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Chapter 1 

An overview of Ecology and introduction to modelling ecosystem via 

Statistical Mechanics 

1.1 Introduction 

1.2 An overview of different approaches to study an ecosystem 

1.3 Evolution of mathematical models of populations 

1.4 The essence of Statistical Mechanics 

1.5 An example of statistical mechanics at work: A 2-level system 

1.6 Motivation for use of statistical Mechanics to study the ecosystem 

1. 7 Scope of the dissertation 

1.1 Introduction 

The word "ecology", which denotes a branch of biology that deals with the relations 

of organisms and their environment, including their relations with other organisms, is 

derived from the word "eco", which means "house", or a "dwelling place". Ecology is 

an interdisciplinary field, cutting across the life and geophysical sciences. Ecological 

investigations look into two directions: (1) The nature of environments and the 

demands which these environments make upon the organisms that inhabit them; and 

(2) the characteristics of organisms (plant or animal), species, and groups that permit 

or promote their tolerance of specific environmental conditions. In recent years, 

particular emphasis has been placed on the studies of groups rather than single species 

and this has given rise to the term ecosystem. Odum [1] has defined an ecosystem as 

"any entity or natural unit that includes living and nonliving parts interacting to 

produce a stable system in which the exchange of materials between the living and 

nonliving parts follows circular paths." 

Our concern in this dissertation is with the statistical mechanical approach to 

modeling of ecosystems. A pioneering work in the field is a model given by Kerner 

[2]; before we deal with it, and its variaots, it seems desirable that we present a broad 

overview of the different approaches that may be used to study an ecosystem. This is 

done in the next section, where definitions of some basic ecological terms are also 



Chapter I 

given. This section ends by highlighting the role of mathematical models in an overall 

context. Section 3 of this chapter is devoted to tracing the evolution of mathematical 

models of populations, ending with equations that describe a community of a large 

number of species. In Sec. 4, we try to convey the essence of the framework of 

statistical mechanics in physics. In Sec. 5, we show this framework at work for a 

particularly simple system. Section 6 is devoted to motivating the use of statistical 

mechanics to study populations in an ecosystem. Section 7 delineates the scope of the 

dissertation and the plan for the following chapters. 

1.2 An overview of different approaches to study an ecosystem 

(i) Environmental or Habitat approach: 

Characteristics of an environment fall into three major categories: (a) physical; (b). 

chemical; and (c) biotic. In connection with any of these factors, if the presence or 

absence of a given condition is necessary for sustenance of whatever group, species, 

etc. that is being considered, such condition is referred to as a limiting factor. Physical 

factors include light, temperature, wind, fire, soil structure, etc. Chemical factors 

include the composition of the water (pH, dissolved gases and solids, etc.); the 

composition of the air (pollutants, water vapor, etc.); the composition of the soil 

(alkalinity, acidity, presence of various elements and compounds) etc.; Biotic factors 

are related to food supply and presen_ce and behavior of neighboring organisms 

(predators, parasites, etc.). 

Environments are classified into four major types: (a) freshwater; (b) marine; (c) 

terrestrial: and (d) symbiotic. There are several subdivisions of each. For example, 

terrestrial environments, called biomes, are divided into deserts, tundra, grasslands, 

savannas, different types of forests, etc. 

In the symbiotic environment, the factors of concern are other organisms, rather 

than nonorganic factors. There are numerous examples where two or more species 

may inhabit a given area of close proximity in the absence of predators. Usually, each 

. species present will contribute in some fashion to the well being of others. 

2 
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(ii) Communities approach: 

The term population is used to describe a group of individuals composed of a single 

species or of several closely associated species that occupy a definite environmental 

area. Where all of the populations that occupy a given geographic area are studied, the 

term biotic community is used. The portion of the earth on or in which life exists is 

termed as the biosphere. Habitat is defined as that particular environment in which a 

population lives. For example, a catfish that likes slow-moving streams and lakes is 
-

described as having this particular habitat. Obviously, the variation among habitats 

considering the tens of thousands of life forms is tremendous, although 

generalizations can be made. Niche is a term used to describe the role played by a 

population within its community and ecosystem. Numerous factors determine niche

eating habits, predaroriness, etc. 

The first branch of ecology to develop beyond the stage of life-history study was 

the description of vegetation. Its basic method is to study the detailed distribution of 

vascular plants in terms of communities of various types, the pattern and complexity 

of which depend largely upon the cli~ate and soil. The major contribution of this 

school is the idea of sera/ succession toward a stable climax. According to this idea, if 

a new environment is created for terrestrial plants, or an old one drastically changed, 

the vegetation on it does not remain unchanged for eternity, but rather alters the 

environment so that it becomes more suitable for some new and different kind of 

vegetation. Ultimately, a climax vegetation develops which is stable under the 

prevailing climatic conditions. A closely related concept is that of climax community. 

Probably the greatest body of coherent ecological theory has been created via 

studies of populations. The study of field populations has uncovered many interesting 

phenomena, such as the periodic oscillation of arctic small vertebrate populations and 

_the seasonal changes in abundance of planktonic organisms. These observations have 

stimulated both laboratory experiments and the development of deductive 

mathematical theory. 

3 
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1.3 Evolution of mathematical models of populations 

Malthusian model: 

It is a useful to consider first the simplest idealized ecosystem and build a 

quantitative basis for them. The most idealized system is one with a single species in 

an environment in which the resources are unlimited. It may be assumed that in such a 

system the growth rate per individual is- same for all individuals and is constant with 

respect to time. It is the one of the simplest ecosystem models and it is assumed in this 

model that the species are immortal, rate ofreproduction is constant with time and the 

species are uniformly distributed over the space. 

The basic equation for this model is 

dN =aN 
dt ' 

and the solution ofthe equation is 

· N(t) = N(O)exp(a t), 

where 

N (t) =population of the species at timet. 

a = intrinsic rate constant. 

(I) 

(2) 

If death as well as birth is also taken into account then the constant a is replaced by 

r (=b-d). Where'd' stands for death rate and 'b' stands for birth rate. lfr > 0, i.e. birth 

is more than death, it is called biotic potential growth. If r < 0, i.e. death is more than 

birth, then the species becomes extinct in course of time. 

Verhulst-pearl model: 

The environment is in reality not an unlimited one. The food available to the 

population is sooner or later going to become limited because of rising population. 

Hence the growth rate 'a' has to be such that it shows a decrease as the population 

rises. The simplest possibility that we could consider is if 'a' is replaced by 'a-~N'. 

This is the logistic approach and reason behind this approach is that at higher density 

the rate ofincrease of population decreases because the space and food are limited in 

4 
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any ecosystem. Here the factor '13' reflects the degree to which the density decreases 

the rate of increase of the population and significant due to the competition among the 

individuals of species. When 'N' is small 'a-J3N' tends to 'a' and when 'N' is large 

then, 

d(a-f3 N) 
dN 

is negative. The basic equation for this approach is 

dN -=(a-/3 N)N 
dt 

(3) 

This is the well-known Pearl-Verhulst logistic equation of population growth. And 

the solution of this is 

(IN -a I PI J . 
In N = -a (t + c} 

Two cases arise 

1. N-a/J3 > 0 i.e. N>a/[3, and 

2. N-a/J3 <0 I.e. N<a/[3. 

In case ofN>a/J3 solution becomes 

N- a/f3 
-1-exp{-a(t+c)} 

1ft tends to infinity then N tends to a/J3. 

In case ofN<a/J3 the solution is 

N- a/f3 
- 1 + exp{- a (t + c)} 

In this case again N tends to a/J3, as time goes to infinity. 

5 
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According to this approach, the population rises initially as in the Malthusian 

model, but then the growth rate begins to slow down and the population turns towards 

its asymptotic value, which is (a/l3). This value is the maximum that the population 

-can reach and is therefore called the carrying capacity of the given environment. 

Lotka- Voltera model: 

We now consider a situation where we have two interacting population in a given 

ecosystem, say a prey and a predator. The simplest pray predator model given 

independently by Lotka (1925) and Voltera (1926). Two very general assumptions 

used in such Pray predator model are; 

1) the two populations inhabit the same area, so density is directly proportional to 

numbers. 

2) there is no time lag in the response of either population to changes due to one 

other. 

If 'N1' represents the population of pray while 'N2' represents that of predator then 

fundamental equations for this model are 

(7) 

and 

(8) 

where a, 13, y and o are positive quantities. Here a and y are average rate of growth 

and decay per individual in the absence of the other species and 13 and 8 are 

interaction parameters. If the niche is not overlapping the interaction is reduced and 

the values of 13 and o are very small. The sign in the interaction terms in the above 

equation are based on the expectation that the interaction will generate predators at 

the cost of pray. These equations are coupled equation so solved by assuming 

equilibrium point. 

