
Sorting on :J-{ypercu6e and its variants

Dissertation submitted to the Jawaharlal Nehru University in partial

fulfillment of the requirement for the award of the degree of

MASTER OF TECHNOLOGY

IN

COMPUTER SCIENCE AND TECHNOLOGY

By

Shalendra Kumar

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI-110067, INDIA

JULY 2008

JAW AHARLAL NEHRU UNIVERSITY
School of Computer and Systems Sciences

New Delhi -110067, INDIA

Declaration

I hereby declare the dissertation entitled "Sorting on Hypercube and its variants"

submitted for the degree of Master of Technology in Computer Science engineering is my

original work and the dissertation has not formed the basis for the award of any degree,

diploma or similar other title. It has not been submitted to any other University or institute

for award of any degree or diploma.

Shalendra Kumar

JAW AHARLAL NEHRU UNIVERSITY
School of Computer and Systems Sciences

New Delhi -110067, INDIA

Certificate

This is to certify that Shalendra Kumar has carried out his dissertation work entitled

"Sorting ou Hypercube and its variants" as a partial requirement for the award of

Master of Technology by Jawaharlal Nehru University, as a record of his work carried

out and completed under my supervision during the academic session 2007-08. To the

best of my knowledge the dissertation has not previously formed the basis for the award

of any degree and diploma or similar other titles .

..... ~ ~V'I ~<(
Prof. Parimala N.

(Dean of School of Computer and
Systems Sciences, JNU)

Prof. C. P. Katti
(Supervisor)

Por

:My CJJarents

fJ1iey atfaed tlieir great contri6ution and sacrifice for my
education especiaffy for liiglier education.

Acknowledgements

A work becomes easier and done nicely if the working environment is in favour of the

work and the person doing the work. Here I am saying this because I have felt it. It starts

from this University, from where I am getting the facilities. It provides very

knowledgeable, dynamic and world fame teachers who adore this university.

I am thanking my parents, my brothers and my sisters who supported and encouraged me

through their voice on my phone. They could not do more than that and I was not

expecting more than that from their side. So I am extremely grateful for all of them.

Since last two years or even more than that I am suffering from my health problem

continuously but I didn't say anything to anybody other than my classmate friend Mr.

Sanjeev and the Doctor in Health Center, JNU. Although it is a big obstacle in my carrier

but they cooperated me a lot. So I am thanking them from the bottom of my heart.

8~~ ku.-1Ma{

Shalendra Kumar

Contents
Acknowledgements .. i

Index of tables and Graphs .. iv

Abstract ... v

Chapter 1 ... 1

1.1 Introduction .. I
1.2 Program Partitioning Method .. 2
1.3 Architecture .. 2
1.4 Von Neumann Architecture ... 3
1.5 Parallel Computer Memory Architecture .. .4

1.5.1 Shared memory: .. 4
1.5 .2 Distributed Memory .. 6

1.6 Flynn's Taxonomy ... 6
1. 7 Why Parallel Computing needed? ... 8
1.8 Concept of Parallel Computing .. 9
1.9 Data Communication ... ! 0

1.9.1 When communication is needed ... IO
1. 9.2 Considerable factors .. 1 0

1.10 Communication cost .. 12
1.10.1 Routing techniques: .. 13

Chapter 2 ... 15

2.1 Some important terminologies in parallel computing: ... 16
2.2 Hypercube .. l7
2.3 Supercube ... 20
2.4 Folded Hypercube .. 21
2.5 Folded Supercube: ... 22
Chapter 3 , .. 23

3.1 Introduction .. 23
3.2 Sorting Algorithms ... 23

3.2.1 Counting-based sort .. 24
3 .2.2 Fixed-topology sort ... 24
3.2.3 Partitioning sort ... 24

3.3 Sorting Performance .. 24
3.4 Sorting on Hypercube .. 25
Chapter 4 ... 33

4.1 Sorting on 5-node Supercube ... , 33
4.2 Sorting on 6-node Supercube ... 35
4.3 Sorting on 7-node Supercube ... 36
Chapter 5 ... 41

11

List of Figures

-f!gui"~~ ------ - -
... figl!J:"~!J: ~~!ill:l~~~~l}tion

. :p~g~;N(). -
1
1 figuJ:"~L~: Pll:I"!:!ll~l. execl1tion __ ····················-·······································--············-······· . ··-··-··-·--------~

. f!gure l}:_.Y9!1N~l1IT1ann Archit~(;~I"~.
.. f!guJ:"~ L4: ~bared Memgry Architecture
..... figl}J:"~ 1:?: Dis~I"i~l}ted_~~-lll()ry ar<;hitecture
f!gul"~ 1.6: <:()ITliTll1P:i(;ation Scgpe _
figul"e 2.1: 8-Node Hypercu~~
fJgliJ:"~ ~:-~:M~I"giP:ggftwo hypercube
~)gure 2.3: 7-node Sll,p~J:"(;l}b~
f!gur~2.4: Fol<;i~<iJ:lYP~I"<:l1~e

__ _figure):?: Fold_e<i .. ~up~J:"{;l:l~e __ _
_figl:ll"~ }J : _SgJ:!ipggf_input <ill:ta_
_figll_I"~J:~: §()J:"l:iP:g()p ~:::::!12Q~_hYP~I"(;l:l~~ __
Jigure3.3 So~iJ!g onJ:::::P:()de pyp~rcube
_fig1:1re 4.1: S()J:"1ing on a 5-node Sl}percube.
Figure 4.2: Sorting on a 6-node Supercube

4
5
6

12
........... ··----------~

18
... -- ---.- ----------------------- -~

---------····--········-·-

1Il

19
20
21
22
25
27

35

Index of tables and Graphs

Figures and Graphs

.. L).I<t~.l~~(<t):Ii!ll~P~J:"f()r:t:J?<l!l.~~---<t!l<! .. ~P~~~:Y.P ... <:>!lHYP~J:"~:Y.Qe ··---······-----
2.) Graph 3(a): Sorting-time performance on Hypercube for any number of items.
3.) Graph 3(b): Sorting-time performance on Hypercube. (Number of nodes is
multiple of number of processors.)

Page No .

29
31
31

5.) Graph 3(c): Speedup performance on Hypercube. 32
6.) Table 4 (a): Time performance and speedup for Hypercube architecture 38
7:)9J:"<tP4 4(a): Timep~rformance ()Il:<l~:Y.Pt::J:"~:Y._l:>~for any number of items. ········- 40
~JQrap44(J:>):~pt::edup pt::rformance on Supercube of7-Nodes. 40

___ 2:) __ Qx~P4.:Hc:t __ ~p~~Ql1PP~rio!"l!l<l!l_C:_e_g!l~:Y.P_t::rc:!!l:>t::J()J:"_<lll:Y}!!!!l1P_er_2fi1t::~~: ___________ _ __________ ±Q __

IV

Abstract

Parallel Computing provides a perfect and high level framework to solve bigger

problems with the help of multiple processors. Parallel computing is contributing its

great time saving performance. Many scientific and engineering problems are now

giving better solution and obviously time saving.

Sorting data is very important activity in the field of computer science. From the

beginning many researchers have given many different ways to tackle it easily with

perfection. But when single processor computer goes to its highest level of

performance than parallel computers come to picture. Because the fast growing

industry needs fast access of data in a particular order.

Network topologies like Hypercube, Supercube etc. are good architecture to

implement different types of sorting. Most of the sorting algorithms have been

implemented on Hypercube. Supercube is better architecture because it can be

constructed with any number of processing nodes. It gives better sorting

performance on the Supercube. In my dissertation I have discussed how to

implement sorting on Supercube.

v

Chapter 1

1.1 Introduction

In Parallel Computing a single task is divided into multiple smaller subtasks and executes

simultaneously on multiple processors to obtain the result faster. Conventionally the

software has been written with the concept of serial computation:

Serial computation needs:

a. A single Central Processing Unit (CPU).

b. A Process to split a problem into smaller sub problems (P~, P2, .•• Pn-I, Pn)-

CPU

Figure 1.1: Serial execution

Using parallel computing the same problem can be solved in lesser time by splitting and

assigning the problems among multiple processors.

