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ABSTRACT 

Brain is the most complex organ in living being. The complexity ofbrain has 

always overwhelmed researchers, psychologists, and scientists. They are 

trying to map its behavior right from its evolution but only little success has 

been marked up till today. On the similar lines, we have concentrated on the 

most basic unit of the brain. Spikes are generated whenever the potential of the 

membrane of neuron reaches threshold value. Applying the concepts of 

Information theory, Monte Carlo technique and Pearson system of frequency 

curves to the inter spike interval distribution led to some exciting facts. 
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Chapter-1 

Introduction 

Computational neuroscience 1s an approach to deal with the study of 

behavior of neurons. It provides an understanding of the mechanism for 

generation and processing of information. To this end, several models 

have been developed at different structural scales for gaining better 

insight into information processing mechanism. The development of 

models in neuroscience aims to capture various aspects. They range from 

a detailed description of biophysical models to a model of a single neuron 

based on the electrical properties of its membrane [ 1]. The main challenge 

in the field of computational neuroscience is to understand the process of 

information generation from sensory inputs. The most basic unit of brain 

is neuron. Normal human beings have approximately 10 12 neurons. The 

nerve cells of nervous system are capable of carrying information through 

electrochemical processes, which involve flow of Sodium and Potassium 

ions. Computational modeling aims to help in determining functions of 

nervous system [2]. 

Neurons consist of a cell body, dendrites and an axon. Dendrite is 

responsible for bringing information to the neuron and axon for sending 

information to other neuron. This establishes communication between the 

neurons. A neuronal cell comprises !.Dendrites, 2 .Nucleus, 3 .Axon, 

4.Myelin sheath, 5.Schwann cell, 6.Axon Terminal, and 7.Node ofRanvier 

Neurons are grouped in huge numbers in array of ions along with 

molecules. Many molecules have positive or negative charges. There is 
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preponderance of negative charge within a neuron. The cell membrane of 

the neuron IS a lipid bilayer 3 to 4nm wide so as to be basically 

impervious to the majority of the charged molecules. This shielding 

characteristic causes the cell membrane to perform as a capacitor by 

straightening out the charges lying by the side of its internal and external 

surface [ 1]. 

The potential of the extracellular fluid outside a neuron is defined to be 0. 

When a neuron is inactive, the excess internal negative charge causes the 

potential inside the cell membrane to be negative. This potential is in 

equilibrium when the flow of ions into the cell matches with the out flow. 

The potential can change if the balance of ion flow is modified by the 

opening or closing of ion channels. Under normal conditions, neuronal 

membrane potential varies over a range from about -90 to +50 m V. The 

order of magnitude of these potentials can be estimated from basic 

physicaLproperties [1, 2]. 

1.1 Electrical properties of a neuron 

The electrical properties of neurons and the biophysical mechanism are 

well established which are responsible for neuronal activity. Accordingly, 

it is natural that for a large neuronal network, one would be confronted 

with an enormously large number of differential equations. Accordingly, 

attempts have made to look for simpler models which besides capturing 

salient features of neuronal dynamics, also are analytically tractable. The 

electrical properties of neurons are generally captured in terms of 

membrane potential, which changes when the flow of ions is modified, by 

opening and closing of ion channels [2]. 

2 
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The membrane potential of the nerve cell changes very rapidly. The ions 

provide a rich substrate for generating nonlinear operation. The membrane 

potential is a crucial variable, which govern the dynamics of neuronal 

operation. The difference between the potential of inner and outer 

membrane of the neuron is referred to as membrane potential V m(t), which 

is given by 

(1) 

where Vi is potential of inner surface and Vo is potential of outer surface. 

The value of the resting potential varies between -30 m V to -90 m V; the 

resting potential is the potential difference at an equilibrium point at 

which the inward flow is equal to outward flow. The charge collected at 

the membrane is proportional to the capacitance of the membrane, 

(2) 

where Cm is the capacitance of the membrane. Denoting the neuronal 

current represented by Ic, we have 

I = cdVm 
c dt 

(3) 

This current is generated on account of change in potential between the 

surfaces. Actually, there is no movement of charge across the insulating 

membrane but there is a change of density of charge along the membrane 

surface. This causes variation in potential. Following Koch [ 1 ], the 

equivalent circuit is depicted in fig 1. 
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Vrest Vm 
c 

Figure 1.1, Equivalent circuit of neuron,(Adapted from [ 1]) 

Applying Kirchhoff's law, we get 

RC dVm = -Vm + Vrest + Rl 
dt 

I 

(4) 

where R is the membrane resistance, C is membrane capacitance, Vm is 

membrane potential and I is the current due to the flow of ions 

1.2 Action Potential and Spike Generation 

It is well established that with the increase of membrane potential above a 

threshold, the neuron generates action potential in the form of spike. As 

pointed out in [ 1 ], the action potential may have to 100 m V fluctuations 

and is dependent on the recent history. The action potential in the form of 

membrane potential fluctuation can traverse over large distances. Potential 

fluctuations, which correspond to subthreshold, do propagate only very 

small distance and get attenuated very fast [2]. A problem of interest is to 

obtain the relationship between stimulus and response. One of the 

difficulties is that several neurons respond to stimuli and one would like 

to determine the firing pattern of a single neuron. 
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1.3 Neuronal Coding and Firing Rate: 

The problem of neuronal coding is not well understood. As noted by 

Gerstner and Kristler [3] that in a small part of brain, say cortex, thousand 

of spikes are produced every millisecond. The question is to characterize 

the code used by neurons to transmit information. The challenge is to 

understand the message, which can be inferred from the neuronal activity. 

