
Comparative study of qenetic Crossover

operators for eras~ CJ'artitioning CJlro6Cem

Dissertation submitted to the Jawaharlal Nehru University in partial fulfillment

of the requirement for the award of the degree of

MASTER OF TECHNOLOGY

IN

COMPUTER SCIENCE AND TECHNOLOGY

By

Sunil Kumar Bharti

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

JA WAHARLAL NEHRU UNIVERSITY

NE\V DELHI-110067, INDIA

2008

CERTIFICATE

This is to certify that this dissertation entitled "Comparative study of Genetic Crossover

Operators for Task Partitioning Problem" submitted by Mr. Sunil Kumar Bharti, to the

School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, for the

award of degree of MASTER OF TECHNOLOGY, is a bonafide work carried out under my

supervision.

ThiS. study pertaining in this dissertation is original and has not been submitted, in part or in full,

to any other University or Institution for the award of any other degree .

.. ~~~0~
Prof. Parimala N.

(Dean of School of Computer and
Systems Sciences, JNU)

Dr. D.P. Vidyarthi

(Supervisor)

DECLARATION

This is to certify that the dissertation titled "Comparative Study of Genetic Crossover

Operators for Task Partitioning Problem", which is being submitted to the School of

Computer & System Sciences, Jawaharlal Nehru University, New Delhi, in partial fulfillment

of the requirements for the award of Master of Technology in Computer Science &

Technology is a bonafide work carried out by me. This research work has been carried out the

under the supervision of Dr. D.P. Vidyarthi.

This research work is original and has not been submitted, in part or in full, to any other

University or Institution for the award of any other degree.

SUNIL KUMAR BHARTI
M.Tech, SC & SS, JNU,

New Delhi- 110067.

In Lcnrino !Memory ,I}

of my fatlier aruf eftfer 6rotlier

ACKNOWLEDGEMENTS

First and foremost, with great pleasure and sense of obligation, I express my heartfelt

gratitude to my supervisor, Dr. D. P. Vidyarthi, who gave me valuable guidance and

support. I would also like to express my great thanks for h.£ unlimited help and ht£

support, for insightful discussion on the ideas of this dissertation. I am also grateful for

h*' wisdom, understanding, and suggestions throughout the course of this study. Working

under hes guidance has always been a fruitful and unforgotten experience which is very

much valuable gift to flourish my incoming life.

With a blend of gratitude, delight and gratification, I convey my indebtness to all those

who have directly or indirectly contributed to the successfully completion of my

dissertation.

I owe my heartfelt gratitude to Prof. Parimala N., Dean, School of Computer & System

Sciences, Jawaharlal Nehru University, New Delhi, for his kind and active cooperation

during the course of study. I would also like to express my gratefulness to the entire

faculty and staff of SC&SS for their cooperation during the course of study.

I am thankful to my parents, without whose blessing and support it would not possible to

complete this work. I also extend my thanks to all of my classmate and my senior Mr.

Arun and my room partner Mr. Deepak S. Nikarthil for their warmth, care and morale

support.

(Sunil Kumar Bharti)

ABSTRACT

Genetic algorithm (GA) is highly used for solving optimization problem for which no

straight forward solution exists. GA is based on the evolutionary ideas of natural

selection and genetics. It is an adaptive heuristic search algorithm. GAs mimics the

principle of the "survival of the fittest" among individuals over successive generation

towards solving a given problem.

Genetic algorithm consists of few operators e.g. selection, crossover and mutation. Of

these crossover operator is used for mating and reproduction and therefore is very

important operator. Three types of crossover operators, discussed in the literature, are

Partial Matched Crossover (PMX) Ordered Crossover (OX) and Cycle Crossover (CX).

Parallel/distributed system allows the concurrent execution of tasks. Execution scenario

in both Parallel and Distributed system are almost similar. The difference between these

systems lies in sharing. A parallel system also called a multiprocessor system has a

shared memory and clock whereas in a distributed systems memory and the clock is

distributed. Though it is a collection of autonomous computer it gives the appearance of

single system. The main advantages of theses systems are resource sharing, openness,

higher throughput and shorter response time, etc.

Task scheduling in parallel/distributed system is comprised of two steps: partitioning the

task into sub-tasks (modules) and allocating these sub-tasks onto different processing

nodes of the system. Both these steps are an NP-hard problem. Task partitioning is done

for grouping of the modules in a single entity. It is called Load. If the grouping is done in

a proper maimer, the load will be even and thus the allocation will also be stable.

In this dissertation, we have compared three crossover operators mentioned above on the

task partitioning problem. The grouping of the modules of the task in done in such a

manner that these groups of the task can be allocated in its entirety onto the processors of

the machine. This grouping will be done in such a manner so that the cumulative

11

execution time of the modules of the group approaches to same for all the groups. The

work tests the performance of the three crossover operators PMX, OX and CX for this

problem. The programs written for the dissertation has been implemented in C language.

First chapter is an introductory chapter which discusses the genetic algorithm, operators

used in GA, parallel and distributed system and models of distributed system.

Second chapter contains Genetic Algorithm in detail.

Third chapter discusses about the task partitioning problem ofParalleVdistributed system.

Fourths chapter elaborates the operators used in GA specially three Crossover operators.

As our study is based on these operators, we have emphasized on these operators.

Fifth chapter discusses the experiments performed, observations and the conclusion.

lll

List of Figures and Table

Figure 1.1 Distributed Memory Systems 6

Figure 2.1 Genetic Algorithm .. 11

Figure 2.2 Roulette Wheel representation of Selection Operation 13

Figure 2.3 Single Point Crossover Operator 14

Figure 3.1 Task Graph ... 20

Figure 4.1 PMX example-Crossover points 21

Figure 4.2 PMX-filling offspring .. 22

Figure 4.3 Completed offspring produced by-PMX 22

Figure 4.4 Order Crossover points ... 23

Figure 4.5 Completed offspring produced by-OX 24

Figure 5.1 Performances of Crossover Operators 30

Table 1 Three Crossover Operators .. 30

IV

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

List of Figures and Table

Chapter 1

Introduction

1.1 Genetic Algorithm

1.2

1.3

1.4

1.1.1

1.1.2

Search Space

Genetic Operators .. .

1.1.3 Effect of Operators .. .

Parallel System .. .

Distributed System

1.3.1

1.3.2

Distributed Memory

Distributed System Models

Organization of the Thesis .. .

Chapter 2

11

lV

1

1

3

3

3

4

4

5

7

8

Genetic Algorithms... 9

2.1 Biological Inspiration of Genetic Algorithms... 9

2.1.1 Vocabulary of GA.. 10

2.2 Genetic Algorithms (GA)...... 10

2.2.1 Search Space... 12

2.2.2 Genetic Operators... 12

2.2.3 Fitness Function... 13

2.2.4 Advantages of GA.................................... 14

Chapter 3

Task Partitioning Problem.. 15

3.1

3.2

Task Preprocessing

Task Partitioning .. .

3.2.1 Perfect Decomposition .. .

16

17

17

3.2.2 Domain Decomposition.. 17

3.2.3 Control Decomposition.. 18

3.3 The Model.. 18

Chapter 4

Comparative Study of Crossover Operators .. .

4.1 PMX-Partially Mapped Crossover

21

21

4.1.1 PMXAlgorithm... 23

4.2 OX-Order Crossover.. 23

4.2.1 OX Algorithm... 24

4.3 CX-Cycle Crossover.. 25

4.3.1 CX Algorithm... 27

Chapter 5

Experimental Observation & Conclusion.. 28

5.1 Observation... 31

5.2 Conclusion .. .

References .. .

Annexure

31

33

37

Chapter 1

Introduction

This dissertation work measures the efficiency of three genetic crossover operators over a

problem of task partitioning for the tasks submitted to a Parallel/Distributed Computing

System for its execution. The emphasis is on the crossover operators and the problem has

been formulated around the modules grouping of the task. The imperative here is to

discuss both the genetic algorithm and the paralleVdistributed computing system.

1.1 Genetic Algorithm

Genetic algorithms (GAs) are evolutionary algorithm derived from the Darwin's theory

of natural genetics. It is based on the principle of "Survival of the Fittest". A best solution

is derived from the number of solutions in GA. There are many search techniques

available for problem solving [3, 4, 5, 16, 17, 18]; these search techniques are:

• Calculus Based Techniques (Fibonacci, Sorting)

• Enumerative Techniques (DFS, BFS, etc)

• Guided Random Search Techniques (Hill Climbing, Simulated Annealing,

Evolutionary Algorithms, etc.)

Evolutionary Computation has two components: Genetic Programming and Genetic

Algorithms. Genetic algorithm generates population of potential solution and explores the

best solution of the problem. The father of the GA is John Holland, who along with his

student DeJong introduced it in the year by 197 5 at the University of Michigan. He was

influenced by the natural system and in his effort to propose the GA he thought of

mimicking the natural system. He thought to involve computing in natural system and

derived that as the natural system evolves any computation may also evolve. This was the

basis for the development of the GA. Most of the terminology in GA has been borrowed

from genetic engineering and also it uses the biological concept of "Natural Selection"

and "Genetic Inheritance". For most of the optimization problems, where a little

knowledge about problem solving approach is available, GA is beneficial. It is widely

used for the NP-class of problems (both NP-Complete and NP-Hard problems).

The GA, as a problem solving tool, is different in comparison to some other search

techniques described as follows [16].