I Problem 1---7 Pin P1, (n-1) ----- pl2 pll ---7

P2,(n-l) ------- P22 P21 ---7

I Problem 1---7 P3n

Figure 1.2: Parallel execution

1.2 Program Partitioning Method

Partitioning a program into smaller sub programs is an important issue. The programmer

has to figure out how to break the problem into pieces, and has to figure out how the

pieces relate to each other. Programmers have to take care that if one processor has

already evaluated up to a particular position, then others would not waste time duplicating

the effort. On the type of partitioning the parallelism is categorized as:

a. Instruction level parallelism: A computer program is a stream of instructions

executed by a processor. These instructions can be re-ordered and combined into

groups which are then executed in parallel without changing the result of the program.

b. Bit-level parallelism: Parallelising bits increases the size of word. When word size

increases reduces the number of instructions. Example- If an 8-bit processor adds two

16-bit integers, then the processor adds 8 lower-order bits from each integer, when it

adds the 8-heigher-order bits, which requests two instruction to accomplish a single a

single operation. But a 16-bit processor is able to accomplish the operation in single

instruction.

c. Data parallelism: Data parallelism is a parallelism in the loops in a program,

which focuses on distributing the data across different computing nodes to be

processed in parallel.

d. Task parallelism: In task parellelism entirely different calculations can be

performed on either the same or different sets of data.

1.3 Architecture

Various hardware and software architectures are used for parallel computing. At a lower

level, it is necessary to interconnect multiple CPUs with some sort of network, regardless

of whether that network is printed onto a circuit board or made up of loosely-coupled

devices and cables. At a higher level, it is necessary to interconnect processes running on

those CPUs with some sort of communication system.

Distributed programming typically falls into one of several basic architectures or

categories: Client-server, 3-tier architecture, N-tier architecture, Distributed objects, loose

coupling, or tight coupling.

2

a. Client-server - Smart client code contacts the server for data, then formats and

displays it to the user. Input at the client is committed back to the server when it

represents a permanent change.

b. 3-tier architecture - Three tier systems move the client intelligence to a middle tier

so that stateless clients can be used. This simplifies application deployment. Most

web applications are 3-Tier.

c. N-tier architecture - N-Tier refers typically to web applications which further

forward their requests to other enterprise services. This type of application is the

one most responsible for the success of application servers.

d. Tightly coupled (clustered) - refers typically to a set of highly integrated machines

that run the same process in parallel, subdividing the task in parts that are made

individually by each one, and then put back together to make the final result.

e. Peer-to-peer - an architecture where there is no special machine or machines that

provide a service or manage the network resources. Instead all responsibilities are

uniformly divided among all machines, known as peers. Peers can serve both as

clients and servers.

1.4 Von Neumann Architecture

Any computer architecture ever built has been rooted in Von Neumann Architecture. This

architecture is based in the concept of stored program. A computer with von Neumann

architecture having:

a. Arithmetic Logic Unit (ALU), Control Unit, Memory, and l/0 devices.

b. A Shared memory with one data bus and one address bus.

c. The program is encoded numerically and stored in the memory along with the data.

d. One instruction and data has to be fetched in sequential order i.e. at one time only

one instruction is executed.

3

Memory I

ALU
Control Unit I Accumulator I ,. \.

I \
I Input I I Output

Figure 1.3: Von Neumann Architecture

This architecture is built as a sequential machine executing scalar data, because of this,

these machines are slow. Later look ahead techniques were developed to prefetch

instructions in order to develop liE (instruction fetch/ decode and execute) operations and

to enable functinal parallelism. Functional parallelism was supported by two approaches:

One is to use multiple functional units simultanesously and the other is to practice

pipelining at various precessing levels.

1.5 Parallel Computer Memory Architecture

Two categories of parallel computers are architecturally modeled:

1. Shared Memory

2. Distributed Memory

1.5.1 Shared memory:
• There are various types of parallel computers with shared memory, but in general

these have the ability for all processors to access all memory as global address

space.

• More than one processor can operate independently but share the same memory

resources.

• If there is a change of memory location by one processor, it is visible to all other

processors.

4

Shared memory machines can be categorized into two classes on the basis of memory

access time: UMA and NUMA.

CPU

CPU CPU

CPU

Figure 1.4: Shared Memory Architecture

1. Uniform Memory Access (UMA): It has been represented by Symmetric

Multiprocessor (SMP) machine. In a UMA model, the physical memory is uniformly

shared by all the processors. All processors have equal access time to all memory.

Sometimes it is called CC-UMA (Cache coherent UMA) because if one processor updates

a location in shared memory, all the other processors know about the update.

2. Non-Uniform Memory Access (NUMA): It is made by connecting two or more SMPs

phyically. One SMP can directly access the memory of another SMP. Access time varies

with the location of the memory. Accessing memory across the link is slower.

Advantages:

a. Global address spacing provides user-friendly programming environment.

b. Data sharing between tasks is fast and uniform.

Disadvantages:

a. No scalability between memory and CPUs.

b. Accessing correct global memory 1s programmer's responsibility for

synchronization.

c. Due to a number of processors it is expensive.

5

1.5.2 Distributed Memory
Distributed system consists of multiple computers interconnected by network. Each node

is an autonomous computer consisting of a processor (p), local memory (m), and

sometimes attached by I/0 devices.

• A distributed memory system needs a communication network to connect inter-

processor memory.

• There is no concept of accessing global address space across all processors.

• Each processor has its own local memory so it works independently. If there is

any change in its local memory than there is no effect on the memory of other

processors. Hence, there is no concept of cache coherence.

• When a processor needs access to data in another processor, it is usually the task

of the programmer to explicitly define how and when data is communicated.

I Memory CPU I I Memory CPU I

Network

I Memory CPU
1

I Memory CPU I

Figure 1.5: Distributed memory architecture

Advantages:

• Memory is scalable, means if the number of processors increases the s1ze of

memory mcreases.

• Each processor can rapidly access its own memory without interference and

without the overhead incurred with trying to maintain cache coherency.

• It is cost effective.

Disadvantages:

• Programmer is responsible about the data communication between processors.

• Difficult to map the existing data structures to this memory organization.

1.6 Flynn's Taxonomy

6

Flynn's Taxonomy is a concept to classify parallel computers architecture. This concept

of classification has been used since 1972. This classification concept is based on

instruction and data and it is divided into four categories.

Single Instruction, Single Data (SISD):

• Used in serial computer

• Single instruction: only one instruction stream is being acted on by the CPU

during any one clock cycle

• Single data: only one data stream is being used as input during any one clock

cycle

• Execution is deterministic

• This is the oldest and until recently, the most prevalent form of computer

Single Instruction, Multiple Data (SIMD):

• SIMD is a kind of parallel computer.

• Single instruction: All processing units execute the same instruction at any given

clock cycle.

• Multiple data: Each processing unit can operate on different data element.

• SIMD type of machine typically has an instruction dispatcher, a very high

bandwidth internal network, and a very large array of very small-capacity.

slnstruction units.

• It is good for specialized problems.

• Execution is synchronous and deterministic.

Multiple Instructions, Single Data (MISD):

• Single data stream is given into multiple processing units.

• Bach processing unit operates independently on the data.

• Some uses might be:

o multiple frequency filters operating on a single signal stream

o Multiple cryptography algorithms attempting to crack a single coded

message.

Multiple Instructions, Multiple Data (MIMD):

7

• Currently MIMD is the most common type of parallel computer. Modem

computers come into this category.

• Multiple Instruction: every processor may execute different instruction stream

• Multiple Data: every processor may work with a different data stream

• Execution can be synchronous or asynchronous, deterministic or non

deterministic

• Examples: most current supercomputers, networked parallel computer "grids" and

multi-processor SMP computers- including some types ofPCs.

