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Introduction 

Chapter 1: Introduction 

Heterogeneity in both the inductive and maintenance mechanisms involved in cancers 

has undoubtedly complicated efforts at developing more effective regimens for 

chemotherapy. The multiplicity of mutational events that characterize a given cancer, 

which then vary significantly from one cancer to another, have rendered it difficult to 

identify the most appropriate targets for inhibition (Hartman, Garvik et al. 2001 ). In 

addition to such factors, however, an issue that may also require further examination is 

the rationale that dominates current efforts aimed at anti-cancer drug development. In 

such exercises, the general strategy is to identify those signaling intermediates where 

mutations have led to constitutive activity in a given cancer, with the aim of inhibiting 

them (Evan and Vousden 2001; Vermeulen, Van Bockstaele et al. 2003). The 

prevailing systems view, however, describes that components of the signaling 

machinery organize into a complex network, with multiple levels of regulation that 

include both feed-forward and feedback mechanisms (Barabasi and Oltvai 2004; Zhu, 

Gerstein et al. 2007). This therefore implies a non-linear response behaviour of the 

signaling network (Alon 2007), wherein the effects of inhibiting an intermediate need 

not necessarily be the inverse of that which is obtained upon its constitutive activation. 

At least one factor influencing the outcome would be the level of functional 

redundancy exhibited by this intermediate, in the context of the overall network 

topology (Tononi, Sporns et al. 1999; Edelman and Gally 2001). That is, although 

activation of mitogenic pathways may derive from an oncogenic mutation in a given 

signaling intermediate, inhibition of this intermediate may however have only a 

minimal effect if its functional role is compensated for through contributions from 

other intermediates. This possibility is especially exacerbated in cancer cells where 
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Introduction 

mutations in more than one signaling molecules is often the norm (Vogelstein and 

Kinzler 2004). In other words the greater degree of plasticity associated with 

oncogenic pathway activation, relative to its suppression, also indicates that the ideal 

targets for pathway inhibition need not necessarily coincide with those that are 

involved in its activation. Such increments to our understanding of the complex 

properties of biological systems therefore illuminate that drug development efforts will 

be significantly aided by a better resolution of the signaling circuitry that controls cell 

cycle, as well as a description of the least redundant nodes (nodes which are 

functionally least replaceable from the context of network integrity/function) that 

participate in this process. 

Despite the extensive accumulation of information on mitogen-activated signaling 

cascades, however, a clear picture on how they integrate to modulate the cell cycle 

program is still lacking (Papin, Hunter et al. 2005). Indeed the current challenge is to 

develop approaches that can distil the available information, and provide a coherent 

view of the core pathways that are involved (Papin, Hunter et al. 2005; del Sol, Balling 

et al. 201 0). In the present study, we combined the results of a siRNA screen targeting 

the signaling machinery with extensive graph theoretical analysis to extract the core 

modules that processed mitogenic signal in the context of the individual phases of the 

cell cycle. Subsequent experiments confirmed both the functional significance of these 

modules and their phase-specific mode of action, whereas an examination of the 

component links provided novel insights into mechanisms mediating the seamless 

transition of cells from one phase to the next. Importantly, we could demonstrate that 

these modules constituted functionally conserved features of both mitogen and 

oncogene dependent signaling networks, and that the least redundant nodes present in 

them provided effective targets for chemotherapy. Further, when viewed from a 
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broader perspective, our results also support that multi-module targeting- wherein the 

temporal dimensions of a biological process are also taken into account - may provide 

a useful refinement to current drug development efforts. 
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Review of Literature 

Chapter 2: Review of Literature 

2.1 The Cell-Signaling Machinery: Kinases and Phosphatases 

The reversible phosphorylation of proteins plays a critical role in the regulation of 

cellular processes, with nearly 30% of the cellular proteins being phosphorylated at any 

given time (Cohen 2000). Coordinated coupling of biochemical reactions involving 

protein phosphorylation and dephosphorylation represents the hallmark of the 

intracellular signal transduction machinery. Distinct classes of enzymes known as 

kinases and phosphatases respectively drive these reactions. While phosphorylation is 

achieved through the action of kinases, dephosphorylation is mediated through the 

action of phosphatases. Protein kinases catalyze the following reaction: Mg-ATP 1
- + 

Protein-GH -7 Protein-GPO/ + MgADP + H". Protein phosphatases reverse this 

process by catalyzing the dephosphorylation of the protein according to the following 

chemical reaction: Protein-GPO/- + H20 -7 Protein-OH + HGPG/. The opposing 

activities of these two classes of enzymes maintain a fine balance of the 

phosphorylation state of the signaling molecules and this balance maintains cellular 

functions in the homeostatic state. The cell employs acute modulations of this balance 

in order to regulate its functions in response to various external cues. Chronic 

perturbations, on the other hand, fix a more stable imprint on the cell phenotype, which 

often causes diseases such as cancer (Downward 2003; Hennessy, Smith et al. 2005; 

Bradham and McClay 2006; Bollen, Gerlich et al. 2009). Alterations in activity of such 

signaling intermediates, either due to mutations in the corresponding genes or 

epigenetic modulation of their expression levels, is often the cause of many cancers. 

Signal transduction is the primary means by which cells coordinate their metabolic, 
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morphologic, and genetic responses to environmental cues. Typically, these responses 

are mediated through the engagement of specific cell-surface receptors that are either 

endowed with kinase activity, or closely associated with kinases (Lemmon and 

Schlessinger 201 0). This then triggers a cascade of phosphorylation events through the 

downstream intermediates, to eventually influence the gene transcription machinery of 

the cell. The ability to transmit signals deriving from the external stimulus is due to the 

fact that phosphorylation generally alters the conformation of a protein, thereby 

leading to an alteration of its function (Cohen 2000). This effect could either be at the 

level of its enzymatic activity, or at that of its ability to interact with other proteins. 

Thus, protein phosphorylation is central to the process of signal transduction as it 

modulates the formation and/or disruption of regulatory interactions between the 

components of the signaling machinery (Cohen 2000). The role of kinases during 

signal transduction has been extensively investigated over the past several decades and 

the consensus view is that subsets of kinases form distinct cascades of signaling 

pathways. It is, therefore, not surprising that protein kinases have occupied the centre

place in our thrust to understand the mechanisms governing signal transduction. 

Kinases are key components of signal transduction pathways that promote cell 

proliferation (Downward 2003; Hennessy, Smith et al. 2005; Bradham and McClay 

2006). Over the years several discrete kinase cascades have been characterized and 

dysregulated functioning of many of them have been implicated in cancers. Some of 

the more prominent of such cascades include the PI-3K/AKT, the MAP kinase, and the 

Wnt signaling pathways (Downward 2003; Hennessy, Smith et al. 2005; Reya and 

Clevers 2005; Bradham and McClay 2006). The kinase components of these pathways 

are being actively investigated as possible targets for cancer chemotherapy. Kinases 

are also the key regulators of the cell cycle and its checkpoints (Kastan and Bartek 
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2004). Different sets of kinases drive the progression of cells from early cell cycle 

stages in interphase, to the later stages of mitosis and cytokinesis . They also regulate 

cell cycle checkpoints, thereby maintaining the fidelity of cell division (reviewed 

elsewhere (Vermeulen, Van Bockstaele et al. 2003; Malumbres and Barbacid 2007; 

Malumbres and Barbacid 2009). Dysregulation of these kinases often leading to altered 

regulation of the cell cycle or its checkpoints has been found in many cancers 

(Vermeulen, Van Bockstaele et al. 2003; Kastan and Bartek 2004) .. Inhibitors of many 

of these kinases are now being exploited in cancer therapy. 

In contrast to this, regulation by cellular phosphatases has generally been considered 

to occur through isolated interactions between a given phosphatase and its target 

substrate. Emerging evidence, however, is beginning to suggest that phosphatases also 

inter-regulate each other, and that such interactions can lead to the formation of 

discrete phosphatase-specific cascades. The crosstalk between such regulatory axes of 

phosphatases and kinase cascades provides for complex modes of regulation, with non

linear signal input/output relationships. 

2.2 The Cell Signaling Network 

Although the signaling machinery was initially conceived to form a set of discrete, 

linear pathways or cascades, subsequent detailing however revealed an extensive 

degree of both intra- and inter-pathway crosstalk. Further, the extensive crosstalk that 

exists between these cascades leads to a complex network configuration for the 

signaling machinery. Nonetheless, a network configuration confers functional 

robustness to the signaling machinery, which arises from the many redundancies and 

feedbacks that are inherent to complex structures. This allows the systems to 
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dynamically adapt or compensate for losses or environmental perturbations (Barabasi 

and Oltvai 2004; Papin, Hunter et al. 2005). 

The human cellular signaling network includes genes for over 1500 signaling 

receptors, and more than 500 kinases and 150 phosphatases (Manning, Whyte et al. 

2002; Alonso, Sasin et al. 2004; Papin, Hunter et al. 2005; Shi 2009). In addition, the 

repertoire of signaling molecules is further enhanced through the use of alternate splice 

variants of several of these enzymes (Papin, Hunter et al. 2005). Protein kinases can be 

grouped into two families. The large majority of protein kinases are those that 

phosphorylate proteins on Ser/Thr residues (PSKs), while others phosphorylate the 

Tyr residues (PTKs) (Manning, Whyte et al. 2002). The number of protein 

phosphatases is far less and includes Ser/Thr-, Tyr-, and dual specific- (i.e. capable of 

dephosphorylating at Ser, Thr and Tyr residues) phosphatases. However in contrast to 

kinases, the tyrosine phosphatases (PTPs) are far greater in number than the Ser/Thr 

Phosphatases (PSPs) (Shi 2009). 

The signaling network has a modular architecture, where individual modules govern 

distinct functions of the cell. It is now recognized that these interactions in fact 

represent a complex network wherein small-scale regulatory configurations such as 

switches, gates, feedback loops, and feed-forward motifs process information related to 

both duration and strength of the input signal (Barabasi and Oltvai 2004; Papin, Hunter 

et al. 2005). Motifs are sets of recurring regulation patterns which occur in biological 

networks such as transcription networks, signaling networks and neuronal networks 

(Alon 2007). They have been defined by Barabasi et al. as the elementary units of 

cellular networks and consist of small groups of interconnected nodes carrying out a 

specific information processing function (Barabasi and Oltvai 2004). A large number 
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of motifs have been identified in signaling networks in bacterial, plant and mammalian 

systems. The main classes of motifs and their functions are discussed later in the text. 

Modules or modularity in signaling networks have been defined by Papin et al. as an 

"intuitive grouping of reactions from an intracellular signaling network that have a 

related functions" and by Barabasi et al. as a "group of functionally (or physically) 

linked molecules or nodes that work together to achieve distinct functions" (Barabasi 

and Oltvai 2004; Papin, Hunter et al. 2005). It is now generally accepted that the 

signaling network represents the central functional module of the cell that, in tum, is 

connected to the other modules that are responsible for the various phenotypic 

functions (Hartwell, Hopfield et al. 1999). This includes the control of processes of cell 

growth and cell division. It is not surprising, therefore, that the etiology of cancers 

frequently derives from aberrations in the functioning of the cellular signaling 

machinery, which arise from mutational and/or epigenetic modulation of its component 

nodes (Evan and Vousden 2001; Downward 2003; Kastan and Bartek 2004; Hennessy, 

Smith et al. 2005; Bradham and McClay 2006; Bollen, Gerlich et al. 2009) . 

Mapping the complete topology of the signaling network, understanding its behaviour 

in quantitative terms, and resolving how this network enforces context-specific cellular 

responses are some of the key questions that are currently being addressed (Shiraishi, 

Matsuyama et al. 201 0; Fitzgerald, Schoeberl et al. 2006). 

2.3 Network Biology 

Biologists have traditionally taken the reductionist approach to solving biological 

questions. Though such approaches have revealed a wealth of knowledge and 

information regarding individual molecules and components, the integration of such 

information to reveal a systems level understanding of cellular processes still remains a 
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challenge (Bloom 2001 ). To understand cellular systems, it is imperative to resolve the 

networks that control cellular processes, understand their topology and dynamics, and 

integrate experimental data from different "omics" approaches. 

The emergence of high throughput techniques and their applications in cell biology 

have allowed the rapid and simultaneous detection of various cellular readouts at a 

given time (Barabasi and Oltvai 2004). The advent of such techniques has resulted in 

the generation of large sets of "omics" data, and has also greatly advanced the 

understanding of signaling mechanisms. The proteomics data from such techniques is 

available from many databases and has facilitated the reconstruction of signaling 

networks. As described by Papin et al., "A network reconstruction includes a 

chemically accurate representation of all of the biochemical events that are occurring 

within a defined signaling network, and incorporates the interconnectivity and 

functional relationships that are inferred from experimental data. Network 

reconstructions provide the framework for the application of mathematical methods 

that can quantitatively describe the properties of signaling networks." (Papin, Hunter et 

al. 2005). 

2.3.1 Applications of Graph Theory in Biological networks 

In the recent past, the principles of graph theory have emerged as instrumental tools in 

the field of computational biochemistry and in the understanding of bio-molecular 

networks (Huber, Carey et al. 2007; Mason and Verwoerd 2007). Graph theory is the 

study of graphs, in which the pair wise relations between objects in a particular 

collection is studied, and represented as a collection of nodes and edges which connect 

them (Huber, Carey et al. 2007; Mason and Verwoerd 2007). The principles of graph 

theory have applications in diverse fields and have been applied widely in computer 
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sciences, physic, chemistry, electrical engmeenng and operations research and 

sociology among other fields. 

The understanding of biological networks is helped by the ever growmg field of 

complex networks. There are main classes of bio-molecular networks which have been 

well studies metabolic networks (which consists of the networks of biochemical 

reactions between metabolic substrates), PPI or protein-protein interaction networks 

(which depict physical protein-protein interaction) and transcriptional regulatory 

networks (which describe the transcriptional regulation among genes) (Mason and 

Verwoerd 2007). In protein networks, the basic network nomenclature includes 

proteins which constitute the 'nodes' of the network and the interactions between them 

are the links or 'edges' (Barabasi and Oltvai 2004). In protein-protein interaction 

networks, the links represent a direct physical interaction between the proteins. In pure 

mathematical terms, such networks are called graphs. The translation of such protein 

interaction data into networks or graphs has allowed the applications of the well 

established principles of graph theory for the evaluation of structural properties of 

networks in living cells (Mason and Verwoerd 2007). Some concepts of complex 

networks which also find applications in PPI and other biological networks are 

explained below. 

2.3.2 Structural properties of biological networks 

Graphs may be directed or undirected. In undirected graphs there is no direction 

associated with the edges whereas in directed graphs there is a direction associated 

with the edges. Transcription regulatory networks, metabolic networks and signaling 

networks are generally directed where the directions of the edges depict the nature of 

regulation between the nodes or the direction of information flow (Mason and 
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Verwoerd 2007). Protein-protein interaction networks on the other hand represent the 

physical interactions between the set of proteins and are generally modelled as 

undirected graphs. 

Recent advances in high throughput data collection techniques, following the post 

genomic era, has facilitated the generation of a lot of data for biological networks. It 

has added to the already existing wealth of information on various cellular processes 

including signal transduction mechanisms. Although an increasing number of 

databases provide invaluable information for biological research, the characterization 

of properties that arise from whole-cell function requires integrated, mathematical 

descriptions of the relationships between different cellular components (Albert 2005). 

Motivated by these developments, there has been a significant amount of work done on 

identifying and interpreting the key structural properties of these networks in recent 

years. Some basic concepts of graph theory which find applications in biological 

networks are discussed below. 

2.3.3 Diameter, Shortest path and Mean Path Length 

In networks, the distance between nodes is measured in terms of path length which is 

defined as the number of nodes that are passed when information flows between two 

nodes (Barabasi and Oltvai 2004). 

The maximum distance between any two nodes is known as the graph/network 

diameter (Mason and Verwoerd 2007).The mean path length is the average number of 

nodes that are passed when travelling between any two random nodes in the network 

and reflects how readily information is transmitted in the system (Barabasi and Oltvai 

2004). There may be many possible paths between two nodes in a network which may 

or may not have the same path length. The shortest path between two nodes is the path 
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with the least number of links/nodes between two given nodes (Barabasi and Oltvai 

2004; Mason and Verwoerd 2007). 

Studies on most biological networks have shown that the mean shortest path lengths 

and network diameter are small as compared to the size of the network (nodes and 

links). Such networks are known as small world networks and show small world 

properties i.e. most nodes are connected by at least one path and though most nodes are 

not neighbours, they can be reached by crossing a small number of intermediates 

(Barabasi and Oltvai 2004; Mason and Verwoerd 2007). Such small world properties 

of biological networks highlight their efficiency in information flow. 

2.3.4 Clustering 

Small world networks have another characteristic property of forming cliques or 

groups of nodes which are highly connected to each other. In such highly clustered 

networks there is a high probability that neighbours of a given node are also connected. 

The clustering properties of a network can be understood by calculating the clustering 

co-efficient, which gives the average clustering of nodes in a network and this gives 

insight into the network structure (Barabasi and Oltvai 2004; Mason and V erwoerd 

2007). Clustering coefficient and related functions are independent of network size. 

Networks are often classified based on mean path length and clustering coefficient 

(Barabasi and Oltvai 2004; Mason and Verwoerd 2007). 

2.3.5 Centrality Parameters 

The main aim of studying cellular networks is not only to get a systems level 

understanding of the biological function or disease but also to identify sets of disease 

genes and how they are regulated. Centrality parameters are used to determine the 
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importance of a node in a network or graph. Different centralities address different 

features of the node and have been frequently used in cellular network analysis for 

characterizing the functional significance of a node in a given network. Some centrality 

parameters which are being used in cellular networks are discussed below-

Degree Centrality: 

The most elementary characteristic of a node is its degree (or connectivity) ,k, which 

tells us how many links the node has to other nodes (Barabasi and Oltvai 2004; Mason 

and Verwoerd 2007). In an undirected network the degree of a node is represented by 

the total number of direct links it has to other nodes. In the case of directed graphs, a 

node can have an incoming degree which represents the number of directed edges 

corning into the node; and an outgoing degree representing the number of directed 

edges going out from the node. A node with high degree is better connected in the 

network and therefore may play a more important role in maintaining the network 

structure (Barabasi and Oltvai 2004; Mason and Verwoerd 2007). 

Significance studies by various groups have observed that node degree and essentiality 

may be related indicating that important nodes are involved in a large number of 

interactions (Jeong, Mason et al. 2001; He and Zhang 2006). Though this may be true, 

direct relations between degree and centrality have to be treated with caution since a 

lot of the studies have been carried out on published data that may be biased towards 

well studied proteins. Therefore low degree centrality of a protein may result from the 

fact that not a lot of its interactions have been well studied yet. 
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A Random network B Scale-free network C Hierarchical network 
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Figure 2.1 Network Models. There are three models that had a direct impact on our 
understanding of biological networks. (A) Random Networks: The node degrees follow 
a Poisson distribution which indicates that most nodes have approximately the same 
number of links (close to the average degree <k>). (B) Scale-free networks: are 
characterized by a power-law degree distribution; The probability that a node is highly 
connected is statistically more significant than in a random graph, the network 's 
properties often being determined by a relatively small number of highly connected 
nodes that are known as hubs. (C) To account for the coexistence of modularity, local 
clustering and scale-free topology in many real systems it has to be assumed that 
clusters combine in an iterative manner, generating a hierarchical network represented 

above. (Source :Barabasi and Oltvai 2004). 

The degree distribution is the probability distribution of the degrees over the entire 

graph (Barabasi and Oltvai 2004; Mason and Verwoerd 2007). Based on degree 

distribution, networks can be of different types (Fig. 2.1 ). For examples, in most 

biological networks the degree distribution follows the power law and such networks 

are known as scale free networks (Barabasi and Oltvai 2004; Mason and Verwoerd 

2007). As opposed to random networks which follow the Poisson or Gaussian degree 

distribution where the degree of most nodes is close to the mean node degree, in scale 

free networks most nodes have a low degree whereas a significant number of nodes 

have a an unusually high degree (compared to the mean degree) and are called hubs 

(Barabasi and Oltvai 2004; Mason and Verwoerd 2007). In the case of protein-protein 

interaction networks, the degree of a protein indicates the number of proteins it 
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interacts with, and a hub protein is one which interacts with a large number of proteins 

(Fig 2.2). 

Figure 2.2 . Yeast protein interaction network. A map of protein-protein interactions 

in Saccharomyces cerevisiae, which is based on early yeast two-hybrid measurements, 
illustrates that a few highly connected nodes (which are also known as hubs) hold the 
network together. The largest cluster, which contains ~ 78% of all proteins, is shown. 
The colour of a node indicates the phenotypic effect of removing the corresponding 
protein (red = lethal, green = non-lethal,orange = slow growth, yellow = unknown). 

(Source :Barabasi and Oltvai 2004). 

Closeness centrality 

The closeness centrality of a node is based on the shortest path of this node to another 

node (Mason and Verwoerd 2007). 

Betweenness centrality and Stress centrality 

Betweeness centrality is a measure of the influence that a node has over the spread of 

information through the network. It follows that an important node will lie between 

many paths between nodes in a network (Mason and Verwoerd 2007). It is based on 

the number of shortest paths going through a specific node. It measures the extent to 

which a node lies in between other nodes, which is calculated as a fraction of the 
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shortest paths between node pairs that pass through the node of interest (Chen, Wang et 

al. 2009). 

A similar centrality index is the 'stress centrality". Stress centrality defines the ability 

of a node to hold together communicating nodes, and a "stressed" node is one that is 

traversed by a high number of shortest paths (Manimaran, Hegde et al. 2009). 

Consequently, the higher the stress of a node the greater is its involvement in 

regulatory processes. 

Betweenness, on the other hand, is a more elaborate centrality index that describes the 

capacity of a node to serve as a junction in the network and, thereby, regulate the 

network in a coherent manner (Joy, Brock et al. 2005; Mason and Verwoerd 2007; 

Manimaran, Hegde et al. 2009). Thus stress and betweenness represent complementary 

indices that together describe the functional importance of a node in a regulatory 

module. 

2.3.6 Motifs 

Network motifs are believed to be the principle building block of complex networks. 

They are patterns of interconnections occurring in complex networks at numbers that 

are significantly higher than those in randomized networks (Barabasi and Oltvai 2004). 

In biological networks motifs are sets of recurring regulation patterns which occur in 

biological networks such as transcription networks, signaling networks and neuronal 

networks and are likely to be associated with an optimized biological function 

(Barabasi and Oltvai 2004; Alon 2007). They have been defined by Barabasi et alas 

the elementary units of cellular networks and consist of small groups of interconnected 

nodes carrying out a specific information- processing function (Barabasi and Oltvai 

2004). A large number of motifs have been identified in signaling networks in 

18 



Review of Literature 

bacterial, plant and mammalian systems. The main classes of network motifs in 

biological networks and their biological functions have been reviewed elsewhere 

(Barabasi and Oltvai 2004; Papin, Hunter et al. 2005; Alon 2007; Shoval and Alon 

201 0). Motifs can be of different types and believed to perform different signal 

processing functions within the network. Real networks are characterised by their 

distinct set of motifs. The high degree of conservation of motifs observed in yeast PPI 

networks and transcriptional networks of other species indicate that they are indeed of 

biological significance. In real networks, motifs tend to overlap and cluster together to 

form "motif clusters" or connected sub graphs (Barabasi and Oltvai 2004). 

2.3. 7 Modules 

Cellular functions cannot be attributed to single molecules and are carried out by 

groups of molecules in a modular manner (Barabasi and Oltvai 2004). In general, 

modularity refers to a group of physically or functionally linked molecules (nodes) that 

work together to achieve a (relatively) distinct function (Hartwell, Hopfield et al. 1999; 

Barabasi and Oltvai 2004). Modularity is the hallmark of biology where groups of 

molecules work together to perform specific cellular functions (Hartwell, Hopfield et 

al. 1999; Barabasi and Oltvai 2004). For example components of a modules can be 

structural such as proteins which are part of the ribosome while others can be temporal 

i.e. molecules working together at a specific stage of a temporal process such as signal 

transduction or cell cycle. The modularity in a network is reflected by its clustering co

efficient and most real networks have a larger clustering co-efficient than random 

networks. Most protein-protein interaction networks also have a high clustering co

efficient indicating their modular topology. 
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In the context of cellular networks, these three modules are believed to be related 

and/or overlapping. It is thought that since the nodes in a topological module are 

closely related, they may be involved in a specific cellular function as well. And any 

disruption of the functional module may result in a diseased state; therefore this may 

also represent a disease module. Therefore it is important to note that disease modules 

overlap with topological and/or functional modules, each disease may have its own 

unique module and multiple disease modules may overlap. 

Various network based approaches are now being used to identify disease modules to 

aid the understanding of the molecular basis of the disease and also aid drug 

development efforts (Barabasi, Gulbahce et al. 2011 ). 

2.4 Shortest path analysis 

Finding the shortest path to any target is of interest to all of us. The concept that 

information flows through the shortest paths has evolved from studies on different 

kinds of complex networks. The flow of information is intrinsic to any complex 

system. It appears that in the case of complex networks, finding the shortest path 

between two given nodes requires knowledge about the networks global topology, 

following which finding the shortest path would merely be a matter of distributed 

computation. However studies have shown that this is not true for random scale free 

networks, where information flows through the shortest path even without global 

topology knowledge (Boguna and Krioukov 2009). This navigation technique is called 

'greedy routing'. The concept of 'greedy routing' is based on the conjecture of hidden 

metric spaces that underlie real networks (Boguna and Krioukov 2009). In greedy 

routing nodes pass information to the node that is closest to the target ~ode in the r·· 
.•· 
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been well studied in small world social networks. The concepts of shortest paths are 

also finding vital applications in cellular network. Many groups of researchers have 

used shortest paths to extract critical information from cellular networks (Martinez

Antonio and Collado-Vides 2003; Pereira, An et al. 2009; Jamal, Ravichandran et al. 

2010). 

2.5 Robustness and Sensitivity in complex Systems 

The phenomenon of robustness versus sensitivity is paradoxical in any complex 

network. A key feature of many complex systems is their robustness. Robustness is 

the system's ability to keep functioning despite perturbations. Robustness is coupled 

with fragility toward non-trivial rearrangements of the connections between the 

system's internal parts (Jeong, Mason et al. 2001; del Sol, Fujihashi et al. 2006). Many 

complex systems display a surprising degree of tolerance against errors. For example, 

relatively simple organisms grow, persist and reproduce despite drastic pharmaceutical 

or environmental interventions, an error tolerance attributed to the robustness of the 

underlying metabolic network. Complex communication networks display a surprising 

degree of robustness: although key components regularly malfunction, local failures 

rarely lead to the loss of the global information-carrying ability of the network. The 

stability of these and other complex systems is often attributed to the redundant wiring 

of the functional web defined by the systems' components (Albert, Jeong et al. 2000). 

Such error tolerance is not shared by all redundant systems: it is displayed only by a 

class of homogeneously wired networks, called scale-free networks including cellular 

networks. Such networks display an unexpected degree of robustness, the ability of 

their nodes to communicate being unaffected even by unrealistically high failure rates. 

Scale-free networks display a surprisingly high degree of tolerance against random 
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failures, a property not shared by their exponential counterparts (Albert, Jeong et al. 

2000). This robustness is probably the basis of the error tolerance of many complex 

systems, ranging from cells to distributed communication systems. 

However, error tolerance comes at a high price in that these networks are extremely 

vulnerable to attacks (that is, to the selection and removal of a few nodes that play a 

vital role in maintaining the network's connectivity). The error tolerance comes at the 

expense of attack survivability: the diameter of these networks increases rapidly and 

they break into many isolated fragments when the most connected nodes are targeted 

(Albert, Jeong et al. 2000). Such decreased attack survivability is useful for drug 

design. 

Functional characteristics of some complex systems and their network topologies are 

better understood in terms of the system's need to respond sensitively to external 

change by switching from one mode of behaviour to another. This requirement is 

apparent in the case of biochemical signaling and metabolic networks, whose role is to 

facilitate the response of cellular systems to external stimuli or to changes in the 

availability of resources. Responsiveness implies an ability to adjust, perhaps 

dramatically, even to small environmental changes (Bar-Yam and Epstein 2004). 

Complementing the importance of effective response to environmental change when 

appropriate is the need for robustness to many other possible alterations. Robustness 

entails a lack of sensitivity to environmental variations, retaining the same behaviour 

even when subject to large stimuli. Both properties are necessary for effective reaction 

and adaptation to environmental changes (Bar-Yam and Epstein 2004). The response 

of a system can be understood to be propagated through the network of connections, 

where the initial stimulus affects one or more nodes. Thus, the topology provides direct 
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information about the nature of the response. It is natural in this context to characterize 

the size of a stimulus by the number of nodes that it initially affects and the response 

by the number that subsequently changes state. Indeed, there is ultimately no reason to 

expect that the size of the response should be determined solely or even primarily by 

the size of the stimulus rather than by its specific relationship to the network topology. 

The complementary importance of robustness and sensitivity suggests that we re

examine previous analyses, which showed, with respect to removal of nodes from the 

network, that scale-free network topologies are robust to failure and sensitive to attack 

(Albert, Jeong et al. 2000; Callaway, Newman et al. 2000; Cohen 2000; Jeong, Mason 

et al. 2001 ). Assuming, as is often done, that the former is an advantage, whereas the 

latter is a disadvantage, may be misleading in some contexts, because both 

characteristics can be advantageous if the sensitivity enables the system to respond 

effectively to environmental changes. 

2.6 The Eukaryotic Cell Cycle 

In any multi-cellular organism, the balance between cell division and cell death 

maintains a constant cell number. Both cell division cycle and cell death are highly 

regulated events. Whether the cell will proceed through the cycle or not, depends upon 

whether the conditions required at the checkpoints during the cycle are fulfilled. In 

higher eukaryotic cells, such as mammalian cells, signals that arrest the cycle usually 

act at a G 1 checkpoint. Cells that pass this restriction point are committed to complete 

the cycle. Regulation of the G 1 phase of the cell cycle is extremely complex and 

involves many different families of proteins such as retinoblastoma family, cyclin 

dependent kinases, cyclins, and cyclin kinase inhibitors. 
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The cell cycle is an ordered set of events leading to the division of a cell into two 

daughter cells. It consists of interphase which includes the G 1 (Gap 1 phase), S phase 

(DNA synthetic phase) and G2 (Gap 2 phase) and Mitosis or M phase. Progression of 

the cycle from one phase to the next is controlled by certain key cell cycle regulators 

such as the cyclins and CDKs which drive the cycle through regulatory 'checkpoints' 

(Johnson and Walker 1999). The cell cycle checkpoints are control mechanisms that 

ensure that the cell has accurately completed a particular phase before progressing to 

the next. Two main checkpoints exist: the G liS checkpoint and the G2/M checkpoint. 

G liS transition is a rate-limiting step in the cell cycle and is also known as restriction 

point. The G 1-S check point controls the passage of cells from the G 1 into the S phase 

and is one of the most tightly regulated process after which replication begins. This 

stage is particularly sensitive to extra-cellular signals and acts as the signal sensing 

component of the cell cycle (Donjerkovic and Scott 2000; Sherr and Roberts 2004) 

(Fig 2.3). Studies have shown that the G 1 to S interval or the G 1/S checkpoint is the 

only part of the cell cycle which is dependent on growth factor mediated signaling 

(Sherr and Roberts 2004 ). If cells growing in culture are deprived of growth factors 

before the G 1 /S checkpoint is crossed, they arrest in the G 1 phase and exit cycle 

without replicating their DNA. If however this occurs after the cells have crossed the 

G liS checkpoint, they continue to cycle till they complete G2/M phase and then arrest 

in the subsequent G 1 phase (Matsushime, Quelle et al. 1994; Sherr 1994; Sherr and 

Roberts 2004). 
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Figure 2.3. The Gl/S Checkpoint control: The figure depicts the regulation of the 

Gl/S checkpoint by multiple mechanisms. (Source :www.cellsignal.com). 

The progression of the G 1 phase of the mammalian cell cycle is regulated by the 

mammalian G 1 cyclins and their associated kinases which integrate information flow 

from outside the cell and in response to mitogens drive the G 1 phase and initiate DNA 

replication (Sherr and Roberts 2004). The G 1 cyclins include the D-Type and the E-

type cyclins. The D-type cyclins include cyclins D 1, D2 and D3 which bind to either 

Cdk4 or Cdk6 in different combinations and allosterically regulate them. In an 

analogous fashion, the E-Type cyclins, E 1 and E2, regulate the activity of cdk2. 

Different combinations of D type cyclins are expressed in different cell types, whereas 

cyclin E-Cdk2 complexes are ubiquitously expressed. These cyclin-Cdk complexes 

had been thought to be necessary and "rate-limiting" for entry into and progression 

through the G 1 phase of the cell cycle (Sherr and Roberts 2004 ). 

The activation of signal transduction pathways in response to mitogens promotes the 

activation of cyclin D-Cdk complexes in the early part of G 1. Activation of these 
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complexes happens at many levels including gene transcription, cyclin-D translocation 

and stability, assembly of cyclin-Cdk partners and import of complexes to the nucleus 

where they can phosphorylate their substrates (Sherr and Roberts 1999). The mitogenic 

stimulation of cells arrested in the GO stage of the cell cycle results in active 

accumulation of these complexes and progression into the G 1 phase. These complexes 

are not required after the initiation of DNA synthesis in S phase, until the cell enters 

the next G 1 phase (Matsushime, Roussel et al. 1991 ). Mitogen withdrawal from 

actively cycling cells negatively affects the transcription, translocation, assembly and 

import cyclin D-Cdk complexes. If this occurs before a cell crosses the G liS 

checkpoint, the cell arrests in the G 1 phase (Sherr and Roberts 2004). If however, this 

occurs when the cells have crossed the G liS checkpoint; the cell completes mitosis and 

exits at the next G 1. Therefore the D type cyclins act as growth sensors, providing a 

link between the mitogenic cues and the potentially autonomous cell cycle machinery. 

The activity of cyclin E-Cdk2 is periodic and maximal at the G liS transition. Their 

expression is also partly mitogen dependent (Sherr and Roberts 2004). 

Following mitogen dependent activation, CycD-Cdk complexes promote cell cycle 

progression by inactivating two classes of cell cycle inhibitors -

•!• Negative regulators of S phase gene expression (including the pocket protein 

family members Rb, p 107 and p 130) 

•!• CDK inhibitory proteins (CKis) 

In the early part of G 1, cyclin dependent kinases initiate Rb phosphorylation (Dowdy, 

Hinds et al. 1993; Ewen, Sluss et al. 1993; Sherr and Roberts 1995). Following which, 

in late G 1 phase, cyclin E-Cdk2 complexes preferentially phosphorylate Rb on 

additional but distinct sites (Reed 1996; Donjerkovic and Scott 2000). Cyclin A and B 
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dependent cdks activated later during cell division, maintain Rb m a 

hyperphosphorylated form till cells exit mitosis. Rb returns to its hypophosphorylated 

or active state in the subsequent G 1 phase. In its active state Rb remains bound to E2F 

family of transcription factors. The hyperphosphorylation of Rb due to its sequential 

phosphorylation, disrupts its association with E2F family members, histone 

deacetylases and other chromatic remodelling proteins (Donjerkovic and Scott 2000; 

Sherr and Roberts 2004). This activates the E2F mediated transcriptional program and 

allows DNA synthesis to occur. Both cyclin A and E are E2F responsive genes and are 

required for G liS transition (Donjerkovic and Scott 2000). 

A second, non catalytic role of G 1 cyclins is regulating CDK inhibitors or CKis. There 

are two main classes of CDK inhibitors based on structure and the CDK target (Sherr 

and Roberts 1999). These are the INK4A proteins consisting of p 16, p 15, p 18 and p 19 

and the Cip/Kip family of proteins including p21, p27 and p57. The INK4A family 

members bind only to CDK4/6 and to no other CDKs or cyclins. The Cip/Kip family 

of inhibitors affects the activities of Cyclin D, E and A dependent kinases. They act as 

inhibitors of Cdk2 and positive regulators of cyclin D dependent Kinases, Cdk4 and 

Cdk6. The INK4A proteins act by antagonizing the assembly of cyclin D dependent 

kinases by binding to CDK4 (or CDK6) (Sherr and Roberts 1999). On the other hand, 

the members of Cip/Kip family, namely p21 and p27 are potent inhibitors of Cdk2 and 

are sequestered by Cyclin D-Cdk4/6 complexes. Their binding to cyclin D-Cdk4 

complexes, stabilizes the complex and facilitates its nuclear import without inhibiting 

cyclin D associated kinase activity (Sherr and Roberts 1999). High amounts of INK4 

results in formation of INK4-CDK4/6 complexes and destabilization of cyclin D. This 

results in the release of Cip/Kip proteins, which bind and inhibit cyclin E (and A) 
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dependent CDK2 activity (Sherr and Roberts 1999; Donjerkovic and Scott 2000; Sherr 

and Roberts 2004). 

In resting or quiescent cells, the levels of p27 are relatively high whereas p21 levels are 

low and increase in response to mitogenic signals during G 1 phase progression (Sherr 

and Roberts 1999). Titration of unbound p27 and p21 into higher order complexes with 

assembling cyclin D -dependent kinases relieves the Cyclin E-Cdk2 complexes from 

Cip/Kip, thereby facilitating cyclin E-cdk2 activation in late G 1 (Sherr and Roberts 

1999). Unlike cyclin D- Cdk complexes, cyclin E-Cdk2 does not sequester p27, but 

phosphorylates it on Thr 187 (Sheaff, Groudine et al. 1997; Vlach, Hennecke et al. 