•!• GA is applied on the coding of the parameter sets not only on the parameters.

•!• Populations consisting of solutions are used for searching in GA, so it is a

multipoint search in parallel.

•!• The original information is used in GA; no other secondary information,

knowledge or consequential information is needed.

•!• GA uses probabilistic transition instead of deterministic transition.

GA has a chromosome (genotype) that consists of genes. Genes are the fundamental

instructions for building an organism. The complete chromosome derives the solution of

the problem and a particular chromosome (phenotype) becomes the target solution of the

problem. The pseudo-code for the GA has been given below.

Genetic Algorithm ()

1. Generate the population of solutions randomly. //using any approach

2. Evaluate the fitness value of each individual against the fitness function.

3. Repeat while termination condition does not hold

{ Randomly pick two parents from the population

Perform the crossover over the parents to produce offspring II based on the

probability of applying crossover

Mutate each offspring II probability of applying mutation is often very less

Evaluate the fitness of each new individual

}

2

1.1.1 Search Space

A big search space is created in terms of the feasible solution of population. In search

space each individual is represented by finite length vectors. Though these can be any

alphabets but normally GA uses binary number alphabet { 0, 1}. An individual of

population (each chromosome) generate a fitness value of each solution. The most

favorable fitness score is required. GA maintains a population of 'n' chromosomes and its

fitness score. The parents use reproductive map to produce offspring. In reproduction the

parents with high fitness score are given more opportunity than others and they arrive to

replace old one in population which is least fit among reproduced solution. [5, 10, 18]

It is expected that every new generation after reproduction gives better solution than

previous solutions and successive generations improves the solution which saturates after

certain generations. It is said to be the convergence of the solution.

1.1.2 Genetic Operators

Genetic algorithms have the following components

Initial Population: Consisting of potential solution to the problem.

Selection: the mechanism of selecting the parent for the reproduction.

Fitness Function: Parents are selected according to their fitness value based on the

fitness function.

Crossover: mating between individuals, so that the parents may produce children.

Mutation: the random alteration in genetic population.

Reproduction: Generation of new offspring from old one.

1.1.3 Effect of Operators

The selection operator selects the better population from the old population and

combined with crossover operator it produces better but sub-optimal solution. The

combination of selection and crossover operator creates parallel hill climbing algorithms

to solve the problem. The number of crossover mechanism has been suggested by the

researchers. These have its own advantages and disadvantages depending on the problem

3

to be solved. The current work is an attempt to evaluate the various crossover operators

for the task partitioning problem of parallel/distributed system.

1.2 Parallel System

The parallel systems have been developed with the intention of using multiprocessor for

solving a single problem. Thus the objective is to explore the parallelism present in the

job, design the modules accordingly and then to utilize the number of processors

available in parallel system to execute the job. Parallel systems can theoretically multiply

the computational power of a single processor by a large factor. To achieve maximum

efficiency of these large systems the workload has to be distributed equally throughout

the network. The uniform distribution of the load among the various processing nodes

maximizes resource utilization and enhances the total throughput of the system. Ideally,

the speed up expected from a parallel system consisting of "n" processor system is n.

Though, due to practical implementation, this is never achieved.

Parallel system is single computer with multiple processors which are used for executing

more than one job/subjobs/instruction simultaneously. Execution of more than one

process on parallel system is known as parallel processing. Parallel system is also

referred as multiprocessor system. In parallel processing task is divided into number of

modules (sub tasks) and is executed on the processors of the system. Some of the

advantages of parallel processing are higher throughput, computation power and better

price/performance ratio than a single-processor system. The parallel systems are

classified into two main categories; General purpose and Special purpose computer

systems. General purpose computer system is Pipeline computers, Asynchronous

multiprocessors and Data flow computers. Special purpose computers are Synchronous

multiprocessors (Array Processors), Systolic Array and Neural Network.

1.3 Distributed System

A Distributed System is an environment that provides a single system image with the

distribution of the memory and the clock amongst the computing nodes of the DCS. To

4

explore distributed computing system, a task is divided in to the smaller components,

called modules, so that they can execute concurrently and hence can utilize the system for

parallel execution. It is similar to the parallel system with the difference that it is

decentralized i.e. there is no central components. In distributed computing system, all

processing nodes have different clock, and their own memory. Distributed computing

system are scalable meaning thereby that it can be scaled up or down as per the

requirement of the application to be executed on the DCS. The executable components,

located on the nodes of the DCS, communicate and coordinate their actions by passing

messages [1]. The advantages of the distributed system are information and resource

sharing, higher reliability, higher throughput, shorter response time, extensibility etc. The

performance of the distributed computing system is obviously better than the uni

processor system and generally measured in terms of the performance of execution of

jobs. Due to rapid advances in VLSI technology and the increase in the development of

distributed computing system, software for these systems became complicated due to the

additional complexity. It is because of the existence of concurrency, communication,

synchronization and non-determinism in its execution.

A number of methods for developing distributed computing system software have been

presented in the literature [1-4, 6]. These methods are classified into two categories. The

first category involves a series of top-down decomposition and partitions of the

distributed computing system software in order to derive a set of distributed software

component [1-4]. However none of them provide efficient analysis technique for

verification of generated distributed computing system software. The second category is

bottom up oriented [6]. They may produce the whole distributed computing system

software structure in a synthetic way which, under some limited synthesizing rules,

guarantees a certain degree of correctness in the system behavior and properties.

No matter which of the approach is used, the entire distributed computing system

software development process is still similar to the central software development system.

It may consist of successive phases: requirement analysis, design, implementation, testing

and validation. This is not a straight forward process and feedback path do exist among

5

successive phases so that the previous steps can be repeated to eliminate effects or errors

found in the latter phase. Most of these defects can be traced back to the requirement and

design phase. As the size of the distributed computing system continue to grow, the

relationship among concurrency, contention, synchronization and communication among

all processes become more and more complicated.

Based on the memory sharing, distributed computing system is classified of two types.

1.3.1 Distributed Memory

In Distributed Memory System, each processing node has own memory which is not

shared by any other processing node. These nodes may interact with each other by

message passing i.e. if any node requires any data stored on the memory of other node

then the first node just sends a message to the second node about the data that it requires.

In reply, the second node sends him the required information. The distributed memory

organization is elaborated in Fig. 1.1. The performance of the distributed memory system

depends on the communication link through which the message is transmitted. The

distributed memory systems are becoming the architecture of choice for many

supercomputer applications. The reason is that they are inherently scalable and provide

reliability, inexpensive computing cycles compared with the traditional uni-processor or

the shared memory multiprocessor supercomputer.

Mem 1 Mem2 Mem3 MemN

-. -. ~ ·I- . -. -. -. -. t ·1- . - . - . - . - . -I ~ . -. -. -. -. -. ~ ·I- . -. -.1

Proc1 Proc 2 Proc3 ProcN

J I J l II II
I

I

Network i
~--··

Fig. 1.1 Distributed Memory Systems

6

High speed 110 for the distributed memory machines is difficult because the entire

system, including the architecture, software, programming models and applications have

been designed to work in a distributed fashion and any form of serialization is avoided, if

possible. The connection to the network, however, is inherently centralized and this

creates problems in the following areas.

1. Distribution of work over large number of relatively slow processing nodes is source

of power of distributed memory machines but communication protocol processing does

not parallelize well.

2. The application will often have to manage multiple connections and this involves

scheduling resources in both distributed memory system and on the network interface.

This is a complicated task and there is a conflict between using general purpose solutions

on one hand and providing mechanisms that are for the specific application on the other.

3. The communication software has to perform scatter and gather operations to collect or

distribute the data that makes up the data stream because data that is sent or received over

the network is typically distributed over the private memories of the nodes.

1.3.2 Distributed System Models

The basic models of distributed system are [12, 13]:

• Minicomputer Model- In minicomputer model of distributed system number of

minicomputers are connected to a network, each with some terminals.

• Workstation Model- Many work station are connected to network and make

distributed system to useful when user uses remote workstation.

• Workstation server Model- Its is very advantageous due to sharing of several

servers like file server, printer server etc.,

• Processor Pool Model- Pool of processors connected to network.

• Hybrid Model

7

1.4 Organization of the Thesis

Second chapter of our dissertation describes Genetic Algorithm in detail.

Third chapter gives the idea of Task Partitioning Problem, Task Preprocessing and the

proposed work for our dissertation.

Fourth chapter gives basic knowledge of three crossover operator PMX, OX and CX.

Fifth chapter contains the experimental results and the conclusion.

8

Chapter 2

Genetic Algorithms

Scientists looked in other directions after their disillusion with classical and neo-classical

attempts at modeling intelligence. Two main fields derived were connectionism (neural

networking, parallel processing) and evolutionary computing. AI systems are mostly

static. Most of the AI problems can usually solve only one given specific problem, since

their architecture was designed for that specific problem. Thus, if the problem were to be

changed, these systems could hardly adopt them. Even if it adopts so, it will be less

efficient. Genetic algorithms (GA) came as the natural solution to such problems. [4, 5]

2.1 Biological Inspiration of Genetic Algorithms

Genetic algorithms are search methods mimicking the processes found in natural

biological evolution. Evolution is the change in the inherited traits of a population from

one generation to the next. In nature organisms such as animals or plants produce a

number of offspring. These offspring are almost, but not entirely, like themselves. This

variation may be due to sexual reproduction (offspring have some characteristics from

each parent) or due to mutation (random changes). Some or more of these offspring may

survive to produce offspring of their own. The better offspring are likely to survive and

over the generations these become better and better. Genetic algorithms (GA) use the

same process for evolution. Mostly Genetic algorithms (GA's) are used to solve

optimization problems. It is based on the biological concept of "Natural Selection" and

"Genetic Inheritance" which is given by Darwin in 1859. The word "Survival of the

Fittest" best define this algorithm as given by Darwin. [3, 4, 5, 16, 17, 18]

9

2.1.1 Vocabulary of GA

Most of the vocabulary of GA has been derived from genetic engineering. Gene is a

symbol or bit in a string, the smallest unit of information and fundamental building

blocks of chromosome. Each gene in a chromosome represents each variable to be

optimized. A Chromosome is a string of genes, and an individual representing a

candidate solution of the optimization problem. Genotype is entire combination of genes.