1.7 Why Parallel Computing needed?

Before knowing the reasons for the requirement of Parallel Computing, limitation of

serial computation should be discussed:

Transmission speed: Speed of serial computer is directly dependent on the speed of data

so that it can traverse through hardware. Absolute limit of speed of light is 30 cm/nsec

and the transmission limit of copper wire is 9 cm/nsec. So if speed increases than it needs

increase in speed of processing elements.

Limitation of miniaturization: Processor manufacturing technologies allow increase in

the number of transistors to be placed on a chip. However, even with molecular or

atomic-level components, a limit will be reached on how small components can be.

Economic limitations: Making single processor faster is quite expensive than using a

larger number of moderately fast processors to achieve better performance in lesser

expense.

To crossover these limitation we need parallel computing with more benefits.

Parallel computing saves time, solves bigger problems and facilitates concurrency. There

are some more reasons:

• Parallel computing provides advantage of non-local resources - using available

compute resources on a wide area network, or even the Internet when local

compute resources are scarce.

• Parallel computing can use multiple cheap instead of paying for time on a

supercomputer, in this sense it saves cost.

• Single computer has finite memory resources, but in parallel computing a large

problem can be solved using the memories of multiple computers, in this way it

solves the problem of memory constraints.

8

Since the power of computing need has increased much for different applications than a

sequential computer is providing. Parallel computing provides cost effective solution by

increasing the number of CPU's in a computer and by adding an efficient communication

system with them. In this ways the workload can be shred among different distributed

processors or processing elements. So ultimately we get high performance.

Main reasons which influences parallel computing:

1. Computational requirements are ever increasing both in the area of scientific and

business computing. The technical computing problems, which require high speed

computational power, are related to life sciences, aerospace, geographical

information system, mechanical design and analysis etc.

2. Hardware improvements in pipelining, superscalar etc. are non-sharable and

require sophisticated compiler technology. Developing such compiler technology

is a difficult task.

3. Technology of parallel processing is developed and can be used commercially;

there is already significant research and development work on development tools

and environment is achieved.

4. Sequential architectures are reaching its physical limitation as they are controlled

by the speed of light and thermodynamics laws, speed with which sequential

CPU's can operate is reaching to its saturation point and hence an alternative way

to get high computational speed is to connect multiple CPU's.

5. Vector processing works well for certain kind of problems. It is suitable for only

scientific problems. It is not useful for other areas.

1.8 Concept of Parallel Computing

In serial computing using Von Neumann style machines, there is one processor which

executes a series of instructions i? order to produce a result, i.e., there is a logical flow of

control through the program. At any one time, only one operation being carried out by the

processor.

Parallel computing lS concerned with producing the same results usmg multiple

processors. The problem to be solved is divided up among a number of processors. There

are a variety of ways in which the problem can be divided up among the available

9

processors. Dividing a problem in a sensible and efficient manner is critical to achieving

good performance on a parallel machine.

1.9 Data Communication

Transmission of digital data to devices out side of the message source is called

Communications. As a rule, the maximum possible transmission rate of a message is

directly proportional to signal power and inversely proportional to channel noise. It is the

aim of any communications system to provide the highest possible transmission rate at

the lowest possible power and with the least possible noise. As the distance between the

source and destination increases, accurate transmission of data becomes difficult.

Communication starts though a communications channel, it is a pathway over which

information can be send. It may be a physical wire that connects communicating devices

Information sent through a communications channel has a source and a destination to

which the information is delivered.

1.9.1 When communication is needed

Some problems can be decomposed and executed in parallel without sharing the data of

the tasks. Example: In image processing operation where every pixel in a black and white

image needs to have its color reversed. The image data can be distributed easily into

multiple tasks and act independently from each other to do their work, so communication

is not needed here.

Many of the parallel applications are not simple and do not require tasks to share data

with each other. So where a problem accomplishes by sharing or dividing the problem

with different tasks then the communication is needed.

1.9.2 Considerable factors
1. Cost of communication

a. Inter-task communication implies overhead.

b. Communication frequently requires some type of synchronization among

tasks. This time is in the form of waiting time instead of doing work.

10

c. Competing communication traffic can saturate the available network

bandwidth, again aggravating performance problems.

d. Machine cycles could be used for computation are instead used to transmit

data.

2. Bandwidth and Latency

a. Bandwidth is the amount of data that can be communicated per unit of time

b. Latency is the time required to send a minimal message from one point to

another point.

c. Sending many small messages can cause latency to dominate

communication overheads. Sometime it is more efficient to package small

messages into a larger message, thus increasing the effective communication

bandwidth.

3. Synchronous and Asynchronous communication

a. Synchronous communication needs "handshaking".

b. Synchronous communications are known as blocking communication

because until the communication completes other work must wait.

c. Asynchronous communication allows tasks to transfer data independently.

d. Asynchronous communications are known as non-blocking communication

because when the communication is going on other work can take place

simultaneously.

4. Communication scope

a. It is very difficult to know that which task is communicating to each other

during the design phase of a parallel code.

b. Point-to-point scoping - Among two tasks if one is sender/receiver then other

will be receiver/sender.

c. Collective scoping - Here data can be shared between more than two tasks,

which are specified as being members in a common group, or collective.

11

Broadcast

®®
~

Gather

Scatter

Reduction

Figure 1.6: Communication Scope

1.10 Communication cost

Message Passing Cost: The time taken to communicate a message between two

processing nodes in a network is the sum of the time taken to prepare a message for

transmission and the time taken by the message to traverse through the network to its

destination.

Commuication latency parameters:

a. Startup time: Time required to make ready to send a message, time taken to

execute the routing algorithm, and time taken to establish an interface between the

local node and the router. It is denoted by 15 •

b. Per-hop-time: Time taken by the header of a message to travel between two nodes

connected directly. It is denoted by t11 •

c. Per-word transfer time: If a network bandwidth allows data to travel r words/sec

to travel then time 1/r is called per-word transfer time. It is denoted by -r, and 1: =

1/r.

12

1.1 0.1 Routing techniques:
a. Store-and-forward routing: When a message traverses through a network with

multiple links, each immediate node in the path passes the message to next node

after receiving and storing the message. If a message of size m travels through a

network of l links. At each link the message takes lh time to for header and fwm

for the

rest the messages to traverse the link. If there are !links then total time is (th +m

lw)l. So total communication time fcomm = Is +(th + mlw)l.

For modem parallel computer lh can be ignored then lcomm = ls + mtwl.

b. Packet Routing: In store and forward routing a message can be sent if the

message sent earlier has reached to its destination but in packet routing a message

is broken into some smaller and equal part before it is sent, middle node waits for

only one parts of the original message to arrive before passing it on. This

approach is good for better communication resource utilization. In this way packet

routing reduces the communication time.

Packet routing lowers overhead form packet loss and better error correction

capability. One more advantage of this concept is free to choosing different paths

for packet. But the overhead involved in so that each packet must carry routing

and sequencing information.

c. Cut-through Routing: If all the data packet is enforced to follow the same path,

the overhead of transmitting routing information is eliminated with each packet

like in-sequence delivery and sequencing information. If error information is

added at message level then the overhead can be reduced that is incurred with

error detection and correction method.

In cut-through routing a message is broken into fixed size length called flow

control digits. Since the flow control digit do not contains overheads of packets so

it can be much smaller packets. Cut-though routing uses less memory and memory

bandwidth between intermediate nodes, and it is faster.

If a message is traversing through a network of llinks and per-hop-time is th. then

time taken by the header of the message to reach the destination node is It h. If the

message length is m words, then entire message arriving time is m< after the
'

arrival of the header of the message. Therefore total communication time in cut

through-routing. If the communication time is denoted by tc then

13

fc = Is + lth + m 'T.

This time is less from the time taken to store and forward routing.

14

Chapter 2
Network Topologies
A major concern in the design of parallel systems is the set of pathways over which the

processors, memories, and switches communicate with each other. These connections

define the interconnection network, or topology, of the machine. Attributes of the

topology determine how processors will share data and at what cost.

