003. 

51. Joshy Joseph and Craig Fellenstein, "Grid Computing", Pearson Education, 2003. 

52. P. Henry Winston "Artificial Intelligence" Pearson Education, Third Edition, 2004. 

53. Kalyanmo):' Deb "Multi-Objective Optimization using Evolutionary Algorithms" 

John Willey & Sons First Edition pp-81. 

54. Pawan K. Tiwari "Optimizing QoS Parameters using ACO" M.Tech Dissertation· 

SC&SS JNU New Delhi India. 

55. Khalid Sayood "Introduction to Data Compression", Morgan Kaufmann Publishers 

an Imprint of Elsevier, Third Edition, 2006. 

56. Ranjan Bose "Information Theory, Coding and Cryptography", Tata McGraw-Hill 

Companies, Second Edition, 2010. 

57. Thomas H. Coremen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein 

"Introduction to Algorithms" PHI, Second Edition, 2001. 

58. Andrew S. Tanenbaum and Wood Hull "Operating Systems: Design and 

Implementation", Pearson Education, Third Edition, 2005. 

59. Andrew S. Tanenbaum "Data Structures using C and C++" PHI, Second Edition, 

2004. 

60. Frederic Margoles, Jie Pan, Kiat-An Tan and Abhinit Kumar "Introduction to grid 

computing" CRC press, 2009. 


	TH174810001
	TH174810002
	TH174810003
	TH174810004
	TH174810005
	TH174810006
	TH174810007
	TH174810008
	TH174810009
	TH174810010
	TH174810011
	TH174810012
	TH174810013
	TH174810014
	TH174810015
	TH174810016
	TH174810017
	TH174810018
	TH174810019
	TH174810020
	TH174810021
	TH174810022
	TH174810023
	TH174810024
	TH174810025
	TH174810026
	TH174810027
	TH174810028
	TH174810029
	TH174810030
	TH174810031
	TH174810032
	TH174810033
	TH174810034
	TH174810035
	TH174810036
	TH174810037
	TH174810038
	TH174810039
	TH174810040
	TH174810041
	TH174810042
	TH174810043
	TH174810044
	TH174810045
	TH174810046
	TH174810047
	TH174810048
	TH174810049
	TH174810050
	TH174810051
	TH174810052
	TH174810053
	TH174810054
	TH174810055
	TH174810056
	TH174810057
	TH174810058
	TH174810059
	TH174810060
	TH174810061
	TH174810062
	TH174810063
	TH174810064
	TH174810065
	TH174810066
	TH174810067
	TH174810068
	TH174810069
	TH174810070
	TH174810071
	TH174810072
	TH174810073
	TH174810074
	TH174810075
	TH174810076
	TH174810077

