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Chapter 1 

Introduction 

:\!any physiological functions and activities such as sleep, body temperature, 

alertness, neurotransmitter levels etc have rhythmic properties. i'Jumerous 

examples are known: the liver is more active during the night than it is during 

the day, menstrual cycles have a period of about 28 days, and immunity 

and iron concentrations in the blood reach low levels during menstruation 

and high levels during ovulation. The sleep-inducing hormone Melatonin is 

secreted in response to the darkness of night and is therefore also periodic. 

Biological rhythms can have period lengths ranging from fractions of seconds 

to decades. These rhythms are subdivided into Ultradian, Circadian and 

Infradian. Circadian from the Latin cirw diem or about one day, indicates 

that the cycle occurs about once a day. If the period of rhythms is less than 20 

hr then it is termed as Ultradian, and if more than 30 hr Infradian. Ultradian 

include electrical firing of neurons (period in the millisecond range), heart 

beats (period ~ 1 s in humans), sleep episodes (period ~10 min in rats. 

90 min in humans), yeast respiration (period ~ 40 min), somite formation 

during vertebrate embryogenesis (period ~ 20 min in zebrafish, 90 min in 

chicken), and foraging in the common vole Microtus avails ( period ~ 150 

min). Similarly, infradian rhythms include such diverse cycles as the female 

estrus cycle (period ~ 4-5 days in mice, 28 days in humans), circannual 

mating rhythms (period ~ 1 year), and emergence cycles of cicada (period 

~ 13-1 7 years) [1;. 
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To explore Biological rhythms at the molecule level, one approach is to 

build synthetic oscillators de novo. The first synthetic oscillator constructed 

by Elowitz and Leibler was a ring oscillator [2] termed RepressilatoT. This 

was composed of three transcriptional repressor systems that are not part 

of any natural biological clock, each of which regulates the expression of 

another repressor: Repressor 1 (Lad) repressed the expression of repressor 

2 (TetR) and similarly repressor 2 repressed the expression of repressor 3 

(-\d). Finally, repressor 3 repressed the expression of repressor 1 (Lacl). 

This leads to oscillations in green fluorescent protein as a readout of its state 

in individual cells. The resulting oscillations, with typical periods of hours, 

are slower than the cell-division cycle, so the state of the oscillator has to be 

transmitted from generation to generation [2]. 

There are other well known models as well: one design is [3] based on 

a Lotka-Volterra type system with a predator (laci)-prey(glnG) pair. The 

regulators exhibit oscillation, with time period from 10 to 20 hr. A positive 

regulator (GlnG) activates its own expression, and the expression of the 

repressor (Lad). The repressor Lacl represses the expression ofthe activator: 

the activator can thus be considered as a prey that "feeds into" the predator 

Lad, which decreases the population of the prey. 

A third example, termed MetabolatoT, has been designed and constructed 

by Fung et al. :4J. This synthetic oscillator is incorporated into the cen­

tral metabolism of the host organism; the conceptual design of this geue 

metabolic oscillator consists of a flux-carrying network with two intercon­

verting metabolite pools (AJ1 and Iv/2 ) catalyzed by two enzymes E 1 and 

E2 , the expressions of which are negatively and positively regulated by JJ2 , 

respectively. In the first stage, when the level of 1\12 is low, E 1 is expressed 

and E2 is not. A high input metabolic flux rapidly drives 1'vf1 to JI2 . Ac­

cumulation of Ah represses E 1 and up regulates E2 . \Vhen the backward 

reaction rate exceeds the sum of the forward reaction rate and the output 

rate, the level of J/2 decreases and the "\11 level increases. E 1 is then ex­

pressed again and E2 is degraded, returning the circuit to the first stage. On 

the other hand. if the input flux is low, A12 does not accumulate sufficiently 

fast to cause a large swing in gene expression, and a stable steady state can 

2 



be reached [4]. 

In the present study I investigate the stochastic dynamics of such model 

biological oscillators using the Gillespie stochastic simulation algorithm :sJ. 
As a model I study a gene regulatory circuit which shows circadian oscillation 

[5] and a model chemical system the Brusselator [8]. The circadian model is 

based on common positive and negative control elements found experimen­

tally [6]. Futher I explore the nature of synchronization when two or more 

stochastic oscillators are coupled by microscoping coupling mechanism :30]. 
Synchronization, which may be a desired phenomenon in synthetic biological 