The diameter of a ring grows as more nodes are added, but the diameter of a fully

connected network remains the same. On the other hand, a ring can expand indefinitely

without changing the degree, but each time a new node is added to a fully connected

network a link has to be added to each existing node. Scalability refers to the increase in

the complexity of communication as more nodes are added.

A scalable topology that has been used in several parallel processors is the hypercube. A

line connecting two nodes defines a 1 -dimensional ''cube." A square with four nodes is a

2-dimensional cube, and a 3-dimensional cube has eight nodes. This pattern reveals a rule

for constructing an N-dimensional cube. Doubling the number of nodes in a hypercube

increases the degree by only 1 link per node, and in this way increases the diameter by

only 1 path.

Communication in a hypercube is based on the binary representation. The nodes are

numbered so that two nodes are adjacent if and only if the binary representations differ by

one bit. For example, nodes 0110 and 0100 are immediate neighbors but 0110 and 0101

are not. An easy way to label nodes is to assign node IDs as the cube is constructed.

Another desirable property of interconnection networks is node symmetry. A node

symmetric network has no distinguished node, that is, the view' of the rest of the network

is the same from any node. Rings, fully connected networks, and hypercubes are all node

symmetric. A tree has three different types of nodes, namely a root node, interior nodes,

and leaf nodes, each with a different degree. A star has a distinguished node in the center

which is connected to every other node. When a topology is node asymmetric a

distinguished node can become a communications bottleneck.

Three important attributes of an interconnection network are: Timing strategy, control

strategy, and switching strategy.

Since the technologies are being advanced, now it is possible to build large scale parallel

computers. One crucial step on designing a large scale parallel computer is to determine

15

the topology of the network because the system performance is affected by the network

topology. A network is an essential component for a large-scale computer. It provides

communication among the processors and the memories. There are many types of

network topology like, Hypercube, folded hypercube, Supercube folded supercube etc.

2.1 Some important terminologies in parallel computing:

Task: A logically high level, discrete, independent section of computational work. A task

is executed by a processor as a program.

Synchronization: It refers to the idea that multiple processes are to coordinate

simultaneously to ensure correctness so as to commit certain sequence of action without

unexpected race conditions.

Diameter: Diameter of a network is the maximum distance between any two processing

nodes in the network. The distance between two processing nodes is defined as the

shortest path between them. The diameter of a completely connected network is one.

Connectivity: Connectivity of a network is a measure of the multiplicity of paths

between any two processing nodes. A network with high connectivity is preferable

because it reduces conflict in communication. In other way it is said the minimum

number of edges that must be removed from the network to break into two disconnected

networks.

Cost: Cost is measured in terms of the number of communication links or the number of

wires required by the network. A hypercube-connected network has (p log2p)/2links.

Bisection Width: Minimum number of edges deleted to cut a graph into two sub graphs

is called bisection width. Channel width is the number of bits that can be communicated

simultaneously over a link of connecting two nodes. Number of physical wires in each

communication link is equal to channel width. Rate of transfer of bits through a physical

wire is called channel rate. The peak rate at which data can be communicated between the

ends of a communication link is called channel bandwidth. If channel bandwidth is

denoted by B, channel rate is denoted by band channel width is denoted by w then these

are related as

Channel bandwidth = channel rate * Channel width

B = bw

16

This relation shows that the bisection width provides a good indicator of the maximum

communication bandwidth along the bisection of a network.

Speedup: It is the ratio of time taken to execute a task sequentially and time taken to

execute the same task in parallel.

Recursive Decomposition: Recursive decomposition comes into picture for inducing

concurrency in problems that can be solved using the divide and conquer rule. In this

rule, a problem is solved by first dividing into a set of independent subproblems. Each of

these subproblems is solved recursively, applying the same division process into smaller

subproblems following their results.

Hamming Distance: Hamming distance is the number of position differs between two

binary sequences. If u and v are two binary sequences to represent two distinct nodes, u is

represented by 0000 and v is represented by 0001 then the Hamming distance is I,

because the third bit means the least significant bits are different. In other words HD (u,

v) is the bitwise XOR of u and v.

Performance factors in interconnection network:

Bandwidth: It is the width of communication link through the data passes. It is measured

in terms of megabyte.

Hardware complexity: This refers to the implementation cost such as those for wires,

switches, connectors, arbitration and interface logic.

Network latency: This refers to the worst case time delay for a unit message to be

transferred through the network.

Functionality: It tells how the network supports data routing, interrupt handling,

synchronization, request message combining and coherence.

Scalability: It refers how much a network is scalable with what cost to make the network

bigger and easier to perform an operation.

2.2 Hypercube

Hypercube is loosely coupled parallel processors. This is the first type of architecture

consists of a large number of identical processors interconnected to one another. There is

no shared memory and no global synchronization. In hypercube communication is

achieved by data passing and computation is performed by transferring data from one

17

processor to another by traveling across a sequence of nearest neighbor nodes starting

with first and ending with second.

Figure 2.1
23 Hypercube

Synchronization is established by data, means computation at some node completes only

when it's needed data are available.

The main advantage of this architecture IS the simplicity of design. The nodes are

identical, so it can be constructed at low cost.

Hypercube has been studied in detail as a network topology for parallel computes. The

hypercube is regular, node symmetric, link symmetric and recursive. A network W is

called regular of degree k-regular if all of its nodes have the same degree k. The degree of

a node in W indicates the number of edges connected with it. W is node symmetric if for

every two nodes x andy in w, there exist an automorphism F of W so that F maps x toy

and F(W) = W. An automorphism of W is a one-to-one correspondence between the nodes

of W which preserves all of its structure.

A k-dimensional hypercube consists of 2k nodes that are labeled with 2k Binary numbers

from 0 to 2k -1. Two nodes of a hypercube are adjacent if and only if their labels differ by

exactly one bit or if hamming distance between two nodes is one. The node connectivity

of a hypercube is k. That is at least k edges are needed to remove in order to disconnect

the hypercube. The diameter of a k-cube is k.

Many important problems such as sorting prefix computation, fast fourier transformation,

matrix multiplication, matrix transpose, matrix inversion, eigenvalues, connected

components, all-pairs shortest path, minimum spanning tree etc. can be efficiently solved

18

using the hypercube. Besides many other networks such as linear arrays etc can be

effectively embedded in the hypercube.

2.2.1 Properties of Hypercube

1. An n-cube graph is an undirected graph consist of k = 2n vertices labeled from 0 to

2k-1 and such that there is an edge between two vertices if and only if the binary

representations of their labels differ by one and only one bit.

2. There are n different ways of splitting an n-cube into two (n-1) subcubes so that

their respective vertices are connected in a one-to-one way.

3. Any two adjacent nodes of ann-cube are connected in one-to-one way.

4. There is no cycle of odd length.

5. It is a connected graph of diameter n.

2.2.2 Hypercube scalability

Hypercube is scalable i.e. a hypercube of n node can be constructed by combining two (n-

1) node hypercube. So we can construct a 24 node hypercube by combining two 23 node

hypercube. Binary notation of all the nodes is changed by appending 0 and 1 at least

significant bit (LSB) in first hypercube and second hypercube respectively, and then node

with value 0 of first hypercube is connected to node value 1 in second hypercube, node

value 2 in first hypercube is connected with node value 3 in second hypercube and so on.

1111

0100

r----t~----T'iO 110 0101 r---+--...la 0 Ill

1011

1000~--+---t1 010 1 OOlJ----1--~

0000

Figure 2.2
Merging of two hypercube

19

2.3 Supercube

Supercube is a generalized version of hypercube. After hypercube the concept of

generalized hypercube came in existence. So we call it generalized hypercube also. It can

be constructed for any number of nodes, there is no necessity for number of nodes to be in

power of 2 as it is in hypercube.

2.3.1 Supercube construction process:

AnN-node supercube can be constructed by an m-dimensional hypercube, where 2m-J < N

< 2m. For each node u, N ~ u ~ r-', merging nodes u and u-r-' in m-dimensional

hypercube into a single node labeled as u-r-' and leaving other nodes in m-dimensional

hypercube unchanged.