1997). Once sequestered to these complexes, the levels of the CKis falls below a 

critical point allowing cyclin E-Cdk2 to facilitate its own activation by phosphorylating 

p27 and marking it for degradation. Mitogenic withdrawal leads to disassembly of 

these complexes and mobilizes the latent cyclin D-Cdk bound pool of p27 to bind to 

cyclin E -Cdk2 and facilitate cell cycle exit. This is known as the titration model 

(Sherr and Roberts 2004 ). 

Cyclin E and A are E2F responstve genes and their synthesis increases after 

phosphorylation of Rb by Cyclin dependent kinases. Their activities maintain p27 at 

low levels in the S phase through phosphorylation triggered proteolysis. This 

emergence of Cdk2 activity in late G 1 requires the inactivation of CKis and Rb (Sherr 

and Roberts 1999). On activation, Cdk2 reinforces Cdk4 to complete Rb 

phosphorylation and also inhibits p27. This changes the program to reduce the cell's 

dependency on mitogens for completion of the cell cycle, and, in this sense, results in 

an irreversible commitment of cells to enter S phase. 
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After the initiation of the S phase, the progression of cell cycle is independent of 

mitogens. The subsequent phases of the cell cycle including the S-phase, the G2 phase 

and mitosis are regulated by the action of cyclin A-Cdk1 and Cyclin B-Cdk1 

complexes. The G2/M DNA damage checkpoint prevents the cell from entering 

mitosis (M-phase) if the genome is damaged. The cdc2-cyclin B kinase IS pivotal in 

regulating this transition (Vermeulen. Van Bockstaele eta!. 2003). 

2.7 The 2-Wave theory 

Recently, it has been proposed that growth factor dependent mechanisms of cell cycle 

progression may be considered to consist of two phases or "two waves" (Jones and 

Kazlauskas 2000). The first wave consists of the early burst of signaling after growth 

factor stimulation, is insufficient for cell cycle progression and regulates early G 1 or 

G 1 E phase (Jones and Kazlauskas 2000). The second wave or late phase begins nearly 

3-7 hours (in hepg2 cells) after addition of growth factors, is required for S phase entry 

and regulates late G 1 or G h phase (Jones and Kazlauskas 2001 ).The findings indicate 

that the 2 phases may be regulated by different sets of enzymes or signaling pathways 

(Jones and Kazlauskas 2001 ). Studies also suggest activation of pathways that drive 

cell cycle are not dependent on the type of signal and that multiple growth 

factors/mitogens result in the activation of common signaling cascades which drive the 

cell cycle progression (Jones and Kazlauskas 2001). 

The G 1 phase may therefore temporally be separated into the early and late G 1 phase. 

Based on the results of the present study, we believe it is the cells in this late G 1 phase 

which are crossing or preparing to cross the G liS checkpoint and are therefore in the 

'G 1 S' phase. We speculate that the networks that control or drive the cells through 

these phases of early and late G 1 may differ in terms of structure and topology 
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2.8 Dysregulation of the cell cycle: Cancer 

It is believed that most cancers share an acquired set of capabilities (Fig 2.4). These 

include evading apoptosis, self sufficiency in growth signals, insensitivity to anti-

growth signals and limitless replicative potential, all of which are directly or indirectly 

associated with the loss of cell cycle regulation (Hanahan and Weinberg 2000). Normal 

cells require growth factor mediated signals to enter the cell cycle. The loss of 

dependence on growth factor signals is a hallmark for cancer. This self sufficiency in 

growth signals may occur due to alteration in any one or more of the following-

(i) Alteration of the growth signal (at the receptor level), 

(ii) Alteration in the transducers of those signals (Signaling intermediates),or 

(iii) Alteration in the circuits that translate signals into action (such as the cell cycle) 

:·Sclf-suttlcloncy In 
growth algnala 

.Umlllesa repllcellvc 
potential 

Figure 2.4. The Acquired Capabilities of Cancer. (Source :Hanahan and 
Weinberg 2000). 

From among the factors mentioned above, the growth factor independence acquired 

from the deregulation of cell surface receptors and cell cycle regulators is fairly well 

understood (Hanahan and Weinberg 2000). Cell surface receptors which transmit 

extra-cellular signals into the cell are deregulated in various cancer types. Growth 
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factor receptors, largely belonging to the tyrosine kinase family, are often over

expressed in many forms of cancers. For example, (EGF-RJerbB) is upregulated in 

stomach, brain, and breast tumors (Yarden and Ullrich 1988), while the HER2/neu 

receptor is over-expressed in stomach and mammary carcinomas (Slamon, Clark et al. 

1987; Yarden and Ullrich 1988). Similarly, the cell cycle machinery is well studied and 

the broad principles of cell cycle regulation are well accepted. It is also well known 

that tumour-associated cell cycle defects are often mediated by alterations in cyclin

dependent kinase (CDK) activity. Mis-regulated CDKs induce unscheduled 

proliferation as well as genomic and chromosomal instability. However, according to 

current models, mammalian CDKs are essential for driving each cell cycle phase, so 

therapeutic strategies that block CDK activity are unlikely to selectively target tumour 

cells (Malumbres and Barbacid 2009). 

The most complex mechanism of acquired growth factor autonomy derive from 

alteration in components of downstream cytoplasmic circuitry that receive and process 

the signal from the cell surface growth factor receptors. Many signaling intermediates, 

mostly Kinases, have been found to be mutated or overexpressed in human cancers. 

Some of the well studied signaling pathways include MAPK pathway, the PI3K 

pathway and Wnt signaling pathways among others (Downward 2003; Hennessy, 

Smith et al. 2005; Reya and Clevers 2005; Bradham and McClay 2006). It is largely 

believed that signaling pathways are deregulated in most cancers. Though this fact has 

not been proved, there is a large body of evidence suggesting the same (Hunter 1997). 

Signaling pathways such as the MAPK and the PI3K pathways activated in response to 

growth factors promote the activation of G 1/S phase regulators at multiple levels 

including gene transcription, translation, assembly, transport and activation of different 

cell cycle regulators (Zhang and Liu 2002). Multiple kinases involved in these 
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pathways such as Raf and AKT are known to be deregulated in different types of 

cancers. Similarly the ras proteins control signaling pathways that are key regulators of 

several aspects of normal cell growth and malignant transformation. They are aberrant 

in most human tumours due to activating mutations in the RAS genes themselves or to 

alterations in upstream or downstream signaling components (Downward 2003 ). 

These regulators may also include immediate early genes like Jun, Fos, Myc etc and 

delayed early genes such as D type cyclins etc (Roussel 1997). An example of how 

growth factor mediated signaling pathways regulate cell cycle is the regulation of 

cyclin D. The G 1 phase progression is dependent on the activity of D type cyclins and 

their CDK partners CDK4/6. Activation by growth factors results is increased 

association of cyclinD-CDK4 and activation of these complexes to promote G 1 

progression (Sherr and Roberts 1999; Sherr and Roberts 2004). Withdrawal of growth 

factors results in arresting Cyclin D synthesis, its degredation and loss of cyclin D 

activity. In general, growth factors promote cell cycle progression by the 

phosphorylation of RB and the inactivation of CDK inhibitory CIP/KIP proteins such 

as p27 (Sherr and Roberts 1999; Sherr and Roberts 2004). RB phosphorylation results 

in the subsequent release of E2F transcription factors and the initiation of S phase. The 

critical role of these pathways in regulating G liS phase of cell cycle makes them 

attractive targets for therapeutic intervention. 

One of the earliest studied examples in this of such a pathway was the MAPK 

pathway. Gradually, many other pathways and signaling regulators were identified and 

the emerging cross talk between these pathways, further complicated the molecular 

understanding of the disease. As a result, though many signaling intermediates have 

also been identified in the aetiology of many cancers, the exact mechanism with which 
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they bring about cell transformation is not well understood. In this study we have 

investigated the role of such upstream regulators specifically the kinases and 

phosphatases in cell cycle regulation to obtain a systems view of the upstream 

signaling networks that regulate the cell cycle and its phases. 

2.9 RNAi screens 

One of the most effective tools of functional genomics is the use of RNAi interference 

to understand gene functions. In the last few years a large number of genome scale 

RNAi screens have been performed to understand a plethora of biological processes in 

drosophila, animals, eukaryotes, humans, nematodes, viruses infection and mammalian 

cell based systems (Mohr, Bakal et al. 2010). These processes include cell cycle, signal 

transduction pathways, host pathogen interactions, fat regulation and cancer biology 

among others (Mohr, Bakal et al. 201 0) (Table 2.1 ). Such screens have not only 

enabled a systems level understanding of cellular processes, they have also helped 

deepen the mechanistic insights by identification of novel components in these 

processes. 

RNA interference is essentially a loss-of-function technique, where the effect of gene 

knockdown can be assessed directly as a functional (biological) readout. It reveals the 

role of a gene in a specific biological context and depending on the experimental 

design it may be small scale or high throughput (Mohr, Bakal et al. 2010). Though the 

use of RNAi at a small scale has also revealed a wealth of information, its most 

important impact has been the ability to perform high throughput RNAi based screens. 

Such formats allow the function of a large number of genes to be interrogated 

concurrently (Fig 2.5). 
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Figure 2.5. Approaches to high-throughput cell-based RNAi screening. (a) Pooled RNAi 

high-throughput screen (HTS) approach. (b) Arrayed RNAi HTS approach. (c) Modification 

of a pooled or arrayed approach via prior addition of a treatment, such as RNAi against a 

single gene in all cells or treatment with a small molecule. (d) Identification of related genes 

via informatics-based analysis (e.g., allldnases or genes previously implicated in a specific 

pathway or complex), followed by screening with reagents directed against the identified 

subset of genes. (e) A HTS with one assay type using multiple cell lines, the same cell line 

with multiple pathogens, or a similar multiplexed approach, followed by data integration to 
identify specific and general factors. (f) Parallel RNAi HTSs and an additional experimental 

high-throughput genomic or proteomic approach, followed by data integration to identify 

high-confidence hits. Abbreviations: PPI, protein-protein interaction; + sign, positive result. 

(Source: Mohr, Bakal eta/. 2010). 

A cell based RNAi high throughput screening can be done in two formats: a pooled 

format, in which the library is introduced at random into cells, or an arrayed format, in 

which single genes are targeted by reagents in individual wells of a microtiter plate 

(Iorns, Lord et al. 2007; Lord, Martinet al. 2009; Sharma and Rao 2009) (Fig 2.5). The 
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array format is more flexible and is often performed in 96 or 384 well plate format, 

with each well containing a unique RNAi reagent. Depending on the experimental 

design and cell assay different detection methods are used. The main advantage of the 

arrayed format is that it allows multiple genes to be interrogated and multiple 

phenotypes to be detected in a single screen at a given time. This interrogation of 

multiple genes at a given time helps short listing of a set of genes implicated in a given 

biological function or process (Mohr, Bakal et al. 201 0). The screens have enabled us 

to get biological data at the genome level which was previously possible at a much 

smaller scale (Table 2.1 ). 

Important factors to consider in RNAi (High throughput screens) HTSs include (a) 

performing at least one replicate test in the primary screen, (b) including an appropriate 

type and number of "no treatment" and other controls, (c) a thoughtful array of the 

library and controls (e.g., randomized), (d) an early assessment of data quality to detect 

plate or well-level problems such as dispensing errors, (e) data normalization, and (f) 

setting appropriate cut-off values for significant results (Boutros, Bras et al. 2006; 

Stone, Marine et al. 2007; Wiles, Ravi et al. 2008; Birmingham, Selfors et al. 2009; 

Zhang and Heyse 2009). Despite the recent improvements in addressing all of these 

factors during RNAi HTSs, subsequent data analysis, and follow-up tests, false 

discovery remains a significant and difficult problem to address. Statistical and 

experimental approaches can help to minimize the problem (Echeverri, Beachy et al. 

2006; Birmingham, Selfors et al. 2009). 

36 



Review of Literature 

Table 2.1 Results of genome-scale3 cell-based RNAi high-throughput screens 
in mammalian or Drosoohila cells. 

Cell type SCI'e<.'n type field of study 

Jl urnan ce lls 

He La Plate reader & esiRNA z 5 37 Cell di\ision 
tmagmg 

U20S Imaging siRNA 1,152 18 Cell cycle 

t'\Cl-H 115 5 Plate reader siRJ\A 87 6 Cancer biology 

l\1H3T3 Pooled shRNA 15 J Stress rcsistan<.'C 

293T Pbte reader siRNA - 295 Host-pathogen interactions 

29.\T, HeLa,MCF-7 Pooled shRNA 30 8 Cell death 

DLDI Plate reader siRNA 7..J.O 268 Signa l transduction 

HEK293 Pooled shRJ'.;A 13,140 21 Cell adhesion 

He La lmagiJ1g siRNA 305 ll..J. Host-pathogen interactions 

He La Plate reader siRNA 530 23 Signal transduction 

HeLa-derived TZ\1-bl Plate reader siRNA 386 273 Host-pathogen interactions 

HcLa P4/ RS Plate reader siRNA 931 232 Host-pathogen interactions 

Jurbt Pooled shRNA II 5 Cancer biology 

MCF-I OAc Pooled shRNA 201 166 Cancer biology 

MNT-1 Plate reader siRNA 98 35 Pigmentation 

RDG3 Imaging siRNA - 171 Stress resistan<.'C 

BJtsLT Pooled shRJ\A 100 37 Cancer biology 

DLD-1 Pooled shRNA 368 83 Can<.'Cr biology 

Huh7/Rep-Fco Plate reader siRNA 236 96 Host-pathogen interactions 

.Jurbt Pooled shRNA 251 7 Host-pathogen interactions 

Huh 7.5.1 Imaging siRNA 521 262 Host-pathogen interactions 

,\ louse cdls 
l\lH 3T3 Pooled shRNA - 28 Cancer biology 

L929 Plate reader siRNA 666 432 Cell dea th 

B16-FO Pooled shRNA 78 22 Cancer biology 
Oct4--Gip ESCs FACSd & imaging csiRNA 296 21 Stem cd l biology 

Oct4--Gip ESCs FACS siRNA 148 11» Stem cdl biology 

Kc!67 ,S2R+ Imaging dsR.t'\A ..J-38 - Viability 

52 Imaging dsR.t'\A - 12 1 Host-pathogen interactions 

Clone 8 Plate reader dsRNA 238 213 Signal transduction 

Clone 8 Plate reader dsRNA 509 96 Signal transduction 

Kc167 Plate reader dsRNA - 90 Signal transduction 

S2 Plate reader dsRNA 47..J. 121 Signal transduction 

Sl Imaging dsRNA - 86 Host-pathogen interactions 

52 Imaging dsRJ'.jA 305 -190 Host-pathogen interactions 

52 Imaging dsR.t'\A 210 112 Host-pathogen interactions 

S2 Plate reader dsR.t'\A - 14 Host-pathogen interactions 

Sl Plate reader dsR.t'\A 1,133 28..J. Protein secretion 
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S2 rACS dsRT'\A 4Rf\ - Cell cyde and/or cell st7e 
S2 lma~-.lng dsRT'\A - - Signal transduction 
S2 L\CS dsRT'\A 66 )' 

~-' 1~"\A btology 
~2 Plate reader dsRT'\A 7S 4 Ion transport 
S2R+ Plate re;hkr dsRT'\A DR ., 

I~"\ A htology 
S2R+ Plate reader dsRNA I.IAt' BI Stgnal transducnon 
~2R+ lma~'lng dsRNA 6'/9 - Stgnal tmnsducnon 

S2l~+ lma~:.>lng dsRI\'A 1500 27 Signal transduction 

~2 lma~:.>lng I dsRK\ 'J(l 24 ~'\A btology 
J.-:d67 Plate reader dsRKA ~I 47 Cell death 

S2 Plate reader dsRNA 47 I RKA biolo~:.'Y 
;-:;,. Pbte reader dsRNA IR .) Chmmatin rcgubnon 

S2R+ lmagmg dsRT'\A 340 - Stgnal tr,msductton 

S2 lnlab"'lDg' dsRNA 162 "-+ Host-pathogen interactiOns 

DLI Plate rc,Jdcr dsRT'\A 176 )]I) !lost-pathogen intcracnotls 

J.-:d67 lma~-.lng dsRT'\A 526 - Ltpids 

J.-:dll7 Plate readn dsRT'\A ~65 120 Transcnptton and/or translanon 

Pnmary neurons lnu!,-.lng dsRNA 336 104 Neural omgrmnh 

s.: Plate reader dsRT'\A 821 j\1 ?-.tirochondna 

s.: Plate reader dsRT'\A - - Phagoc~·t(>sis 

S2 lma~:->lng dsRT'\A - - Centrioles and/or ccnn·osomes 

s~ lmagmg dsRNA 847 ))"":" Ltptds ~~ 

~2 lma~:-'lng dsRT'\A 21J2 133 Cancer htol<>p::· 

S2 lmat->lng dsRT'\A 23 - TranscTlpnon and/or n-ansbnon 

52-dcnn::d RZ-1-l Plate reader dsRT'\A ~-- - RT'\A btolof-'Y 

S2R+ lmae.'lng dsRT'\A ))9 3') Cemnolcs and/or cenn·Dsomes 

S2R+ Lmt,.Jng dsRT'\A I\~ 
.,, 

~'\A biology '~ 

S2R+ lm•l[,'ln~ dsRT'\A -) 1)1) I ?-.tit<Khondna 

S2R+ Plate reader dsRK\ 303 173 Circachan rhythms 

Clone ll Plate reader dsRNA -100 II Stgnal rrart,ducw.n 

S.2 Plate reader dsRT'\A 218 116 ]lost-pathogen interactions 

Kd67 Plate reader dsRT'\A 996 .?0.' Cell cp:k and/tJr cell stzc 

S2R+ Plate reader dsRT'\A 42 >3 Cell death 

S2R+ lma[,'lng dsRT'\A - - Signal rransducnon 

S2R+ hnag~n~ dsRT'\A )) - Cell cydc and/or cell stzt· 

a For this summary, genome-scale was defined with a cut-off of approximately 5000 genes 
(mammalian cell screens) or at least 70% of the genome (Drosophila cell screens). 

b Here, secondary hits were used to refer to the largest set of primary hits that passed an 
additional test verifYing the result at the reagent level (retest after re-synthesis or with 
another assay or cell type) or in most cases, at the gene level (retest with another reagent 
or single reagents from a pool, for example).In some cases, only a subset of primary hits 
were tested in secondary assays. For most reports, only a small number of genes 
(typically, one to five) were confirmed with a rigorous test, such as rescue of the RNAi 
effect with a eDNA, or were confirmed at the level of biological significance with another 
type of assay or an in vivo analysis. 

c Additional cell types tested with smaller shRNA pools. 

d FACS,fluorescence-activated cell sorter. (Source: Mohr, Bakal eta!. 2010) 

Clearly, these new methods of high throughput screening provide tremendous power. 

In principle, all genes of the genome are being tested, and the effect on the gene 

product--depletion-is likely to be simple and easy to interpret. Importantly, this 
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method of depleting gene products is perfectly suited to screening in diploid cells, as 

both alleles of a gene are simultaneously suppressed. However there are some 

drawbacks and challenges in siRNA screening (Mohr, Bakal et al. 2010). 

There is significant variability observed in high-throughput screen data caused due to 

variable methods of data analysis. Also, the results from such screens are also very 

sensitive to experimental design, nature of reagents used, cell based systems and 

statistical cut-offs used. A major challenge in RNAi screens data analysis is 

minimising false discovery rates (FDRs) due to the presence of false positives and false 

negatives (Mohr, Bakal et al. 201 0). Experimental noise in the HTS screens and 

inherent bias in certain screen assays contributes to both false positives and negative. 

On the other hand false negative may emerge due to low potency of the RNAi reagents 

and weak knockdown oftarget genes (Lee, Santat et al. 2009; Mohr, Bakal et al. 2010). 

Also knockdowns may result in weak phenotypes which lie below the statistically 

significant cut-offs. False discovery tolerances may also vary among researchers. All 

these factors contribute to the limited overlap observed among related siRNA screens. 

One of the inherent drawbacks of RNAi screening is the off- target effects or OTEs 

observed. False positives are often attributed to the presence of OTEs which may be 

sequence dependent or sequence independent (Jackson, Bartz et al. 2003; Echeverri, 

Beachy et al. 2006; Kulkarni, Booker et al. 2006; Ma, Creanga et al. 2006). 

Another major drawback of siRNA screens is their inability to deal with redundancy in 

the cellular networks. The screens are designed in a manner which allows the depletion 

of a single gene product at a time. Critical regulators may be missed as hits and 

reported as false negatives if there are redundant pathways involved. Often the systems 

used for screening are cell lines chosen for experimental convenience. Therefore, genes 
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identified in such screens need to be tested in more physiologically relevant systems. 

Lastly, the siRNA screens are likely to identify only those genes whose depletion 

confers recessive, loss-of-function, or hypomorphic effects (Goff 2008). Unlike a 

conventional mutagenesis screen, the full range of mutations, such as over expression 

or dominant mutations, are not likely to be found. 

All these factors contribute to the false discovery rates (FDRs). Development of 

appropriate approaches to minimize false discovery rates remains a challenge as, to a 

large extent, minimizing false-positive results increases the number of false-negative 

results, and vice versa (Mohr, Bakal et al. 20 I 0). Efforts at standardization include 

MIARE (for Minimum Information about an RNAi Experiment, ttp://www.miare.org), 

and information about reagents and data is being collected at the Probe 

(http://www .ncbi.nlm.nih.gov/probe) and PubChem (http://pubchem.ncbi.nlm. 

nih.gov/) databases at NCBI (http://www. ncbi.nlm.nih.gov). 

2.9.1 Meta-analysis of genome wide RNAi screens. 

Recent work on the meta-analysis of three different siRNA screens conducted to 

identify host factors involved in HIV survival highlights these weaknesses (Goff 2008; 

Bushman, Malani et al. 2009). Closer comparisons of the three screens reveal a 

disconcerting fact: Although all screens had the same goal, they did not recover the 

same sets of genes. Indeed, there was very little overlap of< 7 %between some pairs of 

sets (Goff 2008; Bushman, Malani et al. 2009). Clearly, despite their common aim, 

these screens uncovered wildly different hits. The identities of the hits recovered seem 

to depend strongly on the conditions and readouts of the screens. Thus, new screens 

may identify even more sets of host genes. Indeed, it is likely that even these large

scale screens have missed some important players. Therefore, despite the many genes 
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identified in various siRNA screens, it is evident that these screens produce a parts list 

of genes involved in specific cellular processes with little or no insight into the 

mechanistic understanding of the process (Goff 2008; Bushman, Malani et al. 2009). 

Most of the lists are incomplete due to the inherent weaknesses of siRN A screens. 

Integration of orthogonal high-throughput experimental approaches has emerged as an 

important approach which can help overcome the above mentioned weaknesses of high 

throughput siRNA screens (Bakal, Linding et al. 2008; Major, Roberts et al. 2008; 

Mohr, Bakal et al. 201 0). Such approaches are based on the combination of high 

throughput screen data with proteomic, genomic and/or genome level bio-informatics 

data. Also, experimental data can also be merged or overlaid onto Protein -protein 

interaction or PPI networks. Such approaches have lead to important insights into areas 

such as signal transduction, host-pathogen interactions and cancer biology among 

others. 

2.10 Multi-component therapeutics for networked systems 

One of the main purposes of high throughput experimental approaches IS the 

identification of druggable targets. However the advent of high-throughput approaches 

and the generation of high throughput proteomic, genomic and metabolomic data have 

not satisfactorily yielded to the expectation of identifying individual drug targets 

(Korcsmaros, Szala et al. 2007). The number of novel drug targets and drugs has fallen 

significantly behind expectation. Another important fact that has emerged is that the 

targeting or inhibition of individual targets has often been found to be less effective at 

treating a disease (Sams-Dodd 2005; Zimmermann, Lehar et al. 2007). Though some 

of the 'one drug-one target' drugs have revolutionized modem medicine, many patients 

are unable to benefit from these therapies because of pharmacogenomic effects (Roses 
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2000; Zimmermann, Lebar et al. 2007). Often the rationale of drug discovery is to 

restore the healthy state by inhibiting the component which is central to the disease. In 

such cases, the action of an alternative target might predominate and these patients 

could benefit from a combination that simultaneously impacts the principal and 

alternative targets (Zimmermann, Lebar et al. 2007). 

The one drug- one target approaches have been challenging for multiple reasons. The 

tremendous redundancy in cellular systems results in a 'buffering' effect such that 

other similar components can perform the functions of the targeted components 

(Hanahan and Weinberg 2000; Hartman, Garvik et al. 2001). Such limitations can be 

overcome by targeting the disease at multiple fronts. Such multi-target approaches can 

prove to be more effective and less vulnerable to adaptive resistance because the 

biological system is less able to compensate for the action of two or more drugs 

simultaneously (Zimmermann, Lebar et al. 2007). 

Multi-target therapies have recently been rediscovered by drug developers. The multi 

target approach is being explored for the treatment of many complex diseases 

including cancers and tuberculosis (Cohn, Catlin et al. 1990; Csermely, Agoston et al. 

2005; Fitzgerald, Schoeberl et al. 2006). As mentioned earlier, given the complexity 

and redundancy in cellular systems, the biggest challenge is the identification of 

multiple druggable targets for combinatorial targeting and the subsequent development 

of multi-target drugs. Current efforts in this direction, such as that of employing 

combination screens, are limited by their inability to sample the vast space of high

order combinations that are theoretically possible. In contrast integration of high 

throughput data with additional network based approaches which identify a shorter list 

of key targets can greatly reduce this space and prove to be a more amenable solution 
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(Csermely, Agoston et al. 2005; Lehar, Stockwell et al. 2008; Pawson and Linding 

2008; Barabasi, Gulbahce et al. 20 11; Farkas, Korcsmaros et al. 20 11 ). Though most 

drug discovery efforts have been largely reductionist and evaluate the roles of 

individual genes/proteins in a disease, however systems perspectives make it clear that 

most diseases and cellular processes cannot be attributed to a single gene or protein. A 

better understanding of disease networks reveal why inhibition of individual targets is 

not sufficient for restoration of a healthy state. 

Cellular networks help us to understand the complexity of the cell. The network 

approach examines the effects of drugs in the context of cellular networks (Csermely, 

Agoston et al. 2005). Cellular networks offer a lot of possibilities to point out their key 

elements as potential drug targets. Network based approaches make it apparent that 

depending on the network topology and node characteristics, perturbing a given 

node/target may have local or global effects. Network based approaches also highlight 

that the redundancy and complexity of cellular networks result in limited efficacy of 

individual node perturbations of one drug-one target approaches. 

Networks have a number of vulnerable points and, therefore, can be attacked in many 

ways (Korcsmaros, Szala et al. 2007). These vulnerable points can be identified by 

understanding network topology and node characteristic. As described earlier, cellular 

networks contain hubs, that is, elements which have a large number of neighbours. 

These networks can be dissected to overlapping modules that form hierarchical 

communities such as signaling networks which have interdigitated pathways and 

multiple layers of cross-talk (Korcsmaros, Szala et al. 2007). Networks can be attacked 

by attacking nodes with the highest degree, attacking hub-links, targeting bridges or 

links which connect nodes having high betweeness centralities or attacking bridges 
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having links with the highest weighted centrality (Fig 2.6) (Korcsmaros, Szala et al. 

2007). Such network based approaches can help delineate the critical functional and 

disease modules and the subsequent identification of critical nodes within these 

modules which may prove to be ideal drug targets. 

A. Attacking hubs B. Attacking hub-links 

C. Attacking bridg9s D. Attacking \•t.;.ighted bridges 

Figure 2.6. Attack scenarios on networks. The figure summarizes a number of 

malicious attacks on vulnerable points of networks. A. Attacks on nodes with highest 
degree (hubs). B. Attacks on 'hub-links' with the highest degree of their end points. C. 

Attacks on bridging elements with links having a high betweenness centrality. D. Attacks 
on bridges having links with the highest weighted centrality. (Source :Korcsmaros, 

Szala et al. 2007). 

Drug-driven network attacks are targeted to find the most efficient way to influence 

network behaviour (Fig 2.6). Several classes of drugs, such as antibiotics, fungicides, 

anticancer drugs as well as numerous chemical compounds, such as pesticides, are 

designed to destroy the normal function of cellular networks (Korcsmaros, Szala et al. 

2007). 
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The sections above discuss the identification of novel targets for synergistic multi

therapeutic interventions using network approaches. Recent studies have attempted to 

identify functional and disease modules using network approaches (Barabasi, Gulbahce 

et al. 2011 ). The identification of such modules seems functionally more relevant since 

they consist of groups of critical nodes involved in regulating specific cellular 

processes or disease. Also, since both biological processes and disease progression are 

dynamic processes, the identification of dynamic temporal modules for these would 

provide a more realistic understanding of the constituent nodes (Barabasi, Gulbahce et 

al. 2011 ). A "multi-modular" therapeutic targeting approach can prove to be the 

paradigm shift in therapeutic strategies for complex disorders. 

2.10.1 Synergy: when the whole is greater than the sum of parts 

There is widespread evidence that the combinations of compounds can be more 

effective than the sum of the effectiveness of the individual agents themselves, a result 

that can be rationalised using principles of systems and molecular biology (Keith, 

Borisy et al. 2005). An obvious application of this lies in the treatment of multigenetic 

disorders like cancers. For example, certain cancers develop due to multiple mutations 

and their chemotherapeutic regimes require combination therapies (Kinzler and 

Vogelstein 1996; Keith, Borisy et al. 2005). Similarly, many other multi-component 

drugs are now being used to treat disorders like asthma, HIV etc. 

One of the prime advantages of multi-targeted therapeutics is the production of 

"synergy" that is, the combinational effect to be greater than the sum of the individual 

effects, making multi-component therapeutics a systematic approach, rather than the 

reductionism of an additive effect (Zimmermann, Lehar et al. 2007). So following the 

identification of synergistic targets, synergy testing for dose determination is also 
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required. It requires testing specific doses, as compound combinations are frequently 

found to be synergistic over one range of doses and antagonistic over another. Though 

there are different additive mathematical models to compute synergy, such as Loewe 

additivity and Bliss Independence (Chou and Talalay 1981; Zimmermann, Lehar et al. 

2007), the best definition for synergy must reflect the requirement that, when used in 

combination, a benefit is observed that could not be achieved by the individual 

components (Straube, Aicher et al. 2011 ). In some cases, adding more of the same drug 

will incur unacceptable negative consequences. For example, when the dose of the first 

drug is just below a threshold of toxicity, even a small amount more might be 

unacceptable, whereas combining it with a drug that possesses non-overlapping 

(orthogonal) toxicities might provide enormous benefit, even if the combined effect on 

efficacy is only Loewe additive. For example, an increase in tumour-cell killing from 

50% to 75% without additional side effects might be clinically meaningful, but not 

mathematically synergistic (Keith, Borisy et al. 2005). 

Such Multi-Target therapeutics employs multi-component drugs which compnse 

several biologically active compounds with mutually interdependent activities that are 

required for an optimal effect. Ideally, when these components interact in a biological 

system, they yield a significant and desired pharmacological effect. Such drugs can be 

particularly effective interventions in networked systems (Barabasi, Gulbahce et al. 

2011). 

2.10.2 Applications in Oncology 

The principles of multi-target therapeutics can be especially applicable to oncology 

(Zimmermann, Lehar et al. 2007). The etiology of many cancers and the process of 

oncogenesis is known to be multigenic (most cancers have four to seven mutations). A 
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multi-therapeutic strategy can yield effective and durable responses. Interestingly, even 

in the case of most tumorigenic viruses, evolution has favoured viral strains that can 

simultaneously block redundant mechanisms and safeguards that the cell uses to 

prevent inappropriate cell cycling and -proliferation (Zimmermann, Lehar et al. 2007). 

These viruses use a multi-target approach to drive their own proliferation. Given that 

multiple nodes in the system must be modified to induce cancer, many researchers 

have proposed that multiple interventions will be required to counter this process 

(Csermely, Agoston et al. 2005; Zimmermann, Lehar et al. 2007; Lebar, Stockwell et 

al. 2008; Farkas, Korcsmaros et al. 2011). Many such drugs that target multiple kinases 

are already being tested for their efficacy against different types of cancers and are 

under clinical trials (Elbauomy Elsheikh, Green et al. 2007; Tomlinson, Baldo et al. 

2007; Sathomsumetee and Reardon 2009). It is evident now that such approaches may 

also prove to be more effective for other multigenic disorders such as Diabetes. 

2.11 Cell Cycle Deregulation in B cell Lymphomas: Importance of Signaling 

Networks. 

Although studies have shown that cell cycle subversion is a key step in tumorigenesis, 

the available information on human tumors has only recently reached the critical 

threshold of knowledge that allows a reasonably clear understanding of the 

mechanisms of cell cycle inactivation and their contribution to the genesis and 

progressiOn of human cancer (Sanchez-Beato, Sanchez-Aguilera et al. 2003). 

Disruption of the physiologic balance between cell proliferation and death is a 

universal feature of all cancers. In general terms, human B-cell lymphomas can be 

subdivided into 2 main groups, low- and high-growth fraction lymphomas, according 

to the mechanisms through which this imbalance is achieved (Sanchez-Beato, Sanchez-
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Aguilera et al. 2003). Most types of low-growth fraction lymphomas are initiated by 

molecular events resulting in the inhibition of apoptosis, such as translocations 

affecting BCL2, in follicular lymphoma, or BCLJO and AP/2/MLTI, in mucosa

associated lymphoid tissue (MALT) lymphomas (Willis, Jadayel et al. 1999; Zhang, 

Siebert et al. 1999; Albinger-Hegyi, Hochreutener et al. 2002). This leads to cell 

accumulation as a consequence of prolonged cell survival. In contrast, high-growth 

fraction lymphomas are characterized by an enhanced proliferative activity, as a result 

of the deregulation of oncogenes with cell cycle regulatory functions, such as BCL6, in 

large B-cell lymphoma, or c-myc, in Burkitt lymphoma (Bastard, Deweindt et al. 1994; 

Offit, LoCoco et al. 1994). 

Both low- and high-growth fraction lymphomas can evolve to highly aggressive 

tumors; the process takes place through the acquisition of alterations in the major 

tumor suppressor pathways, most frequently affecting CKI (Sanchez-Beato, Sanchez

Aguilera et al. 2003). Low- and high-growth fraction lymphomas are both able to 

accumulate other alterations in cell cycle regulation, most frequently involving tumor 

suppressor genes such as pl6INK4a , p27KIP I and pathways such as the p53 and Rb 

pathways. In fact, inactivation of CKI is a marker of highly aggressive lymphomas, 

irrespective of their histologic grade (Sanchez-Beato, Sanchez-Aguilera et al. 2003). 

As a consequence, these tumors behave as highly aggressive lymphomas. The 

simultaneous inactivation of several of these regulators confers increased aggressivity 

and proliferative advantage to tumoral cells. These factors indicate that the molecular 

basis of cancers cannot be attributed to single molecular events, but are in fact a result 

of accumulated alterations in tumor suppressive pathways. However, despite the 

important progress that has been made toward the elucidation of the mechanisms of 
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lymphogenesis, many points still need to be clarified, such as the plethora of molecules 

and pathways that may be affected by their alterations. 
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Chapter 3: Rationale for the study 

Human cancers usually evolve through a multistage process that involves the 

accumulation of mutations and epigenetic abnormalities that affect expression of 

several genes (Puxeddu, Romagnoli et al. 2011). This multi-factorial basis, which also 

then varies widely between individual cancers, is primarily responsible for the limited 

success rate in the development of anti-cancer chemotherapies (Malumbres and 

Barbacid 2001; Vogelstein and Kinzler 2004). In addition to this, however, we 

speculated that another mitigating cause could be the fact that present strategies are 

based on the expectation of linear behaviour from components of the signaling 

machinery. That is, if the oncogenic activation of a given signaling molecule 

contributes to cell transformation, then pharmacological inhibition of that molecule 

should produce the reciprocal effect of inducing death of that cell. Such logic, 

however, does not take into account the current paradigm that the molecular 

components of a cell organize into a complex network of interactions, and that 

biological responses represent emergent features of such networks (Barabasi and 

Oltvai 2004). This perspective is equally true of mitogen-activated, or, oncogene

activated signaling networks, where the consequent emergent responses can then either 

be cell cycle regulation, or dysregulation. 

As discussed earlier in the review of literature, the hallmark of dynamic networks, 

including signaling networks, is non-linear response behaviour. This property derives 

from multiple factors some of which include a high degree of pathway redundancy, 

and the diversity of regulatory elements that combine feedforward, feedback and other 

such mechanisms in local domains distributed across the network. Consequently, the 

principle of reversibility need not necessarily hold true for the behaviour of such 
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networks. This issue becomes particularly more complex in the case of cancers where 

mutational/epigenetic activation of multiple molecules converges to induce, and then 

sustain, the dysregulated cell cycle. We therefore rationalized that a resolution of the 

regulatory elements involved in the mitogenic signaling network would be necessary, 

to facilitate a more rational way of approaching the challenge of cancer chemotherapy. 

