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ABSTRACT 

Genetic algorithm (GA) is highly used for solving optimization problem for which no 

straight forward solution exists. GA is based on the evolutionary ideas of natural 

selection and genetics. It is an adaptive heuristic search algorithm. GAs mimics the 

principle of the "survival of the fittest" among individuals over successive generation 

towards solving a given problem. 

Genetic algorithm consists of few operators e.g. selection, crossover and mutation. Of 

these crossover operator is used for mating and reproduction and therefore is very 

important operator. Three types of crossover operators, discussed in the literature, are 

Partial Matched Crossover (PMX) Ordered Crossover (OX) and Cycle Crossover (CX). 

Parallel/distributed system allows the concurrent execution of tasks. Execution scenario 

in both Parallel and Distributed system are almost similar. The difference between these 

systems lies in sharing. A parallel system also called a multiprocessor system has a 

shared memory and clock whereas in a distributed systems memory and the clock is 

distributed. Though it is a collection of autonomous computer it gives the appearance of 

single system. The main advantages of theses systems are resource sharing, openness, 

higher throughput and shorter response time, etc. 

Task scheduling in parallel/distributed system is comprised of two steps: partitioning the 

task into sub-tasks (modules) and allocating these sub-tasks onto different processing 

nodes of the system. Both these steps are an NP-hard problem. Task partitioning is done 

for grouping of the modules in a single entity. It is called Load. If the grouping is done in 

a proper maimer, the load will be even and thus the allocation will also be stable. 

In this dissertation, we have compared three crossover operators mentioned above on the 

task partitioning problem. The grouping of the modules of the task in done in such a 

manner that these groups of the task can be allocated in its entirety onto the processors of 

the machine. This grouping will be done in such a manner so that the cumulative 
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execution time of the modules of the group approaches to same for all the groups. The 

work tests the performance of the three crossover operators PMX, OX and CX for this 

problem. The programs written for the dissertation has been implemented in C language. 

First chapter is an introductory chapter which discusses the genetic algorithm, operators 

used in GA, parallel and distributed system and models of distributed system. 

Second chapter contains Genetic Algorithm in detail. 

Third chapter discusses about the task partitioning problem ofParalleVdistributed system. 

Fourths chapter elaborates the operators used in GA specially three Crossover operators. 

As our study is based on these operators, we have emphasized on these operators. 

Fifth chapter discusses the experiments performed, observations and the conclusion. 
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Chapter 1 

Introduction 

This dissertation work measures the efficiency of three genetic crossover operators over a 

problem of task partitioning for the tasks submitted to a Parallel/Distributed Computing 

System for its execution. The emphasis is on the crossover operators and the problem has 

been formulated around the modules grouping of the task. The imperative here is to 

discuss both the genetic algorithm and the paralleVdistributed computing system. 

1.1 Genetic Algorithm 

Genetic algorithms (GAs) are evolutionary algorithm derived from the Darwin's theory 

of natural genetics. It is based on the principle of "Survival of the Fittest". A best solution 

is derived from the number of solutions in GA. There are many search techniques 

available for problem solving [3, 4, 5, 16, 17, 18]; these search techniques are: 

• Calculus Based Techniques (Fibonacci, Sorting) 

• Enumerative Techniques (DFS, BFS, etc) 

• Guided Random Search Techniques (Hill Climbing, Simulated Annealing, 

Evolutionary Algorithms, etc.) 

Evolutionary Computation has two components: Genetic Programming and Genetic 

Algorithms. Genetic algorithm generates population of potential solution and explores the 

best solution of the problem. The father of the GA is John Holland, who along with his 

student DeJong introduced it in the year by 197 5 at the University of Michigan. He was 

influenced by the natural system and in his effort to propose the GA he thought of 

mimicking the natural system. He thought to involve computing in natural system and 

derived that as the natural system evolves any computation may also evolve. This was the 

basis for the development of the GA. Most of the terminology in GA has been borrowed 

from genetic engineering and also it uses the biological concept of "Natural Selection" 

and "Genetic Inheritance". For most of the optimization problems, where a little 



knowledge about problem solving approach is available, GA is beneficial. It is widely 

used for the NP-class of problems (both NP-Complete and NP-Hard problems). 

The GA, as a problem solving tool, is different in comparison to some other search 

techniques described as follows [16]. 

•!• GA is applied on the coding of the parameter sets not only on the parameters. 

•!• Populations consisting of solutions are used for searching in GA, so it is a 

multipoint search in parallel. 

•!• The original information is used in GA; no other secondary information, 

knowledge or consequential information is needed. 

•!• GA uses probabilistic transition instead of deterministic transition. 

GA has a chromosome (genotype) that consists of genes. Genes are the fundamental 

instructions for building an organism. The complete chromosome derives the solution of 

the problem and a particular chromosome (phenotype) becomes the target solution of the 

problem. The pseudo-code for the GA has been given below. 

Genetic Algorithm ( ) 

1. Generate the population of solutions randomly. //using any approach 

2. Evaluate the fitness value of each individual against the fitness function. 

3. Repeat while termination condition does not hold 

{ Randomly pick two parents from the population 

Perform the crossover over the parents to produce offspring II based on the 

probability of applying crossover 

Mutate each offspring II probability of applying mutation is often very less 

Evaluate the fitness of each new individual 

} 
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1.1.1 Search Space 

A big search space is created in terms of the feasible solution of population. In search 

space each individual is represented by finite length vectors. Though these can be any 

alphabets but normally GA uses binary number alphabet { 0, 1}. An individual of 

population (each chromosome) generate a fitness value of each solution. The most 

favorable fitness score is required. GA maintains a population of 'n' chromosomes and its 

fitness score. The parents use reproductive map to produce offspring. In reproduction the 

parents with high fitness score are given more opportunity than others and they arrive to 

replace old one in population which is least fit among reproduced solution. [ 5, 10, 18] 

It is expected that every new generation after reproduction gives better solution than 

previous solutions and successive generations improves the solution which saturates after 

certain generations. It is said to be the convergence of the solution. 

1.1.2 Genetic Operators 

Genetic algorithms have the following components 

Initial Population: Consisting of potential solution to the problem. 

Selection: the mechanism of selecting the parent for the reproduction. 

Fitness Function: Parents are selected according to their fitness value based on the 

fitness function. 

Crossover: mating between individuals, so that the parents may produce children. 

Mutation: the random alteration in genetic population. 

Reproduction: Generation of new offspring from old one. 

1.1.3 Effect of Operators 

The selection operator selects the better population from the old population and 

combined with crossover operator it produces better but sub-optimal solution. The 

combination of selection and crossover operator creates parallel hill climbing algorithms 

to solve the problem. The number of crossover mechanism has been suggested by the 

researchers. These have its own advantages and disadvantages depending on the problem 
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to be solved. The current work is an attempt to evaluate the various crossover operators 

for the task partitioning problem of parallel/distributed system. 

1.2 Parallel System 

The parallel systems have been developed with the intention of using multiprocessor for 

solving a single problem. Thus the objective is to explore the parallelism present in the 

job, design the modules accordingly and then to utilize the number of processors 

available in parallel system to execute the job. Parallel systems can theoretically multiply 

the computational power of a single processor by a large factor. To achieve maximum 

efficiency of these large systems the workload has to be distributed equally throughout 

the network. The uniform distribution of the load among the various processing nodes 

maximizes resource utilization and enhances the total throughput of the system. Ideally, 

the speed up expected from a parallel system consisting of "n" processor system is n. 

Though, due to practical implementation, this is never achieved. 

Parallel system is single computer with multiple processors which are used for executing 

more than one job/subjobs/instruction simultaneously. Execution of more than one 

process on parallel system is known as parallel processing. Parallel system is also 

referred as multiprocessor system. In parallel processing task is divided into number of 

modules (sub tasks) and is executed on the processors of the system. Some of the 

advantages of parallel processing are higher throughput, computation power and better 

price/performance ratio than a single-processor system. The parallel systems are 

classified into two main categories; General purpose and Special purpose computer 

systems. General purpose computer system is Pipeline computers, Asynchronous 

multiprocessors and Data flow computers. Special purpose computers are Synchronous 

multiprocessors (Array Processors), Systolic Array and Neural Network. 

