
On Parallelization of General Recurrence
Relation

Dissertation submitted to Jawaharlal Nehru University
in partial fulfillment of the requirement

for the award of the degree of

MASTER OF TECHNOLOGY
m

COMPUTER SCIENCE AND TECHNOLOGY

By

NITIN KUMAR JAIN

UNDER THE SUPERVISION OF

PROF. C. P. KATTI

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI-110067

JULY-2008

DECLARATION

I hereby declare that this dissertation entitled "On Parallelization of General

Recurrence Relation", is being submitted by me to School of Computer &

Systems Sciences, Jawaharlal Nehru University, New Delhi in partial fulfillment

of the requirement for the award of the degree of Master of Technology in

Computer Science & Technology, is a record of original work done by me under

the supervision of Prof. C. P. Katti.

The results submitted in this dissertation have not been submitted in part or

full at any other University or Institution for the award of any degree or diploma.

~h~
Nitin Kumar Jain

SCHOOL OF COMPUTER & SYSTEMS SCIENCE
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI-110067 (INDIA)

CERTIFICATE

This is to certify that the dissertation entitled "On Parallelization of General

Recurrence Relation", being submitted by Mr. Nitin Kumar Jain to the School of

Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi in

partial fulfillment of the requirement for the award of the degree of Master of

Technology in Computer Science and Technology, is a record of original work

done by him under the supervision of Prof. C. P. Katti. To the best of my

knowledge this work has not been submitted in part or full to any other University

or Institution for the award of any degree or diploma.

~r11rl~;:
Prof. Parimala N.

Dean, SC & SS

Jawaharlal Nehru University

New Delhi, India

~(_~
Prof. C. P. Katti

(Supervisor)

Acknowledgement

It gives me immense pleasure to record my humble gratitude towards all those

who helped and encouraged me through my dissertation, several of them deserve

special mention:

Above all, I wish to express my sincere appreciation to my honorable

supervisor Prof. C. P. Katti, School of Computer and System Sciences,

Jawaharlal Nehru University, New Delhi for his valuable guidance, enthusiasm &

encouragement. He has been an inspiration to me and a great teacher. It was really

an unforgettable experience to work under his guidance. I would like to express

gratefulness to him for developing in me independent problem solving approach. I

would like to appreciate his interest in my queries and their practical suggestions.

It would have been really impossible to complete this dissertation without his

invaluable support and patience.

I also wish to express a sincere thankfulness to Prof. Parimala N., Dean

and Professor of School of Computer and System Sciences, Jawaharlal Nehru

University for providing me this wonderful opportunity and necessary

infrastructure to carry out this dissertation. I express my heart-felt indebtedness to

my friends and appreciate their help in all manners they could. I wish to express

my admiration to all of them for their love and affection and being with me

through thick and thin.

At last, I would like to thank my parents, who formed part of my vision and

taught me the good things that really matter in life. I would like to share this

moment of happiness with them.

Nitin Kumar Jain

TABLE OF CONTENTS

List <:>fFigures

List of Tables

Abstract

1. Introduction

1.1 Parallel computing

1.2 Historical aspects of parallel computing

1.2.1 Von Neumann Architecture

1.2.2 Flynn's Classification

1.3 Need of Parallel Computing

1.3 .I Limitations with Serial Computing

1.3 .2 Benefits of parallel computing

1.4 Hardware Implementation ofParallel computing

1.4.1 Shared Memory

1.4.1.1 Uniform Memory Access (UMA)

1.4.1.2 Non-Uniform Memory Access (NUMA)

1.4.2 Distributed Memory

1.5 Aspects of Parallel Computing in Communication

1.6 Parameters in Parallel Algorithms

I. 7 Applications of Parallel Computing

1.8 Thesis Roadmap

ii

Page

IV

v

Vl

1

2

2

3

5

6

7

7

8

8

8

9

10

12

13

14

2. Recurrence Relation 15

2.1 Recurrence 15

2.2 Recurrence Relation 15

2.2.1 Examples ofRecurrence elation 16

2.2.2 Solving Recurrences 22

2.3 Generalization of Fibonacci sequence for parallel Computing 23

2.3 .1 Formula of second order Recurrence for parallel processing 23

2.3.2 Communication time of matrices in parallel 24

2.4 Recursive Doubling 24

2.5 n1
h order Linear Recurrence formula 25

3. General first Order Recurrences 27

3.1 General First Order Recurrence 27

3.2 Computational Characteristics of first order Linear Recurrence 30

4. Parallel Algorithm for Solving Recurrences 34

4.1 Algorithm for first order Linear Recurrence

4.2 Calculation of Speedup for a Linear Recurrence Equation

4.3 Calculation of Speedup for a Non Linear Recurrence Equation

5. Conclusion and Future Work

References

iii

34

37

39

44

45

List of Figures

Page

Figure 1.1: Parallel Computation of a Problem 2

Figure 1.2: Von Neumann Architecture 3

Figure 1.3: Flynn's Classification 4

Figure 1.4: Shared memory Architecture 8

Figure 1.5: Distributed memory Architecture 9

Figure 2.1: Tower ofHanoi 18

Figure 2.2: Solution ofTower ofHanoi problem with three disks 19

Figure 2.3: Complete Graphs 20

Figure 2.4: Recursive Tree 21

Figure 2.5: Tree Representation of Serial and Parallel computation 25

Figure 3.1: An illustration ofthe theorem 30

Figure 3.2: Data dependency flow for pseudo code 3 1

Figure 3.3: Data dependency of expanded form of first order Linear Recurrence 32

Figure 4.1: Computation of X4 34

Figure 4.2: Calculation ofx9 by the algorithm 36

Figure 4.3: Calculation of24 for a Non Linear Equation 41

iv

List of Tables & Graphs

Table 1.1: Flynn's classification Scheme

Table 4.1: Speedup of Linear and Non linear equation

Graph 4.1: Speedup of Linear and Non linear equation

v

Page

4

42

43

Abstract

In today's world many scientific and engineering problems are in the form of

linear and non linear recurrence equations. A parallel system is required to solve

these problems by multiple processors. Here we are going to discuss some

example of linear and non linear recurrence equations [LD, 90] and trying to find

out the speedup to enhance the parallel computing. We are considering the tree

architecture to calculate the speedup of our recurrence relation examples. We

finally compare the speedup performance of both the recurrence relations.

vi

1.1 Parallel computing

Chapter 1

Introduction

A Parallel Computing system is a computer having more than one processor, in

which the each discrete part is solved concurrently, then each part is further broken

down into a series of instructions, these instructions from each part execute

simultaneously on different CPUs [Q, 94].

Parallel Processing is the simultaneous use of more than one CPU to execute a

program. Ideally, parallel processing makes a program run faster because there are

more engines (CPUs) running it. In practice, it is often difficult to divide a program

in such a way that separate CPUs can execute different portions without interfering

with each other [Q, 94].

Most computers have just one CPU, but some models have several. There are even

computers with thousands of CPUs. With single-CPU computers, it is possible to

perform parallel processing by connecting the computers in a network. However, this

type of parallel processing requires very sophisticated software called distributed

processing software.