One of the quantities, which can provide insight, is the mean firing rate. If 

{ t1, t2, t3 ... } denote the times at which the neuron fires, then the spike 

sequence can mathematically represented as a sum of delta function (see 

Dayan and Abbott [2]). 

p(t) = :Li::1 o(t- tJ (5) 

Such that 0 ~ ti ~ T. The neuronal response in the form of spikes varies 

from trial to trial; one way to deal with such a situation is to take average 

n 1 J.T r(t) =-=-
0 

p(r)dr 
T T 

where r represents spike count rate. 

(6) 

When one averages over multiple trials, then average firing rate or spike

count rate becomes time dependent, i.e. 

1 J.t+M r(t) =- t (p(r))dr, 
M 

(7) 

where (p(r)) denotes averaging over different trials and can be viewed as 

ensemble average. Using this formalism, it is possible to define spike

triggered average stimulus as 

5 
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1 T 
C(r) = (n) f

0 
r(t)s(t- r) dt (8) 

Here <n> is the average number of spikes per trial. In a similar manner 

one can define the correlation function [2] of the firing rate and the 

stimulus as 

1 T 
QrsCr) = :rfo r(t)s(t- r)dt (9) 

The white noise stimulus is characterized by delta-correlated function, i.e. 

(10) 

1.4 Noise and Stochasticity in neuronal system 

A fundamental question m neuroscience 1s concerned with the issue of 

transmission of information from stimuli to the central nervous system. 

The sequence of spikes signals information: It is now well established that 

noise and statistical fluctuations are present in all biological systems. The 

irregularity of spike could be on account of stochasticity and thus to get 

an estimate of spike rate, one would be required to pool responses from 

many neurons. In contrast to this viewpoint, it is suggested that variability 

results from coincidence of presynaptic events [ 4]. In both viewpoints, it 

can be argued that the randomness in lSI distribution is essential for 

information transfer through neuronal code. 

The presence of stochasticity is essentially of biophysical origin 

emanating from irregular presynaptic spike trains, unreliable transmitter 

release and stochastic ion channel gating postsynaptic ion channel noise 

[5]. 

As noted by Robinson [5], low frequencies in n01se spectrum play a 

significant role in changing the membrane potential. The noise is 

6 
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generally exponentially correlated. Such type of noise can be generated 

from the Ornstein Uhlenbeck process with dynamics 

dX X 
- = -- + crr(t) 
dt T 

(11) 

where 't is the time constant ,CJ is the magnitude of fluctuation and r(t) is a 

white noise process i.e. 

E[r(t)] = 0 (12) 

(13) 

In a more rigorous mathematical selling, the white-noise process can be 

associated with a Wiener process, 

{W(t), t > 0} 

Eq(ll) can be written as 

dX(t) =- ~dt + crdW(t) 
T 

(14) 

Eq(12) represents a Ornstein-Uhlenbeck process which belongs to 

diffusion process. In contrast to noise source being modeled by Poisson 

process which has been gainfully employed to capture discontinuities in 

the form of sudden change in field potentials and brain recordings [ 6]. 

As observed by Tuckwell and Feng [6] that excitatory and inhibitory 

synaptic potential exhibit jumps. One of the earlier models due to Gerstein 

l 
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and Mandelbrot [7], represent the difference of two Poisson processes 

corresponding to excitatory and inhibitory input given by 

(15) 

Mathematically, it is convenient to resort to diffusion approximation 

where one approximates eq ( 16) by a Stochastic Differential Equation 

This Stochastic Differential Equation is discussed in Tuckwell and Feng 

[6], It essentially represents Brownian motion with drift (A.EaE- A.1a1) 

and fluctuations(A.Ea~ + A.1af). 

One can associate a Fokker-Planck equation with eq ( 14 ), viz. 

This equation gives the probabilistic description of the variable x(t) at any 

time point. With appropriate boundary conditions, the solution of eq ( 18) 

is a Gaussian process. The first passage time solution of eq ( 17) is the 

well known inverse Gaussian distribution viz. 

(18) 

where 

(19) 

8 
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and 

(20) 

J .5. Organization of Dissertation 

The dissertation consists of five chapters. The first chapter g1ves an 

overview of the field of computational neuroscience and some of the 

mathematical tools which are needed. The second chapter deals with the 

fields of modeling of single neuronal dynamics and neuroinformatics. The 

well known models viz. LIP, H-H are discussed from the point of neuronal 

coding, the basic quantitative formula based on information theory is 

briefly discussed. The third chapter deals with the Monte Carlo simulation 

procedure for non-leaky integrate-fire model. The closeness of first 

passage time distribution obtained by Monte Carlo simulation is compared 

with the exact inverse-gaussian distribution. This is done by employing 

K L measure. A new method is proposed based on Pearson frequency 

curve method to identify the functional form of probability distribution of 

FPT for lSI. The next chapter discusses the effect of colored noise on 

leaky integrate-fire model. Extensive simulations are carried to contrast 

lSI distribution with colored noise from that of white noise. Again 

Pearson type VI frequency curve is found to characterize FPT 

distributions. In terms of K L measure, FPT distributions for lSI with 

colored noise are found to converge in the limiting case to that of white 

noise. The last chapter contain conclusion. 
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Modeling Single Neuron and 
N euroinformatics 

The a1m of understanding stochastic dynamics of a single neuron is to 

shed light on brain architecture and functions like perception, cognition 

and information processing. Accordingly, the area of information 

processing by single neuron in different part of nervous system has been 

an active area of research (Moss and Gielen,[ 12]). Recording responses 

simultaneously from a large number of neurons is difficult; it becomes 

convenient to draw inference from single neuron firings. We shall closely 

follow· the description of single neuron as given by [6]. Though the 

dynamics of a single neuron is controlled by several variables, one of the 

important variables turn out to be membrane potential. 