6 



At equilibrium point 

dN =O 
dt 

Chapter 1 

With this consideration one can show the trajectory in the phase space is given by 

(9) 

where 

This model shows that both prey and predator populations under go oscillations 

with constant amplitudes. The behavior is generally referred to as one of the neutral 

stability. The point (N;, N;) corresponds to the point of neutral stability, where N; = 

y/8 and N; = a/J3 

Leslie Gower model: 

An alternative formulation of prey-predator equations was suggested by Leslie and 

Gower [3]. The rate equation for Prey (N1) and Predator~) are given by, 

(10) 

and 

(11) 

where a, y, 8 and 11 are positive. We generally use isocline's method to study the 

system. The 'N 1- isocline' and 'N2-isocline' are the curve in 'N1-N2' phase space on 

7 
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which the time rate of change of prey and predator respectively are zero. Thus on 'N 1-

isocline', dN1/dt = 0 and on 'N2-. isocline', dN2/dt = 0. From equation (10) and (11) 

we can see that 

N 1 isocline: N 1 = aly 

N2 isocline: N2 = (8/11)N 1 

Thus both isoclines are straight lines, which intersect at point ( Nt, N; ), where N; = 

a/y and N; = 8/11 

At point ( N;, N; ) both dN 1/dt = 0 and dN2/dt = 0. This means that at this point 

population of prey and pred~tor remains constant with time; hence this point is the 

equilibrium point. This model takes into account the likely effect of predators per 

capita growth rate of the relative sizes of interacting population. Thus larger the ratio, 

N1/ N2, the smaller the number of prey per predator and consequently, the less rapid 

the growth of predator population. 

Leslie's approach is different from Voltera's approach in the following way. In case 

of Voltera, predator number depends only upon the density of prey whereas in the 

case of Leslie it depends upon the number of prey per predator. Voltera relates the 

rate of increase of predators to the rate at which the prey are being eaten whereas in 

Lesile's approaeh there is no relationship between the rate at which predator eats and 

the rate at which it reproduces. 

Holling -Tanner model: 

The Holling-Tanner model [3] is slightly more elaborate than that of Leslie and 

Gower model. 

dNI =a N (t- NI ) - y N 2 N 
dt I k D+NI I 

(12) 

(13) 

where a is intrinsic growth rate of prey, k is the maximum number of prey allowed by 

the resources of the system, y is maximum predation rate, D is a constant determining 

8 
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how fast the functional response curve increases at low prey densities. The value of o 
and 1J are same as discussed in Leslie Gower model. In this model the additional term 

( r N 2 N1) has introduced in place ofyN2N1 the addition ofD+ N1 corresponds that 
D+N1 

even N1 is very large we have still limitations of attack rate of predator result ofthis 

population oscillates in closed curve and independent of initial conditioned. 

Competing species model (Gauss's model): 

If more than one species are present in the ecosystem then interaction takes place 

not only among the individuals of the same species but also among the individuals of 

different species. Both of these interactions are generally negative due to the 

competition between them and predation between the two species, again because of 

limited food supply and space. In this approach the basic equations are 

(14) 

and 

(15) 

These are nonlinear, coupled equation and cannot be directly solved. 

In case of three species the basic equations can be written down as 

(16) 

(17) 

and 

(18) 

9 
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Generalizing to "k" species yields 

This can be compactly written as 

dN. k 
-

1 = r.N.- Ia- .N.N. (i = 1,2, ... k) -df I I j=] I} I j 
(22) 

The first term on right side shows how particular species grow if it left to itself in a 

· given ecosystem and no other species interact with it. 'ri' (birth minus death rate) may 

be positive or negative which result exponential rise or fall respectively. The 

remaining term express the interaction of species 'i' with all other species 'j' stating 

that increase or decrease of Ni per unit time is effectively proportional to the number 

of encounters per second between 'i' and 'j', taken to be measured by the product Ni 

Nj. 

1.4 The essence of Statistical Mechanics 

One major problem of physics involves the prediction ofthe macroscopic properties 

of matter in terms of the molecules of which it is composed. According to classical 

physics, this could have been accomplished by a determination of the detailed motion 

of each molecule and by a subsequent superposition or summation of their effects. 

The Heisenberg uncertainty principle now indicates that this process is impossible, 

10 
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since we cannot acquire sufficient information about the initial state of the molecules. 

Even if this were not so, the problem would be practically insoluble because of the 

extremely large number (::::1 023
) of molecules involved in nearly all observations. 

Many successful predictions can be made, however, by considering only the average, 

or most probable, behavior of the molecules, rather than the behavior of individuals. 

This is the method used in statistical mechanics, which is based on the following 

postulates: 

Postulate 1: The existence of microstates 

Postulate 2: The principle of equal a priori probabilities of individual microstates 

Postulate 3: The law of conservation of energy. 

Postulate4:The values of the macroscopic variables when the system is in 

thermodynamic equilibrium are given bf the ensemble averages of the corresponding 

quantities in the statistical mechanical approach 

Let us first remark that the average of a physical quantity in statistical mechanics 

can be determined in two ways. The system could be followed over a long period of 

time during which it would sample a large number of microstates, independent of the 

initial state of the system (this is known as ergodicity). The average of the physical 

quantity over the long period would give the time-averaged value of the physical 

quantity. Alternately, one could consider a large collection (ensemble) of identical 

closed systems prepared under identical conditions and average the physical quantity 

over all these systems at one instant of time to determine the ensemble average. In 

practice when estimating an ensemble average, it is convenient to restrict the 

ensemble to systems containing one and only one copy of each of the microstates . 

accessible to the closed system. The ergodic hypothesis is invoked to assure the 

equality of ensemble and time averages of physical quantities in equilibrium 

thermodynamics. 

Consider now a small system in thermal equilibrium with a heat reservoir at 

absolute temperature T. The probability that the system is in the ith microstate is 

proportional to the Boltzmann factor, i.e. 

Pi = A exp( -l3ei), (1) 

11 



Chapter I 

where f3 =1/la, k is the Boltzmann constant and Ei is the energy of the i1h microstate. 

Since the small system must be in one of_its possible microstates, one has 

this implies 

A= I 
"i,exp(-/3& ;) 
i 

Thus 

exp(-Pe;) 
P;_ = z , 

where 

Z = "i,exp(-P& ;) 
i 

(2) 

(3) 

(4) 

(5) 

is the partition function. The sum in Eq. (5) is over all the microstates ofthe system. 

Postulate 2 now implies that the average of any variablea, when the system is in 

thermal equilibrium with the heat reservoir, is 

L.a ;exp(-P& ;) 
a=....:..; ____ _ 

z (6) 

where a; is the value of the variable a when the system is in its i1h microstate. The 

partition function of a system is the most important construct of statistical mechanics, 

because its knowledge enables one to deduce various thermodynamic properties of the 

system such as the internal energy, pressure, volume, entropy, Helmholtz free energy, 

etc. 

12 
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1.5 An example of statistical mechanics at work: A 2-level system 

Let a system have accessible to it only two non-degenerate microstates, which have 

energies Eo and e1• Let the system be in equilibrium with a heat reservoir at 

temperature, T. The partition function of the system is then given by Eq. (5) as 

Z = exp(-f3e 0) + exp(-f3e 1). (7) 

Applying Eq. (4), we have 

exp(-/3 e 0 ) 
Po=------~~~~---

exp (-fie 0 ) + exp (-f3 e 1 ) 

l 
(8) =--~---

1 + exp( -0 IT) 

PI= exp(-fiet) exp(-f3eo) 
exp(-fie 0) + exp(- fie 1) 

exp(-0 IT) = --"-'----'--
1 + exp( -0 IT) 

(9) 

(l 0) 

Clearly, both po and p1 depend upon the temperature of the reservoir. For Tl9 =0.01, 

0.1 and 0.2, p1 is equal to 3.72x1044
, 4.54x10-5 and 6.69x10-5

, respectively; for 

Tl9=10, p1 equals 0.475. According to Eq. (6), the ensemble average ofthe system is 

-
e =:Ee;p; 

i 

e 0 + e 1 exp( -0 IT) = __..::... __ .:_;:_;_ __ ___;_ 
1 + exp( -0 IT) 

For T=9, for instance, Eq. (11) gives 

(11) 

l3 
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-
e = 0.73le 0+0.269e 1• (12) 

1.6 Motivation for use of statistical Mechanics to study the ecosystem 

An ecosystem is a complex system consisting of the biotic and abiotic components 

of the environment. Different organisms in it are continuously interacting among 

themselves and with the other organisms. Further, the nature of these interactions also 

depends on the abiotic component of the environment. For example, there are 

hundreds of species of butterflies and moths in a forest and thousands of species of 

other insects; and there are as many different environments within one forest as there 

are kind of insects. One could, in principle, set up differential equations of the kind 

noted above and try to solve them in order to determine how different species evolve 

in time. But the set of the differential equations is very large in number (as number of 

species is very large); furthermore, these equations are coupled, nonlinear equations, 

and then there is the intrinsic uncertainty in fixing the values of the different 

interaction parameters. Therefore prognosis of the system via this approach is a 

hopeless task. 

