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Abstract 

In today's world many scientific and engineering problems are in the form of 

linear and non linear recurrence equations. A parallel system is required to solve 

these problems by multiple processors. Here we are going to discuss some 

example of linear and non linear recurrence equations [LD, 90] and trying to find 

out the speedup to enhance the parallel computing. We are considering the tree 

architecture to calculate the speedup of our recurrence relation examples. We 

finally compare the speedup performance of both the recurrence relations. 
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1.1 Parallel computing 

Chapter 1 

Introduction 

A Parallel Computing system is a computer having more than one processor, in 

which the each discrete part is solved concurrently, then each part is further broken 

down into a series of instructions, these instructions from each part execute 

simultaneously on different CPUs [Q, 94]. 

Parallel Processing is the simultaneous use of more than one CPU to execute a 

program. Ideally, parallel processing makes a program run faster because there are 

more engines (CPUs) running it. In practice, it is often difficult to divide a program 

in such a way that separate CPUs can execute different portions without interfering 

with each other [Q, 94]. 

Most computers have just one CPU, but some models have several. There are even 

computers with thousands of CPUs. With single-CPU computers, it is possible to 

perform parallel processing by connecting the computers in a network. However, this 

type of parallel processing requires very sophisticated software called distributed 

processing software. 

Note that parallel processing differs from multitasking, .in which a single CPU 

executes several programs at once. Parallel processing is also called parallel 

computing. 

In Parallel Computing multiple processors solve a computational problem [1]. 

• It uses multiple CPUs. 

• A single problem is broken into separate discrete problems. 

• Each separate problem is further broken in to instructions. 

• Instructions of each part execute simultaneously on different CPUs. 
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Problems Instructions 
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In ..... h h II 

Figure 1.1: Parallel Computation of a problem 

1.2 Historical aspects of parallel computing 

"Since real world applications are naturally parallel and hardware is naturally parallel, 

what we need is a programming model, system software and a supporting architecture 

that are naturally parallel [2]." 

The study of computer architecture involves both hardware organization and 

programming I software requirements. From the hardware implementation point of 

view, the abstract machine is organized with CPU's caches, buses, microcode, 

pipeline, physical memory etc. Therefore architecture covers both instruction set 

architecture and machine implementation code [KH, 93]. 

1.2.1 Von Neumann Architecture 

For the last past four decades, virtually all computers have followed a common 

machine model known as the von Neumann computer model, named after the 

Hungarian mathematician John von Neumann. A Von Neumann computer uses the 

stored program concept. The CPU executes a stored program that specifies a sequence 

ofread and write operations on the memory [KH, 93]. 
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Basic Architecture includes: 

• Both, data instructions and program are store in memory. 

• Program instructions are coded data which tell the computer to do 

something. 

• Data is used by the program as information. 

• A central processing unit (CPU) gets instructions and/or data from memory, 

decodes the instructions and then sequentially performs them. 

A basic Von Neumann Architecture is shown in figure. 

MEMORY 

==*===!====;-, lnt&rnal bus 

Figure 1.2: Von Neumann Architecture 

This architecture was built as a sequential machine executing scalar data and because 

of this, these machines were slow. 

Later look ahead techniques were developed to prefetch instruction in order to 

develop liE (instruction fetch I decode and execute) operations and to enable 

functional parallelism. Functional parallelism was supported by two approaches: one 

is two use multiple functional units simultaneously and the other is to practice 

pipelining at various processing levels. 

1.2.2 Flynn's Classification 

A widely accepted and often used classification scheme was proposed by Michael 

Flynn in 1972. Flynn classifies computers by the number of instructions and data

streams, respectively [RC, 81]. The following four classes are distinguished: 
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SISD SIMD 

Single Instruction, Single Single Instruction, multiple 

Data Data 

MISD MIMD 

Multiple Instruction, Single Multiple Instruction, 

Data Multiple Data 

Table 1.1: Flynn's Classification Scheme 

A Stream simply means a sequence of items (data or instructions) as executed or 

operated on by a processor. Four main types of machine organizations can be found 

[RC, 81]. 

• SISD - single instruction I single data stream. This is the conventional serial 

Von Neumann computer in which there is one stream of instructions (and 

consequently only one processing unit) and each arithmetic instruction 

initiates one arithmetic operation, leading to a single data stream of logically 

related arguments and results. It is irrelevant whether pipelining is used to 

speed up the processing or not. A machine of this call is sometimes referred 

to as a scalar computer. 

• SIMD - single instruction I multiple data stream. This is a computer that 

retains a single stream of instructions but has vector instructions that initiate 

many operations. Each element of the vector is regarded as a member of a 

separate data stream. Hence, there are multiple data streams. This 

classification includes all machines with vector instructions and machines 

belonging to this class are often called vector computers. 

• MISD - multiple instruction stream I single data stream. This is essentially an 

empty class because it implies that several instructions are operating on the 

same data simultaneously. We will not consider this class of machines. 

• MIMD - multiple instruction stream I multiple data stream. Multiple 

instructions streams imply the existence of several instruction processing 

units and therefore, necessarily, several data streams. This class is quite 
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general and includes all forms of multiprocessor configurations from linked 

mainframes (LANS and WANS) to a large arrays of microprocessors. 

One can see that only two of the categories described above are of interest as far as 

parallel processing is concerned - i.e. the SIMD and MIMD machines. 

(a) SISD 

(c) MISD 

(b) SIMD 

0 
l 

--------------· [ ~ 1 
t 

interconnection network 

(d)MIMD 

Figure 1.3: Flynn Classification 

1.3 Need of Parallel Computing 

Computer architects have been applying parallelism into various levels of hardware to 

increase the performance of computer sciences, for the decades. To achieve the 

extremely high speed demanded by contemporary science, architecture must now 

incorporate parallelism at the uppermost level of the system. Today's, the fastest 

computers in the world use high level parallelism concept. These computers are 

leading to new scientific discoveries [ 1]. 
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Traditional serial computers are characterized by the occurrence of a single locus of 

control that tells about the next instruction to be executed. During the execution of 

each instruction data is operated. That is fetched from the global memory one at a 

time. So, only one instruction is execute at a time. In this processing, total 

computation is slow by the speed of the memory access and the speed of the input

output devices. A number of methods have been developed for alleviating these 

bottlenecks, cache memories and pipelining are some examples. 