The spike timings when action potential reaches the threshold are 

recorded in the form of series of time events { t1, t2, t3 ... }, where ti denotes 

the arrival time of i1
h spike. Most of the information, which is conveyed 

by the nerve cell, is also conveyed by time series. The issue of coding of 

information in the form of spikes has led to the development of the field 

of neuroinformatics. In this chapter, we briefly outline the models of 

single neuron, spike generation and analysis of spiking train [ 1, 2]. 

The well-known model, called as integrated and fire model, has been 

extensively studied to provide understanding of the mechanism for spike 

generation. 
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2.1 Integrate and Fire Model 

It is well established that as the membrane potential V(t) reaches a 

threshold value Yth at the T*, the action potential occurs resulting in spike 

generation. After this the potential is reset to resting potential Yrest such 
*+ 

that V(T )=Yrest· 

1.4 

1.2 

x(t) 

0.8 

"' 
0.6 

J 04 

0.2 rJ 
!"\ 

0.0 " 
timet 

Figure 2.1 Spike generation with V 1h=0.7 

This process explains the mechanism of spike generation. One may refer 

to figure 2.1 depicting the random variation in the membrane potential 

V(t) resulting in generation of spike when V(t)=Yth=O. 7. A refractory 

period is the time interval after which the process of another spike 

generation is initiated [2]. 

The differential equation when V<Yth, is given by 

dV = -(V(t)-Vrest) + J(t) 
dt T 

(1) 

ll 
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where I(t) is the input current and Vrest is the resting potential and T is the 

membrane time constant. Thus if the refractory period is Tref then 

V (t+ Tref) =Vrest· 

Eq (I) is a linear differential equation which can be explicitly solved to 

yield time-dependent potential. It easily seen that membrane potential 

varies exponentially with the time constant T 

There are other well-known models which along with integrate and fire 

model are, classified as point model: 

I. Hodgkin-Huxley model. 

2. Fitzhugh-Nagumo model. 

2.2 Hodgkin-Huxley Model 

This model provides the basic biophysical mechanism for the action 

potential and elucidates the nonlinear properties of neuronal membrane. 

Hodgkin-Huxley derived the set of four nonlinear differential equations as 

a mechanism for action potential regeneration [ 12], 

I 2 
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dn 
Tn- = noo(V)- n 

dt 
(5) 

The membrane capacitance is denoted by Cm, the parameters Gleak, GNa 

and GK represent the conductance of the leak current, sodium current and 

potassium current. The parameters n, m are the activation variable of the 

potassium, sodium current, h is inactivation variable of sodium current 

(see Meunier and Segev [13]). 

On account of faster activation process, the voltage increases from resting 

potential Vrest to certain value Vo and starts decreasing because of slower 

inactivation. The potential evolves on account of the flow of different 

currents into the membrane. When the potential rises from Vrest to Vo, 

initially the sodium current increases rapidly due to activation constant m 

and after that it decreases slowly due to inactivation constant h. 

2.2.1 Gating Theory 

Hodgkin-Huxley [2] gives the detailed description in terms of membrane 

properties, which provide mechanism for generation of action potential. 

The state variable represents two states, namely the open and closed 

states. Accordingly, the channel switches randomly from one state to 

another and vice versa. The activation variable n can be viewed as 

probability of switching of channel being open at a certain time. The 

differential equation for the activation process becomes. 

dn dt = an(V)(1- n)- bn(V)n, (6) 

where rate function an(V) and bn(V) are defined as 

1 
T (V) ----

n - an(V)+bn(V) 
(7) 
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(8) 

The rate function an and bn are the transition rates from closed to open 

state and vice versa [2]. 

2.3 Fitzhung-Nagumo Model 

This model 1s a reduced description of Hodgkin-Huxley model and 

captures the basic features of spike generation. In terms of membrane 

potential V and recovery variable W, Tuckwell and Feng [6], describe the 

dynamics as 

dV - = k [-V (V - a) (V - 1) - W] + I 
dt 

(9) 

dW - = [V- cW] 
dt 

( 1 0) 

Here k, b, a, c is constant. If a threshold potential is investigated then the 

model is referred to IF -FHN (integrate and fire Fitzhung-Nagumo model) 

2.4 Neural Information Processing 

Gabbiani and Koch [8], have brought out the necessity of a stochastic 

framework in neuronal coding. If the spikes are regularly spaced, the 

amount of information received is zero. This aspect has necessitated that 

the spiking pattern should involve randomness. Naturally one interested in 

finding the relationship between variability and neural coding. The 

quantitative measure of variability and uncertainty is provided by 

information theory [ 11]. We briefly describe the salient feature of 

quantifying uncertainty based on information theory. 