networks, is a well studied behavior of dynamical systems in physical sciences, 

but less understood in biology. In analysis of gene regulatory networks, sepa­

ration of time scale is a major difficulty. These separations are typically fast 

reactions (dimerization, protein-D~A binding/unbinding) and slow reactions 

(transcription, translation, degradation). ~Iany studies have been done for 

reduced description of these systems using the idea of quasicquilibrium for 

fast processes compared with the slow dynamics [9]. These approaches have 

implicitly assumed that all of the reactions (fast and slow) are :--..Jarkovian 

processes obeying Poissonian statistics. But transcriptional and translational 

processes arc not just slow but also are compound multistage reactions in­

volving the sequential assembly of long molecules. Therefore by central limit 

theorem, these processes should obey Gaussian statistics with a certain char­

acteristic mean delay time [29;. \Vhen delay is small compared to other time 

scales which are characterizing the system, it is safe to ignore that in sim­

ulations but in the case, when time delay is of the order of other processes 

or longer it is necessary to take that into account. To take into account the 

non-~larkovian nature of dynamics due to time delay biochemical reactions, 

I use the modified Gillespie Algorithm [29]. Xature of synchronization vary 

as a function of delay time, in phase, antipha..se or out of phase. Further 

I study a particular coupling topology in which three oscillators are bidi­

rectionally coupled: oscillators 1 and 3 are coupled indirectly via oscillator 

2. We observe that oscillators 1 and 3 are phase synchronized though they 

are not directly coupled, such phenomenon is termed as "relay synchroniza­

tion". For different combinations of delay time and coupling strength, one 
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can find regimes where either oscillator 2 is in antiphase or out of phase to 1 

and 3 which are phase synchronized. 'With the help of coupling mechanism 

[30), I study the nature of synchronization in ensembles of extended sys­

tems composed of stochastic oscillators. Incorporating relay synchronization 

and considering the circadian oscillator at each node I study simple network 

motifs [36]. Structure of my thesis is as follows. 

In chapter 2, I discuss the type of formalism to study the dynamics of 

the biological oscillators, namely deterministic and stochastic formalism. In 

stochastic formalism I discuss different formalism like the master equation 

approach, stochastic simulation algorithm, improvements to stochastic sim­

ulation algorithm, and chemical langevin equation approach. I also discuss 

modified Gillespie stochastic simulation algorithm which take time delay into 

account. 

In chapter 3, firstly I discuss the coupling mechanism: direct coupling 

and exchange coupling and their application to the Brusselator and Circa­

dian oscillator. Then I posted the results of stochastic simulation of single 

Brusselator, circadian oscillator, coupled Brussclator and circadian oscillator. 

Further I discuss the case of time delay and relay synchronization simulation 

results. Considering circading oscillator as each node I discuss the simple 

network motifs. Results arc shown for linear chains, triangular and square 

motifs as examples of mentioned network topology. 

In chapter 4, I conclude my present study. 
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Chapter 2 

Dynamics 

Study of the dynamical behavior of biological systems is necessary to under­

stand the complexity of such systems at the cellular level. At this level the 

dynamics is essentially the kinetics of the biochemical reactions. There are 

two mathematical formalism describing the chemical kinetics, the determinis­

tic and stochastic approaches. The deterministic approach considers the time 

evolution as a continuous and predictable process whereas the stochastic ap­

proach regards the time evolution as a random process. In the deterministic 

approach, one integrates set of coupled, ordinary differential equations the 

reaction-rate equations. In the stochastic approach the evolution is governed 

by the /'v! aster Eq'uation. 

2.1 Deter-ministic Formalism 

In macroscopic view of bio-chemical reactions one makes the assumptions 

that the biochemical reactions involve large numbers of molecules of the in­

volved reacting species and the changes of concentration are continuous. The 

evolution follows from the chemical rate laws which governs the concentra­

tions of the reacting species. These have the general form 

6 



dX1 
dt 

dX2 
dt 

dX,v 
dt 

(2.1) 

where the X 's represent concentrations and the f's are nonlinear func­

tions. 

Solving these equations for {Xi, ... X,v} with the help of prescribed initial 

conditions is analytically possible only for the small systems. For systems 

with large number of species one has to solve this numerically. There are 

many methods a few of which are 

e Euler ~1ethod 

• Runge Kutta ~Iethods 

• Adam-);Ioulton Gear ~Iethod 

There are various tools for sensitivity analysis, equilibrium analysis and 

bifurcation analysis to gather more information of the systems and a variety 

of software packages especially developed for deterministic simulation and 

analysis of biochemical reaction systems, such as DBsolve [lo;, GEPASI [11], 

KI~SI~I ~12], ~liST [13], KI:'\SOLVER [14], PLAS [15], ECELL [16; and 

Cellware [17} have become available. 

2.2 Stochastic Formalism 

vVhen the concentrations of the reacting species are low conventional deter­

ministic chemical kinetics may not be appropriate )8. 19}. The stochastic 

approach provides a more realistic view of the dynamics of the system. Since 

in thermal equilibrium (not necessarily in chemical equilibrium) collisions in 

a system of molecules occur randomly. 
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The temporal behavior of a spatially homogeneous mixture of molecular 

species can studied by different approaches, ~laster Equation or numerically 

via the Stochastic Simulation Algorithm [8] or the Chemical Langevin Equa­

tion [20). 