Despite the accumulation of a large body of literature on signaling pathways involved 

in cell cycle regulation, the manner in which they integrate together and the regulatory 

features that process input-output relationships, is still poorly understood (Murray 

2004). Our first task therefore, was to address this outstanding issue. Here, given that 

the cell cycle process extends over several hours, we also recognized the need to 

resolve the temporal modulations in network topology, and the consequent effects on 

functioning of the signal processing elements. This posed a particularly difficult 

problem given that satisfactory methods for capturing the temporal dimension of a 

biological process are presently lacking. However, as discussed in the results, we were 

indeed successful in developing a novel approach that resolved not only the question of 

network topology and its regulation, but also its architectural modulations that drive 

cells through individual stages of the cell cycle response. Central to this success was 

our adoption of a working hypothesis that derived from current information on the 

structural features of signaling networks. It is now accepted that the opposing 

requirements for sensitivity and robustness constraints the overall structure into a bow 

tie, or hourglass, configuration (Csete and Doyle 2004; Supper, Spangenberg et al. 

2009). Functionally, this implies the convergence of diverse and redundant input 

processes onto a conserved core module, or set of proteins. Such core elements then 

serve as the key regulators of plasticity in the cellular response, by calibrating a range 

of output processes (Csete and Doyle 2004; Supper, Spangenberg et al. 2009). 
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It was probable therefore, that the mitogen-activated signaling network also adopts 

such a structure, thereby incorporating conserved regulatory elements that can 

processes input signals, and translate them into an output response that regulates the 

cell cycle. This possibility has important implications for cancers since oncogenic 

activation of network components can then be expected to influence by perturbing the 

input information to these modules, thus resulting in an aberrant output response 

manifested in terms of cell cycle dysregulation. Consequently, in addition to yielding 

new mechanistic insights, the identification of such regulatory elements should also 

facilitate development of more effective modalities for chemotherapy. 

A useful approach for probing properties of networks is to perform targeted 

perturbations of the component nodes, and then monitor for the consequent effects on 

the output response. We adopted such a strategy by performing a siRNA screen against 

components of the signaling machinery to identify those targets whose depletion 

resulted in a perturbation of the cell cycle. At this stage, we took note of the fact that 

genetic screens suffer from limitations that miss important regulatory molecules, and 

also frequently yield 'hits' that function in a cell type-specific manner. This aspect was 

exemplified when we compared our results with that of two other such screens 

described on unrelated cell lines in the literature. The overlap in targets identified 

between these three datasets was found to be less that 10%. This divergence could 

possibly reflect differences in the oncogenic pathway choices of these three distinct 

cell lines. We, therefore, segregated the 'hits' identified in our screen on the basis of 

the specific cell cycle stages that they perturbed, and extracted the network of protein

protein interaction pathways that extended from them, to the components of the cell 

cycle regulatory machinery that influenced that specific phase. In other words, this 

exercise yielded the network of signaling pathways that regulated each of the 
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temporally distinct phases of the cell cycle. By then applying the tools of graph theory 

in an iterative manner, we were also able to eventually identify the core modules that 

processed mitogenic signals, in each of these individual phases. Importantly, the 

innovative criteria employed in our analysis ensured that the modules identified were 

those that were unique for that corresponding cell cycle phase. The specific and 

functional relevance of these individual modules could be validated through extensive 

experimentation. 
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4.1 MATERIALS 

MATERIAL SOURCE 

Cell lines 

Raji, Jurkat, HL60, U937, THPl, Namalwa, 
A549, HeLa, HepG2, HEK293, U20S and ATCC, Rockville, MD, USA 
Huh7. 

Cell line A W8507 
Gift from Dr. Shubha Chiplunkar 
(ACTREC) 

Cell line MCF7 
Gift from Dr. Ramesh Bamezai 
(JNU) 

siRNAS 

Mouse Kinase siRNA SET Vl.O (758) Qiagen, GmbH 

Mouse Phosphatase siRNA SET Vl.O (294) Qiagen, GmbH 

RNAi Human/Mouse starter kit (with alexa 
Qiagen, GmbH 

488 labelled siRNA) 

Hiperfect transfection reagent Qiagen, GmbH 

siRNAs for Validation phosphatases Dharmacon,(Chicago, IL),USA 

MISSION siRNA Mouse Kinase Panel 
Sigma Chemical Company, St. 
Louis, MO, USA 

Reagents for SDS PAGE/Western Blot 

Hybond-N transfer membrane 
Amersham Biosciences, Uppsala, 
Sweden 

Protein Marker Bio-Rad Labs, Hercules, CA, USA 

Odyssey Blocking buffer LI-COR Biosciences, NE,USA 

IRDye 800/700 antibody LI-COR Biosciences, NE,USA 

Tissue culture reagents 

RPMI-1640 Invitrogen, Carlsbad, CA, USA 

DMEM Invitrogen, Carlsbad, CA, USA 

Fetal Bovine Serum Invitrogen, Carlsbad, CA, USA 

Antibiotic-Penicillin-Streptomycin Invitrogen, Carlsbad, CA, USA 

Vybrant Dyecycle dye Invitrogen, Carlsbad, CA, USA 

B cell negative isolation kit Invitrogen, Carlsbad, CA, USA 
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MATERIAL SOURCE 

Flow Cytometry Rea2ents 

DNA QC particles BD Biosciences, San Jose, CA 

Rainbow beads BD Biosciences, San Jose, CA 

Propidium Iodide Sigma Chemical Company, St. 
Louis, MO, USA 

RNAseA 
Sigma Chemical Company, St. 
Louis, MO, USA 

Softwares 

Flowjo Tree Star, Inc., USA 

MASCOT Matriz science 

BD F ACSdiva software BD Biosciences, San Jose, CA 

Inhibitors 

Imatinib Mesylate Gift from Sphaera pharma 

LY294002 Tocris Bioscience, Bristol , UK 

TCS 2312 Tocris Bioscience, Bristol, UK 

2-APB Tocris Bioscience, Bristol , UK 

PD173074 Tocris Bioscience, Bristol , UK 

KT5720 Tocris Bioscience, Bristol , UK 

Others 

Ti02 beads ZirChrom Separations Inc 

SCX ICA T cartridges Applied biosystems, USA 

iTRAQ 8-plex/4-plex labelling kit Applied biosystems, USA 
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4.2 BUFFERS AND SOLUTIONS 

Buffers and solutions for PAGE and western blotting 

Lysis Buffer for preparation of cytoplasmic extract (Buffer A) 

20mM HEPES, lOmM NaCI, 1.5nM MgC12, 0.2mM EDTA, 0.5% Triton X-100, 

0.5mM DTT, 1 mM sodium orthovanadate, I mM NaF, and a cocktail of protease 

inhibitors. 

Lysis Buffer for preparation of nuclear extract (Buffer B) 

20mM HEPES, 20% glycerol, 0.8M NaCl, 1.5mM MgC12, 0.2mM EDTA and 0.2% 

Triton X-1 00, and all the above mentioned protease and phosphatase inhibitors. 

2X SDS-PAGE Buffer: 

100 mM Tris-HCl, pH 6.8, 4% SDS, 20% glycerol, 4% ~-mercaptoethanol, 0.01% 

bromophenol blue. 

SDS -PAGE Running buffer 

25 mM Tris, 192 mM glycine, O.I% SDS. 

Transfer buffer: 

25mM Tris base, 250mM Glycine, O.OI% SDS (Sodium Dodecyl Sulfate) and 20% 

Methanol. 

lX PBS (Phosphate-Buffered Saline): 13.7mM NaCl, 0.27mM KCl, lOmM di

Sodium hydrogen phosphate (Na2HP04) and 0.2mM Potassium di-hydrogen 

phosphate (KH2P04). 

Blocking buffer: 5% (w/v) Bovine Serum Albumin in IX PBS-T. 

Wash buffer: O.I% (v/v) Tween-20 in IX PBS .Primary and secondary antibodies are 

prepared in wash buffer and blots were developed by Enhanced Chemiluminescence 

(ECL) kit. 

Odyssey blocking buffer: Odyssey blocking solution in a 1: I ratio with PBS. 
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Odyssey antibody dilution buffer: 

For blots detected using the odyssey infrared scanner, the primary and secondary 

antibodies were prepared in a 1:1 ratio of odyssey blocking solution to PBST. 

Low detergent lysis buffer (For MS): 

It contains 0.01% triton X-100, 0.2mM HEPES, 10mM NaCl, 1.5mM MgC12, 0.2mM 

EDTA), phosphatase inhibitors (10mM NaF, and 1mM NaY) and protease inhibitors 

(1mM PMSF, 10ug/ml each ofleupeptin, aprotinin and pepstatin). 

Propidium Iodide Staining Buffer: 

0.1% Sodium Citrate, 0.1% Triton X, 100 !lg/ml RNAse, 50-100 !lg/ml Pl. 

Buffers for immunoprecipitation 

RIPA buffer: 50mM Tris, 1 OOmM NaCl, 1% (v/v) NP-40, 0.25% (w/v) Sodium 

deoxycholate, lmM EDTA, lmM EGTA along with phosphatase and protease 

inhibitors as applicable. 
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4.3METHODS 

4.3.1 Cell Lines and Cell Culture Medium 

Murine B cell Lymphoma CHI (TIB-221) cells were cultured in RPMI 1640 

(Invitrogen) medium with 2mM L-glutamine adjusted to contain 1.5 g/L Na 

bicarbonate, 4.5 g/L glucose, 10 mM HEPES, 0.05 mM 2-mercaptoethanol (90%) ,1.0 

mM Na pyruvate and 10% fetal calf serum. 

Human cell lines Raji, Jurkat, HL60, U937 and THPI were cultured in RPMI 1640 

medium with 2mM L-glutamine adjusted to contain 1.5g/L Na bicarbonate,4.5g/L 

glucose, 1 0 mM HEPES and 1 0% fetal calf serum. 

Human Burkitts Lymphoma Namalwa was cultured in RPMI 1640 medium with 2mM 

L-glutamine adjusted to contain 1.5g/L Na bicarbonate,4.5g/L glucose,10 mM HEPES, 

and 1.0 mM Na pyruvate and 10% fetal calf serum. 

Human cell lines A549, HeLa, HepG2, HEK293, U20S, AW8507, MCF7 and Huh7 

and were maintained in DMEM (Dulbecco's Modified Eagle Medium, Invitrogen) 

supplemented with 10% FCS. All cell lines were cultures at 37 C and 5% C02. 

4.3.2 Polyacrylamide Gel Electrophoresis and Western Blot analysis. 

Western blot analysis was done to assess efficiency of siRNA knockdown. At 

appropriate times after knockdown i.e 24 hrs, 48 hrs, 72 hrs and 96hrs, aliquots of cells 

were collected, centrifuged, washed with 1 xPBS and the cell pellets stored in liquid 

nitrogen. Just prior to electrophoresis, cells were lysed in lysis buffer (20mM HEPES, 

lOmM NaCI, 1.5nM MgC12, 0.2mM EDTA, 0.5% Triton X-100, 0.5mM DTT, 1mM 

sodium orthovanadate, 1mM NaF, and a cocktail of protease inhibitors). Lysates were 

incubated on ice for 30 minutes followed by removal of the nuclear material and other 

debris through centrifugation. The supernatant was retained for western blotting or IP. 

The lysates were diluted by 2X SDS sample buffer before boiling, the detergent-
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soluble proteins were then resolved by SDS-P AGE and transferred to nitrocellulose 

membranes. Membranes we blocked with Odyssey blocking buffer and cut to enable 

proteins of different sizes to simultaneously be probed with different antibodies. 

Following treatment with the suitable primary antibody, membranes were probed with 

IRDye 800/700 conjugate anti- rabbit/anti-goat/ anti-mouse (depending on the 

requirement) at a 1:15000 dilution, detected using odyssey infrared scanner and 

analysed using Odyssey 2.1 software. 

4.3.3 siRNA Library Screening 

The primary siRNA screens were performed using siRNA libraries targeting mouse 

Kinases (Mouse Kinase siRNA SET Vl.O) and Phosphatases (Mouse Phosphatase 

siRNA SET Vl.O) containing 2 siRNA duplexes for each target gene (Qiagen).The 

siRNAs were designed using the innovative HiPerformance siRNA design algorithm. 

A pool of the 2 siRNAs was used and a total of 758 Kinases and 294 phosphatases 

were screened. 

The Validation screen for the shortlisted Kinase hits was performed using pools of 3 

individual siRNA duplexes against each gene target from the MISSION siRNA Mouse 

Kinase Panel (Sigma).The screen was performed similar to the primary screen. For 

Validation of Phosphatases, siGENOME (Dhramacon) 'smartpool' siRNAs containing 

4 siRNAs per target gene were used. 

Standardization of the screening procedure: 

(i) No. of Cells Plated/ Well 

Experiments were done to determine the optimum number of cells to be used per well 

for transfection and subsequently for cell cycle analysis. TIB-221 cells were seeded at 
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varying numbers ranging from 1 0,000/well to 50,000/well and transfected with GFP

specific siRNA. Subsequently, cell viability was determined using trypan blue 

exclusion at 24, 48, and 72 hours. A seed density of 20,000 cells/well was found to be 

optimal with a cell viability that was consistently >85%. 

(ii) siRNA Transfection Conditions 

Transfection efficiency: To ensure efficient transfection Alexa 488 labelled siRNA 

was used to transfect CH 1 cells. 20,000 cells were plated in a 96-well plate and 

transfected using HiPerfect transfection reagent. Transfection was carried out as per 

the manufacturer's protocol. The efficiency was monitored at up to 72 hours post 

transfection using confocal microscopy and was found to be >98%. 

Optimal siRNA concentration and the kinetics of Knockdown: 

To determine optimal knockdown conditions, siRNAs against stx representative 

proteins were chosen. Using the optimised cell numbers (20,000/well) experiments 

were set up with different concentrations of siRNA ranging from 50 to 400nM using 

HiPerfect transfection reagent as per manufacturer's protocol. The effect of different 

siRNA knockdowns on protein level was determined by Western blot analysis in cell 

lysates obtained at 24, 36, 48, 72 and 96h after transfection. Across experiments the 

siRNA concentration of 200nM was found to be optimal, giving a knockdown of 

between 70-80%, which was retained up to 96h post transfection. The western blots for 

two representative molecules BTK and PLKl, along with those for three validated 

screen targets are shown in Figure S lA. The relatively higher concentration of siRNA 

required is likely due to the fact that these cells grow as a suspension. 
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4.3.4 The siRNA Screening Procedure 

The mouse Kinase and phosphatase libraries (Qiagen) containing 2 siRNAs per target 

gene were obtained in a 96 well format. The siRNAs were diluted to a working 

concentration of 1 Of1M. 

CHI mouse B cell lymphoma cells were transfected with the pool of 2 siRNA duplexes 

per target gene, using HiPerfect transfection reagent as per the manufacturer's protocol 

for transfection of suspension cell lines (Qiagen). Briefly, 20,000 cells of mouse 

lymphoma cell line CH 1 in 25uL of RPMI were seeded into each well of a flat bottom 

96 well plate. The cells were incubated at 370C and 5% C02 for 30 minutes. 

Meanwhile, 25uL (per well) of transfection mix, containing RPMI medium and a I: 1 

volume ratio of siRNA and transfection reagent Hiperfect i.e. 200nM (3ul) siRNA and 

3ul HiPerfect were prepared in parallel U-bottom 96 well plates. To each well in the 

plate containing cells, 25ul of transfection mix was added. The mixture was pipetted a 

few times to ensure proper mixing of transfection complexes with the cells. The plates 

were incubated at 370C and 5% C02. At 6 hours post transfection the volume of each 

well was made up to 150 flL with complete medium (RPM 1 with 1 0% FCS, 1 mM 

sodium Pyruvate, ~me). 

At 24 and 48 hours post transfection the medium of the plate was replaced with fresh 

complete medium. Our transfection conditions ensured that >98% of the cells were 

transfected with the siRNA (Figure SIB). Further, by using siRNA pools against a 

representative set of cellular kinases we determined that specific depletion was evident 

by 36 h after transfection, and that this attained maximal levels by 48h. Depleted 

protein levels then persisted up to 96h ofthe culture (Figure SlA). 

Since during standardization experiments the target protein levels were found to be the 

lowest at 48 hours post transfection, the cell cycle analysis was performed at 72 hours 
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(which is 24 hours after the point at which protein levels are minimum). Each plate had 

5 negative control wells which included cells treated with scrambled siRNA (2 wells), 

OFP siRNA (2 wells) and I well contained mock transfected cells (i.e. only HiPerfect). 

All the screens were performed in duplicates. 

4.3.5 Propidium Iodide staining and sample acquisition using flow cytometry 

For propidium iodide staining and DNA content analysis the cells were centrifuged in 

the 96 well plates using a plate rotor and the medium was aspirated. The cells were 

stained for 30 minutes at 40C with 150 uL propidium iodide staining solution 

containing O.lmg/mL Propidium Iodide (Sigma), 3ul/mL TritonX -100 (Sigma), 1 

mg/mL sodium citrate (Sigma) and 20ug/mL RNase (Sigma). Plates which were not 

acquired immediately were kept at 40C. The samples were acquired in a 96-well plate 

format using an automated BD F ACSCalibur HTS or High Throughput Sampler 

(Beckton Dickinson, F ACSCalibur). 

4.3.6 Primary and secondary screen data analysis and hit selection 

4.3.6.1 Cell cycle analysis 

The data obtained was analysed usmg FlowJo software and the DNA histograms 

obtained were analysed to quantitate the subG 1, 01, S and G2 populations. During 

data analysis we observed minor shifts in G 1 and 02 peak positions and widths across 

cell cycle histograms. This prevented a reliable quantification and comparison of S and 

02 phases of the cell cycle using automated platforms such as those available with 

FlowJo. The cell cycle histograms were therefore analysed using manual gating of the 

sub-G 1, 01, S and 02 phases. The 01, S and G2 phases were analysed after gating out 
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the subG 1 population such that their quantified values represent percentages of the 

total live cell population. 

For each plate the gates were defined for the negative control samples and the same 

gates were copied to the other histograms and used for analysis. Although with respect 

to the control sample there were some well-dependent (instrument based) and sample 

dependent shifts in peaks of some samples in each plate. To increase precision of 

analysis small adjustments in the gates of individual peaks of each sample allowed 

reliable quantification of cell cycle phases. The same procedure was used for the 

analysis of the data obtained from the second screen. 

4.3.6.2 Screen data analysis 

To allow the comparison of data sets from different plates the data was normalized by 

calculating and representing each quantified parameter sub G 1, G 1, S and G2 

populations into Z scores (also called normal scores). Each Z-score is a dimensionless 

quantity which depicts the deviation of the data point from the mean of the negative 

controls in units of the standard deviations of the negative control. The Z scores were 

calculated for each parameter with respect to the mean and standard deviations of the 5 

negative controls of its respective plate. Each Z score was calculated as follows: 

Z score=(x-11)/ f 

Where x is the G 1/S/G2 population to be standardised, 11 is the plate mean/mean of 

controls and f is the standard deviation of the plate/plate controls. Both the screens 

were performed in duplicates, therefore for each siRNA knockdown there were 2 Z 

scores. The Z scores were obtained for each duplicate and the mean was calculated. 

For the first screen a z score cut off of Z > ± 2.5 was chosen and 83 kinases and 22 

phosphatases were shortlisted as our primary hits. 

65 



Materials and Methods 

The molecules shortlisted were screened in the second screen usmg new siRNAs 

obtained from an alternative source and having sequences which were different from 

those used in the primary screen. All siRNAs which resulted in a Z score cut off of± 

2.0 were shortlisted as the final hits.The final list of hits included 38 kinases and 5 

phosphatases as the final hits. 

An analysis of the distribution of scores obtained across the entire screen yielded a 

normal distribution profile with a very low 'skewness' value (Figure S2). Further, a 

comparison of Z scores between the replicates revealed that the potency of identified 

targets remained largely comparable (Figure S3). Also, both intra- and inter-plate 

variations for the control wells were low with a percent standard deviation of the 

median value of < 10%. In order to assess the overall reproducibility of the screen we 

calculated the z-factor with PLK1 as positive control. This resulted in a z-factor of0.56 

which is considered to represent an overall high quality for the assay conditions. These 

collective results, therefore, confirm the robustness, reproducibility, and sensitivity of 

our primary screen. (Figure S2, S3). 

4.3.7 Population Doubling Time Experiments (PDTs). 

To assess the effects of siRNA knockdown on cell cycle dynamics and population 

doubling time, the following experiments were carried out with the validated siRNA 

hits. The siRNA transfections were set up in duplicates and carried out in a 96-well 

plate format as described above. At 48 hours post knockdown (point of maximum 

knockdown) the first population doubling sample was taken and the cells were counted 

using trypan blue exclusion to give the "day 0" counts. Cells were counted similarly at 

72 hours and 96 hours to give the "day 1" and "day 2" counts respectively. Here it 

should be emphasized that the loss of function due to siRNA knockdown is observed 
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up to 96 hours (Figure SIA), which is within the recommended time frame for siRNA 

mediated transient knockdown experiments [4]. Population doubling times (POTs) 

were calculated using the formula (log 2/log N) hr, where N is final cell count/initial 

cell count (Nf/Ni) and hr is time (in hours) between initial and final cell count. The 

population counts were used to plot population growth curves, and also to calculate the 

PDTs. 

4.3.8 Calculation of Residence Times 

Using the population doubling times and the cell cycle histograms, the average 

residence times (RT) of cells in different cell cycle phases were calculated as described 

earlier [5]. The residence time in a particular phase G l/S/G2 (hrs) = % cells in 

G 1/S/G I x PDT (hrs). A table indicating the population doubling times and respective 

residence times is given in Table S3. 

POTs were determined for both mock-silenced, as well as 'hit' -silenced CHI cells. The 

doubling time for mock-silenced CHI cells was 26 hrs (SD ±3 hours), and the 

individual phase-specific RTs were calculated to be GI-8.4I (SO ±1.5), S-13.48 (SD 

±I), G2-4.II (SD ±0.5). The results discussed in the text clearly indicate that each 

siRNA shortlisted as a 'hit' affected one or more cell cycle phase in terms of RT 

extensions. Since our interest was to understand regulatory networks involved in G 1 

and S phase control, we grouped the hits based on residence times alone. Many 

patterns of perturbation in R T were observed in the resulting data. The residence times 

calculated are a reflection of the Z scores. A normalization procedure was carried out 

to negate the plate to plate fluctuations of control cell percentages and allow 

comparison between the different PDTs. 
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4.3.9 Isolation of Human Naive B cells 

Normal B-lymphocytes were purified from the blood of donors by using the B-cell 

negative selection kit from Dynal and following the protocol recommended by the 

manufacturer.Purity of these cells were >90% as assessed by CD 19 staining. 

Antibodies were purchased from Cell Signaling Technologies. Purity of these cells 

were >90% as assessed by CD 19 staining. Antibodies were purchased from Cell 

Signaling Technologies. 

4.3.10 Pharmacological Inhibitor Assays 

For the inhibitor assays, the chemical inhibitors were reconstituted in DMSO. To test 

the effect of specific inhibitors on cell cycle, cells were plated in a 24 well plate. Cells 

were treated with increasing concentrations of inhibitors, in multiple of the IC50s for 

the specific kinases. The cells were treated with inhibitors of specific kinases (or 

kinase combinations) and the cell cycle analysis and effect on cell death was assayed 

using F ACS at 24, 48 and 72 hours post treatment. 

4.3.11 Sorting of cells in the G1 and S phases by flow cytometry 

To obtain separate populations of CHI cells in the G I and S phase, a fluorescence 

activated cell sorting (FACS) approach based on DNA content was used. For this, cells 

were stained with Vybrant Dye Cycle Orange stain (Invitrogen), a cell permeant 

nucleic acid stain that stains live cell populations. Cells were sorted on a F ACSAria 

flow cytometer (Becton Dickenson), using 488nm excitation and 564-606nm emission 

(bandpass filter). 

Cytometer verification: The resolution and linearity of the F ACSAria instrument was 

checked using Chicken erythrocyte nuclei (CEN) stained with PI (DNA QC Particle 
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Kit, BD Biosciences).Calf thymocyte nuclei (DNA QC Particle Kit, BD Biosciences) 

stained with PI were used to check doublet discrimination on FL2 (pulse width versus 

pulse area). The fluorescence sensitivity was checked using SPHERO rainbow 

calibration particles (BD Biosciences). 

Data acquisition and sorting: A viable cell sorting based on DNA content was 

performed in order to separate the G 1 phase and S phase cell populations of CH 1 cells. 

A cell suspension of 1 0 x 106 cells/mL was taken for sorting and a total of nearly 500 

x 106 cells were sorted. Data from the F ACSAria was acquired using the BD 

F ACSDiva software. Data from FL2 (pulse width and area) was acquired with linear 

amplification. A two-way cell sorting was performed by a dual lazer BD F ACSAria 

cell sorter (BD) equipped with a 488 nm argon and 633 nm helium neon lazer The 

488nm lazer was used to excite the Vybrant dye cycle orange dye and the emissions 

were detected with 564-606nm band width filter (PE) and 600-620nm (PE Texas Red). 

The cells were sorted into 15ml polystyrene tubes (falcon) containing 500 J.ll of 

complete medium. Water recirculation for cooling of sample collection tube was used 

to maintain the sorted cells at 4°C. After sorting, the cells were immediately 

centrifuged at 3000 rpm. The supernatant was discarded and the cell pellets were 

processed for protein extraction and mass spectrometric analysis. The purity of the 

sorted populations was >95%. 

4.3.12 Mass spectrometry based determination of the cellular phosphoproteome. 

2 x 108 cells in each phase (G 1 and S) were taken separately and lysed in low 

detergent lysis buffer (containing 0.01% triton X-100, 0.2mM HEPES, 10mM NaCl, 

1.5mM MgC12, 0.2mM EDTA) with phosphatase inhibitors (10mM NaF, and lmM 

NaY) and protease inhibitors (lmM PMSF, lOug/ml each of leupeptin, aprotinin and 
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pepstatin) for 30 minutes at 4°C. The samples were centrifuged for 5 minutes at 3000 

rpm and supernatants containing cytoplasmic cell extracts were collected separately. 

The nuclear pellets obtained were washed once with low detergent lysis buffer. They 

were lysed with Buffer B (20rnM HEPES, 20% glycerol, 0.8M urea, 1.5rnM MgC12, 

0.2rnM EDTA and 0.2% Triton X-100, and all the above mentioned protease and 

phosphatase inhibitors) for 1 hour at 40C. The sample was centrifuged for 10 minutes 

at 10,000 rpm. The supernatants were collected in separate eppendorfs. The nuclear 

and cytoplasmic protein contents for G 1 and S phase were determined using a 

commercial Bradford assay reagent (Bio Rad). From the G 1 and S phase samples, 

aliquots of 1 0011g cytoplasmic protein fraction and 100 llg of nuclear protein fraction 

were taken for iTRAQ labeling. For this analysis we took cytoplasmic extracts of the 

G 1 and S phase obtained from four different sorting experiments (i.e.four replicates), 

and the corresponding nuclear extracts were taken from two of such experiments (two 

replicates). Each of these were separately digested with trypsin, and the resulting 

peptides labeled with the individual isobaric components of either the iTRAQ 8-plex 

(for the cytoplasmic fractions), or the iTRAQ4-plex (for the nuclear fraction) kits as 

described below: 

1. Acetone Precipitation 

The acetone and sample eppendorfs were chilled to 4°C. To each sample six volumes 

of cold acetone was added and the eppendorf was inverted 3 times. The samples were 

incubated overnight at -20°C to allow protein precipitation. The eppendorfs were 

centrifuged at 10,000 rpm for 20 min at 4 °C and the acetone was removed to get the 

precipitated pellet. 

2. Reducing the proteins and Blocking the Cysteines. 
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To each tube containing 100 )lg of precipitated protein pellet, 20 )ll of dissolution 

buffer was added. Then 1 )ll of denaturant and 2 )ll of reducing agent were added, the 

tubes were vortexed and incubated at 60°C for 1 hour. To each tube 1 )ll of cysteine 

blocking reagent was added and tubes were incubated at RT for 10 min. 

3. Tryptic digestion 

A fresh vial of trypsin was reconstituted with 25 )ll of Milli-Q water. Each sample was 

digested with 10 )ll trypsin (l2.5ng/)ll) solution overnight (12-16 hours) at 37°C. 

4. Labeling with iTRAQ reagents. 

The vials of iTRAQ reagents were allowed to equilibrate to RT. Each vial was 

reconstituted by the addition of 70 )ll of ethanol. The 8-plex iTRAQ labels were used 

to label the four replicate samples each of the G 1 and S phase cytoplasmic extracts, 

and the 4-plex iTRAQ labels were used to label the two replicate samples each of the 

G 1 and S phase nuclear extracts. The labelling was done as follows: 8-plex iTRAQ 

tags 113, 114, 115, 116 for G 1 cytoplasmic; 8-plex iTRAQ tags 117,118,119 and 121 

for S cytoplasmic; 4-plex iTRAQ tags 113 and 114 for G 1 nuclear; 4-plex iTRAQ tags 

115 and 116 for S nuclear sample. The contents of each iTRAQ vial were accordingly 

transferred to the appropriate sample tubes and incubated at RT for 1 hour. The G 1 and 

S cytoplasmic fractions labelled with 8-plex iTRAQ labels were pooled into one tube. 

The G 1 and S nuclear fractions labelled with 4-plex iTRAQ labels were pooled into 

another tube. 

The contents were dried on a SpeedVac. Phosphopeptide enrichment was performed 

using Ti02 beads (ZirChrom Separations Inc.).150ug of beads were taken in an 

eppendorf and equilibrated with loading buffer (80%ACN/0.1% Formic acid with 

350mg/ml 2, 5-Dihydroxybenzoic acid or DHB) twice. The final wash was given with 

2% Formic acid (FA). The samples were acidified with 2% FA and then dissolved in 
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500ul of loading buffer. Each sample was mixed with beads and incubated for 45 min 

with rotation. They were centrifuged at 2000 rpm and the supernatant was collected in 

a separate eppendorf. The beads were washed with loading buffer followed by 80% 

ACN/0.1 %FA without DHB. The bound peptides were eluted first with 25ul of 

ammonia water, pH 10.5 in 20% ACN and then with ammonia water, pH10.5 in 40% 

ACN. Eluates were pooled and dried using a SpeedVac. Dried eluate was reconstituted 

into 20ul of 5mM ammonium formate with 30% ACN, pH3.0. They were fractionated 

manually on SCX ICA T cartridges (Applied biosystems) into 5fractions using a 

gradient up to 500mM ammonium formate (5mM, 100mM, 200mM, 300mM and 

500mM). All the fractions were then lyophilized. 

Each fraction was reconstituted in 3% ACN/0.1% FA and was separated by reverse 

phase nano-LC (Agilent 1100 series; column: Zorbax 300SB-Cl8, 3.5um, 150 x 

0.075mm). The peptides were eluted using a 90 min gradient with solvent A 

(H20/ACN, 97/3 vollvol) and B (H20/ACN, 10/90 vollvol): 10 min from 0% to 10% 

B, 45 min from 15% to 35% B, 60 min from 35% to 60% Band 65 min from 60% to 

90% buffer B. Eluted peptides were directly analyzed through electrospray ionization 

(ESI) on a hybrid quadrupole time-of-flight mass spectrometer (QST AR XL, Applied 

Biosystems). The MS/MS spectra of three most intense peaks with 2 to 5 charges in the 

MS scan were automatically acquired in information-dependent acquisition with 

previously selected peaks excluded for 90 seconds. In addition to this, phospho

peptides were also analyzed by ESI-LC-MS/MS on a triple quadrupole (Qq linear ion 

trap; QTRAP 4000, Applied Biosystems) mass spectrometer, in a neutral loss scanning 

mode. 
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Data analysis 

The MS/MS spectra obtained were extracted and searched against mouse protein 

database (Swiss Prot 51.6) using MASCOT (Matrix Science) with trypsin specificity, 2 

missed cleavages, Methylthio as fixed modifications and iTRAQSplex (K), 

iTRAQSplex (N-term), iTRAQSplex (Y), iTRAQ4plex (K), iTRAQ4plex (N-term), 

iTRAQ4plex (Y),Oxidation (M), Phospho (ST), Phospho (Y) were taken as variable 

modification. Precursor mass tolerance was set at ±0.6 Da and fragment mass tolerance 

was set to ±0.4 Da. Only MS/MS spectra that exceeded the MASCOT identity 

threshold at the 95% significance level were taken for further analysis. These spectra 

were manually examined for the presence of characteristic peptide fragment ions (i.e. 

bandy-type of fragment ions), and the identification was considered positive when the 

MASCOT scores were higher than the corresponding identity threshold score, and 

when sufficient peptide sequence coverage (at least 50%) was observed. Here, an 

additional criterion imposed for selection was that the phosphopeptide must be present 

to comparable levels in all the four replicates of the phase-specific cytoplasmic sample, 

or both replicates of the corresponding nuclear extract. The mean of the label-specific 

intensities of each subset (G liS) was taken and were compared to determine phase

specific changes in the level of each phosphopeptide. Table S4 provides the combined 

list of the phosphopeptides identified on both the mass spectrometers, along with the 

description of the parent protein from which they were derived. 

4.3.13 Network analysis methods 

Rationale for assigning cell cycle phase specific source and targets. 

We identified thirty eight kinases and five phosphatases as hits from our siRN A screen 

(Figure 5.1B, 5.10). Kinases and phosphatases are generally considered as molecules 

involved in signaling mechanisms. We wanted to classifY the siRNA screen hits as 
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signaling molecular sources affecting cell cycle. Initially we could classify the hits as 

molecules causing extension or no extension in cell cycle duration from the population 

doubling time data (Figure 5.10). Then we further classified these hits as affecting a 

particular phase based only on extent of the increase in the residence time of a 

particular phase, but not reduction in the residence time of a particular phase to 

simplify further data analysis. These hits must affect the cell cycle machinery either 

directly or indirectly to induce such drastic changes in the residence times of each cell 

cycle phases. 

Based on the above criteria, we defined 12 molecules as sources for causing G 1 

extension, 9 for S phase extension, 4 for G2 phase extension on the basis of their 

residence time (Table S3 ). We further classified 15 molecules as both G 1 S phase 

specific sources since they affected both the phases to an equal extent. Similarly we 

had 1 molecule in G 1 G2 and 2 in SG2 sources. By this process we defined sources for 

cell cycle regulation based on our siRNA screen results and population doubling 

experiments. 

By extensive literature curation on cell cycle we shortlisted molecules involved 

directly in the regulation of cell cycle (Table S5). The target list consisted of 93 

molecules grouped into 3 classes, those which are involved in regulating the G 1 phase, 

the S phase and the G2 phase. 

Many cell cycle regulators are known to play a role in G 1 to S phase progression or in 

both G 1 and S phase regulation. These have been listed as possible G 1 as well as S 

phase targets. These molecules include core cell cycle regulators such as cyclins and 

CDKs, transcription factors, molecules involved m DNA replication and 

kinases/phosphatases which are known to play a role in cell cycle. Some of the 

molecules shortlisted as targets were also screened in the siRNA libraries and were 
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shortlisted as the screen and PDT hits. These molecules may therefore appear as 

sources, targets and possible intermediates of the shortest paths during network 

analysis. 

This set of 93 molecules was considered as molecular targets controlling cell cycle. 

Since we wished to study the phase specific regulation of cell cycle we categorized 

these molecules as Gl-targets (51), S-targets (53) and G2-targets (29) based on their 

involvement in regulation of a particular phase. We combined both G 1-targets and S

targets molecules list to get G 1 S-target molecules. From the experimental and 

literature information we could define sets of source-target relationships for phase 

specific cell cycle regulation. 

Construction of mammalian protein-protein interaction database: We downloaded 

seven different mammalian protein-protein interaction (PPI) databases (i.e., reported to 

be present in rat/mouse/human) from the following sources, BIND (Bader, Donaldson 

et al. 2001), BioGRID (Breitkreutz, Stark et al. 2008), IntAct (Kerrien, Alam-Faruque 

et al. 2007), MINT (Chatr-aryamontri, Ceol et al. 2007) , HPRD (Keshava Prasad, 

Goel et al. 2009), NetworKIN (Bakal, Linding et al. 2008). These databases were 

consolidated by combining rat/mouse/human gene name to yield a single PPI database 

with ~ 12000 nodes and ~50000 edges. Since we wished to incorporate all direct 

experimental biochemical interactions with high confidence, curated from low 

throughput experiments, we incorporated filter criteria to prune out those interactions 

(edges) that were not reported by at least two different experimental methods. We also 

removed interactions predicted purely by in silica and high throughput methods. This 

yielded us a high confidence PPI network of ~5200 nodes and ~12000 edges 
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essentially including all known direct experimental interactions m mammalian 

systems. 

Shortest path analysis and ranking of cell cycle phase specific intermediates: We 

defined source-target relationships involved in regulation of each of the cell cycle 

phases as viz. G 1 sourccs-G 1 targets as G 1 phase regulators, Ssourccs-Stargcts as S phase 

regulators and G 1 Ssourccs-G 1 Stargcts as G 1 S phase regulators. We wished to identify key 

unique regulatory intermediates (IMP nodes) for a given source-target subset for 

regulating a particular phase of cell cycle. 

Algorithm: We defined the 2 path length PPI network to be our core network (N). 

Given a network N with a subset of nodes as sources (S) and targets (T) where S, T c 

N we had to identify the intermediate nodes and quantify their occurrences for all pairs 

ofS and T. 

1. Trace all possible shortest paths between all pairs sources Sand targets T. 

2. Find the intermediate nodes (I) that occur in all possible shortest paths for a 

given S and T. Identify intermediate nodes I for all pairs of S and T. 

3. Count the number of times each of the intermediate I occurs in shortest paths 

for all pairs of S and T. 

4. Compute a z-score to normalize the occurrences of an intermediate with 

respect to the number of the source (S) and target (T) nodes for a given 

source-target subset. 