Corresponding Supercube of 7 nodes

Figure 2.3
7 node Supercube

Although this network can be constructed for any number of nodes but it has two major

problems:

1. When the number of node is prime it reduces to completely connected graph.

2. It needs significant change if we want to add a new node. A new modified

hypercube has been proposed by Sen which does not have the drawbacks of either

generalized hypercube and it maintains the same connectivity and diameter

corresponding to hypercube. AnN-node supercube is either a supergraph of (m-1)

20

dimensional hypercube when r-1 < N < 2m or an m-dimensional hypercube when

N = 2m . In this way the constructed network is called Supercube.

2.3.2 Properties of Supercube

1. The node connectivity of anN-node supercube is at least Ilog2Nl

2. The diameter of anN-node supercube is at most log2N . The node degree of an N-

node supercube is between k-1 and 2(k-1) where k = I1og2N l.

2.4 Folded Hypercube

Although hypercube network topology is popular because of its low diameter and large

number of node disjoint paths, it has some major drawback. The restriction on system size

of hypercube leaves a large gap between two allowable sizes. Folded hypercube is one of

the several generalizations of hypercube, to improve its performance. Authors make effort

to reduce the diameter by adding extra connections between the nodes. These connections

are called skip. A skip is established between every pair of nodes, Un-1Un-2···•.. un-kUn-k-

1··· u; uo and u'n-1U'n-2··· u'n-kU'n-k-1··· u'; u'o with 0::::; k ::::; n-2 and n =

Dlog2N 0. Different values of k give different enhanced hypercubes and different degree

of performance improvement. Tzeng and Wei concluded that when n is even (or odd)

creating a skip between a pair of nodes with k = 0(or 1) can improve system performance

optimally or near about that. The n-cube with k = 0 is called folded hypercube.

Tt-\ - \ 6 l 't 4
Figure 2.4
Folded Hypercube 004.35

K9606 So TH

... IIIII/I II 11111111111111111 IIIII
~ -· .. TH16194

Ll

Properties of folded hypercube:

1. Diameter of n-node folded hypercube is f n/21.

2. Folded hypercube is regular of degree n+ 1.

3. Node connectivity in folded hypercube is n+ 1.

2.5 Folded Supercube:

Folded Supercube is constructed form of the folded hypercube network. Like folded

hypercube, some extra connections are added to reduce the diameter of a supercube.

Steps to construct an N-node folded supercube:

1. Make a k-dimensional hypercube, where k -[Iog2N l.
2. Add the complementary edges.

3. Merge nodes by the technique described earlier.

Figure 2.5
Folded Supercube

22

Chapter 3
SORTING sON HYPERCUBE

3.1 Introduction

As we see in academics in computer science, from graduation, computer science students

are likely to have studied the basic sorting algorithms in their introductory programming

class, then in their data structures class, and finally in their algorithms class. Above all

still researchers are working continuously how to make it more and more efficient using

various technologies. Fro this, parallel computing is playing great role to minimize the

time of sorting. So we can say that sorting is very important that is used in many different

fields. There are many reasons for its worth:

a. Sorting is the basic building block through which many other algorithms are built.

b. History tells that computers have spent more time in sorting than doing anything

else. A quarter of all mainframe cycles are spent in sorting data.

c. Sorting is the most thoroughly studied section in computer science. Literally

dozens of different algorithms are known, most of which have some advantages

over all other algorithms with certain conditions.

d. Most of the interesting ideas used in the design of algorithms appear in the context

of sorting, such as divide-and-conquer, data structures, and randomized

algorithms.

e. Sorting improves system's ability to compare and move large amounts of data,

which is the most expensive part of any scientific or commercial application.

Sorting on parallel computer was first suggested by Francis and Mathieson. The process

of sorting data is an integral part of any database management system. Sorting is for

creating indexes and for processing complex queries. All commands for transaction in

SQL commands require an internal sort and can benefit from the use of parallel sorting.

3.2 Sorting Algorithms

Since there are various approaches for sorting for both serial and parallel machines.

Sorting algorithms can be categorized in three classes: counting-based sort, fixed

topology sort, and partitioning sort.

23

3.2.1 Counting-based sort

Counting-based sort work by using keys as integers in the range 0 ... (N-1). Counting

based sorts detennine the ordering of keys by counting the number of occurrences of each

possible value, rather than by comparing pairs of keys.

There are two minor disadvantages: it does not perform well with large keys, since the

running time is proportional to the key size, and it can not be executed in place. It has

some advantages like: Easy implement, detenninistic, load-balanced, stable, fast for short

keys, and efficient for a wide range of problem sizes.

3.2.2 Fixed-topology sort

In fixed-topology, the interconnection network is fixed among the processors, such as

hypercube, supercube etc and there is no data-dependency for communication. Bitonic

sort is an example of fixed-topology sort. Bitonic sort is applicable only for the sequence

of numbers in which the numbers initially increases and then decreases. This sort is quite

efficient on parallel machines.

3.2.3 Partitioning sort

Partitioning sorting algorithms select a subset of the keys that partition the data and then

send these partitioned elements to different processors. Using partitioning sort Wagar has

given a sorting method named Hyperquicksort because it has been implemented on

hypercube. In this sort input keys are partitioned parallely. This sort initially distributes

the keys evenly among the processors and at each step picks a pivot element then

distributes the pivot across the machine, and sends all the keys less than the pivot on one

node of the hypercube and the greater keys on the other node. This process is applied

recursively within each sub-cube. It is very important to pick a pivot that closely balances

the two halves otherwise the load on the process<?rs can become extremely imbalanced.

3.3 Sorting Performance

Sorting data is very expensive. That is why · so many persons are still involved in

developing and analyzing algorithms. For any real world application of sorting the

analysis of an algorithm may be secondary consideration as compare to the constraints

24

involved, it is possible that for a particular problem certain algorithms may work

significantly better than others.

3.4 Sorting on Hypercube

Although sorting on Hypercube is done using various different methods. Parallel Sorting

on Hypercube of 4-nodes, 8-nodes, 16-nodes and 32-nodes is implemented keeping in

mind about minimum communication time and sorting process on each node of the

Hypercube. Putting elements to different processors is also an important work so that it

should take minimum communication time and minimum load at individual processing

node. Sorting performance depends much on the distribution of items on each node. If

there is an n-node hypercube and number of items to be distributed is N then distribution

is easy by simply assigning N/n (applying division operator) items on each node so that

each node get equal number of items.

There are two cases:

Case 1: When n is multiple of N

N
~

D
a

Figure 3.1 Data distribution

N/4DN/4 ---+ N/4DN/4---+

N/4 N/4 N/4 N/4

a b

Figure 3.1 Sorting of input data

c

In Figure 3.1.a, the number of inputs given to a node is N which is a multiple of n,

here n is 4. In Figure 3.1.b the input is divided into two halves and one half is

transferred to its neighboring node. Again in Figure 3 .l.c the inputs of the two nodes

is divided and transferred to other two nodes in one communication time.

25

In Figure 3.2.a, all the items of each node is sorted in Nl4log2NI4 time using merge

sort. In the next step all the node have inputs in the sorted form so we can merge the

two nodes contents. This can be done in Nl4 time only. Then two processor nodes

become idle and the input data is distributed between two nodes, half of N on each

node. Finally these two halves are merged in Nl2 time and finally all the items are in

stored form at one processor node. From Figure 3.2, it is clear that the sorting can be

accomplished in two communication of time. So,

Processing Time= N/4*log2N/4+N/4+N/2

= N/4*log2N/4+3*(N/4)

Communication Time= 2

Total time taken= Processing Time+ Communication Time

= (N/4*log2N/4 + 3*(N/4) + 2)

General formula to calculate total time taken for 2k -hypercube:

= (N/p*log2N/p + (2k-I)*(N/p) + 2)

Where p is number of processing nodes.

Case 2: When n is not multiple of N

In this case distribution of number of items is not identical at all the processor nodes.