1 4 
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2.4.1 Measure of Uncertainty: Entropy 

Shannon [9, 1 OJ developed a measure uncertainty in terms of entropy. For 

a probability distribution P={pi,pz,p3,···Pn}, the entropy is defined as 

(11) 

We take OlogO=O. It is easy to see that O~::Bn(P) ::; log2n the entropy is 0 

. . . . 1 1 1 1 . 
while It IS maximum when P= { -,-,-... -}. The maximum values of 

nnn n 

entropy correspond to the case when all outcomes have equal probability 

i.e. uniformly distributed. 

Shannon entropy function has several properties which are listed the m 

book of Kapur and Kesavan [9] 

and are two 

independent probability distribution associated with random variables X 

andY i.e 

P(X=xi)=pi, i=l,2 ... n. 

P(Y=yi)=qi, j=1,2 ... m. 

P(X=xi,Y=yj)=rij=pi.qj, i=l,2 ... n, j=l,2 ... m 

It can be seen that the joint entropy equals the sum of entropies of random 

variables X andY, we have 
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2.4.2 Mutual Information 

Consider a stochastic system with input X and Y. The entropy H(X) 

denotes the uncertainty of the input. On observing the output Y, the 

uncertainty of X is reduced and is given by H(XIY). The conditional 

entropy H(XIY) represents the remaining of uncertainty of X once Y is 

observed. Thus one can define a measure of mutual information [10, 11] 

i.e. dependence between X andY as 

I(X, Y)=H(X)-H(XIY) (13) 

Eq(13) can be rewritten as 

(14) 

It can easily seen that I(X,Y)2:0. When X and Y are independent random 

variables, then 

I(X, Y) =0 

The mutual information measure I(X, Y) IS symmetric, I.e. 

I(X, Y) =I(Y, X) 

The reason as to why mutual information is useful in information 

processing is due to the fact that one can characterize the input -output 

relations in the context of spiking neuron 
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2.4.3 Measure of Directed Divergence 

Kullback and Leibler proposed a measure of directed divergence D(PIIQ) 

between two probability distributions[ 11 ]: This measure provides a 

measure of distance of probability distribution P from that Q and IS 

defined as 

(15) 

It may be noted that this measure is not symmetric i.e. D(PIIQ)=FD(PIIQ). 

When two distributions become identical, then D(PIIQ)=O. 

2.4.5 Entropy Measure For Continuous Variate 

The entropy for continuous variate X having pdf f(x) is defined as 

H(X) =- J f(x) lnf(x) dx (16) 

It must be pointed out that this form IS not limiting form of discrete 

variate (for details see Karmeshu [ 1 OJ). 

2. 5 Information of Spiking Neuron 

It is known that spikes carry information and the temporal sequence of 

spikes provide a big reservoir for transmitting information. A fundamental 

question: which of the two features is employed by brain? Big reservoir or 

variability in spike times? 
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The variability in spike times with evolving stimuli can be captured by 

entropy per unit time (see Strong et al [14]). We define~. as the bin size, 

and T as the window length, then the entropy is given by 

(17) 

where Pi is the normalized count of the ith word. Here we consider 

an example from Strong et.al [14], where ~•=3 ms, T=100 ms then 

S::::: 17.8 bits 

Strong et.al [ 14] in their paper provides an approach to quantify neuronal 

information in bits. 
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Non-leaky lSI Distribution: Analysis, Monte 
Carlo Approach and Pearson Curves 

The membrane potential of the neuron mcreases due to the 

electrochemical processes inside the neuron [1, 2]. The time epoch the 

membrane potential reaches a certain threshold value for the first time 

known· as first passage time (FPT). The spike is generated and after that 

the membrane potential decays to a value known as resting potential. 

Many researchers have advanced theoretical arguments regarding behavior 

of FPT. The first passage time is random in nature [13]. The difference 

between time epochs of two consecutive spikes is known as Inter Spike 

Interval generally known as lSI interval. The collections of lSI intervals 

yield probability distribution. Varieties of mathematical models are 

proposed to study lSI distribution. Mathematically, the first passage time 

can be defined as 

T = inf {t;;::::OI V(t)>S, V(O)<S} (1) 

It can be seen that Tis a random variable, which depends on the stochastic 

dynamics of the membrane potential. From the realization of the random 

variable T, one can calculate inter-spike intervals. As observed by Maio, 

Lansky and Rodriguez [15] the analysis of lSI distribution is done in 

terms of moments when the form of probability distribution 1s very 

difficult to obtain. 
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3.1 Non-Leaky Integrate-Fire Model 

The non-leaky integrate-fire 1s described by a stochastic differential 

equation 

rdV = 11-dt + adW(t) (2) 

where T is a membrane constant given by •=RC, and a is the magnitude of 

fluctuations and dW(t) is known as wiener process increment. 

Interestingly, this equation is similar to the one proposed by Gerstein and 

Mandelbrot [7], which reads as 

where the symbol have been defined in chapter 1 (see section 1.4). 

Here 

For ~>0, the FPT is given by inverse-gaussian distribution. 