1.3 Distributed System 

A Distributed System is an environment that provides a single system image with the 

distribution of the memory and the clock amongst the computing nodes of the DCS. To 
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explore distributed computing system, a task is divided in to the smaller components, 

called modules, so that they can execute concurrently and hence can utilize the system for 

parallel execution. It is similar to the parallel system with the difference that it is 

decentralized i.e. there is no central components. In distributed computing system, all 

processing nodes have different clock, and their own memory. Distributed computing 

system are scalable meaning thereby that it can be scaled up or down as per the 

requirement of the application to be executed on the DCS. The executable components, 

located on the nodes of the DCS, communicate and coordinate their actions by passing 

messages [1]. The advantages of the distributed system are information and resource 

sharing, higher reliability, higher throughput, shorter response time, extensibility etc. The 

performance of the distributed computing system is obviously better than the uni

processor system and generally measured in terms of the performance of execution of 

jobs. Due to rapid advances in VLSI technology and the increase in the development of 

distributed computing system, software for these systems became complicated due to the 

additional complexity. It is because of the existence of concurrency, communication, 

synchronization and non-determinism in its execution. 

A number of methods for developing distributed computing system software have been 

presented in the literature [ 1-4, 6]. These methods are classified into two categories. The 

first category involves a series of top-down decomposition and partitions of the 

distributed computing system software in order to derive a set of distributed software 

component [1-4]. However none of them provide efficient analysis technique for 

verification of generated distributed computing system software. The second category is 

bottom up oriented [6]. They may produce the whole distributed computing system 

software structure in a synthetic way which, under some limited synthesizing rules, 

guarantees a certain degree of correctness in the system behavior and properties. 

No matter which of the approach is used, the entire distributed computing system 

software development process is still similar to the central software development system. 

It may consist of successive phases: requirement analysis, design, implementation, testing 

and validation. This is not a straight forward process and feedback path do exist among 
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successive phases so that the previous steps can be repeated to eliminate effects or errors 

found in the latter phase. Most of these defects can be traced back to the requirement and 

design phase. As the size of the distributed computing system continue to grow, the 

relationship among concurrency, contention, synchronization and communication among 

all processes become more and more complicated. 

Based on the memory sharing, distributed computing system is classified of two types. 

1.3.1 Distributed Memory 

In Distributed Memory System, each processing node has own memory which is not 

shared by any other processing node. These nodes may interact with each other by 

message passing i.e. if any node requires any data stored on the memory of other node 

then the first node just sends a message to the second node about the data that it requires. 

In reply, the second node sends him the required information. The distributed memory 

organization is elaborated in Fig. 1.1. The performance of the distributed memory system 

depends on the communication link through which the message is transmitted. The 

distributed memory systems are becoming the architecture of choice for many 

supercomputer applications. The reason is that they are inherently scalable and provide 

reliability, inexpensive computing cycles compared with the traditional uni-processor or 

the shared memory multiprocessor supercomputer. 

Mem 1 Mem2 Mem3 MemN 

-. -. ~ ·I- . -. -. -. -. t ·1- . - . - . - . - . -I ~ . -. -. -. -. -. ~ ·I- . -. -.1 

Proc1 Proc 2 Proc3 ProcN 

J I J l II II 
I 

I 

Network i 
~--·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·· 

Fig. 1.1 Distributed Memory Systems 
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High speed 110 for the distributed memory machines is difficult because the entire 

system, including the architecture, software, programming models and applications have 

been designed to work in a distributed fashion and any form of serialization is avoided, if 

possible. The connection to the network, however, is inherently centralized and this 

creates problems in the following areas. 

1. Distribution of work over large number of relatively slow processing nodes is source 

of power of distributed memory machines but communication protocol processing does 

not parallelize well. 

2. The application will often have to manage multiple connections and this involves 

scheduling resources in both distributed memory system and on the network interface. 

This is a complicated task and there is a conflict between using general purpose solutions 

on one hand and providing mechanisms that are for the specific application on the other. 

3. The communication software has to perform scatter and gather operations to collect or 

distribute the data that makes up the data stream because data that is sent or received over 

the network is typically distributed over the private memories of the nodes. 

1.3.2 Distributed System Models 

The basic models of distributed system are [ 12, 13]: 

• Minicomputer Model- In minicomputer model of distributed system number of 

minicomputers are connected to a network, each with some terminals. 

• Workstation Model- Many work station are connected to network and make 

distributed system to useful when user uses remote workstation. 

• Workstation server Model- Its is very advantageous due to sharing of several 

servers like file server, printer server etc., 

• Processor Pool Model- Pool of processors connected to network. 

• Hybrid Model 
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1.4 Organization of the Thesis 

Second chapter of our dissertation describes Genetic Algorithm in detail. 

Third chapter gives the idea of Task Partitioning Problem, Task Preprocessing and the 

proposed work for our dissertation. 

Fourth chapter gives basic knowledge of three crossover operator PMX, OX and CX. 

Fifth chapter contains the experimental results and the conclusion. 
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Chapter 2 

Genetic Algorithms 

Scientists looked in other directions after their disillusion with classical and neo-classical 

attempts at modeling intelligence. Two main fields derived were connectionism (neural 

networking, parallel processing) and evolutionary computing. AI systems are mostly 

static. Most of the AI problems can usually solve only one given specific problem, since 

their architecture was designed for that specific problem. Thus, if the problem were to be 

changed, these systems could hardly adopt them. Even if it adopts so, it will be less 

efficient. Genetic algorithms (GA) came as the natural solution to such problems. [4, 5] 

2.1 Biological Inspiration of Genetic Algorithms 

Genetic algorithms are search methods mimicking the processes found in natural 

biological evolution. Evolution is the change in the inherited traits of a population from 

one generation to the next. In nature organisms such as animals or plants produce a 

number of offspring. These offspring are almost, but not entirely, like themselves. This 

variation may be due to sexual reproduction (offspring have some characteristics from 

each parent) or due to mutation (random changes). Some or more of these offspring may 

survive to produce offspring of their own. The better offspring are likely to survive and 

over the generations these become better and better. Genetic algorithms (GA) use the 

same process for evolution. Mostly Genetic algorithms (GA's) are used to solve 

optimization problems. It is based on the biological concept of "Natural Selection" and 

"Genetic Inheritance" which is given by Darwin in 1859. The word "Survival of the 

Fittest" best define this algorithm as given by Darwin. [3, 4, 5, 16, 17, 18] 
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2.1.1 Vocabulary of GA 

Most of the vocabulary of GA has been derived from genetic engineering. Gene is a 

symbol or bit in a string, the smallest unit of information and fundamental building 

blocks of chromosome. Each gene in a chromosome represents each variable to be 

optimized. A Chromosome is a string of genes, and an individual representing a 

candidate solution of the optimization problem. Genotype is entire combination of genes. 

The complete chromosome derives the solution of problem with the help of a particular 

chromosome (phenotype). Phenotype is an organism made by genotype which contains 

all the information and take part to generate fitness function. Population is the total 

number of chromosomes available for the test [ 4, 5]. 

2.2 Genetic Algorithms (GA) 

GA is developed by John Holland (1975) and his student DeJong (1975) at the University 

of Michigan, to understand the adaptive process of natural systems and to design artificial 

systems software that retains the robustness of natural systems. These algorithms search 

or operate on a given population of potential solutions to find those that approach close to 

the solution as per the given specification or criteria (fitness function).GA is beneficial 

where we have little knowledge about problem solving approach, mostly for NP-Hard 

problems (e.g. TSP).[5, 16] GA is a blend of exploitation and exploration. 

In simple genetic algorithms, randomly generated solution strings are formed into a 

population. These strings are generated using any method e.g. greedy. These strings 

represent a variety of solutions for a given problem. These solutions are typically 

encoded in some manner on the strings in some defined format. The strings are decoded 

and then evaluated according to a fitness function. Individuals are then selected to 

undergo reproduction to produce offspring (individuals for the next generation). Selection 

is done by assigning a higher probability of selection to those parents who are deemed to 

have higher fitness according to the fitness function. The process of reproduction consists 

of two operations. Firstly, selected solution strings are recombined using a recombination 
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operator, where two or more parent solution strings provide elements of their string to 

generate a new solution. Secondly mutation is applied to the offspring. The mutation 

operator affects only a small amount of the genetic material in the offspring solution 

strings. Following the generation of a complete population of offspring solution, the 

offspring population replaces the parent population. 

The flowchart for the simple GA is given in fig.2.1. 