The complete chromosome derives the solution of problem with the help of a particular

chromosome (phenotype). Phenotype is an organism made by genotype which contains

all the information and take part to generate fitness function. Population is the total

number of chromosomes available for the test [4, 5].

2.2 Genetic Algorithms (GA)

GA is developed by John Holland (1975) and his student DeJong (1975) at the University

of Michigan, to understand the adaptive process of natural systems and to design artificial

systems software that retains the robustness of natural systems. These algorithms search

or operate on a given population of potential solutions to find those that approach close to

the solution as per the given specification or criteria (fitness function).GA is beneficial

where we have little knowledge about problem solving approach, mostly for NP-Hard

problems (e.g. TSP).[5, 16] GA is a blend of exploitation and exploration.

In simple genetic algorithms, randomly generated solution strings are formed into a

population. These strings are generated using any method e.g. greedy. These strings

represent a variety of solutions for a given problem. These solutions are typically

encoded in some manner on the strings in some defined format. The strings are decoded

and then evaluated according to a fitness function. Individuals are then selected to

undergo reproduction to produce offspring (individuals for the next generation). Selection

is done by assigning a higher probability of selection to those parents who are deemed to

have higher fitness according to the fitness function. The process of reproduction consists

of two operations. Firstly, selected solution strings are recombined using a recombination

10

operator, where two or more parent solution strings provide elements of their string to

generate a new solution. Secondly mutation is applied to the offspring. The mutation

operator affects only a small amount of the genetic material in the offspring solution

strings. Following the generation of a complete population of offspring solution, the

offspring population replaces the parent population.

The flowchart for the simple GA is given in fig.2.1.

No

(~ _______ B_e~g-in ______ ~)

Generate initial population

Evaluate fitness function

Reproduction Process
Selection
Crossover
Mutation

New generation

Yes

End

Fig. 2.1 Genetic algorithm

11

The pseudo-code for simple GA is as follows:

Simple GA ()

{

}

Initialize population;

Do{

}

Perfonn Crossover and Mutation;

Evaluate population;

Reproduction;

Unless the result converges

2.2.1 Search Space

If we are solving a problem, and are not sure about the best solution then will look for the

solution, which is the best among others. The space of all feasible solutions is called

search space (also state space). Each point in the search space represents one feasible

solution. Each feasible solution can be "marked" by its value or fitness for the problem.

GA maintains population of 'n' chromosomes with there fitness score. The parents are

able to select their mate on the basis of their fitness score or any other things. In

reproduction highly fit fitness score solutions are given more opportunity and they arrive

to replace old one in population which is least fit among reproduced solution. [5, 10, 16]

Thus search space in the solution space comprised of population.

2.2.2 Genetic operators ·

There are three fundamental genetic operators selection, crossover and mutation. [5, 18]

• Selection: Selection operation selects individuals for survival based on the

probabilistic function of fitness.

12

• Crossover: Crossover operation combines two individuals to create new

individuals for possible inclusion in next generation.

• Mutation: Mutation operation does random changes m genetic population to

produce offspring.

Selection

Selection is a procedure of picking best individuals from a pool of population based on

their fitness function value to produce offspring. It is an important step in GA. Many

different approaches for selection schemes have been proposed. One of them is Fitness

proportionate selection scheme with roulette-wheel method and mostly used in GA. In

roulette-wheel method the chance of an individual's being selected is proportional to the

amount by which its fitness is greater or less than its competitors' fitness. Each individual

gets a slice of the wheel. More fit ones get larger slices than less fit ones. The wheel is

then spun and an individual "owns" the section on which it lands. Suppose that there are

four populations A, B, C and D having their fitness value 4, 6, 2 and 8 respectively. The

roulette wheel for selection ofthese populations is as given in Fig.2.2. [3, 17] Obliviously

D has the more probability to be chosen than A, B and C and this has wider allocation in

wheel.

Fig2.2 Roulette Wheel representation of Selection Operation

13

Crossover

Crossover is a concept of genetics and has analogy of sexual reproduction. Crossover

chooses two individuals and swap segments of their code (bit- value). It produces

offspring that are combinations of their parents. Common forms of crossover are single

point crossover, two point crossover (also called multi point crossover) and uniform

crossover. In single-point crossover one common site in the chromosomes is chosen

randomly. Chromosomes of the parents are cut at that point and the resulting sub

chromosomes are swapped. [5, 10, 16, 18]

Parent 1: 11000101 01011000 01101010

Parent 2: 00100100 10111001 01111000

Offspring 1: 11000101 01011001 01111000

Offspring 2: 00100100 10111000 01101010

Fig2.3 Single Point Crossover Operator

In two-point crossover two bits are selected and the sub-string between the bits is

swapped. In Uniform crossover each gene of the offspring is selected randomly from the

corresponding genes of the parents. Single-point and two-point crossover produce two

offspring, whilst uniform crossover produces only one.

Mutation

Mutation is asexual reproduction and it introduces randomness into population. This

operator randomly flips or alters one or more bit values at randomly selected locations in

a chromosome. Mutation generates low ranked children, which are eliminated in

reproduction process. Sometimes however, the mutation may introduce a better

individual with a new property into. This prevents process of reproduction from

degeneration.

14

2.2.3 Fitness function

Fitness function is evaluation function that determines what solutions are better than

others. The purpose of fitness function is parent selection and a measure for convergence.

Fitness function is the most critical part of a GA next to coding. In any optimization

problem the fitness is replaced by the objective function. The fitness is to be designed

properly for the GA to be effective.

2.2.4 Advantages of GA

For any problem when the search space is very big the straight forward algorithms

becomes more exhaustive. GA comes into effect to solve such problems. The solution

obtained using GA are close to the optimal solution. The other advantages are:

• Only primitive procedures like "cut" and "exchange" of strings are used for

generating new genes from old, it is easy to handle large problems simply by

using long strings.

• only values of the objective function for optimization are used to select genes, this

algorithm can be robustly applied to problems with any kinds of objective

functions, such as nonlinear, indifferentiable, or step functions.

• The genetic operations are performed at random and also include mutation; it is

possible to avoid being trapped by local-optima.

15

Chapter 3

Task Partitioning Problem

Genetic algorithms are quite often used successfully to solve the NP-complete, NP-hard

problems of combinatorial optimization. Task partitioning problem of

Parallel/Distributed Systems is also falls in the same category so GA has been used to

solve such problems. Implementation of any algorithm in parallel/distributed

environment, if cleverly done, accelerates calculations considerably and makes it possible

to solve large instances of the problem relatively fast. Given a task to be executed on

parallel/distributed system requires partitioning of the task into number of modules (sub

tasks). It is done so, as not the task as a whole, rather the modules of the task becomes the

execution entity. This is called the task partitioning and is the pre-processing step of the

task allocation problem. [6, 7, 28]

3.1 Task Preprocessing

Task preprocessing is a method to analyze the task for its possible mapping to the

processing nodes of the parallel/distributed system and specify an order to follow to

execute these tasks in a synchronized manner. Preparation of the raw data for taking

further decision is known as task preprocessing. There are many approaches to

preprocess data. Task preprocessing is required to extract the information before

allocating a task on parallel/distributed system. The extracted information helps to take

further decision for allocation. Preprocessing can be performed at compile time or/and at

run time. [2, 23]

In compile time preprocessing, the analysis and information extraction is done at compile

time. The information that is supplied by the program is extracted at compile time. In

runtime preprocessing approach two steps are involved. First to analyze the data,

optimize it, and generate information for the second step. In second step actual

computation is performed. Further, there are four phases in preprocessing. It is sensing,

recognition, decision, and acting. [8]

16

3.2 Task Partitioning

Decomposition, mapping and tuning is three required steps to program execution in

parallel/distributed computing system. Partitioning or decomposition is the first step

towards designing a parallel program. This requires breaking the problem into discrete

chunks of work that can be distributed on multiple processors. There are several ways to

decompose/partition a computational task into parallel tasks. [6, 7]

3.2.1 Perfect Decomposition

In perfect decomposition, the task is divided into number of sub-tasks (modules) and

these modules either do not require a communication or a little communication among

each other. This is called perfect decomposition. Least amount of effort is required for

this type of decomposition. Perfect decomposition can not be applied when dependency

between processes exist. The n composition is a good example of a perfect decomposition

in which only the partial sums need to be communicated. [7]

3.2.2 Domain decomposition

The main feature of domain decomposition is regularity of data structure. In this type of

decomposition data associated with a problem is decomposed. Each parallel task then

works on a portion of data. Normally the domain decomposition is applied when the

domain and data contingent are non-regular. Static data structure, for example, matrix

factorization for solving a large finite difference problem on a system with a regular

network topology. Dynamic data structure tied to a single entity, for example, in a many

body problem, subsets of bodies can be distributed to different nodes. [7, 28]

Three major steps are specified below to decompose the domain of a given applications.