The plot of the PDF is shown in figure 3.1 

(4) 

(5) 
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Figure 3.1, Probability density function of inverse Gaussian function 

The value of cr2=0.02, S=O. 7; 

3.2 FPT: Monte Carlo Simulation 

The SDE (2) can be discretized by using Euler method. Discretizing the 

time interval (0, T) into equal sub-intervals of size h= ~ , such that rn=nh 

(i.e. ro=O, r 1=h, r 2=2h, ... ). 

Following Gardiner [16], the Monte Carlo simulation of SDE is based on 

Euler method. Introducing the Wiener increment dW(h) = W(t+h)-

W(t)=: .Jhz, Z-N(0,1), SDE (2) can be discretized as 

V((n + l)h) = V(nh) + 11h + (5-fiizn (6) 

where Zo,Z,, ... are independent and identically distributed standard 

normal variates. Lansky, Sanda and He [ 19], has suggested a similar 

approach based on Euler discretization earlier. 5 7 3 t ( b \ 4 7 

SKJ..-~5" 

u st 
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We present a sample path corresponding to Wi ener-increment in Fig 3.2 
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" 

Figure 3.2, Wiener increment process with re spect to time. 

I 

" 

Simulate of SDE (2). The realization of first passage time IS g1ven m 

figure 3.3 

Figure 3.3, FPT: Monte-Carlo simulation of membrane potential reaching 
threshold for the first time V1h=0.05 , Vrest is 0.01 , h=O.Ol , cr=O. l414 . 
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We have carried out about 0( l 05
) simulations for inter-spike intervals. 

The total number of steps corresponding time increments is 0(106
). 

Noting that sampling error in Monte Carlo ts O(n- 112
), we find that 

sampling errors are considerably reduced. 

From the collection of lSI, we have constructed histogram as shown m 

figure 3.4 

Histogram of lSI distribution of integrate and fire model 
70C0,----,-----.-----.----.-----.----.~---.-----,----, 
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Figure 3.4, Histogram of the simulated lSI distribution. 
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In order to check the efficacy of Monte Carlo simulations and exact FPT, 
we plot the probability densities in figure 3.5 

Figure 3.5 , Probability density function of simulated and exact lSI 

distribution. 

For investigating, goodness of fit of Monte Carlo FPT with that of a exact 

inverse -gaussian distribution , we compute K .L measure of distance 

between simulated distribution from that of exact distribution . 

Denoting by P = { p 1, p 2, p 3, .. . p 0 } the simulated distribution and 

Q={ qi ,q2,q3, .. . qm} the exact distribution , the K L measure is defined as 

D(PIIQ)"' L i=l (Pi* log::) (7) 

In our case D(P JJ Q) turns out to be 0.0541. 
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3.3 Pearson Frequency Curve: 

The FPT for non-leaky IF model can be described by an exact distribution. 

In general it is not possible to have exact expression. To this end, we 

explore the possibility of identifying the frequency curve based on 

Pearson system as discussed in the book by Elderton and Johnson [ 1 7]. 

For the sake of completeness, we briefly outline the procedure. 

Pearson argued that unimodal curves can be obtained from the solution of 

differential equation 

1 dy 

y dx 

a+x 
(8) 

where a, b0, b 1 and b2 are constant parameters. He outlined a procedure for 

obtaining the parameters by the method of moments. Multiplying Eq(8) by 

xn and integrating, we get 

Assuming that y vanishes at the end points, Eq(9) yield 

-nb0 f1.,;_ 1 - (n + 1)b1f1.,;- (n + 2)bzfln.;1 - ... = fl-,;+ 1 + atfn ( 1 0) 

where 

(11) 

Eq( 1 0) can be used to provide moment estimates for the unknown 

parameters. Pearson noted that there exist 12 forms depending in 

parameter K, ~ 1 and ~ 2 • Elderton and Johnson [17] have classified the 

frequency curves as given in table 3.1 
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Table 3.1 

Criterion Type 
K= -oo III 
-00 < K < 0 I 
K = o,p2=3 P1=0 Normal curve, 
K=O,P2<3 and P1=0 II 
K=O, P1=0 and P2>3 VII 

O<K<l IV 
K=l v 
K>l VI 

K<O,A.=O, and 5~2-6J~r9<0 VIII 
K<O,A.=O, and SP2-6P1-9>0 IX 
P2=9,P1=4 X 
K>1,A.=O, 2P2-3Pl-6>0 XI 
SB2-6PJ-9>0 XII 

3.4. Approximation of FPT distribution and Pearson 
Curves 

From the sim.ulat~d lSI distribution, we have to calculate values of K, B 1 

and P2 to identify the type of Pearson curve [21 ], 

Pearson defined 

{3 114 
2 = II 2 
. r-2 

(13) 

For calculating K, B1 and P2 we refer to table 3.2. 