1.3.1 Limitations with Serial Computing 

Both practical and physical reasons are major constraints to faster serial computers 

[I]. 

• Economic Limitations: Making a faster single processor is expensive 

procedure. Using a larger number of moderately fast commodity processors to 

achieve the same (or better) performance is less expensive. 

• Transmission Speed: The speed of a serial computer is directly dependent 

upon how fast data can move through hardware. Absolute limits are the speed 

of light (30 em I nanosecond) and the transmission limit of copper wire (9 em 

I nanosecond). Increase speeds necessitate increasing proximity of processing 

elements. 

• Limits to Miniaturization: Processor technology is allowing an increasing 

number of transistors to be placed on a chip. However, even with molecular 

or atomic-level components, a limit will be reached on how small components 

can be. 

Parallel computing is currently an area of intense research which is motivated by a 

variety of factors. These have always been a need for the solution of very large 

computational problems, but it is only recently that technological advances have 

raised the possibilities of massive parallel computation and have made the solution of 

such problems possible. Furthermore, the availability of powerful parallel computers 

is generating interest in the new types of problems that were not addressed in the past. 

Accordingly, the development of parallel computing algorithms is guided by the 
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interplay between old and new computational needs on the one hand, and 

technological progress on the other [4]. 

The needs of faster computation have been in number of areas such as computational 

fluid dynamics and weather prediction as well as image processing. In these 

applications there is a large number of calculations to be performed. The desired to 

solve more and more complex problem has always been running ahead of the 

capabilities of the time and has provided a driving force for the development of faster, 

and possibly parallel computing machines. The above mentioned types of problems 

can be easily decomposed along a spatial dimension and have therefore been prime 

candidate for parallelization, with a different computational unit (processor) assigned 

the task of manipulating the variables associated with the small region in space. 

Furthermore in such problems, interactions between variables are local in nature, thus 

leading to the design of parallel computers consisting of number of processors with 

nearest neighbor connection [1]. 

1.3.2 Benefits of Parallel Computing 

The important reasons for using parallel computing are [1]. 

• 

• 

• 

• 

• 

• 

It saves time (wall clock time) 

Solves larger problems 

Gives concurrency (to perform many operations at a time) 

Taking help of non-local resources by using available computer resources 

on a wide area network, or even the Internet. 

Cost savings by using multiple low cost computing resources. This cost 

can not save in supercomputing. 

Overcoming memory constraints - single computers have very finite 

memory resources. For large problems, using the memories of multiple 

computers may overcome this obstacle. 

1.4 Hardware Implementation of Parallel Computing 

There are two categories of parallel computers, which we have described below. 

These physical models are distinguished by having a shared common memory or 

unshared distributed memories [5]. 
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1.4.1 Shared Memory 

General Characteristics: 

• Shared memory parallel computers use very widely, but generally they have in 

common the ability for all processors to access all memory as global address 

space. 

• Multiple processors can operate independently but share the same memory 

resources. 

• Changes in a memory location effected by one processor are visible to all 

other processor. 

• Shared memory can be divided in to two main classes based upon memory 

access times: UMA and NUMA [1]. 

Figure 1.4: Shared memory Architecture 

1.4.1.1 Uniform Memory Access (UMA): 

• Most commonly represented today by Symmetric Multiprocessor (SMP) 

machines.[3] 

• It has identical processors. 

• Equal access and access time to memory 

1.4.1.2 Non-Uniform Memory Access (NUMA): 

• Often made by physically linking between two or more SMPs. 

• One SMP can directly access memory of other SMP. 

• Not all processor have equal access time to all memories. 

• Memory across link is slower. 
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Advantages of Shared Memory: 

• Global address space provides a user-friendly programming perspective to 

memory. 

• Data sharing between tasks is both fast and uniform due to the proximity of 

memory to CPUs. 

Disadvantages of Shared Memory: 

• Primary disadvantage is the lack of scalability between memory and CPUs. 

Adding more CPUs can geometrically increases traffic on the shared memory 

- CPU path, and for cache coherent systems, geometrically increase traffic 

associated with cache management. 

• Expense: it becomes increasingly difficult and expensive to design and 

produce shared memory machines with ever increasing numbers of processors. 

Scalability: The scalability of a parallel system is a measure of its capacity to increase 

speedup in proportion to the number of processing elements [AAGV, 03]. 

1.4.2 Distributed Memory 

Like shared memory systems, distributed memory systems vary widely but share a 

common characteristic. Distributed memory systems require a communication 

network to connect inter-processor memory (6]. 

Figure 1.5: Distributed Memory Architecture 

• Processors have their own local memory. Memory addresses in one processor 

do not map to another processor, so there is no concept of global address space 

across all processors. 
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• Because each processor has its own local memory, it operates independently. 

Changes it makes to its local memory have no effect on the memory of other 

processors. Hence, the concept of cache coherency does not apply. 

• The network "fabric" used for data transfer varies widely, though it can be as 

simple as Ethernet. 

Advantages of Distributed Memory: 

• Memory is scalable with number of processors. Increase the number of 

processors and the size of memory increases proportionately. 

• Each processor can rapidly access its own memory without interference and 

without the overhead incurred with trying to maintain cache coherency. 

• Cost effectiveness: can use commodity, off-the-shelf processors and 

networking. 

Disadvantages of Distributed Memory: 

• The programmer is responsible for many of the details associated with data 

communication between processors. 

• It may be difficult to map existing data structures, based on global memory, to 

this memory organization. 

1.5 Aspects of Parallel Computing in Communication 

The Exploration of parallelism has created a new dimension in computer science. In 

order to move parallel processing into the mainstream of computing, H T. Kung 

( 1991) has identified the need to make the significant progress in inter-processor 

communication in parallel architectures [DT, 01 ]. 

In various parallel algorithms, the time spent for inter-processor communication is 

sizable fraction of the total time needed to solve a problem. In that case algorithm 

experiences a substantial Communication delay or Communication penalty. 