The above situation is reminiscent of the statistical mechanical approach, which 

deals with systems comprising enormous numbers of particles in the Physics. Just as 

we can derive results of the kinetic theory of gases/thermodynamics by the application 

of statistical mechanics, we could attempt to unravel the broad features of the 

dynamics of an ecosystem via a suitable adaptation of the methods of statistical 

mechanics. 

1. 7 Scope of the dissertation 

In chapter 2, we discuss the Kerner's statistical mechanical approach to modeling an 

ecosystem. Essentially, this involves casting the Volterra's equations for k-species 

into the Newtonian form and showing that the system satisfies the Liouville theorem. 

One then shows that the Kerner approach admits of a conserved quantity, which is 

identified as the biomass. We also consider the micro canonical ensemble, which 

yields a result equivalent to the equipartition of energy, and the canonical ensemble 

14 
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which yields the result that different components of the ecosystem are characterized 

by the same ''temperature". 

In chapter 3, The Kerner method is applied to Gompertz model. This is the study 

carried out by Gunasekran and Pande [4]. The motivation for this work was to obtain 

theoretically a lognormal distribution for the abundance of a species in a multi-species 

ecosystem, empirical evidence for which was noted by Preston [5]. Notable features 

of this derivation were the use of the anti-symmetry property of the community 

matrix, and the result that the different components of the system are characterized by 

the same "temperature". This chapter also deals with the work of Sitaram and Varma 

[6], who also used the property of anti-symmetry of the community matrix and 

obtained a log-normal distribution, but showed that the system is characterized by not 

one, but n/2 "temperatures". This chapter finally deals with a study carried out by 

Singh and Pande [7], in which they obtain the log-normal distribution without 

imposing the restriction that the community matrix be anti-symmetric, 

In chapter 4 we try to examine the experimental evidence for and against the 

lognormal distribution for the abundance of a species in an ecosystem based on the 

field studies carried out by Saunders [8], Dirks [9], and Williams [I 0]. 

15 
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Chapter 2 

Kerner's Statjstical Mechanical Approach to 

Modeling an Ecosystem 

2.1 Introduction 

2.2 Casting Volterra's ecosystem equations into the Newtonian form 

2.3 Statistical mechanics of the ecosystem: The Liouville theorem 

2.4 The existence of a conserved quantity in the Kerner model: The biomass 
-

2.5 Micro canonical ensemble: The equivalent of the "equipartition" theorem for . 

an ecosystem 

2.6 Canonical ensemble: Different components of an ecosystem have the same 

"temperature"; the Kerner distribution 

2.1 Introduction 

In any ecosystem the number of species is very large. The first systematic attempt to 

study the structural patterns for species in an ecosystem was made by Corbet [1 0], 

Fisher [I 0] and Williams [I 0], and later ~y Preston [5]. On the basis of empirical data, 

they found mathematical relations between the number of species and the number of 

individuals. Corbet, Fisher and Williams [lO] in 1943 were led to the Maxwell

Boltzmann distribution, while Preston obtained a lognormal distribution. In the wake 

of these findings, it became of interest to investigate if theoretical models could yield 

these results. One possibility for this purpose was to invoke the equations embodying 

interactions of different species. Since equations describing the interactions of a 

multi-species system are coupled, nonlinear differential equations, and are very large 

in number, solving them is a very difficult and impractical proposition. If we confine 

ourselves to the study of an ecosystem in the equilibrium state, we may try to tackle 

the problem through techniques of statistical mechanics. This technique enables us to 

·calculate some conserved quantities of physical interest for the equilibrium state 

without actually solving the equations of an ecosystem model. 

The first attempt to develop a statistical mechanics of biological association, taking 

Voltera's model as model for the system, was developed by Kerner [2]. S. Takeanka 
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[11] had already observed that the Volterra model [12] can be cast in the form of 

Hamilton's equations, and hence satisfies Liouville's theorem. In his work Kerner [2] 

sought to determine constants of motion for the ecosystem analogous to energy of a 

physical system, and tried to relate them to different parameters of the system. 

2.2 Casting Volterra's ecosystem equations into the Newtonian form 

Starting with Voltera's equation of model of the ecosystem, Kerner [2] derived an 

equation of motion for the ecosystem. 

According toVoltera, 

(1) 

The term &rNr tells about how each species propagates if it left to itself in a given 

environment and no other species interacts with it. This is nothing but Malthusian 

assumption that provides exponential growth of the population depending upon birth 

& death rate. The 2nd term of right hand side express the interaction of species 'r' with 

all other species 's' stating that increase or decrease of 'Nr' per unit time is effectively 

proportional to the number of encounters per unit time between 'r' and any 's', taken 

to be measured by the product 'NsNr'. 

Kerner [2] assumed that the interaction parameters a.ij be antisymmetric with respec~ 

to their indices 'i' & 'j', i.e. au= -a.ji· This simply means for i=j, a.ii=an=O. This 

assumption of Kerner was based on binary-prey-predator system model in which, if 

'r' gains because of encounter then's' must lose. Kerner was interested in stationary 

state and took an equilibrium value of'Nr' is 'qr'. 

At equilibrium sate, 

dN, =O 
dt 

Hence applying equilibrium condition in equation (1) we have 

17 



~erPr+Iasrqs =0 
s 

On rewriting the equation ( 1) we get 

Putting the value of Erf3r = -:Easr<ls from (2) we got, 

Kerner introduced new dependent variable, 

N 
v, =In-' 

q, 

dv, qr 1 dN, 1 dN, 
~-=-.-.--=-.--

dt N, q, dt N, dt 

From equation (4) we got, 

Pr~r =.Las,qs(evs -1) 
s 

. dv 
Where v, =-' 

dt 

(2) 

(3) 

(4) 

(5) 

(6) 

This equation is analogous to Newton's law of motion. 

Chapter 2 

2.3 Statistical mechanics of the ecosystem: The Liouville theorem 

Kenner introduced the new variable (vr=lnNrfqr) to serve the Lioville's theorem. 

Considering a large number of copies, a Gibbs ensemble of biological association 

18 
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each of the same character and each controlled by the same differential equation (6). 

The initial values of all Vr are different for all species. Kerner has taken to be 

. sllfficiently numerous points in the Cartesian space of the Vr (phase space) so 

considered that the point constitute a fluid of, say, density p(vi,v2, ... vn) at a point 

(v~, v2, ... ,vn) and velocity, V( v1, v2 , ••• v n. ), at this point. Therefore from the hydro 

dynamical equation of continuity we have, 

(7) 

a(p vrJ 
=> ap +I =0 

at avr 

an . an av 
=>-,..,-+Iv _,..,_+Ip-r =0 

at r avr avr 

As vr is independent of vr [from equation (6)] we got, 

an . an 
:.-,..,-+Iv _t::_=O at r av 

r 

(8) 

This is the Liouville's theorem [18] of the conservation of density in phase. This 

simply means that as one goes along with the motion of one system point, the density 

in neighborhood remains invariable. This shows that the Voltera model follows 

Liouville's theorem. 
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2.4 The existence of a conserved quantity in the Kerner model: The 

biomass 

Now Kerner tried to find out a conserved quantity, called the constant of motion. By 

multiplying qr[exp (vr)-1] to equation (6) and sum over all r, we have 

And, as interaction parameter 'CLsr' is antisymetric (i.e. Usr =- Urs), he got 

'L/3 rqr ~r(ev, -1)= 0 (10) 
r 

~ 'Lf f3 q ~- f3 q _r_ dt =Constant 
[ 

iev, \ d(v )] 
r r r dt r r dt 

Kerner said this constant 'G' 

'L/3 rqr(ev' -vr )= G (11) 
r 

As 'G' is a constant therefore dG/dt = 0 

Thus Kerner got a constant 'G' which is a conserved quantity and analogous to the 

total energy of an isolated physical system. This 'G' is a universal single valued 

constant of motion. 
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2.5 Micro canonical ensemble: The equivalent of the "equipartition" 

theorem for an ecosystem 

Adopting the proposition from Gibbs ensemble theory [13] for physical system, 

Kerner defined the micro canonical ensemble in phase space for the system under 

consideration in terms of density function, 

(12) 

where '8' is the standard Dirac delta function and 'p0 ' is a numerical constant. 