ISs-T = 
nls-T- <ls-T> 

crls-T 
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Where, nis-T is the number of times the intermediate node I occurred in a 

given source- target subset, <Is-T> is the median of number of occurrences of 

all intermediates nodes in the source-target subset, cris-T is the standard 

deviation of the number of occurrences of all intermediates nodes in the 

source-target subset. 

5. This process of identifying the intermediates and scoring was repeated for all 

source-target subsets. 

6. We employed a cut off criteria of intermediate score ISs-T 2: 1.28 (p-value < 

0.1) to shortlist only significantly high scoring intermediates for our further 

analysis. 

Comparison and short listing of intermediates with control subsets. 

Since we were interested in identifying the unique phase specific IMP nodes for G 1, S 

and G 1 S phases of cell cycle we included a control criteria. Wherein molecules present 

in each group was compared with the distinct source-target group (as shown in the 

table below). The overlapping or common molecules between these groups were 

filtered to retain only the unique nodes for each phase. we believe this analysis would 

further yield us highly phase specific IMP nodes for subsequent network analysis. 

Phase specific regulatory source-target subset Distinct control Networks 

S sources-S targets 

G 1 sources-G 1 targets 
G2 sourccs-G2 targets 

G 1 sourccs-G 1 targets 
Ssources-S targets 

G2 sourccs-G2 targets 

G 1 S sources -G 1 S targets G2sources -G2 targets 
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Extraction of phase specific IMP node subnetworks: We wanted to extract 

subnetwork regulating cell cycle phases incorporating the phase specific regulatory 

intermediates we identified earlier. We considered the phase specific intermediates as 

the seed list and traced all possible shortest paths of path length 2 between all pairs of 

nodes in the seed list. We identified the nodes present in the shortest paths of 2 path 

length between all pairs of seed nodes and merged them to create a connected 

subnetwork. This process was employed for all the three subsets of phase specific 

intermediates yielding three such networks of 2 path length. 

Identification of cell cycle phase specific regulatory motifs: Once we identified cell 

cycle phase specific subnetworks we wanted to resolve it further by manual literature 

curation on all the edges present in the subnetwork. By extensive manual literature 

curation we could include directions to the edges for those the experimental evidence 

was present. We compiled a flat file with human Entrez gene name of source protein 

as first column, target protein as second column, + for activation interaction, - for 

inhibition and 0 for neutral interaction as third and the PMIDS for the interaction as a 

separate fourth column. This network was a mixed graph of both directed and 

undirected edges for each of the IMP node network (Table S7). 

We used this network for identification of network motifs involving the phase specific 

IMP nodes. We used SNAVI, (Ma'ayan, Jenkins et al. 2009) a software tool for 

network analysis, for motif detection in our literature curated IMP node subnetworks. 

With the phase specific regulatory intermediate nodes as seed list and the 

corresponding IMP node subnetwork as background we used SNA VI to identify the 

regulatory motifs for each phase separately. This yielded cell cycle phase specific 
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motifs for G I, S and GIS phases, viz. scaffolds, bifans, feed-forward loops, feed-back 

loops (Figure 5.8). 

Cell cycle phase specific regulatory modules and regulators: We merged the motifs 

we identified for each phase to obtain a module for regulation of each phase. Since we 

wanted to identify the least redundant node in the modules we calculated centrality 

parameters betweenness and stress. And we identified a set of key regulatory nodes for 

each cell cycle phase based on its very high stress and betweenness centrality 

compared to other nodes (Figure 5.9). For this we employed a selection criteria where 

we shortlisted only those nodes exhibiting stress and betweenness greater then 2.5 

times the mean of all nodes in the corresponding phases. This signifies a z score > 1.28 

corresponding to a p value <0.1. This we consider would identify the statistically most 

important nodes for further examinations in the phase specific modules. 

Network Randomization of IMP nodes sub networks: In order to validate the motifs 

we identified in the phase specific IMP nodes networks to be functionally significant 

we merged the IMP node networks since there are overlapping interactions to compile 

a single network with mixed edges. This network was randomized over I 00 times by 

shuffling the edge properties. Motifs involved by the phase specific IMP nodes were 

scanned for in the randomized networks using SNAVI. The figure 5.8 shows the results 

of the randomization exercise validating the motifs identified statistically. 
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Chapter 5: Results 

5.1 An RNAi screen targeting cellular kinases and phosphatases identifies 

regulators of the cell cycle. 

To identify signaling molecules that regulate cell cycle progression we performed a 

siRNA screen against all known kinases (758 proteins) and phosphatases (294 

proteins) in cycling cells of the murine B lymphoma cell line CH 1. (For 

standardization of screening procedure please refer to Experimental procedures and 

Supplementary Figure S I). Changes in cell cycle phase distribution at 72h after siRNA 

transfection were determined by staining cells with propidium iodide, followed by a 

quantitative analysis for the DNA content by flow cytometry (Experimental 

procedures). Here, only those effects that perturbed the cell cycle without significantly 

affecting cell viability were considered. A primary screen followed by a validation 

exercise (Fig. 5.1 and Experimental Procedures), identified 38 kinases and 5 

phosphatases whose silencing significantly affected the cell cycle phase distribution 

(Supplementary Table S 1 ). Microarray analysis subsequently confirmed that the genes 

coding for all of these validated target proteins were indeed expressed in CH 1 cells 

(Supplementary Table S2). 

A hierarchical clustering analysis of the nature of effect caused by depletion of 

these proteins revealed that the most common one was that of a simultaneous increase 

in the pool size of cells resident in the G 1 and S phases (Fig. 5.2A). In addition, there 

were also a significant number of cases where siRNA treatment led to an increase 

specifically in either the G 1 ( 12), or the S (9) phase populations, whereas only a 

limited number of siRNAs had any detectable affect on the 02 phase (Fig. 5.2A). 
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Figure 5.1. Design of the siRNA screen and the cell cycle phase-specific 
effects of the identified targets. 

The Panel provides a schematic of the strategy employed to identifY genes involved 
in cell cycle regulation. The overall z-factor obtained for our screen was 0.56, 
confirming its high overall quality. Details of the design, assay validation, and 
target verification are provided in the text, Experimental Procedures and 
Supplementary Figures Sl , S2 and S3. 
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Figure 5.2. The cell cycle phase-specific effects of the identified targets. 

Panel A shows the hierarchical clustering of the siRNA hits according to the 
observed phenotype on cell cycle. The dendrogram represents the various clusters 
of genes identified by our screen for the observed cell cycle distribution pattern. 
This pattern is based on the normalized z-scores of each of the siRNA hits in the 
respective cell cycle phases. 

Panel B depicts the population growth curves ofCHJ cells obtained in response to 
transfection with either non-silencing siRNA (Normal), or with siRNA against 
each of the validated hits. Here, cells were plated at 48 h after siRNA transfection 
(Day 0), and results are plotted in terms of the fold increase in cell population at 
the indicated time points. Values are the mean of three separate determinations. 
The subset highlighted by the bracket indicates those target-specific siRNAs that 
produced a significant increase in the population doubling times (p < 0. 05, 
denoted by the star). Details of calculation of the population doubling times are 
provided in Experimental Procedures. 
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5.2 Silencing of signaling intermediates induces differential effects on cell 

doubling times. 

An examination of the effects of target-specific depletion on cell population doubling 

times (POTs) yielded a diverse spectrum of effects that ranged from negligible, to a 

marked reduction in the proliferation rate (Fig. 5.2B). While the PDT of control cells 

(i.e. transfected with non-silencing siRNA) was 26±3 h, 16 of the 43 siRNAs tested 

produced a significant extension with POTs of 30h or more. The individual PDT 

values were then employed to calculate the residence time (R T) of cells in G 1, S, and 

G2 phases under each of the knockdown conditions (Experimental Procedures and 

Supplementary Fig. S4), and a comparison of these results, relative to the control 

values, are shown in Figure 5.3. It is evident that each siRNA pool caused specific 

perturbations in one or more of the individual phases of the cell cycle, although the 

effects differed widely between the various knockdowns. For example, the G 1 phase 

RT varied from about 2-fold lower to about 2-fold greater than that in control cells 

(Fig. 5.3). A faster progression through the G 1 phase (i.e. reduced RT) was seen in 

response to treatment with five target-specific siRNAs, whereas the G 1 RT was 

markedly increased in the case of 22 siRNAs. No significant effect was observed for 

the remaining 16 siRNAs (Fig. 5.3). A similar degree of variation was also observed 

for the S phase, whereas the G2 phase was only sensitive to 19 of the siRNAs tested of 

which 8 caused an increase in its RT (Fig. 5.3). 

To simplify our subsequent analysis, we categorized the target-specific siRNAs 

solely on the basis of the phase-specific extensions in RT that they induced (Fig. 5.3). 

That is, although in some cases extension in RT of a given phase was compensated for 
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Figure 5.3. The cell cycle phase-specific effects of the identified targets. 

Figure 5.3 provides aforther analysis wherein the results in panels Band C were 
combined to determine the effects ofsiRNA-mediated target silencing on residence 
time (RT) of the individual cell cycle phases. Changes (L1), relative to the 
corresponding values in GFP-silenced cells, in PDT and RT of the individual 
phases are shown here as the mean(± SD, grey bar) of three experiments. Details 
of their calculation are provided in Supplementary Figure S4 and Experimental 
procedures. 
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by shortening of another phase, the latter effect was not taken into account. 

Accordingly, the largest group of siRNAs (15) corresponded to those that induced a 

significant extension of both the 01 and the S phases (Fig. 5.3). Extension in RT of 

only the 01 phase was observed for an additional group of 12 cases, whereas another 

set of 9 siRNAs specifically extended the S phase alone. Perturbations prolonging the 

02 phase were seen in response to 4 siRNAs and the remaining three target-specific 

siRNAs affected either the S and 02 (2), or the 01 and 02 phases (Fig. 5.3). These 

results are consistent with the known biological roles of these target proteins in the 

literature (Supplementary Table S3). 

Since the role of mitogenic signals is to move cells through the 01 phase and then 

ensure their entry into the S phase (Jones and Kazlauskas 2000; Sears and Nevins 

2002), our subsequent analysis concentrated on only those targets where depletion 

resulted in an extension in R T of either specifically the 01, the S, or both of these 

phases simultaneously. This latter group of targets was termed as those extending RT 

of the 01 S phase and available literature suggests that it likely represents a window 

extending from the later stages of G 1, to initiation of the S phase (Jones and 

Kazlauskas 2000). 

5.3 Functional relevance of the targets identified by the siRNA screen. 

To assess the significance of the hits identified by our screen, we examined the 

expression profile of these target proteins across different tissue and cancer cell lines. 

Expression data from ONF BioOPS, a database compiled by the Genomics Institute of 

Novartis Research Foundation was downloaded and a hierarchical clustering analysis 

performed to classify our targets according to the tissue type in which they were over

expressed. The majority of hits were highly expressed in tissues of the immune 
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system, with an additional cluster that was also over-expressed in cancer cells (Fig. 

5.4). In addition, smaller clusters were also highly over-expressed in neuronal and 

reproductive tissue although the significance of this is presently not clear. A further, 

analysis of the disease relationship of our hits, by using the Novoseek gene-disease 

relationship scores, revealed a strong association with either one or more forms of 

cancer for nearly half of the molecules (21 of 43; Fig. 5 .5). Of the remaining, there 

were sporadic reports in the literature implicating several in different forms of cancer. 

These results, therefore, further support a functional role for the targets identified by 

our siRNA screen, in the context of cell cycle regulation. 

5.4 Analysis of the phosphoproteome of cycling CHl cells. 

In order to get a "coarse grained" view of the signaling pathways that were 

constitutively active in cycling cells we resorted to a mass spectrometric determination 

of the cellular phosphoproteome, in CH 1 cells sorted for the G 1 and S phase sub

populations. An analysis of the phosphoproteins for their functional properties 

revealed several of the signaling molecules identified to be known regulators of 

survival pathways (e.g. AKT2, DAPKl, MAP3K3, CSNK2Al, and CSNK1D; 

Supplementary Table S4). Here, CSNK2Al was also described by our siRNA screen 

as a molecule that influenced RT of the G2 phase (Fig. 5.2A). Similarly, whereas 

CDK5 was short listed as a G 1 and S phase regulator by our siRNA screen, our mass 

spectrometric analysis revealed that the CDK5 activator protein (CDK5Rl; 

Supplementary Table S4) was phosphorylated in both of these phases. The 

microtubule-associated Ser/Thr kinase MAST2 was also similarly phosphorylated in 

both the G 1 and the S phase, with its isoform- MAST1 -representing a confirmed hit 

in our screen. TAOK2, a G 1 and S phase regulator identified in our screen (Fig. 5.2A), 
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Figure 5.4. Functional relevance of the identified targets. 

Results 

Figure 5.4 

The heatmap displays the gene expression pattern of the human orthologs of our 
validated hits, in the indicated range of tissue types. These profiles for the 
different human tissue types were downloaded from GNF BioGPS and the colours 
in the dendrograms indicate the normalized levels of expression described in the 
database. Expression pattern of the target genes, based on their normalized 
values, across the different tissues are plotted here. The bar above the panel 
defines the colour code employed to depict the different expression levels. 
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The figure depicts the gene-disease relationship score (indicated by the colour bar) 
of our hits with various forms of cancer. These scores were obtained from Novoseek 
gene-disease database. 
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was also present - along with T AOK I its closely related family member - in the 

phosphoproteome. 

Additional phosphoproteins identified included those involved in G protein 

coupled receptor signaling (GBGT2, GTPB2, GPR139, ADCY6, RAB6A, RGS9), 

along with regulators of transcription (e.g. RBICCI, SMAD5, FOXP4 etc), 

translation (e.g. E2AK3, EIF3C etc), and DNA replication (e.g. ORC3L). Finally, 

other functional classes of proteins present were ribosomal proteins (RPS I 0, RPS 17, 

RPLP2 etc), transporters (ABCD4, ABCG5, ABCAI etc), ion channels (KCNC3, 

KCNC4 etc), and members of the ubiquitin ligase pathway (e.g. UBE3C). Figure 5.6 

shows the ion spectrum of a representative phosphopeptide derived from the voltage

gated potassium channel KCNQ5. Comparable levels of this phosphopeptide were 

present in both the G I and S phases. 

By employing the multiplexing isobaric tagging approach, we also quantified the 

relative presence of a given phosphoprotein, between the G 1 versus the S phase 

(Experimental Procedures). A total of 303 parent phosphoproteins were identified to 

be present in the G I and the S phases (Supplementary Table S4) of which 61 were 

differentially phosphorylated between the two phases (Fig. 5.6). While 11 such 

proteins showed increased phosphorylation in the G I phase, the remaining were 

selectively enriched in the S phase (Supplementary Table S4). This phase-specific 

distinction in composition of the phosphoproteome conforms to the expected shift in 

topology of the signaling network from the G I to the S phase. Though these results 

can be further explored at the proteome level also, the distinct phosphorylation states 

of proteins observed in different cell cycle phase prompted us to understand the phase 
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Figure 5.6. Enrichment of the dataset through a description of the 
cellular phosphoproteome. 

The top section of figure 5. 6 shows the ion-spectra of a representative peptide 
obtained in our phosphoproteome analysis of the GJ and S population of CHI 
cells (see Text). The numbers on top of each peak represent the molecular mass of 
the iTRAQ label associated with it, in cells in the Gl and the S phase. Here, 
tryptic peptides derived from four batches of independently sorted cells were 
separately labeled with each of the iTRAQ labels and then pooled prior to 
analysis (see Experimental Procedures). 

The Venn diagram in the bottom of this panel represents the distribution of the 
phospho proteins obtained between the G 1 and S phases of the cell cycle. 
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specific signaling networks that may regulate the distinct cell cycle phases (Olsen, 

Vermeulen et al. 20 I 0). 

5.5 Defining the source and target relationships for phase-specific regulation of 

the cell cycle. 

When we examined results from two previously reported genome-wide surveys 

performed in the human cell lines HeLa and U20S (Mukherji, Bell et al. 2006; Kittler, 

Pelletier et al. 2007), we found that there was a <5% overlap between them at the level 

of the signaling molecules (i.e. kinases and phosphatases) that were identified. 

Relative to this, the overlap between targets identified in this study and the signaling 

molecules described in either of these two previous reports was between 5-l 0%. This 

poor concordance between results from independently conducted screens exemplifies 

the emerging limitations of RNAi-based screening approaches where differences in 

cell type and the experimental conditions employed, exert a significant influence on 

the outcome (Goff 2008; Bushman, Malani et al. 2009). This is in addition to the 

intrinsic drawbacks of this procedure that lead to a preponderance of false negatives 

that arise both from the redundant functioning of molecular intermediates, and from 

insufficient target silencing (Bushman, Malani et al. 2009). It was, therefore, 

imperative to explore whether a further interrogation of our results would yield more 

meaningful, and consistent, insights into signal-mediated regulation of the cell cycle. 

Having identified the signaling intermediates whose depletion introduced temporal 

perturbations in the cell cycle, we next aimed to reconstruct the network of pathways 

through which these effects were enforced. The rationale underlying our approach is 

illustrated in Figure 5. 7 A. Here, we defined the targets identified by our screen as 

'source nodes' (nodes in dark red) to imply that these signaling proteins provide 
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Figure 5.7 

A B 

list of cell cycle phase specific sources 

G1 Sources s Sources G1S Sources 

PKIG ITGAE TRPM7 
VRK2 EPHB2 NPR1 
CHEK1 MAPKAP1 PRKAR1A 

FGFR2 NE01 SRMS 
MAST2 PPM1H TSSK5 
RIPK3 PPM1G MET 
ATM TAF9 CDC2A 
IRAK2 GUK1 CDC25A 
PLK2 CLK4 TAOK2 
LEK1 SLK 
PKN1 CDK5 
TEX14 MAP3K5 

SOURCES DUSP12 
MAP4K1 

0 INTERMEDIATES ·-

0 IMPORTANT NODES 

0 TARGETS 

MODULE 

Figure 5.7. A systems approach to the analysis of cell cycle regulation 
and the identification of phase-specific IMP nodes. 

Panel A illustrates the rdtionale underlying the examination of source to target 
sub-networks in order to identify key intermediate effectors of cell cycle 
perturbation. Here the sources denote the hits identified by the siRNA, while the 
targets denote the key molecules involved directly in progression of cell cycle and 
growth. 

Panel B provides the 'source' characterization of the hits obtained in the siRNA 
screen, based on the phase-specific effects obtained. The genes described here are 
the human orthologs of the murine counterparts (see Text). 
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sources for inducing perturbations in the cell cycle. Further, since the effects of 

siRNA-mediated depletion of each of these source proteins was likely to be eventually 

enforced through modulations in activity of one or more constituents of the core cell 

cycle regulatory machinery, we treated this latter group of proteins as target nodes 

(Fig. 5.7A, light red nodes). The objective then was to trace the network of pathways 

connecting the sources to the targets, and search for any associated topological 

features (shown as green nodes linked through dotted edges) that may be central to the 

regulation of cell cycle progression through the G 1 and S phases. In addition to 

providing insights into the underlying regulatory mechanisms, we expected that this 

strategy would also illuminate any other key regulators that may have been missed by 

the screen. 

The proteins whose depletion resulted in an extension in RT of either the G I, the S, 

or both of these phases (Fig. 5.3 and Supplementary Table S3), were labelled as 

source nodes specific for the respective phases (Fig. 5.78). Here, targets that 

influenced both the Gl and S phases were denoted as GIS sources (Fig. 5.78). 

Following this phase-specific segregation of source nodes, our next goal was to define 

the putative end-targets for them. That is, constituents of the core cell cycle machinery 

that directly influence progression of cells through the G 1 and S phases (Murray 

2004). An extensive literature survey identified seventy-four such proteins, which 

could then be grouped either as G 1 or S phase-specific 'targets' based on their known 

functional roles. Supplementary Table S5 provides a list of these targets, along with 

links that describe evidence in support of their categorization. Due to the contiguous 

nature of cell cycle progression, however, it was not possible to distinguish GIS

specific targets from those involved either in the G 1 or the S phases. Therefore the list 
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of G 1 and S phase targets were combined together, and taken as targets for the GIS 

phase. 

5.6 Extracting the protein-protein interaction networks that control Gl and S 

phases of the cell cycle. 

We next mapped the network of pathways linking the source and target nodes in each 

of the relevant phases by employing the approach outlined in Figure 5.8. Combining 

the BIND, IntAct, HPRD, BioGRID, MINT, and NetworKIN databases generated an 

undirected 'parent network' that consisted of nearly fifty thousand protein-protein 

interactions. To filter out all low-confidence interactions, we then selected only those 

whose existence was supported by at least two independent experimental approaches. 

Interactions described solely through a combination of in silica and high-throughput 

methods were also excluded. The resulting network - consisting of 5200 nodes and 

12,000 interactions (or, edges)- therefore retained only interactions that were based 

on sound experimental verification. 

5.7 Identification of important intermediates using the shortest path analysis. 

By taking this high-confidence network, we next traced all possible shortest paths 

from each of the classified phase-specific sources (Gl, S, or GIS, see Fig. 5.7B) to all 

of the corresponding phase-specific targets described in Supplementary Table S4. 

Shortest paths were traced from each G 1source to all G 1target; from each Ssource to all 

S 1arget and also from all G 1 Ssource to all G 1 Starget, (STEP 2, Fig. 5.8). Shortest path 

lengths from source to target generally varied from 3 to 7, with several such paths 

often being present between a given source and target combination. To then identify 

those molecular intermediates (IMP nodes) that were enriched in a cell cycle phase

specific manner, we counted the number of times an intermediate occurred in the 
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Figure 5.8. A systems approach to the analysis of cell cycle regulation and 
the identification of phase-specific IMP nodes. 

The flow chart provides a step-wise summary of the in silica methodologies employed 
for eventual identification of the phase-specific regulatory modules. STEP 1 describes 
the stages involved in delineation of the core network, whereas STEP 2 illustrates the 
subsequent analysis of this core network to extract the phase-specific IMP node sub
networks. Finally, STEP 3 depicts the stages through which an analysis of the IMP 
node sub-networks eventually yielded the phase-specific modules. These individual 
steps are described in detail in Experimental Procedures. 
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ensemble of shortest paths for each phase (Supplementary Table S6). A ranking of the 

relative frequency of occurrence of the individual intermediates in each cell cycle 

phase, but in a manner that facilitated comparison across the three phases, was then 

achieved by applying Z-scores to normalize for differences in the number of source 

and target nodes between the respective cell cycle phases (Experimental Procedures, 

and Supplementary Table S6). Here, to facilitate comparison, a similar G2sourcc to 

G2targct analysis was also performed and the component nodes were similarly ranked. 

A cut-off Z-score of> 1.28 (i.e. p <0.1, Experimental Procedures) was then employed 

for selecting the most frequently occurring nodes in all possible shortest paths for a 

each of the cell cycle phases. From each of these individual lists, we next removed all 

those nodes that were also significantly present (i.e. Z-score > 1.28) in shortest paths 

describing the other, distinct, phases. That is, any intermediate short-listed in the 

G 1 source to G 1 target network was eliminated as a potential G }-specific IMP node if this 

node was also over-represented in shortest paths describing either the S, or the G2 

phases. S-specific IMP nodes were delineated in a similar manner by comparing 

against the high-ranking node list from the G 1 and G2 phases, whereas the G 1 S IMP 

nodes were identified by comparison against nodes from the G2 phase alone 

(Experimental Procedures). This process identified 27, 22 and 32 IMP nodes from the 

G 1, S and G 1 S phase-specific shortest paths respectively, and these are listed in 

Figure 5.9. 

Intriguingly, with the exception of CDC25A, none of the source nodes described in 

Figure 5.78 were present in the list of extracted IMP nodes. This was in spite of the 

fact that shortest paths had been extracted from an undirected network thereby 

ensuring the absence of any inherent bias against their selection. A closer examination 

revealed that several of the nodes from both groups were eliminated as possible IMP 
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Figure 5.9 

G1 Phase S Phase G1S Phase 

PTK2B CSNK2A1 ITGB7 RBL1 ABL1 LYN 

TICAM2 WT1 ADORA2B CCNA2 ANXA1 GADD45G 

KIF23 NFKBIA NTN1 DAB1 GRB2 SKP2 
YWHAQ TICAM1 FOS ETF1 RIS2 CDKN1B 

BCL2 DLGAP4 YWHAG COIL SRC CSNK2A1 

IKBKAP E2F1 PIN1 GRIN2B RB1 CDC25A 

MAPKB MYC CSE1L UBB ELK1 

ESR1 LCK DOK1 AKT1 JUN 

PTEN TANK DCC EP300 TOPBP1 

AKT1 XRCC6 RIS2 BRCA1 E2F1 

SRC TRIM27 STAT1 MCM7 MYC 

ARHGEF7 E7 ESR1 TUBA4A 

ZBTB17 EZR POLR2A EPC1 

EEF1D PKM2 STAT1 WT1 

GRB2 EED MAPK3 PTPN2 

SYNGAP1 TAF1 CCNA2 CCND1 

Figure 5.9. A systems approach to the analysis of cell cycle regulation 
and the identification of phase-specific IMP nodes. 

Figure 5.9 lists the IMP nodes eventually identified through this network analysis 
for regulation of the G 1, S, and G 1 S phases. 
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nodes because their frequency of occurrence was below the threshold value of 

significance. The remaining were then eliminated in the second round of selection 

since these nodes were also present as frequently occurring intermediates in the 

shortest paths describing the mutually exclusive cell cycle phases. Thus these nodes 

were either not enriched enough, or specific enough, to be extracted as cell cycle 

phase-specific IMP nodes. 

5.8 Delineation of IMP node-dependent regulatory modules. 

The identification of intermediate nodes that were specifically enriched in pathways 

mediating a given cell cycle phase also then enabled the search for any topological 

features unique to the respective phase-specific sub-network. For this we first took the 

IMP nodes from each cell cycle phase as the seed nodes, and extracted connected sub

networks of two-path length cut-off from the core network (STEP 3 of Fig. 5.8). The 

resulting G 1 IMP node network was composed of 145 nodes and 296 edges, whereas 

the S IMP node network contained 54 nodes and 85 edges, with 215 nodes and 495 

edges describing the GIS IMP node network (Fig. 5.10 A-C). These sub-networks 

likely encapsulate the specific elements responsible for regulation of the respective 

phases of the cell cycle. 

To therefore delineate the presence of regulatory elements, we adopted the 

approach outlined in STEP 3 of Figure 5.8. To this end, a survey of the literature first 

helped to identify the nature of the biochemical reaction represented by each of the 

edges in the IMP node sub-networks (compiled in Supplementary Table S7). The 

resulting classification of these edges into functional categories of activation, 

inhibition (both directed), or neutral (undirected) then facilitated conversion of the 

individual phase-specific IMP node sub-networks into mixed networks that consisted 
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Figure 5.10 
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Figure 5.10. Extraction of phase-specific sub-network. 

Panels A, B, and C describe the phase specific IMP node sub networks extracted 
from our cell cycle core network for GJ, Sand GIS phase regulation. The IMP 
nodes are defined in red, while the blue nodes denote the intermediate node 
linking any two or more IMP nodes. 
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of directed and un-directed edges. Taking each of these, we next probed for any 

embedded motifs that also included the respective IMP nodes. This was achieved by 

employing SNAVI - a software tool that implements standard network analysis 

methods (Ma'ayan, Jenkins et al. 2009). Figure 5.11A lists the various types of motifs 

that could be identified, their biological significance, and the number of times that 

such motifs occurred in each of the individual phase-specific IMP node sub-networks. 

Integrating the phase-specific IMP node networks, and randomizing the edges over a 

hundred iterations led to a marked reduction in the number of motifs involving 

directed edges (i.e. excluding the scaffolds; Fig. 5.11B). This confirmed that the 

phase-specific motifs identified were indeed statistically significant. 

The number of scaffolds present in the G 1 S-specific IMP node network was 2-fold 

greater than that of G 1-, and over 4-fold greater than that in the S phase-specific IMP 

node sub-network (Fig. 5.11A). Similarly, the numbers of Feed Forward Loops 

(FFLs), Bifans, and Diamond motifs were also significantly higher than the 

corresponding numbers present in either the G 1 or the S phase sub-networks (Fig. 

5.11A). The large number of FFLs identified in the GIS phase sub-network was 

particularly noteworthy. FFLs regulate both filtering of noise and signal amplification 

during signal transduction, and previous studies have suggested that they function as 

important transducers of signal to cell cycle responses (Csikasz-Nagy, Kapuy et al. 

2009). Our findings may thus support that FFLs serve as the crucial signal-regulatory 

elements driving G 1 to S phase transition. Further, the redundancy provided by over

representation of bifans and diamond motifs could contribute towards robustness of 

the system against external perturbations. Finally, our identification that the relative 

enrichment of signal-dependent regulatory motifs follows the order of G 1 S > G 1 > S 

is consistent with fact that the G 1/S checkpoint represents the step that is most tightly 
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Figure 5.11. Extraction of phase-specific sub-network and their 
constituent regulatory motifs. 

Figure A provides a compilation of the different f unctional motifs identified in 
each of the phases, along with a brief description of their biological implications. 
In addition, a typical topological representation of each kind of motif is also 
shown. Here both 3- and 4-node motifs in the FFL categories have been grouped 
together for the sake of convenience. 
Figure B compares the number of the different motifs obtained for the integrated 
IMP node network (Real) versus that in a hundred randomized networks 
(Random, values given as mean ± S.D.). In these randomizations both the nodes 
and the number of links were kept at a constant. The statistical significance of the 
difference in numbers between the Real and Random cases is indicated by the 
corresponding Z-scores which were calculated as (<Real> - <Random> )/S.D. 
Here NS indicates that there was no significant change in the case of scaffolds. 
This is not surprising given that scaffolds are composed of undirected edges. 
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regulated by growth factor-mediated signaling (Zetterberg, Larsson et al. I 995; Sears 

and Nevins 2002). 

5.9 Extracting cell cycle regulatory modules and the identification of vulnerable 

nodes. 

The final step towards delineation of the phase-specific regulatory modules involved 

merging of the motifs identified for each phase in Figure 5.11 A to generate the 

corresponding clusters (see STEP 3 of Fig. 5.8). Thus, all motifs detected in the G 1-

specific IMP node network were merged together to obtain the G 1 phase motif cluster. 

Similarly, motifs present in the G 1 S- or the S-specific IMP node networks were also 

independently merged to generate motif clusters defining the corresponding phases. 

These phase-specific motif clusters then, likely define regulatory modules that 

specifically function during the cell cycle phases from which they were derived. A 

compilation of the nodes present in these modules, along with a classification of the 

functional groups to which they belong, is provided in Supplementary Table S8. 

Having extracted the cell cycle phase-specific regulatory modules, we next sought 

to identify those constituent nodes that were most critical for their functioning. For 

this we employed the centrality measures of 'stress' and 'betweenness'. Stress 

centrality defines the ability of a node to hold together communicating nodes and, 

therefore, is representative of the degree of its involvement in regulatory processes 

(Manimaran, Hegde et al. 2009). Betweenness, on the other hand, is a more elaborate 

centrality index that describes the capacity of a node to serve as a junction in the 

network and, thereby, regulate the network in a coherent manner (Manimaran, Hegde 

et al. 2009). Thus stress and betweenness represent complementary indices that 

together describe the functional importance of a node in a regulatory module. We 
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calculated the stress and betweenness measures for each node in each phase-specific 

module, and the resulting plot of these values for the G I and GIS specific motif 

clusters is shown in Figure 5.I2. Here, as expected, the S-specific module was 

comprised of only a few nodes (see Supplementary Table S8) with just two giving any 

measurable value for stress and betweenness. The motif clusters for the G I, GIS, and 

S phases are shown in Figures 5.13A-C, where the nodes are colour-coded according 

to their stress and betweenness values. The larger the size of the node the higher is the 

respective value of stress, whereas the betweenness value is indicated by the shade of 

the colour for that node. 

We next segregated the functionally most significant nodes as those with stress and 

betweenness values that were both greater than 2.5-fold that of the mean for all nodes 

in the corresponding module (Experimental Procedures, Fig.5.12). The composition of 

the resulting shortlist was then compared across the individual phases. Intriguingly, 

the high stress and high betweenness nodes identified for the G I, GIS, and S windows 

of the cell cycle did not constitute distinct sets of molecules. Rather, the group of 

vulnerable nodes identified for a given window overlapped significantly with that for 

the adjacent window. For example, while PTK2B was exclusively present in the G I 

module ESRl, SRC, and GRB2 commonly occurred as high-stress and high

betweenness nodes in both Gl and GIS modules (Fig.5.12). Interestingly, although 

AKTl and E2FI were also present in both modules (Supplementary Table S8), these 

proteins exhibited properties of high stress and betweenness only in the context of the 

G 1 module (see Fig. 5.12 and 5.13). The nodes exclusively present in the GIS module 

were ABLI, JUN, BRCAI, EP300, and RBI (Fig. 5.12). In the S module, only 

CCNA2 and RBL I showed functional non-redundancy (i.e. high stress and 
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Figure 5.12. Delineating phase-specific regulatory modules and defining 
the vulnerable nodes. 

Figure 5.12 summarizes the results of our analysis of centrality measures of the 
nodes in each of the phase-specific regulatory modules. This is depicted as a Stress 
versus Betweenness plot for all the molecules in the G 1 and G 1 S cell cycle 
modules. Only those nodes that are above the cutoff of 2.5 times that of the mean 
value (indicated by the dotted line, see text) are identified here. 
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Figure 5.13. Delineating phase-specific regulatory modules and defming 
the vulnerable nodes. 

Panels A,B and C show the IMP node based regulatory modules obtained for each 
of the individual phases. These represent phase-specific modules extracted by 
merging the motifs identified for the GJ, GIS and S phases respectively . The nodes 
are colour coded according to their betweenness centrality measure. The size of the 
nodes represents the stress parameter, where the size of the nodes increases with 
increasing stress value. The gradation of the betweenness values is defined by the 
color bar. 
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betweenness, Fig. 5.13 B). The observed overlap in structure between modules 

describing the adjacent windows of the cell cycle is consistent with the fact that 

individual stages of this process do not represent discrete events, but rather reflect 

windows that capture temporally defined stages of a contiguously evolving 

biochemical cascade. 

Interestingly the majority of the G 1-unique nodes represented signaling molecules, 

whereas nodes specific for the G 1 S IMP node network were distributed between 

signaling molecules, transcription regulators, and proteins involved in DNA 

replication (Supplementary Table S8). The transcription factors identified in the latter 

were those with an established role in the cell division cycle (e.g. E2F1, TRP53, 

TRP73, MYC, JUN etc.), in addition to components of the general transcription 

machinery (GTF21) as well as factors that influenced chromatin remodeling (e.g. 

EP300, SMARCA4) (Supplementary Table S8). The identification of proteins 

involved in DNA replication within the G 1 S network is consistent with the 

requirement for cells to cross the G liS checkpoint and these included MCM7, CDC6, 

TOPB 1, and SKP2. The former two molecules are essential for initiation and 

regulation of eukaryotic genome replication respectively, whereas TOPB1 regulates 

topoisomerase II activity (Kumagai, Lee et al. 2006). On the other hand, SKP2 - a 

subunit of the ubiquitin protein complex - regulates stability of the origin recognition 

complex subunit ORClL, and the DNA replication factor CDTl. Further, the SKP2 

containing ubiquitin protein ligase complex also controls stability of cell cycle 

regulators such as E2Fl, CCNA2, CDKNlB, and the CDK inhibitor p27 (Arias and 

Walter 2007). 
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The nodes enriched in S phase network included CDK2 and CCNA2, which form a 

complex that drives cells through the S phase (Arias and Walter 2007). Other such 

enriched nodes included here were BRCA 1 the protein involved in DNA damage 

repair, the DNA replication factor R1S2, and RBL1 -a key regulator of entry into cell 

division (Harper and Elledge 2007). Figure 5.14 summarizes the distinct classes of 

biochemical activities described by each of the IMP node sub-networks in the form of 

a heat map. The observed layering of the initial activation of signaling events ( G 1 and 

G 1 S) over the overlapping phase involving the induction of transcriptional processes 

(G 1 S), and subsequent recruitment of the DNA replication machinery (G 1 S and S) 

accurately recapitulates the broad sequence of events that govern cell cycle 

progressiOn. 

These collective results, therefore, substantiate the information-rich nature of the 

IMP node modules extracted in Figure 5.13, and also that together these modules 

indeed capture the dynamic transitions in biochemical activities that enforce the 

commitment of cells to the division cycle. 

5.10 Verifying phase-specificity of vulnerable nodes. 

To validate the relevance ofthe phase-specific modules more rigorously, we wanted to 

experimentally verify both the selection of high-stress high-betweenness nodes, and 

the characterization of their phase-specificity. For this, we first compared between the 

effects obtained upon perturbation either of AKT or ABL. Our IMP node modules had 

suggested that the functional significance of AKT 1 was restricted to the G 1-specific 

module whereas ABL 1 was specific to the G 1 S module. Therefore, we treated CH 1 

cells with pharmacological agents that either inhibited AKT phosphorylation 

(L Y294002), or, ABL activity (Imatinib mesylate ). Here, the concentration of both 

108 



Number of 
molecules 

Signaling 
intermediates 

Transcriptional 
regulators 

DNA replication 
Factors 

Other cell Cycle 
regulators 

G1 G1S 
+ + 

G1 G1S G1S s s 

• 
II . 

Results 

Figure 5.14 

Figure 5.14. Charting phase-dependent modulations in IMP node 
network architecture. 