Communication Penalty (CP) is defined as ratio 
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CP 

Where 

T Total 

T Comp 

Ttotai is the time required by the algorithm to solve the given problem, and 

T comp is the corresponding time that can be attributed just to computation that is the 

time that would be required if all communication were instantaneous. 

Distributed computing system can be viewed as a network of processors connected by 

communication links. Each processor uses its own local memory for storing some 

problem data and intermediate algorithmic results and exchanges information with 

other processors in group of bits called packets using the communication link of the 

network. The size of the packet can be widely varying from a few ten's of bits to 

some thousand of bits. 

A shared memory can also be viewed as a communication network, since each 

processor can send information to every other processor by storing it in a shared 

memory. 

Another technique called "Store and Forward" can also be adopted for packet 

switched data communication model. Here a packet must travel over a route involving 

several processors, may have to wait at any one of the processors for some 

communication resource to become available before it gets transmitted to next node. 

There are four types of communication delays [SB, PC] 

• Communication Processing Time: This is the time required to prepare the 

information for transmission. For example, making information in packets, 

affix addressing and control information to the packets, select the 

communication link on which to send each packet to appropriate buffers. 

• Queuing Time: When information is assembled into packets for sending on 

some communication links, it must wait in a queue for the start of 

transmission, this wait is called queuing time. There are many reasons for 

waiting, for example, the link may be temporarily unavailable because other 

info(mation packets are using it or scheduled to use it ahead for the given 

packet, and another reason is that by limitation of needed resources it may be 
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necessary to delay the transmission of packets. No proper buffer space at the 

destination processor at the time of transmission. 

• Propagation Time: This is the time required in between the end transmission 

of last bit of the packet at the transmitting processor and the acceptance of the 

last bit of the packet at the receiving processor. It is called propagation time. 

• Transmission Time: This is the time that required for transmission of all bits 

of the packets, one or more of above given times may be negligible. 

One or more of above given times may be negligible. It's depending on system and 

algorithms. 

1.6 Parameters in Parallel Algorithms 

There are mainly two parameters in any sequential algorithm, namely the running 

(execution) times complexity and space complexity. A good sequential algorithm has 

a small running time and uses as little space as possible. [Q, 94] Running time, 

number of processors, and cost are the three principal criteria that are typically used 

for evaluating parallel algorithm. 

• Running time: Since speeding up solution of a problem is the main reason for 

building parallel computers, an important measure in evaluating a parallel 

algorithm is its running time which is defined as the time taken by the algorithm 

to solve a problem on a parallel computer. A parallel algorithm is made up of two 

kinds of steps. In the computation step, a processor performs a local arithmetic or 

logic operation. In the communication step data is exchanged between the 

processors via the shared memory or through the interconnection network. Thus 

the running time of a parallel algorithm includes the time spent in both the 

computation and the communication steps. The running time depends not only on 

the algorithm but also on the machine on which the algorithm is executed. 

• Number of processors: Another important criterion for evaluating a parallel 

algorithm is the number of processors required to solve the problem. 
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• Cost: The cost of a parallel algorithm is defined as the product of the running 

time of the parallel algorithm and the number of processors used. 

To be able to assess the merits of a parallel algorithm, one needs to count the number 

of time unit steps needed. For this purpose it is convenient to introduce the idealized 

notion that during such a time unit step exactly one arithmetical operation can be 

carried out in the parallel mode. 

1.7 Applications of Parallel Computing 

Parallel computing is an evolution of serial computing that attempts to emulate what 

has always been the state of affairs in the natural world: many complex, interrelated 

events happening at the same time, yet within a sequence. [KH, 93] 

Some examples: Rush hour traffic, Planetary and galactic orbits, Automobile 

assembly line, Tectonic plate drift, Daily operations within a business. 

The great challenge applications areas are 

• Ocean modeling can not be accurate with out supercomputing MPP systems. 

Ocean depletion research demands the use of computers in analyzing the complex 

chemical and dynamical mechanism involved. Both ocean and ozone modeling 

affect the global climate forecast. 

• High speed civil transport aircraft are being aided by computational fluid 

dynamics running on super computers. Fuel combustion can be made more 

efficient by designing better engine models through chemical kinetics calculation. 

• Rational drug design is being aided in the research for a cure cancer and acquired 

Immunodeficiency syndrome. Using a high performance computer, new potential 

agent has been identified that block the action of human Immunodeficiency virus 

protease. 

• Catalyst for the chemical reactions is being designed with computers with many 

biological processes which are catalytically controlled by enzymes. Massive 

13 



parallel quantum models demand large simultaneous to reduce the time required 

to design catalyst and to optimize the properties. 

• The magnetic recording industry relies on the use of computers to study magneto 

static exchange interactions in order to reduce noise in metallic thin films used to 

coat high density discs. 

• Other important areas demanding computational support includes digital anatomy 

in real time medical diagnosis, air pollution reduction through computational 

modeling, design of protein structure by computational biologist, image 

processing and understanding, and technology linking research to education. 

1.8 Thesis Roadmap 

The rest of the thesis is organized as follows. In Chapter 2, we have discussed about 

recurrence relation and various examples of recurrence equations and areas where 

recurrence relations can be used. In chapter 3, we have discussed about first order 

general recurrence relation with its mathematical implementation in parallel 

computing, and in chapter 4, we have calculated the speedup of linear and nonlinear 

recurrence relations and shown the results. In chapter 5, we have given the conclusion 

of the dissertation. 
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Chapter 2 

Recurrence Relation 

2.1 Recurrence 

A Recurrence is an equation or inequality that describes a function in terms of its 

value on smaller inputs [CLR, 00]. 

The evaluation of a recurrence gives a problem for a parallel computer because the 

definition itself is given in terms of sequential evaluations, and only one term is 

evaluated at a time, which gives no scope for parallel computation. Recurrence can be 

applied in solution of linear equations by Gauss-elimination method, in all matrix 

manipulations that require the inner product of vectors, in all iterative methods, in all 

solutions of ordinary differential equations etc [RC, 81 ]. 

2.2 Recurrence Relation 

A Recurrence Relation for a sequence {an} is a formula which expresses the n1
h term 

of the sequence in terms of one or more of the previous terms of the sequence [VL, 

06]. 