Consider a mixture of the N molecular species 5 1, ... , SN chemically in­

teracting at some constant temperature Tin volume V through jVf reaction 

channels R 1 , ... , RM· Then the dynamical system is specified by the vector 

X(t) = (X1(t), X 2 (t), ... , X,v(t)) (2.2) 

where Xi(t) is the number of Si molecules in the system at time t (i = 
1, ... , N). Any reaction channel Rj can be mathematically characterized by 

two quantities, the state vector vi, whose ith component is Vji: the change in 

the number of Si molecules produced by one Ri reaction and the propensity 

function aj which is defined as follows 

aj(x)dt = the probability, givenX(t) = x that one reaction 

Rj will occur somewhere inside V in infinitesimal 

time interval (t, t + T) where (j = 1, ... ,AI). (2.3) 

It has been shown that Eq. 2.3 leads directly to the formulation of the 

chemical master equation [21], and also to an approximating Chemical Langevin 

equation and Fokker-Planck equation [20~ . 

For biomolecular rection the function ai is found to have the following 

mathematical form [21] 

(2.4) 

\vhere Cj is the specific probability rate constant for channel Rj, defined 

so that cjdt gives the probability that a randomly chosen pair of Ri reactant 

molecules will react in the next infinitesimal time interval dt. The reaction 

constants ki 's, are related to the c1 's through 
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(2.5) 

where ai is the sum of stoichiometric coefficients of a particular reaction. 

The function hi(x) in equation Eq. 2.4 is defined to be the number distinct 

combinations of Rj reactant molecules available in the state x. So, if R 1 were 

the reaction X 1 + X 2 - 2X1 we would have a 1 = c1x 1x 2 , and if R2 were the 

inverse of that reaction we would have a2 = c2x 1(x1 - 1)/2 

2.2.1 Master Equation Formalism 

The traditional way to study the time evolution of a spatially homogeneous 

mixture of molecular species is by examining the probability function, 

P(x, t!x0 , t0 ) = Prob(X(t) = x, given thatX(to) = xo). (2.6) 

The time evolution of this function, obeys a master equation, 

P(x, t + dtlxo, to) 

,\/ 

+ L [P(x- Vj, tJxo, to)a1(x- vj)dt], (2.7) 
j=l 

where the first term represents the probability that the system will be in 

the state x at time t, and then remains in that state in (t, t -+- dt) and the 

second term gives the probability that the system is one R1 reaction removed 

from the state x at time t, and then undergoes an RJ reaction in (t, t + dt). 

By algebraic rearrangement and taking the limit dt - 0, one can get the 

chemical master equation. 

DP(x, tjxo, to) 
at 

A! 

L [aj(x- vj)P(x- vj, tlxo. to)] 
J=l 

9 
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2.2.2 Stochastic simulation Algorithm 

It is difficult to solve the chemical master equation for the probability density 

function X ( t) and therefore it is necessary to use numerical methods to get 

trajectories of X ( t). A key to generating the simulated trajectories of X ( t) 

is the probability function p( T, j lx, t), the next-reaction density function [23), 
defined as 

p(r,j!x, t)dr Probability, given X ( t) = x, the next 

reaction in V will occur in the infinitesimal 

time interval [t + r, t + r + dr], 

and will be an RJ reaction. (2.9) 

Since Lj aJ(x)dt is the probability that some reaction will occur in the 

next interval dt, with the help of the elementary theory of probability one 

can show that exp(- Lj aJ(x)r) is the probability that a timeT will pass by 

without any reaction occurring. This leads, in straight forward manner, to 

( 

.\1 ) 
p(r,jlx.t)dr = aJ(x)exp - t;ak(x)r (0:::; r < oo;j = 1, ... ,M) (2.10) 

This formula is the basis for the stochastic simulation algorithm, in which 

l\lonte Carlo techniques are used to generate random pairs ( T, j). \Ve draw 

two random numbers r 1 and r 2 from a uniform distribution in the unit inter­

val, and take 

T 
1 1 

-In(-) 
a0 (x) r 1 

J the smallest integer satisfying (2.11) 
j-1 j 

L aJ'(:r) < r2a0 (x) :::; L ap(x), 
j'=l jt 
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In brief the algorithm can be summarized as follows: 

e Step (0). Initialize the time t = t0 and the system state x = x 0 . 

o Step ( 1). ·with the system in state x at time t, evaluate all the aj ( x) 

and their sum a0 (x). 

o Step (2). Generate values for T and j using Eq. 2.11 (or their equiva­

lent). 

6) Step (3). Effect the next reaction by replacing t +- t+T and x +- x+vj. 

• Step (4). Record (x, t) as desired. Return to Step 1, or else end the 

simulation. 