Hence the volume of the ensemble phase space can be written as, 

• = Jp d-r 

where'd't' is the infinitesimal volume in the Gibbs space, and given by 

Here in this case, 

d-r =ds.dn 

where, 

ds = element of area on a surface of constant 'G' 

dn = increment of length normal to the surface. 

As in statistical mechanics the equilibrium value is just the average value of 

quantity over the micro canonical ensemble. Hence micro canonical average of 

quantity 'f is given by, 

577 TH 

(13) R165 St 

1111111111111111111111111111111 
TH11354 
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Now the gradient of 'G' is given by, 

dG" 
VG=-n 

dn 

1\ -t 

where ' n ' is a unit vector along ' dn ' 

(14) 

-t 

Now taking scalar product of 'VG' with 'dn ', we have, 

~ dG A ~ 

VG.dn = -n.dn 
dn 

=> IVGI dn = dG 

dG 
=>dn= IVGI (15) 

Here dG = difference in 'G values' of two neighboring constant 'G surface'. 

Putting the above substitution we have, 

dG 
f fp 0o (G-G0 )ds.IVGI 

(/)= dG 
f p 00 (G-G0 )ds.IVGI 

Now Kerner took the function 'f' to be 

(16) 

22 
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As, 

And also, 

" 
VG=IVG!n 

(17) 

From equation ( 16) we have, 

From equation ( 17), 

(18) 

where 
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From Gauss' divergence theorem; 

(19) 

(20) 

~ 

where '-ro' = f div v, dr, i.e. volume enclosed by 'surface Go' 

This result is analogous to the equipartition theorem of physics. It means the total 'T' 

of the biological association in the mean is equally distributed amongst all species as 

in the case of statistical mechanics. The quantity 'T' will be recognized to be a loose 

_analog of kinetic energy 

If Kerner took the function, f, to be Dr = 8G/8vr ( = p ,q, ( N ;{, -1)) then he got 

(Dr)= 0. This means that the mean of 'Nr' is 'qr'. Now integrating equation (4) over 

the limit '0' to't' we have; 

(21) 

This equation is analogous to Volterra mechanics as shown in equation (2). So 

Kerner suggested that the system under study might be Ergodic. He finally concluded 

that all species, not just same as proven by Voltera, must in general exhibits 

undamped oscillation; for the only alternative to continual oscillation is a tendency of 

the 'N' towards finite limits, and such tendency in any 'N' clearly will not permit the 

system point to return near a given starting point. 
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2.6 Canonical ensemble: Different components of an ecosystem have 

the same "temperature"; the Kerner distribution 

In order to find out a temperature like quantity, 9, corresponding to the conserved 

quantity, G, Kerner defined canonical ensemble for the system via density function 

with the help of Gibbs theory. And the density function was given by, 

where ''¥' is the free energy of a system in the thermodynamic equilibrium. This 

distribution can also be written as, 

(22) 

where 'K' is a numerical constant. Now the distribution of phase points is 

characterized by the constant '9' rather than by 'G'. This '9' is analogous to the 

temperature function as in the case of statistical mechanics. 

Again Kerner took the function 'Dr= oG/ovr' and calculated the canonical average 

for this in same manner as in the case· of micro canonical ensemble and got zero. 

Which means that ensemble average of 'Nr' is again 'qr'. Similarly he got the 

canonical average for the quantity 'Tr' was '8'. 

(23) 

=8 

This gives the earlier result of equpartition of 'T' as Kerner got in case of micro 

. canonical ensemble. This 'T' also gave an insight into the meaning of 'temperature', 

8, ofbiological association. 
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Now Kerner took the function as 'n; ', computed its canonical average and got a 

more perspicuous view of '8'. 

s( 80
]

2 

exp ( -% )dr 
( 2) avr 
Dr = ---'--J-'-ex___,p (~--%-:-~)r--dr- (24) 

(25) 

Therefore Kerner concluded that the temperature, 8, is the measure of the mean 

square deviation of the population from their stationary state value, and vice-versa. A 

zero temperature means a completely 'quite' stationary state of biological association 

which is a kind of indicator of the level of extinction from stationary state. 

The ensemble density in equation (22) gives the probability density that a given 

system is found in a state (v1,v2, ... ,vn). It enabled Kerner to calculate the probability 

that a particular species 'r' will have its-nr where nr = Nr lqr , in the range nr and nr + 

dnr. This probability is given by, 

(26) 

This equation is analogous to the Maxwell-Boltzmann distribution law. This Kerner 

distribution is exactly the x2 
- distribution for large value of '8', which is exactly the 

distribution of the intrinsic abundance of a species assumed by Cobert, Fisher, and 

Williams [10]. 

-
- Thus Kerner statistical approach is based on the assumption of antisymetric 

relationship of so called community matrix. This assumption is quite restrictive which 
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is only applicable to even-numbered species ecosystem and the distribution for the 

relative abundance of species is Maxwell-Boltzmann distribution not the Preston 

lognormal distribution. 
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Chapter3 

Statistical mechanics of the Gompertz model via the Kerner method (with 

and without the assumption of the anti-symmetry of the community 

matrix) 

3.1 Introduction 

3.2 Statistical mechanics of the Gompertz model: Gunasekran and Pande's 

approach 

3.3 Comments on Gunasekran and Pande's work 

3.4 Statistical mechanics of the Gompertz model: Sitaram and Varma's approach 

3.5 Statistical mechanics ofthe Gompertz model: Singh and Pande's approach 

3.1 Introduction 

By using the same approach as used by Kerner [2], Gunasekaran and Pande [4], and 

later Sitaram and Varma [6] derived Preston's Log-normal distribution pattern for the 

relative abundance of species. They took Gompertz model for the ecosystem instead 

ofthe Voltera model considered by Kerner [2]. 

According to Gompertz model, 

where 'Ni' is the population of ith species and 'Ei' and 'aij' are real constant similar to 

those used in Voltera mechanics. The first term ofRHS ofthe equation (1) represents 

the natural growth or decay of population i.e. Malthusian growth and the second term 

is due to interaction among the individuals. 

Substitution of 'log Nj' in Voltera model in the place of 'Nj' makes the Gompertz 

model in exactly solvable mode. It may be emphasized that the new form (Gompertz 

model) continues to be nonlinear, as the Voltera model is. The advantage accruing 

from this new form is that a transformation to new variable, Xi = log Ni, puts the 

. model into a linear and solvable form. 
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We note that Gunasekaran and Pande [4], and later Sitaram and Varma [6] derived 

·Preston's Log-normal distribution pattern for the relative abundance of species by 

assuming the anti-symmetry property of the community matrix. The studies of these 

authors are dealt with in sections 3.2-3.3 and 3.4, respectively. In the final section of 

this chapter, we report the work of Singh and Pande [7], where the anti-symmetry 

property of the community matrix is done away with, and yet the distribution obtained 

is a log-normal one. Before we discuss these models, it seems desirable to collect 

below the rudiments of the log-normal distribution. 

Log-normal distribution: 

Normal distribution or Gaussian distribution [14] is one of the examples of 

continuous distribution. It is defined by the equation, 

Y = I exp(- I (x- Jl )2 J' 
(J' .J2i 2 (J' 2 

where 'J.l' =mean and 'cr' =standard deviation. 

When the variable 'X' is expressed in terms of standard units z = (X - J.l)/cr, the 

equation for normal distribution becomes 

I ( 1 2) Y= exp --z 
a.fii 2 

This is called the standard form of normal distribution and the 'z' is normally 

distributed with mean zero and variance one. 

Now 'X' is said to have a log-normal distribution if 'In X' is normally distributed. i.e. 

if 'X' is replaced by 'In X' then the distribution obtained is called log-normal 

distribution. 

The probability distribution is now therefore is given by 

_ I ( 1 (In X -In .U g) 2 
) 

lnY- r,:;-exp -
2 

(J' v 27! 2 (J' g 
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where 'J..lg' is called geometric mean and 'crg' is geometric standard deviation, and 

they are given by 

and, 

3.2 Statistical mechanics of the Gompertz model: 

Gunasekran and Pande's approach 

Gunasekaran and Pande [4] attempted to construct a statistical mechanics of the 

ecosystem in which the interactions among the individuals are of the form of 

GQmpertz model [15]. From Gompertz model: 

dN. 
-' =e.N.+:La .. N.logN. dt lljljl J 

Gunasekaran and Pan de [ 4] introduced the transformation, 

X;= logN; 

On differentiation of equation (2) we get, 

dx; =-t_dN; 
dt N; dt 

(I) 

(2) 

In order to construct a statistical mechanics of the ecosystem, Gomportz model can 

be written as by making the use ofequation (1) 

dx. 
-'=e. +:La .. x. 
dt I j UJ 

(3) 
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Now they put the constraint, aij == -aji, i.e. constraint of antisymetry as put by Kerner 

in his work. 