A finite ordered list is called a sequence. 

The individual terms in the sequence are called terms. For the sequence (ao, a~, 

az, ......... a.u) of real numbers, an equation relating all but a finite numbers of terms ar, 

to one or more of its previous terms is called a recurrence relation with given initial 

values about the beginning of the sequence. The initial values are also called initial 

conditions, boundary conditions, or basis for the sequence. 

When a recurrence relation is known and one wants to determine explicitly the 

sequences which satisfies the given recurrence relation. Many natural functions are 

easily expressed as recurrences [VL, 06]. 

an = an-I + 1, a1 = 1 => an = n(pofynomiaf) 

an= 2an_pa1 = 1 =>an= 2n-1(exp onential) 

an = na n-1' a] = 1 => an = n! (factorial ) 
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A mathematical relationship expressing.fx as some combination off; with i < n. When 

formulated as an equation to be solved, recurrence relations are known as recurrence 

equations, or sometimes difference equations [7]. 

A recurrence relation is an equation which gives the valued of an element of a 

sequence in terms of the values of the sequence for smaller values of the position 

index and the position index itself. If the current position of n of a sequence S is 

denoted by Sn then the next value of the sequence expressed as a recurrence relation 

would be of the form 

Where /is any function. An example of a simple recurrence relation is 

Sn+l = Sn + (n+I) 

which is the recurrence for the sum of integers from I to n+ I? This could also be 

expressed as 

Sn = Sn.J + n 

2.2.1 Examples of Recurrence Relation 

Recursive Solution for Factorial of a number 

For a given number n, Factorial of a number n! can be recursively defined as [9]: 

0! =I and n! = n * (n-I)! For n>=I 

In this definition, the equation is 

n! = n * (n-I)! Forn>=l 

is the recurrence relation. It defines each terms of the sequence of factorial as a 

function of immediately preceding term. 

In order to find out the values of the terms in a recursively defined sequence, one 

must know the values of a specific set of terms in the sequence, usually the beginning 

terms. The assignments of values for these terms give the set of initial value, which is 

0! = 1. Knowing this value one can compute values for the other terms in the 

sequence from the recurrence relation [K, 03). 

For Example, 

16 



I!= I *(0!)=1*1=1 

2! = 2 *(I!)= 2 * I * (0!) = 2 * I * I = 2 

3! = 3 *(2!) = 3 * 2 * (1 !) = 3 * 2 * I * (0!) = 3 * 2 * I * I = 6 

4! =4 * (3!)=4*3*(2!)=4*3*2*(1!)=4*3*2*1*(0!)=4*3*2*1*1 =24 

5! = 5 * (4!) = 5*4*(3!) = 5*4*3*(2!) = 5*4*3*2*(1 !) =5*4*3*2*1 *I= 120 

and so on. 

Recursive solution for Fibonacci sequence 

One more example of the sequence that is defined by recurrence relation is the 

sequence of Fibonacci sequence [9]. 

It is a sequence of numbers first created by Leonardo Fibonacci (fi-bo-na-chee) in 

1202. It's a very simple series, but its results and applications are limitless. Fibonacci 

mathematics is a constantly expanding branch of number theory, with more and more 

people being drawn into the complex details of fibonacci's legacy. 

The first two numbers in the series are one and one. To obtain each number of the 

series, we simply add the two numbers that came before it. In other words, each 

number of the series is the sum of two numbers preceding it. Historically, some 

mathematicians have considered zero to be a Fibonacci number, placing it before the 

first l in the series. It is known as Zeroth Fibonacci number, and has no real practical 

merit [9]. 

Fibonacci numbers satisfy the recurrence relation 

Fn = Fn-1 + Fn-2 for n >= 3 

Here also Fn is also defined as a function of two preceding terms, we must know two 

consecutive terms of the sequence in order to compute the subsequent ones. 

For the Fibonacci numbers the initial condition are F 1 = I and F2 = I. 

Recursive Solution for Tower of Hanoi 

The Tower of Hanoi puzzle was invented by the French mathematician Edouard 

Lucas in 1883 [I 0]. 

Given a tower of 3 disks, initially stacked in increasing size on one of three pegs. The 

objective is to transfer the entire tower to one of the other pegs (the rightmost one) 

moving only one disk at a time and never a larger one onto a smaller. Solution to this 

problem can also be solved using recurrence relations. 
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Let call the three pegs, peg 1 (Source), peg 2 (Auxiliary) and peg 3 (Destination). The 

objective of the game is to transfer all the discs from peg 1 to peg 3. [TR, 06] 

For a given number N of disks, the problem appears to be solved as the following 

steps: 

1. Move the top N-1 disks from 1 to 3 (using 2 as an intermediary peg) 

2. Move the bottom disk from 1 to 2. 

3. Move N-1 disks from 3 to 2 (using A as an intermediary peg) 

l 

CiJ 
( 2 J 

( 3 ) 

Figure 2.1 Tower of Hanoi 

For N = 3 it can be shown as 

1. Move disk 1 from peg 1 to peg 3 

2. Move disk 2 from peg 1 to peg 2 

3. Move disk 1 from peg 3 to peg 2 

4. Move disk 3 from peg 1 to peg 3 

5. Move disk 1 from peg 2 to peg 1 

6. Move disk 2 from peg 2 to peg 3 

7. Move disk 1 from peg 1 to peg 3 
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A solution 'to 'the Tovv~.r of Hanoi probh~m with three di:s.k.s 

Figure 2.2 Solution of Tower of Hanoi problem with 3 disks [10) 

Since step 1 requires moving n-1 disks from one peg to another, the minimum number 

of moves required in step 1 if just mn-1· It then takes one move to accomplish step 2, 

and another mn-I, moves to accomplish step 3. This analysis produces the recurrence 

relation 

fin = ffin-1 + 1 + ffin-1 

which gives the equation 

mn = 2 * mn-1 + 1 for n > = 2 
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Further only one is required to win the game with disk I, so the initial value for this 

sequence is m1 = 1. By using the recurrence relation and the initial condition we can 
I 

determine the number of moves required for any number of discs. 