Figure 5. 14 depicts the stage-dependent modulation in biochemical activities of 
the core cell cycle regulatory network spanning from early Gl, to completion of 
the S phase. This is presented as a heat map that defines the percent contribution 
of signaling, transcription regulatory, DNA replicative and cell cycle regulatory 
molecules, in each of the indicated windows. 
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inhibitors was adjusted such that a similar PDT was obtained in both cases, thereby 

enabling a direct comparison between the RT of the individual phases. Figure 5 .15A 

shows that inhibition of AKT resulted in a specific extension of the G 1 phase, with a 

marginal reduction in RT of the S phase of the cycle. In contrast, the increased PDT 

obtained upon ABL inhibition involved contributions- in terms of extensions in RT

from both the G I and S phases (Fig. 5.15A). These results therefore verify the 

distinctions in phase-specificity that were earlier suggested for these two nodes, on the 

basis of centrality index estimations. 

We also tested the effects of perturbing the remammg high-stress, high

betweenness nodes that were identified (Fig. 5.15B). As earlier discussed, the large 

majority of high-stress high-betweenness nodes identified were those that were either 

unique to G 1 S, or shared between the G 1 and GIS modules. Consistent with this 

characterization, perturbation at any of these nodes resulted in a simultaneous increase 

in RT ofboth the G1 and the S phase (Fig. 5.15B). Importantly though, RT of the G2 

phase was unaffected. Further, in line with our identification of this protein as a G !

specific regulatory factor, silencing of PTK2B led to a biased extension of the G I 

phase (Fig. 5.15B). The only discrepant result obtained was for E2F 1 whose silencing 

perturbed both the G 1 and S phases, although this protein was characterized as a node 

whose vulnerability was restricted to the G 1 phase (Fig.5.12). This, however, may not 

be surprising given that the downstream products of E2F -dependent transcriptional 

regulation (e.g. cyclins A, B and E) drive both the later stages of G 1, as well as the S 

phase of the cycle. 

Finally, with the exception of CDK5, silencing of nodes with low values for stress 

and betweenness (i.e. between 1-1.5 fold of the mean value) had no significant effect 
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Figure 5.15. Vulnerable nodes provide targets for synergistic 
disruption of the cell cycle. 

Panel A shows the effects of inhibition of either AKT or ABL on RTs of the 
individual phases. The increase in RT (DRT) of a given phase, relative to 
untreated cells, is expressed as a ratio of the corresponding increase- again 
relative to untreated cells - in PDT (DPDT). Here, LY294002 and Imatinib 
mesylate were used at concentrations that were half of their respective IC50 values 
and the increase in PDT obtained over that of untreated cells was 3h. 

The effects of perturbation of the remaining high-stress high-betweenness nodes 
identified in Figure 5.9 are similarly shown in Panel B. With the exception of 
SRC, where PPla was used for inhibition, perturbation was achieved through 
siRNA-mediated depletion in all cases. Accordingly, the control cells used for the 
purposes of comparison were those treated with non-silencing (i.e. GFP-specific) 
siRNA. The results for GRB2 and EP300-silencing are not included as high levels 
(>80%) of cell death were obtained in these cases. Values in both panels are the 
mean (±SD) of three independent experiments. No significant effect on RT of the 
G2 phase was noted in any of the cases. See also Supplementary Figure S5. 
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on phase-specific RTs. Although CDK5 is suspected to play a role in cell cycle 

regulation, its properties and function have been relatively less explored (Dhavan and 

Tsai 2001 ). This would then account for the lesser number of associations known for 

CDK5 and, thereby, the resulting low values for stress and betweenness. Thus, on the 

one hand, the results in Figure 5.15A and B provide experimental support for the 

functional description of nodes, on the basis of centrality indices, from the 

corresponding regulatory modules. On the other, however, they also underscore the 

possibility that some additional critical nodes may have been missed either due to 

insufficient information, or noise in the curated PPI databases. 

5.11 High stress, high betweenness nodes represent vulnerable constituents of 

phase-specific regulatory modules. 

The identification of critical nodes on the basis of centrality measures also implied 

that these were the functionally least redundant, or most vulnerable, nodes within the 

respective cell cycle phase-specific modules. Consequently, inactivation of one or 

more of these nodes should then exert a profound influence on the cell cycle. 

Consistent with this, treatment of CHI cells with an inhibitor of either AKTI 

activation, or that of ABL 1 activity resulted in a dose-dependent increase in the 

frequency of apoptotic cells (Fig. 5.16 A). Importantly, this apoptotic response was 

preceded by an accumulation of cells in the G 1 phase (Fig. 5.16B), confirming that 

cell death was indeed the consequence of an arrest in the cycle. Here, for the purposes 

of comparison, we also examined the effects of inhibition of five representative target 

proteins that had been identified by our siRNA screen (Fig. 5.1 ). Of these, two 

(CHEKI and FGFR2) were characterized as G !-specific source nodes and the 
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Figure 5.16. Vulnerable nodes provide targets for synergistic disruption of 
the cell cycle. 
Panel A depicts the dose-response profile for apoptosis in CHI cells treated with 
pharmacological inhibitors of the indicated kinases. Doses for each inhibitor used 
were in multiples of their corresponding IC50 values as noted. Values (mean ±S.D. 
of three experiments) are expressed as the percent of apoptotic cells obtained 72h 
later, after normalizing for spontaneous apoptosis. (Also see figure S6A) 
The bar graph in Panel B shows the corresponding accumulation of CHI cells in the 
GI phase obtained at I8h with the 5 x IC50 concentration of inhibitors. Values (mean 
± S.D. of three experiments) are expressed as the increase in percent of the G I 
population, over that in untreated cells. 
Panel C lists the target kinases examined, their phase-specificity, the 
pharmacological inhibitors employed for inhibition of these kinases, and the 
corresponding IC50 values of these inhibitors. 
In Panel D, CHI cells were treated with inhibitors against the indicated kinases (or 
kinase combinations) and the consequent effect on cellular apoptosis was determined 
at 48h later. The concentration of the relevant inhibitor employed was five-fold 
greater than its corresponding IC50 value in all cases and results are the mean (± 
S.D.) of three experiments. For the panels A, B and D, cells were treated with a 
single addition of the inhibitor, or, inhibitor combination. 
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remaining three (TRPM7, PRKARIA and MET) as GIS source nodes (see Fig. 5.7B). 

Whereas inhibitors of CHEK 1 and TRPM7 were significantly less potent than that of 

AKTI and ABLI, only marginal effects were obtained upon either PRKARIA, 

FGFR2, or MET inhibition (Fig. 5.16A). The inhibitors used in these experiments, 

along with the IC50 values for their respective targets, are listed in Figure 5.16 C. 

Our interpretation that the vulnerable character of AKTI and ABLI emerged in 

temporally distinct windows of the cell cycle regulatory module also implied that 

simultaneous inhibition of both AKT 1 and ABL 1 should produce a cooperative effect 

on cell cycle arrest, and the consequent apoptosis. This expectation was indeed borne 

out in a subsequent experiment (Fig. 5. 160), and the Loewe Combination Index (CI) 

obtained was 0.56 ± 0.08. Here, a CI of <1 is indicative of a synergistic response 

(Chou and Talalay 1981 ). In contrast, the extent of apoptosis induced by combinations 

of inhibitors of either CHEKI or FGFR2 (G !-specific source nodes) with that of 

TRPM7, PRKARIA, or MET (G 1 S-specific source nodes) remained poor (Fig. 

5.160). Thus, the cumulative results in Figure 5.16 confirm that both AKT and ABL 

exhibit a degree of vulnerability that is significantly greater than at least some of the 

targets identified in our siRNA. Further, the cooperative effects of combined 

inhibition observed also supports our inferred distinction in phase-specific 

involvement (Gl versus GIS) of at least two of the nodes (AKTI and ABLI) 

identified on the basis of centrality indices. 

5.12 A comparative analysis of independently conducted screens yields a common 

IMP node network. 

Since cell cycle regulation is common to all dividing cells, it would be reasonable to 

expect that these core modules - and the IMP node network from which they were 
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extracted - would represent a common feature of dividing cells, independent of the 

tissue type from which they were derived. To verify our hypothesis, therefore, we also 

analyzed results of the previously described RNAi-based screens for cell cycle 

regulators that were performed in HeLa and U20S cells (Mukherji, Bell et al. 2006; 

Kittler, Pelletier et al. 2007). As noted earlier, the overlap in signaling molecules 

identified between these two screens was <5%. 

From each of these reports we separately shortlisted the signaling molecules 

described as 'hits' for either the G I or S phase (the GIS phase was not characterized 

in these studies), and categorized them as G l+S source nodes. We next repeated the 

analysis described in Figure 5. 7 A wherein shortest paths were traced from each of 

these source nodes, to each of the G I +S target nodes described earlier. By then 

subtracting against the corresponding 02-specific source to target network, we 

extracted the IMP nodes as described in Figure 5.8. A similar exercise was also 

performed with the results of our present screen, which then allowed us to compare 

the resulting IMP node list with that obtained from the HeLa and U20S cell screens. 

Remarkably, in spite of the nominal degree of concordance at the level of the RNAi

defined hits, there was a > 70% overlap in the IMP nodes derived from the three 

screens (Fig. 5.I7 A). Further, when IMP node networks were independently generated 

from each of these three lists, the resulting overlap between them was >92% (Fig. 

5.17B). These findings thus establish the significance of our methodology for further 

interrogating the siRNA screen results. In addition, they also support the likelihood 

that the IMP nodules identified from our data constitute conserved regulatory elements 

of the mitogen-dependent signaling network. 
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Figure 5.17 
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Figure 5.17. 

Panel A shows the venn diagram comparing the overlap of IMP nodes identified 
from the three different screens. 

Panel B shows the venn diagram comparing the overlap of nodes from the IMP 
node networks of the three different screens. 
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5.13 IMP node modules define the signaling axes that govern Gl and GIS 

windows of the cell cycle. 

The extensive experimental validation of the functional significance of the IMP node 

modules supported that a further analysis may shed light onto mechanisms by which 

mitogen-dependent signaling cascades drive the cell cycle. In the G 1 IMP node 

module, AKT1 and PTK2B were the two kinases that were uniquely present as high

stress high-betweenness nodes, whereas SRC and the adaptor molecule GRB2 

represented the least redundant constituents of both G 1 and G 1 S modules (Fig. 5.12). 

That is, these four molecules likely represented key constituents of the signaling 

cascade that governs the early G 1 phase of the cycle, with AKT 1 and PTK2B playing 

a more specific role in this process. An examination of the known functions of these 

nodes in the literature supported a central role for AKT1 in mediating the downstream 

processes required for cells to enter the cycle. Of the remaining nodes, SRC likely 

serves as a common sensor that bridges AKT1 activation with both RTKs and 

mitogenic GPCRs. Whereas the SRC/GRB2 complex represents a constituent of the 

signalosome complex recruited by RTKs (Luttrell and Luttrell 2004), PTK2B 

mediates SRC activation by GPCRs (Litvak, Tian et al. 2000). This may then explain 

earlier observations that distinct mitogenic signals activate a common signaling 

cascade in the early G 1 response (Jones and Kazlauskas 2001). 

In comparison with the G 1 IMP node network, the only unique kinase present as a 

high-stress high-betweenness node in the G 1 S IMP node network was ABL 1 (Fig. 

5.12). While this implication of a specific and key regulatory role for this protein in 

the G 1 S phase was intriguing it was, however, experimentally supported by the results 

in Figure 5.15A. In addition studies from another group have also demonstrated that 
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depletion in levels of ABL1 caused a marked delay in entry of cells into the S phase 

(Plattner, Kadlec et al. 1999; Furstoss, Dorey et al. 2002). ABL 1 is normally 

distributed between the cytoplasmic and nuclear compartments of the cell, and its 

regulatory effects are enforced through activation of its kinase activity. In similarity 

with AKT 1, activation of the cytoplasmic pool of ABL 1 is also primarily dependent 

upon the upstream signaling intermediate SRC, which occurs both through direct and 

indirect mechanisms (Plattner, Kadlec et al. 1999; Sirvent, Benistant et al. 2008). The 

latter involves mediation by PLCy, and by phospho-tyrosine containing SH2 domains 

generated by active SRC (Sirvent, Benistant et al. 2008). These collective findings, 

therefore, yield interesting insights into the nature of receptor-proximal signals that 

govern commitment of cells to the division cycle. Thus, the early G 1 is likely 

regulated through the complement of pathways initiated by the SRC-AKT1 signaling 

axis. Continuance through late G 1, and then entry into the S phase, however appears 

to be contingent upon a switch in this axis where ABL1 now replaces AKT1 as the 

non-redundant target of SRC. 

5.14 IMP node modules capture the network of core pathways that mediate 

commitment of cells to the division cycle. 

To further probe for information on cell cycle regulatory mechanisms, we merged the 

G 1 and G 1 S IMP node modules and extracted the motifs incorporating the combined 

list of high-stress high-betweenness nodes. By then enriching the resulting links with 

information from the literature, we translated these into a pathway map that extended 

from the relevant surface receptors, to the effector responses that were influenced. 

This is shown in Figure 5.18. 
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Figure 5.18. Network of core pathways that mediate commitment of cells to 
the division cycle. 
In the pathway model the nodes in red are proteins which are present in the G I and/or 
GIS modules. Nodes present in green are derived from literature (they include 
intermediates or effectors of cellular processes captured by our merged modules). The 
grey arrows depict interactions taken from the merged GI and GIS modules. The blue 
arrows are links added from literature. The dotted orange boxes highlight cellular 
signaling pathways and the dotted grey boxes group molecules involved in regulating 
similar cellular processes. The dashed blue arrows indicate a known role of the source 
node in regulating the target node, derived from literature.AKT and PTK2B are G I 
specific high-stress and betweeness nodes. SRC and GRB2 show high stress and 
betweeness in both modules. ABL and JUN are present as high stress- betweeness 
nodes only in the GIS modules. A detailed description of the pathways captured is 
given in the text. 
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It is evident that this map indeed represents an accurate synopsis of the multiplicity 

of biochemical events that cumulatively drive commitment of cells to the division 

cycle. More importantly it also describes the individual modes of functioning of the 

G 1- and G 1 S-specific signaling cascades, and also the links between them that 

coordinate their respective activities. Thus, while this analysis confirms that AKT1-

dependent pathways indeed initiate cell cycle progression, it also reveals that this 

activity is supported by a concomitant inhibition of pro-apoptotic pathways, in 

addition to being coordinated with mechanisms regulating cell growth (Fig. 5.18). 

Similarly, this figure also rationalizes the key role ascribed to ABL 1 during regulation 

of late G 1 and the subsequent G liS transition. As shown, pathways emanating from 

the cytoplasmic pool of ABLl influence both cell cycle progression and cell growth, 

while also suppressmg pro-apoptotic mechanisms (Fig. 5 .18). A prominent 

downstream consequence of cytoplasmic ABL 1 activation is the enhancement in 

cellular c-MYC concentrations (Boureux, Furstoss et al. 2005). MYC is known to 

function as a central regulator that links external signals to the cell cycle machinery 

(Obaya, Mateyak et al. 1999). Importantly, the cell cycle regulatory effects of MYC 

predominantly impinge on the later stages of G 1, and facilitate entry of cells into the S 

phase (Heikkila, Schwab et al. 1987; Santoni-Rugiu, Falck et al. 2000). 

A notable feature of our model is that it also highlights a role for the nuclear pool 

of ABL 1 in regulating MYC levels. A significant proportion of nuclear ABL 1 is 

normally maintained in an inactive form through its existence in a complex with RB 

(Welch and Wang 1995). As cells approach the G liS boundary however, 

phosphorylation of RB causes the release of ABL 1. At least some fraction of this 

released ABL1 interacts with JUN, as a result of which ABL is activated. This process 

then leads to the potent activation of JUN through a feed-forward regulatory 

120 



Results 

mechanism wherein ABLl directly phosphorylates JUN, and also its upstream kinase 

JNK (Barila, Mangano et al. 2000). It is logical then to infer that signaling pathways 

initiated from both the cytoplasmic and nuclear pools of ABLl would converge to 

activate JUN and, thereby, MYC upregulation. This cooperative action between the 

two ABLl subsets may well explain the long-standing question of how cellular MYC 

levels are temporally modulated during cell cycle progression. While expression of 

this protein is induced in the early G 1 phase these levels are, however, further 

enhanced as cells prepare for S phase entry (Jones and Kazlauskas 2001). This 

increase is likely essential for recruiting - through transcription regulatory 

mechanisms - the wider spectrum of biochemical activities that are required for 

driving G 1 to S transition. Interestingly, consistent with our proposal, the timing of 

this second phase of MYC enhancement coincides with that of dissociation of the RB

ABL complex (Welch and Wang 1993). These cumulative results therefore provide a 

mechanism-based rationalization for our assignment of key, but distinct, regulatory 

roles to AKT 1 and ABL 1 in the early and late G 1 stages respectively. Of particular 

note here is that the canonical MAP kinase pathway also plays a supporting role for 

the effector functions of both AKTl and ABLl. Significantly, the SRC-mediated 

activation of this pathway - in a manner that is not strictly dependent upon either 

AKTl or ABLl -allows for its recruitment in both the early and late G 1 (Fig. 5.18). 

Consequently, the MAP kinase pathway likely serves as a common link that facilitates 

transition between these two phases. 

Our model also suggests a plausible mechanism that enables ABL 1 to replace 

AKT 1 as the dominant signaling node in the G 1 S phase. As illustrated, this process 

hinges upon the release of nuclear ABL 1 from its complex with RB. AKTI-dependent 

initiation of cells into the cycle culminates with the phosphorylation of RB, which is 
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normally evident by 8h after stimulation of cells with a mitogenic signal (Ezhevsky, 

Ho et al. 2001 ). This leads to the release of bound ABL 1. As we proposed earlier, 

activation of this subset synergizes with cytoplasmic ABL signaling to ensure 

enhancement in MYC levels. In addition, some fraction of this nuclear ABL 1 is also 

likely to partition into the cytoplasmic compartment of the cell. This could be 

achieved either through its direct export in the non-phosphorylated form, or, following 

acetylation by the histone acetyl transferase EP300 ( di Bari, Ciuffini et al. 2006). The 

resulting increase in the pool of cytoplasmic ABLl would then further intensify 

signals generated from this subset of the kinase. 

Our proposal of a marked amplification in ABL !-dependent signaling as cells 

approach the G 1 /S boundary is well supported by recent findings demonstrating that 

cellular levels of phosphorylated ABL 1 peak at the G 1 S phase (Olsen, Vermeulen et 

al. 201 0). However, we further resolve here that this likely occurs through both 

enrichment of the cytoplasmic pool, as well as through activation of the fraction that 

remains in the nucleus. Importantly, this amplification would be further reinforced by 

the fact that signals from both subsets synergize at the level of activating downstream 

effector pathways such as MYC regulation, and the synthesis of cyclins. These 

cumulative effects may then explain how ABL 1 acquires the characteristics of a 

vulnerable node in the later stages of G 1. Significantly, this switch in the regulatory 

signaling node from AKT 1 to ABL 1 occurs in a seamless manner because, in addition 

to recruiting the additional pathways required for S phase entry, ABL 1 also supplants 

the functions of AKT1 in terms of suppressing apoptotic pathways and regulating cell 

growth. This then would then also explain the increased functional redundancy of 

AKT1 at this stage. 
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5.15 The Gl and GlS IMP node modules represent conserved elements of 

mitogen-activated signaling cascades. 

In addition to the strong experimental validation of their functional significance, our 

results so far had also provided a mechanistic understanding of how the G 1 and G 1 S 

IMP node modules regulate their respective phases of the cell cycle in a coordinated 

manner. Significantly, our comparative analysis yielding a similar IMP node network 

from the results of siRNA screen results performed in three different cell lines also 

suggested the likelihood that the IMP node modules thus derived constitute invariant 

features that are common to all dividing cells. To investigate this we took a panel of 

fourteen human cell lines derived from a diverse range of tissue types (see 

Supplementary Figure S6B). These cells were treated with a single dose of either the 

combined inhibitors of AKT and ABL or, for purposes of comparison, combinations 

of inhibitors against the siRNA-identified targets (Cl, C2, and C3 in Fig. 5.16D). The 

frequency of apoptotic cells obtained in each case was then determined 48h later and 

the results are presented in Figure 5.19A. The efficacy of the inhibitor combinations 

C 1, C2, and C3 was highly restricted with the combination C2 inducing significant 

(i.e. >30%) apoptosis only in four of the cell lines tested. Further, with the exception 

of Jurkat cells, effects on the remaining cell lines were predominantly due to CHEK1 

inhibition with little or no contribution from PKA inhibition (Supplementary Fig. 

S7B). This was also true of the effects of combination C1 on THP1 and U937 cells, 

whereas the combination C3 was virtually ineffective (Fig. 5.19 A). 

In contrast to these limited effects, simultaneous inhibition of AKT and ABL 

induced significant levels of apoptosis in all the cell lines tested, which included HeLa 

and U20S cells (Fig. 5.19A). This effect was further enhanced by the 72h time point 
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Figure 5.19. Vulnerable nodes constitute regulatory elements that are 
conserved across a broad range of cell types. 

The effects of combined inhibition of the indicated kinase combinations (at 
concentrations of 5 x IC50 values) on fourteen different cancer eel/lines, following a 
protocol similar to that described for Figure 5.13D, are shown in Panel A. (Also 
refer to Supplementary figure S7). 

Panel B shows the results of a similar experiment with indicated inhibitor 
combinations performed on normal B-lymphocytes purified from the peripheral 
blood of six different individuals. 

Panel C gives the CI values for the combined inhibition of AKT and ABL obtained 
for the individual eel/lines. CI values were calculated as previously described (Chou 
and Talalay 1981). For four eel/lines CI values could not be estimated since either 
one (for Namalwa and THP I) or both (for Jurkat and A549) inhibitors showed no 
effect when added individually (indicated as broken bars). The red line defines the 
cut-off (C/=1) for interpreting responses as being synergistic and values are the 
mean (±S.D.) of three determinations. 
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where the number of apoptotic cells was >80% in all cases. These collective results, 

therefore, further support the functional distinction between at least the hits from the 

siRNA screen tested here, and the high vulnerability nodes identified from a graph 

theoretical derivation of the phase-specific regulatory modules. That is, in comparison 

with the former group the latter represents nodes that are involved in a less redundant 

manner, during cell cycle regulation of a broader range of cancer cell types. Notably, 

none of the inhibitor combinations examined had any significant affect on viability of 

normal B-lymphocytes purified from the peripheral blood of six different individuals 

(Fig. 5.19B). This confirms that the functional relevance of AKTl and ABLl is only 

expressed in actively cycling cells. 

To assess whether responses to the combined inhibition of ABL and AKT in Figure 

5.19A were synergistic we determined the CI values from dose-response curves either 

to L Y294002, Imatinib mesylate, or the combination of both in each instance. The 

results are presented in Figure 5.19C where a synergistic effect is clearly evident in 

twelve of the fourteen cell lines. Interestingly, this also included examples where 

either one (Imatinib mesylate in Namalwa and THPl cells), or both inhibitors (Jurkat 

and A549 cells) had no significant effect on cell survival when administered 

individually (Fig. 5.20); further emphasizing the extent of cooperativity achieved by 

the inhibitor combination in these cells. For the remaining two cell lines however 

(HEK293 and HEPG2), dual inhibition of both ABL and AKT yielded an outcome 

that largely represented an additive consequence of the individual effects. We 

reasoned that this absence of synergy for the inhibitor combination in this latter group 

of cell lines could derive from subtle, cell type-inherent, differences in the architecture 

of the IMP node modules. This in tum may then influence the degree of vulnerability 

exhibited by AKTl and ABLl. Thus, for example, our pathway model in Figure 5.18 
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Figure 5.20. Vulnerable nodes constitute regulatory elements that are 
conserved across a broad range of cell types. 

Panel A shows representative results for the synergy between AKT and ABL 
inhibition where one (Namalwa) or both (Jurkat) inhibitors were ineffective when 
added individually. 

Panel B shows the effects of the inclusion of PP 1 a, in addition to LY294002 and 
Imatinib mesylate, on the apoptotic responses of HEK293 and HEPG2 cells. Results 
are shown in two sub-panels for each cell line where the sub-panel on the left 
indicates the effects either of LY294002, Imatinib mesylate alone (each at 4 x IC5,), 

or a combination of both. The sub-panel on the right gives the results of addition of 
increasing concentrations of PP 1 a either alone (blue line), or in the presence of the 
combined inhibitors for AKT and ABL (each at 4 x /C5rP red line). Values again are 
the mean (±S.D.) of three determinations. 

126 



Results 

would suggest that the degree of involvement of the MAP kinase pathway could 

potentially determine the extent to which both AKTI and ABLl were required, in 

order to maintain cells in active cycle. Consequently, we probed this latter group 

further by also including SRC inhibitor PPia, along with those for ABL and AKT. As 

earlier discussed, SRC principally functions by mediating either AKTI activation in 

the G I phase, or ABL I activation in the GIS phase. 

Figure 5.20 B shows that although SRC inhibition alone had no significant effect 

on either of the cell lines tested, a strong synergistic effect was nonetheless obtained 

when it was combined with the inhibitors of both AKT and ABL. Thus, by combining 

SRC inhibition along with that for AKTI and ABLl, it seem possible to also guard 

against any cell type-specific variations in topology of the G I and GIS IMP node 

modules. Important to note here is that in all cases involving inhibition of vulnerable 

nodes - or their combinations - in Figure 5.19A, increased apoptosis was always 

preceded by an accumulation of cells in the G 1 phase, supporting that cell death was 

indeed mediated through an arrest in the cell cycle (Supplementary Fig. S7C). These 

cumulative results, therefore, confirm that the G 1 and GIS IMP node modules 

described in Figure 5.13 indeed represent signal processing elements that commonly 

mediate cell cycle progression in at least a wide range of cell types. Further, the 

vulnerable nodes that they incorporate provide sensitive targets for achieving an 

efficient disruption of the cell cycle regulatory network. 
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Chapter 6: Discussion 

The trade-off between sensitivity and robustness constrains the architecture of the 

signaling network into a bow tie or hourglass structure, which represents the 

convergence of diverse and redundant input processes onto a conserved core module or 

set of proteins (Csete and Doyle 2004; Supper, Spangenberg et al. 2009). Such core 

elements function as the key regulators of plasticity in the cellular response, by 

calibrating a range of output processes (Kitano and Oda 2006; del Sol, Balling et al. 

201 0). It was therefore likely that the mitogen-activated signaling network also 

incorporates such conserved regulatory elements that process input signals, and 

translates them into the output response of cell cycle progression. We approached the 

question of how the signaling network regulates cell cycle by first attempting a 

definition of those intermediates that were capable of inducing perturbations in the 

output response. The latter was achieved through a siRNA screen that targeted 

components of the signaling machinery, followed by a scoring for effects that were 

specific to the individual phases of the cell cycle. 

Although RNAi-based screens have been employed to identify regulators of cell 

proliferation and/or survival, limitations inherent to this approach have confounded 

interpretation of the results. Key caveats here are the preponderance of false negatives 

because of which many important regulators are missed, and the fact that the majority 

of hits obtained are those that function in a cell type-restricted manner (Bushman, 

Malani et al. 2009). Consequently, convergence between results from different 

laboratories is often too low to permit any meaningful interpretation. This aspect was 

also underscored by the insignificant overlap obtained between the three datasets that 

included our present screen results, and that of the two earlier performed screens. 
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Therefore, we were prompted to explore graph theoretical approaches for unravelling 

the mechanistic implications of the hits identified. We were encouraged in this 

endeavor by earlier studies where analysis of network interactions in receptor-specific 

pathways indeed yielded insights into signaling mechanisms, and also emphasized the 

potential of this approach for identifying new drug targets (Bushman, Malani et al. 

2009; Astsaturov, Ratushny et al. 201 0). 

The molecules identified in our siRNA screen were categorized as sources for phase

specific perturbation, and subjected to iterative rounds of a network-based analysis. 

This exercise eventually yielded the core signaling modules that regulated the G 1, 

G 1 S, and S phases of the cycle, and also delineated the most vulnerable nodes present 

in them. Central to this analysis was the identification of IMP nodes, which were 

selected on the basis of their unique over-representation in each of the phase-specific 

regulatory sub-networks. Their high frequency of occurrence implied correlation with a 

strong functional role that was specific to the corresponding cell cycle phase. That is, 

phase-specific IMP nodes were likely those that combined the traits of minimal 

functional redundancy and increased specificity of action, in the context of regulation 

of the respective window of the cell cycle. By extension then, the modules defined by 

the phase-specific group of IMP nodes also likely constitute the key regulatory 

elements that process mitogenic (and oncogenic?) signals for the respective cell cycle 

phases. Here, a re-examination of data from the two previously described screens 

validated both the relevance and significance of our approach. The virtually similar 

IMP node network that was extracted in all cases also lent preliminary support to our 

proposition of the existence of a conserved set of core elements that regulate mitogenic 

signals. 
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Intriguingly, although the vulnerable nodes identified from the IMP node modules 

included prominent signaling molecules such as AKTl, ABLl, PTK2B, and SRC, 

none of these were, however, detected either in our CH 1 cells screen, or in the 

previously described screens in HeLa and U20S cells (Mukheiji, Bell et al. 2006; 

Kittler, Pelletier et al. 2007). That this discrepancy was due to limitations in the RNAi 

screen procedure, and not an artifact of our analyses, could be confirmed in 

experiments where inhibition of AKT1 and ABLl induced an apoptotic response in all 

of the three cell lines. Importantly, these and other such similar experiments provided 

convincing verification of the functional properties ascribed to the vulnerable nodes 

and, therefore, also served to validate the parent IMP node modules from which they 

were derived. 

Examination of the incorporated links revealed novel details on the mode of 

functioning of these modules. For instance, the G 1 and G 1 S modules both participate 

in the critical function of coordinating cell cycle progression with cell growth, in a 

setting where pro-apoptotic pathways are inhibited. The shared activities between the 

individual modules maintains contiguity during progression of cells from early G 1 up 

to the S phase, whereas integration between the three modules promotes temporal 

evolution of the spectrum of biochemical processes that drive commitment of cells to 

the cycle. Particularly significant here was our discovery that the G 1 and G 1 S phases 

were controlled by distinct signaling axes that were composed of SRC-AKT and SRC

ABL respectively. Further, we also subsequently elucidated that it was the switch 

between these two axes that guided transition of cells from early to late G 1/G 1 S. This 

inference, initially derived from the graph theoretical analysis, could be experimentally 

verified in CHI cells by specifically targeting either AKT or ABL with 

pharmacological inhibitors. In more recent experiments we have found similar effects 
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of AKT- and ABL-inhibition in all of the cell lines examined in Figure 5.19 (Jailkhani, 

N., et. al., unpublished results), supporting that this regulatory mechanism is a common 

property of dividing cells. 

In addition to defining the receptor-proximal signals, however, our cumulative 

results further established that the IMP node modules in fact also capture the key 

regulatory elements that translate the effector consequences of mitogenic/oncogenic 

signaling to the respective stages of the cell cycle. In this connection, our experiments 

demonstrating that these cumulative functional properties of the G 1 and GIS modules 

were conserved across a diverse panel cell lines is particularly significant. That is, 

these phase-specific modules presumably describe core information-processing units of 

the mitogen-activated signaling network, which function - in at least a broad range of 

cell types - to ensure irreversible commitment to the cycle. It can therefore be 

anticipated that future studies on the systems properties of these modules may provide 

important clues on mechanisms underlying cell transformation, and also on factors that 

govern properties related to cellular growth rate such as tumor aggressiveness and 

metastasis. 

Having identified the IMP node modules and characterized their vulnerable 

constituents, we were then able to exploit this information to develop a potentially 

more effective strategy for chemotherapy. In view ofthe pathway redundancies that are 

inherent to signaling networks, current emphasis is on approaches that involve a 

concerted pharmacological intervention at multiple key targets (Lehar, Stockwell et al. 

2008). Here, the likelihood of generating a synergistic effect constitutes another 

potential advantage of this strategy. The challenge, however, is to identify the most 

appropriate combination of nodes to be targeted, and present approaches in this 

direction are limited by the vast space of high-order combinations that are theoretically 
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possible (Lehar, Krueger et al. 2008). Here, our present strategy of extracting 

vulnerable nodes from the core elements that process input signals in a context-specific 

manner, alone serves to reduce the dimensions of combination space to be explored by 

several orders of magnitude. Further, as we have demonstrated, the relative functional 

conservation of these regulatory elements also implies that the benefits of targeting 

such nodes would be at least less cell type-restricted. 

From a broader point of view, the above results also support that targeting nodes 

derived from modules that regulate temporally distinct stages provides for a more 

effective means for breaching the fragility barrier of the cell cycle regulatory network. 

That is, these findings emphasize the potential of exploiting the temporal dimensions 

of a biological process, an aspect that is presently ignored in ongoing drug 

development exercises. More specifically though, our results also underscore the 

potential utility of simultaneous AKT1 and ABL1 (and, SRC?) inhibition, either 

independently or in conjunction with existing drugs, for anti-cancer treatment. At one 

level, targeting combinations of nodes whose functional vulnerabilities are conserved 

can potentially override current limitations faced due to problems of cell- and tissue

type heterogeneity. In addition, the observed synergism between AKT1 and ABL1 

inhibition also entails a broader therapeutic window, thus providing an advantage over 

several of the chemotherapeutic agents currently in use (Kaelin 2005). Our proposal is 

particularly well supported by emerging evidence that a role for constitutive ABL 

activity is not restricted to CML alone but, rather, is now implicated in a broader 

spectrum of cancers (Sirvent, Benistant et al. 2008). This would be consistent with our 

present description of ABL 1 as the key regulatory signaling molecule that drives the 

G 1 S phase. Also to be noted in this context is the possibility of exploiting the other 
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vulnerable nodes that were identified in the individual IMP node modules, through the 

development of specific inhibitors. 

Thus, in summary, our present report describes an integration of results from a 

siRNA screen with a graph theoretical analysis, to delineate the core signaling modules 

that regulated the early phases of the cell cycle. The significance of this approach could 

be established through a comparative analysis with other - independently conducted -

screens, and its relevance was underscored by the fact that the modules identified 

represented regulatory elements that were conserved across a broad range of cell types. 

A particular highlight of our results was the strong experimental corroboration that 

could be generated for the inferences gained from the network analysis. This, in tum, 

allowed for elaboration of novel mechanistic features pertaining to signal-mediated 

regulation of the cell cycle. Notable among these was the delineation of the distinct 

core signaling axes that governed early and late G 1 phases, and subsequent elucidation 

of the seamless manner in which the switch between them was integrated. In addition, 

successful resolution of the least redundant nodes in each of the regulatory modules 

permitted the development of a strategy for multi-module targeting in order to achieve 

synergistic disruption of the cell cycle. These latter findings thus pave the way for 

overcoming the daunting challenge presently faced, in identifying target combinations 

that can yield synthetic lethal effects in mammalian cells (Kaelin 2005; Kaelin 2009). 
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Chapter 7: Summary and Conclusion 

The eukaryotic cell cycle with its vast numbers of regulators and multiple levels of 

regulation is a very complex cellular process. Despite the redundancy and tissue 

specific expression of cell cycle regulators, the core cell cycle machinery consisting of 

the cyclins, CDKs and related molecules is largely conserved across tissues and even 

organisms. 

While a lot is known about the regulation of the cell cycle, not enough is understood 

about the growth factor dependent upstream signaling networks that regulate the cell 

cycle. Traditional work in biology has focused on studying individual parts of cell 

signaling pathways. Though multiple cell surface receptors, ligands and their 

downstream signaling pathways have been independently characterized, a systems 

view of their integration into signaling networks regulating temporal cell cycle stages 

and a resolution of their architecture is lacking. A systems approach will help us to 

understand the underlying structure of the signaling networks and how the changes in 

these networks affect transmission and flow of information. 

As described in the review of literature, in the recent past, attempts to understand the 

systems level regulation of the signaling networks regulating the cell cycle have been 

undertaken. These often employ various high throughput biology techniques including 

genome level gene expression data and RNAi methodologies among others. While 

most of these have the limitation of being tissue type dependent, many also end up 

with only a parts-list of regulators, without shedding any novel insights into the 

mechanistic regulation of the cell cycle via these signaling networks. While some of 

these limitations have been recognized, a step in the forward direction has been the use 

of orthogonal experimental and analytical approaches by various groups in the recent 
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literature. It has emerged that the analysis of signaling networks requires a combination 

of experimental and theoretical approaches. 

In this study, we have combined the results of an RNAi screen targeting the cellular 

signaling machinery, with graph theoretical analysis to extract the core modules that 

process both mitogenic and oncogenic signals to drive cell cycle progression. Since the 

focus of our study was to understand the growth factor dependent networks, we 

delineated the G 1 phase modules, G 1-S phase module and S phase module and their 

constituent nodes with the help of network analysis. An analysis of the modules 

revealed that the modules were not distinct, but instead consisted of overlapping nodes 

which represented the transition events occurring between the contiguous cell cycle 

stages of the G 1, G 1-S and S. We found that these modules encapsulate mechanisms 

for coordinating seamless transition of cells through the individual cell cycle stages 

and, importantly, are functionally conserved across different cancer cell types. 

We also identified and experimentally verified the least redundant nodes in these 

modules. Pharmacological targeting of the least redundant nodes within these modules 

led to synergistic disruption of the cell cycle in a tissue-type independent manner. Thus 

targeting combinations of critical nodes from regulatory modules driving distinct 

phases of the cell cycle provides for a "multi-module" targeting based 

chemotherapeutic strategy that may be effective against a broad spectrum of cancers. 