Note that parallel processing differs from multitasking, .in which a single CPU

executes several programs at once. Parallel processing is also called parallel

computing.

In Parallel Computing multiple processors solve a computational problem [1].

• It uses multiple CPUs.

• A single problem is broken into separate discrete problems.

• Each separate problem is further broken in to instructions.

• Instructions of each part execute simultaneously on different CPUs.

1

Problems Instructions

f---+ ~~~~~~ --. [:J
--. ~~~~~~ --. CJ
---+ ~~~~~~ --. [:J

In h h II

Figure 1.1: Parallel Computation of a problem

1.2 Historical aspects of parallel computing

"Since real world applications are naturally parallel and hardware is naturally parallel,

what we need is a programming model, system software and a supporting architecture

that are naturally parallel [2]."

The study of computer architecture involves both hardware organization and

programming I software requirements. From the hardware implementation point of

view, the abstract machine is organized with CPU's caches, buses, microcode,

pipeline, physical memory etc. Therefore architecture covers both instruction set

architecture and machine implementation code [KH, 93].

1.2.1 Von Neumann Architecture

For the last past four decades, virtually all computers have followed a common

machine model known as the von Neumann computer model, named after the

Hungarian mathematician John von Neumann. A Von Neumann computer uses the

stored program concept. The CPU executes a stored program that specifies a sequence

ofread and write operations on the memory [KH, 93].

2

Basic Architecture includes:

• Both, data instructions and program are store in memory.

• Program instructions are coded data which tell the computer to do

something.

• Data is used by the program as information.

• A central processing unit (CPU) gets instructions and/or data from memory,

decodes the instructions and then sequentially performs them.

A basic Von Neumann Architecture is shown in figure.

MEMORY

==*===!====;-, lnt&rnal bus

Figure 1.2: Von Neumann Architecture

This architecture was built as a sequential machine executing scalar data and because

of this, these machines were slow.

Later look ahead techniques were developed to prefetch instruction in order to

develop liE (instruction fetch I decode and execute) operations and to enable

functional parallelism. Functional parallelism was supported by two approaches: one

is two use multiple functional units simultaneously and the other is to practice

pipelining at various processing levels.

1.2.2 Flynn's Classification

A widely accepted and often used classification scheme was proposed by Michael

Flynn in 1972. Flynn classifies computers by the number of instructions and data

streams, respectively [RC, 81]. The following four classes are distinguished:

3

SISD SIMD

Single Instruction, Single Single Instruction, multiple

Data Data

MISD MIMD

Multiple Instruction, Single Multiple Instruction,

Data Multiple Data

Table 1.1: Flynn's Classification Scheme

A Stream simply means a sequence of items (data or instructions) as executed or

operated on by a processor. Four main types of machine organizations can be found

[RC, 81].

• SISD - single instruction I single data stream. This is the conventional serial

Von Neumann computer in which there is one stream of instructions (and

consequently only one processing unit) and each arithmetic instruction

initiates one arithmetic operation, leading to a single data stream of logically

related arguments and results. It is irrelevant whether pipelining is used to

speed up the processing or not. A machine of this call is sometimes referred

to as a scalar computer.

• SIMD - single instruction I multiple data stream. This is a computer that

retains a single stream of instructions but has vector instructions that initiate

many operations. Each element of the vector is regarded as a member of a

separate data stream. Hence, there are multiple data streams. This

classification includes all machines with vector instructions and machines

belonging to this class are often called vector computers.

• MISD - multiple instruction stream I single data stream. This is essentially an

empty class because it implies that several instructions are operating on the

same data simultaneously. We will not consider this class of machines.

• MIMD - multiple instruction stream I multiple data stream. Multiple

instructions streams imply the existence of several instruction processing

units and therefore, necessarily, several data streams. This class is quite

4

general and includes all forms of multiprocessor configurations from linked

mainframes (LANS and WANS) to a large arrays of microprocessors.

One can see that only two of the categories described above are of interest as far as

parallel processing is concerned - i.e. the SIMD and MIMD machines.

(a) SISD

(c) MISD

(b) SIMD

0
l

--------------· [~ 1
t

interconnection network

(d)MIMD

Figure 1.3: Flynn Classification

1.3 Need of Parallel Computing

Computer architects have been applying parallelism into various levels of hardware to

increase the performance of computer sciences, for the decades. To achieve the

extremely high speed demanded by contemporary science, architecture must now

incorporate parallelism at the uppermost level of the system. Today's, the fastest

computers in the world use high level parallelism concept. These computers are

leading to new scientific discoveries [1].

5

Traditional serial computers are characterized by the occurrence of a single locus of

control that tells about the next instruction to be executed. During the execution of

each instruction data is operated. That is fetched from the global memory one at a

time. So, only one instruction is execute at a time. In this processing, total

computation is slow by the speed of the memory access and the speed of the input

output devices. A number of methods have been developed for alleviating these

bottlenecks, cache memories and pipelining are some examples.

1.3.1 Limitations with Serial Computing

Both practical and physical reasons are major constraints to faster serial computers

[I].

• Economic Limitations: Making a faster single processor is expensive

procedure. Using a larger number of moderately fast commodity processors to

achieve the same (or better) performance is less expensive.

• Transmission Speed: The speed of a serial computer is directly dependent

upon how fast data can move through hardware. Absolute limits are the speed

of light (30 em I nanosecond) and the transmission limit of copper wire (9 em

I nanosecond). Increase speeds necessitate increasing proximity of processing

elements.

• Limits to Miniaturization: Processor technology is allowing an increasing

number of transistors to be placed on a chip. However, even with molecular

or atomic-level components, a limit will be reached on how small components

can be.

Parallel computing is currently an area of intense research which is motivated by a

variety of factors. These have always been a need for the solution of very large

computational problems, but it is only recently that technological advances have

raised the possibilities of massive parallel computation and have made the solution of

such problems possible. Furthermore, the availability of powerful parallel computers

is generating interest in the new types of problems that were not addressed in the past.

Accordingly, the development of parallel computing algorithms is guided by the

6

interplay between old and new computational needs on the one hand, and

technological progress on the other [4].

The needs of faster computation have been in number of areas such as computational

fluid dynamics and weather prediction as well as image processing. In these

applications there is a large number of calculations to be performed. The desired to

solve more and more complex problem has always been running ahead of the

capabilities of the time and has provided a driving force for the development of faster,

and possibly parallel computing machines. The above mentioned types of problems

can be easily decomposed along a spatial dimension and have therefore been prime

candidate for parallelization, with a different computational unit (processor) assigned

the task of manipulating the variables associated with the small region in space.

Furthermore in such problems, interactions between variables are local in nature, thus

leading to the design of parallel computers consisting of number of processors with

nearest neighbor connection [1].

1.3.2 Benefits of Parallel Computing

The important reasons for using parallel computing are [1].

•

•

•

•

•

•

It saves time (wall clock time)

Solves larger problems

Gives concurrency (to perform many operations at a time)

Taking help of non-local resources by using available computer resources

on a wide area network, or even the Internet.

Cost savings by using multiple low cost computing resources. This cost

can not save in supercomputing.