• At various nodes sub domain of data are distributed.

• Restrict the computation so that each node updates its own sub domains of

data.

• Put the communication in node programs.

17

3.2.3 Control decomposition

When the domain of data is not suitable for domain decomposition and irregular behavior

of data structure and domain is found, then control decomposition is used. Control

decomposition technique is used for artificial intelligence and symbolic processing

problem. Computation and data structure is the key for the control decomposition. Due to

dependency on data structure and computation, interface between different functional

modules is needed. Functional decomposition and Manager-worker approach are two

famous strategies for control decomposition. [7, 28]

In functional decomposition approach, the focus is on the computation rather than on

the data manipulated by the computation. The problem is decomposed according to the

work (computation) that must be done. Each task then performs a portion of the overall

work. This strategy for control decomposition works well on those problems which can

be split into different task. This method is used in signal processing, climate modeling

and eco-system modeling. [28]

In Manager-worker approach, divide and conquer method is applied. In this approach

the task partitioning problem is divided into different size subtask. Among these subtasks

one of the subtasks plays the role of a manager and others as workers. The manager is

responsible for dispatching the modules to the workers. [28]

The current work uses the functional decomposition approach for a given task graph in

the task partitioning problem. Regrouping of modules will be done with genetic crossover

operators to minimize the differences among the group execution time sums. [28]

3.1 The Model

In the proposed problem, we consider the n modules of a task; each represented by a

distinct integer number from the range {I, 2, ---- n}. These modules are partitioned into k

groups of equal or unequal length. Length indicates the number of modules in a group.

The idea, borrowed from the traveling salesman problem (TSP), is applied. Three types

of genetic crossover operator PMX (Partially Matched Crossover), OX (Order Crossover)

18

and CX (Cycle Crossover) are applied. PMX is most suited crossover for this type of

problem although order crossover (OX) and cycle crossover (CX) are also applied.

The Evaluation function is defined as follows [28].

Let us assume that there are 'm' modules in a group and ej is the execution time of jth

modules. Si is the sum of the execution time of this ith group then

m

S i = L e J
j = I

Difference in sum of the execution times of ith and jth group is

Where i= 1, 2, -----------k

And j = 1' 2, 3--------k - j

These differences should approach to zero. The reason is that when the Dij will be

approaching to zero all the groups will be of equal load in terms of time. The there

crossover operators are applied until the evaluation function reaches almost to zero. The

problem is given in the form of a task graph which consists of modules. Task graph is a

kind of enumeration which represents control flow of a program. In the task graph, the

flow of control is represented by directed edges.

For example in figure 3.1 a task graph is given consisting of nine modules. If we form

three groups of the given task graph, it will consists of { 1, 2, 5, 8}, {3, 6, 9} and { 4, 7}. If

we assume the execution times of these modules to be uniform and unit then the sum of

the execution times of the groups will be 4, 3 and 2 respectively. Though, in practice,

these times will not be uniform and that is where the possibility of applying GA for this

partitioning problem is.

19

Fig. 3.1 Task Graph

The initial population may be formed randomly for the task graph. Then the GA will be

applied for making Dij to approach to zero. There crossover operators, mentioned in the

next chapter, will be used individually on same problem and the study will be made on

the three crossover operators.

We will perform the experiment with various sets of data (i.e. task graph) to reach to a

conclusion.

20

Chapter 4

Comparative Study of the Crossover operators

My experiments compared the following permutation crossover operators: Partially

Matched Crossover (PMX) [16], Order Crossover (OX) [16], and Cycle Crossover (CX)

[16] over the task partitioning problem of Distributed system. We have tested

effectiveness of these operators on task partitioning.

Below are these operators in general.

4.1 PMX- Partially Mapped Crossover

Goldberg and Lingle in 1985 proposed the partially mapped crossover (PMX) operator.

[16, 18] This operator is designed to work with a path representation and is devised to

prevent repetition of values in the offspring. This is done by mapping a portion of one

parent on to the portion of the other parent. Following this any remaining information is

exchanged.

PMX first selects two random crossover points in the parent; these crossover points

define the matching section. The corresponding crossover points are then reproduced on

the second parent. For example, in fig. 4.1 depicting PMX, crossover points are selected

between the third and fourth, and between the sixth and seventh elements in the parents.

The first step is to define the mappings for PMX, in this case 5 ~ 2, 6 ~ 4 and 7 ~ 8.

Following this the second step is to exchange substrings between the two crossover

points in each parent to opposite offspring (i.e. parent 1 to offspring 2 and parent 2 to

offspring 1). TH- t G t ~1

Pl = (0 8 415 6 7 11 2 3 9)
P2 = (6 7 1 12 4 8 I 3 5 9 0)

01 = (x x x I 2 4 8 I x x x x)
02 = (x x x 15 6 7 I x x x x)

Fig- 4.1 PMX example-Crossover points

21

To complete the offspring, step 3 requires that the offspring be filled. The ith offspring

(where i = 1,2) being filled with the remaining elements from parent i. In this case the

first element in offspring 1 will be 0. The second would be 8; however this is already

present in the offspring string and as a result will be replaced according to the mapping

defined above, 7 ~ 8 (see Fig - 4.2).

P1 = (0 8 4 I 5 6 7 11 2 3 9)

P2 = (6 7 1 12 4 8 13 5 9 0)

01 = (0 8 412 4 8 11 2 3 9)

02 = (6 7 1 15 6 7 1 3 s 9 o)

Fig - 4.2 PMX- filling offspring

This process of inserting an element, checking the validity of the string and correcting

offending elements through the mappings that were defined is repeated until the offspring

are completely filled. This produces offspring that have no replicated elements (see Fig-

4.3). PMX is a very popular crossover technique for problems that have validity

constraints. It has been applied extensively to the traveling salesman problem (TSP).

01 = (0 7 6 2 4 8 1 5 3 9)

02 = (4 8 1 56 7 3 2 9 0)

Fig- 4.3 Completed offspring produced by PMX

22

4.1.1 PMX Algorithm

The algorithm for PMX operation is as follows.

1. Start with initial population.

2. Select two crossover points randomly.

3. Replace bits with blank spaces which do not reside between crossover points.

4. Swap the bits of offspring between crossover points.

5. Fill the blank spaces created in step 3 with the help of initial population offspring

(parent) with no conflict.

6. Fill remaining blank spaces with exchange operation.

7. Find new population.

4.2 OX- Order Crossover

The Order Crossover was devised by Davis in 1985. [16] This operator starts in a similar

fashion as PMX. Start with previous example taken to illustrate PMX. Initially two

random crossover points are selected. In the above case these are after position 3 and 6.

The substrings are selected, and then copied to the offspring as in the example (Fig. 4.4)

Pl = (0 8 4 15 6 7 II 2 3 9)

P2 = (6 7 1 12 4 8 13 5 9 0)

01 = (x x x 12 4 8 I x x x x)

02 = (x x x 15 6 7 I x x x x)

Fig- 4.4 OX crossover points

The process starts at the position just after the last crossover point (in this case position

?).Order crossover uses a sliding motion to fill the holes left by swap operation. The

remaining positions in offspring are determined as, for offspring 2 remaining order is

determined by parent 2. Nonduplicative bits are copied from parent 2 to the offspring 2

beginning at the position following the second cross point. Both the parent 2 and the

offspring 2 are traversed circularly from that point. A copy of the parent's next

23

nonduplicative bit is placed in the next available child position [18].The string after

second cross point in parent 2 would provide 3 without any confliction and copy 3 to

offspring 2 at position 7. The next bit in order for parent 2 is 5 but it is already present in

offspring 2 so this bit is skipped and the bit in the next position is taken. The bit 9, 0 do

not have confliction so copied these in position 8, 9 respectively in offspring 2.

Traversing parent 2 circularly, the bits (6, 7, 1, 2, 4, 8), skipping 6, 7 because these are

present in offspring 2 at position 5, 6 so we left with bits (1, 2, 4, 8), copied these to

offspring 2 at position 10, 1, 2, 3 respectively. Offspring 1 is completed in a similar way

based on the order of bits in parent 1.

01 = (5 6 7 12 4 8 11 3 9 0)

02 = (2 4 815 6 713 9 0 1)

Fig- 4.5 Completed offspring produced by OX

Where PMX preserves the absolute position of a bit within strings, OX preserves the

order of bits in the permutation.

4.2.1 OX Algorithm

The OX algorithm can be listed as follows.

1. Take parent Pl and P2 as initial population.

2. Select two crossover points randomly.

3. Swap the substring between crossover points and leave other positions blank.

4. Start with last crossover point of parent P2 and copy nonduplicative bits in

offspring 02 in same order as P2.

5. If confliction (bits already present in offspring after swapping)

Then discard that bits and traverse next bit circularly in P2 and copy non conflicting

bit next position in offspring preserving the order.