An analysis of the constituent motifs within the modules helped reveal novel 

mechanistic insights into the regulation of the early G 1 and the G 1-S stages of the cell 

cycle. The IMP node modules identified, defined the signaling axes that govern the G 1 

and G 1 S windows of the cell cycle. They capture the network of core pathways that 

mediate commitment of cells to the division cycle. Based on these finding the 
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mechanistic model presented in this study suggests that the G 1 and G 1 S IMP node 

modules represent conserved elements of the mitogen activated signaling cascades. 

Therefore, the present study provides a new perspective on the systems level regulation 

of signaling networks that control the eukaryotic cell cycle and its growth factor 

dependent stages. It also delineates the signaling events that integrate together to 

regulate the cell cycle and identifies the regulatory features that process input-output 

relationships. 

Novel aspects of the study 

1. The interrogation of siRNA screen data through an iterative graph theoretical 

analysis represents a novel adaptation of existing analytical approaches that can 

find more general applicability. 

2. We capture, for the first time, the topological modulations in network 

architecture that drive progression of cell through the individual phases of the 

cycle. Further, novel mechanisms that mediate this process were also revealed. 

Indeed the approach described here may be used to delineate the dynamic 

features of any relevant cellular process. 

3. The broad concept that aberrations in cellular behavior may be mapped to the 

functioning of a few core regulatory modules, which can then be exploited for 

the development of therapeutic strategies, is also a novel and significant one. 

This is further exemplified by demonstration of the potential of multi-module 

targeting approaches. 
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4. In the present study, we describe a novel signaling axes that capture the 

network of core pathways that mediate the commitment of cells to the division 

cycle. 

5. Finally, as discussed above, our results confirm that multi-module targeting 

represents a novel strategy that constitutes a viable addition to existing multi

component therapeutic strategies. In addition, we also describe an approach for 

rational design of the same. 

139 



Supplementary Figures and Tables 

Chapter 8 

Supplementary Information
Figures and Tables 

140 



A 

PLKl 

GAPDH 

PLCg 

BTK 

PLCg 

CDC2A 

PLCg 1- -1 
CHEKl I . I 
PLCg 

MET 

Supplementary Figures 

B Figure Sl 

Transfection Efficiency Tiles 

Figure Sl. Standardization of the siRNA Screening Procedure: 
Western blots showing knockdown efficiency. 

Panel A shows the effect of siRNA knockdown of 5 targets at 96 hours post 
transfection. siRNAs targeting BTK and PLKI were used for screen 
standardizations. The reductions in protein levels were monitored at 24, 36, 48, 72 
and 96 hours post transfection. At each of these time points cells were harvested, 
lysed and the levels of the respective proteins in the cytoplasm detected by Western 
blot analysis. Silencing of select proteins, which includes 3 validated screen hits 
(CHEKI, MET and CDC2A) at 96 hours after transfection is shown here. Here 
either GAPDH (for PLKI), or PLCg (for the remaining molecules) were also 
probed in parallel to serve as the loading control. The antibodies were obtained 
from Cell Signaling Technology. (Also refer Figure 5.1). 

Panel B shows the transfection efficiency in CHI cells to be >98%. Cells were 
transfected with Alexa-488 labeled siRNAs and the transfection efficiency was 
monitored up to 72 hours post transfection using confocal microscopy. 
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Figure S2: Standardization of the siRNA Screening 
Distribution proftles of complete primary screen. 

Procedure: 

Plotted in figure S2 above are the mean z-scores of the replicates for the entire screen 
with siRNAs targeting kinases and phosphatases. The graph shows the distribution of 
the data points for all the molecules targeted. The normal nature of the distribution 
curve, with minimal skewness, confirms the robustness of the screen. 
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Figure S3: Scatter plot of z-scores to verify reproducibility of the primary 

siRN A screen 
Plotted above are the scatter plots for the two individual replicate z-scores for the three 
different phases (Refer Figure 5.1). 
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Figure S4: Functional relevance of the identified targets and 
Calculation of residence time from PDT and cell cycle distribution. 

Figure S4 explains the method followed to calculate RT for CHI cells after targeted 
siRNA mediated perturbation of screen hits. The approach is illustrated by taking 
the case ofPLKJ as a typical example (Refer Figure 5.2,5.3 and Figure 5.4). 
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siRNA stquence 1 siRNA sequence 2 siRNA sequence 3 siRNA sequence 4 
GAGCAGCCCUUCACAAAUA GGAGGAAftGUGGAUAGUUA GUAGUAAU:UCCA~AAAGA GAAUGCAGCUUACAAAUGG 
GGACUUGAAUCUCCAUGAU UCAAGU C:GGUUCCGCAUG.A. G~GGCGGCAUACGGAAA GACAAUCGACGCCA~AAUG 

G.AACCCACCUGGAUUAUCA GAACAUGGCUGAUCUCAU.A GGACGAAGACUAULACAAA GAACAAGCUUGGCCAG UUG 
CCGGUGCUAUGAUAUAAUA CGAACUCAGUGAUAAAUGL CGACUUAAGUGACAGUAUC GGAAACG.IIGUCAAGGG:AA 
GAACAGGUGGCACAGCUUA GAAACGACCUUCUACGACG CCAAGAACGUGACCGACGA GCCAAGAACUC~~ACCUUC 

GGAGUJUGAUUCCAJUAUA GCAUAU C:UCCGACUAAAUA UCGAAGCCCUUACMGUUU UGCGUUAUCUACUG.~LA 

CCACGAGGCCCUUGACUAU UACAAGCUGLIGGAUUC:UUC GSAGGGUGAGGGCAUUAG~. GCAAACAAGGCCCCAULIGA 

Figure SS: Panel A shows the histograms obtained from a cell cycle analysis of 
CHI cells at 48 hours post treatment with 0.5 x IC50 of ABLJ and AKTJ inhibitor 
(i.e. Imatinib mesylate and LY294002). The respective RTs of the GJ, S and G2 
phases are indicated (Figure 5.15A). 

Panel B lists the siRNA sequences employed for silencing of the high stress and 
betweeness targets shown in Figure 5.15B. 
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LIST OF HUMAN CELL LINES USED 

DESCRIPTION 

Human alveolar epithelial cell line 

Human buccal cancer cell lines 

Human breast epithelial adenocarcinoma 

Human embryonic kidney 

Human epithelial carcinoma cell line 

Human hepatocellular liver carcinoma cell line 

Human promyelocytic leukemia cells 

Human hepatoma cell line 

Human T cell lymphoblast-like cell line 

Human burkitts lymphoma 

Human burkitts lymphoma 

Human acute monocytic leukemia cell line 

Human osteosarcoma expressing wt p53 and Rb 
Human leukemic monocyte lymphoma cell line 

Figure S6: Panel A depicts the dose-response profile for increase in G 1 population, 
and increase in apoptotic cells in CH 1 cells treated with pharmacological 
inhibitors of ABLJ, AKT1 and the combination of the respective doses. Doses for 
each inhibitor used were in multiples of their corresponding IC50 values as 
indicated. Values (mean ± S.D. of three experiments) are expressed as the percent 
of cells obtained at 48h post treatment (Also refer Figure 5.16A). 

Panel B lists and describes all the human eel/lines used in this study. 
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Figure S7: In Panel A, the effect of inhibition of ABLI, AKTI and their combination 
(at concentrations corresponding to 5 times their respective IC50 values) on inducing 
apoptosis of fourteen different human cancer cell lines is shown. Here, the cells were 
treated with a single addition of the inhibitor or inhibitor combination, and the 
frequency of apoptotic cells was determined 48h later. In all cases, results are the 
mean(± S.D.) of three experiments (Also refer figure 5.19). 
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Figure S7: In Panel B, cells of the indicated cancer eel/lines were treated with 
inhibitors against either the indicated kinase, or the kinase combinations and the 
consequent effect on cellular apoptosis was determined 48 hours later. The 
concentration of the relevant inhibitor employed was five-fold greater than its 
corresponding IC50 value in all cases and results are the mean (± S.D.) of three 
experiments. The protocol followed was similar to panel C. As is evident, with the 
exception of Jurlcat cells, apoptosis resulted from the dominant effects of CHEK1 
inhibition in all cases (Refer Figure 5.19A). 

Panel C depicts the increase in G 1 population observed in the fourteen different 
human cancer cell lines following treatment with inhibitors of both ABL1 and 
AKT1 (at concentration corresponding to their IC50 values). Values (mean ± 
S.D., n=3) are those obtained at 24 h post-treatment and are expressed as 
increase in the percent of cells in the G 1 phase, relative to that in the absence of 
any inhibitor (i.e. vehicle only). 
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Table 81: siRNA Screen Results for Targeted Kinases and Phosphatases 

Complete data for primary and sencondary screens 

Primary screen hits 

Validated targets 
siRNA targets Inducing cell death 

Validated targets inducing cell death 

PRIMARY SCREEN VALIDATION SCREEN 
siRNA taraet 

Entrez 
Gene Description Target 1 (plate A) Target 2 (plate B) Target 1 Target 2 

ID 
11920 ataxia telangiectasia mutated homolog (human) CACCTGmGTTAGmATTA AAGGTCTACGATACTCTTAAA CAUCUAAUGGUCUAACGUATT CCAAUUCUUCAGCGUAAUUTT 

12534 cell division cycle 2 homolog A (S. pombe) TCCATATGAAmAAATATAA TCGGGAAATCTCTCTATTAAA CUAUGAUCCUGCCAAACGATT CAAUCAAACUGGCUGAUUUTT 

12567 cyclin-dependent kinase 4 ACCCTAGTGmGAGCATATA CCGAACTGATCGGGACATCAA GAGCGUUGGCUGUAUCUUUTT CAGUUCGUGAGGUGGCCUUTT 

12568 cyclin-dependent kinase 5 CCGGGAGATCTGTCTACTCAA TGGACmAmAAmCATA GCUACAACAUCCUUGGUGATT GACUAUAAGCCCUACCCAATT 

12649 checkpoint kinase 1 homolog (S. pombe) CACAGGGATATTAAACCAGAA CAGGAATATTCTGATTGGAAA CAGGUUACUGUAUCAACAATT GCUUGUAAACAGUCAGUUATT 

12660 choline kinase alpha CAGCTTGGTGGCCGAACCCAA CAGGGCCTACCTGTGGTGTAA CCUAUGAGAAGUAUCCUUUTT CACUGAAGAGUUACGUUUATT 

12750 CDC like kinase 4 AAGTATGGTGTTGATAATGAA CCGGAGATACATTGATGAATA GUUUGACCUGGUUCGAAGATT CUGUCAAAGUGGAGACGUUTT 

12995 casein kinase II, alpha 1 polypeptide CAGAAGAmATATGACTATA ACCGAAGAGCCCmAAATAA GAUAUGUGGAGCUUGGGUUTT CAGAAGAUUUAUAUGACUATT 

13844 Eph receptor B2 CACGGACAAGCTACAACACTA TTCCAGGAACATTAACATGAA CUUUACCUCUUUCGACGUUTT GUGUAUGCCGCAACGGCUATT 

14183 fibroblast growth factor receptor 2 CCGAATGAAGACCACGACCAA CACATAAACGGCAGTGTTAAA GGGAUAUCAACAACAUAGATT GUGAUGAAGAUAGCAGACUTT 

14923 guanylate kinase 1 CGGGACTGACCTCTTAATAAA CAGGGAGATGATGCAGCGTGA GGGAGAUGAUGCAGCGUGATT GUGAUGUCUGUGGUCUAAATT 

108960 interleukin-1 receptor-associated kinase 2 CACCCTCATCCCGACAATAAA CTCAGTATCCTTGTAAGATAA CAUUCGAAACCAAGCAUAUTT GUUCGAAUCAGCGUAUUGATT 

16407 lntegrin, alpha E, epithelial-associated TACCATGATGAGGAACTTCTA CACAAAGGAGGTGACCATGAA GGUUAGUUUCAAUGGCGA GAGUGACAUUGGUCGGGAA 

108000 centromere protein F GAAAGUAGCGCUUGUUGAA GAGUGAACUUGGAUUGAUA GAAAUUAGGCUUAAGUUGA GCGAGUAUCUGACUUAGAA 

26408 m~ogen activated protein kinase kinase kinase 5 AAGGATGAAGATTGAAACTAA CTGGATCGAATGAGTATCTTA CAGAUAGUCCACCGGGAUATT CUGAGUAGCCUUCUGGGUATT 

26411 mitogen activated protein kinase kinase kinase kinase 1 CAGGCTGAAACTGTTCGCTTA CTGGGCCTGCTTGAAAGGAAA CUGAAACUGUUCGCUUAUATT CUUUCAUUGGGACACCGUATT 

227743 mitogen-activated protein kinase associated protein 1 TAGGGCTTAGCCAGTAGmA AAGGATGGCCTTCTTGGACAA AGAUAGACCCUGUUACGAA GAUUAGAACGACUCCGCAA 

17776 microtubule associated serinellhreonine kinase 2 ATGAAGAAGATTAATAAGCAA AAAGAGGGACATGGAATTAAA CGAAUACCACGGUCCCAAATT CGGUUAUCUGUGUCCGAGUTT 

17295 met proto-oncogene CTGGACAATGACGGAAAGAAA AAGAATAATAAAmGAmA GUUAUUCACUGCAUUCGAUTT CCAAAGUCCUCCUGUCGGATT 

18007 neogenin ACGGATGTGAATGCAGAGATA CAGGCGGAGCTTACTGTGCAA GAGGUUAUGCCAUCGGUUA CAAAUACGCUCUAUGAGUU 

18160 natriuretic peptide receptor 1 CAGGGTTGTCCTGAACmAA CCCGGCCAAGATCCAAACAAA GAUACUGCCUCUUUGGAGATT CCUAAAUGUGGCUUUGACATT 

18769 protein kinase inhi~or. gamma AAGCTCAGTTCTGATGATCTA GAGATGTTAmATTCAGCTA GGAAUGCGGUCCCUGACAU AGGCUGUGAGCGUGAGGAA 

320795 protein kinase N1 TTGAAGAAAGGTGACATTGTA CGCGATGCAGAAGATGTGAAA GCAUUGAGGAGCUACGACATT CACAUGUGGUGCUGCCUGATT 

18817 polo-like kinase 1 (Drosophila) CCCACTGTATGAATTGTATAA CAGGAGAGGTCTGGGCATAAA GGUAUCAGCUGUGUGACAATT CAACCAAAGUGGAAUAUGATT 

20620 polo-like kinase 2 (Drosophila) CCCGAAGTCCTCAACAAACAA AAGAGCAGTAmATTATCAA CAUUCGAAACCACAAAUCUTT GUGGUUAAAGUCUGAUAAATT 

19084 protein kinase, cAMP dependent regulatory, type I, alpha CAAGATAAGTCTAAAmAAA AAGCTTCTAGATTGTTACTAA CGGUUAUUCAGCAAGGUGATT CUAUCAGUGCUGAAGUUUATT 

18755 protein kinase C, eta CAGGATGAGmAGAAACm CACGATGAAGTTCAATGGCTA CGUCUUAACUCCGAUUGAUTT CACUGUAAACUGGCCGAUUTT 
. --· ·---- --- - --

Target 3 

CUGUAUCCCACACUUAGUATT 

CAUGGAUUCUUCACUCGUUTT 

GUUUCUAAGCGGCCUGGAUTT 

CCAAUGUACCCAGCUACAATT 

GUAUGAAUCAGGUUACUGUTT 

GACUCAAAUUCAGCAGGGATT 

CAGAUCUGCCAGUCUAUAATT 

CAGAAAGCUUCGGCUAAUATT 

CUCGAAACAUCCUCGUCAATT 

CAGAUGACCUUCAAGGACUTT 

GAUGAUGCAGCGUGAUAUUTT 

GAUUUGGAGUGGUGUACAATT 

UGUGAGGACUCGGAGCGGUU 

GACAAUAUCUAUUUGGCAUTT 

GAUACAAUGAGCUGUGCGATT 

UCACAAAUUGACAUCGCUA 

CUCUAACACUCCAGAUAGUTT 

CUCAAUAUCAGUAGUAGUUTT 

GAAACGAGCUGCGUGCAAA 

CCUGUUUGAACUUAAACAUTT 

CCAGGAAAUAAAUGCCGAU 

GAGAAAUUGACUGAGUCCATT 

CUACGAACGUGGUUCCGCATT 

CCUUUCAGUGGGUCACCAATT 

CUUUGAAGUGCGUUAAGUUTT 

CUAUGAUUAACCAGGAUGATT 
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Prkg1 

Prkg2 

RIPK3 

SLK 

Srms 

Taf9 

Taok2 

Tex14 

Trpm7 

TSSK5 

VRK2 

Baiap1 

BMPR1A 

CASK 

CDK10 

CDK2 

CDK6 

CDKB 

CDK9 

CDKI1 

Ckmt2 

CSK 

DAPK3 

ErbB2 

ErbB4 

Frap1 

MAP3K6 

Map4k2 

Mapk3 

NEKB 

Nme3 

Pank3 

Papss1 

PBK 

Pfkm 

Pl4k2b 

Plk3c2a 

19091 

19092 

56532 

20874 

20811 

108143 

381921 

83560 

58800 

73542 

69922 

14924 

12166 

12361 

234854 

12566 

12571 

264064 

107951 

71091 

76722 

12988 

13144 

13866 

13869 

56717 

53608 

26412 

26417 

140859 

79059 

21 1347 

23971 

52033 

18642 

67073 

18704 

protein kinase, cGMP-dependent, type I 

protein kinase, cGMP-dependent, typa II 

receptor-interacting serine-threonine kinase 3 

STE20-Iike kinase (yeast) 

src-related kinase lacking C-terrninal regulatory tyrosine 
and N-terrninal myristylation sites 

TAF9 RNA polymerase II, TATA box binding protein (TBP)-
associated factor 

TAO kinase 2TAO kinase 2 

testis expressed gene 14 

transient receptor potential cation channel, subfamily M, 
member7 

testis-specific serine kinase 5 

vaccinia related kinase 2 

BA11 -associated protein 1 

bone morphogenetic protein receptor, typa 1A 

calcium/calmodulin-dependent serine protein kinase 

cyclin-dependent kinase (CDC2..fike) 10 

cyclin-dependent kinase 2 

cyclin-dependent kinase 6 

cyclin-dependent kinase 8 

cyclin-dependent kinase 9 (CDC2-related kinase) 

cyclin-dependent kinase-like 1 (CDC2-relaled kinase) 

creatine kinase, milochondrial 2 

c-src tyrosine kinase 

death-associated kinase 3 

v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 

v-erb-a erythroblastic leukemia viral oncogene homolog 4 
(avian) 

FK506 binding protein 12-rapamycin associated protein 1 

mitogen-activated protein kinase kinase kinase 6 

mitogen activated protein kinase kinase kinase kinase 2 

mHogen activated protein kinase 3 

NIMA (never in mHosls gene a)-related expressed kinase 8 

expressed in non-metastatic cells 3 

pantothenate kinase 3 

3' -phosphoadenoslne 5'-phosphosulfate synthase 1 

PDZ binding kinase 

phosphofructokinase, muscle 

phosphatidytinositol 4-kinase typa 2 beta 

phosphatidytinosltol 3-kinase, C2 domain containing, alpha 
polypeptide 

CTGGACGATGTTTCTAACAAA ACCAAGGAGAATAGAGAATAA 

CCCGAGGTCATTCTTAACAAA CCGGGTTTCTTGGGTAGTCAA 

CCCGACGATGTCTTCTGTCAA AGAGCTGTTATTTAAAGTCAA 

ATGGTTGAGATTGACATATTA GAGGATAAATTTAGCAACAAA 

CCCATGGGAAATACTGCACAA CACAAAGTCAGCTTCAATAAA 

TACGTTAACGTGGGAGATCTA TAGGCAAAGAACTTGCATCAA 

TTCGAAGGTGATTATGATTTA CCCAAATGTTATTGTAAGGAA 

CACGGTGAAGTCAGACATATA AACCATAACTTTGTTATATAA 

AAGCTGTTAAATAGTGTTTAA ATGGAAGTATTTAAAGAAGTA 

CCCAGAGATCCTCATGAGCAA AAGCACATGAACATAGTTCAA 

TTGATGTATGTTCATAATTTA CTGGATGTACTGGAATATATA 

CAGGACGAGCACACTCTCCAA AAGGACCACCACCAAACCAAA 

TACCAATATCATACTATTTAA AGCCATCATTTAAATAATTAA 

TACTGTCATGATAATAACATA CGGGATCGTTATGCCTACAAA 

AAGGGTTGGTTAACTGGAGTA CGGGCCTATGGTGTTCCAGTA 

CCGAGAGATCTCTCTCCTTAA CTGGATGTCATCCACACAGAA 

ACGGACGGACAGAGAAACCAA CCCAGCTGAGTTATGATGTAA 

CAGTGACAGTCTGTAGCAGTT GTAGCAGTTGAAGCTGTGAAA 

CACAGCCTTGAGGGAAATCAA CAGTTTGATTGGTTAAATTAA 

CACAGCTACAACATTAGATAA CAGCAAGTATTTAGCATGAAT 

CTCCAGCTTCAAGACACTTAA TCCCTCCAAGTTTATGGGTAA 

CACAGGCAAGCTGCCAGTCAA CACCATCGTGGCTGTCACCAA 

CACGCAGTTCCTCAAACAAAT GACGAACATCTCAGCAGTGAA 

CCCGCACAGGCTGGACATAAA CTGGACATTGATGAGACTGAA 

CCAGAACAAATTCCTATGTTA CAGAACAAGAATTGACTCCAA 

CACCAGTGAAATGCTGGTCAA CACAATCATTCTTCTCATTGA 

ACGCTGAGTGATGACATCAAA AACGACTTCGTCATAAGAATA 

ACCAAGATTCCTGACACCAAA CTGGCTCTACTGTGTGAACAA 

GTGCCTGTATCTAATATATAA CTGCAGATTGTTAGAAAGTGA 

AAAGCTCTTTATCTTAGTAAA CAGAACATCCTTCTTGACAAA 

ATGGAGGTTGGCAAGAATGTA CTTGTTGCCTTTCATAATAAA 

CTGGGCAGCATTACTAAATTA CTCGATGAAACTGTTGGCATA 

CACCAGCTTTATATCGCCTTA CTGGACTGTGCTGGTAGAGTA 

TAGATATATGTAGTTAATATA AACGTGATTGCTACAATGGAA 

CACCACAGTGATGAAGTGTAA CTGGAGCACATTTCAAGGAAA 

AACTGGATTGATAATAAACAA ACCCTATATTTCTGACATGAA 

TTGGCAGAAATTATAAACTTA CCCAAACTTAATATATACTAA 

CUGAUGAAAUCCUCAGCAATT CAAGUGAAGACCCAGUCUUTT 

GAAGUGUCUCCUUGUUGAATT CAAUUUGAUUCUCAAGGGATT 

CUCAAGUUCGGCCAAGUAUTT CAGAGAAGCUGAGUUGGUATT 

CGCAAUUUGGGAGCUUGAATT CAGAACAAAUGCAGCGCUATT 

GACUACAUCUUUGCCCAAATT CGCUAUAUGUUCCCUCGGUTT 

ATCAGATGCTGGAGTTTGCCT ATGCACTGAAACGGAAACGTG 

GAAGCUACGGCAUCCUAAU CCUUAUACCACAUUGCACA 

GGUUUACGAGCGUAUCGCATT GGAAUCACUUCUCGCUUCUTT 

GAGAUUGGGUGAACACUUUTT GAAUGGAUUGUUAUCGCUUTT 

GAAACUUGAUUAUUUAGGATT GAUAUUGUCCCAAUGGGAATT 

GAAACUUGAUUAUUUAGGATT GAUAUUGUCCCAAUGGGAATT 

CCUAUGAAGGAAACUAUUATT CAAUUAUUGUAAAUGGACATT 

CAGCUAUACACUUACAUCATT GAUACCUUGCCUUUC UUAATT 

GACAUCAUCCAGAUUAUUATT CUUAUUAGGUGCACAUGGUTT 

GGAAGAUGCCGAAGCGUUA GGUCAUGGGUUACUGCGAA 

GAGAAGUUGUGGCGCUUAATT GGAGAAGUUGUGGCGCUUATT 

CAGAGUAGUGCAUCGUGAUTT CCACUUACUUGGAUAAAGUTT 

CUAUCAGCG UUCCAAUCCATT GUACCUAAGUUUGGAG UUATT 

GACACAAAGUGAGGUGGGATT GAGAAUGUGGUGAACCUAATT 

GCAAGUAUUUAGCAUGAAUTT CAGCUCUACCUGAUAAGGATT 

GGCAAUAUGAAACGCGUAUTT GUACGAUAUUUCCAACAUATT 

CUGCUACAGACAAUAGGGATT CACACUGUGUGUGAGCUGUTT 

CGCAUUAAGCUCAU CGACUTT CCGAGAACAUCAUGUUGCUTT 

GCAAUUUGGAGCUUACCUATT CCAUCAAGUGGAUGGCAUUTT 

GUAUAGUGCUGAUCCCACATT CUCCAAUAGGAAUCAGUUUTT 

GGAUCAACCACCAGCGCUATT CUGACUACGCCUCCCGCAUTT 

GGCUAUUUCCGGGAGACCATT CUGACAUUGUCAUGAAUCUTT 

GACAGAUCCUCUCAAUGAATT CCUUUGACUUCACUAUUGATT 

CCCAAACAAGCGCAUCACATT GGCUGAAGGAGUUGAUCUUTT 

CUCAUGAU UGCUAUGGAGUTT CUUGACAGACCGAGGCAUUTT 

GCCGACUGGUUAAAUACAUTT CUGGUUAAAUACAUGAGUUTT 

GUUACUAUCACCAAUAACATT CAUUGGUUCUGUGGCACGATT 

CACUAAUGAGGAUCCUAAATT CUUCGAUGAUGAAGCAUAUTT 

GGAAGAACGUGCUUGGCCATT GUCAUUCCGGCCACGGUUUTT 

AGACUUGUGUGAAGAUCUUTT GAUGAGAGGCCAGAUCUUATT 

CUAUGUGGAGGUGUUAGAATT CAUUCGUUUCCAGUUGUUUTT 

CAAUGAAAUCCGUUGCCUATT GAUGCUACGGCCAGCAUAATT 

GCUAUACUUUACAACUGUATT 

GAUUUGAUCCGGAGGCUUUTT 

GAGGUAAAGCAUUAUCUGUTT 

GUUAUAACCAGUGAUAGAATT 

CUGUAUGAGGUCUUCACUUTT 

CAAGGAUGCUGUACGGGAA 

GAGAUUGUGUAUGUUGAGUTT 

GAAGUAUCAGCGGUAUCAUTT 

CAGAUUCAUGGUAAUGGAATT 

CAGAUUCAUGGUAAUGGAATT 

GAGCUAAUAAC UGUUCACATT 

GAAC UAUUGCCAAACAGAUTT 

CCAACUAUCACUCCAGGUUTT 

GGACACCGAGUGAGAAUAU 

CUCAUCAAGAGCUAUCUGUTT 

GACAGAUAUUGACGAACUATT 

GGUUGUACCUAAGUU UGGATT 

GACCAAAGCCUCACCGUAUTT 

CCUACUCUGCACUGGGCUUTT 

GCUACUACAAGCUGUCUGATT 

CGCAUCAUGUAUCAUGCGATT 

GUGAGCAUCCUGCGCGAGATT 

GAGAUUCCGGGAGUUGGUATT 

CCAUUAACCAGAGAAUAGUTT 

GGAAGAUCCUGCACAUUGATT 

GUCAGAAGAGUCGAGUAAATT 

CCAUCAAACGGGCUCCAUUTT 

CACCUUCUCUCACUUUGCUTT 

GUAC UAUGAGAAUUUCCUATT 

GCUACUGCGGGAGCAUUAUTT 

GAUAGG UUGGUCCGAGAUATT 

GGAAAUGAUGACUUUAUGUTT 

GGUAUACAAGC UUCUAGCUTT 

GGCCAGAUCUUAAACCUCATT 

CCAUCAUUUGUAUUCCGGATT 

CCUACAUUGGCAACCGGCUTT 
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Pik4cb 

PINK1 

Plp5k1b 

Pkm2 

Prkce 

Rage 

RET 

RIOK1 

Rp2h 

Rps6kb2 

JAK2 

SRPK1 

Stk23 

TIE1 

Trim24 

TYR03 

Uck1 

ULK2 

Umpk 

TTBK1 
Pik3cb 

Csnk1g2 

TXK 

Rps6ka2 

CAMKK2 

BCKDK 

BLK 

CaMK2a 

BRD4 

Bub1b 

CAMKK1 

TEC 

LIMK2 

Matk 

PAK4 

PAK6 

Pak7 

PLK3 

Rps6ka4 

107650 

68943 

18720 

18746 

18754 

26448 

19713 

71340 

19889 

58988 

16452 

20815 

56504 

21846 

21848 

22174 

22245 

29869 

80914 

140810 

74769 

103238 

22165 

20112 

207565 

12041 

12143 

12322 

57261 

12236 

55984 

21 682 

16886 

17179 

70584 

214230 

241656 

12795 

56613 

phosphatidylinositot 4-kinase, catalytic, beta polypeptide 

PTEN induced putative kinase 1 

phosphatidytinosnol-4-phosphate 5-klnase, type 1 beta 

pyruvate kinase, muscle 

protein kinase C, epsilon 

renal tumor antigen 

ret prot<HIIlcogene 

RIO kinase 1 (yeast) 

retinitis pigmentosa 2 homolog (human) 

ribosomal protein 56 kinase, polypeptide 2 

Janus kinase 2 

serine/arginine-rich protein specific kinase 1 

serine/threonine kinase 23 

tyrosine kinase recaptor 1 

tripartite motH protein 24 

TYR03 protein tyrosine kinase 3 

uridina-cytidine kinase 1 

Unc-51 Hke kinase 2 (C. elegans) 

uridine monophosphate kinase 

tau tubutin kinase 1 

phosphatldyllnosltol 3-klnase, catalytic, beta polypeptide 

casein kinase 1, gamma 2 

TXK tyrosine kinase 

ribosomal protein 56 kinase, polypeptide 2 
calcium/calmodulin-depandent protein kinase kinase 2, 
beta 
branched chain ketoacid dehydrogenase kinase 

B lymphoid kinase 

calcium/calmodulin-depandent protein kinase II alpha 

bromodomain containing 4 

budding uninhibited by benzimidazotes 1 homolog, beta (S. 
cerevisiae) 

calciumlcalmodulln-depandent protein kinase kinase 1, 
alpha 

cytoplasmic tyrosine kinase, Dscr28C related (Drosophila) 

LIM motH-containing protein kinase 2 

megakaryocyte-associated tyrosine kinase 

p21 (CDKN1A)-aclivated kinase 4 

p21 (CDKN1A)-activated kinase 6 

p21 (CDKN1A)-activated kinase 7 

polo-like kinase 3 (Drosophila) 

ribosomal protein 56 kinase, polypeptide 4 

CCCAAGGGAAATGGAAGGCAA CACCGGGAAGCAGGAAAGCAA 

CTGGGCTAAATGCATTCTTAA CAGCGAAGCCATCTTAAGCAA 

AAGGATCATCCTTACTCCCAA CAGGATACTACATGAATCTTA 

AACCCTGACTTTATCACAGAA CTGGGCTTTGCTTCTGTAGAA 

AAGAAGGACGTTATCCTACAA CTCGGAAACACCCTTATCTAA 

TCCGTTTAATATATTTGTAAA CGCGTTCAGGATGAAGAACTA 

CAGCGCGGTGGTGGAGTTTAA ATGGACACATTTGATAGCTAA 

CTGGGATATAGCTATGAATAA AACGGACTTATTAAGGTATTA 

CAGAGTCAATATGATCTCATA CCCACCAAATTTAGTATGTTA 

CTCAGTGAGAGTGCCAACCAA TGCCATGAAGGTCTTAAGGAA 

AAGATTTAATATTTAATGAAA ATGATTGGCAATGATAAACAA 

CAGGCGTTAATGGAACACATA AAAGAAGTTTGTAGCAATGAA 

CTGGAGGTCTTCTATCTCCTA TGCCTGTTTGTTTCTTAATAA 

CTCAAGAAAGTCTTTAATTTA CCCAGTGAGAATGTGACATTA 

CAGGTGGAACAGGATATTAAA CACATTGATGGTGGAGATAAA 

ATGGCTGATGTGGGTAAGAAA CCCGATCTTTCAATCGAGAAA 

CGAGGGCATCTTGGTATTCTA GAGAATCAATAAATAACATAA 

CTACATGAAATTAGTAAGAAA AAGGCTAGTTGTTTAAAGAAA 

CCGGATGCCTTTGACAACGAA CTGGTGATGCCTAATTATGAA 

CAGGAGGTTGATTCCAAAGAA CACACTGGTCATGACATGTTA 

CACATGGAAATCTTTAATTTA CTCGGTTGGAGTGATCTTTAA 

TACGACGTGTACAGAAATGAA TAGGAAAGAATCTGTATACAA 

ATCGTGCCATATGTTATTTAA CAGAAACGTGGTGACCTTAAA 

AAAGGTGTTCTTGGTGAGGAA CTGGAATAAGCTGTACCGCAA 

CAGGAGATTGCTATCCTCAAA CAGGATCTGATCAAAGGCATA 

AAGGATGTGGTGACCCTGTTA GAGGAAAGCTTCAGAATCTAA 

CACCGGAGTTGTACAATGATA CCCATGAAACTTCCTCAGAAA 

CAGGAAATTATCAAAGTGACA CGCAAACAGGAAATTATCAAA 

CCCATGGATATGGGAACAATA TCCCTGATTACTATAAGATTA 

AACGGGCATTTGAATCTGAAA AGCGAATTTGTTACTCATGAA 

TAGGAAGTGAATTACAAACAA CTCCATAAGAGTGTTTATAAA 

AAGTTATATATTTATAAGTAA AACAATAATATCATGATTAAA 

CACGGAGGACAGGATGGATAA ATGGGTTTGGTTATAAATACA 

AAGGTCAGTGACTTTGGCTTA CTCCATAAAGAGCATTTGGAA 

AACCATGTTTGGAAAGAAGAA CAGGGCCACTTTGAAGAATCA 

CACAGGGATGTTTCTAAGAAA CAGGAATAGTAAGGGAATAAA 

CAGAATATCTTTCTTATCTTA TTGGAGCATGGCTTTAATTAA 

CACGGATAACATGGAACTGAA TTCGAGGATGCTGACAACATA 

AACGTCTTACTTGACTCAGAA CAGGAGCATACCCGCACCGAA 

CCAGUUAGGUUCUUGGGCATT CAAACACCUUGGCCUUAUATT 

CACAGUAUCUGAGGGACCUTT GUCUUUCUCUCGGCGAUCATT 

CUGAC UUCCUGGUGACGGATT GAGAUGUGGUCAUUGUGCUTT 

CUGACUUCCUGGUGACGGATT GAGAUG UGGUCAU UGUGCUTT 

CUGACAACGAGGACGACUUTT CGUUAUCCUACAAGACGAUTT 

CAUCAAACCUCACCUGAAATT GAUGUCAUCGGCACACCUUTT 

CAGACAACUGCAGCGAGGATT GGAACAUCUUGGUGGCUGATT 

GAGAUACAUGGCUGUAUUATT GAGUUGUACCUGCAGGUCATT 

UGAAACAGUAGGUCGCUUA GGUAUUAU UUGCCGAUGAU 

GCCAUGAAGGUCUUAAGGATT GGAACAUUCUAGAAUCUGUTT 

GUAUUACGCCUGUGUAUCATT CUUCUACACAGAACAGUUUTT 

GAAGUUUGUAGCAAUGAAATT GAGUGAUUGGAGUCGUUAATT 

GUGAAGAUCGGUGAUUUGUTT CAUACUAAGUGCAAGAUCATT 

GCAACUUUGGCCAAGUGAUTT CCAUUGAGUCCCUCAACUATT 

CAGGUUACGGCACCUUCUUTT GGUUUACCUUCCAACCAGUTT 

CACAGUAGCUGUUAACCCUTT GCAUUGAGGCCACAUUGGATT 

CACAAAUCAUGGUGCAACATT GAUGUUAGAUCCCUUGUUUTT 

CCAGGAUAGCUUCUACCGATT CACAGAUGCGGAUACCCGUTT 

CAAAGACUCUGCGAGUAAUTT CCGAUAAACAGAGAUUUAUTT 

GUGUGCAGAGGGUGCAGGA CGUACUGUGUGCAGAGGGU 

CACUAAUUCAGUUCCAGUATT GUAUGUGUUUGGCGAUCAUTT 

CUCAUAAAGUCCAGCUUGUTT CAAACUUCCGAGUCGGCAATT 

CAGAAACGUGGUGACCUUATT CUGCUAUAUUCACAGGGAUTT 

GGAAUAAGCUGUACCGCAATT GAGACAUCCUGGCAGAGGUTT 

GACAAUACUUAUUACGCAATT CAACUGUGAUCCUGGUAAATT 

CUACUUGCAGCAAGAGUUATT GCUCUAUUCCGGUCGCUCATT 

CUCUCAAGUUGGUCCGGAATT CUAACCAGGACCCAGAUGATT 

GAACGAUGGUGUGAAGGAATT CUCUUUGUCCGUGGAAUGUTT 

CCUGAUUACUAUAAGAUUATT GACAAACCAACUGCAAUAUTT 

CUACUAGAAUUAAGUGCUUTT GCAAGAUUGAGCCUAGUAUTT 

GCUAUAUUGCUUUGUCUAUTT CGCUAUAUUGCUUUGUCUATT 

GAAAUGGUGUGCCAUCGGATT CCAUCUACAUCGUUACCGATT 

GAGAUCAUUGGGCAGGUAUTT GCAAAGUGAUGGUCAUGAATT 

GCUUGUACAUUGUCAUGGATT GUGACUUUGGCUUAGCCAATT 

GGGACUACCGGCACGAGAATT GCCCAAAUCUUCGAGGGAUTT 

GAGACUUCCUGGAUCGGAUTT CAGUCAAGAUGAUGGACCUTT 

CUCAGUAUCUCCUCGAGCATT CACUGAAUGAGAAUAUUGATT 

CAACUACGUGGCUCCAGAATT GAAAGUCCCUGGCCCACAUTT 

CUUACCUGGUCCUGGAGUUTT CCAUGAAGGUGCUACGCAATT 

GUUGUAAUGACUAACCUAUTT 

CAACCUUUGCAAAUACUAATT 

GAAUGAAUGUGGCUCGGCUTT 

GAAUGAAUGUGGCUCGGCUTT 

CUCCUAUCGGCUACGACGATT 

GAGAAGACACCCAUUAUCATT 

CAGUGUAUGAUGAGGACGATT 

CAUGCAUUGGAGUUCUUGATT 

GGGAGAAGGUUGAUCCAAA 

CAGACAGGUGGCAAACUCUTT 

GAGAUUAUGG UCAACUGCATT 

GUGGUUAUCAUGGGAUAUUTT 

CCAUUGUUCAACUUAUCGATT 

GUCAUGACCAUGAUGGCGATT 

CUUCCAACCAGUUAUCCAATT 

GGAAUUGCAUGCUGGCCGATT 

GAUGUUAGGCUGUCUCGAATT 

GAGACC UGUUCCAGAUGAATT 

GAGCUUAAUGCCUAGUAUUTT 

CUCUUUGGCGUCUCAGCUC 

CUCUCUAUGCCGUCGUGGATT 

CGUGUUUGACUACGAGUAUTT 

CCAUAUACAGUGUAAUGUATT 

CCCAAUUGUGCAGCAGCUATT 

CUGGAAACCUGCUCACGAATT 

CCUGUUAGCUGAGGGUCUUTT 

CGAAGAACCUUUGGGCCCATT 

CUUAUCUUCGAUCUGGUUATT 

CUGAUUACUAUAAGAUUAUTT 

GUACCAAGAUGGCCAUGUUTT 

CAUCAAGCCAUCUAACCUATT 

GAGAUAAGUAUGGGUGGUATT 

CUGAAAGGCUCUCUGACUATT 

CUCGUCACCCUGGAGACUATT 

GAGACUUCCUGGAUCGGAUTT 

CAGUUCAAGGCUGCGCUCATT 

CAAAUCCCGAGUUGUGUCATT 

GUCUACCUGGUAUUGGAAATT 

GAUAUCUAGGAGAAUCUUATT 
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SYMBOL 