Recursive solution for number of edges in a complete graph 

A complete graph is a graph in which there exists an edge between every pair of 

vertices. A complete graph is sometimes referred to as a universal graph or a clique, 

the degree of every vertex is n-1 in a complete graph G of n vertices. The total 

n*(n-I) 
number of edges in G is The complete graph with n vertices is denoted by 

2 

Kn [N, 04]. 

To determine the number in a complete graph Kn with n vertices is also a recursive 

problem i.e. how many edges need to be drawn to obtain Kn from Kn·l· Thus the 

number of edges in Kn is satisfies the recurrence relation 

en= en-1 + (n-1) for n > = 2 

Definition of en involves only the preceding term en.1 and so the value which is 

needed is en. Since the complete graph with I vertex ha no edges, we see that e1 = 0. 

This is the initial condition for the sequence. 

Kl K2 K3. 

K4 
Figure 2.3 Complete Graphs 
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Recursive Trees 

Drawing a picture ofthe backsubstitution process gives you a idea of what is going on 

[9]. 

We must keep track of two things -

(i) The size of the remaining argument to the recurrence, and 

(ii) The additive stuff to be accumulated during this call. 

Example: T(n) = 2T(n) + n 2 

T (n/4) T (n/4) T (n/4) T (n/4) 

Fig. 2.4 Recursive Tree 

The remaining arguments are on the left, the additive terms on the right. 

Although this tree has height log2n, the total sum at each level decreases 

geometrically, so: 

The recursion tree framework made this much easier to see than with algebraic 

backsubstitution. 

Tt-l- J6l16 

' ; 
·.~·· ... . 

--· p .. .......... 

21 



Matrix Multiplication 
The standard matrix multiplication algorithm for two n x n matrices is 0 (n3

) [9]. 

2 3 12 3 41 
3 4 * 

3 4 5 
4 5 ~

3 18 2] 
8 25 32 

23 32 41 

Strassen discovered a divide-and-conquer algorithm which takes 

Since o(n 1082 7
) dwarfs o(n 2 

), r"""' 1 nf thP m<>dPr theorem applies and 

T(n) = O(n 281
). 

This has been ''improved" by m 

current best inO(n 238
). 

2.2.2 Solving Recurrences 

recurrences until the 

For solving recurrences there are mainly three methods, these methods are for 

obtaining bounds on the solution [CLR, 00]. 

(i) In the Substitution method, we guess a bound and then use mathematical induction to 

prove that our guess is correct. 

(ii) The Iteration method converts the recurrence into a summation and then relies on 

techniques for bounding summations to solve the recurrence. 

(iii) The master method provides bounds for recurrences. 

The master method depends on the following theorem [CLR, 00]: 

Let a::: I and b >I be constants, letf(n) be a function, and let T(n) be defined on the 

nonnegative integers by the recurrence. 

T(n) = a T(nlb) + f(n) 

Where we interpret nib to mean either floor (nib) or ceil (nib). Then T (n) can be 

bounded asymptotically as follows. 

(a) If f(n) = O(nlogb a-E:) for some constants£> 0, 

then T(n) = e{nlog;,a ). 
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f( ) o( log,a+£) 
(c) If n = n for some constants c: > 0, and if 

a f (nib) ~ c f (n) for some constants c < 1 and all sufficiently large n, then 

T(n) =e(J(n)). 

2.3 Generalization of Fibonacci sequence For Parallel 

Computing 

Parallelism plays an important role in parallel data processing particularly where 

numerical algorithms are concerned. Fibonacci sequence formula can also be solved 

using parallel approach. This recurrence formula for Fibonacci sequence can be 

generalized to third order formula. (SU, 04] 

2.3.1 Formula of Second order Recurrence for parallel processing 

The following formula is for solving the recurrence relation serially [SU, 04]. 

Let fo = 1, ft = b 

f; = b; + f;.t +a; f;.2 ................ 2(a) 

where a;, b; E IR 

Since f0 and f1 are given, so f2, f3 . ..fn-l, fn can be calculated as 

.................. 2(b) 

fn-1 = bn-1 fn-1 + ao-1 fn-3 
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Equation (2.2) can be written as 

F; == A; * F;_1 

Where 

with (j = I, 2 ... N and i = 2, 3 ... N) 

in more general way equation (2.3) is 

F; =(A; * A;-1 ) * Fi-2 

Now for a value ofN 

.......................... 2(c) 

................. 2(d) 

2.3.2 Communication time of two matrices in parallel 

Parallel execution of the recurrence relation comes to the execution of the following 

equation.[TY,99] 

FN=(AN*AN-1 * ........ *A2) *FJ 

Where A2 ........... AN-I are matrices. 

The parallel multiplications of matrices on hypercube architecture perform as follows. 

For N = 9, number of arrays for multiplication is eight i.e. from A9 to A2. 

Take a 3 dimension hypercube with 8 nodes. Put all matrices at each node. Send four 

matrices on remaining matrices. It takes one unit communication time. Now 

hypercube has 2 dimensions and each node have two matrices. Multiplication of each 

pair of matrices takes one unit arithmetic time. In this way, after every 

communication dimension of hypercube decreases by one. So we can solve equation 

2( d) parallely and serially. 

2.4 Recursive Doubling 

Here we present a brief idea about recursive doubling as given in [SU, 03] and [3]. 
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Let us consider a set, 

M = {m" m2, m3--------mN} having N = 2" elements. 

Let e be an arbitrary associative operation that can be carried out on set M. 

For example, e £ {+ - * max min ---} '' ' ' ' 

Now the expression ( m1 ® m2 ® ------ ® mN ) is formed both serially and in parallel 

and a comparison is made. For n = 4, we have the following schemes: 

Serial Parallel 

G) ~ 
/ ~~ 

I 
ml m2 m3 m4 ml m2 m3 m4 

Fig. 2.5 Tree Representation of Serial and Parallel com potation 

Generally, Recursive doubling with N = 2n elements requires log 2 N parallel steps. 

Serial implementation requires N-1 steps. 