6. Do step 4 and 5 until all blank spaces filled in offspring.

7. For second offspring start with last crossover point ofPl and do step 4 to 6.

24

4.3 CX - Cycle Crossover

The cycle crossover operator CX was developed by Oliver and Holland in 1987. [16] It is

designed so that two conditions are satisfied. First every element position in an offspring

retains a value that has a corresponding position in a parent; and second the offspring

must be a permutation. With these two conditions, CX cycles through both the parents

selecting elements to be placed in the offspring. Consider the following example:

P1 = (0 8 4 5 6 7 1 2 3 9)

P2 = (6 7 1 2 4 8 3 5 9 0)

From the conditions outlined above, the first element in the offspring must either be 0 or

6 (the left most element in parent 1 and 2) selected at random. Let us select 0 for this

example. We start from the first position of offspring 1.

01 = (0 X X X X X X X X X)

02 = (x X X X X X X X X X)

Then offspring 2 may only have a 6 in the first position, because we do not want new

values to be introduced there.

01 = (0 X X X X X X X X X)

02 = (6 X X X X X X X X X)

Since 6 is already fixed for offspring 2 now, we have to keep it in the same position for

offspring 1 in order to guarantee that no new position for the 6 are introduced. We have

to keep the 4 in the fifth position of offspring 2 automatically for the same reason.

Q} = (0 X X X 6 X X X X X)

02 = (6 X X X 4 X X X X X)

25

This algorithm is continued, and results in the selection of bits 4, 1, 3 and 9. The cycle

finally terminates in this example when bit 9 is selected from parent 1 and the

corresponding parent 2 bit is 0, which is already present in the offspring i.e. we have

completed a cycle.

01 = (0 X 4 X 6 X 1 X 3 9)

02 = (6 X 1 X 4 X 3 X 9 0)

This completes our first cycle. For the second cycle, we can start with a value from parent

2 and insert it into offspring 1.

01 = (0 X 4 X 6 X 1 X 3 9)

02 = (6 X 1 X 4 X 3 X 9 0)

After applying same algorithm to detect a cycle, we end up with the following.

01 = (0 7 4 X 6 8 1 X 3 9)

02 = (6 8 1 X 4 7 3 X 9 0)

This is our second cycle. For next cycle, we can start with parent I. Starting with 5 and

applying same algorithm we end up with the following.

OI = (0 7 4 5 6 8 1 2 3 9)

02 = (6 8 I 2 4 7 3 5 9 0)

This is our third cycle and no positions are left, so we end up with our final offspring's.

In the previous example only three cycles are required to complete the offspring. The ex
operator, like the OX operator, retains the relative ordering information of the alleles. Of

the three operators, ex and OX were found to be least disruptive from the point of view

of relative ordering. [16]

26

4.3.1 CX Algorithm

1. Take parent Pl and P2 as initial population.

2. Make a cycle of bits from Pl in the following way.

(a) Start with the first bit of Pl.

(b) Look at the bit at the same position in P2.

(c) Go to the position with the same bit in Pl.

(d) Add this allele to the cycle.

(e) Repeat step (b) through (d) until you arrive at the first bit of Pl.

3. Put the bits of the cycle in the first child on the positions they have in the first parent.

4. Take next cycle from second parent.

5. Repeat the process (2) to (4) unless all the bits are filled in both the strings.

27

Chapter 5

Experimental Observation & Conclusion

The task partitioning problem in Parallel/Distributed System is very important problem

for the scheduling aspect of these systems. We have evaluated the three genetic crossover

operators, as mentioned in the chapter 4, with respect to the task partitioning problem.

We have compared the performance of these operators over the task partitioning problem.

We have taken the varying parent size population and applied three crossover operators,

Cycle Crossover (CX), Partially Matched Crossover (PMX) and Order Crossover (OX)

one by one to compare the execution time they take for producing the offspring.

Let us consider a population of two Pl and P2 as given below. It consists of 10 modules

as numbered, i.e. it is a population of size 10.

P1 = (0 8 4 !5 6 7 !1 2 3 9)
P2 = (6 7 1 !2 4 8 !3 59 0)

The vertical line " I "indicates the initial grouping of the modules. We will apply the

genetic algorithm after this. The three crossover operators of GA, used in the study to

explain the research, give diverse explanation with respect to the size of the population of

the parents. They offer different characteristic for the efficiency of the GA. The

experiment chosen to show my observation is using the three different operators to

understand the difference in the execution time in which they produce their results. We

first applied PMX operator to find the grouping. We also calculated the time taken when

using PMX. Thereafter, we applied OX operator for the grouping of the modules. We

then applied CX operator. We obtained the time taken in each case.

We designed the experiment with varying size of the population. To start with we took

the minimum number of parent size ten and increased the parent size in each successive

experiment. We tested against all the operators. The execution times of the modules have

28

been generated randomly and are in the range of depending on the number of modules in

that task. Note that in all the experiment, our fitness function is the same which equalizes

the load between the different groups of the modules.

As we get our first set of results, we would increase our parent size to forty, the results

under this observation differs from the earlier observation. The ex under this parameter

gives the execution time of one hundred fifty while PMX takes two hundred twenty two

and OX shorten to one hundred and fifty nine. This shows that there is no linearity in the

results of the three operators as they wary with the parent size.

In another observation about while increasing the parent size to eighty the results show

much different than the earlier observations. The ex here gives much different count

reducing down to one hundred sixteen which actually less than result under the parent

size of forty. Even with the operator PMX the execution time with eighty has slightly

increase by eight compared to the parent size of forty, taking only two hundred thirty one

to complete the execution. While the operator OX this time increases by seven rather than

decreasing in the execution time by taking one hundred sixty six. This proves that there is

no fixed time for execution according to the operators; they vary according to the size of

parent and the offspring.

In further experiment observation of the execution time for the offspring under the three

different operators under different conditions, with increase in the parent size the operator

gives different calculations of execution time. They don't actually increase their

execution time but it varies with the size in many cases they increase with a small

increase but in some cases they decrease in the execution time as given in the table. Thus

we can say that there is no fixed execution time for the operators considering the parent

size. All these observations are shown in the table 1.

29

Table 1 Three Crossover operators

Parent Size Time taken in msec.

ex PMX ox
10 86 152 194
40 150 222 159
80 116 231 166
150 156 239 196
200 134 179 139
500 112 131 141
600 131 162 159
800 159 181 191

1000 121 140 149

The graph for the three operators has been plotted as shown in Fig. 5.1. On the X-axis,

we represent the size of the parent and on the y-axis the execution time taken by the

program using different operators have been shown.

·-·--·------- ···---------- ~

Comarision of Execution Time for three crossover 1

300
Q) 250
E
j:: 200
c::
0 .. 150
::I 100 t.)
Q)
)(

50 w

0

Operators

10 40 80 150 200 500 600 800 1 000

Parent Size

Fig. 5.1 Performance of the crossover operators

30

j-+--CX !

1----PMX:
~:

5.1 Observations

The obvious from the table and the graph is that OX operator performs better than the

PMX operator for the smaller population sizes. For the bigger population size, both the

OX and PMX performs neck to neck.

ex operator outperforms both the OX and PMX operator. It is evident from the graph

that at no point of time the curve for the ex operator goes above the OX or the PMX.

Thus a conclusion can be derived that out of three crossover operators, the performance

of ex operator is best.

Graph in Fig. 5.1 represents observation for all the three PMX, OX and ex operators. X

axis represent parent size i.e. the number of modules in the task and Y -axis represent the

time taken by the algorithm using PMX, OX and ex operators respectively. We

conducted the experiment initially for less numbers of modules and the performance was

same for PMX and OX. Increasing the number of modules, OX started performing better

than PMX. But both became same when it reached to the number of modules in the range

of 300 and above. ex was much better than both PMX and OX since beginning.

It should be kept in mind that this performance is for the task partitioning problem in

Parallel/Distributed System. The performance may vary for any other problem which is

to be solved using GA. However, the conclusion can be drawn that ex performs better

than other two crossover operators.

5.2 Conclusion

The work conducted towards the dissertation comprised of partitioning the task into

modules and then grouping these modules. The groupings of these modules are done so

that load (cumulative modules) is uniform. This is done by minimizing the difference

between the total times taken by each group. It is obvious that the result is better when

the number of module in the task is very large. The performance of PMX operator and

31

OX operator are almost same when the number of modules in the task is very large.

However, OX operator performs better for the modules in the range of 30 to 300. Both

provide a better task sequence for execution in multiprocessor and multi-computer

system. Applying ex (circular crossover) operator on the same problem solution refmes

drastically. ex outperforms than PMX and OX operators. This particular observation of

execution of task modules in parallel and distributed system provides an insight for the

development of a better task partitioning module in the task scheduler for a parallel and

distributed computing environment.

We observe task partitioning and its execution in parallel/distributed system. The

proposed work is based on the decomposition and the execution of task in

parallel/distributed system. Our plan is to observe the behavior of these operators for

many more problems before it can be established that CX is better than PMX and OX.

32

References

1) "A compile-Time Scheduling Heuristic for Interconnection-Constrained

Heterogeneous Processor Architectures,", G.C. Sih and E.A. Lee, IEEE Trans.

Parallel and Distributed Systems, vol. 4, no. 2, pp. 175-186, Feb. 1993.

2) " A comparison of heuristics for scheduling DAGS on multiprocessor" C.

McCreary, A Khan, J. Thompson, and M. McArdle, 8th International Parallel

Processing Symposium, 446-451, 1994.

3) "A Genetic Algorithm for Multiprocessor Scheduling", Edwin S. H. Hou,

Member, IEEE, Ninvan Ansari, Member, IEEE, and Hong Ren, IEEE

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL.