But, to minimize the load balance, the difference of number of items between any two

nodes should not be much. To distribute the number of items at all the processing

nodes I can follow any one of the two methods:

I. Assign (Nip + N%p).number of items to the first processing node then N/p to all

other nodes. But this distribution method faces the problem of load balancing, when

N%p is very close to Nip.

2. To distribute approximately equal number of items on each processing node, each

node gets at the most (NI4+ 1) items.

Following the second method

Processing Time = (N/4+ I)*log2(N/4+ I)+ (N/4+ I)+ 2 *(N/4+ I)

= (N/4+ I)*log2(N/4+ I)+ 3 *(N/4+ I)

Communication Time = 2

Total time taken= Processing Time+ Communication Time

= [(N/4+I)* log2(N/4+I)+ 3*(N/4+I) + 2]

This is the general formula to perform parallel sorting on a 4-node hypercube.

General formula to calculate total time taken for 2k -node hypercube:

= [(N/p+ I)*log2 (N/p+ I)+ (2k-I)*(N/p+ I)+ k]

26

Where, p is number of processing nodes.

Explanation: If there is 23
- node hypercube and number of items to be sorted is 23.

If I follow the first distribution method

a

11 ___ 4

44--~?i
I ! i
L j

c

15 +--
/L~_7:

81 1 · • I !
I ;

1 I ,
I I . i

r-~-- 7
d

23
/~---- _/' r--1------ i

i :
: i
' i ---------~ ~ L _____ __ 7

e

Input is given to a processing node

All the items at each node are sorted in 9log2 9

Four neighboring pair's contents are
merged in time 9 only

Two neighboring pair's contents are
merged in time 11 only

Two neighboring nodes contents are
merged in time 15 only

Figure 3.2 Sorting on 23
- node hypercube

Processing time: 9log2 9 + 9 + 11 + 15.
= 63.529325012980811266167300991061.

Total time taken= 66.529325012980811266167300991061.

27

Time taken in sequential sort: 104.04192498931129606276540961574.
If I follow the second distribution method

"\..23

/ /

v v
a

3 2

3 31

3, J3 v
3

b 3

6 5

~~~-~l6! 
, I 

I I I 
v=-=~~ 

c 

11 +--
12 j ___ ~ 

I i 1 

. I 1 
: I ! ! 

I I i I v=---y 
d 

e 

i 

Input is given to a processing node 

All the items at each node are sorted in 3logz 3 
time 

Four neighboring pair's contents are 
merged in time 3 only 

Two neighboring pair's contents are 
merged in time 6 only 

Two neighboring nodes contents are 
merged in time 12 only 

Figure 3.4 Sorting on 23 ~node hypercube 

Processing time: 3log2 3 + 3 + 3 + 12. 
= 22.754887502163468544361216831843. 

Total time taken = 25.754887502163468544361216831843. 
Time taken in sequential sort: 104.04192498931129606276540961574. 

28 



Items 
4 
8 
12 
16 
20 
24 
28 
32 
36 
40 
44 
48 
52 
56 
60 
64 
68 
72 
76 
80 
84 
88 
92 
96 
100 
104 
108 
112 
116 
120 
124 
128 
132 
136 
140 
144 
148 
152 
156 
160 

Sorting time performance and Speedup on Hypercube 
(Number of nodes 4, 8, 16 and 32) 

P1 P4 P8 P16 P32 SP4 SP8 SP16 SP32 
10.000 7.000 6.000 8.000 16.000 1.429 1.667 1.250 0.625 
19.000 12.000 13.000 8.000 16.000 1.583 1.462 2.375 1.188 
19.000 17.755 13.000 8.000 16.000 1.070 1.462 2.375 1.188 
28.755 24.000 22.000 23.000 16.000 1.198 1.307 1.250 1.797 
28.755 30.610 22.000 23.000 16.000 0.939 1.307 1.250 1.797 
39.000 37.510 31.755 23.000 16.000 1.040 1.228 1.696 2.438 
49.610 44.651 31.755 23.000 16.000 1.111 1.562 2.157 3.101 
49.610 52.000 42.000 40.000 47.000 0.954 1.181 1.240 1.056 
60.510 59.529 42.000 40.000 47.000 1.016 1.441 1.513 1.287 
60.510 67.219 52.610 40.000 47.000 0.900 1.150 1.513 1.287 
71.651 75.054 52.610 40.000 47.000 0.955 1.362 1.791 1.524 
71.651 83.020 63.510 57.755 47.000 0.863 1.128 1.241 1.524 
83.000 91.106 63.510 57.755 47.000 0.911 1.307 1.437 1.766 
94.529 99.303 74.651 57.755 47.000 0.952 1.266 1.637 2.011 
94.529 107.603 74.651 57.755 47.000 0.878 1.266 1.637 2.011 

106.219 116.000 86.000 76.000 80.000 0.916 1.235 1.398 1.328 
106.219 124.487 86.000 76.000 80.000 0.853 1.235 1.398 1.328 
118.054 133.059 97.529 76.000 80.000 0.887 1.210 1.553 1.476 
118.054 141.711 97.529 76.000 80.000 0.833 1.210 1.553 1.476 
130.020 150.439 109.219 94.610 80.000 0.864 1.190 1.374 1.625 
142.106 159.239 109.219 94.610 80.000 0.892 1.301 1.502 1.776 
142.106 168.107 121.054 94.610 80.000 0.845 1.174 1.502 1.776 
154.303 177.042 121.054 94.610 80.000 0.872 1.275 1.631 1.929 
154.303 186.039 133.020 113.510 113.755 0.829 1.160 1.359 1.356 
166.603 195.096 133.020 113.510 113.755 0.854 1.252 1.468 1.465 
166.603 204.211 145.106 113.510 113.755 0.816 1.148 1.468 1.465 
179.000 213.382 145.106 113.510 113.755 0.839 1.234 1.577 1.574 
191.487 222.606 157.303 132.651 113.755 0.860 1.217 1.444 1.683 
191.487 231.881 157.303 132.651 113.755 0.826 1.217 1.444 1.683 
204.059 241.207 169.603 132.651 113.755 0.846 1.203 1.538 1.794 
204.059 250.580 169.603 132.651 113.755 0.814 1.203 1.538 1.794 
216.711 260.000 182.000 152.000 148.000 0.834 1.191 1.426 1.464 
216.711 269.465 182.000 152.000 148.000 0.804 1.191 1.426 1.464 
229.439 278.974 194.487 152.000 148.000 0.822 1.180 1.509 1.550 
242.239 288.525 194.487 152.000 148.000 0.840 1.246 1.594 1.637 
242.239 298.117 207.059 171.529 148.000 0.813 1.170 1.412 1.637 
255.107 307.750 207.059 171.529 148.000 0.829 1.232 1.487 1.724 
255.107 317.421 219.711 171.529 148.000 0.804 1.161 1.487 1.724 
268.042 327.131 219.711 171.529 148.000 0.819 1.220 1.563 1.811 
268.042 336.877 232.439 191.219 182.610 0.796 1.153 1.402 1.468 

Table 3(a): Time performance and Speedup on Hypercube 

From the above table of data it is clear that the 8-NodeHypercube performs better than the 

4-Node Hypercube. For the same data a 16-Node Hypercube is not performing better. 

29 



And the 32-Node Hypercube performs bad for the same data initially but later its 

performance improves as the number of input items increases. The reason behind that if 

the number of input items is less than it wastes its time in communication. From the table 

it is clear that the 8-Node hypercube always performs better than a 4-Node Hypercube, 

for the same inputs 

16-Node Hypercube performs poorer up to 20 inputs of items after that its performance 

starts improving but not much for smaller number of inputs, but if the number of input 

items increases its performance improves continuously. 

30 



w 
~ 
Cl 
c 
'iii 

"' "' u 
0 

.t 
+ 
"' E 
:;:; 
c 
.S' ... 
. !:: 
c 
::1 

E 
E 
0 

!2. 
"' E 
i= 

Sorting performance on Hypercube 

700 - ,! 
I 

,-r: - -

600 

500 

400 

300 

200 

100 

0 

I ' I 
I 

I I J I I I I I I 'I I 1: •li 

1 
I I 

I 
I I I I 

I I . i[: .I .I ·I·' 

~ I I I ~ I 

~ I 
~ 

I I I. 

~~ 
I w. hr I I I I I i: I I I . I I 

I I I I I I I I i I• kr 141'"' . I 01 I _.. ~ 
~ -~ 1-

~ ~ 

,.J. Ao' .\- .1-1- t-' 
J ' . -~~ 

.,. -,.- 1 
II 

...;--- ~ J. :t _I I I I L ~..r J.. .!-·m' --'1>. 
- ~ 

T I I I I 
I 'I I 

I I. I 
~ lAo""' I 

~ 1-.r-;t ~ I I· 

~ ~ ~ r-tr j _ 
~ x-~x 

fM ~ I 

l.!Ao 1 ... 
I 

. ~ ~ 
1 I ' I 

I 
~ 

I 
I ~ , '"" l l I L I 

Number of nodes 

--+-- 4-node ------ 8-node 16-node -- 32-node 

Graph 3(a): Sorting-time performance on Hypercube for any number of items. 

1 6 0 

1 4 0 

1 2 0 

1 0 0 

<II 80 E 
t= 6 0 

40 

20 

0 

Time performance o n Hypercube 