2.5 nth Order linear Recurrence formula 

In general, a linear recurrence relation has the form [SU, 04]. 

t; =ail t;.J + ai2fi-2 + ........... + ainfi-n ........ 2(e) 

fo= 1, 
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f1= <l1, ............ = fn-1 = <ln-1 

where aij's and ai's are constants. 

now (2.5) is basically a serial process, where by putting the values of fo, f~, 6 ------fp

h we obtain our first value as fp and subsequently putting values of (fi-l,fi-2, ------- ti-p), 

we obtain the new value t;, where i = p, p+ I, p+ 2 ------N. 

As a first simple example, we consider a second order recurrence relation [SU, 04] 

fo =I 

t; = bi * fi-1 +a; * fi-2 ........ 2(t) 

This yields a sort of Fibonacci sequence, let 

Ai= 
[ 

b, a
0
, J {j =I, 2, 3.. .... N, i= 2, 3 ... N} 

Thus, equation (2.6) can be written as 

Fi=AiFi-1 = AiAi-1 ........ .A2F1 and FN= AN ........ A2F1 

Since matrix vector multiplication is associative, FN computed using the Recursive 

doubling technique in 0 (log2N) steps by comparison with 0 (N) steps using a serial 

calculation. 
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Chapter 3 

General First Order Recurrence 

In this Chapter, we present a generalization of first order recurrences, not necessarily 

linear. Ideally multiprocessor systems with p processors can achieve p times speed-up 

for a given program execution. In most cases, however this ideal speed-up can not be 

achieved. 

3.1 General First-Order Recurrences 

Given XI, as the initial value, let 

xi= J(ai,xi_J ....... 3(a) 

where u; , for each i, is a set of parameters; i > 0, are (real) scalars, and f (.,.) is a 

function with approximately defined domain and co-domain. The function f (,.) is 

called the recurrence function [LD, 90]. 

There are some examples: 

(I) 

........ 3(b) 

ai = (ai, bi) 

This is the standard first-order linear recurrence. 

ai = (ai, bi) 

This is a non-linear recurrence. 

(3) 

........ 3(d) 

This is a recurrence involving a rational function. 
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(4) 

=b !!!___ N>'>2 X; i + ' _/_ 
xi-I 

This is the continued fraction expansion. 

Now if ai = 1, then equation 3(b) becomes 

where the recurrence function,/(, .) is associative. 

......... 3(e) 

But ifthe ai's are not identically equal to unity in equation 3(b), then in generalf(,.) 

is not associative, that is, 

J(a,J(!J,x)) # J{f(a,fJ),x) ........... 3(f) 

Heref(a, PJ may not even be defined. Thus in general when the function/(.,.) does 

not satisfY equation 3(f), parallel algorithms for computing Xi's are not obvious at all 

[LD, 90). 

Now we develop a sufficient condition on f(,.) with which parallel algorithms for 

computing xi's can be derived. This sufficient condition is expressed in terms of 

another function g(,.) related tof(,.), which is defined as follows [LD, 90]. 

The recurrence function/(,.) is said to have a companion function g(,.) [1] If for all 

the values of the parameters a, and a2. 

In the following, we first derive the companion function for the above four examples, 

given above in the same order 

(1) 

=(a; a;-] )x;_z + (a;b;-I + b;) 

g(a;,a;_J =a/') ....... 3(h) 

(2) 
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g(apa;_,)= 

= (aiai-1' bibi-1 a; ) 

(3) 

(1) 
a; 

x _ (a;cH + b;aH) + (a;dH + b;bH }x;_2 

; - (c;cH + d;aH) + (c;dH + dibi-1 }x;_2 

(4) 

Rewriting x; as 

a; +b;x;_1 
X;= 

X;_, 

a. 
X; =b;+-' 

Xi-1 

.......... 3(i) 

........... 30) 

. ........... 3(k) 

............ 3(1) 

It can be seen that this is a special case of 3( c), with c; = 0 and d; = 1. 

Theorem [LD, 90] 

If a recurrence function/(, .) has an associated companion function g(, .) satisfying 

equation 3( e), then for a~, a2, a3 and x, 

i.e. g(,.) is associative with respect tof(, .). 

So to understand the importance of this theorem, let us calculate 

Xs = J(as,x4) 

Xs = J(asJ(a4xJJ 

x5 = f(a5,f(a4,f(a3,x2))} 

x5 = J(a5,f(a4,f(a3,f(a2x1)))) 

x5 = J(a5,f(a4,f(g(a3,a2),x,))} 

x5 = f(a 5,f(g(a4,g(a3'a2)),x1)) 
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x5 = f(g(a 5 ,g(a4 ,g(a3 ,a2 ))),x1) 

x5 = f(g(g(a 5 ,a4 ),g(a3 ,a2 )),x1 ) 

f (a' ,x1) 

~ a'= g (a, a ) 

.I a = g (as, a4) 

(\ 
Fig. 3.1 An illustration of the above theorem 

3.2 Computational characteristics of First Order linear 

Recurrence 

In First order Linear Recurrence (FOLR), equation 3(h) holds and here we are 

expanding this equation and finding the data dependency flow, which we have shown 

in figure 3.2 [8]. 

By expanding the loop in figure 3 .I, we get data dependency flow as shown in figure 

3.2. 

pseudo code of equation 3(h) 

x[O] = b[O] 

Do(i= l:N-1) 

x[i] = a[i] * x[i-1] * b[i] 
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Enddo 

·······Q--0-0---D---+Q---+ 
xl-1 x1.2 Xl-3 Xl-4 

Figure 3.2 Data dependency flow for pseudo code 

In figure 3.2, a circle with subscript Xj-h tells the lh statement of the i-th iteration of 

the loop which we have given in pseudo code i.e. Fig.3.1, there is also the loop carried 

dependency between x[i]'s of the two consecutive iterations. So its not possible to 

parallelize it directly by decomposing the data. The nested form of equation 3(h) 

reduces the number of multiplications. So the nested form of this equation can not be 

parallelized because of these data dependencies [8]. 

Now, when we unfold this nested form of equation 3(h) in to the expanded form of 

equation 3(m), then we get the ability to change the dependency pattern. 

We have shown the expanded form of first order linear recurrence is expanded into Xj, 

when the given expanded form is dependent only on Xj as shown in equation 3(h). 

xi = aiai-1 (ai_zxi-3 + bi_J + aibi-1 +hi 

xi = aiai-1ai_zxi-3 + aiai-1bi-Z + aibi-1 +hi 
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Figure 3.3 shows the extreme case of expanded form, which is expanded into x1 [8]. 