26 
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Table 3.2 

central value of First Second Third Fourth 

bins frequency Sum Sum Sum Sum 

0.6868 49 58589 505659 2769185 12154566 

0.8205 384 58540 447070 2263526 9385381 

0.9542 1479 58156 388530 1816456 7121855 

1.0878 2985 56677 330374 1427926 5305399 

1.2215 4825 53692 273697 1097552 3877473 

1.3552 7082 48867 220005 823855 2779921 

1.4888 7212 41785 171138 603850 1956066 

1.6225 7219 34573 129353 432712 1352216 

1.7562 6978 27354 94780 303359 919504 

1.8898 5445 20376 67426 208579 616145 

2.0235 4430 14931 47050 141153 407566 

2.1572 3207 10501 32119 94103 266413 

2.2908 2317 7294 21618 61984 172310 

2.4245 1768 4977 14324 40366 110326 

2.5582 1038 3209 9347 26042 69960 

2.6918 731 2171 6138 16695 43918 

2.8255 511 1440 3967 10557 27223 

2.9592 322 929 2527 6590 16666 

3.0928 218 607 1598 4063 10076 

3.2265 143 389 991 2465 6013 

3.3602 98 246 602 1474 3548 

3.4938 66 148 356 872 2074 

3.6275 35 82 208 516 1202 

3.762 17 47 126 308 686 

3.8948 10 30 79 182 378 

4.0285 5 20 49 103 196 

4.1622 9 15 29 54 93 

4.2958 1 6 14 25 39 

4.4295 2 5 8 11 14 
4.5632 3 3 3 3 3 

'-----. 

~\-{- ( b 197 

\ 
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sum(first sum) 
5 --------

2 - sum(frequency) 
sum(second sum) 

5--------
3 - sum(frequency) 

sum(third sum) 
5 - ----:-----:-

4 - sum(frequency) 
sum(fourth sum) 

5 ---------
5 - sum(frequency) 

d =52 

-82 = 2 * 53 - d (1 + d) 

-83 = 6 *54 - 3 * -82 (1 +d)- d(l + d)(2 +d) 

-84 = 24 *55 - 2-83(2(1 +d)+ 1)- -82 (6(1 + d)(d + 2)- 1) 
- d(l + d)(d + 2)(d + 3) 

And moments are calculated as 

f.lz = Bz - ClJ I 113 = -83 and /14 = -84 - (~) Bz + c:o) 
The importance of Pearson method lies in the fact that it has enabled us to 

identify the functional form of the FPT distribution. 

From the foregoing computation we find K= 1.81 0. 

As K> 1, we conclude that the simulated corresponds to Pearson type VI 

curve 

Type VI Curve: 

The functional form of FPT distribution f(t) belongs to type VI with 

density function 
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where yO is the normalization constant 

(15) 

Where q 1 and q2 are given by 

r-2 + r(r+2) {31 
2 - 2 {31(r+2)2+16(r+l) (

16) 

and r is given by 

6({32-{31-1) r = __;:_....:::._:......:::....---=-

6+3/31-2/32 
(17) 

70CU 
/~\ 

I \ 

I \ 
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I \ 

I \ 
I \ 
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/ ----------

~--
55 "' 70 

Figure 3 .6, Pearson plot obtained from the simulated data 
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lSI distribution of LIF Model with White 
noise and Colored noise: Monte Carlo Study 

One of the widely used models is based on Leaky Integrate and Fire, 

which can be recovered from detailed biophysical models (Koch 1998; 

Dayan and Abbot, 2001 [ 1, 2]). The justification for LIF is that with 

properly selected threshold, it can produce spike in a fairly large number 

of cases which describes 90% of spikes correctly [3]. Various researchers 

have established the fact that LIF model though simple, describes a 

realistic neuronal model. In this model, the variable of interest is 

membrane potential. This model can be described in terms of a circuit 

with a generator, a resistor and a capacitor in parallel. The model neuron 

generates a spike when the potential reaches a threshold and thereafter the 

value of the potential is reset to its initial value [8]. 

It is well established that the spikes pattern suggest the existence of 

inherent random noise in the neuronal activity. The random noise can be 

present either in the input signal or in target neuron (Maio, Lansky and 

Rodriguez 2004). Adding a stochastic term in the differential equation 

governing the dynamics of membrane potential captures the randomness in 

the neuronal activity; accordingly, the mathematical description is 

provided by stochastic differential equation (SDE). These models are 

inherently nonlinear. Accordingly, one has to simulate these models to 

gain an understanding of the behavior of the system. One of the major 

tasks of the model development is to capture interspike interval (lSI) 

distribution. This will require detailed analysis of the system's output for 

various parameters of the model. It may be pointed out that the 
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parameters like conductance, capacitance, and input current are assumed 

to remain fixed. We now describe briefly the well-known LIF model. 

Leaky integrate and fire model is based on Nernst equation. The 

membrane potential V m can either go up or go down depending on the 

flow of charge out of cell or flow of charge into the cell .[1] 

Representing by V 1 the Leak potential, one finds the membrane potential 

goes down when V m> V L and the membrane potential goes up when> V 1 

[ 1]. The differential equation for Vm is 

C = dVm = GL(V(t)-Vo) + J(t) V(O) V. 
m dt R ' = 0 ' 

(1) 

where G1 and Cm denote conductance and capacitance respectively and 

I(t) denotes the applied current. Equation (1) can be rewritten as, 

V(O) = 0 (2) 

Here -r=RC is a time constant governing the decay of the voltage back to 

its initial value and 11(t) = I(t)/C. In LIF model neuronal firing takes place 

whenever the depolarization V(t) reaches the threshold value S, 

thereafter depolarization V(t) is immediately reset to initial value, the 

time elapsed between two consecutive crossings of the threshold (spikes) 

defines an interspike interval(ISI). 