At equilibrium state, 

-·. 
:.&; +La!ixi =0 (4) 

J 

· From equation (3) and equation (4) we have, 

dx- • 
-

1 =La--(x.-x.) 
dt }/}} J 

(5) 

Multiplying both side by (x; -x;) and summing over 'j' we get, 

And applying antysymetry condition, RHS of above equation vanishes and the 

equation (5) gives a conserved quantity, G. 

G = L -x. -x.x. ( 
1 2 •) 

j 2 I I I 
(6) 

This 'G' is the constant of motion of the ecosystem, which was established by 

Gunasekaran and Pande [4]. 

They also defined the micro canonical ensemble as defined by the Kerner [2], 

where 'p0 ' is a constant '8' is the Dirac delta function. The ensemble average of any 

function, f, is given by, 

(/) = Jfp 08 (G-G0 ) dr 
Jp 08 (G-G0 ) dr 
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Micro canonical ensemble is some times more useful instead of the canonical 

. ensemble, which can be defined easily for a smaller part of the system as well. 

Gunasekaran and Pande [4] got the same result for function 'Tr' and 'Dr' as obtained 

by Kerner. For more realistic situation we now go over to canonical ensemble. In 

canonical ensemble fluctuation/variation in 'G' is allowed and hence a temperature,9, 

(called ecotemperature) is defined corresponding to the value of'G'. 

The density function for such system was defined by Gunasekaran and Pan de [ 4], 

which was given by, 

p =exp{-%) 

Hence the canonical average of any function, f, is given by 

ffexp(-% )dr 
(f)- ( J - fexp -% dr 

In order to give a meaning full interpretation to '9' they took the function, f, as same 
J 

as Kerner has taken for the same. 

f=(8G)2 
OX; 

Now ensemble average for canonical ensemble can be written as, 

=9 
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i.e. the '9 ' is the measure of mean square deviation of 'x' from its equilibrium value 

'x; '. This is analog to what has obtained by Kerner [2] for the same. In order to find 

out the probability, (P(xi)dxi ), for any species 'i' to have its 'xi' in the range 'xi' and 

'xi+dxi. Gunasekaran and Pande [4] considered a phase integral, Z, which is given by, 

. - ( GI+G2+ ... +Gn)dx .. Z-Jexp- (} 1·dx2 .... .dxn 

Now we can write, 

Z -J (-(x[-2xix;)Jdx [F . (6)] ; - exp . 
2

(} ; rom equation 

where i = I, 2 ... n. 

Hence probability distribution for any species 'i' to have its 'xi' in the interval 

between 'xi' and 'xi+ dxi' is given by, 

exp(-G/o) 
P(x.) dx. = dx. 

I I z. I 
I 
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=> P(x;) dx; = ( • 2 ) dx; 
~2n () exp (x;) 

2() 

(
- (x

2
- 2x.x*)) exp I I I 

2() 

=> P(x.) dx. = exp ; ; dx. I (-(x -x*)
2

) 

I I ~2 Jr{) 2 () I 

Now putting the value of 'xi' as we assumed i.e. Xi = log Ni, we get 

lfweputS=cr2
, variencease={x; -x; Y, we get, 

I ( 1 • 2) => P(log N;) dN; = ~- exp - - 2 (log N; -log N; ) dN; 
. 2n a 2 2a 
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This is the standard log-normal distribution for the species Ni. Thus the result for 

the probability distribution ofthe species Ni is similar to the Preston's result [5]; only 

difference is that the logarithm here are to the base 'e' instead ofto the base '2'. 

3.3 Comments on Gunasekran and Pande's work 

One of the important things of Gunasekran and Pande's approach is that the stable 

variances unlike in most other approaches, which generate log-normal distributions 

with even increasing variance with time. They used the same approach as used by 

Kerner [2] and made the use of Gompertz model for the ecosystem and got the log

normal distribution for intrinsic abundance of species. The idea of equipartition 

prevails in their approach as well, which is evidenced by the properties of (Tr) that 

enabled them to define canonical ensemble for the ecosystem. They also tried to show 

that that the ecosystem admits of the ergodic hypothesis as well. The ergodic 

hypothesis ' first advanced by Boltzmann, states that time average of a macroscopic 

quantity under equilibrium condition is the same as an ensemble average. Because 
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they also got (Dr)= 0 that shows ensemble average of 'xi' is equal to the equilibrium 

value of 'xi' i.e. 'x;' 

3.4 Statistical mechanics of the Gompertz model: 

Sitaram and Varma's approach 

The result obtained by Gunasekaran and Pande [4] is most encouraging. They 

computed one constant of motion with antisymetric consideration. In 1984 Sitaram 

and Varma [6] in their work told that the statistical mechanics of the ecosystem is not 

straight forward as Gunasekaran and Pande [4] envisage in their work in 1982. 

Sitaram and Varma [6] set up the statistical mechanics ofthe system and tried to find 

out the 'n/2' independent temperatures instead of one constant temperature obtained 

by Kerner [2] and later by Gunasekaran and Pande [4] 

Sitaram and Varma [6] again took the Gompertz model for then-interacting species 

in the ecosystem. And the Gomportz model is, 

dN. 
-·

1 =&.N·+La-N.logN. dt I I j I) I j 
(1) 

They substituted, 

x. =ln(!!J_) I N. 
I 

(2) 

This substitution is similar to what was done by Kerner in his work. Here Ni• 

corresponds to the equilibrium value. 

At equilibrium, 

. :.-B i + La ij log Ni• = 0 
J 

=> B i =-La ij logNi• 
J 

(3) 
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Here it is assumed that N;•, equilibrium population of any species 'i' is positive an~ 

real. Now, 

dx. 1 dN. 1 ( • ) 
-

1 =---1 =- cN+Ia .. N.logN. 
dt N. dt N. I I }. I} I J 

I I 

dx. 
~-1 =&·+Ia .. x. df I j I} } 

With the help of equations (1), (3) and (4) we got, 

dx. 
~-~ =Ia .. x. 

dt j I} J 

If'Q' is the matrix which diagonalizes 'a' then in terms ofvariable, Z =n-1x. 

The solution ofthis equation is, 

Z; (t) = Z; (0) exp{A. ;t), (5) 

where 'A/ are eigenvalues of 'a' which were supposed by Sitaram and Varma [6] to 

be distinct and hence the system possesses (n-1) constants of motion which is given 

by,-

(6) 

where j = 2, 3 ... n 

Again they took the antisymmetric interactions of the ecosystem that was 

considered by Kerner [2] and then Gunasekaran and Pande [4]. Under this 

antisymmetric condition the all eigenvalues will be imaginary and arranged so that 

A-21_1 =iv
1

, and A-21 =-iv1;j=1,2 ... k(n=2k) 

They now took Zj = I Zj I exp {i8j) and wrote equation (6) as, 
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here Aj are real and Bj are complex constants with Oj =vjlv1• One of the important 

things is that the value of 'n' is '2k' because of antysemetric condition which is 

applicable only to the even-numbered species. 

With the help of equation (7) and (8) they found out the volume in the phase space 

occupied by the ensemble which was given by 

=dO" 

where 'Ll' is constant and 'a' is given by, 

And then they defined entropy of the system that is given by 

S = In • = In Ll + In cr, 

and the 'k-temperatures', 'cr/ are defined by, 

The density of phase space in the canonical ensemble is then 

p oc exp(- fAil_) 
j=l I a} 
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· And with this consideration Sitaram and Varma [6] got that the intrinsic abundance 

for the species is log-normal provided that the ratio of all the eigenvalues of 'a' are 

rational. 

-3.5 Statistical mechanics of the Gompertz model: 

Singh and Pande's approach 

The result obtained by Kerner [2], Gunasekran and Pande [4], and then Sitaram and 

Varma [ 6] are quite fascinating and elegant. But all of them put the same restriction of 

antisymetric interactions among the individuals, which was needed to ensure the 

existence of conserved quantities for the ecosystem. The presumption of antisymetric 

interaction condition put a very strong restriction on a particular community. And for 

an odd species community the antisymetric matrix is necessarily singular and one of 

its eigenvalue is zero, leading to unwanted complications. 