Overcoming memory constraints - single computers have very finite

memory resources. For large problems, using the memories of multiple

computers may overcome this obstacle.

1.4 Hardware Implementation of Parallel Computing

There are two categories of parallel computers, which we have described below.

These physical models are distinguished by having a shared common memory or

unshared distributed memories [5].

7

1.4.1 Shared Memory

General Characteristics:

• Shared memory parallel computers use very widely, but generally they have in

common the ability for all processors to access all memory as global address

space.

• Multiple processors can operate independently but share the same memory

resources.

• Changes in a memory location effected by one processor are visible to all

other processor.

• Shared memory can be divided in to two main classes based upon memory

access times: UMA and NUMA [1].

Figure 1.4: Shared memory Architecture

1.4.1.1 Uniform Memory Access (UMA):

• Most commonly represented today by Symmetric Multiprocessor (SMP)

machines.[3]

• It has identical processors.

• Equal access and access time to memory

1.4.1.2 Non-Uniform Memory Access (NUMA):

• Often made by physically linking between two or more SMPs.

• One SMP can directly access memory of other SMP.

• Not all processor have equal access time to all memories.

• Memory across link is slower.

8

Advantages of Shared Memory:

• Global address space provides a user-friendly programming perspective to

memory.

• Data sharing between tasks is both fast and uniform due to the proximity of

memory to CPUs.

Disadvantages of Shared Memory:

• Primary disadvantage is the lack of scalability between memory and CPUs.

Adding more CPUs can geometrically increases traffic on the shared memory

- CPU path, and for cache coherent systems, geometrically increase traffic

associated with cache management.

• Expense: it becomes increasingly difficult and expensive to design and

produce shared memory machines with ever increasing numbers of processors.

Scalability: The scalability of a parallel system is a measure of its capacity to increase

speedup in proportion to the number of processing elements [AAGV, 03].

1.4.2 Distributed Memory

Like shared memory systems, distributed memory systems vary widely but share a

common characteristic. Distributed memory systems require a communication

network to connect inter-processor memory (6].

Figure 1.5: Distributed Memory Architecture

• Processors have their own local memory. Memory addresses in one processor

do not map to another processor, so there is no concept of global address space

across all processors.

9

• Because each processor has its own local memory, it operates independently.

Changes it makes to its local memory have no effect on the memory of other

processors. Hence, the concept of cache coherency does not apply.

• The network "fabric" used for data transfer varies widely, though it can be as

simple as Ethernet.

Advantages of Distributed Memory:

• Memory is scalable with number of processors. Increase the number of

processors and the size of memory increases proportionately.

• Each processor can rapidly access its own memory without interference and

without the overhead incurred with trying to maintain cache coherency.

• Cost effectiveness: can use commodity, off-the-shelf processors and

networking.

Disadvantages of Distributed Memory:

• The programmer is responsible for many of the details associated with data

communication between processors.

• It may be difficult to map existing data structures, based on global memory, to

this memory organization.

1.5 Aspects of Parallel Computing in Communication

The Exploration of parallelism has created a new dimension in computer science. In

order to move parallel processing into the mainstream of computing, H T. Kung

(1991) has identified the need to make the significant progress in inter-processor

communication in parallel architectures [DT, 01].

In various parallel algorithms, the time spent for inter-processor communication is

sizable fraction of the total time needed to solve a problem. In that case algorithm

experiences a substantial Communication delay or Communication penalty.

Communication Penalty (CP) is defined as ratio

10

CP

Where

T Total

T Comp

Ttotai is the time required by the algorithm to solve the given problem, and

T comp is the corresponding time that can be attributed just to computation that is the

time that would be required if all communication were instantaneous.

Distributed computing system can be viewed as a network of processors connected by

communication links. Each processor uses its own local memory for storing some

problem data and intermediate algorithmic results and exchanges information with

other processors in group of bits called packets using the communication link of the

network. The size of the packet can be widely varying from a few ten's of bits to

some thousand of bits.

A shared memory can also be viewed as a communication network, since each

processor can send information to every other processor by storing it in a shared

memory.

Another technique called "Store and Forward" can also be adopted for packet

switched data communication model. Here a packet must travel over a route involving

several processors, may have to wait at any one of the processors for some

communication resource to become available before it gets transmitted to next node.

There are four types of communication delays [SB, PC]

• Communication Processing Time: This is the time required to prepare the

information for transmission. For example, making information in packets,

affix addressing and control information to the packets, select the

communication link on which to send each packet to appropriate buffers.

• Queuing Time: When information is assembled into packets for sending on

some communication links, it must wait in a queue for the start of

transmission, this wait is called queuing time. There are many reasons for

waiting, for example, the link may be temporarily unavailable because other

info(mation packets are using it or scheduled to use it ahead for the given

packet, and another reason is that by limitation of needed resources it may be

11

necessary to delay the transmission of packets. No proper buffer space at the

destination processor at the time of transmission.

• Propagation Time: This is the time required in between the end transmission

of last bit of the packet at the transmitting processor and the acceptance of the

last bit of the packet at the receiving processor. It is called propagation time.

• Transmission Time: This is the time that required for transmission of all bits

of the packets, one or more of above given times may be negligible.

One or more of above given times may be negligible. It's depending on system and

algorithms.

1.6 Parameters in Parallel Algorithms

There are mainly two parameters in any sequential algorithm, namely the running

(execution) times complexity and space complexity. A good sequential algorithm has

a small running time and uses as little space as possible. [Q, 94] Running time,

number of processors, and cost are the three principal criteria that are typically used

for evaluating parallel algorithm.

• Running time: Since speeding up solution of a problem is the main reason for

building parallel computers, an important measure in evaluating a parallel

algorithm is its running time which is defined as the time taken by the algorithm

to solve a problem on a parallel computer. A parallel algorithm is made up of two

kinds of steps. In the computation step, a processor performs a local arithmetic or

logic operation. In the communication step data is exchanged between the

processors via the shared memory or through the interconnection network. Thus

the running time of a parallel algorithm includes the time spent in both the

computation and the communication steps. The running time depends not only on

the algorithm but also on the machine on which the algorithm is executed.

• Number of processors: Another important criterion for evaluating a parallel

algorithm is the number of processors required to solve the problem.

12

• Cost: The cost of a parallel algorithm is defined as the product of the running

time of the parallel algorithm and the number of processors used.

To be able to assess the merits of a parallel algorithm, one needs to count the number

of time unit steps needed. For this purpose it is convenient to introduce the idealized

notion that during such a time unit step exactly one arithmetical operation can be

carried out in the parallel mode.

1.7 Applications of Parallel Computing

Parallel computing is an evolution of serial computing that attempts to emulate what

has always been the state of affairs in the natural world: many complex, interrelated

events happening at the same time, yet within a sequence. [KH, 93]

Some examples: Rush hour traffic, Planetary and galactic orbits, Automobile

assembly line, Tectonic plate drift, Daily operations within a business.

The great challenge applications areas are

• Ocean modeling can not be accurate with out supercomputing MPP systems.

Ocean depletion research demands the use of computers in analyzing the complex

chemical and dynamical mechanism involved. Both ocean and ozone modeling

affect the global climate forecast.