5, NO. 2, FEBRUARY 1994.

4) "A Genetic Algorithm Tutorial" by Darrell Whitley-Computer Science

Department Colorado State University; Fort Collins, CO 80523

5) "An Introduction to Genetic Algorithm", by Melanie Mitchell, PHI, 2005.

6) "Adaptive load sharing m homogeneous distributed systems"- EAGER, D. L.,

LAZOWSKA, E. D., AND ZAHORIAN, J. IEEE Trans. Software

Engineering. 12 (1986), 662-675.

7) "Advance Computer Architecture" Kai Hwang, Tata McGraw Hill Ed, 2001.

8) "An architecture for distributed agent-based data preprocessing", Petteri

Nurmi, Michael Przybilski, Greger Linden and Patrik Floreen Helsinki,

Institute for Information Technology HilT, Basic Research Unit Department

of Computer Science, P.O. Box 68.

33

9) "An introduction to genetic-based scheduling in parallel processor systems."

A. Y. Zomaya, F. Ercal, and S. Olariu, editors,Solutions to Parallel and

Distributed Computing Problems, chapter 5, pages 111-133. John Wiley and

Sons, 2001.

1 0) "An Overview of Genetic Algorithms: Part 2, Research Topics" by David

Beasley- Department of Computing Mathematics, University of Wales

College of Cardiff, Cardiff, CF2 4YN, UK; David R. Bully-Department of

Electrical and Electronic Engineering, University of Bristol, Bristol, BS8

1 TR, UK; Ralph R. Martinz-Department of Computing Mathematics,

University of Wales College of Cardiff, Cardiff, CF2 4YN, UK; University

Computing, 1993, 15(4) 170-181.

11) "Communication Contention in Task Scheduling"- Oliver Sinnen and Leonel

A. Sousa, Senior Member, IEEE, IEEE Transaction on Parallel and

Distributed System Vol. 16, No-6, June 2005.

12) "Distributed system Concept and Design", George Coulouris, Jean Dollimore

and Tim Kindberg, Third Edition, Sixth Indian Reprint 2004, Publisher

Pearson Education (Singapore) Pte Ltd.

13) "Distributed System - Principles and Paradigms" by Andrew S. Tenenbaum,

Maarten Van Steen, Pearson Education, Revised Edition 2006.

14) "Dynamic Scheduling of Computer Tasks Using Genetic Algorithms"- C.A

Gonzalez Pico and R.L Wainwright; Proc. First IEEE Conf. Evolutionary

Computation, IEEE World Congress Computational Intelligence, vol. 2,1994,

pp. 829-833.

34

15)"EFFICIENT MULTIPROCESSOR SCHEDULING BASED ON GENETIC

ALGORITHMS" E. S. H. Hou, R. Hong, and N. Ansari Department of

Electrical and Computer Engineering New Jersey Institute of Technology

Newark, NJ 07102,087942-6004/90/1100-1239, 1990 IEEE.

16) "Genetic Algorithm - in search, optimization & machine learning", by David

E. Goldberg, Pearson Education, 2006.

17) "Genetic Alorithms- simulating nature's methods of evolving the best design

solution", Cezary Z. Janikow and Daniel St. Clair; Feb-March 1995 0278-

6648/95- 1995 IEEE.

18) "Genetic Algorithms: Theory and Application", Lecture Notes, Third Edition

-Winter 2003/2004 by Ulrich Bodenhofer.

19) "Genetic Scheduling for Parallel Processor Systems: Comparative Studies

and Performance Issues", Albert Y. Zomaya, Senior Member, IEEE, Chris

Ward, and Ben Macey; IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS, VOL. 10, NO.8, AUGUST 1999.

20) "Observation on Using Genetic Algorithms For Dynamic Load-Balancing", Albert

Y. Zomaya, And Yee-Hwei, IEEE Transactions On Parallel And Distributed

Systems, Vol. 12, No.9, September 2001.

21) "Optimal scheduling strategies m a multiprocessor system" C. V.

Ramamoorthy et al IEEE Trans. Comput., vol. C-21, Feb.1972, pp. 137-146.

22) "Parallel Computing" by Moreshwer R. Bhujade, New Age International

Publishers, 2003.

35

23) "Parallelization of Fine-grained Irregular DAGs" by Frederic T. Chong,

Shamik D. Shannay, Eric A. Brewer and Joel Saltzx -Massachusetts Institute

of Technology ,University of Maryland, College Park, University of

California, Berkeley.

24) "Practical Multiprocessor scheduling algorithms for efficient processing"- H

Kasahara and S. Narita; IEEE Trans, Comput. Vol. C-33 no. 11, pp. 1023-

1029, Nov 1984.

25) "Preemptive Scheduling for Distributed Systems" by - Donald McLaughlin

Department of Computer Science and Engineering. Arizona State University,

and Shantanu Sardesai and Partha Dasgupta- Tandem Computers Inc. 19333

Vallco Parkway, Cupertino, CA.

26) "Scheduling a Job Mix in a Partitionable Parallel System" by - Helen D.

Karatza, Department of Informatics, Aristotle University of Thessaloniki,

54006 Thessaloniki, Greece and Ralph C. Hilzer, Computer Science

Department, California State University, Chico, Chico, California 95929-0410

USA; Proceedings of the 35thAnnual Simulation Symposium (SS.02)- 2002

IEEE.

27) "Task Assignment in a Distributed System: Improving Performance by

Unbalancing Load", Mark E. Crovella Department of Computer Science

Boston University Boston, , Mor Harchol-Balter Laboratory for Computer

Science MIT, NE43-340 Cambridge, MA 02139, Cristina D. Murtaz

Department of Computer Science Boston University Boston, MA 02215;

October 31, 1997 BUCS-TR-1997-018.

28) "Task partitioning using Genetic Algorithm" by Anil Kumar Tripathi, Deo

Prakash Vidyarthi and A. N. Mantri, Proceeding of International Conference

on Cognitive System, New Delhi, December 1997, pp. 248-254.

36

Annexure

Program of the comparison of three Genetic Crossover Operators for Task

Partitioning Problem in "C"

#include<stdio.h>
#include<stdlib.h>
#include<time.h>

/*HEADER FILES*/

struct parent /*STRUCTURE FOR TEMPORARY PARENT 2*/
{
int info;
struct parent *p _next;
};

typedef struct parent p _node;

struct index /*STRUCTURE FOR TEMPORARY PARENT 1 */
{
int pno;
struct parent *i _p _next;
struct index *i_ next;
};

typedef struct index i_ node;
i_node *startl=NVLL;

struct parent2
{
int gene2;
struct parent2 *next2;
} ;

typedef struct parent2 node2;

struct parentl /*STRUCTURE TO REPRESENT FIRST PARENT*/
{
intgene1;
int flag;
struct parent 1 *next 1 ; '
node2 *link;
} ;

typedef struct parent I nodel;

nodel *start=NULL; /*START POINTER FOR LINK LIST*/

struct data /*STRUCTURE FOR LINK LIST FOR OX OPERATOR*/

37

{
int t;
struct data *d _next;
};

typedef struct data d _node;

d_node *d_startl=NULL;

d_node *d_start2=NULL; /*LINK LIST HEADER FOR OX OPERATOR*/

d _node *m, *n, *x, *y;

static double time_ co=O,time __pmx=O,time _ ox=O; /*GLOBAL VARIABLES FOR TIME*/

void node_ delete(d _node*);
FUNCTION*/

/*OX OPERATOR SUPPORT NODE DELETION

void display!();/* FUNCTION TO DISPLAY THE PARENTS*/

void galgo(); /*FUNCTION TO CYCLE CROSSOVER WITHOUT SWAPPING*/

void galgoswap(); /*FUNCTION TO CYCLE CROSSOVER WITH SWAPPING*/

void delete_list(); /*DELEATING LINK LIST NODES*/

float crossover(p _node* ,p _node*); /*CYCLE CROSSOVER FUNCTION*/

float pmx(p_node*,p_node*); /*PMX FUNCTION*/

float ox(p_node*,p_node*); /*OX FUNCTION*/

void create(int,int,int); /*PEREMANT PARENT'S MAPPING FUNCTION*/

void display(); /*DISPLAY THE PARENTS*/

void main()
{
int pno,size,ch;
float pmxt,oxt,cxt; /*V ARIABE DECLARATION*/
i_node *p,*q;

clrscr();
/*MENU PRINTING CODE*/

printf("\n\n PRESS (1) MANUAL PARENT GENERATION");
printf("\n (2) AUTOMATED PARENT GENERATION");

printf("\n\n ENTER YOUR CHOICE:");
scanf("%d",&ch);

if(ch==l /1 ch==2)

38

{
printf("\n\n ENTER NO OF PARENTS:"); /*PARENT NUMBER ENTRY*/
scanf("%d",&pno);

printf("\n\n ENTER PARENT SIZE(MAX 1000):"); /*PARENT SIZE ENTRY*/
scanf("%d" ,&size);
}

create(pno,size,ch); /*MAPPING PARENTS*/

for(p=startl ;p!=NULL;p=p->i_ next)