ATM 

Cdc2a 

Cdk4 

CDKS 

Chek1 

Chka 

CLK4 

Csnk2a1 

Eph82 

FGFR2 

Guk1 

IRAK2 

ltgae 

LEK1 

MAP3K5 

Map4k1 

Mapkap1 

MAST2 

MET 

Neo1 

Npr1 

Pklg 

PKN1 

PLK1 

PLK2 

Prkar1a 

Prkch 

Prkg1 

Prkg2 

Control1 Control2 

228.1315833 241 .3628667 

2171 .7975 1763.2885 

1969.026583 1538.9585 

102.9948367 104.0833967 

128.7799167 89.55185333 

68.5927375 63 .71801083 

352.6707917 278.6910333 

84.747025 81 .50536167 

71 .79065417 84.42171333 

102.9885275 109.9512942 

2037.240333 2268.919917 

119.45645 103.69827 42 

78.73677083 77.44368917 

122.8139083 102.5953667 

219.502 214.1621833 

2712.708083 2654.90175 

1106.777933 1156.805967 

1469.094333 1741 .503917 

64.97770667 75.10282167 

68.53786 76.8164475 

67.7 4838083 79.973965 

7685.802667 7595.295583 

115.01665 128.7960333 

1996.109583 1797.121167 

90.06156417 90.80175917 

3075.84925 3001 .592167 

61 .4066425 58.37544417 

70.40987 65.37300417 

91 .37781083 98.46538917 

Table 52: Expression status of RNAi hits in CH1 cells 

Control3 Log2 C1 Log2 C2 Log2 C3 Average ACCESSION PROBE_ SEQUENCE 

235.4602167 7.833722382 7.915059927 7.879339513 7.876040607 NM_007499.1 CTCAAGATCCATTCGTAGGATACGTGCTGACTCTTAGGTCATGCTTGTGC 

2618.775583 11 .08467388 10.78405282 11 .35467672 11.07446781 NM_007659.2 TTTCGGCCTTGCCAGAGCGTTTGGAATACCGATACGAGTGTACACACACG 

2147.850667 10.94326687 10.58773861 11 .06867798 10.86656115 NM_009870.2 TATAGACCAGGACCTGAGGACATACCTGGACAAAGCACCTCCACCGGGCC 

101.3625525 6.686428204 6.701596139 6.66338095 6.683801764 NM_007668.2 CTCATGTAACCTGCCACTTCCACCTTCTCGCTGAGCTAGTTAGAACCTCG 

109.6320992 7.008763812 6.484651385 6. 776526457 6.756647218 NM_007691 .2 CTGATGGTATGCAGTACTGTCTTCCGAGCCTGTATCTCTCAAGTCATGAT 

66.98071833 6.099983929 5.993629324 6.065673943 6.053095732 NM_013490.1 GTGCAGGTAGATTAGAGCTGTGAAATCCATGTACATTAATACCCAATGGG 

378.8115 8.462178286 8.122522775 8.565336319 8.383345793 NM_007714.2 TTGACCTGGTTCGAAGAATGTTGGAGTATGACCCAGCGAGAAGGATCACC 

88.42566833 6.405090819 6.348823062 6.466393313 6.406769065 NM_007788.2 CTCTGGTGTGCCACCGAAGAGCCCTTTAAATAAATCGAAGCTTAAAAGAA 

71 .38840833 6.165724139 6.399542204 6.157617931 6.240961424 AK017630 ACACCCAGTTAGGTAGTGTCCTCTTGATCCTGGAGGGGTGAGTAGGATGG 

98.38736667 6.686339826 6.780720776 6.620401175 6.695820592 NM_201601 .1 CAATGCAGAAGTGCTGGCTCTGTTCAATGTGACGGAGATGGATGCTGGGG 

1839.263167 10.9924004 7 11.14778997 10.8449122 10.99503422 NM_008193 TCTGACCACAAGGTGGCTCTGCACCGTGGGCTGACTCACTGGCTGAATGA 

116.323475 6.900340943 6.696248074 6.861998463 6.81952916 NM_172161 .2 CCCACTTCTTAAAAGACCTACAGCCGGTGTCTCCGCAAGTTCTCAAGTTC 

80.18291083 6.29896564 6.275075775 6.325222887 6.299754 767 NM_008399.1 GCAGTGCCTTTAATGAGCACGGTTCCCAGTTTGCCATGCGTTTTGATGAC 

134.4617333 6.940330141 6.680821769 7.071051842 6.89740125 XM_129658.4 GCAATGGACTCATCTTTTGGTTGCGTGCCAAGCTGAGGGTAAAGAATGGC 

240.1481417 7.778090275 7.742559942 7.907780835 7.809477017 NM_008580.1 GGCTGAGGATTACACGCTAGTGGATGTTCTTTACTACGTCACACGTGATG 

1959.94 11.40551809 11 .37 444276 10.93659377 11 .23885154 NM_008279.1 AAGGCCCACGGATGACCCTACGGCCCCCAGCAACCTCTACATCCAGGAAT 

984.517225 10.11215007 10.17593118 9.943272637 10.07711796 NM_177345.2 GGCAGTCCCAGCAAGACTGTACATAGCCATGCCAGACATCTCCTTGCAAC 

1650.588583 10.52071132 10.766118 10.68876485 10.65853139 NM_008641 .1 GGGGGCCAGCAAGATCATCAGGACTTAGCACTGACATCAGATGAGCTCTT 

69.7119625 6.021872921 6.230795207 6.123334337 6.125334155 NM_008591.1 GGATATCCTCAATCTTCTCCACGTTCATTGGGGAACACTACGTCCACGTG 

66.61904917 6.098829241 6.263343341 6.057862858 6.140011813 AK077830 CCTAGTACCACATTGAGCATCACATAACCCTCTTATTTGGGGGCTAGGGT 

76.91179917 6.082114562 6.321458511 6.265133036 6.222902036 NM_008727.4 GGGACTGGAGGGGGACTCCTAAGTTTATAGGGCTGACTGAAATACCCAGT 

7408.57925 12.90798022 12.8908904 12.85498119 12.88461727 NM_001039391 .1 GCAGCTCTAAGTTTCCTCATGGAGCCTCACAGATCCAGTTTTGGGAAAGG 

100.91434 6.845698913 7.008944351 6.656987387 6.837210217 NM_177262.3 TGAATCTCGGTGCTGACTCAGACAGCTCGTCCCAAAAGAGCCCACCAGGG 

1902.442 10.96297521 10.81147197 10.89363676 10.88936131 NM_011121 .2 CCCTGCCCTCGCTCAGCCCACTGTATGAATTGTATAAATGTTTCTATTAA 

90.80175917 6.492839629 6.504648343 6.504648343 6.500712105 NM_152804.1 GGTTGCTCCCTTGCTGTTTAAAGGCTACAATCAGAGCAGCTTTTGGCTGC 

3238.833417 11.58676908 11 .55151225 11.66125855 11 .59984663 NM_021880.1 CTGTGTCTTTGTGGACTCTTGGCACCATTGTCTCTGGATGGGTGGGCGAA 

48.86356417 5.940322819 5.867289717 5.610687194 5.80609991 AK076352 GATATGATTGTCCTTGAGAATCTGCTGCACCACCCCTAGCAGACGCCTCC 

66.21308 6.137705774 6.030623092 6.049044336 6.072457734 NM_011160 TGATTTGCTTTGTATTTTCCCTGCAGCTGTAATTGCAGAGTGCCTGTTGG 

82.974185 6.513771975 6 .621544798 6.37 4590649 6.503302474 NM_008926.2 CTCCAGGGCTCCTTAGACACCAGGGATCTTTACAGCATCCTTAAGTGGGG 
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Molecule 

ATM 

CHEK1 

FGFR2 

IRAK2 

LEK1 

MAST2 

PKIG 

PKN1 

PLK2 

RIPK3 

TEX14 

VRK2 

CDK4 

CDC25A 

CDC2A 

CDK5 

CHKA 

DUSP12 

MAP3K5 

MAP4K1 

MET 

NPR1 

PRKAR1A 

SLK 

SRMS 

TAOK2 

Table 53: Classification of nodes present in modules according to specificity 

Observed 
Phenotype Population 
(Based on Pubmed IDs for Cell Cycle role known Role In Cell Proliferation Residence Time (Hours) Doubling Time Standard Deviation (± hours) 
Increase In (Hours) 

RT) 

G1 and G1/S s G2 G1 s G2 PDT G1 (SD) S(SD) G2(SD) PDT(SD) 

G1 7923116 11544175:8843193 - -- 10.2 11.5 3 23.9 0.5 0.7 0.2 1.5 

G1 11544175 11544175 11544175 -- 12.2 15.2 3.1 29.5 0.8 1.1 0.3 2.3 

G1 -- - -- 10572038:15199177 11.7 10 3.8 25.6 1.6 1.7 0.6 3.9 

G1 - - -- - 10.7 11 3.8 26.5 1.1 1.3 0.5 2.9 

G1 14555653 - -- -- 13.9 14.2 3.8 31.4 1 1.2 0.3 2.6 

G1 -- -- -- - 14.7 13.2 2.8 32.8 1.4 1.4 0.4 3.2 

G1 - - -- - 9.6 13 4.1 25.8 0.8 1 0.4 2.2 

G1 -- -- - - 10.1 13.4 3.1 26.3 0.7 1.1 0.4 2.2 

G1 12972611 - -- 12972611 14.6 14.3 3.9 31.8 1 1.3 0.3 2.6 

G1 -- - -- 10358032 10.5 13.5 2.2 26.1 0.5 0.7 0.2 1.4 

G1 - - -- -- 11 14.8 1.9 27.5 1.6 2.2 0.5 4.2 

G1 18286197 -- -- 12.1 11.9 3.5 27.5 1.3 1.4 0.6 3.3 

G1 and G2 19013283 -- 16476733:10318807 --- 8.7 12.7 4.8 26.4 0.6 0.9 0.3 1.8 

G1 and S 14681206: 1 0454565 10454565: 10995786 19192479 -- 11 16.9 3.2 30.5 1 1.5 0.4 2.9 

G1 and S 17700700 17635936 19570916:19013283 -- 14.9 14.9 3.4 32 0.9 1.2 0.3 2.4 

G1 and S 8302605:1358458 -- --- -- 11.5 19.5 3.3 33.6 0.8 1.2 0.3 2.3 

G1 and S 18296102 --- --- -- 17.7 17 3.1 37.8 1.4 1.7 0.4 3.5 

G1 and S - - -- 16274472 10.3 20.2 3.9 34.4 0.7 1.3 0.3 2.4 

G1 and S - --- --- 15210709 11.9 25.4 3.4 41.4 1.3 2.3 0.5 4.1 

G1 and S 14981547 15634691 -- -- 9.8 14.9 2.8 28.1 0.9 1.4 0.4 2.7 

G1 and S 15064724 -- --- -- 14 16.4 2.6 33.5 1.7 2.1 0.6 4.4 

G1 and S - -- -- -- 9.4 14 3.1 27 0.8 1.3 0.4 2.6 

G1 and S --- --- - 16569736 9.4 16.2 6.2 29.9 0.8 1.3 0.7 2.9 

G1 and S - - 16236704 -- 10.4 24 3.1 37.5 0.3 0.5 0.1 0.9 

G1 and S -- -- -- - 10.9 16.7 1.2 28.6 1.8 2.6 0.4 4.9 

G1 and S - - -- 10660600 13.6 17.1 1.4 31.8 1.4 1.7 0.3 3.4 
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27 TRPM7 G1 and S 19515901 -- - 18590694:19515901 11 16.2 2.1 29.2 

28 TSSK5 G1 and S - - -- - 9.8 15.2 1.8 26.6 

29 CSNK2A1 G2 12396231 -- 12396231 - 6.1 12.7 7.6 26.1 

30 PRKCH G2 16434969 -- 8454583:8336936:9310352 3.4 13 12.7 28.3 

31 PRKG1 G2 - -- - 11073964 7.6 15.3 7.2 28.6 

32 PRKG2 G2 - - -- - 8.1 15 7 28.5 

33 CLK4 s - - - - 6.8 21.5 5.2 33.1 

34 EPHB2 s - - -- 15973414 6.1 21.6 1.4 28.9 

35 GUK1 s - - -- - 9.4 29.7 4.2 43.1 

36 ITGAE s - - -- - 7.4 18.3 1.9 28.2 

37 MAPKAP1 s - - -- 17012250 7.5 15.9 3.4 27.1 

38 NE01 s - - - - 7.6 17.3 3.3 28.6 

39 PPM1G s - 17054950 -- - 6.3 14.8 2.1 23.1 

40 PPM1H s - -- -- 18059182 8.6 14.5 1.9 25.5 

41 TAF9 s - 12837753 - 12837753 8.1 15.5 2 25.6 

42 INPP5F Sand G2 - - -- - 9.8 17.5 6.8 34.2 

43 PLK1 Sand G2 - - 15838519:16557283 - 9.4 19.3 8.6 36.6 

Normal 
~-

~4 _ 13.5 .. 4.1 26 
-

Role in Cell cycle/Proliferation not well known 

The table provides the classified list of molecules based on their exclusivity for regulation of a particular phase in the identified modules. 
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Supplementary Table S4 

Table 54: List of phosphoproteins identified 

t-------il Molecules showing increased phosphorylation in G1 phase 
L---- - --'· Molecules showing increased phosphorylation In S phase 

PHOSPHOPEPTlDE NAME IN 
PROTEIN DESCRIPTION 

CONTAINING PROTEIN NETWORK 

ABCG5 ABCG5 AlP-binding cassette sub-family G member 5 
RRAGA RRAGA Ras-related GTP-blndlng protein A 
ADCY6 ADCY6 (Ca(2+)-inhibitabie edeny1y1 cyclase) 
AKT2 AKT2 RAG-beta serine/threonine-protein kinase 
LEPR LEPR Leptin receptor precurso< 
RT35 MRPS28 28S ribosomal protein S35 
RBCC1 RB1CC1 RB1 -inducibie coiled-coli protein 1 
HNRPQ SYNCRIP Heterogeneous nucJear ribonucleoprotein Q hnRNP Q hnRNP-0 
TAF5 TAF5 Transcription Initiation factor TFIID subunit 5 
AFF4 AFF4 AF4/FMR2 family member 4 
NELFA WHSC2 Negative elongation factor A 

DAPK1 DAPK1 Death-associated protein kinase 1 

DLDH OLD Dihydrolipoy1 dehydrogenase 
DNAS1 DNAS1 Deoxyribonudease-1 precursor 
SYIC lARS 1 cytoplasmic 
NUP53 NUP153 Nucleoporin NUP53 
ADDB ADD97 Bata-adducin Erythrocy1e adducln subunit beta Add97 

ALEX ALEX Protein ALEX 
NOCT CCRN4L Noctumin CCR4 protein homolog) 
CHST5 CHSTS Carbohydrate sulfotransferase 5 
CLD8 CLDN8 Claudin-8 
CSDC2 CSDC2 Cold shock dornaln-<:antalnlng protein C2 (RNA-binding protein PIPPin) 
DCTN6 DCTN6 Dynactin subunit 6 

DHX36 DHX36 Probable ATP-dependent RNA helicase DHX36 

E41L2 E41L2 Band 4. 1~ike protein 2 (Generally expressed protein 4.1) 
FA18B FAM18B Protein FAM18B 

GDF7 GDF7 Growth/dlfferenUatlon factor 7 precursor 
T2EB GTF2B Transcription lnitiaUon factor liE subunit beta (TFIIE-beta) 
HESS HESS Transcription factor HES-S 

HXD1 0 HOXD8 Horneobox protein Hox-010 Hox-4.5 Hox-5.3 

KCNC3 KCNC3 Potassium voneg&-gated channel subfamily C member 3 
LNP KIAA1715 Protein lunapark Protein ulnaless 
SCF KITLG Kit ligand precursor C-kfi ligand Stem cell factor 
KLF4 KLF4 Krueppel-llke factor 4 
LMBL3 L3MBTL1 Lethal(3)malignant bra in tumor-like 3 protein 

LDHA LDHA L-lactate dehydrogenase A chain 
LRP6 LRP6 Low-density Upoprotein receptor-related protein 6 precursor 
MAPS MAPS Microtubule--associated protein 9 
RM35 MRPL35 mitochondrial precursor 
MY07A MY07A Myosin-VIIs 
MYST1 MYST1 Probabkt histone acetyttransferase MYST1 
PEX14 PEX14 Peroxisomal membrane protein PEX14 
PHLB2 PHLDB2 Pleckstrin homology-like domain family B member 2 
ARVC PKP2 Armadillo reoeat protein deleted In ve~rdk>fadal syndrome homoloQ 
RAB6A RAB6A Res-related protein Rai>-SA 
RGL2 RGL2 Ral auanine nucleotide dissociation stimulator·like 2 RatGOS..fike factor 
RNF25 RNF25 E3 ubi ullin-protein ligase RNF25 
RS10 RPS10 40S ribosomal protein S 10 

SACS SACS Sacsin 
SC5A3 SLC5A3 Sodium/mycrinositol cotransporter 
SMADS SMADS SMADS protein 
SPEG SPEG Striated muscle-specffic serine/threonine protein kinase 
SRGP2 SRGAP3 SLIT -ROBO Rho GTPaS&-activating protein 3 

SYNPO SYNPQ Synaptopodin 
TAC2N TAC2N Membrane targeting tandem C2 domain-<:antalnlng protein 1 
TAF1C TAF1C TATA box-bindina protein-associated factor RNA polymerase I subunn C 
TAOK1 TAOK1 Serinelthreonine.protein kinase TA0 1 
TORD3 TDRD3 Tudor domain--containing protein 3 
TM6S1 TM6S1 Transmembrane 6 superfamny member 1 
TTC16 TTC16 Tetratrloopeptide rapeat protein 16 (TPR repeat protein 16 

ZN318 ZNF318 Zinc finger protein 318 
ABCA1 ABCA1 A TP-binding cassette sub-family A member 1 
ABCAD ABCA1 3 ATP-~nding cassette sub-famil A member 13 
COPD ARCN1 Coatomer subuntt delta (Oelta-<:aat protein) 
ARHG3 ARHGEF3 Rho guanine nudeoUde exchange factor 3 
CASP7 CASP7 Caspase-7 precursor 
CDSR2 CDK5R1 Cydin-dependent kinase 5 activator 2 precursor COK5 activator 2 
CSK21 CSNK2A1 Casein kinase II subunit alpha 
DCAK3 DCLK3 Serine/threonine-protein kinase DCAMKL3 
DPP3 DPP3 Dipaptidyl-peptidase 3 

FYB FYB FYN-binding protein 
GAK GAK Cydin G-associated kinase 
GBGT2 GBGT2 Guanine nucleotide-binding protein 
GOGA4 GOLGA4 Golgin subfamily A member 4 
IER2 IER2 Immediate earty response gene 2 protein 
ISL2 ISL2 Insulin gene enhancer protein ISL-2 (lslet-2) 
KCNC4 KCNC4 Potassium vottage-gated channel subfamily C member 4 
KCNQS KCNQ5 Potassium vottage-gated channel subfamily KOT member 5 
KI1 8A KIF1 6A Kinesin faml_ly member 18A 
MAGI2 MAG12 INW and POZ domain-<:antaining protein 2 
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IDENTIFIED PHOSPHOPEPTIDE 

YTAMLALCR 
MPNTAMKKK 
LSRNIVR 
THFPQFSYSASIR 
TLASWKASVFR 
TFSSVASPAAPR 

RSTEL VLSPDMPR 
LFVGSIPK 
DSIGSKSKK 
SPAQSDSTTQRR 
LLDISELNTVGAGREAK 

NRFGNDLHVSNKLFVLDAGASGSK 

WHVNGFGKITGK 
DSHLVAVGK 
VQQVPENISFPAEEEK 
VSTMRPLA TAYK 
SPSTESQLMSKGDADTK 

SPGTSDLK 
TVSSMGNGTSR 
VHVLVLSSWR 

SPSIYSK 
TYSATARASAGPVFK 
GSSTPVKN 
GSGQGSSGGGGGGSR 

MTTEVGSASEVKK 
VGSKK 
A VT ASESSPLALR 
QGISSMQESGPK 
SSAKAAAAAVSTSR 
KMNESASGOEPTK 

SPITPGSR 
TRPOAPR 
NDSSSSNR 
RTATHTCDYAGCGKTYTK 
LSGDTSPPTTPSFPR 
IVSSKDYCVTANSK 
MTSVATAK 
VSSASGR 

MTTSFWKR 
SPTLSSQFKR 
TYAEMDPTIAALEK 

EPLIATAVK 
SPSPMGTSVR 
SPSVDSTRK 
VAAALPGMESTQDR 
APSVISRVLKK 
TSGAGPNQQRPGETQK 
SRPETGRPRPK 
TTSCLK 
mFWSKK 
MTSMASLFSFTSPAVK 
SPRGSVAER 
DINSVAGVLK 
VSAPPSAASTFSR 
IQTQTPKKK 
MTIVSAK 
TASLVTR 
TMNSEAFSGLK 
TPRSRJLGCSSMLR 
MTDPTKRR 
TPGVPK 
VLTGSEK 
MATDELASK 
LMNTGK 
DL TLEDLQDGEVR 
DLEIMQIL TRVNDR 
GESRLK 
GGPNIITLADIV 
RAPEKESK 
AMSAKFER 
GGKNELSFK 
MASMK 
MAODLSEK 
LHAEELASK 
ELYLSAK 
THVDKOAEK 
IIINVGGTR 
SASANISR 
W HVVDKHILSFDPK 
MSKSLK 



Supplementary Table 54 

81 PXR NR112 Orphan nuclear receptor PXR FALTLK 
82 PPIL1 PPIL1 Peptldyt-prolyl cis-trans isomerase-like 1 GGASIYGK 
83 R3HD2 R3HDM2 R3H domain-containing protein 2 SNSNTTQETLEIMK 
84 SCRT1 SCRT1 Transcriptional repressor scratch 1 TYATSSNLSR 
85 TAOK2 TAOK2 Serine/threonine-protein kinase TA02 LDETQEAEFQAL 
86 TGFB1 TGFB1 Transforming growth factor beta-1 precursor (TGF-beta-1) NNAIYEKTK 
87 THNSL THNSL1 Threonine synthase-like 1 AEIIGSQR 
88 TPST1 TPST1 Protein-tyrosine sulfotransferase 1 SGTTLMRAMLDAHPDIR 
89 UGDH UGDH UDPiJiucose 6-dehydrogenase TYGMGK 
90 1433Z YWHAZ 14-3-3 protein zeta/delta (Protein kinase C inhibitor protein 1) (KC!P-1) (SEZ-2) TAFDEAIAELDTLSEESYK 
91 ABCD4 ABCD4 ATP-binding cassette sub-family 0 member 4 TLMGPIVTK 
92 ADA33 ADAM 33 ADAM 33 precursor TPGDTK 
93 Add3 (Addl) ADD3 Gamma-adducin AEDSSK 
94 CENG3 AGAP3 (MR1-interacting protein) (MRIP-1) (CRAM-associated GTPase) (CRAG) LLVMLLAHGSK 
95 Aktip (Fit) (Ft1) (Fts) AKTIP AKT -interacting protein MNPLWSMSAGSVRK 
96 ALPK1 ALPK1 Alpha-protein kinase 1 SSQNSSSYSPWWLK 

97 
Stradb (Ais2cr2) (Papk) 

ALS2CR2 STE20-related kinase adapter protein beta MSLLDCFCASR 
(Syradb) 

98 ANKS1 ANKS1A Ankyrin repeat and SAM domain-containing protein 1A RSLSTN 

99 
Arhgef12 (Kraa03821 

ARHGEF12 Rho guanine nucleotide exchange factor 12 MSGTQSTITDR 
(Larg) 

100 
Arhgef2 (Kiaa0651 I 

ARHGEF2 Rho guanine nucleotide exchange factor 2 AAVASVTPEK 
(Lbcl1) (Lie) 

101 ATRX ARTX Transcriptional regulator ATRX TMSRIGAARK 

102 DDEF1 ASAP1 5-biphosphate-dependent ARF1 GTPase-activating protein (PIP2-dependent ARF1 GAP) KTCASSSAK 

103 ATP4A ATP4A Potassium-transporting ATPase alpha chain 1 SPECTHESPLETR 
104 BAG4 BAG4 BAG famil molecular chaperone regulator 4 RSGYGPSDGPSYGR 
105 Bai1 BAI1 Brain-specific angiogenesis inhibitor 1 QQTPNKR 
106 BMI1 BMI1 Polycomb complex protein BMI-1 TRPLLNIRSDK 
107 Brca2 (Fancd1 I BRCA2 Breast cancer type 2 susceptibility protein homoloq DDTAAKTLVLCISDIISPSTK 
108 BRD2 BRD2 Bromodomain-containing protein 2 QPMDMGTIK 
109 Brd7 (Bp75 BRD7 Bromodomain-containing protein 7 ERTDACQSGEDSGCWQR 
110 BRSK2 BRSK2 BR serine/threonine-protein kinase 2 MTSTGK 
111 CB39L CAB39L Calcium-binding protein 39-like GYEAPQIALR 
112 CAC1E CAC1E Vottage-dependent R-type calcium channel subunit alpha-1 E DSASASRSR 
113 Camk2b (Camk2d) CAMK2B Calcium/calmodulin-dependent protein kinase type II beta chain STVASMMHR 
114 CAMKV CAMKV CaM kinase-like vesicle-associated protein TTGKLHTCK 

115 CCD45 CCDC45 Coiled-coil domain-containing protein 45 RSQVQKTYSR 

116 CD2L5 CDC2L5 Cell division cycle 2-like protein kinase 5 SPYSPVLRR 

117 SPEC1 CDC42SE1 Sperm antiQen with calponin homology and coiled-coil domains 1 SSTSLAFESRLSK 

118 CDKL5 CDKL5 Cyclin-dependent kinase-like 5 SPSYR 

119 CELR2 CELR2 Cadherin EGF LAG seven-pass G-type receptor 2 precursor LLETEER 

120 CFAB CFB Complement factor B precursor VKDASEVVTPR 

121 Cflar (Cash) CFLAR CASP8 and FADD-Iike apoptosis reQulator YNSRLQNGR 

122 CH3L1 CH3L1 Chitinase-3-like protein 1 precursor TRNTNLK 
123 CHD1 CHD1 Chromodomain-helicase-DNA-bindinq protein 1 DSSSGTER 

124 CLCN1 CLCN1 skeletal muscle FVSASSTYGELR 

125 KC1D CSNK1D Casein kinase I isoform detta IEYIHSK 

126 CP3AB CYP2R1 Cy1ochrome P450 3A 11 DFGPVGIMSK 

127 DAB2P DAB2 Disabled homolog 2-interacting protein (DAB2-interacting protein) TRPARESPQERPGSRR 

128 Dapp1 (Bam321 DAPP1 Dual adapter for phosphotyrosine and 3-phosphotyrosine and 3-phosphoinositide AELLGGNMSTQDPSELWGR 

129 DCAK1 DCLK1 Serine/threonine-protein kinase DCAMKL 1 SPGPSR 

130 Dek DEK Protein DEK NSSGTTR 

131 DHX33 DHX33 Putative ATP-dependent RNA helicase DHX33 MSMPIMSSR 

132 WAPL DIF2 Wings apart-like protein homolog (Dioxin-inducible factor 2 (DIF-2) SPTKAVYNAR 

133 DNMBP DNMBP l::)y~amin-bindingprotein FSIMDFYSEK 

134 DOCK1 DOCK1 Dedicator of cytokinesis protein 1 QTSVDSGIVQ 

135 DOCK2 DOCK2 Dedicator of cytokinesis protein 2 WHVPYRDSK 

136 E2AK3 E2AK3 Eukaryotic translation initiation factor 2-alpha kinase 3 precursor SMSSSGTK 

137 Egf EGF Pro-epidermal growth factor SWGGSDLSGK 

138 IF38 EIF3C Eukaryotic translation initiation factor 3 subunit 8 MDEEFTK 

139 ELAV1 ELAVL1 ELAV-Iike protein 1 ILQVSFK 

140 EPN2 EPN2 Epsin-2 RDTVKVPK 

141 Eps8 EPS8 Epidermal growth factor receptor kinase substrate 8 AALEDSNGSSELQEIMRR 

Erc2 (Cast1 1 
142 (D14Ertd171e) ERC2 ERC protein 2 TISNLEGSPSR 

(Kiaa03781 

143 EXOC1 EXOC1 Exocyst complex component 1 STDYGK 

144 Ezh2 Enx1h EZH2 Polycomb protein EZH2 EFAAALTAER 

145 F126A FAM126A Protein FAM126A (Down-regulated by CTNNB1 protein A) ISRNAVTSMSIR 

146 FAM3B FAM3B Protein FAM3B precursor LLSGGGRDK 

147 Fbn1 (Fbn-1) FBN1 Fibrillin·1 GGGGHDALKGPNVCGSR 

148 FXL21 FBXL21 F-box!LRR-repeat protein 21 YTPDEVHTEVSK 

149 FBX18 FBX018 F-box only protein 18 YTATTK 

150 FGF13 FGF13 Fibroblast growth factor 13 CVSSPSKGK 

151 Fhod1 (Fhos1) FHOD1 FH1/FH2 domain-containing protein 1 RTMTVVLDPK 

152 FKBP4 FKBP4 FK506-binding protein 4 VLQL YPSNKAAK 

153 FLCN FLCN Folliculin SPTATESRS 

154 FMN1B FMN1 isoform IV AETGSEGSQGKGR 

155 Fmr1 (Fmr-1) FMR1 Fragile X mental retardation protein 1 homolog GSRPYRNR 

156 FOXP4 FOXP4 Forkhead box protein P4 MTGSPTLVK 

157 BLP GBLP Guanine nucleotide-binding protein subunit beta 2-like 1 MTEQMTLR 

158 CKR GCKR Glucokinase regulatory protein (Glucokinase regulator) LGSGGWKK 

159 GDF2 GDF2 Growth/differentiation factor 2 precursor (GDF-2) SSTPASNIVR 

160 GeminS GEMIN5 Gem-associated protein 5 HASLQTSQR 

161 GLCE GLCE D--glucuronyl C5-epimerase GSRAKHN 

162 GBG5 GNAT1 Guanine nucleotide-binding protein MSGSSSVAAMKK 

163 GPC6 GPC6 Gtypican-6 precursor VWSALPYTICK 

164 GP139 GPR139 Probable G.protein coupled receptor 139 HGKPIKVSP 

165 GASP2 GPRASP2 G-protein coupled receptor-associated sortinq protein 2 (GASP-2 SSSRARPK 
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166 GSTA3 GSTA3 Glutathione S·transferase A3 LRSDGSLMFQQVPMVEIDGMK 
167 GTPB2 GTPBP2 GTP·binding protein 2 (GTP·bindmg-ltke protein 2) VGADITVLR 
168 HAX1 HAX1 HS1-associating protein X-1 (HAX-1) (HS 1-binding protein DSMLK 
169 HBS1L HBS1L HBS1-Iike protein TMNSEAFSGLK 

170 Hdac6 HDAC6 Histone deacetylase 6 MTSTGQDSSTR 

171 Hras1 (Hras) HRAS GTPase HRas MTEYK 

172 WAPL IER3 WAPL MOUSE Dioxin-inducible factor 2) (OIF-2) SPTKAVYNAR 

173 IIG ILF3 lnterleukin enhancer-binding factor 3 AEHMTRTLR 

174 ITAE ITAE lntegrin alpha-E precursor (!ntegrin alpha M290 (CD103 an~!g-~n} TVQYSYLGYSLAVLHK 

175 ITPR2 ITPR2 S.trisphosphate receptor type 2 TPVTGNHGVPTMTLSSMMETCQK 

176 JHD3C JMJD2C JmjC domain-containing histone demethylation protein 3C SPMTLVK 
177 TIP60 KAT5 Histone acetyltransferase HTATIP MTGSLVSDR 