• High speed civil transport aircraft are being aided by computational fluid

dynamics running on super computers. Fuel combustion can be made more

efficient by designing better engine models through chemical kinetics calculation.

• Rational drug design is being aided in the research for a cure cancer and acquired

Immunodeficiency syndrome. Using a high performance computer, new potential

agent has been identified that block the action of human Immunodeficiency virus

protease.

• Catalyst for the chemical reactions is being designed with computers with many

biological processes which are catalytically controlled by enzymes. Massive

13

parallel quantum models demand large simultaneous to reduce the time required

to design catalyst and to optimize the properties.

• The magnetic recording industry relies on the use of computers to study magneto

static exchange interactions in order to reduce noise in metallic thin films used to

coat high density discs.

• Other important areas demanding computational support includes digital anatomy

in real time medical diagnosis, air pollution reduction through computational

modeling, design of protein structure by computational biologist, image

processing and understanding, and technology linking research to education.

1.8 Thesis Roadmap

The rest of the thesis is organized as follows. In Chapter 2, we have discussed about

recurrence relation and various examples of recurrence equations and areas where

recurrence relations can be used. In chapter 3, we have discussed about first order

general recurrence relation with its mathematical implementation in parallel

computing, and in chapter 4, we have calculated the speedup of linear and nonlinear

recurrence relations and shown the results. In chapter 5, we have given the conclusion

of the dissertation.

14

Chapter 2

Recurrence Relation

2.1 Recurrence

A Recurrence is an equation or inequality that describes a function in terms of its

value on smaller inputs [CLR, 00].

The evaluation of a recurrence gives a problem for a parallel computer because the

definition itself is given in terms of sequential evaluations, and only one term is

evaluated at a time, which gives no scope for parallel computation. Recurrence can be

applied in solution of linear equations by Gauss-elimination method, in all matrix

manipulations that require the inner product of vectors, in all iterative methods, in all

solutions of ordinary differential equations etc [RC, 81].

2.2 Recurrence Relation

A Recurrence Relation for a sequence {an} is a formula which expresses the n1
h term

of the sequence in terms of one or more of the previous terms of the sequence [VL,

06].

A finite ordered list is called a sequence.

The individual terms in the sequence are called terms. For the sequence (ao, a~,

az, a.u) of real numbers, an equation relating all but a finite numbers of terms ar,

to one or more of its previous terms is called a recurrence relation with given initial

values about the beginning of the sequence. The initial values are also called initial

conditions, boundary conditions, or basis for the sequence.

When a recurrence relation is known and one wants to determine explicitly the

sequences which satisfies the given recurrence relation. Many natural functions are

easily expressed as recurrences [VL, 06].

an = an-I + 1, a1 = 1 => an = n(pofynomiaf)

an= 2an_pa1 = 1 =>an= 2n-1(exp onential)

an = na n-1' a] = 1 => an = n! (factorial)

15

A mathematical relationship expressing.fx as some combination off; with i < n. When

formulated as an equation to be solved, recurrence relations are known as recurrence

equations, or sometimes difference equations [7].

A recurrence relation is an equation which gives the valued of an element of a

sequence in terms of the values of the sequence for smaller values of the position

index and the position index itself. If the current position of n of a sequence S is

denoted by Sn then the next value of the sequence expressed as a recurrence relation

would be of the form

Where /is any function. An example of a simple recurrence relation is

Sn+l = Sn + (n+I)

which is the recurrence for the sum of integers from I to n+ I? This could also be

expressed as

Sn = Sn.J + n

2.2.1 Examples of Recurrence Relation

Recursive Solution for Factorial of a number

For a given number n, Factorial of a number n! can be recursively defined as [9]:

0! =I and n! = n * (n-I)! For n>=I

In this definition, the equation is

n! = n * (n-I)! Forn>=l

is the recurrence relation. It defines each terms of the sequence of factorial as a

function of immediately preceding term.

In order to find out the values of the terms in a recursively defined sequence, one

must know the values of a specific set of terms in the sequence, usually the beginning

terms. The assignments of values for these terms give the set of initial value, which is

0! = 1. Knowing this value one can compute values for the other terms in the

sequence from the recurrence relation [K, 03).

For Example,

16

I!= I *(0!)=1*1=1

2! = 2 *(I!)= 2 * I * (0!) = 2 * I * I = 2

3! = 3 *(2!) = 3 * 2 * (1 !) = 3 * 2 * I * (0!) = 3 * 2 * I * I = 6

4! =4 * (3!)=4*3*(2!)=4*3*2*(1!)=4*3*2*1*(0!)=4*3*2*1*1 =24

5! = 5 * (4!) = 5*4*(3!) = 5*4*3*(2!) = 5*4*3*2*(1 !) =5*4*3*2*1 *I= 120

and so on.

Recursive solution for Fibonacci sequence

One more example of the sequence that is defined by recurrence relation is the

sequence of Fibonacci sequence [9].

It is a sequence of numbers first created by Leonardo Fibonacci (fi-bo-na-chee) in

1202. It's a very simple series, but its results and applications are limitless. Fibonacci

mathematics is a constantly expanding branch of number theory, with more and more

people being drawn into the complex details of fibonacci's legacy.

The first two numbers in the series are one and one. To obtain each number of the

series, we simply add the two numbers that came before it. In other words, each

number of the series is the sum of two numbers preceding it. Historically, some

mathematicians have considered zero to be a Fibonacci number, placing it before the

first l in the series. It is known as Zeroth Fibonacci number, and has no real practical

merit [9].

Fibonacci numbers satisfy the recurrence relation

Fn = Fn-1 + Fn-2 for n >= 3

Here also Fn is also defined as a function of two preceding terms, we must know two

consecutive terms of the sequence in order to compute the subsequent ones.

For the Fibonacci numbers the initial condition are F 1 = I and F2 = I.

Recursive Solution for Tower of Hanoi

The Tower of Hanoi puzzle was invented by the French mathematician Edouard

Lucas in 1883 [I 0].

Given a tower of 3 disks, initially stacked in increasing size on one of three pegs. The

objective is to transfer the entire tower to one of the other pegs (the rightmost one)

moving only one disk at a time and never a larger one onto a smaller. Solution to this

problem can also be solved using recurrence relations.

17

Let call the three pegs, peg 1 (Source), peg 2 (Auxiliary) and peg 3 (Destination). The

objective of the game is to transfer all the discs from peg 1 to peg 3. [TR, 06]

For a given number N of disks, the problem appears to be solved as the following

steps:

1. Move the top N-1 disks from 1 to 3 (using 2 as an intermediary peg)

2. Move the bottom disk from 1 to 2.

3. Move N-1 disks from 3 to 2 (using A as an intermediary peg)

l

CiJ
(2 J

(3)

Figure 2.1 Tower of Hanoi

For N = 3 it can be shown as

1. Move disk 1 from peg 1 to peg 3

2. Move disk 2 from peg 1 to peg 2

3. Move disk 1 from peg 3 to peg 2

4. Move disk 3 from peg 1 to peg 3

5. Move disk 1 from peg 2 to peg 1

6. Move disk 2 from peg 2 to peg 3

7. Move disk 1 from peg 1 to peg 3

18

~~
~~--S::::~.L

1'-t'..: ve .c:.li~~ I f'•~-~J"t"l p~cog l .-.~:• llo<-~.K· :'.,.