~~~~~~~~~~~~~~~~~~~~ 
N u m be r of input item s

- 4-Node - a -Node 16 - Nod e - 32- N ode

Graph 3(b): Sorting-time performance on Hypercube.
(Number of nodes is multip le of number of processors .)

31

3 . 5

3
2 . 5

a. 2
::J

1 . 5 "C
Q)
Q) 1 a.

C/) 0 . 5

0

--

I
..L..

\

Speedup Performa n ce
Hypercube

--
X

/\
/ \

~ . / .~ ..-/~'> -< -~
...,. .~ L£..._~ ~
/

._ -....

~~~~~ ·~~~~~~~~~~~~~~~ 
N u m be r o f i nput ite m s 

(Divisible by the numbero o f proc ess ors) 

- 4-Node Supe rcube ----- 8-Node Supercube 

-- 16-Node Supercube - 32-N o de Supercube 

Graph 3(c): Speedup performance on Hypercube. 

.X 

32 



Chapter 4 
Sorting on Supercube 

Sorting on supercube has great advantage that it gives the freedom to select any 

number of processing nodes. There is not a necessity to construct it with 2k number of 

nodes, where k is any positive integer value. 

4.1 Sorting on 5-node Supercube 

It is obvious that if the number of input data is in multiple form of 5 then all the 

processing nodes will have equal number of input data. To perform sorting on 5-node 

supercube, it needs three communication time. Simultaneously we take care of that 

any node should not suffer from more load balance otherwise its performance 

degrades. 5-node supercube is constructed from an 8-node hypercube after deleting 

three nodes having highest leveling number. 

Time complexity evaluation, taking n number of input items. 

Case 1: If n is multiple of 5. 

33 



n/5 

Equal number of items distributed at each processing 

node then sorted all in time (n/5 log2 n/5). 

a 
n/5 

Two neighboring pairs are merged in time n/5. 

b 

Now attention should be taken here, if we merge two node having 2n/5 items then 
performance will degrade. 

Here taken time is 2n/5. 

c 

n 
Here taken time is 3n/5. 

d 

Figure 4.1 
Sorting on a 5-node Supercube. 

Processing time: (n/5 log2 n/5) + n/5 + 2n/5 + 3n/5. 

Communication time: 3 

Total time: (n/5 log2 n/5) + n/5 + 2n/5 + 3n/5 + 3. 

= (n/5 logz n/5) + 6n/5 + 3. 

If n is 25, 

34 



Total parallel sorting time is: 44.609640474436811739351597147447. 

Total sequential sorting time: 116.09640474436811739351597147447. 

Case II: If n is not a multiple of 5. 

Worst condition may come when n is just one less to be a multiple of 5. In this case 

we assign n/5 items to each processing node and then additionally assign one more 

item to each of the processing node but it is not possible to all of the nodes. 

Total processing time: [(n/5+1) log(n/5 + 1) + 6*(n/5+1)] 

Communication time: 3 

Total parallel sorting time: [(n/5+ 1) log(n/5 + 1) + 6*(n/5+ 1) + 3]. 

4.2 Sorting on 6-node Supercube 

Case 1: If number of input items is n and divisible by 6. 

Sorting can be accomplished within three communication of time. Initially each of the 

processing nodes gets assigned n/6 items. 

n/6 n/6 

n/6 
a 

n/6 
b 

n/6 

n/6 

All the items at each processing nodes are 

sorted in n/6logn/6 

Time taken to merge two pairs is n/6 

35 



Time taken to merge two pairs is n/3 

n/2 c n/2 

Time taken to merge two pairs is n/2 

n 
rl 

Figure 4.2 
Sorting on a 6-node Supercube 

Total processing time= n/6logn/6 + n/6 + n/3 + n/2. 

= n/6logn/6 + n. 

Communication time= 3. 

Total time taken= n/6logn/6 + n + 3. 

Case II: If number of input items is n and is not divisible by 6. 

Total processing time= (n/6+ 1) log (n/6+ 1) + 6*(n/6+ 1 ). 

Communication time= 3. 

Total time taken= (n/6+1) log (n/6+1) + 6*(n/6+1) +3. 

4.3 Sorting on 7-node Supercube 

Communication time in 7-node supercube is three. Firstly I distribute approximately 

equal number of items among all the processing nodes then sorting and 

communication starts. 

Case 1: If number of input items is nand divisible by 7. 

Total processing time = n/7logn/7 + n/7 + 2n/7 + 4n/7. 

= n/7logn/7 + n. 

Communication time = 3. 

Total time taken= n/7logn/7 + n + 3. 

36 



Case II: If number of input items is n and is not divisible by 7. 

Total processing time= (n/7+ 1) log (n/7+ 1) + 7*(n/7+ 1 ). 

Communication time= 3. 

Total time taken= (n/7+ 1) log (n/7+ 1) + 7*(n/7+ 1) + 3. 

37 



Sorting time performance and Speedup on Supercube 
(Number of nodes is not multiple of 5) 

No. of 1-Node 5-Node 6-Node 7-Node Speedup Speedup Speedup 
inputs (1) (2) (3) (4) (1) (2) (3) 

8 24.000 11.000 11.000 11.000 2.182 2.182 2.182 

12 43.020 16.755 16.755 11.000 2.568 2.568 3.911 

16 64.000 23.000 16.755 16.755 2.783 3.820 3.820 

20 86.439 29.610 23.000 16.755 2.919 3.758 5.159 

24 110.039 29.610 29.610 23.000 3.716 3.716 4.784 

28 134.606 36.510 29.610 29.610 3.687 4.546 4.546 

32 160.000 43.651 36.510 29.610 3.665 4.382 5.404 

36 186.117 51.000 43.651 36.510 3.649 4.264 5.098 

40 212.877 58.529 43.651 36.510 3.637 4.877 5.831 

44 240.215 58.529 51.000 43.651 4.104 4.710 5.503 

48 268.078 66.219 58.529 43.651 4.048 4.580 6.141 

52 296.423 74.054 58.529 51.000 4.003 5.065 5.812 

56 325.212 82.020 66.219 58.529 3.965 4.911 5.556 

60 354.413 90.106 74.054 58.529 3.933 4.786 6.055 

64 384.000 90.106 74.054 66.219 4.262 5.185 5.799 

68 413.947 98.303 82.020 66.219 4.211 5.047 6.251 

72 444.235 106.603 90.106 74.054 4.167 4.930 5.999 

76 474.842 115.000 90.106 74.054 4.129 5.270 6.412 

80 505.754 123.487 98.303 82.020 4.096 5.145 6.166 

84 536.955 123.487 106.603 90.106 4.348 5.037 5.959 

88 568.430 132.059 106.603 90.106 4.304 5.332 6.308 

92 600.168 140.711 115.000 98.303 4.265 5.219 6.105 

96 632.156 149.439 123.487 98.303 4.230 5.119 6.431 

100 664.386 158.239 123.487 106.603. 4.199 5.380 6.232 

Table 4 (a) 
Time performance and speedup for Hypercube architecture 

38 



From the above table of data it is clear that the performance of a 6-Node Supercube is 

better than 6-Node Supercube and 7-Node Supercube performance is better than 6-Node 

Supercube for the same number of input items. In the beginning the performance of 7-

Node Supercube is not satisfactorily good but as the number of input items increase its 

performance continuously improvss. 

39 