}

for(q=p->i _ next;q !=NULL;q=q->i _next)
{

printf("\n\n OPERATING ON PARENT(%d) & PARENT(%d)",p->pno,q->pno);
cxt=crossover(p->i_p _ next,q->i_p _next);
pmxt=pmx(p->i _p _ next,q->i _p _next); /*CALLING DIFFRENT OPERA TORS*/
oxt=ox(p->i_p _ next,q->i_p _next);
clrscr();

printf("\n \n \n ");
printf("\n\n\t\t OPERATING ON PARENT(%d) & PARENT(%d)",p->pno,q->pno);
printf("\n\n\n\t------------BEST MODULE TIME COMP ARASION-----------");
printf("\n \n \t ------------TIME COMPLEXTITY IN MILLISECOND---------");
printf("\n\n\t PARENTS SIZE: %d NUMBER OF PARENTS: %d\n",size,pno);
prin tf("\n \ t --");
printf("\n\t OPERATINON TIME ");
printf("\n \t --");
printf("\n\n\t CYCLE CROSSOVER %f ",time_co);
printf("\n\n\t PMX %f ",time _pmx);
printf("\n\n\t OX %f ",time_ox);
printf("\n \t --");

printf("\n\n\n");
printf("\n\n\t\t OPERATING ON PARENT(%d) & PARENT(%d)",p->pno,q->pno);
printf("\n \n \n \t --------------TOTAL EXECUTION TIME-----------------");
printf("\n \n \t ------------TIME COMPLEXTITY IN MILLISECOND---------");
printf("\n\n\t PARENTS SIZE: %d NUMBER OF PARENTS: %d\n",size,pno);
printf("\n \t --");
printf("\n\t OPERATINON TIME ");
printf("\n \t --");
printf("\n\n\t CYCLE CROSSOVER %f ",ext);
printf("\n\n\t PMX %f ",pmxt);
printf("\n\n\t OX %f ",oxt);
printf("\n \t -- '');
getch();

}

39

void create(int pno,int size,int ch)
{
int arr[1 OOO],i,j,k,pp;
i_node *p,*q;
p _node *r, *s;

for(i=O;i<pno;i++)
{

if(ch=2)
{
for(j=O;j<size;j++)
arr[j]=j + 1 ;

for(j=O;j<size;j++)
{
randomize();
k=(random(size)+j+ 1 +i+rand())%size;
if(j!=k)

}
}

{
arr[j]=arr[j]+arr[k];
arr[k]=arr[j]-arr[k];
arr[j]=arr[j]-arr[k];
}

else if(ch= 1)
{

else

printf("\n\n ENTER %d PARENT",i+ 1);
for(j=O;j<size;j++)

}

{

{
printf("\n %dELEMENT: ",j+1);
scanf("%d",&pp);
arr[j]=(int)pp;
}

printf("\n\n WRONG ENTRY!");
exit(1);
}

p=(i_ node*)malloc(sizeof(i_ node));
if(p==NULL)

{
printf("\n\n MEMORY OVERFLOW");
exit(1);
}

if(start I ==NULL)
start1=p;

40

else
q->i _ next=p;

p->i_next-=~L;

p->pno=i+l;
p->i_p _next= NULL;
q=p;

forU=O;j<size;j++)
{

r=(p _ node*)malloc(sizeof(p _node));
if(r==~L)

{
printf("\n\n MEMORY OVERFLOW");
exit(l);

}
}

}

}
if(p->i_p_next ~L)

p->i _p _ next=r;

r ->info=arr[j];
r->p_next=~L;

ifU!=O)
s->p _ next-=r;

s=r;

void display()
{
i _node *p=start 1;
p_node *r;

while(p!=NULL)
{

}

r=p->i_p_next;
printf("\n\n P ARENT(%d)\n" ,p->pno);
while(r!=~L)

{
printf(" %d",r->info);
r=r->p-_ next;
}

p=p->i _next;
}

float crossover(p _node *parentl ,p _node *parent2)
{
int i=O,j=O,at-=O,x,xx;
double ptime,mod time[50],xxx;

41

node1 *p,*q;
node2 *r, *s;
clock_t sta,en,st1,en1;
time_t t;

/*Creating Link List for Parents*/
i=O;
while(parent1 !=NULL)

{
if(i=O)
{

}

p=(node1 *)malloc(sizeof(node1));
r=(node2 *)malloc(sizeof(node2));
if(p==NULLIIr=-NULL)
printf("\n MEMORY OVERFLOW");
else

{
start=p;
p->flag=O;
p->gene1 =parent1->info; r->gene2=parent2->info;
p->next1 =start; r->next2=NULL;
p->link=r;
q=p; s=r;
}

else
{
p=(node1 *)malloc(sizeof(node1));
r=(node2*)malloc(sizeof(node2));
if(p==NULLIIr==NULL)

else

} i++;

printf("\n MEMORY OVERFLOW");

{
p->flag=O;
p->gene 1 =parent1->info; r->gene2=parent2->info;
p->nextl=start; r->next2=NULL;
q->nextl=p; s->next2=r;
p->link=r;
q=p; s=r;
}

parent 1 =parent l·>p _next;
parent2=parent2->p _next;
}

display!();

printf("\n \n---------------CY CLE CROSSOVER----------------------");
sta=clock();
i=l;
whileU!=3)

42

{
for(p=start;p->nextl !=start;p=p->nextl)

{
if(p->flag--0)

{

I I prin tf("\n --");
i++;
i=i%2;
llprintf("\n Cycle: %d",tcount+l);
switch(i)

{
case 0: stl =clock();

gal go();
en 1 =clock();
mod_ time[at++]=((enl)-(stl)ICLK_ TCK);
break;

case 1: stl =clock();
galgoswap();
enl=clock();

}

mod_ time[at++]=((en 1)-(st 1)ICLK _ TCK);
break;

I I pri n tf("\n --");

en=clock();
display!();

break;
}

}
if(p->nextl ==start)
j=3;
}

llprintf("\n\nTIME COMPLEXTITY IN MILLISECOND");
printf(''\n---");
ptime=(double)((en)-(sta)ICLK_TCK);
delete _list();

printf("\n\n------------TIME COMPLEXTITY IN MILLISECOND---------");
printf("\n --------------------CYCLE CR 0 S SO VER -----------------");
printf("\n CYCLE'S TIME ");
prin tf("\n ---");
stl=99999;
time_co=O;
for(i=O;i<at;i++)
for(j=i+ 1 ;j<at;j++)
{
xxx=(double)mod _time[i]-mod _ time[j];
printf("\n %d CYCLE(%f) - %d CYCLE(%f) :%f

",i+ l,mod _time[i],j+ 1 ,mod _time[j],xxx);
if(stl>xxx)

43

}

{
st1=xxx;
x=i+1;
xx=j+1;
}

printf("\n---");
if(st 1 =99999)
st1=0;
time_ co=(double)st 1;
printf("\n\n DEFERENCE IN EXECUTION TIME BETWEEN CYCLE'S %d & %d :%f

II t") ms ,x,xx, 1me co ;
getch();

retum(ptime);
}

void display1()
{
node 1 *p=start;
printf("\n\n\n");
if(start== NULL)
printf("\n EMPTY LINK LIST");
else

p=start;

{
printf("\n\n PARENTI: ");
do
{
printf(" %d",p->gene1);
p=p->next 1;
}while(p!=start);
}

if(start== NULL)
printf("\n EMPTY LINK LIST");
else

}

{
printf("\n\n PARENf2: ");
do
{
printf(" %d",p->link->gene2);
p=p->next 1;
}while(p!=start);
}

void galgo()
{
int child I ,child2;
node I *p=start, *q;

44

while(p->flag!=O && p->next1 !=start)
p=p->next 1;

whil e(p->fl ag--O)
{
p->flag=1;
child2=p->link->gene2;
for(q=p->next1;q->gene1 !=child2 && q!=p;q=q->next1);
if(q->gene1 =child2)

p=q;

}

void galgoswap()
{
node 1 *p=start, *q;
int item;

while(p->flag!=O && p->next1 !=start)
p---p->next 1;

while(p->flag==O)
{
p->flag=2;
item=p->gene1;
p->genel =p->link->gene2;
p->link->gene2=item;
for(q=p->next1;q->link->gene2!=item && q!=p;q=q->next1);
if(q->Iink->gene2==item)

p=q;
}

}

void delete _list()
{
node I *p=start, *q;
printf("\n \n \n ");
if(start== NULL)
printf("\n EMPTY LINK LIST");
else

do
{
free(p->link);
q=p;
p=p->next I;
free(q);
}while(p!=start);

start= NULL;
}

float pmx(p _node *parent 1 ,p _node *parent2)

45

{
int i=O,j,up,low,hold,x,xx,at=O;
double ptime,xxx,mod _time[50];
nodel *p,*q;
node2 *r, *s;
clock_t sta,en,stl,enl;
time_t t;

I* Creating Link List for Parents*/
i=O;
while(parentl !=NULL)

{
if(i=O)
{

}

p=(nodel *)malloc(sizeof(nodel));
r=(node2*)malloc(sizeof(node2));
if(p==NULLJir==NULL)
printf(''\n MEMORY OVERFLOW");
else

{
start=p;
p->flag=++i;
p->gene 1 =parent 1->info; r->gene2=parent2->info;
p->next1 =start; r->next2=NULL;
p->link=r;
q=p; s=r;
}

else
{
p=(node1 *)malloc(sizeof(node1));
r=(node2 *)malloc(sizeof(node2));
if(p==NULLjjr==NULL)

printf("\n MEMORY OVERFLOW");
else

{
p->flag=++i;
p->gene 1 =parent1->info; r->gene2=parent2->info;
p->nextl=start; r->next2=NULL;
q->next 1 =p; s->next2=r;
p->link=r;
q=p; s=r;
}