:Vf•w"'7c=::::~~-~ ·---~~ ~]~[]~
A solution 'to 'the Tovv~.r of Hanoi probh~m with three di:s.k.s

Figure 2.2 Solution of Tower of Hanoi problem with 3 disks [10)

Since step 1 requires moving n-1 disks from one peg to another, the minimum number

of moves required in step 1 if just mn-1· It then takes one move to accomplish step 2,

and another mn-I, moves to accomplish step 3. This analysis produces the recurrence

relation

fin = ffin-1 + 1 + ffin-1

which gives the equation

mn = 2 * mn-1 + 1 for n > = 2

19

Further only one is required to win the game with disk I, so the initial value for this

sequence is m1 = 1. By using the recurrence relation and the initial condition we can
I

determine the number of moves required for any number of discs.

Recursive solution for number of edges in a complete graph

A complete graph is a graph in which there exists an edge between every pair of

vertices. A complete graph is sometimes referred to as a universal graph or a clique,

the degree of every vertex is n-1 in a complete graph G of n vertices. The total

n*(n-I)
number of edges in G is The complete graph with n vertices is denoted by

2

Kn [N, 04].

To determine the number in a complete graph Kn with n vertices is also a recursive

problem i.e. how many edges need to be drawn to obtain Kn from Kn·l· Thus the

number of edges in Kn is satisfies the recurrence relation

en= en-1 + (n-1) for n > = 2

Definition of en involves only the preceding term en.1 and so the value which is

needed is en. Since the complete graph with I vertex ha no edges, we see that e1 = 0.

This is the initial condition for the sequence.

Kl K2 K3.

K4
Figure 2.3 Complete Graphs

20

Recursive Trees

Drawing a picture ofthe backsubstitution process gives you a idea of what is going on

[9].

We must keep track of two things -

(i) The size of the remaining argument to the recurrence, and

(ii) The additive stuff to be accumulated during this call.

Example: T(n) = 2T(n) + n 2

T (n/4) T (n/4) T (n/4) T (n/4)

Fig. 2.4 Recursive Tree

The remaining arguments are on the left, the additive terms on the right.

Although this tree has height log2n, the total sum at each level decreases

geometrically, so:

The recursion tree framework made this much easier to see than with algebraic

backsubstitution.

Tt-l- J6l16

' ;
·.~··

--· p

21

Matrix Multiplication
The standard matrix multiplication algorithm for two n x n matrices is 0 (n3

) [9].

2 3 12 3 41
3 4 *

3 4 5
4 5 ~

3 18 2]
8 25 32

23 32 41

Strassen discovered a divide-and-conquer algorithm which takes

Since o(n 1082 7
) dwarfs o(n 2

), r"""' 1 nf thP m<>dPr theorem applies and

T(n) = O(n 281
).

This has been ''improved" by m

current best inO(n 238
).

2.2.2 Solving Recurrences

recurrences until the

For solving recurrences there are mainly three methods, these methods are for

obtaining bounds on the solution [CLR, 00].

(i) In the Substitution method, we guess a bound and then use mathematical induction to

prove that our guess is correct.

(ii) The Iteration method converts the recurrence into a summation and then relies on

techniques for bounding summations to solve the recurrence.

(iii) The master method provides bounds for recurrences.

The master method depends on the following theorem [CLR, 00]:

Let a::: I and b >I be constants, letf(n) be a function, and let T(n) be defined on the

nonnegative integers by the recurrence.

T(n) = a T(nlb) + f(n)

Where we interpret nib to mean either floor (nib) or ceil (nib). Then T (n) can be

bounded asymptotically as follows.

(a) If f(n) = O(nlogb a-E:) for some constants£> 0,

then T(n) = e{nlog;,a).

22

f() o(log,a+£)
(c) If n = n for some constants c: > 0, and if

a f (nib) ~ c f (n) for some constants c < 1 and all sufficiently large n, then

T(n) =e(J(n)).

2.3 Generalization of Fibonacci sequence For Parallel

Computing

Parallelism plays an important role in parallel data processing particularly where

numerical algorithms are concerned. Fibonacci sequence formula can also be solved

using parallel approach. This recurrence formula for Fibonacci sequence can be

generalized to third order formula. (SU, 04]

2.3.1 Formula of Second order Recurrence for parallel processing

The following formula is for solving the recurrence relation serially [SU, 04].

Let fo = 1, ft = b

f; = b; + f;.t +a; f;.2 2(a)

where a;, b; E IR

Since f0 and f1 are given, so f2, f3 . ..fn-l, fn can be calculated as

.................. 2(b)

fn-1 = bn-1 fn-1 + ao-1 fn-3

23

Equation (2.2) can be written as

F; == A; * F;_1

Where

with (j = I, 2 ... N and i = 2, 3 ... N)

in more general way equation (2.3) is

F; =(A; * A;-1) * Fi-2

Now for a value ofN

.......................... 2(c)

................. 2(d)

2.3.2 Communication time of two matrices in parallel

Parallel execution of the recurrence relation comes to the execution of the following

equation.[TY,99]

FN=(AN*AN-1 * *A2) *FJ

Where A2 AN-I are matrices.

The parallel multiplications of matrices on hypercube architecture perform as follows.

For N = 9, number of arrays for multiplication is eight i.e. from A9 to A2.

Take a 3 dimension hypercube with 8 nodes. Put all matrices at each node. Send four

matrices on remaining matrices. It takes one unit communication time. Now

hypercube has 2 dimensions and each node have two matrices. Multiplication of each

pair of matrices takes one unit arithmetic time. In this way, after every

communication dimension of hypercube decreases by one. So we can solve equation

2(d) parallely and serially.

2.4 Recursive Doubling

Here we present a brief idea about recursive doubling as given in [SU, 03] and [3].

24

Let us consider a set,

M = {m" m2, m3--------mN} having N = 2" elements.

Let e be an arbitrary associative operation that can be carried out on set M.

For example, e £ {+ - * max min ---} '' ' ' '

Now the expression (m1 ® m2 ® ------ ® mN) is formed both serially and in parallel

and a comparison is made. For n = 4, we have the following schemes:

Serial Parallel

G) ~
/ ~~

I
ml m2 m3 m4 ml m2 m3 m4

Fig. 2.5 Tree Representation of Serial and Parallel com potation

Generally, Recursive doubling with N = 2n elements requires log 2 N parallel steps.

Serial implementation requires N-1 steps.

2.5 nth Order linear Recurrence formula

In general, a linear recurrence relation has the form [SU, 04].

t; =ail t;.J + ai2fi-2 + + ainfi-n 2(e)

fo= 1,

25

f1= <l1, = fn-1 = <ln-1

where aij's and ai's are constants.

now (2.5) is basically a serial process, where by putting the values of fo, f~, 6 ------fp

h we obtain our first value as fp and subsequently putting values of (fi-l,fi-2, ------- ti-p),

we obtain the new value t;, where i = p, p+ I, p+ 2 ------N.