In 1991, Singh and Pande [7] tried to develop then-species Gompertz Model that 

omitted the anti-symmetry condition of the community matrix, which was followed 

by Kerner [2], Gunasekran and Pande [4], and Sitaram and Varma [6]. They 

developed micro canonical and canonical ensembles for the ecosystem which are 

applicable to .all kinds of the ecosystem irrespective of weather they contain an even 

or an odd number of species and the probability distribution of any kind of 

communities are again Log-normal that was also obtained by Gunasekran and Pande 

[4], and then Sitaram and Varma [6]. 

Once again Gompertz model was taken for the ecosystem by Singh and Pande [7] in 

order to calculate the constant of motion, entropy and other conserved quantities. 

From the Gompertz model we have, 

dN. ( ) dt 
1 = & ; + 7 a ij log N j N; (1) 

and they made the similar transformation as done by Gunasekaran and Pande [4], 
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- - dx; 
~-=&·+Ia .. x. df I j I) j 

At equilibrium state, 

dx. • 
-

1 =&· +_La .. x. =0 
df I j I) J 

dx. ( *) ~-1 =_La .. x.-x. 
dt jljj J 
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(2) 

(3) 

(4) 

This set of equation is consistent if the matrix 'a' is nonsingular. Hence Singh and 

Pande [7] assumed that the equation is solvable for 'x ~' and has finite positive 

solution. They again introduced, 

Therefore equation (4) took the form of 

dY 
-

1 =_La .. Y. 
dt j I) J 

(5) 

This equation has been be solved by them by assuming a square matrix '0' of order 

'n' such that 

(6) 

where 'D' is diagonal matrix with elements A.1 = 1,2,3 ... ,n. 'a' is the square matrix 

with element 'ain' of order 'n' and 'A.1' being eigenvalues of'a'. 

Therefore equation (5) can be written in matrix form as, 

Y=a Y, (7) 

where 'Y' is a column matrix with the elements 'Yi', i = 1, 2 ... n. Now equation (7) 

takes the form, 
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(8) 

They took Z = n-1 Y and Z = n-ty. So the equation (8) can be written as 

Z=DZ (9) 

The solution ofthis equation has been found out by Bhatt and Pande [14] and it was, 

(10) 

where 'Ai' is time independent. While we solving equation (7), some times we get 

'Ai' as a polynomial in time 't'. That is not compatible with the equilibrium approach. 

So Singh and Pande [7] didn't consider that solution, as their work was based on 

equilibrium approach. Further they used this form of solution and calculated the micro 

canonical ensemble volume '•' and then found the expression for the entropy of the 

system as 

S=log't. 

The micro canonical ensemble volume is nothing other than length of the system 

trajectory in the phase space. In order to calculate this length Singh and Pande 

considered the n-dimensional space of the variable 'Zj'. So the state of the system at 

any time't' is represented by the point (ZJ. Z2, •• ,Z0). Hence in time, dt, the point 

moves a distance, ds, is given by, 

[ 
n •]~ ds = I;dZ;dZ; 

1=1 
(11) 

[ *]~ dsd n dZ; dZ; d =>- t= I--- t 
dt i=l dt dt 

(12) 

Hence the length of the system trajectory or the total volume covered in the entire 

time is given by, 
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r =fds=f- dt oo oo(ds) 
0 0 dt 

(13) 

oo[ n dZ. dZ~ ]~ 
r =J L:-1 --

1 dt 
0 i=1 dt dt 

(14) 

By the knowledge of the equation (9) and its solution Singh and Pande [7] tried to 

find out the value of this ensemble volume. The value of this integral depends upon 

the eigenvalues 'A.,'. So the integral cannot be evaluated exactly in the most general 

case. They there fore considered the three possibilities and calculated the 

corresponding values of'-r' (volume) and'S' (entropy). 

· Case I: when all 'A.1' are pure imaginary then, 

00 

[ k 2 ]~ r = J 2_Lv; M; dt 
0 1=1 

(15) 

Case 2: when all 'V are pure imaginary except one, which is real and negative i.e. 

for i = n +I, Ai is real and negative. This is the case of (n+ I) dimensional case. Then, 

[ 
k 2 ]~ S = logr = 2_Lv; M; -log2r + K 2 

1=1 
(16) 

where '-r' = r1
h real negative eigenvalues. 

Case 3: Some of the eigenvalues are pure imaginary, some are complex with real 

negative parts and some are pure real and negative. In this case it is not possible to 

calculate the integral exactly. Therefore Singh and Pande [7] made an assumption that 

the term corresponding to eigenvalues with nonzero real parts is small hence 

neglected, because these term carry negative real exponents so that they would 

normally damped out sufficiently well in short term duration and in the long run they 
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have not significant contribution. Hence they got the same result as in the case of (1) · 

except the constant. 

(17) 

where K1, K2, K3 are constant those are independent of Mi. Now they have chosen to 

arrange the system in such a way that the pure imaginary eigenvalues appear first in 

the diagonal matrix 'D' in pairs and another eigenvalues later. So they got, 

And similarly they got, 

Singh and Pande [7] didn't consider the case of eigenvalues having positive real 

parts, which ultimately leads to population explosion that disturbs the equilibrium 

configuration of the ecosystem. 

The constant of integral appeared in the equation (15), (16) and (17) makes the 

entropy infinite as time, t, tends to infinity. Therefore they remarked that however it is 

always possible to separate out the relevant finite parts, which exhibit the appropriate 

dependence on the variables of the system, from the remainder, which is basically a 

constant whether finite or infinite. The remainder will not contribute in manipulations, 

which are to follow, as the latter involves only the derivatives of entropy, not the 

·entropy itself. They further remarked that all classical physical theories never be use 

absolute magnitude of the entropy. So renormalizing the entropy function and 

throwing out the constant parts in the same sprit irre.spective of weather they are finite 

or infinite. 

In real situation physical system is not in complete isolation but rather in contact 

with other system. In fact they are often parts of the larger system which they 

maintain equilibrium. The description of such system is then more appropriately given 

within the framework of canonical ensemble rather than the micro canonical 
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ensemble. And the canonical ensemble volume;t, is then given by the integral over 

the entire phase space of density function, p; 

r =J ........... Jdyldy2dy3·······.dynp (YIY2·····Yn) (18) 

Now corresponding to each conserved quantities of interest for the system Singh 

and Pande [7] established a general temperature with property that in equilibrium all 

these temperatures must be correspondingly is equal to those of the surroundings 

separately. This is the idea behind the canonical ensemble. In order to define the 

canonical ensemble density and to find the probability distribution they once again 

took the equation (9} in the form of 

::::>-1 dZ; =A.. 
z. dt I 

I 

A. J dZ; - 1 1 
::::) -A· A· z. dt I J 

I 

A.; dZ. 
and --1 =A. A.. • 'z. df } I 

I 

1 dZ1 1 dZ; 
hence,A. .----A. .--=0 

I Z · df J Z · df 
J J 

::::>!!_(A. -logZ. -A. -logZ.)= 0 dt I } } I 

(20) 

(21) 

(22) 

This equation possesses 'n2
' conserved quantities or the system has 'n2

' constants of 

motion, which are given by, 

(23) 

43 



Chapter 3 

2 2' But all these 'n ' constants are not independent. Out of these 'n constants only (n-

1) numbers of constants are independent. While the Kerner's approach to apply 

statistical mechanics to the ecosystem had not able to get these (n-1) number of 

constants. He got only one constant of motion and that was 'G'. However Sitaram and 

Varma [6] were able to establish these (n-1) numbers of constants of motion in their 

work. 

Now Singh and Pande [7] took only 'k' number of constants out of '(n-1)' 

independent constants of motion and considered that remaining '(n-1-k)' will not play 

any role. The 'k' independent quantities, which were given by Singh and Pande, are 

C12, C34, Cs6, .. ... C2k-I,2k or simply M~, M2 ... Mk. 

Then they considered a simple conventional situation in which the system is 

specified by its energy, which is a conserved quantity, and then tried to generalize the 

canonical ensemble density function. This kind of generalization where the system 

possesses more than one conserved quantities, was suggested first by Grad in 1952. If 

the system has 'n' number of conserved quantities 'Gi' there are 'n' number of 

generalized temperature '9/ in the system and the density function 'p' generalizes to 

( 

n G.) p =exp - L-1 

I= I(} i 
(24) 

Here in the work of Singh and Pande [7], they have taken only 'k' number of 

appropriately chosen conserved quantities 'Mi' and correspondingly the same number 

of generalized temperature 'cri'. Hence they defined canonical ensemble density 

function as, 

( 
k M.) p =exp -L-' 

t=I a; 

Before doing so, they defined, 

- = asi , i = 1, 2, ... ,k. 
ai aMi 

(25) 

(26) 

44 



This is analogous to the conventional situation, i.e. 