No 

(~ _______ B_e~g-in ______ ~) 

Generate initial population 

Evaluate fitness function 

Reproduction Process 
Selection 
Crossover 
Mutation 

New generation 

Yes 

End 

Fig. 2.1 Genetic algorithm 
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The pseudo-code for simple GA is as follows: 

Simple GA () 

{ 

} 

Initialize population; 

Do{ 

} 

Perfonn Crossover and Mutation; 

Evaluate population; 

Reproduction; 

Unless the result converges 

2.2.1 Search Space 

If we are solving a problem, and are not sure about the best solution then will look for the 

solution, which is the best among others. The space of all feasible solutions is called 

search space (also state space). Each point in the search space represents one feasible 

solution. Each feasible solution can be "marked" by its value or fitness for the problem. 

GA maintains population of 'n' chromosomes with there fitness score. The parents are 

able to select their mate on the basis of their fitness score or any other things. In 

reproduction highly fit fitness score solutions are given more opportunity and they arrive 

to replace old one in population which is least fit among reproduced solution. [5, 10, 16] 

Thus search space in the solution space comprised of population. 

2.2.2 Genetic operators · 

There are three fundamental genetic operators selection, crossover and mutation. [5, 18] 

• Selection: Selection operation selects individuals for survival based on the 

probabilistic function of fitness. 
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• Crossover: Crossover operation combines two individuals to create new 

individuals for possible inclusion in next generation. 

• Mutation: Mutation operation does random changes m genetic population to 

produce offspring. 

Selection 

Selection is a procedure of picking best individuals from a pool of population based on 

their fitness function value to produce offspring. It is an important step in GA. Many 

different approaches for selection schemes have been proposed. One of them is Fitness

proportionate selection scheme with roulette-wheel method and mostly used in GA. In 

roulette-wheel method the chance of an individual's being selected is proportional to the 

amount by which its fitness is greater or less than its competitors' fitness. Each individual 

gets a slice of the wheel. More fit ones get larger slices than less fit ones. The wheel is 

then spun and an individual "owns" the section on which it lands. Suppose that there are 

four populations A, B, C and D having their fitness value 4, 6, 2 and 8 respectively. The 

roulette wheel for selection ofthese populations is as given in Fig.2.2. [3, 17] Obliviously 

D has the more probability to be chosen than A, B and C and this has wider allocation in 

wheel. 

Fig2.2 Roulette Wheel representation of Selection Operation 
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Crossover 

Crossover is a concept of genetics and has analogy of sexual reproduction. Crossover 

chooses two individuals and swap segments of their code (bit- value). It produces 

offspring that are combinations of their parents. Common forms of crossover are single

point crossover, two point crossover (also called multi point crossover) and uniform 

crossover. In single-point crossover one common site in the chromosomes is chosen 

randomly. Chromosomes of the parents are cut at that point and the resulting sub

chromosomes are swapped. [5, 10, 16, 18] 

Parent 1: 11000101 01011000 01101010 

Parent 2: 00100100 10111001 01111000 

Offspring 1: 11000101 01011001 01111000 

Offspring 2: 00100100 10111000 01101010 

Fig2.3 Single Point Crossover Operator 

In two-point crossover two bits are selected and the sub-string between the bits is 

swapped. In Uniform crossover each gene of the offspring is selected randomly from the 

corresponding genes of the parents. Single-point and two-point crossover produce two 

offspring, whilst uniform crossover produces only one. 

Mutation 

Mutation is asexual reproduction and it introduces randomness into population. This 

operator randomly flips or alters one or more bit values at randomly selected locations in 

a chromosome. Mutation generates low ranked children, which are eliminated in 

reproduction process. Sometimes however, the mutation may introduce a better 

individual with a new property into. This prevents process of reproduction from 

degeneration. 
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2.2.3 Fitness function 

Fitness function is evaluation function that determines what solutions are better than 

others. The purpose of fitness function is parent selection and a measure for convergence. 

Fitness function is the most critical part of a GA next to coding. In any optimization 

problem the fitness is replaced by the objective function. The fitness is to be designed 

properly for the GA to be effective. 

2.2.4 Advantages of GA 

For any problem when the search space is very big the straight forward algorithms 

becomes more exhaustive. GA comes into effect to solve such problems. The solution 

obtained using GA are close to the optimal solution. The other advantages are: 

• Only primitive procedures like "cut" and "exchange" of strings are used for 

generating new genes from old, it is easy to handle large problems simply by 

using long strings. 

• only values of the objective function for optimization are used to select genes, this 

algorithm can be robustly applied to problems with any kinds of objective 

functions, such as nonlinear, indifferentiable, or step functions. 

• The genetic operations are performed at random and also include mutation; it is 

possible to avoid being trapped by local-optima. 

15 



Chapter 3 

Task Partitioning Problem 

Genetic algorithms are quite often used successfully to solve the NP-complete, NP-hard 

problems of combinatorial optimization. Task partitioning problem of 

Parallel/Distributed Systems is also falls in the same category so GA has been used to 

solve such problems. Implementation of any algorithm in parallel/distributed 

environment, if cleverly done, accelerates calculations considerably and makes it possible 

to solve large instances of the problem relatively fast. Given a task to be executed on 

parallel/distributed system requires partitioning of the task into number of modules (sub

tasks). It is done so, as not the task as a whole, rather the modules of the task becomes the 

execution entity. This is called the task partitioning and is the pre-processing step of the 

task allocation problem. [6, 7, 28] 

3.1 Task Preprocessing 

Task preprocessing is a method to analyze the task for its possible mapping to the 

processing nodes of the parallel/distributed system and specify an order to follow to 

execute these tasks in a synchronized manner. Preparation of the raw data for taking 

further decision is known as task preprocessing. There are many approaches to 

preprocess data. Task preprocessing is required to extract the information before 

allocating a task on parallel/distributed system. The extracted information helps to take 

further decision for allocation. Preprocessing can be performed at compile time or/and at 

run time. [2, 23] 

In compile time preprocessing, the analysis and information extraction is done at compile 

time. The information that is supplied by the program is extracted at compile time. In 

runtime preprocessing approach two steps are involved. First to analyze the data, 

optimize it, and generate information for the second step. In second step actual 

computation is performed. Further, there are four phases in preprocessing. It is sensing, 

recognition, decision, and acting. [8] 
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3.2 Task Partitioning 

Decomposition, mapping and tuning is three required steps to program execution in 

parallel/distributed computing system. Partitioning or decomposition is the first step 

towards designing a parallel program. This requires breaking the problem into discrete 

chunks of work that can be distributed on multiple processors. There are several ways to 

decompose/partition a computational task into parallel tasks. [6, 7] 

3.2.1 Perfect Decomposition 

In perfect decomposition, the task is divided into number of sub-tasks (modules) and 

these modules either do not require a communication or a little communication among 

each other. This is called perfect decomposition. Least amount of effort is required for 

this type of decomposition. Perfect decomposition can not be applied when dependency 

between processes exist. The n composition is a good example of a perfect decomposition 

in which only the partial sums need to be communicated. [7] 

3.2.2 Domain decomposition 

The main feature of domain decomposition is regularity of data structure. In this type of 

decomposition data associated with a problem is decomposed. Each parallel task then 

works on a portion of data. Normally the domain decomposition is applied when the 

domain and data contingent are non-regular. Static data structure, for example, matrix 

factorization for solving a large finite difference problem on a system with a regular 

network topology. Dynamic data structure tied to a single entity, for example, in a many 

body problem, subsets of bodies can be distributed to different nodes. [7, 28] 

Three major steps are specified below to decompose the domain of a given applications. 

• At various nodes sub domain of data are distributed. 

• Restrict the computation so that each node updates its own sub domains of 

data. 