As a first simple example, we consider a second order recurrence relation [SU, 04]

fo =I

t; = bi * fi-1 +a; * fi-2 2(t)

This yields a sort of Fibonacci sequence, let

Ai=
[

b, a
0
, J {j =I, 2, 3.. N, i= 2, 3 ... N}

Thus, equation (2.6) can be written as

Fi=AiFi-1 = AiAi-1A2F1 and FN= AN A2F1

Since matrix vector multiplication is associative, FN computed using the Recursive

doubling technique in 0 (log2N) steps by comparison with 0 (N) steps using a serial

calculation.

26

Chapter 3

General First Order Recurrence

In this Chapter, we present a generalization of first order recurrences, not necessarily

linear. Ideally multiprocessor systems with p processors can achieve p times speed-up

for a given program execution. In most cases, however this ideal speed-up can not be

achieved.

3.1 General First-Order Recurrences

Given XI, as the initial value, let

xi= J(ai,xi_J 3(a)

where u; , for each i, is a set of parameters; i > 0, are (real) scalars, and f (.,.) is a

function with approximately defined domain and co-domain. The function f (,.) is

called the recurrence function [LD, 90].

There are some examples:

(I)

........ 3(b)

ai = (ai, bi)

This is the standard first-order linear recurrence.

ai = (ai, bi)

This is a non-linear recurrence.

(3)

........ 3(d)

This is a recurrence involving a rational function.

27

(4)

=b !!!___ N>'>2 X; i + ' _/_
xi-I

This is the continued fraction expansion.

Now if ai = 1, then equation 3(b) becomes

where the recurrence function,/(, .) is associative.

......... 3(e)

But ifthe ai's are not identically equal to unity in equation 3(b), then in generalf(,.)

is not associative, that is,

J(a,J(!J,x)) # J{f(a,fJ),x) 3(f)

Heref(a, PJ may not even be defined. Thus in general when the function/(.,.) does

not satisfY equation 3(f), parallel algorithms for computing Xi's are not obvious at all

[LD, 90).

Now we develop a sufficient condition on f(,.) with which parallel algorithms for

computing xi's can be derived. This sufficient condition is expressed in terms of

another function g(,.) related tof(,.), which is defined as follows [LD, 90].

The recurrence function/(,.) is said to have a companion function g(,.) [1] If for all

the values of the parameters a, and a2.

In the following, we first derive the companion function for the above four examples,

given above in the same order

(1)

=(a; a;-])x;_z + (a;b;-I + b;)

g(a;,a;_J =a/') 3(h)

(2)

28

g(apa;_,)=

= (aiai-1' bibi-1 a;)

(3)

(1)
a;

x _ (a;cH + b;aH) + (a;dH + b;bH }x;_2

; - (c;cH + d;aH) + (c;dH + dibi-1 }x;_2

(4)

Rewriting x; as

a; +b;x;_1
X;=

X;_,

a.
X; =b;+-'

Xi-1

.......... 3(i)

........... 30)

. 3(k)

............ 3(1)

It can be seen that this is a special case of 3(c), with c; = 0 and d; = 1.

Theorem [LD, 90]

If a recurrence function/(, .) has an associated companion function g(, .) satisfying

equation 3(e), then for a~, a2, a3 and x,

i.e. g(,.) is associative with respect tof(, .).

So to understand the importance of this theorem, let us calculate

Xs = J(as,x4)

Xs = J(asJ(a4xJJ

x5 = f(a5,f(a4,f(a3,x2))}

x5 = J(a5,f(a4,f(a3,f(a2x1))))

x5 = J(a5,f(a4,f(g(a3,a2),x,))}

x5 = f(a 5,f(g(a4,g(a3'a2)),x1))

29

x5 = f(g(a 5 ,g(a4 ,g(a3 ,a2))),x1)

x5 = f(g(g(a 5 ,a4),g(a3 ,a2)),x1)

f (a' ,x1)

~ a'= g (a, a)

.I a = g (as, a4)

(\
Fig. 3.1 An illustration of the above theorem

3.2 Computational characteristics of First Order linear

Recurrence

In First order Linear Recurrence (FOLR), equation 3(h) holds and here we are

expanding this equation and finding the data dependency flow, which we have shown

in figure 3.2 [8].

By expanding the loop in figure 3 .I, we get data dependency flow as shown in figure

3.2.

pseudo code of equation 3(h)

x[O] = b[O]

Do(i= l:N-1)

x[i] = a[i] * x[i-1] * b[i]

30

Enddo

·······Q--0-0---D---+Q---+
xl-1 x1.2 Xl-3 Xl-4

Figure 3.2 Data dependency flow for pseudo code

In figure 3.2, a circle with subscript Xj-h tells the lh statement of the i-th iteration of

the loop which we have given in pseudo code i.e. Fig.3.1, there is also the loop carried

dependency between x[i]'s of the two consecutive iterations. So its not possible to

parallelize it directly by decomposing the data. The nested form of equation 3(h)

reduces the number of multiplications. So the nested form of this equation can not be

parallelized because of these data dependencies [8].

Now, when we unfold this nested form of equation 3(h) in to the expanded form of

equation 3(m), then we get the ability to change the dependency pattern.

We have shown the expanded form of first order linear recurrence is expanded into Xj,

when the given expanded form is dependent only on Xj as shown in equation 3(h).

xi = aiai-1 (ai_zxi-3 + bi_J + aibi-1 +hi

xi = aiai-1ai_zxi-3 + aiai-1bi-Z + aibi-1 +hi

31

Figure 3.3 shows the extreme case of expanded form, which is expanded into x1 [8].

In this expanded form of equation 3(h), the computation of Xi is dependent on the

value of x1 instead of the immediate preceding Xi- I· But the expanded form of first

order linear recurrence increases the number of multiplication operations, compared

to the nested form of first order linear recurrence, the data dependencies, here the data

dependencies are reduced which were preventing parallelization [8].

Figure 3.3 Dependency flow of expanded form of First Order Linear Recurrence

The expended from of First order linear recurrence reduced both the loop carried

dependency and also the overhead of increased multiplication operations.

Now we discuss some advantage and disadvantage of expanded form of the First

Order Linear Recurrence and try to find out the balancing point between the nested

form and the expanded form. For the simplicity, we calculate only multiplication

operations in calculating the execution time and ignore other operations such as loop

control and parallel execution overhead. We consider only the number of

multiplication as a measure of the execution time [8].

Let n;J be the number of multiplications needed for calculating x; in expanded form of

FOLR, which is dependent only on x1 . The formula to compute n;J is given by

nij =number ofmultiplication in[x; TI ak) +
b.J+I

32

number of multiplication in [I [b k IT a 1])

k= j+l l=k+l

nij = (i-j) + [(i-j-1) + (i-j-2) + + 1]

i-j
nij = ~), where 1 ~j < i ~N. 3(n)

k=l

Hence the total number of multiplications is computing from XI to XN, is given by

N N i-j
Ini,j = IIk 3(o)
i=2 i=2 k=l

The time to execute the nested form of first order linear recurrence in sequential is N,

while the time to execute the expanded form of first order linear recurrence is parallel

is given by equation 3(o) [8].