2.2.3 Improvements to the stochastic Simulation Al­

gorithm 

The above mentioned Algorithm is known as the Direct-Method. A variation 

of the stochastic simulation algorithm (SSA) [23] which differs only in gener­

ating values of T and j is known as first reaction method. Here one generates 

}vf random numbers r 1, •• r.>..,1 from the the unit-interval uniform distribution, 

computes 

Tj' 1/aj'(x) 1n(1/rj') 

T smallest of the{ Tj'} and 

.7 the index of the smallest of the{ Tj'} 

Heuristically, T 1 ... T\f are putative times to the next firings of the respec­

tive reaction channels. however, we accept only the earliest of those and 

discard the rest. It can be proved [23] that this procedure, like the direct 

method, generates values for T and Jl in exact accord with the joint density 

function. However. if the system has many reaction channels, this method 

will be computationally less efficient than the direct method [24]. 
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Three situations can cause an increase of computational effort in the 

Gillespie algorithm. The conditions are as follows [25), 

• Increase in the number of reaction channels. 

• Increase in the number of molecules of the species. 

I) Faster reaction rate of the reaction channels. 

These conditions decrease the time step of each iteration thus forcing 

the algorithm to run for larger number of iterations to simulate a given 

experiment. 

As a result, disparities occurs in the time scale of reaction channels in 

the system, which is similar to stiffness problem in ODE method. In the 

stochastic algorithm whenever the complexity of the system increases, either 

through any of the above mentioned reasons, the algorithm takes small T to 

maintain the exactness of the simulation i.e. algorithm requires shorter time 

step to capture the dynamics of the system and therefore computation \Vill 

slow down significantly. 

Gibson and Bruck [26] enhanced the Gillespie first reaction method for 

large Nand M in next-reaction method. They use indexed binary tree priority 

queue to save the putative next firing times of all reaction channels. Although 

the next-reaction method can be significantly faster than the direct method. 

it is much more challenging to code [24]. 

In 2001, Gillespie [27] devised aT -leap method which provides significant 

gain in the computational speed, with an acceptable loss in accuracy. He 

proposed that it is sometimes unnecessary to obtain so much detail from the 

simulation, one may like to have information that how many of each reaction 

channels are fired in a certain time interval rather than to find out \Vhich 

reaction happens at which time step. It is possible to get substantial gain 

in the computational speed. if the time interval is large enough for many 

reactions to happen. Gillespie describes that it is possible to approximate 

the Poisson distribution with a normal distribution at the cost of accuracy 

[27] and has provided different mechanisms for selecting T [27]. 

12 



2.2.4 Chemical Langevin Equation 

The master equation is able to describe accurately the stochastic dynamical 

behavior of a well-stirred mixture of N molecular species that chemically 

interact through M reaction channels. \Vhen two explicit dynamical con­

ditions [20) are satisfied, the microphysical premise from which the chemical 

master equation is derived leads directly to an approximate time-evolution 

equation of the Langevin type. 

The two conditions are: 

o T to be small enough that change in the state during ( t, t + T) will 

be so slight that none of the propensity functions changes its value 

appreciably. 

o T is large enough that the expected number of occurrences of each 

reaction channel RJ in (t, t + T) be much larger than 1. 

With these assumptions one can obtain [20] the following expression, 

AI 

Xi(t) + L I/1iaJ(X(t))dt 

AI 

+ L I/1 iaY2 (X(t))AI~(t)(dt) 112 

j-~1 

(2.12) 

where (i = 1, .. ]\') and Nj(t) is unit normal random variable. This equa­

tion has the canonical form of a standard Langevin equation for multivariate 

continuous :Vlarkov process. So equation Eq. 2.12 can implies the equivalent 

white noise form Langevin equation :20]. 

ll ~I 

L I/1iaJ(X(t)) + L I/Jia~ 12 (X(t))rJ(t) 
J=l j~l 

where (i = 1, .. ;.V) (2.13) 
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The ri(t)'s are temporally uncorrelated, statistically independent Gaus­

sian white noise. Eq. 2.13 also implies the singly conditioned density function 

for X(t) obeys the (forward) Fokker-Planck Equation [20]. 

2.3 Time delay Gillespie algorithm 

When dealing with time delayed channels Bratsun et al. ~29] devised a mod­

ification of the Gillespie scheme . This takes into account the non :VIarkovian 

nature of the dynamics when time delay is present. In short, the algorithm 

is as follows: 

e Step (1) Input initial values for initial state X = (X1, .. X.v ), set time 

t = 0, and reaction counter i = 1. 

o Step (2) Compute propensities of M reactions ai(j = 1, ... , ,\1). 

o Step (3) Generate uniform random numbers r 1 , r2 E: { 0, 1}. 

o Step (4) Compute the time interval until the next reaction D.ti 

-In rd 2-::i ai. 