4.1 Stochastic LlF Model with White Noise 

The introduction of stochasticity into the LIF model is done by adding 

noise into equation (2). The model is described by a stochastic differential 

equation 

3 1 
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dX(t) = -v(t) + Jl(t) + a{(t), X(O) = 0 (3) 
dt · T 

where s (t) represent a <>- correlated Gaussian noise with zero mean and 

strength cr. 

Here ll (t) is any deterministic signal. The solution of Eq(3) as a first 

passage time provides an understanding of lSI distribution. 

Mathematically we can write 

T=inf { t~OIX(O)=O} (4) 

The initial condition is X(O)=O. In general it is not possible to explicitly 

compute the first passage time distribution. Only in special cases, 

expressions of the first passage time are available. 

SDE and Simulation 

In general setting it is not possible to have an analytical expression for 

FPT which will provide lSI distribution. Therefore, one is required to 

simulate SDE. One of the simplest numerical schemes is based on Euler 

scheme developed for ordinary differential equation. In this scheme the 

SDE(3) in terms of Weiner increment becomes 

dV(t) = [-V(t) + Jl(t)] dt + adW(t), V(O) = 0 (5) 
dt T 

Using Euler discretization (as discussed in chapter 3), 

V((n + l)h)- V(nh) = -V(nh)h + J.lh + a..fhZn (6) 
T 
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Here h represents the time-step Z are independent and normally 

distributed random variables such tha t Z ~N(O , 1), where ZO, Zl, ... are 

independent, identically distributed standard normal variates . 

0.06 ····· ······ ···· ··· ········· ······· ····· ···· ······ ...... ······· ··· ··· 

x(t) o.os 
. · .... .. ... ... .. : .. .. . 

0.04 

003 

time 
Figure 4.1 Simulated runs of membrane potential , Resting potential 0 .0 I, 

Threshold value 0.05, 

We generate standard normally distributed random numbers and update 

the value of potential at each time epoch as described by eq(6). In fig 1, 

we describe five simulations and spike generation whenever the potential 

reaches the threshold potential. 

From the simulation runs we collect data corresponding Inter-spike 

intervals. These lSI's enable us to construct histogram and the 
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corresponding probability density function of FPT. The histogram is given 

in fig 4.2 and the corresponding PDF is shown fig 4 .3. 

" 12 

Figure 4.2, Histogram for simulated lSI distribution 

1. 

J 
I 

·-~ 

\ 
\ 

\ 

16 20 

Figure 4.3, Probability density function of simulated lSI distribution of 

leaky integrate and fire model 
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4.2 Approximating PDF of Simulated FPT: Pearson 

Curve 

As outlined in chapter 3, we attempt to identify the Pearson curve for the 

data sets shown in Table 1. 

Table 4.1 Data from histogram in fig 4.2. 

central value of First Second Third Fourth 
bins frequency sum Sum Sum Sum 

1.1698 363 25467 146804 628559 2400315 

1.7495 2025 25104 121337 481755 1771756 

2.3292 3935 23079 96233 360418 1290001 

2.9088 4358 19144 73154 264185 929583 

3.4885 3760 14786 54010 191031 665398 

4.0682 2918 11026 39224 137021 474367 

4.6478 2302 8108 28198 97797 337346 

5.2275 1698 5806 20090 69599 239549 

5.8072 1168 4108 14284 49509 169950 

6.3868 859 2940 10176 35225 120441 

6.9665 608 2081 7236 25049 85216 

7.5462 420 1473 5155 17813 60167 

8.1258 307 1053 3682 12658 42354 

8.7055 209 746 2629 8976 29696 

9.2852 153 537 1883 6347 20720 
9.8648 93 384 1346 4464 14373 

10.4445 77 291 962 3118 9909 
11.0242 70 214 671 2156 6791 

11.6038 49 144 457 1485 4635 

12.1835 33 95 313 1028 3150 

12.7632 18 62 218 715 2122 
13.3428 13 44 156 497 1407 

13.9225 6 31 112 341 910 
14.5022 7 25 81 229 569 
15.0818 5 18 56 148 340 

15.6615 4 13 38 92 192 
16.2412 2 9 25 54 100 
16.8208 2 7 16 29 46 

17.4005 1 5 9 13 17 
17.9802 4 4 4 4 4 
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Carrying out similar analysis as done in chapter 3 we find K=5.7637 

which is >I. This indicates that the frequency curve is of Pearson type VI. 

The curve is plotted in fig 4 

4500 

4000 (\ 
3500 I \ 
30:rJ I \ 
25(1) I \ 
2000 

I \ 
1500 

I ~ 1000 

500 

.l ~ 
'b5 90 95 100 105 110 

Figure 4.4, Pearson Type VI curve generated from simulated data. 

4.3 Leaky-Integrate and Fire Model with Colored Noise 

So far we have discussed the effect of white noise on lSI distribution. A 

problem of interest is to examine the effect of colored noise on neuronal 

dynamics. The colored noise is characterized by noise having finite 

correlation time. Inclusion of such a noise renders the membrane potential 

non-markovian (Gardiner [16]). The SDE's which characterized the 

system are: 

. v 
V = -- + fldt + O"vR(t)dt 

'[ 

R = -BR + O"RdW(t) 

(R(t1 )R(t2 ) = O"~e-tJ(tz- t 1) 

(7) 
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The colored noise can be generated from Ornstein-Uhlenbeck process. 