• Put the communication in node programs. 
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3.2.3 Control decomposition 

When the domain of data is not suitable for domain decomposition and irregular behavior 

of data structure and domain is found, then control decomposition is used. Control 

decomposition technique is used for artificial intelligence and symbolic processing 

problem. Computation and data structure is the key for the control decomposition. Due to 

dependency on data structure and computation, interface between different functional 

modules is needed. Functional decomposition and Manager-worker approach are two 

famous strategies for control decomposition. [7, 28] 

In functional decomposition approach, the focus is on the computation rather than on 

the data manipulated by the computation. The problem is decomposed according to the 

work (computation) that must be done. Each task then performs a portion of the overall 

work. This strategy for control decomposition works well on those problems which can 

be split into different task. This method is used in signal processing, climate modeling 

and eco-system modeling. [28] 

In Manager-worker approach, divide and conquer method is applied. In this approach 

the task partitioning problem is divided into different size subtask. Among these subtasks 

one of the subtasks plays the role of a manager and others as workers. The manager is 

responsible for dispatching the modules to the workers. [28] 

The current work uses the functional decomposition approach for a given task graph in 

the task partitioning problem. Regrouping of modules will be done with genetic crossover 

operators to minimize the differences among the group execution time sums. [28] 

3.1 The Model 

In the proposed problem, we consider the n modules of a task; each represented by a 

distinct integer number from the range {I, 2, ---- n}. These modules are partitioned into k 

groups of equal or unequal length. Length indicates the number of modules in a group. 

The idea, borrowed from the traveling salesman problem (TSP), is applied. Three types 

of genetic crossover operator PMX (Partially Matched Crossover), OX (Order Crossover) 
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and CX (Cycle Crossover) are applied. PMX is most suited crossover for this type of 

problem although order crossover (OX) and cycle crossover (CX) are also applied. 

The Evaluation function is defined as follows [28]. 

Let us assume that there are 'm' modules in a group and ej is the execution time of jth 

modules. Si is the sum of the execution time of this ith group then 

m 

S i = L e J 
j = I 

Difference in sum of the execution times of ith and jth group is 

Where i= 1, 2, -----------k 

And j = 1' 2, 3--------k - j 

These differences should approach to zero. The reason is that when the Dij will be 

approaching to zero all the groups will be of equal load in terms of time. The there 

crossover operators are applied until the evaluation function reaches almost to zero. The 

problem is given in the form of a task graph which consists of modules. Task graph is a 

kind of enumeration which represents control flow of a program. In the task graph, the 

flow of control is represented by directed edges. 

For example in figure 3.1 a task graph is given consisting of nine modules. If we form 

three groups of the given task graph, it will consists of { 1, 2, 5, 8}, {3, 6, 9} and { 4, 7}. If 

we assume the execution times of these modules to be uniform and unit then the sum of 

the execution times of the groups will be 4, 3 and 2 respectively. Though, in practice, 

these times will not be uniform and that is where the possibility of applying GA for this 

partitioning problem is. 

19 



Fig. 3.1 Task Graph 

The initial population may be formed randomly for the task graph. Then the GA will be 

applied for making Dij to approach to zero. There crossover operators, mentioned in the 

next chapter, will be used individually on same problem and the study will be made on 

the three crossover operators. 

We will perform the experiment with various sets of data (i.e. task graph) to reach to a 

conclusion. 
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Chapter 4 

Comparative Study of the Crossover operators 

My experiments compared the following permutation crossover operators: Partially 

Matched Crossover (PMX) [16], Order Crossover (OX) [16], and Cycle Crossover (CX) 

[16] over the task partitioning problem of Distributed system. We have tested 

effectiveness of these operators on task partitioning. 

Below are these operators in general. 

4.1 PMX- Partially Mapped Crossover 

Goldberg and Lingle in 1985 proposed the partially mapped crossover (PMX) operator. 

[16, 18] This operator is designed to work with a path representation and is devised to 

prevent repetition of values in the offspring. This is done by mapping a portion of one 

parent on to the portion of the other parent. Following this any remaining information is 

exchanged. 

PMX first selects two random crossover points in the parent; these crossover points 

define the matching section. The corresponding crossover points are then reproduced on 

the second parent. For example, in fig. 4.1 depicting PMX, crossover points are selected 

between the third and fourth, and between the sixth and seventh elements in the parents. 

The first step is to define the mappings for PMX, in this case 5 ~ 2, 6 ~ 4 and 7 ~ 8. 

Following this the second step is to exchange substrings between the two crossover 

points in each parent to opposite offspring (i.e. parent 1 to offspring 2 and parent 2 to 

offspring 1 ). TH- t G t ~1 

Pl = (0 8 415 6 7 11 2 3 9) 
P2 = (6 7 1 12 4 8 I 3 5 9 0) 

01 = (x x x I 2 4 8 I x x x x) 
02 = (x x x 15 6 7 I x x x x) 

Fig- 4.1 PMX example-Crossover points 
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To complete the offspring, step 3 requires that the offspring be filled. The ith offspring 

(where i = 1,2 ) being filled with the remaining elements from parent i. In this case the 

first element in offspring 1 will be 0. The second would be 8; however this is already 

present in the offspring string and as a result will be replaced according to the mapping 

defined above, 7 ~ 8 (see Fig - 4.2). 

P1 = (0 8 4 I 5 6 7 11 2 3 9) 

P2 = (6 7 1 12 4 8 13 5 9 0) 

01 = (0 8 412 4 8 11 2 3 9) 

02 = (6 7 1 15 6 7 1 3 s 9 o) 

Fig - 4.2 PMX- filling offspring 

This process of inserting an element, checking the validity of the string and correcting 

offending elements through the mappings that were defined is repeated until the offspring 

are completely filled. This produces offspring that have no replicated elements (see Fig-

4.3). PMX is a very popular crossover technique for problems that have validity 

constraints. It has been applied extensively to the traveling salesman problem (TSP). 

01 = (0 7 6 2 4 8 1 5 3 9) 

02 = (4 8 1 56 7 3 2 9 0) 

Fig- 4.3 Completed offspring produced by PMX 
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4.1.1 PMX Algorithm 

The algorithm for PMX operation is as follows. 

1. Start with initial population. 

2. Select two crossover points randomly. 

3. Replace bits with blank spaces which do not reside between crossover points. 

4. Swap the bits of offspring between crossover points. 

5. Fill the blank spaces created in step 3 with the help of initial population offspring 

(parent) with no conflict. 

6. Fill remaining blank spaces with exchange operation. 

7. Find new population. 

4.2 OX- Order Crossover 

The Order Crossover was devised by Davis in 1985. [16] This operator starts in a similar 

fashion as PMX. Start with previous example taken to illustrate PMX. Initially two 

random crossover points are selected. In the above case these are after position 3 and 6. 

The substrings are selected, and then copied to the offspring as in the example (Fig. 4.4) 

Pl = (0 8 4 15 6 7 II 2 3 9) 

P2 = (6 7 1 12 4 8 13 5 9 0) 

01 = (x x x 12 4 8 I x x x x) 

02 = (x x x 15 6 7 I x x x x) 

Fig- 4.4 OX crossover points 

The process starts at the position just after the last crossover point (in this case position 

?).Order crossover uses a sliding motion to fill the holes left by swap operation. The 

remaining positions in offspring are determined as, for offspring 2 remaining order is 

determined by parent 2. Nonduplicative bits are copied from parent 2 to the offspring 2 

beginning at the position following the second cross point. Both the parent 2 and the 

offspring 2 are traversed circularly from that point. A copy of the parent's next 
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nonduplicative bit is placed in the next available child position [18].The string after 

second cross point in parent 2 would provide 3 without any confliction and copy 3 to 

offspring 2 at position 7. The next bit in order for parent 2 is 5 but it is already present in 

offspring 2 so this bit is skipped and the bit in the next position is taken. The bit 9, 0 do 

not have confliction so copied these in position 8, 9 respectively in offspring 2. 

Traversing parent 2 circularly, the bits (6, 7, 1, 2, 4, 8), skipping 6, 7 because these are 

present in offspring 2 at position 5, 6 so we left with bits (1, 2, 4, 8), copied these to 

offspring 2 at position 10, 1, 2, 3 respectively. Offspring 1 is completed in a similar way 

based on the order of bits in parent 1. 

01 = (5 6 7 12 4 8 11 3 9 0) 

02 = (2 4 815 6 713 9 0 1) 

Fig- 4.5 Completed offspring produced by OX 

Where PMX preserves the absolute position of a bit within strings, OX preserves the 

order of bits in the permutation. 

4.2.1 OX Algorithm 

The OX algorithm can be listed as follows. 

1. Take parent Pl and P2 as initial population. 

2. Select two crossover points randomly. 

3. Swap the substring between crossover points and leave other positions blank. 

4. Start with last crossover point of parent P2 and copy nonduplicative bits in 

offspring 02 in same order as P2. 