(!) Step (5) Check whether there are delayed reactions scheduled within 

time interval [t, t + D.ti:· If yes, then Steps 2 to 4 are ignored. time t 

advances to the time td of the next scheduled delayed reaction, X states 

are updated according to the delayed reaction channeL and counter is 

increased i = i + 1. Proceed to step 2. If no, go to Step 6. 

e Step (6) Find the channel of the next reaction j. take j, integer for 

which ;::::;~\ ajl < r2a0 :::; ;::::~,= 1 a'i, where a0 = 2-::j'~ 1 a1 is the total 

propensity. 

o Step (7) If the selected reaction is not delayed, update X according to 

the Rj, update time t = t + D.ti and increase counter i = i + 1. If the 

selected reaction is delayed, update is postponed until time td = t + T. 

Go to Step 2. 

14 
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Chapter 3 

Results 

3.1 Coupling Mechanism and Topologies 

To couple two or more stochastic oscillatory systems I use the microscopic 

coupling mechanism recently studied by ~andi et.al [30]. A stochastic system 

can be specified by a set of elementary processes which can be written iu the 

following way [30] 

(3.1) 

where X's are non-negative integers and it represent the number of molecules 

of different chemical species (represented by the subscript). Cm represents 

rate of the mth such channel. A configuration of the system C is a specifi­

cation of the variables, (X1X 2 ..•.• Xx) [30]. The evolution of configmat ional 

probabilities [31 J follows 

dP(C, t) """' ( ) """' ( I ) dt = - 6 P C, t Wc-·c' + L P C , t Wc'~c ( 3.2) 
c' c' 

where in standard notation [32], P ( C, t) is the probability of coufiguratiou 

C at time t and {W} are the transition probability. To study such systems 

one use stochastic (:VIonte Carlo) simulation techniques ~8]. 

:\ow consider two such identical but independent stochastic systems with 

the variable of the two systems being denoted by unprimed and primed quau-
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tities, say. Subsequent evolution of each of the subsystems, starting with 

configurations C and C' will be uncorrelated. So our interest is to couple 

subsystems to see the correlated temporal patterns with stochastic dynamics. 

In the mechanism [30], for simplicity the two subsystems, specified by the 

variables X and X', have similar channels. However the corresponding rates 

need not be identical. Then, the two coupling mechanisms are 

A. Exchange coupling 

In an "exchange" process variables Xi and XI, say interconvert. This 

introduces additional channels 

(3.3) 

which serves to couple the subsystems. The other variables X 1 and Xj 

show synchronization behavior, depending upon the rate of interconversion 

(governed by c and c'). In the case when rates of exchange are equaL in the 

limit c = c' -----+ Xl, this reduce to the following case: 

B. Direct coupling 

The variables Xi and XI are identical; then this is essentially a "master­

slave" coupling scenario, where the two subsystems share a common drive and 

consequently the dynamics of the remaining variables becomes correlated. 

In the case of direct coupling, effectively 011e species Xi is connnon to 

two reaction schemes, which is not uncommon in biochemical processes. In 

the same way, in exchange scenario, the species Xi and XI can be considered 

different forms of each other, or the same species in different locations say in 

different cells. [30] 

In the sections below we study two model examples where the above 

coupling schemes are implemented to achieve stochastic synchronization. 
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3.2 Brusselator 

Brusselator is a chemical oscillatory system governed by the following "chenl­

ical reactions" [8). 
A1~x 

A2 +X~ Y +A3 

2X+Y~3X 

X~A4 

(3.4) 

In the thermodynamic limit, when fluctuations arc negligible, the following 

a set of deterministic reaction rate equations can be derived for the average 

concentrations of species of X and Y, 

(3.5) 

sroo, 

'•l fWO 

y .1000 

1 
).AX!>- i 

' 

0' 
I) 

X X 

Figure 3.1: Phase portrait of single Brusselator dynamics obtained using 
Gillespie Algorithm. (a) Phase portrait in the low noise limit. The parameter 
values are c1 = 5000, c2 = 50, c3 = 0.00005, and c4 = 5 (b) Phase portrait 
in the high noise limit . The modified parameter values are c1 = 4.5 x 5000 
and c4 = 4.5 x 5. 

For suitable choices of parameters, Eq.( 3.5) give a limit-cycle solutiou. 
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Simulations of Eq.( 3.4 ), give orbits that describe a noisy limit cycle :s: as 

shown in Fig. 3.1 and also the variation of X an Y with time is shown in 

Fig. 3.2 
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Figure 3.2: Species X and Y as a function of time. The parameter values 
arc c1 = 5000, c2 = 50, ca ::__: 0.00005, and c4 = 5. 