In this expanded form of equation 3(h), the computation of Xi is dependent on the 

value of x1 instead of the immediate preceding Xi- I· But the expanded form of first 

order linear recurrence increases the number of multiplication operations, compared 

to the nested form of first order linear recurrence, the data dependencies, here the data 

dependencies are reduced which were preventing parallelization [8]. 

Figure 3.3 Dependency flow of expanded form of First Order Linear Recurrence 

The expended from of First order linear recurrence reduced both the loop carried 

dependency and also the overhead of increased multiplication operations. 

Now we discuss some advantage and disadvantage of expanded form of the First 

Order Linear Recurrence and try to find out the balancing point between the nested 

form and the expanded form. For the simplicity, we calculate only multiplication 

operations in calculating the execution time and ignore other operations such as loop 

control and parallel execution overhead. We consider only the number of 

multiplication as a measure of the execution time [8]. 

Let n;J be the number of multiplications needed for calculating x; in expanded form of 

FOLR, which is dependent only on x1 . The formula to compute n;J is given by 

nij =number ofmultiplication in[x; TI ak) + 
b.J+I 
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number of multiplication in [ I [b k IT a 1 ]) 

k= j+l l=k+l 

nij = (i-j) + [(i-j-1) + (i-j-2) + ..... + 1] 

i-j 
nij = ~), where 1 ~j < i ~N. . ............... 3(n) 

k=l 

Hence the total number of multiplications is computing from XI to XN, is given by 

N N i-j 
Ini,j = IIk ................ 3(o) 
i=2 i=2 k=l 

The time to execute the nested form of first order linear recurrence in sequential is N, 

while the time to execute the expanded form of first order linear recurrence is parallel 

is given by equation 3( o) [8]. 

Let p be the number of processors used for parallel execution of the expanded form of 

first order linear recurrence, then the relationship between p and N (number of 

elements in array x) is given by 

I N i-j 
-IIk=N 
p i=2 k=l 

··············· 3(p) 

Lets take an example where we take j=1, and N=100, the number of processors p, 

needed to keep the execution time equal to that of serial execution of nested form of 

first order linear recurrence would be 1667 [8]. 

Thus, practically it is impossible to parallelize the first order linear recurrence by 

simply using the expanded form of first order linear recurrence. Consequently, for the 

successful parallel execution of first order linear recurrence, the overhead of extra 

multiplications should be mitigated by evenly distributing them to each processor [8]. 
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Chapter4 

Parallel Algorithm for Solving Recurrences 

4.1 Algorithm for General First Order Linear Recurrence 

The simplest example of recurrence problem is the first order recurrence in which x; 

depends only on x;.1. The log-sum algorithm for solving x; = ~ + x;.1 is an example of 

it. By introducing the parallelism into the solution of this recurrence came from the 

associativity of addition, which allows us to rewrite standard serial evaluation [3]. 

Xt = ~ + (a3 + (a2 + a1)) 

Or 

x4 = (~ + a3) + (a2 + al) 

Here we shown the two equations, from which we can apply parallelism on second 

equation by two processors, one computing(~+ a3) and the other computing (a2 + a1) 

as shown in figure. For N number of calculation we have N/2 parallel additions at the 

first step, N/4 at the second step, ..... , and N/2k at the k1
h until, at the ceil(log2N)-th 

step, XN is computed with one final addition [3]. 

T=2 

T=l 

T=O 

Figure 4.1 computation ofx4 

Let us take another example to calculate x9 

The Equation which we are taking here is a linear equation, and then we will calculate 

the Speedup of that linear equation [LD, 90]. 
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Now By the definition of general first order recurrence [LD, 90] in equation 3(a), we 

know 

X9 = f(a9,f(as,x7)) 

x9 = f(a9,f(as,f(a7,x6))) 

X9 = f(a9,f(as,f(a7,f(a6,xs)))) 

X9 = f(a9, f(a8, f(a7, f(a6, f(as, x4))))) 

X9 = f(a9,f(as,f(a7,f(a6,f(as,f(a4,xJ))))) 

X9 = f(a9,f(a8,f(a7,f(a6,f(as,f(a4,f(a3,xJ)))))) 

X9 = f(a9, f(a8, f(a7, f(a6, f(as, f(a4, f(a3, f(a2, xJ))))))) 

X9 = f(a9, f(as, f(a7, f(a6, f(as, f(a4,f(g(a3, a2), xl ))))))) 

X9 = f(a9, f(a8, f(a7,f(a6 ,f(as,f(g(a4 ~g(a3, aJ),xJ))))) 

X9 = f(a9,f(as,f(a7,f(a6,f(g(a5,g(a4,g(a3,aJ)),xJ)))) 

X9 = f(a9, f(a8, f(a7, f(a6,f(g(g(as, a4), g(a3,aJ),xi))))) 
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G=f.!(E,F) 

/\ 
E = g(A,B) F = g(C,D) 

/~ /~ 

a./ 

Figure 4.2 Calculation of x9 by the algorithm 

Algorithm to calculate Xn 

/*Given array1 [N], here N is the size ofthe array to store a values (a1, a2 .... a 0 ) 

Given array2 [N], array2 is used to store a values for computation. 

Declare variables I, J, K, P 

*I 

P=N 

FOR I = 1 TO P STEP 1 DO 

array2 [I]= array1 [I] 

END 

FOR I =1 TO (log2N) STEP 1 DO IN PARALLEL 

K=O 

FOR J = 1 TO P STEP 2 DO IN PARALLEL 

array2 [K] = g (array2 [J], array2 [J+ I] 

K=K+l 

END 
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P =P/2 

END 

COMPUTE f(array2 [0], x1) 

Procedure to calculate X9 

Here a values are given as (a2, a3, .... a9) which is stored in array] [8] and we will 

store these values in array2 [8] for computation and N = 8, x1 given as initial value 

P = 8 therefore (log28) = 3 

151 iteration 

array2 [0] = g (array2 [1], array2 [2]) 

array2 [1] = g (array2 [3], array2 [4]) 

array2 [2] = g (array2 [5], array2 [6]) 

array2 [3] = g ( array2 [7], array2 [8]) 

II"d iteration 

array2 [0] = g (array2 [1], array2 [2]) 

array2 [ l] = g ( array2 [3 ], array2 [ 4]) 

mrd iteration 

array2 [0] = g (array2 [1], array2 [2]) 

Now computation off(array2 [OJ, x1) will give value ofx9. 