I dS 
(} = dE' 

Chapter 3 

where 'E' =energy that is conserved, '9' is temperature and'S' is the entropy. In this 

situation '9' was replaced by 'o/ and 'E' was replaced by 'Mi' 

The canonical ensemble volume was given in equation (18) and hence canonical 

ensemble of any quantity 'f is then can be written as, 

[ 
k M-] f ......... fdyl ..... .dynfexp -I-' 

i=IO' (/)= I 

f ......... f dy1 ..... .dy n exp[- ~ M, ] 
I=IO'i 

(27) 

Hence the probability distribution function P (y1) for any variable 'yi' may be written 

as, 

where 'Mi' is the 'k' conserved quantities and is given by, 

By using the transformation 

n 
i.e. Zi = I a ijyj 

j=l 
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They calculated the probability distribution, P (yi), of any of the 'yi' and got a 

normal distribution. Hence the distribution of relative abundance of species follows 

the log-normal distribution, and the probability distribution was given by 

( ) - N [- (logN~ -logN; y] NP logN~ - I exp 2 , (31) 
v2tra2 2a 

where ·~· is some mean index and 'N' is the total number of species in the system. 

This result this result is similar to what was obtained by Preston [5] in his work. Thus 

the work of Singh and Pande [7] explored the possibility of constructing a statistical 

mechanics which is free from the odd-even dichotomy: it is applicable to a system 

that may have an odd or even number of species. It was also found that there was 

situation when the distribution becomes ill defined. This happens when the system 

does not have enough oscillatory solutions. 
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Chapter4 

Experimental evidence for log-normal distribution for interacting multi

species ecosystems 

4.1 Introduction 

4.2 Preston's octave approach 

4.3 Experimental evidence for lognormal distribution 

4.4 Summary and concluding remarks 

4.1 Introduction 

Some of the species in nature are extraordinarily abundant at a particular time and 

place, whereas some of the others seem rare in comparison. This observation has been 

closely verified by Saunders [5] for the samples collected for the birds of Quaker Run 

valley, western New York, by Williams [I 0] for moths collected in light traps at 

Rothamsted, by Dirks (9] for moths in light traps at Orono, Maine, by King [5] for 

moths in a light traps at Saskatoon, Preston, and by Norris (5] for birds of the Frith. 

Under these circumstances (commonness and rareness) it would be logical merely as a 

matter of convenience to try plotting abundance of a logarithmic base. But there is a 

more cogent basis for so doing, as dealt with below. 

4.2 Preston's octave approach 

For the sake of simplicity, Preston [5] in his work argued that the commonness is a 

relative matter and one would say that a certain species was so many times as 

common as another. This led Preston to group the specimen into what he calls 

"OCTAVES". The intervals 1-2, 2-4, 4-S .... etc. are presented by different octaves and 

they are represented by A, B, C .... octave respectively. The actual details of Preston's 

scheme for this grouping is as follows, 



Chapter 4 

Number Arithmetic Corresponding Number of the species belonging to 
of the grouping of the logarithmic that octave (frequency) 
octave number of groupmg 

Half of+ All +Half of individuals/ species 

A 1-2 0-1 1 - 2 
-

B 2-4 1-2 2 3 4 

c 4-8 2-3 4 5,6,7 8 

D 8-16 3-4 8 9-15 16 

E 16-32 4-5 16 17-31 32 

F 32-64 5-6 32 33-63 64 

G 64-128 6-7 64 65-127 128 

H 128-256 7-8 128 129-255 256 

I 256-512 8-9 256 257-511 512 

J 512-1024 9-10 512 513- 1023 1024 
··-

K 1024-2048 10- 11 1024 1026-2047 2048 

L 2048-4096 11 -12 2048 2049-4095 4096 

M 4096-8192 12-13 4096 4097-8191 8192 

N 8192- 16384 13-14 8192 8193- 16383 16384 

.... . ........... ........... .......... ......... ·········· 

A species falling on as octave may be thought of as having roughly the same degree 

of commonness in comparison to those falling in another octave. A species that falls 

on a group boundary is treated as contributing half a species to the left octave and half 

~o the right octave. If some species are represented by 5, 6, 7 specimen it clearly falls 

in an octave 'C' and if it is represented by 33, 34, 35 ... 63 then it falls in octave 'F'. If 

a species is represented by '32' specimen then octave 'E' is credited with half a 

species and octave 'F' is credited with the other half. 

The mid point of each octave is double that of the preceding one. Thus Preston in 

his work took the abscissa in the species abundance curve becomes simply a scale of 

octaves which is equivalent to taking logarithm of the number of individual per 

species, to the base 2 i.e. he Plotted S2 against log2 Ni. 
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Now in next section we discuss the experimental evidence to the theoretical 

calculation. The sample collected by Saunders [8], Dirks [9] and Williams [ 1 0] has 

been taken for this purpose. 

Before doing so it is necessary to discuss that how a sample will represent a real 

picture of the ecosystem. If we consider the sample theory we know that the sample 

will be a sufficiently accurate replica of the universe provided (a) it is a perfectly 

"random sample and (b) no species is represented in the sample by less than 20-30 

individual. But in most of the ecological work condition 'b' will never be obtained 

and condition 'a' will be poorly fulfilled. 

In case of Ecological research the universe changes rapidly. We are dealing with a 

fleeting and fluctuating assemblage, a 'universe' continually expanding, contracting 

~nd changing in composition. Thus this important to recognize at the outset for the 

purpose of our present investigation, the 'universe' from which the sample is drawn is 

that universe declared to us by the sample itself and not our preconceived notion of 

what the universe ought to be. 

4.3 Evidence for lognormal distribution from field studies 

(a) The birds of Quaker Run Valley, Western New York collected by Saunders [8} 

Saunders collected the birds on a tract of 16967 acres of land at Quaker Run Valley 

situated in western New York. His main reliance was upon a count of singing males 

aided by a few auxiliary methods. He collected about 80 species with varying 

individuals from 1 to 1670. The Preston form of sample data is shown in table 1 and 

corresponding plot is in fig l. 

(b) Moths caught in light trap at Orono, Maine, Uk by Dirks [9] 

Dirks collected moths in light trap over period of four years (1931-34). The 

specimen is classified in table 2 and corresponding graph can be seen in fig 2. 
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(c) Female moths caught in light trap at Orono, Maine, UK by Dirks {9} 

In the same period (1931-34), Dirks categories the data for female moths. The 

condensed form of data is grouped in the form of octave in table 3 and corresponding 

plot is reproduced in fig 3. 

(d) Moths caught in light trap at Rothamasted, England by Williams [10] 

The octave form of this sampled data collected by Williams is given in table 4 and 
-

corresponding graph is shown in fig 4. 

Examination of above sampled data 

Now plotting the above grouped data with abscissa as the scale of octave and the 

number of species belonging to a particular octave as the ordinate. We observed that 

each curve (1-4) exhibits a maximum in some octave to the right of the first one and 

the observed octave frequencies first increase and then decrease. The octave which 

corresponds to the maximum in the graph containing maximum number of species is 

known as the modal octave. The main feature, which emerges from this examination, 

is that in all cases the data is well fitted by a symmetrical Gaussian curve truncated on 

the left. The general equation of Gaussian curve is 

n(R) = n0 exp(- (aR) 2 
], (1) 

where 'n0 ' is the number of species in the modal octave. n (R) is the number of 

species in an octave distance 'R' octave from the modal octave and, 

2 1 
a =--2. 

2a 
(2) 

where ' a ' is the measure of the mean square deviation of the population from its 

mean value. We thus have 

(3) 

50 



Chapter4 

where i is the number of individuals and i* is the particular value of i corresponding to 

the peak of the curve which is plotted log2i at x-axis against the species per octave. 

Hence i* is the mid value for the modal octave. Note that 

and given by 

+<X> 

f n(R)R2dR 
R2 = --'-oo=-----

+oo 
fn(R)dR 

-00 

-2 1 2 
=>R =--=a 

2a2 

(4) 

(5) 

(6) 

Now the total number of species, N, for the system is given by 

7'n(R)dR =no.[;= N (7) 
-oo a 

· This, N, is the total number of species that are theoretically observed. 

For data (a) the experimentally calculated value of 'a' is 0.194. This particular data 

is well fitted in the curve 

n( R) = 1 0 exp [ __, ( 0.194 R) 2 
] (8) 

Substituting this in equation (7), we get N = 91. 