3.2.1 Direct coupling of Brusselator 

Coupling the two systems through X and X' leads to synchronization of 

species Y and Y' a.<> shown in Fig. 3.3. For example, in the case of direct 

coupling, the coupled system is represented by the following chemical reaC'­

tions: 
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At~X 

A2 +X~ Y +A3 

2X+Y ~3X 

c; ' A2 + X ---+ Y + A3 

2X+Y' ~3X 

3.2.2 Exchange coupling of Brusselator 

In the case of exchange coupling the system is enlarged to 

A1~x 

A1 _s X' 

A2 +X~ Y +A3 
c' 

A2 + X' ~ Y' + A3 

2X+Y ~3X 

2X' + Y' -=L 3X' 

X C4 A 
~ 4 

X' --=L A4 
c 

X~X' 
c' 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

Species Y and Y' as a function of time for the coupled Brusselator system 

is shown in Fig. 3.4. 

The scheme discussed above works for coupling an ensemble of oscilla­

tors. Fig. 3.5 shows the synchronization behavior for 10 Brusselators, each 

oscillator being coupled to every other oscillator via exchange coupling. 
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Figure 3.3: Species Y and Y' &'i a function of time for the coupled Brusselator 
system. The parameter c2 =50 differs from c'2 = c2 +5. The other parameters 
are c1 = c'1 = 5000, c3 = c; = 0.00005, and c4 = c~ = 5. c1 and c4 arc taken 
as 2 times the given value in the ca...:;e of direct coupling. 
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Figure 3.4: Stochastic simulation results using exchange coupling. Parame­
ters are same as direct coupling except that in Eq. 3.15 c-=-- c'-~0.6. 

3.3 Circadian Oscillator 

Environmental periodicity such as daily cycles of light and dark and annual 

cycles of changing climates and physical conditions create the necessity for 

organisms to develop internal time-keeping mechanisms to accurately an­

ticipate these external changes and modify their state accordingly :1:. In 

particular, a wide range of organisms, as diverse a...:; Cyanobacteria and mam­

mals, have evolved circadian rhythms with a period of about 24 hr. The 

main characteristic is the presence of intracellular transcription regulation 

571.701176 
P1924 Te 

111111/ii illil/111!1111/1111111 
TH15230 
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Figure 3.5: Synchronized behavior of 10 distinct Brusselator systems, namely, 
where all the parameters differ. I use a mean-field (all-to-all) coupling with 
c = 0.9. 

networks with a set of clock clements that give rise to stable oscillations in 

gene expression. A positive element activates genes coupled to the circa­

dian clock. It simultaneously promotes the expression of a negative clement, 

which in turn represses the positive clement. The cycle completes itself upon 

degradation of the negative element and re-exprcssion of the positive elcnwnt 

:s:. 
A crucial feature of circadian clocks is the ability to maintain a constant 

period over a wide range of internal and external fluctuations [7;. Such 

robustness ensures that the clock runs accurately and triggers the expression 

of clock-dependent genes at the appropriate time of the day. 

3.3.1 Gene Regulatory Circuit of the Circadian Oscil­

lator 

To study the dynamics of circadian clock, I use the model that has quall­

titatively been studied in the context such as Noise-Resistance In Genetic 

Oscillator-s ~6:. For a single circadian oscillatory system, Gillespie stochastic 

algorithm is used, and results arc shown in Fig. 3.8. 

vVhen two such circadian oscillators are coupled, the biochemical network 

for the case of direct coupling is shown in Fig. 3.6. This is a system of two 

genetic circuits that share a single activator which biBds to the two promoter 
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Figure 3.6: Biochemical network of the extended circadian oscillator model. 
D~ and D A denote the number of activator genes with and without A bound 
to its promoter respectively; similarly, D~ DR and D~ Ds refer to the two 
repressor promoter driven by the common promoter A; :v!A, }vfR and .'vfs 

denote mRX A of activator A, and repressors R and S; C and C' corresponds 
to the inactivated complex formed by A and R, and A and S, respectively. 
The constants a and a' denote the basal and activated rates of transcrip­
tion, 3 denotes the rate of translation, 6 denotes the rates of spontaneous 
degradation, '"Y denotes the rates of binding of A to the other components. 
and (} denotes the rates of unbinding of A from those components. The val­
ues of the parameters are given in Table I. The initial conditions are D A = 
DR=Ds=l mol, D~ = D~=D~.= MA=·\t!R=.Hs=A=R=C=O,S=LC' = 1. 
The cell has a single copy of the activator and repressor genes: D A + D~ = 
DR + D~ = Ds + D~=l moL and the volume is assumed to be unity .. 



Parameters Values 

alt. aR. f3A· 0.~ 50 h-I 

a~ 500 h- 1 

aR 0.01 h-1 

as aR+O.OOI h- 1 

a~ a~+5 h- 1 

f3R 5 h- 1 

f3s f3R+0.5 h-I 

~-~ 10 h- 1 

8~1R 0.5 h- 1 

.5-'ts DMR+0.05 b-l 

.5/t. I h-1 

J'A· J'R· )'S I mor 1 h- 1 

8R 0.2 h- 1 

8s 8R+0.2 h-I 

Yc· Yc 2 mol- 1 h- 1 

OR. Os 100 h- 1 

Figure 3. 7: Parameter values for the coupled circadian oscillator which is 
shown in Fig. 3.6 

sites of represser proteins R and S. For the case of exchange coupling the 

circuit will be different from the Fig. 3.6 in the sense that the circuit [5~ will 

be essentially doubled. 