5. If confliction (bits already present in offspring after swapping) 

Then discard that bits and traverse next bit circularly in P2 and copy non conflicting 

bit next position in offspring preserving the order. 

6. Do step 4 and 5 until all blank spaces filled in offspring. 

7. For second offspring start with last crossover point ofPl and do step 4 to 6. 
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4.3 CX - Cycle Crossover 

The cycle crossover operator CX was developed by Oliver and Holland in 1987. [ 16] It is 

designed so that two conditions are satisfied. First every element position in an offspring 

retains a value that has a corresponding position in a parent; and second the offspring 

must be a permutation. With these two conditions, CX cycles through both the parents 

selecting elements to be placed in the offspring. Consider the following example: 

P1 = (0 8 4 5 6 7 1 2 3 9) 

P2 = (6 7 1 2 4 8 3 5 9 0) 

From the conditions outlined above, the first element in the offspring must either be 0 or 

6 (the left most element in parent 1 and 2) selected at random. Let us select 0 for this 

example. We start from the first position of offspring 1. 

01 = (0 X X X X X X X X X) 

02 = (x X X X X X X X X X ) 

Then offspring 2 may only have a 6 in the first position, because we do not want new 

values to be introduced there. 

01 = (0 X X X X X X X X X) 

02 = ( 6 X X X X X X X X X ) 

Since 6 is already fixed for offspring 2 now, we have to keep it in the same position for 

offspring 1 in order to guarantee that no new position for the 6 are introduced. We have 

to keep the 4 in the fifth position of offspring 2 automatically for the same reason. 

Q} = (0 X X X 6 X X X X X) 

02 = ( 6 X X X 4 X X X X X ) 
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This algorithm is continued, and results in the selection of bits 4, 1, 3 and 9. The cycle 

finally terminates in this example when bit 9 is selected from parent 1 and the 

corresponding parent 2 bit is 0, which is already present in the offspring i.e. we have 

completed a cycle. 

01 = (0 X 4 X 6 X 1 X 3 9) 

02 = (6 X 1 X 4 X 3 X 9 0) 

This completes our first cycle. For the second cycle, we can start with a value from parent 

2 and insert it into offspring 1. 

01 = (0 X 4 X 6 X 1 X 3 9) 

02 = (6 X 1 X 4 X 3 X 9 0) 

After applying same algorithm to detect a cycle, we end up with the following. 

01 = (0 7 4 X 6 8 1 X 3 9) 

02 = (6 8 1 X 4 7 3 X 9 0) 

This is our second cycle. For next cycle, we can start with parent I. Starting with 5 and 

applying same algorithm we end up with the following. 

OI = (0 7 4 5 6 8 1 2 3 9) 

02 = (6 8 I 2 4 7 3 5 9 0) 

This is our third cycle and no positions are left, so we end up with our final offspring's. 

In the previous example only three cycles are required to complete the offspring. The ex 
operator, like the OX operator, retains the relative ordering information of the alleles. Of 

the three operators, ex and OX were found to be least disruptive from the point of view 

of relative ordering. [ 16] 
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4.3.1 CX Algorithm 

1. Take parent Pl and P2 as initial population. 

2. Make a cycle of bits from Pl in the following way. 

(a) Start with the first bit of Pl. 

(b) Look at the bit at the same position in P2. 

(c) Go to the position with the same bit in Pl. 

(d) Add this allele to the cycle. 

(e) Repeat step (b) through (d) until you arrive at the first bit of Pl. 

3. Put the bits of the cycle in the first child on the positions they have in the first parent. 

4. Take next cycle from second parent. 

5. Repeat the process (2) to (4) unless all the bits are filled in both the strings. 
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Chapter 5 

Experimental Observation & Conclusion 

The task partitioning problem in Parallel/Distributed System is very important problem 

for the scheduling aspect of these systems. We have evaluated the three genetic crossover 

operators, as mentioned in the chapter 4, with respect to the task partitioning problem. 

We have compared the performance of these operators over the task partitioning problem. 

We have taken the varying parent size population and applied three crossover operators, 

Cycle Crossover (CX), Partially Matched Crossover (PMX) and Order Crossover (OX) 

one by one to compare the execution time they take for producing the offspring. 

Let us consider a population of two Pl and P2 as given below. It consists of 10 modules 

as numbered, i.e. it is a population of size 10. 

P1 = (0 8 4 !5 6 7 !1 2 3 9) 
P2 = (6 7 1 !2 4 8 !3 59 0) 

The vertical line " I "indicates the initial grouping of the modules. We will apply the 

genetic algorithm after this. The three crossover operators of GA, used in the study to 

explain the research, give diverse explanation with respect to the size of the population of 

the parents. They offer different characteristic for the efficiency of the GA. The 

experiment chosen to show my observation is using the three different operators to 

understand the difference in the execution time in which they produce their results. We 

first applied PMX operator to find the grouping. We also calculated the time taken when 

using PMX. Thereafter, we applied OX operator for the grouping of the modules. We 

then applied CX operator. We obtained the time taken in each case. 

We designed the experiment with varying size of the population. To start with we took 

the minimum number of parent size ten and increased the parent size in each successive 

experiment. We tested against all the operators. The execution times of the modules have 
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been generated randomly and are in the range of depending on the number of modules in 

that task. Note that in all the experiment, our fitness function is the same which equalizes 

the load between the different groups of the modules. 

As we get our first set of results, we would increase our parent size to forty, the results 

under this observation differs from the earlier observation. The ex under this parameter 

gives the execution time of one hundred fifty while PMX takes two hundred twenty two 

and OX shorten to one hundred and fifty nine. This shows that there is no linearity in the 

results of the three operators as they wary with the parent size. 

In another observation about while increasing the parent size to eighty the results show 

much different than the earlier observations. The ex here gives much different count 

reducing down to one hundred sixteen which actually less than result under the parent 

size of forty. Even with the operator PMX the execution time with eighty has slightly 

increase by eight compared to the parent size of forty, taking only two hundred thirty one 

to complete the execution. While the operator OX this time increases by seven rather than 

decreasing in the execution time by taking one hundred sixty six. This proves that there is 

no fixed time for execution according to the operators; they vary according to the size of 

parent and the offspring. 

In further experiment observation of the execution time for the offspring under the three 

different operators under different conditions, with increase in the parent size the operator 

gives different calculations of execution time. They don't actually increase their 

execution time but it varies with the size in many cases they increase with a small 

increase but in some cases they decrease in the execution time as given in the table. Thus 

we can say that there is no fixed execution time for the operators considering the parent 

size. All these observations are shown in the table 1. 
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Table 1 Three Crossover operators 

Parent Size Time taken in msec. 

ex PMX ox 
10 86 152 194 
40 150 222 159 
80 116 231 166 
150 156 239 196 
200 134 179 139 
500 112 131 141 
600 131 162 159 
800 159 181 191 

1000 121 140 149 

The graph for the three operators has been plotted as shown in Fig. 5.1. On the X-axis, 

we represent the size of the parent and on the y-axis the execution time taken by the 

program using different operators have been shown. 
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5.1 Observations 

The obvious from the table and the graph is that OX operator performs better than the 

PMX operator for the smaller population sizes. For the bigger population size, both the 

OX and PMX performs neck to neck. 

ex operator outperforms both the OX and PMX operator. It is evident from the graph 

that at no point of time the curve for the ex operator goes above the OX or the PMX. 

Thus a conclusion can be derived that out of three crossover operators, the performance 

of ex operator is best. 

Graph in Fig. 5.1 represents observation for all the three PMX, OX and ex operators. X

axis represent parent size i.e. the number of modules in the task and Y -axis represent the 

time taken by the algorithm using PMX, OX and ex operators respectively. We 

conducted the experiment initially for less numbers of modules and the performance was 

same for PMX and OX. Increasing the number of modules, OX started performing better 

than PMX. But both became same when it reached to the number of modules in the range 

of 300 and above. ex was much better than both PMX and OX since beginning. 

It should be kept in mind that this performance is for the task partitioning problem in 

Parallel/Distributed System. The performance may vary for any other problem which is 

to be solved using GA. However, the conclusion can be drawn that ex performs better 

than other two crossover operators. 