Let p be the number of processors used for parallel execution of the expanded form of

first order linear recurrence, then the relationship between p and N (number of

elements in array x) is given by

I N i-j
-IIk=N
p i=2 k=l

··············· 3(p)

Lets take an example where we take j=1, and N=100, the number of processors p,

needed to keep the execution time equal to that of serial execution of nested form of

first order linear recurrence would be 1667 [8].

Thus, practically it is impossible to parallelize the first order linear recurrence by

simply using the expanded form of first order linear recurrence. Consequently, for the

successful parallel execution of first order linear recurrence, the overhead of extra

multiplications should be mitigated by evenly distributing them to each processor [8].

33

Chapter4

Parallel Algorithm for Solving Recurrences

4.1 Algorithm for General First Order Linear Recurrence

The simplest example of recurrence problem is the first order recurrence in which x;

depends only on x;.1. The log-sum algorithm for solving x; = ~ + x;.1 is an example of

it. By introducing the parallelism into the solution of this recurrence came from the

associativity of addition, which allows us to rewrite standard serial evaluation [3].

Xt = ~ + (a3 + (a2 + a1))

Or

x4 = (~ + a3) + (a2 + al)

Here we shown the two equations, from which we can apply parallelism on second

equation by two processors, one computing(~+ a3) and the other computing (a2 + a1)

as shown in figure. For N number of calculation we have N/2 parallel additions at the

first step, N/4 at the second step, , and N/2k at the k1
h until, at the ceil(log2N)-th

step, XN is computed with one final addition [3].

T=2

T=l

T=O

Figure 4.1 computation ofx4

Let us take another example to calculate x9

The Equation which we are taking here is a linear equation, and then we will calculate

the Speedup of that linear equation [LD, 90].

34

Now By the definition of general first order recurrence [LD, 90] in equation 3(a), we

know

X9 = f(a9,f(as,x7))

x9 = f(a9,f(as,f(a7,x6)))

X9 = f(a9,f(as,f(a7,f(a6,xs))))

X9 = f(a9, f(a8, f(a7, f(a6, f(as, x4)))))

X9 = f(a9,f(as,f(a7,f(a6,f(as,f(a4,xJ)))))

X9 = f(a9,f(a8,f(a7,f(a6,f(as,f(a4,f(a3,xJ))))))

X9 = f(a9, f(a8, f(a7, f(a6, f(as, f(a4, f(a3, f(a2, xJ)))))))

X9 = f(a9, f(as, f(a7, f(a6, f(as, f(a4,f(g(a3, a2), xl)))))))

X9 = f(a9, f(a8, f(a7,f(a6 ,f(as,f(g(a4 ~g(a3, aJ),xJ)))))

X9 = f(a9,f(as,f(a7,f(a6,f(g(a5,g(a4,g(a3,aJ)),xJ))))

X9 = f(a9, f(a8, f(a7, f(a6,f(g(g(as, a4), g(a3,aJ),xi)))))

35

G=f.!(E,F)

/\
E = g(A,B) F = g(C,D)

/~ /~

a./

Figure 4.2 Calculation of x9 by the algorithm

Algorithm to calculate Xn

/*Given array1 [N], here N is the size ofthe array to store a values (a1, a2 a 0)

Given array2 [N], array2 is used to store a values for computation.

Declare variables I, J, K, P

*I

P=N

FOR I = 1 TO P STEP 1 DO

array2 [I]= array1 [I]

END

FOR I =1 TO (log2N) STEP 1 DO IN PARALLEL

K=O

FOR J = 1 TO P STEP 2 DO IN PARALLEL

array2 [K] = g (array2 [J], array2 [J+ I]

K=K+l

END

36

P =P/2

END

COMPUTE f(array2 [0], x1)

Procedure to calculate X9

Here a values are given as (a2, a3, a9) which is stored in array] [8] and we will

store these values in array2 [8] for computation and N = 8, x1 given as initial value

P = 8 therefore (log28) = 3

151 iteration

array2 [0] = g (array2 [1], array2 [2])

array2 [1] = g (array2 [3], array2 [4])

array2 [2] = g (array2 [5], array2 [6])

array2 [3] = g (array2 [7], array2 [8])

II"d iteration

array2 [0] = g (array2 [1], array2 [2])

array2 [l] = g (array2 [3], array2 [4])

mrd iteration

array2 [0] = g (array2 [1], array2 [2])

Now computation off(array2 [OJ, x1) will give value ofx9.

4.2 Calculation of Speedup for a Linear Recurrence

Equation

Let us take a linear equation to calculate the speed up of a linear recurrence [LD, 90].

X =a X 1 +b h . .
n n n- n , W ere XJ IS given

To calculate speedup, we require the time taken in serial computation as well as the

time taken in parallel computation.

So for serial computation

XI bl + GIXO

37

It is taking two operations, one is multiplication and another is

addition.

x2 = b2 + a 2 XI now

It is taking four operations, one is multiplication and another is

addition and two operations ofx~, hence total four operations.

Now

Similarly

x 3 = b 3 + a 3 (x 2)

It is taking six operations, four were previous and two new operations.

x 4 = b 4 + a 4 (x 3)

It is taking eight operations, six were previous and two new operations.

x 5 = b 5 + a 5 (x 4)

It is taking ten operations, eight were previous and two new operations.

Hence we have to calculate total number of operation in serial computation; this is

understood by seeing the number of operation on x2, x3, x-1, X5 and so on, that the total

number of operations are in multiple of 2. So on solving, we get total 2n operation in

serial communication.

Now we have to calculate time taken in parallel computation,

Now for Parallel computation, as we have shown solution for the value of x9 in

section 4.1.

As this example shows for calculation of g function it is taking 3 operations at each

level of the tree and it is also taking 2 operations in calculating function off, and we

also know that in a tree oflevel nits time complexity is (log2n).

Hence total time taken in parallel computation is (3 * log2n + 2) * AT, here we are

assuming only Arithmetic time in operations and ignoring the communication time.

So speedup is

Speedup

computation

time taken in serial computation I time taken in parallel

S _ 2n
P- (3*1og

2
n+2)* AT

Where AT is the arithmetic time required to perform operations.

Here both serial and parallel communications will take arithmetic time (AT), but in

our example we are neglecting AT from both type of communication.

38

r a Non Linear Recurrence

'90]

operations in Serial communications.

For n=l,

here it is easily shown that there are two operations and both are multiplications

now for n=2,

there are also two operations and the two previous operations, so total number of

operations are four.

For n=3,

There are total six operations, among which two are new and four are previous.

Forn=4,

There are total eight operations, same as in earlier cases.

So now we can easily guess that in the generalization of this non linear equation there

are total number of operations is 2n in serial computation.

Now we have to calculate the total number of operations in parallel computation.

Now same as we have calculated for the different values of n, we will again calculate

in same manner.

39

X n+ 1 = - 2x ~ is the non linear recurrence equation, where x1 is given.