Each individual circuit gives stochastic oscillations in the number of re­

pressor molecules. \Vhen the two systems arc coupled the stochastic os­

cillations of the two subsystems rapidly phase synchronize. The temporal 

behavior of the two repressors for direct coupling is shown in Fig. 3.9 and 

exchange coupling in Fig. 3.10. 

3.4 Circadian Oscillator with Time Delay 

For spatially extended systems, it is necessary to include time delay in the 

interactions [34]. For instance, in the case of coupling of biochemical networks 

in different cells, intercellular diffusion must be taken into account [35]. In 

such situation as a function of delay time T, the nature of synchronization 

can itself change, from being in phase to being antipha..'->e (or out of phase): 
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Figure 3.8: Oscillations in activator A and repressor R protein numbers 
obtained from numerical simulations of the stochastic descriptions of the 
model. 
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Figure 3.9: Temporal pattern when two circadian oscillators arc coupled 
directly. 
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Figure 3.10: Temporal pattern when two circadian oscillators are coupled 
through exchange coupling with c=c! =0.55. 

the Hilbert phase difference in the later case takes the value 1r rather than 

zero [30]. The time evolution of such systems can be studied through an 

appropriately adapted stochastic simulation technique [35. 29]. 

One can extend the exchange process to include time delay. namely :3o: 

~ 

"' 

X 1 ~ X~ with delayT 

X' ..:!.__. X with dclayT ! ! 

1~..----------,---- T --r-----r--------r----~ - ·--,------------
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I I 

' I ' 

' 
1 I I .. 

I I I I I I 
1400' 
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! I ~ I I I I I .. I : 
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(316) 

Figure 3.11: \Vhen the two circadian oscillators arc coupled bidirectionally 
with time delay. the repressors U and S vary in phase. This phase synchrony 
is for time delay T =15 and coupling strength c=c'=0.7. 

Here I use a modified Gillespie Algorithm [29] which takes into account 
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with time delay, the repressors H and 8 vary in anti pha.'>e. This anti phase 
synchrony is for time delay T = 10 and coupling strength c=c' =-=0. 7 
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Figure 3.13: Schematic representation of the relay mechanism. There is 
no direct coupling between 1 and 3, 1 and 3 arc coupled bidirectionally to 
oscillator 2. 

the non l\Iarkovian nature of the dynamics when time delay is present. For 

appropriate combinations of delay time and exchange rate, circadian oscilla­

tor systems synchronize. The coupled oscillators also exhibit antiphase syn­

chronization for specific combinations of ( c, T). which arc shown in Fig. 3.11 

and 3.12. 
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3.5 Relay Synchronization 

The coupling topology which is shown in Fig. 3.13. when the two oscillators 

(denoted by 1 and 3 ) arc time-delay diffusely coupled to a third oscillator 

(marked 2) is of special interest. 

The three repressors from the three subsystems, labeled H, S'. and T 

respectively. have the dynamics: oscillators denoted by 1 and 3 which aw 

time -delay diffusely coupled to oscillator 2 show pha..'Se synchrony even if 

they arc not directly coupled and all the parameters of the systems differ 

Fig. 3.14. For different combinations of delay time and coupling strength, 

one can find following regimes 

• Oscillator 2 is out of phase with the outputs of oscillators 1 and 3 which 

are in phase. 

• Oscillator 2 is antiphase to oscillators 1 and 3 which are m phase: 

Fig 3.15 and 3.16. 
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Figure 3.14: Relay Synchronization: oscillators 1 and 3 show phasP syn­
chrony, even if there is no direct coupling between 1 and 3, 1 and 3 ar(' 
coupled bidirectionally to oscillator 2. 

The above strategy is very powerfuL in the sense that one can make 

arbitrary number of oscillators synchronize either in phase or out of phas<' 

by suitable coupling topology and the time delay :3o:. 
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Figure 3.15: Relay Synchronization: oscillator 1 and 2 show antiphase syn­
chronization. 
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Figure 3.16: Relay Synchronization: oscillator 2 and 3 show antiphase syn­
chronization . 

3.6 Network Topology 

Having discussed the coupling mechanisms by which two oscillator units can 

be synchronized, I consider extended systems composed of stochastic oscilla­

tors. \Vhcn coupled on networks, such systems arc of great current interest. 

Spatiotcmporal patterns that emerge as a consequence of the complex net­

work topology play a crucial role in determining cellular function. 