5.2 Conclusion 

The work conducted towards the dissertation comprised of partitioning the task into 

modules and then grouping these modules. The groupings of these modules are done so 

that load (cumulative modules) is uniform. This is done by minimizing the difference 

between the total times taken by each group. It is obvious that the result is better when 

the number of module in the task is very large. The performance of PMX operator and 
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OX operator are almost same when the number of modules in the task is very large. 

However, OX operator performs better for the modules in the range of 30 to 300. Both 

provide a better task sequence for execution in multiprocessor and multi-computer 

system. Applying ex (circular crossover) operator on the same problem solution refmes 

drastically. ex outperforms than PMX and OX operators. This particular observation of 

execution of task modules in parallel and distributed system provides an insight for the 

development of a better task partitioning module in the task scheduler for a parallel and 

distributed computing environment. 

We observe task partitioning and its execution in parallel/distributed system. The 

proposed work is based on the decomposition and the execution of task in 

parallel/distributed system. Our plan is to observe the behavior of these operators for 

many more problems before it can be established that CX is better than PMX and OX. 
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Annexure 

Program of the comparison of three Genetic Crossover Operators for Task 

Partitioning Problem in "C" 

#include<stdio.h> 
#include<stdlib.h> 
#include<time.h> 

/*HEADER FILES*/ 

struct parent /*STRUCTURE FOR TEMPORARY PARENT 2*/ 
{ 
int info; 
struct parent *p _next; 
}; 

typedef struct parent p _node; 

struct index /*STRUCTURE FOR TEMPORARY PARENT 1 */ 
{ 
int pno; 
struct parent *i _p _next; 
struct index *i_ next; 
}; 

typedef struct index i_ node; 
i_node *startl=NVLL; 

struct parent2 
{ 
int gene2; 
struct parent2 *next2; 
} ; 

typedef struct parent2 node2; 

struct parentl /*STRUCTURE TO REPRESENT FIRST PARENT*/ 
{ 
intgene1; 
int flag; 
struct parent 1 *next 1 ; ' 
node2 *link; 
} ; 

typedef struct parent I nodel; 

nodel *start=NULL; /*START POINTER FOR LINK LIST*/ 

struct data /*STRUCTURE FOR LINK LIST FOR OX OPERATOR*/ 
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{ 
int t; 
struct data *d _next; 
}; 

typedef struct data d _node; 

d_node *d_startl=NULL; 

d_node *d_start2=NULL; /*LINK LIST HEADER FOR OX OPERATOR*/ 

d _node *m, *n, *x, *y; 

static double time_ co=O,time __pmx=O,time _ ox=O; /*GLOBAL VARIABLES FOR TIME*/ 

void node_ delete( d _node*); 
FUNCTION*/ 

/*OX OPERATOR SUPPORT NODE DELETION 

void display!();/* FUNCTION TO DISPLAY THE PARENTS*/ 

void galgo(); /*FUNCTION TO CYCLE CROSSOVER WITHOUT SWAPPING*/ 

void galgoswap(); /*FUNCTION TO CYCLE CROSSOVER WITH SWAPPING*/ 

void delete_list(); /*DELEATING LINK LIST NODES*/ 

float crossover(p _node* ,p _node*); /*CYCLE CROSSOVER FUNCTION*/ 

float pmx(p_node*,p_node*); /*PMX FUNCTION*/ 

float ox(p_node*,p_node*); /*OX FUNCTION*/ 

void create(int,int,int); /*PEREMANT PARENT'S MAPPING FUNCTION*/ 

void display(); /*DISPLAY THE PARENTS*/ 

void main() 
{ 
int pno,size,ch; 
float pmxt,oxt,cxt; /*V ARIABE DECLARATION*/ 
i_node *p,*q; 

clrscr(); 
/*MENU PRINTING CODE*/ 

printf("\n\n PRESS (1) MANUAL PARENT GENERATION"); 
printf("\n (2) AUTOMATED PARENT GENERATION"); 

printf("\n\n ENTER YOUR CHOICE:"); 
scanf("%d",&ch); 

if(ch==l /1 ch==2) 
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{ 
printf("\n\n ENTER NO OF PARENTS:"); /*PARENT NUMBER ENTRY*/ 
scanf("%d",&pno); 

printf("\n\n ENTER PARENT SIZE(MAX 1000):"); /*PARENT SIZE ENTRY*/ 
scanf("%d" ,&size); 
} 

create(pno,size,ch); /*MAPPING PARENTS*/ 

for(p=startl ;p!=NULL;p=p->i_ next) 

} 

for( q=p->i _ next;q !=NULL;q=q->i _next) 
{ 

printf("\n\n OPERATING ON PARENT(%d) & PARENT(%d)",p->pno,q->pno); 
cxt=crossover(p->i_p _ next,q->i_p _next); 
pmxt=pmx(p->i _p _ next,q->i _p _next); /*CALLING DIFFRENT OPERA TORS*/ 
oxt=ox(p->i_p _ next,q->i_p _next); 
clrscr(); 

printf( "\n \n \n "); 
printf("\n\n\t\t OPERATING ON PARENT(%d) & PARENT(%d)",p->pno,q->pno); 
printf("\n\n\n\t------------BEST MODULE TIME COMP ARASION-----------"); 
printf("\n \n \t ------------TIME COMPLEXTITY IN MILLISECOND---------"); 
printf("\n\n\t PARENTS SIZE: %d NUMBER OF PARENTS: %d\n",size,pno); 
prin tf( "\n \ t ----------------------------------------------------"); 
printf("\n\t OPERATINON TIME "); 
printf( "\n \t ----------------------------------------------------"); 
printf("\n\n\t CYCLE CROSSOVER %f ",time_co); 
printf("\n\n\t PMX %f ",time _pmx); 
printf("\n\n\t OX %f ",time_ox); 
printf( "\n \t ----------------------------------------------------"); 

printf("\n\n\n"); 
printf("\n\n\t\t OPERATING ON PARENT(%d) & PARENT(%d)",p->pno,q->pno); 
printf("\n \n \n \t --------------TOTAL EXECUTION TIME-----------------"); 
printf("\n \n \t ------------TIME COMPLEXTITY IN MILLISECOND---------"); 
printf("\n\n\t PARENTS SIZE: %d NUMBER OF PARENTS: %d\n",size,pno); 
printf( "\n \t ----------------------------------------------------"); 
printf("\n\t OPERATINON TIME "); 
printf( "\n \t ----------------------------------------------------"); 
printf("\n\n\t CYCLE CROSSOVER %f ",ext); 
printf("\n\n\t PMX %f ",pmxt); 
printf("\n\n\t OX %f ",oxt); 
printf( "\n \t ---------------------------------------------------- ''); 
getch(); 

} 
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void create(int pno,int size,int ch) 
{ 
int arr[ 1 OOO],i,j,k,pp; 
i_node *p,*q; 
p _node *r, *s; 

for(i=O;i<pno;i++) 
{ 

if(ch=2) 
{ 
for(j=O;j<size;j++) 
arr[j ]=j + 1 ; 

for(j=O;j<size;j++) 
{ 
randomize(); 
k=(random( size )+j+ 1 +i+rand() )%size; 
if(j!=k) 

} 
} 

{ 
arr[j ]=arr[j ]+arr[k]; 
arr[k ]=arr[j]-arr[k ]; 
arr[j]=arr[j]-arr[k ]; 
} 

else if( ch= 1) 
{ 

else 

printf("\n\n ENTER %d PARENT",i+ 1); 
for(j=O;j<size;j++) 

} 

{ 

{ 
printf("\n %dELEMENT: ",j+1); 
scanf("%d",&pp); 
arr[j]=(int)pp; 
} 

printf("\n\n WRONG ENTRY!"); 
exit(1); 
} 

p=(i_ node*)malloc(sizeof(i_ node)); 
if(p==NULL) 

{ 
printf("\n\n MEMORY OVERFLOW"); 
exit(1); 
} 

if( start I ==NULL) 
start1=p; 
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else 
q->i _ next=p; 

p->i_next-=~L; 

p->pno=i+l; 
p->i_p _next= NULL; 
q=p; 

forU=O;j<size;j++) 
{ 

r=(p _ node*)malloc( sizeof(p _node)); 
if(r==~L) 

{ 
printf("\n\n MEMORY OVERFLOW"); 
exit(l ); 