Time performance on a Supercube 

1 8 0 
1 6 0 

1 4 0 
1 2 0 

1 0 0 ., 
E 80 
1- 60 

40 

20 
0 

.L 
/ 

/ ..-----/ 
~~ 

/~ 
~/_ 

~./ 
I _.,. 

'b ..._'<> ... ~ n,'~- ~"' ~"' <-,'<> '0~ ""' "'"' q,'b o,'<> 

N u m be r of input item s 
(Any value of number of items) 

~-- 5 - n ode 
I --- 6 -no d e 

L 7 -node 

Graph 4(a): Time performance on a Supercube for any number of items. 

5 

4 

a. 3 
.g 2 

<1> 

~ 1 
rJ) 

0 

7-Node Supercube with inp u tnumberof 

items divis ible by 7 

/ 

Number of input i tems 

[ - 7 - Nod e 

Graph 4(b) : Speedup performance on Supercube of7-Nodes . 

6 
5 

= 4 
.; 3 
:2 
c. 
<n1 

0 

Speedup on Supercube 

'b ,'<:> "'""' """' .,_~ .,_'b ,_.,'<:> «:,""- "'"' 'b~ 'b'b <:>,'<:> 

N u m be r of input i te m s 

(Any value of number of items) 

-+- 5-N ode 

----- 6-N ode 

7 -No de 

Graph 4(c): Speedup performance on Supercube for any number of items. 

40 



Chapter 5 

Conclusion 
Sorting is an important application in scientific and commercial field. It should have some 

standard benchmark. To fix a benchmark, variation in size and distribution of sorted data 

is necessary to accurately measure how an algorithm and architecture works. Sorting is a 

perfect data transfer process which measures a number of important system performances 

including communication bandwidth. 

These benchmarks can be applied in presently existing supercomputer, from single 

processor to many processor systems. 

Since the Hypercube is restricted for the number of processing nodes in the form of 2k, 

where k is any integer. Although Hypercube is easily scalable and cost effective but the 

restriction degrades the performance of sorting on it, if the number of processing nodes is 

not a multiple of 2k. in that condition Supercube performs better. 

There are many more network topologies like Folded Hypercube, Folded Supercube etc, 

implementation on these may give better performance but it is yet to be done. 

41 



References 

[l.]L.N. Bhuyan and D. P. Agrawal, "Generalized Hypercube and Hyperbus structures 

for a computer network", IEEE Transactions on Computers, vol. C-33, no. 4, pp. 

323-333, 1984. 

[2.]Y. Saad and M. H. Schultz, "Topological properties of Hypercube", Research roport 

389, Dept. Comp. Sc., Yale University, 1985. 

[3.]H. P. Katseff, "Incomplete Hypercube", IEEE Transactions on Computers. 

37(1998), pp. 604-607. 

[ 4.] Sen, "Supercube: An Optimal fault tolerant network architecture", Acta 

inform.,26(1989), pp. 741-748. 

[5.] S. M. Yuan," Topological properties of Supercube", Inform. Process letter 

37(1991), pp. 241-245. 

[6.]E1-Amawy and S. Latif," Properties and Performance of Folded Hypercube", IEEE 

Trans parallel and distributed systems, Vol.2, No.1, Jan.1991, pp. 31-42. 

[7.]N. F. Tzeng and S. Wei, "Enhanced Hypercubes", IEEE Trans. Comput., Vol.40, 

No.3, March 1991, pp. 284-294. 

[8.] Erich Schikuta and Peter Kirkovits, "Analysis and Evaluation of Sorting 

onHypercube-Based System", Inst. J: Applied Computer Science, Dept. of Data 

Engineering, University ofVienna, Rathausstr. 19/4, A-1 01 0 Vienna, Austria. 

[9.]Bulent Abali, Fusun Ozguner, Member, IEEE, and Abdulla Bataineh, Member, 

IEEE, "Balanced Parallel Sort on Hypercube Multiprocessors", 572 IEEE 

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, 

NO.5, MAY 1993. 

42 



[10.] Youran Lan and Magdi A. Mohamed, "Parallel Quicksort in Hypercubes", 

Department of Computer Science University of Missouri-Columbia. 

[11.] DavidS. L. Wei, "Quicksort and Permutation Routing on the Hypercube and De 

Bruijn Networks", School of Computer Science and Engineering The University of 

Aizu Fukushima, 965-80 Japan. 

[12.] Minsoo Jeonand Dongseung Kim, "Load-Balanced Parallel Merge Sort on 

Distributed MemoryParallel Computers", Dept. of Electrical Engineering, Korea 

University Seoul,136-701,Korea msjeon, dkim @classic.korea.ac.kr 

[13.] Erich Schikuta and Peter Kirkovits, "Analysis and Evaluation of Sorting on 

Hypercube-Based Systems", Inst. J: Applied Computer Science, Dept. of Data 

Engineering, University ofVienna Rathausstr. 19/4, A-1 01 0 Vienna, Austria. 

[14.] Ten H. Tzen and Lionel M. Ni, Senior Member, IEEE, "DePendence I 

Uniformization: A Loop Parallelization Technique", IEEE TRANSACTIONS ON 

PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO.5, MAY 1993 547. 

[15.] Joseph JhJh, Senior Member, IEEE, and Kwan Woo Ryu, Associate Member, 

IEEE, "Optimal Algorithms on the Pipelined Hypercube and Related Networks", 

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 

4, NO.5, MAY 1993. [BA,84] L.N. Bhuyan and D. P. Agrawal, "Generalized 

Hypercube and Hyperbus structures for a computer network", IEEE Transactions on 

Computers, vol. C-33, no. 4, pp. 323-333, 1984. 

[16.] Kai Hwang, "Advanced Computer Architecture: Parallelism, Scalability, 

Programmability", McGraw Hill, 1993. 

[17.] Michel J, Quinn, "Parallel Computing: Theory and Practice", McGraw Hill 1994. 

[18.] Ananth Grama, Anshul Gupta, George Karpis, Vipin Kumar, "Introduction to 

parallel Computing", Person Education Ltd., 2003. 

43 



[19.] Narsingh Deo, "Graph Theory with applications to engineering and computer 

science", Prentice Hall of India pl. 2004. Thomas H. Cormen, Charles E. leiserson, 

Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms", Prentice Hall of 

India pl. 2002. 

44 


	TH161940001
	TH161940002
	TH161940003
	TH161940004
	TH161940005
	TH161940006
	TH161940007
	TH161940008
	TH161940009
	TH161940010
	TH161940011
	TH161940012
	TH161940013
	TH161940014
	TH161940015
	TH161940016
	TH161940017
	TH161940018
	TH161940019
	TH161940020
	TH161940021
	TH161940022
	TH161940023
	TH161940024
	TH161940025
	TH161940026
	TH161940027
	TH161940028
	TH161940029
	TH161940030
	TH161940031
	TH161940032
	TH161940033
	TH161940034
	TH161940035
	TH161940036
	TH161940037
	TH161940038
	TH161940039
	TH161940040
	TH161940041
	TH161940042
	TH161940043
	TH161940044
	TH161940045
	TH161940046
	TH161940047
	TH161940048
	TH161940049
	TH161940050
	TH161940051
	TH161940052
	TH161940053