From the empirical data of Saunders [8], we see that there are 141 species of birds 

that are known to occur at the site of sampling and its vicinity. Out of these, 27 are 

migratory species; 13 breed out side the site and 11 species are rare. These amounts to 
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51. Of the remaining 90 species, I I are irregular in their occurrence and are not found 

every year; the rest (79) are regular breeders. Thus we see that there is good 

agreement between the experimentally observed and theoretically calculated values 

for the total number of species in the environment under consideration. 

For data (b), collected by Dirks [9], the experimentally calculated value for 'a' is 

'0.207' and it is found that the best fit to data is as given by 

n(R) = 48 exp(- (0.207 R) 2 
], (9) 

and the theoretically calculated value of total number of species (N) is 410. The 

number of species, which observed in the sample, was 349 that are about 85% of the 

estimated one. This is again a very good approximation, which was obtained by 

Gaussian curve. And R = ( log2 i -Iog 2 i* ), hence species abundance follows log

nonnal distribution. 

For data (c), collected by Dirks [9], the best fit curve is represented by the equation 

n(R) = 42 expl-(o.205R) 2 J (10) 

where 'a= 0.205' and the estimated value for the total number of the species, N, is 

363. 

While the sample collected by Dirks [9] for female moth has 226 species that is about 

62% of the estimated one. 

For the data (d), collected by Williams [1 0] experimentally calculated value of 'a' is 

'0.227' and the data is well fitted by the curve 

n(R) = 35 exp [-(0.227RY j (II) 

For this data, the estimated value for 'N' is 273 while the observed number of 

species in the sample was 240. Again it is a good approximation of the log-normal 

distribution. 
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TABLE 1 

Octave No. of individuals Log2i No. of species 

Per species (i) per octave 

- <I - >1 

A 1-2 0 - 1 1.5 

B 2 -4 1 - 2 6.5 

c 4-8 2-3 8 

D 8-16 3-4 9 

E 16-32 4-5 9 

F 32-64 5-6 12 

G 64- 128 6-7 6 

H 128-256 7-8 9 
··-

I 256-512 8-9 11 

J 512- 1024 9-10 4 

J 1024-2048 I 0- 11 3 

(a) The birds of Quaker Run Valley, Western New York collected by Saunders 
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figure 1 [for data (a)] 

• 

• 
• 

• 
+ 

• 

0 2 3 4 5 6 7 8 9 10 11 12 

ind widuals I species (log bas e) 

Fig (JX: The birds of Quaker Run Valley, Western New York collected by Saunders 
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TABLE2 

Octave No. of individuals Lo~i No. of species 

Per species (i) per octave 

- <I - >I9 

A I - 2 0 - I 37 

B 2 -4 1-2 42 

c 4-8 2-3 49.5 

D 8 -I6 3-4 45.5 

E 16-32 4-5 42 

F 32-64 5-6 28.5 

G 64 -I28 6-7 26.5 

H I28- 256 7-8 30 

I 256-512 8-9 14 

J 512-1024 9-10 9 

K I024- 2048 IO- II 2 

L 2048-4096 11 - 12 0 

M 4096- 8I92 I2 -13 2 

N 8192- 16384 13-14 2 

(h) Moths caught in light trap at Orono, Maine, Uk by Dirks 
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figure 2 [for data (b) ] 

• 

• • • 
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-10 

individua Is I species (log base) 

Fig (2): Moths caught in light trap at Orono, Maine, Uk by Dirks 
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TABLE3 

Octave No. of individuals Log2i No. of species 

Per species (i) per octave 

- <I - >27.5 

A I -2 0 - I 42 

B 2 -4 I- 2 39.5 

c 4-8 2-3 27.5 

D 8 -I6 3-4 28 

E I6- 32 4-5 23 

F 32-64 5-6 I9.5 

G 64- I28 6-7 9 

H I28- 256 7-8 4 

I 256- 5I2 8-9 4 

J 5I2 -I024 9-IO 0 

K I024- 2048 IO- II 0 

L 2048-4096 II -I2 I 

M 4096-8192 12-13 1 

(c) Female moths caught in light trap at Orono, Maine, UK by Dirks 
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figure 3 [for data (c) ] 

• • 
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-10 

individua le s I species (log base} 

Fig (3): Female moths caught infight trap at Orono, Maine, UK by Dirks 
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TABLE4 

Octave No. of individuals Lo~i No. of species 

Per species (i) per octave 

- <I - >17.5 

A I -2 0- I 23 

B 2 -4 1-2 27.5 

c 4-,-8 2-3 36 

D 8-16 3-4 27.5 
• 

E 16-32 4-5 33 

F 32-64 5-6 31 

G 64-128 6-7 13.5 

H 128-256 7-8 19 

I 256-512 8-9 5 

J 512- 1024 9-10 6 

K 1024-2048 10-11 0 

L 2048-4096 I I- 12 I 

(d) Moths caught in light trap at Rothamasted, England by Williams 
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figure 4 [for data (d)] 
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·Fig (4): Moths caught in light trap at Rothamasted, England by Williams 
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4.4 Summary and concluding remarks 

We have been concerned in this dissertation with a statistical mechanical approach 

·to the modeling of ecosystems. This approach suggests itself naturally because of the 

similarities between an ecosystem and a physical system, both of which consist of 

enormous numbers of entities. While the set of equations that determine the dynamics 

can be written down in both the cases, it is impractical and not even very illuminating 

to solve them. In such a situation it is useful to determine the gross features of the 

manner in which the system might evolve. For instance, one could seek to determine 

if there are any conserved quantities that characterize the system (e.g., the total energy 

of the system/biomass), and the manner in which entities ofthe system are distributed 

over specific velocity ranges/species). That such features can be unraveled was first 

shown by Kerner [2], who also obtained an analytic expression for the distribution of 

individuals over different species; this may be called the Kerner distribution. This is 

the work that has been covered in chapter 2. Essential features of the Kerner method 

are: (a) the dynamics of the ecosystem is assumed to be given by Volterra's equations 

for k-species (k very large), and (b) the community matrix is assumed to be anti

symmetric. 

Chapter 3 deals with the work of several authors. The work of Gunasekran and 

Pande was motivated by the fact that the field studies carried out by Saunders [8], 

Preston and Norris [5], Dirks [9], and Williams [I 0], etc. yield not the distribution 

obtained by Kerner, but a log-normal distribution. In an elegant manner, they were 

able to show that if one assumes the dynamics of the ecosystem to be given by the 

Gompertz model (rather than Volterra's equations), then one is led to the log-normal 

model. Like Kerner, these authors also used the property of anti-symmetry of the 

community matrix, and found that the system admits of one conserved quantity. 

Sitaram and Varma [6] also used the Kerner method for the Gompertz model, but 

showed that the system admits not one but k/2 constants of motion ("temperatures"). 

This set the stage for the work of Singh and Pande [7], who gave the most general · 

treatment of the statistical mechanics of the Gompertz model by applying the Kerner 

method to it without the assumption that the community matrix is anti-symmetric. The 

final result for the distribution of individuals over different species in all these studies 

was a log-normal distribution. 
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We now comment on the fact that in each of the four plots of log-normal 

distribution that have been reproduced in figures (1-4 ), the full curve that 

characterizes a Gaussian distribution is.not visible: the curve is decapitated on the left 

side. This has to do with the relation of a (random) sample to the "universe" it is 

supposed to represent. Because of the commonness and rarity of different species, a 

part of the universe will remain "hidden" (under a "veil", as it were) in any sample. 

The veil line will occur at different locations in different samples: it may coincide 

with the crest of the curve or it may be at any point on the ascending or descending 

slopes. If one regards the universe as fixed, one can bring the veil line to any point 

one wishes by continuing to collect. Ultimately one can collect the whole universe, 

and then the sample will coincide with the universe which, it is believed, will be a 

log-normal one. 

Finally, a reasonable question to ask is: Among all the distributions that are known, 

why should the log-normal distribution be the one that is favoured by nature? It seems 

to us that the answer to this question lies in the observation that evolutionary changes 

in an ecosystem take place at an infinitesimally small rate, which is precisely the 

condition for a physical system to pass from one equilibrium state to another. The role 

of equilibrium states can not be over-emphasized in any statistical mechanical 

approach. This explains, in a sense, as to why the statistical mechanical approach for a 

physical system works for an ecosystem. And now about the question: why log

normal rather than normal distribution? One might say that nature prefers the log

normal one because then the slow rate of evolution is in-built into the distribution 

itself (log is a slowly varying function of its argument). 
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