} 
} 

} 

} 
if(p->i_p_next ~L) 

p->i _p _ next=r; 

r ->info=arr[j]; 
r->p_next=~L; 

ifU!=O) 
s->p _ next-=r; 

s=r; 

void display() 
{ 
i _node *p=start 1; 
p_node *r; 

while(p!=NULL) 
{ 

} 

r=p->i_p_next; 
printf("\n\n P ARENT(%d)\n" ,p->pno ); 
while(r!=~L) 

{ 
printf(" %d",r->info); 
r=r->p-_ next; 
} 

p=p->i _next; 
} 

float crossover(p _node *parentl ,p _node *parent2) 
{ 
int i=O,j=O,at-=O,x,xx; 
double ptime,mod time[50],xxx; 
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node1 *p,*q; 
node2 *r, *s; 
clock_t sta,en,st1,en1; 
time_t t; 

/*Creating Link List for Parents*/ 
i=O; 
while(parent1 !=NULL) 

{ 
if(i=O) 
{ 

} 

p=(node1 *)malloc(sizeof(node1 )); 
r=( node2 *)malloc( sizeof( node2) ); 
if(p==NULLIIr=-NULL) 
printf("\n MEMORY OVERFLOW"); 
else 

{ 
start=p; 
p->flag=O; 
p->gene1 =parent1->info; r->gene2=parent2->info; 
p->next1 =start; r->next2=NULL; 
p->link=r; 
q=p; s=r; 
} 

else 
{ 
p=(node1 *)malloc(sizeof(node1 )); 
r=(node2*)malloc(sizeof(node2)); 
if(p==NULLIIr==NULL) 

else 

} i++; 

printf("\n MEMORY OVERFLOW"); 

{ 
p->flag=O; 
p->gene 1 =parent1->info; r->gene2=parent2->info; 
p->nextl=start; r->next2=NULL; 
q->nextl=p; s->next2=r; 
p->link=r; 
q=p; s=r; 
} 

parent 1 =parent l·>p _next; 
parent2=parent2->p _next; 
} 

display!(); 

printf("\n \n---------------CY CLE CROSSOVER----------------------"); 
sta=clock(); 
i=l; 
whileU!=3) 
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{ 
for(p=start;p->nextl !=start;p=p->nextl) 

{ 
if(p->flag--0) 

{ 

I I prin tf( "\n ----------------------------------------------------"); 
i++; 
i=i%2; 
llprintf("\n Cycle: %d",tcount+l); 
switch(i) 

{ 
case 0: stl =clock(); 

gal go(); 
en 1 =clock(); 
mod_ time[ at++]=(( enl )-( stl )ICLK_ TCK); 
break; 

case 1: stl =clock(); 
galgoswap(); 
enl=clock(); 

} 

mod_ time[ at++]=( (en 1 )-( st 1 )ICLK _ TCK); 
break; 

I I pri n tf( "\n ----------------------------------------------------"); 

en=clock(); 
display!(); 

break; 
} 

} 
if(p->nextl ==start) 
j=3; 
} 

llprintf("\n\nTIME COMPLEXTITY IN MILLISECOND"); 
printf(''\n-----------------------------------------------------"); 
ptime=(double)((en)-(sta)ICLK_TCK); 
delete _list(); 

printf("\n\n------------TIME COMPLEXTITY IN MILLISECOND---------"); 
printf( "\n --------------------CYCLE CR 0 S SO VER -----------------"); 
printf("\n CYCLE'S TIME "); 
prin tf( "\n ---------------------------------------------------"); 
stl=99999; 
time_co=O; 
for(i=O;i<at;i++) 
for(j=i+ 1 ;j<at;j++) 
{ 
xxx=( double )mod _time[i]-mod _ time[j]; 
printf("\n %d CYCLE(%f) - %d CYCLE(%f) :%f 

",i+ l,mod _time[i],j+ 1 ,mod _time[j],xxx); 
if(stl>xxx) 
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} 

{ 
st1=xxx; 
x=i+1; 
xx=j+1; 
} 

printf("\n-----------------------------------------------------"); 
if( st 1 =99999) 
st1=0; 
time_ co=( double )st 1; 
printf("\n\n DEFERENCE IN EXECUTION TIME BETWEEN CYCLE'S %d & %d :%f 

II t" ) ms ,x,xx, 1me co ; 
getch(); 

retum(ptime ); 
} 

void display1() 
{ 
node 1 *p=start; 
printf("\n\n\n"); 
if( start== NULL) 
printf("\n EMPTY LINK LIST"); 
else 

p=start; 

{ 
printf("\n\n PARENTI: "); 
do 
{ 
printf(" %d",p->gene1); 
p=p->next 1; 
}while(p!=start); 
} 

if( start== NULL) 
printf("\n EMPTY LINK LIST"); 
else 

} 

{ 
printf("\n\n PARENf2: "); 
do 
{ 
printf(" %d",p->link->gene2); 
p=p->next 1; 
}while(p!=start); 
} 

void galgo() 
{ 
int child I ,child2; 
node I *p=start, *q; 
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while(p->flag!=O && p->next1 !=start) 
p=p->next 1; 

whil e(p->fl ag--O) 
{ 
p->flag=1; 
child2=p->link->gene2; 
for(q=p->next1;q->gene1 !=child2 && q!=p;q=q->next1); 
if( q->gene1 =child2) 

p=q; 

} 

void galgoswap() 
{ 
node 1 *p=start, *q; 
int item; 

while(p->flag!=O && p->next1 !=start) 
p---p->next 1; 

while(p->flag==O) 
{ 
p->flag=2; 
item=p->gene1; 
p->genel =p->link->gene2; 
p->link->gene2=item; 
for(q=p->next1;q->link->gene2!=item && q!=p;q=q->next1); 
if( q->Iink->gene2==item) 

p=q; 
} 

} 

void delete _list() 
{ 
node I *p=start, *q; 
printf( "\n \n \n "); 
if( start== NULL) 
printf("\n EMPTY LINK LIST"); 
else 

do 
{ 
free(p->link); 
q=p; 
p=p->next I; 
free(q); 
}while(p!=start); 

start= NULL; 
} 

float pmx(p _node *parent 1 ,p _node *parent2) 
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{ 
int i=O,j,up,low,hold,x,xx,at=O; 
double ptime,xxx,mod _time[ 50]; 
nodel *p,*q; 
node2 *r, *s; 
clock_t sta,en,stl,enl; 
time_t t; 

I* Creating Link List for Parents*/ 
i=O; 
while(parentl !=NULL) 

{ 
if(i=O) 
{ 

} 

p=(nodel *)malloc(sizeof(nodel)); 
r=(node2*)malloc(sizeof(node2)); 
if(p==NULLJir==NULL) 
printf(''\n MEMORY OVERFLOW"); 
else 

{ 
start=p; 
p->flag=++i; 
p->gene 1 =parent 1->info; r->gene2=parent2->info; 
p->next1 =start; r->next2=NULL; 
p->link=r; 
q=p; s=r; 
} 

else 
{ 
p=(node1 *)malloc(sizeof(node1)); 
r=(node2 *)malloc( sizeof(node2) ); 
if(p==NULLjjr==NULL) 

printf("\n MEMORY OVERFLOW"); 
else 

{ 
p->flag=++i; 
p->gene 1 =parent1->info; r->gene2=parent2->info; 
p->nextl=start; r->next2=NULL; 
q->next 1 =p; s->next2=r; 
p->link=r; 
q=p; s=r; 
} 