For n=l,

Forn=2,

Forn=3,
2 ()15()16 x4 = -2x3 = - 2 x0

Forn=4,
2 ()31()32 x5 = -2x4 = - 2 x0

and so on.

So on generalizing this equation, we get the general solution for calculating Xn.

Now let us calculate the number of operations this equation is taking in parallel.

After finding the generalized equation, implement it on tree topology, so that we can

calculate number of operations this equation is taking.

By taking an example to calculate x4.

The generalized equation ofx4 is

2 ()15 ()16 x4 = -2x3 = -2 x0

4o

X.

/\

l\ !\ 1\ l\ 1\ 1\ ~ 1\J\~ ~1\ A~
(-2) (-2) (-2) (-2) (-2) (-2) (-2) (-2) (-2) (-2) (-2) (-2) (-2) (-2) (-2) Xo Xo Xo Xo Xo Xo Xo Xo Xo Xo Xo Xo Xo Xo Xo Xo

Figure 4.3 Calculation of x4 for Non Linear Equation

Here it is easily seen that it is taking 5 operations, so we conclude that total number of

operations taking in parallel for n processors will ben+ 1.

So speedup is

Speedup

computation

time taken in serial computation I time taken m parallel

S = 2n
P (n + 1)

41

Here both serial and parallel computations will take Arithmetic Time (AT), but in our

example we are neglecting AT from both type of communication.

Number of Processors Speedup of Linear Speedup of Non Linear
n Equation equation

8 1.454 1.778

16 2.285 1.882

25 3.138 1.960

32 3.764 1.939

40 4.452 1.951

50 5.282 1.960

64 6.4 1.969

75 7.251 1.973

128 11.13 1.984

200 16.04 1.990

256 19.692 1.992

512 35.310 1.996

1024 66.064 1.998

Table 4.1 Speedup of linear and non linear equation

42

s
p

e
e

d

u

p

70

60

50

40

30

20

10

0

0 200 400 600 800 1000 1200

Number of Processors n

--Linear Speedup

~NonlinearSpecdup

Graph 4.1 Speedup of Linear and Non Linear Equation

Here Blue line is the speedup of Linear equation and Red line is the speedup of Non

Linear equation.

In our example of Linear and non Linear equation, the speedup of linear equation is

very much higher than speed up of non linear equation. The speed of non linear

equation will be less than two in our example.

43

Chapter 5

Conclusion & Future Work

The Parallel Computing technique for solving the recurrence relation is better for a

large data set. But if data set is not large enough, parallel techniques may not be

needed. For small data set serial approach will give the improved results as there is no

need of parallel computation.

In our examples of recurrence relation we have calculated speedup on both the linear

and non linear equations, the non linear equation has Jess speed up, as compare to

linear equation's speedup. Non linear recurrence relation in our example has speedup

less than 2. In our dissertation we have implemented it on tree architecture, but it may

vary from architecture to architecture.

It might be possible that it may produce better speedup if we implement it on

Hypercube or Supercube architecture.

So the future work can be performed on parallelization of recurrence relation by using

different architectures to improve the speedup.

44

[LD, 90]

References

S. Lakshmivarahan, Sudarshan K. Dhall, "Analysis and Design of

Parallel Algorithms: Arithmetic and Matrix Problems", McGraw Hill,

1990

[AAGV, 03] Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar,

[KH, 93]

[Q, 94]

[RC, 81]

[K, 03]

[N, 04]

[T, 73]

[BA, 84]

[FC, 92]

[SU, 04]

[SB, PC]

[TR, 06]

[TO, 01]

[CLR, 00]

[VL, 06]

"Introduction to parallel Computing", Pearson Education ltd., 2003

Kai Hwang, "Advances Computer Architecture: Parallelism,

Scalability, Programmability", McGraw Hill, 1993

Michael J. Quinn, "Parallel Computing: Theory and Practice",

McGraw Hill, 1994

R W Hockney, C R Jesshope, "Parallel Computers Architecture,

Programming and Algorithms", Adam Hilger Ltd, Bristol

Kenneth H. Rosen, "Discrete mathematics and its applications", Tata

McGraw Hill, 2003

Narsingh Deo, "Graph theory with its applications to engineering and

computer science", Prentice hall of India 2004

Joseph Frederick Traub, "Complexity of Sequential and Parallel

Numerical algorithm", Carnegie-Mellon University

L. N. Bhuyan and D. P. Agrawal, "Generalized hypercube and

Hyperbus structures for a computer network", IEEE transactions on

Computers, vol. C-33.

T. Len Freeman, Chris Phillips, "Parallel Numerical Algorithm",

Prentice Hall of India 1992

U. Schendel, "Introduction to Numerical methods for Parallel

Computers", john Wiley and Sons, 2004

Shawn T. Brown, "Overview of Parallel Computing",

Tom Leighton and Ronitt Rubinfeld, "Recurrences I" 6.042/18.062

Mathematics for computer science, October 06.

Deepali Taneja, "Performance evaluation of numerical algorithms in

certain parallel architecture systems", Dec 01.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,

"Introduction to Algorithms, 2000.

Vese Luminita, "Recurrence Relations", November 14, 2006.

45

[1] https://computing.llnl.gov/tutorials/parallel_ comp/

[2] http:/ /aeshen.typepad.com/aeshen/2007 /02/parallel_ comput.html

[3] Kogge P.M. "Parallel solution of recurrence problems", IBM J. Research

development lab

[4] http://www .gup. uni-linz.ac.at/thesis/ diploma/bernhard _reitinger.html

[5] http://www.math.pitt.edu/-sussmanm/.html

[6] http://www .cs.bath.ac. uk/ Alwyn barry .htm

[7] http:/ /math world. wolfram/recurrnce.html

[8] Hong-Soog Kim, Young-Ha Yoon, Dong Soo Han, "Parallel processing of

first order linear recurrence on SMP machines". The journal of

supercomputing.

[9] Link: http://cs-netlab-O 1.1ynchburg.edu/courses/algorithms/recurenc.htm

[1 0] ww.cs.duke.edu/courses/spring05/cps 130/lectures/skiena.lectures/lecture3 .pdf

[11] http://www .cut-the-knot.org/recurrence/hanoi.shtml

46

	TH161960001
	TH161960002
	TH161960003
	TH161960004
	TH161960005
	TH161960006
	TH161960007
	TH161960008
	TH161960009
	TH161960010
	TH161960011
	TH161960012
	TH161960013
	TH161960014
	TH161960015
	TH161960016
	TH161960017
	TH161960018
	TH161960019
	TH161960020
	TH161960021
	TH161960022
	TH161960023
	TH161960024
	TH161960025
	TH161960026
	TH161960027
	TH161960028
	TH161960029
	TH161960030
	TH161960031
	TH161960032
	TH161960033
	TH161960034
	TH161960035
	TH161960036
	TH161960037
	TH161960038
	TH161960039
	TH161960040
	TH161960041
	TH161960042
	TH161960043
	TH161960044
	TH161960045
	TH161960046
	TH161960047
	TH161960048
	TH161960049
	TH161960050
	TH161960051
	TH161960052
	TH161960053
	TH161960054
	TH161960055