4.2 Calculation of Speedup for a Linear Recurrence 

Equation 

Let us take a linear equation to calculate the speed up of a linear recurrence [LD, 90]. 

X =a X 1 +b h . . 
n n n- n , W ere XJ IS given 

To calculate speedup, we require the time taken in serial computation as well as the 

time taken in parallel computation. 

So for serial computation 

XI bl + GIXO 
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It is taking two operations, one is multiplication and another is 

addition. 

x2 = b2 + a 2 XI now 

It is taking four operations, one is multiplication and another is 

addition and two operations ofx~, hence total four operations. 

Now 

Similarly 

x 3 = b 3 + a 3 (x 2 ) 

It is taking six operations, four were previous and two new operations. 

x 4 = b 4 + a 4 (x 3 ) 

It is taking eight operations, six were previous and two new operations. 

x 5 = b 5 + a 5 (x 4 ) 

It is taking ten operations, eight were previous and two new operations. 

Hence we have to calculate total number of operation in serial computation; this is 

understood by seeing the number of operation on x2, x3, x-1, X5 and so on, that the total 

number of operations are in multiple of 2. So on solving, we get total 2n operation in 

serial communication. 

Now we have to calculate time taken in parallel computation, 

Now for Parallel computation, as we have shown solution for the value of x9 in 

section 4.1. 

As this example shows for calculation of g function it is taking 3 operations at each 

level of the tree and it is also taking 2 operations in calculating function off, and we 

also know that in a tree oflevel nits time complexity is (log2n). 

Hence total time taken in parallel computation is (3 * log2n + 2) * AT, here we are 

assuming only Arithmetic time in operations and ignoring the communication time. 

So speedup is 

Speedup 

computation 

time taken in serial computation I time taken in parallel 

S _ 2n 
P- (3*1og

2
n+2)* AT 

Where AT is the arithmetic time required to perform operations. 

Here both serial and parallel communications will take arithmetic time (AT), but in 

our example we are neglecting AT from both type of communication. 
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r a Non Linear Recurrence 

'90] 

operations in Serial communications. 

For n=l, 

here it is easily shown that there are two operations and both are multiplications 

now for n=2, 

there are also two operations and the two previous operations, so total number of 

operations are four. 

For n=3, 

There are total six operations, among which two are new and four are previous. 

Forn=4, 

There are total eight operations, same as in earlier cases. 

So now we can easily guess that in the generalization of this non linear equation there 

are total number of operations is 2n in serial computation. 

Now we have to calculate the total number of operations in parallel computation. 

Now same as we have calculated for the different values of n, we will again calculate 

in same manner. 
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X n+ 1 = - 2x ~ is the non linear recurrence equation, where x1 is given. 

For n=l, 

Forn=2, 

Forn=3, 
2 ( )15( )16 x4 = -2x3 = - 2 x0 

Forn=4, 
2 ( )31( )32 x5 = -2x4 = - 2 x0 

and so on. 

So on generalizing this equation, we get the general solution for calculating Xn. 

Now let us calculate the number of operations this equation is taking in parallel. 

After finding the generalized equation, implement it on tree topology, so that we can 

calculate number of operations this equation is taking. 

By taking an example to calculate x4. 

The generalized equation ofx4 is 

2 ( )15 ( )16 x4 = -2x3 = -2 x0 
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X. 

/\ 

l\ !\ 1\ l\ 1\ 1\ ~ 1\J\~ ~1\ A~ 
(-2) ( -2) ( -2) ( -2) (-2) ( -2) ( -2) ( -2) (-2) (-2) ( -2) (-2) ( -2) ( -2) (-2) Xo Xo Xo Xo Xo Xo Xo Xo Xo Xo Xo Xo Xo Xo Xo Xo 

Figure 4.3 Calculation of x4 for Non Linear Equation 

Here it is easily seen that it is taking 5 operations, so we conclude that total number of 

operations taking in parallel for n processors will ben+ 1. 

So speedup is 

Speedup 

computation 

time taken in serial computation I time taken m parallel 

S = 2n 
P (n + 1) 
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Here both serial and parallel computations will take Arithmetic Time (AT), but in our 

example we are neglecting AT from both type of communication. 

Number of Processors Speedup of Linear Speedup of Non Linear 
n Equation equation 

8 1.454 1.778 

16 2.285 1.882 

25 3.138 1.960 

32 3.764 1.939 

40 4.452 1.951 

50 5.282 1.960 

64 6.4 1.969 

75 7.251 1.973 

128 11.13 1.984 

200 16.04 1.990 

256 19.692 1.992 

512 35.310 1.996 

1024 66.064 1.998 

Table 4.1 Speedup of linear and non linear equation 
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Graph 4.1 Speedup of Linear and Non Linear Equation 

Here Blue line is the speedup of Linear equation and Red line is the speedup of Non 

Linear equation. 

In our example of Linear and non Linear equation, the speedup of linear equation is 

very much higher than speed up of non linear equation. The speed of non linear 

equation will be less than two in our example. 
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Chapter 5 

Conclusion & Future Work 

The Parallel Computing technique for solving the recurrence relation is better for a 

large data set. But if data set is not large enough, parallel techniques may not be 

needed. For small data set serial approach will give the improved results as there is no 

need of parallel computation. 

In our examples of recurrence relation we have calculated speedup on both the linear 

and non linear equations, the non linear equation has Jess speed up, as compare to 

linear equation's speedup. Non linear recurrence relation in our example has speedup 

less than 2. In our dissertation we have implemented it on tree architecture, but it may 

vary from architecture to architecture. 

It might be possible that it may produce better speedup if we implement it on 

Hypercube or Supercube architecture. 

So the future work can be performed on parallelization of recurrence relation by using 

different architectures to improve the speedup. 
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