It is useful to identify the simplest units of commonly used network archi­

tectures ~36~ in order to understand the manner in which complex networks 

function. It is believed that these network motifs provide the useful informa­

tion of basic regulatory mechanism and hence these network motifs contribute 
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Figure 3.17: Different network motifs for oscillators coupled bi-directionally 
via delayed channels. (a) and (b) show one-dimensional open chains with 
even and odd number of nodes. (c) shows a triangle motif with identical 
delay times T, and (d) shows a square motif. The arrows indicate the relative 
phases of the oscillators at the nodes. 

in building complex temporal behavior. I study a set of stochastic oscillators 

coupled in a motif. The coupling incorporates delay and thus there is a pos­

sibility of relay synchronization. As a example I usc the circadian oscillator 

system at each node; the nodes arc coupled via the mechanisms discussed in 

relay synchronization, and \VC consider the resulting temporal patterns see 

Fig. 3.17. 

3.6.1 Open Chain 

The simplest motif is the one-dimensional open chain where oscillators are 

coupled sequentially. Depending upon the choice ofT and coupling strength, 

there could be several possibilities. If the time-delay is small in comparison 

with the intrinsic tiine-scale of oscillation, say then with increasing coupling 

strength all the oscillators get phase-synchronized. \Vhen the time-delay is 
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Figure 3.18: Phase synchronization of the circadian oscillators in an odd 
chain with n = 5, T = 10 and c =- 0.8. In first. the repressors H. T and V 
of the oscillators 1, 3 and 5 are pha..<>e-synchronized, whereas in second fig. 
the repressors S and U of the oscillators 2 and 4 are in phase. The alternate 
oscillators arc anti-pha..<;c-synchronizcd. 

of the order of the characteristic time-scale of the system, alternate oscil­

lators can become pha..<>e-synchronized while neighboring oscillators are lag­

synchronized, a consequence of relay synchronization. ·with an even nurnber 

of oscillators, oscillators at the end of the chains will necessarily be in lag 

synchrony, while if there is an odd number of oscillators they will be in phase. 

Fg. 3.18 shows one such situation with n =-= 5 where the oscillators L 3 and 

5 are phase-synchronized. 
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Figure 3.19: Circadian oscillators put in a triangular motif as in Fig. 3.17( c). 
Phase synchronization of the repressors is achieved when equal coupling 
strength and time-delay arc used. Here c = 0.9 and T = 20. 

3.6.2 Closed Chain 

I also study closed chains. Three oscillators each coupled to the other results in 

triangular motif, of Fig. 3.17( c) or four oscillators coupled in a quadrilateral 

Fig. 3.17( d). For the shake of simplicity, I consider the case of equal time­

delays. In ca.<>c of equilateral triangle, node 2 acts as a relay between nodes 

1 and 3. 13ut node 3 can act as a relay between nodes 1 and 2 to get them 

in-phase. Thus there are two possibilities, due to these competing cflccts. 

depending on the coupling strength and time-delay, the synchronization can 

either be destroyed or all three become synchronized. In the case of square 

motif, no such competition arises and a.<> before the alternate oscillators arc 

phase synchronized. Therefore for systems coupled in a closed chain with odd 

number of nodes, it is possible to have all the oscillators phase synchronized. 

\Vith even number of nodes. a dosed chain behaves like an open chain. 
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Figure 3.20: Circadian oscillators put in a square motif as in Fig. 3.17( d). 
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Chanter 4 ..... 

Conclusio:r: 

In the present work I have explored temporal patterns of extended systems 

with stochastic dynamics, particularly the nature of synchronization, I have 

investigated some of the simplest mechanisms through which such synchrony 

can be effected, and using the idea of relay synchronization I have studied 

various network motif. 

The microscopic behavior of typical transcriptional gene regulatory cir­

cuit, both as individual, and ensembles of such circuits have been explored. 

In the case of spatially extended systems, it is necessary to include time delay 

in the interactions. In such situations the nature of temporal patterns can 

change a..s a function of delay time T and the nature of synchronization will 

be phase or antiphase or out of phase as a function of the coupling topology. 

The coupling schem~s which I have discussed in the present work ha\'e 

application in the design and control of the synthetic biological networks 

where synchronization of oscillations may be a desirable feature. :\ Ic :\I ill en 

et. al [37] have shown that intercell signaling via a diffusing molecule call 

couple genetic oscillators and effect synchrony. Phase synchrony call emerge 

under very general conditions with high level of ambient noise [30]. As recent 

time-resolved microarray experiments of yeast have revealed, the multitude 

of variable gene expression patterns classify into a small number of groups, 

all genes of a given group having very similar temporal variation profiles ~38]. 

This may be a consequence of large scale synchronization. 
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Using the idea of relay synchronization, I have studied various network 

motifs, showing the possibility of achieving synchronization as well as com­

plex temporal variations over large distances. This study will provide a 

framework within which one can study the various oscillatory processes \vi thin 

cells, and may also be useful in analyzing intercellular communication. 
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