} 
parent 1 =parentl->p _next; 
parent2=parent2->p _next; 
} 

display!(); 

printf( "\n \n ---------------PMX ----------------------"); 
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printf("\n\n ENTER LOWER BOUND:"); 
scanf("%d",&low); 
printf("\n\n ENTER UPPER BOUND:"); 
scanf("%d" ,&up); 
i=l; 
sta=clock(); 
stl=clock(); 
p=start; 
while(p->flag<low && p->next1 !=start) 

p=p->next1; 

while(p->flag<=up && p->next1 !=start) 
{ 
p->gene1 =p->gene1 + p->link->gene2; 
p->link->gene2=p->gene1 - p->link->gene2; 
p->gene1 =p->gene1 - p->link->gene2; 
p=p->next1; 
} 

en1 =clock(); 
mod_ time[ at++]=(( enl )-(stl )/CLK _ TCK); 
st1 =clock(); 
p=start; 
while(p->flag<low && p->next1 !=start) 

p=p->nextl; 

while(p->flag<=up) 
{ 
if(i%2=1) 
hold=p->gene 1; 
else 
hold=p->link->gene2; 
q=p; 

while(q->flag<=up&& q->next1 !=start) 
q=q->nextl; 

while( q->flag<low II q->flag>up) 
{ 
if( q->gene1 ==hold) 
q->gene1 =p->link->gene2; 

if( q->link->gene2==hold) 
q->link->gene2=p->gene1; 
q=q->next 1; 
} 

if(i%2==0) 
p=p->next 1; 
i++; 
} 

en 1 =clock(); 
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mod_ time[ at++]=( (en 1 )-( st 1 )/CLK _ TCK); 
en=clock(); 
display1(); 
//printf("\n\nTIME COMPLEXTITY IN MILLISECOND"); 
printf( "\n \n ---------------------------------------------"); 
ptime=(( en)-(sta)/CLK _ TCK); 
delete _list(); 

printf("\n\n------------TIME COMPLEXTITY IN MILLISECOND---------"); 
prin tf( "\n ---------------------------PMX --------------~-----------"); 
printf("\n GROUP OF MODULES TIME "); 
printf( "\n ----------------------------------------------------"); 
st1=99999; 
time _pmx=O; 
for(i=O;i<at;i++) 
forU=i+ 1 ;j<at;j++) 
{ 
xxx=mod_time[i]-mod_time[j]; 
printf("\n %d GROUP(%£) - %d GROUP(%£) :%f 

",i+ 1 ,mod _time[i],j+ 1 ,mod_ time[j],xxx); 
if(st1>=xxx) 

{ 

} 

st1=xxx; 
x=i+1; 
xx=j+1; 
} 

printf( "\n -----------------------------------------------------"); 
if( st 1 ==99999) 
st1=0; 
time _pmx=st 1; 
printf("\n\n BEST PERFORMANCE MODULE GROUPS o/od & %d :%f 

ms" ,x,xx,time _pmx); 
getch(); 

retum(ptime ); 
} 

float ox(p _node *parent 1 ,p _node *parent2) 
{ 
int i=O,j,up,low,hold,bit,at=O,x1,xx; 
double ptime,xxx,mod _time[ 50], temp; 
nodel *p,*q; 
node2 *r, *s; 
clock_ t sta,en,stl ,en 1 ,st2,en2; 
time_tt; 

/*Creating Link List for Parents*/ 
i=O; 
while(parentl !=NULL) 
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{ 
if(i=O) 
{ 
p=(nodel *)malloc(sizeof(nodel )); 
r=( node2 *)malloc( sizeof( node2) ); 
if(p NULLIIr==NULL) 
printf("\n MEMORY OVERFLOW"); 
else 

} 
else 
{ 

{ 
start=p; 
p->flag=++i; 
p->gene 1 =parentl->info; r->gene2=parent2->info; 
p->nextl =start; r->next2=NULL; 
p->link=r; 
q=p; s=r; 
} 

p=(nodel *)malloc(sizeof(nodel )); 
r=(node2 *)malloc( sizeof(node2) ); 
if(p== NULLIIr==NULL) 

printf("\n MEMORY OVERFLOW"); 
else 

{ 
p->flag=++i; 
p->genel =parentl->info; r->gene2=parent2->info; 
p->nextl =start; r->next2=NULL; 
q->next 1 =p; s->next2=r; 
p->link=r; 
q=p; s=r; 
} 

} 
parent 1 =parent 1->p _next; 
parent2=parent2->p _next; 
} 

display!(); 

prin tf( "\n \n---------------0 X----------------------"); 
printf("\n\n ENTER LOWER BOUND:"); 
scanf("%d",&low); 
printf("\n\n ENTER UPPER BOUND:"); 
scanf("%d",&up); 
i=l; 
sta=clock(); 
stl=clock(); 
p=start; 
while(p->flag<=up && p->nextl !=start) 

p=p->next 1; 

49 



while(p->flag!=up) 
{ 
m=( d _ node*)malloc( sizeof( d _node)); 
x=( d _ node*)malloc( sizeof( d _node)); 
if(m--NULL II x==NULL) 

{ 
printf("\n\n MEMORY OVERFLOW"); 
exit(l ); 
} 

m->d _next= NULL; 
x->d next=NULL" 

- ' 
m->t=p->gene 1; 
x ->t=p->link ->gene2; 
if(d_startl==NULL) 

d startl=m· 
- ' 

else 
n->d _ next=m; 

if( d _ start2==NULL) 
d _ start2=x; 

else 
y->d _ next=x; 

y=x; 
n=m; 
p=p->next 1; 
} 
m=( d _node*)malloc( sizeof( d _node)); 
x=( d _ node*)malloc(sizeof( d _node)); 
if(m==NULL II x==NULL) 

{ 
printf("\n\n MEMORY OVERFLOW"); 
exit(l); 
} 

m->d _next= NULL; 
x->d _next= NULL; 
m->t=p->gene 1; 
x ->t=p->link ->gene2; 
if( d _ start1 ==NULL) 

d _start 1 =m; 
else 

n->d _ next=m; 
if( d _ start2== NULL) 

d _ start2=x; 
else 

st2=clock(); 
p=start; 

y->d _ next=x; 

while(p->flag<Jow && p->nextl !=start) 
p=p->next 1; 
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while(p->flag<=up && p->next1 !=start) 
{ 
p->gene1=p->gene1 + p->link->gene2; 
p->link->gene2=p->gene1 - p->link->gene2; 
p->gene 1 =p->gene 1 - p->link->gene2; 
p--p->next 1; 
} 

en2=clock(); 
temp=(( en2)-(st2)/CLK _ TCK); 
mod_ time[ at++ ]=temp; 
p=start; 
while(p->flag<low && p->nextl !=start) 

p=p->next 1; 

while(p->flag<=up) 
{ 
hold=p->gene 1; 
bit=p->link->gene2; 
m=d _ start1; 
while(m!=NULL) 

{ 
if( d _start 1->t==hold) 

{ 
d _ start1 =m->d _next; 
free(m); 
break; 
} 

if(m->d _ next->t==hold) 
{ 
node_delete(m); 
break; 
} 

m=m->d _next; 
} 

x=d _ start2; 
while(x!=NULL) 

{ 
if( d start2->t==bit) 

{ 
d _ start2=x->d _next; 
free(x); 
break; 
} 

if(x->d _ next->t==bit) 
{ 
node_ delete(x); 
break; 
} 

x=x ->d _next; 
} 
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p=p->next 1; 
} 

p=start; 
while(p->flag<=up) 

p=p->next 1; 

m=d _ start1; 
x=d _ start2; 
while(p->flag<lowl!p->flag>up) 

{ 
if(m!=NULL) 

p->gene1 =m->t; 
if(x!=NULL) 

p->link ->gene2=x ->t; 
m=m->d _next; 
x=x ->d _next; 
p=p->next 1; 
} 

en1 =clock(); 
mod_ time[ at++]=( ( en1 )-( st 1 )/CLK _ TCK)-temp; 
en=clock(); 
display1(); 
//printf("\n\nTIME COMPLEXTITY IN MILLISECOND"); 
printf( "\n \n --------------------------------------------"); 
ptime=(( en)-(sta)/CLK _ TCK); 
delete _list(); 

printf("\n\n------------TIME COMPLEXTITY IN MILLISECOND---------"); 
printf( "\n ----------------------------0 X--------------------------"); 
printf("\n GROUP OF MODULES TIME "); 
printf( "\n----------------------------------------------------"); 
st1=99999; 
time_ox=O; 
for( i=O;i <at;i++) 
for(j=i+ 1 ;j<at;j++) 
{ 
xxx=mod_time[i]-mod_time[j]; 
printf("\n %d GROUP(%f)- %d GROUP(%f) :%f 

",i+ 1 ,mod_ time[i],j+ 1 ,mod_ time[j],xxx); 
if( st 1 >xxx) 

{ 

} 

stl=xxx; 
x1=i+l; 
xx=j+l; 
} 

printf("\n-----------------------------------------------------''); 
time_ ox=st 1 ; 
printf("\n\n BEST PERFORMANCE CYCLE'S %d & %d :%fms",xl,xx,time_ox); 
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getch(); 

return(ptime ); 
} 

void node_ delete( d _node *n) 
{ 
d _node *m=n, *p; 
n=n->d _next; 
m->d _ next=n->d _next; 
free(n); 
} 
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