}
parent 1 =parentl->p _next;
parent2=parent2->p _next;
}

display!();

printf("\n \n ---------------PMX ----------------------");

46

printf("\n\n ENTER LOWER BOUND:");
scanf("%d",&low);
printf("\n\n ENTER UPPER BOUND:");
scanf("%d" ,&up);
i=l;
sta=clock();
stl=clock();
p=start;
while(p->flag<low && p->next1 !=start)

p=p->next1;

while(p->flag<=up && p->next1 !=start)
{
p->gene1 =p->gene1 + p->link->gene2;
p->link->gene2=p->gene1 - p->link->gene2;
p->gene1 =p->gene1 - p->link->gene2;
p=p->next1;
}

en1 =clock();
mod_ time[at++]=((enl)-(stl)/CLK _ TCK);
st1 =clock();
p=start;
while(p->flag<low && p->next1 !=start)

p=p->nextl;

while(p->flag<=up)
{
if(i%2=1)
hold=p->gene 1;
else
hold=p->link->gene2;
q=p;

while(q->flag<=up&& q->next1 !=start)
q=q->nextl;

while(q->flag<low II q->flag>up)
{
if(q->gene1 ==hold)
q->gene1 =p->link->gene2;

if(q->link->gene2==hold)
q->link->gene2=p->gene1;
q=q->next 1;
}

if(i%2==0)
p=p->next 1;
i++;
}

en 1 =clock();

47

mod_ time[at++]=((en 1)-(st 1)/CLK _ TCK);
en=clock();
display1();
//printf("\n\nTIME COMPLEXTITY IN MILLISECOND");
printf("\n \n ---");
ptime=((en)-(sta)/CLK _ TCK);
delete _list();

printf("\n\n------------TIME COMPLEXTITY IN MILLISECOND---------");
prin tf("\n ---------------------------PMX --------------~-----------");
printf("\n GROUP OF MODULES TIME ");
printf("\n --");
st1=99999;
time _pmx=O;
for(i=O;i<at;i++)
forU=i+ 1 ;j<at;j++)
{
xxx=mod_time[i]-mod_time[j];
printf("\n %d GROUP(%£) - %d GROUP(%£) :%f

",i+ 1 ,mod _time[i],j+ 1 ,mod_ time[j],xxx);
if(st1>=xxx)

{

}

st1=xxx;
x=i+1;
xx=j+1;
}

printf("\n ---");
if(st 1 ==99999)
st1=0;
time _pmx=st 1;
printf("\n\n BEST PERFORMANCE MODULE GROUPS o/od & %d :%f

ms" ,x,xx,time _pmx);
getch();

retum(ptime);
}

float ox(p _node *parent 1 ,p _node *parent2)
{
int i=O,j,up,low,hold,bit,at=O,x1,xx;
double ptime,xxx,mod _time[50], temp;
nodel *p,*q;
node2 *r, *s;
clock_ t sta,en,stl ,en 1 ,st2,en2;
time_tt;

/*Creating Link List for Parents*/
i=O;
while(parentl !=NULL)

48

{
if(i=O)
{
p=(nodel *)malloc(sizeof(nodel));
r=(node2 *)malloc(sizeof(node2));
if(p NULLIIr==NULL)
printf("\n MEMORY OVERFLOW");
else

}
else
{

{
start=p;
p->flag=++i;
p->gene 1 =parentl->info; r->gene2=parent2->info;
p->nextl =start; r->next2=NULL;
p->link=r;
q=p; s=r;
}

p=(nodel *)malloc(sizeof(nodel));
r=(node2 *)malloc(sizeof(node2));
if(p== NULLIIr==NULL)

printf("\n MEMORY OVERFLOW");
else

{
p->flag=++i;
p->genel =parentl->info; r->gene2=parent2->info;
p->nextl =start; r->next2=NULL;
q->next 1 =p; s->next2=r;
p->link=r;
q=p; s=r;
}

}
parent 1 =parent 1->p _next;
parent2=parent2->p _next;
}

display!();

prin tf("\n \n---------------0 X----------------------");
printf("\n\n ENTER LOWER BOUND:");
scanf("%d",&low);
printf("\n\n ENTER UPPER BOUND:");
scanf("%d",&up);
i=l;
sta=clock();
stl=clock();
p=start;
while(p->flag<=up && p->nextl !=start)

p=p->next 1;

49

while(p->flag!=up)
{
m=(d _ node*)malloc(sizeof(d _node));
x=(d _ node*)malloc(sizeof(d _node));
if(m--NULL II x==NULL)

{
printf("\n\n MEMORY OVERFLOW");
exit(l);
}

m->d _next= NULL;
x->d next=NULL"

- '
m->t=p->gene 1;
x ->t=p->link ->gene2;
if(d_startl==NULL)

d startl=m·
- '

else
n->d _ next=m;

if(d _ start2==NULL)
d _ start2=x;

else
y->d _ next=x;

y=x;
n=m;
p=p->next 1;
}
m=(d _node*)malloc(sizeof(d _node));
x=(d _ node*)malloc(sizeof(d _node));
if(m==NULL II x==NULL)

{
printf("\n\n MEMORY OVERFLOW");
exit(l);
}

m->d _next= NULL;
x->d _next= NULL;
m->t=p->gene 1;
x ->t=p->link ->gene2;
if(d _ start1 ==NULL)

d _start 1 =m;
else

n->d _ next=m;
if(d _ start2== NULL)

d _ start2=x;
else

st2=clock();
p=start;

y->d _ next=x;

while(p->flag<Jow && p->nextl !=start)
p=p->next 1;

50

while(p->flag<=up && p->next1 !=start)
{
p->gene1=p->gene1 + p->link->gene2;
p->link->gene2=p->gene1 - p->link->gene2;
p->gene 1 =p->gene 1 - p->link->gene2;
p--p->next 1;
}

en2=clock();
temp=((en2)-(st2)/CLK _ TCK);
mod_ time[at++]=temp;
p=start;
while(p->flag<low && p->nextl !=start)

p=p->next 1;

while(p->flag<=up)
{
hold=p->gene 1;
bit=p->link->gene2;
m=d _ start1;
while(m!=NULL)

{
if(d _start 1->t==hold)

{
d _ start1 =m->d _next;
free(m);
break;
}

if(m->d _ next->t==hold)
{
node_delete(m);
break;
}

m=m->d _next;
}

x=d _ start2;
while(x!=NULL)

{
if(d start2->t==bit)

{
d _ start2=x->d _next;
free(x);
break;
}

if(x->d _ next->t==bit)
{
node_ delete(x);
break;
}

x=x ->d _next;
}

51

p=p->next 1;
}

p=start;
while(p->flag<=up)

p=p->next 1;

m=d _ start1;
x=d _ start2;
while(p->flag<lowl!p->flag>up)

{
if(m!=NULL)

p->gene1 =m->t;
if(x!=NULL)

p->link ->gene2=x ->t;
m=m->d _next;
x=x ->d _next;
p=p->next 1;
}

en1 =clock();
mod_ time[at++]=((en1)-(st 1)/CLK _ TCK)-temp;
en=clock();
display1();
//printf("\n\nTIME COMPLEXTITY IN MILLISECOND");
printf("\n \n --");
ptime=((en)-(sta)/CLK _ TCK);
delete _list();

printf("\n\n------------TIME COMPLEXTITY IN MILLISECOND---------");
printf("\n ----------------------------0 X--------------------------");
printf("\n GROUP OF MODULES TIME ");
printf("\n--");
st1=99999;
time_ox=O;
for(i=O;i <at;i++)
for(j=i+ 1 ;j<at;j++)
{
xxx=mod_time[i]-mod_time[j];
printf("\n %d GROUP(%f)- %d GROUP(%f) :%f

",i+ 1 ,mod_ time[i],j+ 1 ,mod_ time[j],xxx);
if(st 1 >xxx)

{

}

stl=xxx;
x1=i+l;
xx=j+l;
}

printf("\n---'');
time_ ox=st 1 ;
printf("\n\n BEST PERFORMANCE CYCLE'S %d & %d :%fms",xl,xx,time_ox);

52

getch();

return(ptime);
}

void node_ delete(d _node *n)
{
d _node *m=n, *p;
n=n->d _next;
m->d _ next=n->d _next;
free(n);
}

53

	TH161890001
	TH161890002
	TH161890003
	TH161890004
	TH161890005
	TH161890006
	TH161890007
	TH161890008
	TH161890009
	TH161890010
	TH161890011
	TH161890012
	TH161890013
	TH161890014
	TH161890015
	TH161890016
	TH161890017
	TH161890018
	TH161890019
	TH161890020
	TH161890021
	TH161890022
	TH161890023
	TH161890024
	TH161890025
	TH161890026
	TH161890027
	TH161890028
	TH161890029
	TH161890030
	TH161890031
	TH161890032
	TH161890033
	TH161890034
	TH161890035
	TH161890036
	TH161890037
	TH161890038
	TH161890039
	TH161890040
	TH161890041
	TH161890042
	TH161890043
	TH161890044
	TH161890045
	TH161890046
	TH161890047
	TH161890048
	TH161890049
	TH161890050
	TH161890051
	TH161890052
	TH161890053
	TH161890054
	TH161890055
	TH161890056
	TH161890057
	TH161890058
	TH161890059
	TH161890060
	TH161890061
	TH161890062
	TH161890063