Accordingly, the colored noise R(t) in eq(7) is assumed to be governed by 

SDE for Ornstein-Uhlenbeck process [16] . The system of equation is 

given by eq(7). We employ Euler-discretization method for simulation of 

FPT. 

V((n + 1)h) = ( 1 - ~) X(nh) + jih + CJvR(t) (8) 

R((n + 1)h) = (1 - Bh)R(nh) + CJR..Jhz 

where ZO, Z 1, ... are independent, identically distributed standard normal 

variates. 

We generate standard normal variates and solve the coupled system of 

equations (8) for each time step. Again we use another random number 

and update V(t) and R(t). 

12000 ,------- --,---- ,------- ---,---- -----,,-----------, 

10000 

10 20 25 

timet 

Figure 4.5a 
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1.! 16 

timet 

Figure 4.5b 

HISiogam of lSI distrbutiOI'I cl l iF mcxlel wrth cdored nOISe 

10 12 14 16 18 

Figure 4 .5c , 

Figure 4.5a , 4.5b , 4.5c frequen cy di stribution of FPT distribution with 

colored noise (v= 10, 50, 1 00) 
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The effect of colored noise for varymg v IS exhibited in fig 6. With 

increasing v, the shape of de nsity function is becoming less-skewed . 

D4r-----~-------,------~-------,------,--r==~ 
- netF10 

- ni!IF50 
- nl!1r100 

Oll 

OJ 

02S 

02 

Oli 

01 

OO:i 

Figure 4 .6 , PDF of simulated lSI d istribution of LIF model with colored 

noise at different value of neu parameter 

4.4 Approximating FPT distribution by Pearson Curve 

We present tabl e the data from histogram in fig 4 .5c when v= IOO. Using 

similar analysis as done in chapter 3, we find K= 10.3804 this again points 

to Type VI Pearson curve. 
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Table 4.2: centre value of bins and frequency obtained from histogram for 
v=lOO( see fig 4.5c). 
centre value of First Second Third Fourth 
bins frequency Sum Sum Sum Sum 

1.0192 299 26333 157378 700622 2791234 

1.5775 1988 26034 131045 543244 2090612 

2.1358 3866 24046 105011 412199 1547368 

2.6942 4326 20180 80965 307188 1135169 

3.2525 3855 15854 60785 226223 827981 

3.8108 3090 11999 44931 165438 601758 

4.3692 2336 8909 32932 120507 436320 

4.9275 1832 6573 24023 87575 315813 

5.4858 1259 4741 17450 63552 228238 

6.0442 946 3482 12709 46102 164686 

6.6025 703 2536 9227 33393 118584 

7.1608 506 1833 6691 24166 85191 

7.7192 345 1327 4858 17475 61025 

8.2775 280 982 3531 12617 43550 

8.8358 196 702 2549 9086 30933 

9.3942 141 506 1847 6537 21847 

9.9525 98 365 1341 4690 15310 

10.5108 68 267 976 3349 10620 

11.0692 54 199 709 2373 7271 

11.6275 43 145 510 1664 4898 

12.1858 27 102 365 1154. 3234 

12.7442 19 75 263 789 2080 

13.3025 12 56 188 526 1291 

13.8608 12 44 132 338 765 

14.4192 11 32 88 206 427 

14.9775 2 21 56 118 221 

15.5358 11 19 35 62 103 

16.0942 3 8 16 27 41 

16.6525 2 5 8 11 14 

17.2108 3 3 3 3 3 

40 
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pearson CUM OO!ained by fitting tequency distriOOtioo ct lSI distrbution ofLIF model with cdored noise 
4~,-------,-------,--------,-------,--------,-------, 
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Figure 4. 7, Type VI frequency distribution 

4.5 Effect ofv on K L measure 

The colored noise tends to white noise as v-HXl, cr2-too such that ne~ = 1 
20" 

(Gardiner [16]). It would be useful to study the effect of varying v on FPT 

distribution. A quantitative measure based on K L measure can provide 

distance of FPT distribution from that of inverse-gaussian distribution 

which holds for v-oo. Accordingly, it IS expected that 

D(FPT-CNIIIGD-WN) will decline with increasing v we shown in fig 4.8, 

the variation of K L measure with respect to v and find as v becomes 

larger and larger, K L measure becomes smaller and smaller [23]. 
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variation in KL-measure between IS~colored noise and lSI-white noise with respect to diffrent neu in colored noise 
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Figure 4.8, Variation of K L-measure between lSI distributions with color 

noise and lSI distribution with white noise. 

The framework we have discussed is quite general and can be extended for 

other type of neuronal models with colored noise. 
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Conclusion and Future Work 

We find that lSI distribution can explicitly be obtained in a simple non-leaky integrate 

fire model. As neuronal models become more complicated, one has to deal with linear 

and nonlinear models describes by stochastic differential equations. Further, if the noise 

sources are colored, the analysis requires the state-space to be increased as illustrated 

for the case of LIF model with colored noise. The approach advanced in the dissertation 

is based on Monte-Carlo technique for study of SDE. The simulation study has enabled 

us to obtain First Passage Time of inter-spike distribution. Another contribution is to 

employ Pearson family of frequency curves to characterize the FPT distribution for 

different noise sources: we find that in all cases considered in the dissertation, type VI 

Pearson curve characterizes the data set. This aspect needs to bo further investigated for 

other types of neuronal models. 
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