178 KLDC4 KBTBD4 Kelch domain-containing protein 4 TAAKMEKK 

179 Kcna3 KCNA3 Potassium voltage-gated channel subfamily A member 3 SNSTLSK 

180 KI21B KIF21B Kinesin family member 21 B WHVPYRDSK 

181 KIF2B KIF2B Kinesin-tike protem KIF2B TSGQTSVNAHSSR 

182 LAMC1 LAMC1 Laminin subunit gamma-1 precursor FHTSRPESFAIYKR 

183 ARH LDLRAP1 Low density lipoprotein receptor adapter protein 1 IVATAKASGKK 

184 LIMA1 LIMA1 LIM domain and actin-binding protein 1 SPKTSSPSLR 

185 TBCD4 LOC686547 TBC1 domain famil member 4 (Akt substrate of 160 kOa) SPSAMQQQK 

186 Lphn 1 (Kiaa0821) (Lec2) LPHN1 Latrophilin-1 
AQSVLYQSDLDESESCTAEDGATSRP 
SSPPGR 

187 Lrp2 LRP2 Low-density lipoprotein receptor-related protein 2 FRCDNSR 

188 LRC59 LRRC59 Leucine-rich repeat-containing protein 59 MTKAGSKGGNLR 

189 LRRK1 LRRK1 Leucine-rich repeat serine/threonine-protein kinase 1 GSRSVAK 

190 LUC7L LUC?L Putative RNA-binding protein Luc7-like 1 FSRSRSR 

191 MAP1B MAP1B Microtubule-associated protein 16 A TKTTTTPEVK 

192 Map3k1 (Mekk) (Mekk1) MAP3K1 Mitogen-activated protein kinase k1nase kinase 1 CGSHSAELAAAR 

193 M4K3 MAP3K3 MitOQen-activated protein kinase kinase kinase kinase 3 GTNLSRKEK 

194 Map4k1 Hpk1) MAP4K1 Mitogen-activated protein kinase kinase kinase kinase 1 TTWL YCINNLLMSLSGK 

195 JIP3 MAPK81P3 c-·un-amino-terminal kinase-interactinq protein 3 (JNK-interacti_ng protein 3) SPT AAGFSQRR 

196 MAST1 MAST1 Microtubule-associated serine/threonine-protein kinase 1 KYGFTLRAIR 

197 TRIM1 MID2 Mk'!line-2 TYRPSSAMSSER 

198 Mknk1 (Mnk1) MKNK1 MAP kinase-interacting serinefthreonine-protein kinase 1 SRDANPCLTPAGL 

199 MPPH1 MPP1 M-phase phosphoprotein 1 (MPP1) VSELSLCDLAGSER 

200 Mtch1 MTCH1 Mitochondrial carrier homolog 1 GLSPRLMSNALSTVTR 

201 Muc4 MUC4 Mucin-4 LSTLPQSQHTGSK 

202 ERG19 MVD orMPD Oiphosphomevalonate decarboxylase ILILWSADK 

203 MYH6 MYH6 Myosin-6 LSRIITR 

204 NACAM NACA Nascent polypeptide-associated complex subunit alpha ESSATSSSKRAPK 

205 PPRB NCOA6 Peroxisome proliferator-activated receptor-binding protein SSSGSASSGSVSQK 

206 Ndufa412 NDUFA4L2 NADH de~ydrogenase ubi uinone 1 alpha subcomptex subunit 4-like 2 MAGTSLGTR 

207 Nefh (Kiaa0845) (Nth) NEFH Neurofilament heavy polypeptide TSVSSVSASPSR 

208 NELF NELF Nasal embryonic luteinizing honnone-releasing hormone factor SEAMSSVAAKVR 

209 NMBR NMBR Neuromedin-B receptor (NMB-R) MTSLKSNTK 

210 NDK6 NME6 Nucleoside diphosphate kinase 6 TLMGPTR 

211 Nod1 (Card4) NOD1 Nucleotide-binding oligomerization domain-containing protein 1 LQSLWASGR 

212 Notch 1 (Match) NOTCH1 Neurogenic locus notch homolog protein 1 
CSQPSGTCLNGGRCEVASGTEACVAS 
GSFVGQR 

213 Nr3c2 Mlr) NR3C2 Mineralocorticoid receptor CSVSSPSNTNNR 

214 TEN1 ODZ1 Teneurin-1 SPFLSEKR 

215 ORC3 ORC3L Origin recognition complex subunit 3 SMESFTSK 

216 OVGP1 OVGP1 Oviduct-specific glycoprotein precursor TMVLEKA TVSPR 

217 PALM PALM Paralemmin SPGGSTMMK 

218 PCLO PCLO Protein piccolo SPSTISLKESK 

219 Pdlim5 (Enh) PDLIM5 POZ and LIM domain protein 5 DFNMPLTISSLK 

220 PER2 PER2 Period circadian protein homolog 2 TSGKIQTK 

221 PHLPP PHLPP PH domain leucine-rich repeat-containing protein phosphatase TSALLQPK 

222 PI51B PIP51KB Phosphatidylinositol-4-phosphate 5-kinase type-1 beta MHL TYDLKGSTYK 

223 Pkn2 (Prkcl2) PKN2 Serine/threonine-protein kinase N2 A TSV ALPGWSPSDNRSSFMSR 

224 Polb POLS DNA polymerase beta VTGIGPSAAR 

225 RP03C POLR3K DNA..<firected RNA polymerase I! I subunit C MTMSAWK 

226 RNAS4 POP4 Ribonuclease 4 precursor GICSTTNILCK 

227 PRGC1 PPARGC1A Peroxisome proliferator~activated receptor gamma coactivator 1-alpha SPGSRSSSR 

228 Ppp1 r12a (Mypt1 PPP1R12A Protein phosphatase 1 regulatory subunit 12A TSSSYTRR 

229 AKAP4 PRKA4 A~kinase anchor protein 4 precursor (Protein kinase A~anchoring protein 4 PRKA4 VSEHILK 

230 NETR PRSS12 Neurotrypsin precursor RPPRTPR 

231 PsmbB (Lmp7) (Mc13) PSMB8 Proteasome subunit beta type-8 ATAGSYISSLRMNK 

232 PTN18 PTPN12 Tyrosine-protein phosphatase non-receptor type 18 TSSALPATSRPPGGVLR 

233 PTN5 PTPN5 Tyrosine-protein phosphatase non-receptor type 5 MCCSER 

234 PURG PURG Purine-rich element-binding protein gamma IRQTMMR 

235 
Rabep 1 (Rab5ep) 

RABEP1 Rab GTPase-binding effector protein 1 GQLESTLR 
(Rabpt5) (Rabpt5a) 

236 Rad9a (Rad9) RAD9 Cell cycle checkpoint control protein RA09A CCISLSGSHSHL WQLHCK 

237 Ranbp2 RANBP2 E3 SUMO-protein ligase RanBP2 CVSCQNTNPTSNK 

238 RAVR1 RAVER1 Ribonucle<_?protein PTB-bindinq 1 (Protein raver-1) RLFSHPREPTLGAHGPSR 

239 REEP4 REEP4 Receptor expression-enhancing protein 4 AMPSDMDS 

240 Reps1 REPS1 Ra!BP1-associated Eps domain-containinq protein 1 ELCGATRLGYFGR 

241 RGN RGN Regucalcin TTSCCFGGK 

242 RGS9 RGS9 Regulator of G-protein si nating 9 (RGS9) SPIYKEMLAK 

243 RIC8A RIC8A Synembryn-A YTGYGNAAGLLAAR 

244 RNH2B RNASEH2B 
Ribonuclease H2 subunit 8 (RNase H2 subunit 8) (Ribonuclease HI subunit B) (Deleted in 

EDYTKFNTK 
lymphocytic leukemia 8 homolog) 

245 NC61P RNMTL1 Putative RNA methyltransferase NCOA61P VRSKVEK 
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246 RLAO RPLPO 60S acidic ribosomal protein PO (L 10E) AEAKEESEESDEDMGFGLFD 
247 RLA2 RPLP2 60S acidic ribosomal protein P2 KEESEESDDDMGFGLFD 
248 RS17 RPS17 408 ribosomal protein S 17 TPRGAV 
249 SALL1 SALL1 Sal--like protein 1 Zinc finger protein Spalt-3) KSKPPNVTAFEAK 
250 SCFD1 SCFD1 Sec1 family domain-containing protein 1 VGSKMAA TASIR 
251 SDK1 SDK1 Protein sidekick-1 precursor GSTFEPAR 
252 Sec23ip SEC231P SE C23-interacting protein HTPVSSR 
253 SF3B3 SF3B3 Splicing factor 38 subunit 3 TSGPESSVK 
254 SFRS7 SFRS7 ar inine/serine-rich 7 SRSASLR 
255 SGCD SGCD Detta-sarcoglycan (SG-delta) FEVKTVSGK 

256 Sgol1 (Sgo1) SGOL1 Shugoshin-like 1 DQISLCSRLINPAK 
257 SH24A SH24A SH2 domain-containing protein 4A AQTKPVKEK 

258 Sh2b3 (Lnk) SH2B3 SH2B adapter protein 3 MNEPTVQPSR 

259 SI1L2 SIPA1L2 Signal-induced proliferation-associated 1-like protein 2 SPSTLTGK 
260 ACATN SLC33A1 Acetyl-coenzyme A transporter 1 SPTISHK 
261 CTL4 SLC44A4 Choline transporter-like protein 4 NEAPTGGKTRK 
262 SMG5 SMG5 Protein SMG5 SMG-5 homolog) (EST1-Iike protein B SPAQEPPQAR 

263 SMG7 SMG7 Protein SMG7 (SMG-7 homoloo) (ESTHike protein C) EVNQGRSFPPK 

264 SMN SMN1 Survival motor neuron protein KNATTPLK 

265 Sik1 (Msk) (Sik) (Snf11k) SNF1LK Senna/threonine-protein kinase SNF1-Iike kinase 1 QVCQSSVRTPR 

266 Sox10 (Sox-10) (Sox21) SOX10 Transcription factor SOX-10 
HPEEGSPMSDGNPEHPSGQSHGPPT 
PPTTPK 

267 MINT SPEN Msx2-interacting protein (SPEN homolog) (SMART/HOAC1-associated repressor protein) TPGTYPEDSR 

268 SRRM1 SRRM1 Serine/arginine repetitive matrix protein 1 SPSLSSK 

269 SRRM2 SRRM2 Serine/arginine repetitive matrix protein 2 QSCSGSSPR 

270 STAR? STARD7 StAR-related lipid transfer protein 7 SPAGGNEKSK 

271 STARS STARD8 StAR-related lipid transfer protein 8 (StARD8 SPDWYNK 
272 STK36 STK36 Serine/threonine-protein kinase 36 LALTDSASLK 
273 Strn3 (Gs2na) (Sg2na STRN3 Striatin-3 NQLLSCSADGTIR 

274 ST3A1 SULT1A Amine sulfotransferase MEWENIENYEIR 

275 SYTL3 SYTL3 SvnaptotaQmin-like protein 3 (Exophilin-6) KASTPDILK 

276 TAP2 TAP2 Antigen peptide transporter 2 (APT2) TMLVIAHR 
277 TBX6 TBX6 T-box transcription factor TBX6 (T-box protein 6) EFSAVGTEMIITK 

278 TEX2 TEX2 Testis-expressed sequence 2 protein STSCLLK 

279 Tirap(Mal) TIRAP T oll/interleukin-1 receptor domain-containing adapter protein ALLITPGFLR 

2SO Tnfrsf1b (Tnfr-2) (Tnfr2) TNFRSF1B Tumor necrosis factor receptor superfamily member 18 THSGSCR 

281 TNI3K TNNI3K Serine/threonine-protein kinase TNNI3K NSGSFEDGN 

2S2 Tnpo1 (Kpnb2) TNP01 T ransportin-1 ESQSPDTTIQR 

2S3 Trim29 TRIM29 Tripartite motif-containing protein 29 TSYQPSSPSR 

284 TSC2 TSC2 Tuberin SSSASSQEEK 

285 Ttn TTN Titin MGQKYSFR 

286 UBE3C UBE3C Ubiquitin-protein ligase E3C VSAPYITEECLRK 

2S7 UHRF2 UHRF2 E3 ubi uitin-protein li ase UHRF2 TDSSEWK 

288 RENT1 UPF1 Regulator of nonsense transcripts 1 Nonsense mRNA reducing factor 1 NORF1) TEAANVEKITTK 

289 
Usp2 (Ubp41) (MNCb-

USP2 Ubiquitin carboxyl-terminal hydrolase 2 SQLSSTLKR 
0190) 

290 Usp47 USP47 Ubiquitin carboxyl-terminal hydrolase 47 STETSDFENIESPLNERGSSTSVDNR 

291 UspS (Kiaa0055) (Ubpy) USPS Ubiquitin carboxyl-terminal hydrolase 8 FYCSHCR 

292 VampS VAMPS Vesicle-associated membrane protein 8 NIMTQNVERILSR 

293 CSPG2 VCAN Versican core protein precursor EETVGMGGSDDER 

294 CSPG2 VCP Valosin-containinQ protein p97/p4 7 complex-interacting protein 1 LGSGGVVKK 

295 VCIP1 VCPIP1 Deubiquitinating protein VCIP135 LGSGGWKK 

296 Vrk1 VRK1 Serine/threonine-protein kinase VRK1 
SVESQGAIHGSMSQPAAGCSSSDSSR 
R 

297 WDHD1 WDHD1 WD repeat and HMG-box DNA-binding protein 1 VRSQVEDAEDR 

298 WNT5B WNT5B Protein Wnt-5b precursor YDSAAAMRITR 

299 FOG2 ZFPM2 Zinc finger protein ZFPM2 TTASPKR 

300 ZN326 ZNF326 Zinc finger protein 326 SPDHSKGK 

301 ZN592 ZNF592 Zinc finger protein 592 EGSKGSPKMPK 

302 ZN63S ZNF638 Zinc finger protein 638 (Nudear protein 220) RLPNLPSHSRNK 

303 ZNFX1 ZNFX1 NFX1-type zinc finger-containing protein 1 VKGSIAEEVSSIR 

Table S4 gives the complete list of phosphoproteins identified by mass spectrometry along with the peptide sequences. Distinction 
between molecules differentially identified between G1 and S phase have been highlighted in the table. 
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Table 55: List of molecules classified as cell cycle targets 

G1 
PMIDs 

s 
PM IDs 

G2 
PM IDs 

TARGETS TARGETS TARGETS 
1 ATM 11544175:8843193 1 ATM 11544175:8843193 1 ANAPC2 11285280 
2 ATR 11544175:18606783 2 ATR 11544175:18606783 2 ATM 11544175 
3 CCNC 1833066:7568034:95523%:8730095 3 CCNA1 11566717:19167337 3 ATR 11544175 
4 CCND1 19167337 4 CCNA2 11566717:19167337 4 AURKB 19342897 
5 CCND2 19167337 5 CCNC 1833066:7568034:9552396:8730095 5 CCNB1 11285280 
6 CCND3 19167337 6 CCNE1 19167337:7797073:8156587 6 CCNB2 9926943 
7 CCNE1 19167337:7797073:8156587 7 CCNE2 19167337:7797073:8156587 7 CCNB3 7474080 
8 CCNE2 19167337:7797073:8156587 8 CCNH 7533895:9130709 8 CCNG1 16322753 :18408012 
9 CCNG1 12556559 9 CDC25A 10454565:10995786 9 CCNH 7533895:9130709 
10 CCNG2 11956189:9139721 10 CDC2A 17635936 10 CDC16 12629511 
11 CCNH 7533895:9130709 11 CDC45L 19054765 11 CDC20 11285280 
12 CDC25A 14681206:10454565 12 CDC6 16439999:18687693 12 CDC25A 19192479 
13 CDC2A 17700700 13 CDC? 10846177 13 CDC25C 18604163 
14 CDC34 8248134:11514588 14 CDK2 19167337 14 CDC2A 19570916:19013283 
15 CDC37 8703009:9228064:14701845 15 CDK7 9832506:7929589 15 CDK10 8208557 
16 CDC? 10846177 16 CDK8 9584184:17612495 16 CENPA 18007590 
17 CDK2 19167337 17 CHEK1 11544175 17 CENPB 16183641 
18 CDK4 19167337 18 CHEK2 11544175 18 CENPC 12490152 
19 CDK5 8302605:1358458 19 E2F1 1061%03:1%03422 19 CENPE 9763420 
20 CDK6 19167337 20 E2F2 19457859 20 CENPH 16875666 
21 CDK7 9832506:7929589 21 E2F3 15467444 21 CHEK1 11544175 
22 CDK8 9584184:17612495 22 E2F4 19585502:19562678 22 CHEK2 11544175 
23 CDKN1C 772%84 23 E2F5 15467444 23 MAD2L 1 19461085 
24 CDKN2B 19167337 24 E2F6 17457055:19549334 24 MAD2L2 10366450 
25 CDKN2C 19167337 25 FOS 17216194 25 27 17954563: 16310807 
26 CDKN2D 19167337 26 GMNN 19487297:11125146 26 PLK1 19033445 
27 CHEK1 11544175 27 JUN 17216194 27 PLK2 19001868 
28 CHEK2 11544175 28 JUNB 18793152 28 PLK3 11971976 
29 E2F1 10619603:19603422 29 MCM2 17680271 29 STK6 19342897 
30 E2F2 19457859 30 MCM3 19064704:19377303 
31 E2F3 15467444 31 MCM4 16754955 
32 E2F4 19585502:19562678 32 MCM5 16754955 
33 E2F5 15467444 33 MCM6 16754955 
34 E2F6 17457055:19549334 34 MCM7 16754955: 19647517 
35 FOS 17216194 35 MDM2 15485814:8628312:10995885:9087426 
36 HIPK2 12851404 36 MNAT1 10026172:11113200 
37 JUN 17216194 37 MYC 19554081 
38 JUNB 18793152 38 ORC1L 19197067 
39 MDM2 15485814:8628312: 10995885:9087426 39 ORC2L 17680271 
40 MNAT1 10026172:11113200 40 ORC3L 17716973 
41 MYC 12631706 41 ORC4L 18652488:19647517 
42 27 8730099: 10385618:8033213 42 ORC5L 17716973 
43 PLK2 .0:12972611 43 ORC6L 17716973 
44 RB1 09:7777526:9694794 44 PCNA 19595719 
45 RBL1 45 RB1 11018009:7777526:9694794 
46 RBL2 1152119:9188854:8253384 46 RBL1 1152119 
47 TFDP1 14618416:18687693 47 RBL2 1152119:9188854:8253384 
48 TFDP2 9704927 48 RIS2 18006686:11125146 
49 Trp53 7742528:9843%5:11884608:10072388 49 SKP1A 18353424 
50 Trp63 17114587:14737098 50 SKP2 19477924 
51 TRP73 10562283 51 TFDP1 14618416:18687693 

52 TFDP2 9704927 
53 Trp53 7742528:9843965: 11884608: 10072388 

List of molecules classified as cell cycle targets. 

Table S5 provides the complete details of classification of molecules according to their 
functional role in cell cycle and their corresponding PMID for the literature evidence. 
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Table 86: Occurances of nodes in the shortest paths 

G1 Subnetwork S Subnetwork G2 Subnetwork G1S Subnetwork 

Molecule N/0 Score Molecule N/0 Score Molecule N/0 Score Molecule N/0 Score 

TRP53 612 10.79 TRP53 372 8.19 LASP1 175 8.93 CDK2 833 11 .38 
RB1 471 8.29 ITGB7 367 8.08 PRKD1 159 8.10 TRP53 648 8.84 
PTK28 457 8.04 NTN1 278 6.10 TRP53 137 6.97 ABL1 465 6.32 
PRKCA 385 6.76 ADORA28 278 6.10 PRKCA 126 6.40 POLD1 463 6.30 
TRAF6 332 5.82 FOS 229 5.01 CDK7 74 3.72 ANXA1 434 5.90 
TICAM2 332 5.82 ABL1 225 4.92 FZR1 60 2.99 CREB1 424 5.76 
KIF23 316 5.54 YWHAG 204 4.45 EGFR 59 2.94 PRKG1 391 5.31 
YWHAQ 313 5.48 PIN1 201 4.38 POLD1 55 2.74 GRB2 388 5.26 
BCL2 266 4.65 TRAF6 190 4.14 CDK2 46 2.27 EGFR 344 4.66 
CDK2 258 4.51 CSE1L 189 4.12 CHEK2 41 2.01 CREBBP 311 4.21 
IKBKAP 251 4.38 CDK2 177 3.85 ETS2 40 1.96 RIS2 294 3.97 
MAPK8 234 4.08 DOK1 154 3.34 PRKG1 34 1.65 PRKCA 289 3.90 
ESR1 195 3.39 DCC 151 3.27 AREG 34 1.65 SRC 273 3.68 
POLD1 192 3.34 AREG 141 3.05 CASP3 31 1.50 RB1 268 3.62 
PTEN 191 3.32 POLD1 138 2.98 NFE2L2 28 1.34 USB 260 3.51 
CREBBP 184 3.19 RIS2 138 2.98 CREBBP 27 1.29 AKT1 238 3.20 

AKT1 178 3.09 STAT1 138 2.98 ACTS 26 1.24 EP300 236 3.18 
EP300 169 2.93 E7 135 2.92 HDAC1 25 1.19 BRCA1 230 3.09 

MCM7 160 2.77 EZR 128 2.76 CTNNB1 25 1.19 MCM7 230 3.09 
SRC 153 2.64 PKM2 127 2.74 CREB1 24 1.14 ESR1 212 2.85 

AREG 147 2.54 MCM7 125 2.69 UBTF 23 1.08 CTNNB1 191 2.56 
EPC1 146 2.52 BRCA1 106 2.27 SYK 22 1.03 POLR2A 181 2.42 

USB 145 2.50 PRKCA 103 2.20 STAT1 180 2.41 

POLR2A 130 2.24 SMAD3 99 2.11 MAPK3 174 2.32 

ARHGEF7 124 2.13 RB1 93 1.98 CCNA2 166 2.21 

ZBTB17 118 2.02 EED 82 1.74 AREG 165 2.20 

BRCA1 115 1.97 TAF1 75 1.58 LYN 162 2.16 

EEF1D 115 1.97 POLR2A 75 1.58 GADD45G 152 2.02 

CASP3 114 1.95 EP300 70 1.47 SKP2 149 1.98 

GRB2 103 1.76 USB 70 1.47 CDKN18 148 1.97 

SYNGAP1 100 1.70 RBL1 70 1.47 CSNK2A1 137 1.81 

RAF1 95 1.61 CCNA2 68 1.42 ELK1 136 1.80 
,WT1 94 1.60 RAF1 67 1.40 JUN 136 1.80 

I'CSNK2A1 94 1.60 DAB1 67 1.40 CDC25A 136 1.80 

TICAM1 92 1.56 ETF1 67 1.40 TOPBP1 127 1.68 

NFKBIA 92 1.56 GRIN28 66 1.38 E2F1 126 1.66 

ABL1 90 1.53 COIL 66 1.38 TUBA4A 119 1.57 

E2F1 89 1.51 MAPK1 65 1.36 MYC 119 1.57 

DLGAP4 89 1.51 CREBBP 60 1.25 EPC1 114 1.50 

MYC 89 1.51 ABL2 56 1.16 CASP3 113 1.48 

LCK 88 1.49 CASP3 56 1.16 WT1 ' 105 1.37 

XRCC6 86 1.45 MCM3 55 1.14 PTPN2 104 " 1.36 

TANK 86 1.45 EPC1 55 1.14 CCND1 103 1.35 

TRIM27 82 1.38 JUN 54 1.11 ARHGEF7 100 1.31 

MAPK1 80 1.35 CDK5 51 1.05 YWHAE 100 1.31 

PRC1 76 1.28 YWHAE 51 1.05 GADD45A 98 1.28 

RACGAP1 76 1.28 EGFR 50 1.02 PCNA 96 1.25 
SMAD3 76 1.28 E2F1 49 1.00 MCM5 94 1.22 

YWHAE 71 1.19 ZBTB17 93 1.21 

LIMA1 71 1.19 PPP2R4 90 1.17 
CDKN18 70 1.17 PITPNM1 88 1.14 

MRGBP 64 1.06 

CCNA2 63 1.o5 I 
PCNA 62 1.o3 I 
MNAT1 61 1.01 

N/0 I Number of Occurances in the shortest paths 

Table S6 gives the complete list of molecules and the number of times each molecule occurred ir the shortest pathnetworks 
along with the normalized Z scores for each molecule. Only molecules with a score of greater tha1 one are shown in the 
table above. 
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Supplementary Table 57 

Table 57: Network file used as SNAVI background 

Source Target Effect Interaction Source Target Effect Interaction Source Target Effect Interaction 
EP300 CITED1 0 Binding MAPK3 SP1 0 Phosphorylation MAPKB DCLK1 0 Phosphorylation 
ESR1 CITED1 0 Binding MAPK3 STAT3 + Phosphorylation PAX2 MAPKB + Phosphorylation 
MAP2K1 MAPK3 + Phosphorylation NTRK1 MAPK3 0 Binding MAPKB PRG2 + Phosphorylation 
MAPK3 CASP9 Phosphorylation MAPK3 MAPK14 + Phosphorylation MAPKB SMAD2 + Phosphorylation 
PTPRE SRC + Dephosphorylation CDKN1B YWHAQ + Binding MAPK8 STAT3 Phosphorylation 
ADRBK1 SRC 0 Binding SMARCA4 RB1 0 Binding TANK CAV1 0 Binding 
MAPK3 ADRBK1 Phosphorylation BCL2L 1 MAPK8 0 Phosphorylation CAV1 YWHAQ 0 Binding 
PELP1 RB1 0 Binding NTRK1 SYNGAP1 0 Phosphorylation PNKP MYC 0 Binding 
MAPK3 DUSP12 0 Phosphorylation SLC6A4 SYNGAP1 0 Binding PML MYC + Binding 

RB1 PRMT2 0 Binding AFAP1L2 SYNGAP1 0 Binding MAP3K7 MAPK8 0 Phosphorylation 
IER3 MAPK3 + Binding AFAP1L2 SRC 0 Bindinq NCK1 SYNGAP1 0 Binding 

MAPK3 IER3 + Phosph9rylation YWHAQ PNKP 0 Binding MAPK8 CDC2L5 0 Phosphorylation 

MAPK3 KRTB 0 Phosphorylation MAP3K14 TANK 0 Phosphorylation ANXA1 KRTB 0 Binding 

PRKCA FOS 0 Phosphorylation YWHAQ RAF1 0 Binding EGR1 EP300 + Binding 

FOS SMAD3 0 Binding YWHAG RAF1 0 Binding MAP2K1 ELK1 + Phosphorylation 

FOS NFATC2 0 Binding MAPK3 ARRB1 + Phosphorylation MAPK9 ELK1 + Phosphorylation 

JUN FOS 0 Binding DOK4 SYNGAP1 0 Phosphorylation WT1 FHL2 + Binding 

MAPK1 FOS + Phosphorylation DOK4 SRC + Phosphorylation CDC6 RIS2 + Binding 

TAF1 FOS 0 Binding HRAS SRC Phosphorylation CDK9 SKP2 0 Binding 

MAPK1 ETF1 0 Phosph~rylation HRAS MAPKB + Phosphorylation E2 TOPBP1 + Binding 

PPP2CA ETF1 0 Binding EP300 PIAS3 0 Binding LYN MATK + Binding 

GRIN2B EPHB2 0 rindi~ !YAP1 YWHAQ Binding TBP POLR2A + Binding 

TAF9 TAF1 0 MAPKB IRS1 Phosphorylation TP73L WT1 Binding 

TAF1 RBL2 0 FRAP1 YWHAQ 0 Binding INPPL1 SRC + Phosphorylation 

TRP53 COIL 0 Binding FADD MYC 0 Binding SKP2 ORC1L 0 Binding 

TAF9 COIL 0 Binding TANK FADD 0 Binding CASP2 CSNK2A1 + Phosphorylation 

CDK2 PTPN2 0 Phosphorylation MAPK3 GTF21 + Binding UBB RIS2 Ubiquitination 

CDK2 COIL 0 Binding AKT2 ESR1 + Phosphorylation E6 EP300 + Binding 

CDK2 E7 0 Binding YWHAQ BAD Binding GDNF JUN + Binding 

MAPK3 JUN + Phosphorylation KHDRBS1 SYNGAP1 0 Binding JUN PRKDC + Phosphorylation 

CSE1L STAT1 0 Binding CCNA1 XRCC6 0 Binding JUN USB Ubiquitination 

CSE1L TRP53 0 Binding SP3 E2F1 + Binding JUN MAF + Binding 

DCC PTK2 0 Binding MYC CHD4 0 Binding JUN NCOA3 + Binding 

EED HDAC2 0 Binding TRIM27 CHD4 0 Binding BRCA1 EP300 + Binding 

ADORA2B DCC 0 Binding YWHAQ MST1R 0 Binding ABL1 JUN + Phosphorylation 

ADORA2B EZR 0 Binding YWHAQ SH3BP2 Binding ABL1 SORBS2 Ubiquitination 

ADORA2B NTN1 0 Binding EGFR SYNGAP1 0 Binding CBL ABL1 Ubiquitination 

DLGAP4 PLK2 0 Binding EGFR EZR 0 Binding ABL1 TRP53 + Binding 

CAMK2D STAT1 + Phosphorylation SYNGAP1 SHC 0 Binding ABL1 KIT + Binding 

GRIN2B CAMK2D 0 Binding ERBB2 GRB2 0 Binding ABL1 PTPN18 Dephosphorylation 

BRCA1 NPM1 0 Bindif1_9_ ESR1 ERBB2 0 Binding YWHAB ABL1 + Binding 

PIN1 NFATC2 0 Binding GRB2 RPS6KA1 0 Binding YWHAB CDKN1B Binding 

PIN1 RAF1 0 Dephosphorylation NTRK1 GRB2 0 Binding YWHAE CDKN1B Binding 

SLC33A1 STAT1 0 Binding_ KHDRBS1 GRB2 0 Binding UBB CDKN1B Ubiquitination 

ABL1 YWHAG 0 Binding NGFR GRB2 Binding USB TRP53 Ubi uitination 

CAMK2G STAT1 + Phosphorylation GRB2 NPM1 0 Binding EP300 STAT1 + Binding 

GRIN2B CAMK2G 0 Binding MAPK1 ESR1 0 Binding EP300 SP1 + Binding 

PRKCA GRIN2B 0 Phosphorylation HSP90AA1 ESR1 Binding EP300 IRF2 Binding 

GRIN2B PTPN11 0 Binding RGS3 ESR1 0 Binding E2F1 NCOA6 + Binding 

PTPN11 STAT1 0 Dephosphorylation PAK6 ESR1 + Binding EP300 CTNNB1 + acetylation 

ESR1 CCNT1 0 Binding ESR1 TSC2 0 Binding SKP2 MYC Binding 

YWHAQ PDPK1 Binding ESR1 KAT5 0 Binding SMARCB1 MYC + Binding 

TRIM27 PML 0 Binding SP3 ESR1 Binding EGFR ANXA1 + Binding 

INSR SYNGAP1 0 Binding MAPK3 ESR1 + Phosphorylation EPC1 TRIM27 BindinQ 

RGS3 YWHAQ 0 Bindi<lg RPS6KA1 ESR1 + Phosph(:)l)'lation JUN ABL1 + Binding 

YWHAQ PAK6 0 Binding MAPK14 ESR1 + Phosphorylation PLK1 TUBA4A + Phosphorylation 

FRAP1 AKT1 + Phosphorylation ESR1 SMAD3 0 Phosphorylation MAPK14 ELK1 0 Phosphorylation 

AKT1 TSC2 0 Phosphorylation ESR1 FOX03 + Binding ELK1 EP300 + Phosphorylation 

AKT1 BAD Phosphorylation PKN1 ESR1 0 Binding CTBP1 EP300 Binding 

AKT1 YAP1 0 Phosphorylation ESR1 SMAD4 0 Binding CTBP1 RB1 0 Binding 

PLK2 IKBKAP 0 Binding ESR1 PIAS3 0 Binding CTBP1 ELK1 0 Binding 

MAP3K14 IKBKAP 0 Binding RPS6KA3 ESR1 0 Binding PRKCD STAT1 + Phosphorylation 

IKBKAP MAPKB 0 Binding PRMT2 ESR1 + Binding PRKCD SRC + Phosphorylation 

MAP3K7 IKBKAP + Phosphorylation PELP1 ESR1 0 Binding DDB1 RIS2 Ubi uitination 

BIRC5 BCL2 0 Bindi"'!_ SMARCA4 ESR1 0 Binding BIRC4 UBB 0 Binding. 

PKM2 E7 0 Binding TRIP4 ESR1 0 Binding MAPK9 RB1 0 Phosphorylation 

HDAC2 E7 0 Binding ESR1 SP1 0 Binding CRI1 EP300 0 Binding 

HDAC1 E7 0 Binding SRC DAPP1 0 Binding CRI1 RB1 0 Binding 

PPP2CA E7 0 Binding MAPK1 LCK + Phosphorylation APC TUBA4A + Binding 

MAPK3 RPS6KA3 + Phosphorylation MAPK3 LCK 0 Phosphorylation CDC6 MYC Binding 

PTPRE MAPK3 Dephosphorylation SH3BP2 LCK + Binding CEBPE RB1 0 Binding 

MAPK3 STMN1 0 Phosphorylation BIRC5 SYNGAP1 0 Binding CEBPE E2F1 + Binding 

MAPK3 SMAD2 0 Phosphorylation ARHGAP1 SYNGAP1 0 Binding MATK SRC 0 Binding 

RPS6KA1 MAPK3 + Binding PDGFRB SYNGAP1 0 Binding RB1 MDM2 0 Binding 

MAPK3 STAT5A + Phosphorylation CDC25B ESR1 + Binding CHKA JUN 0 Binding 

MAPK3 UBTF + Phosphorylation YWHAQ CDC25B 0 Binding CASP9 RB1 0 Cleavage 
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Source Target Effect Interaction Source Target Effect Interaction Source Target Effect Interaction 
FB>N>/7 MYC 0 Binding JAK2 BRCA1 0 Binding BCL2 PRG2 0 Binding 
FB>N>/7 JUN 0 Ubiquitination BRCA1 CCNA1 0 Binding BCL2 BID Binding 
DGKZ SRC 0 Binding SMC1A BRCA1 0 Binding PRKCA BCL2 Phosphorylation 
CDKN1B CCNB1 0 Binding BRCA1 COBRA1 0 Binding BCL2 RAF1 0 Binding 
CDK9 RB1 0 Phosphorylation CASP3 BRCA1 Cleavage BCL2 PARP1 0 Binding 
VAV1 TUBA4A 0 Binding BRCA1 NCOA2 0 Binding CASP3 BCL2 0 cleavage 
MNAT1 RB1 0 Phosphorylation CCNB1 BRCA1 0 Binding E7 RBL1 0 Binding 
PSMD10 RB1 Ubiquitination CREBBP BRCA1 0 Binding E7 EP300 Binding 
TAOK2 TUBA4A Binding BRCA1 SMARCC2 0 Binding E7 JUN + Binding 
PTPN2 STAT3 - Dephosphorylation TAF1 CCNA2 reg CASP3 RB1 Cleavage 

PTPN2 STAT58 0 Binding CCNA2 RBL1 0 Binding CASP3 LYN cleavage 

PTPN2 STAT1 Dephosphorylation CHKA CCNA2 0 Binding XRCC6 SMAD3 0 Binding 

PTPN2 SHC Dephosphorylatkm RBL1 RBL2 0 Bindinq CDKN1B GRB2 Binding 

PTPN2 STAT5A 0 Binding RBL1 TAF1 0 Binding CDKN1B YWHAH + Binding 

PTPN2 SRC 0 Dephosphorylation WASL ABL1 + Binding CDKN1B MCM7 Binding 

JAK1 STAT1 + Phosphorylation ABL1 RAD52 + Phosphorylation AREG XRCC6 0 Binding 

PTPN2 JAK1 Dephosphorylation ABL1 CD19 0 Binding AREG BRCA1 0 Binding 

LYN SNCA 0 Binding ABL1 JAK2 0 Phosphorylation AREG JUN 0 Binding 

LYN POLD1 0 Binding ABL1 MAP4K1 + Binding TRIM27 R81 Binding 

LYN MAP4K1 0 Binding PTPN12 ABL1 0 Dephosphorylation RB1 RBP1 + Binding 

PTPRC LYN Dephosphorylation ABL1 DDB1 Phosphorylation RB1 RBL1 + Binding 

LYN RGS16 + Phosphorylation ABL1 YWHAH 0 Binding RBBP4 RB1 0 Binding 

LYN PRKCD + Phosphorylation ABL1 GRB2 + Binding RBBP7 RB1 0 Bindi~ 

CDK4 LYN 0 Binding ABL1 TRP73 + Phosphorylation RB1 TOP2A 0 Binding 

CDK4 RB1 Phosphorylation ABL1 YTHDC1 + Phosphorylation RB1 SKP2 Binding 

SMARCC1 POLR2A 0 Binding ABL1 CDK5 + Phosphorylation CSNK2A1 ARRB2 Phosphorylation 

POLR2A SMARCB1 0 Phosphorylation ABL1 PRKDC 0 Phosphorylation ARRB2 NFKBIA 0 Binding 

SMARCC2 POLR2A 0 Binding ABL1 BCR + Binding CHEK1 XRCC6 + Binding 

CASP10 RB1 0 Binding ABL1 CRK 0 Phosphorylation SRC ITGB3 Phosphorylation 

GNB2L 1 STAT1 + Binding ABL1 CDKN1B 0 Phosphorylation ITGB3 PTK2B 0 Binding 

GNB2L1 SRC Binding ABL1 TUB + Phosphorylation LCK ITK + Phosphorylation 

COBRA1 JUN 0 Binding ABL1 CASP9 + Phosphorylation PRKCA SRC 0 Phosphorylation 

SYK UBB 0 Binding ABL1 RB1 Binding_ PARP1 XRCC6 0 Binding 

INPP5D LYN 0 Binding ABL1 BCAR1 0 Phosphorylation CSNK2A1 BID 0 Phosphorylation 

EP300 APEX1 + acetylation ABL1 PTPN6 + Binding ARRB1 CSNK2A1 0 Binding 

GADD45G APEX1 0 Binding ABL1 PIK3R1 + Binding ARRB1 NFKBIA + Binding 

GADD45G PCNA + Binding CDK5 PTPN2 + Phosphorylation TRP53 XRCC6 0 Binding 

BCR SRC 0 Binding CDK5 SRC 0 Phosphorylation RIPK3 TANK 0 Bindi~ 

TRAF6 UBB 0 Binding CDK5 DAB1 0 Binding RIPK3 TICAM1 + Phosphorylation 

CASP2 RB1 0 cleavage CDK5 EZR 0 Binding EP300 ZBTB17 0 Phosphorylation 

DOK1 KIT 0 Binding DAB1 ITGB7 0 Binding EP300 ESR1 0 Binding 

DOK1 ITGB7 0 Binding DAB1 ITGB2 0 Binding EP300 SMAD2 0 Binding 

DOK1 ITGB2 0 Binding DAB1 ITGB3 0 Binding EP300 SMAD3 0 Binding 

DOK1 ITGB3 0 Binding DAB1 ITGB5 0 Binding EP300 MSH6 + Binding 

DOK1 ITGB5 0 BindinQ LCK EZR 0 Phosphorylation NBN EP300 0 Binding 

HDAC1 RBL1 0 Binding STAT1 STAT5A 0 Binding EP300 RB1 + acetylation 

MCM7 MNAT1 0 Binding STAT1 STAT5B + Binding PCAF EP300 0 Binding 

SMC1A MCM7 0 Binding CCNT1 MYC + Binding EP300 STAT3 + Binding 

MCM7 RBL1 0 Binding CCNT1 SKP2 + Binding_ TRIP4 EP300 0 Binding 

CD19 GRB2 0 Binding INSR SRC 0 Phosphorylation EP300 MYB + acetylation 

MCM3 MCM7 + Binding PTPN2 INSR Dephosphorylation EP300 JUN acetylation 

E6 MCM7 0 Binding TICAM1 TICAM2 + Binding EP300 TRP73 + Binding 

PIAS1 STAT1 0 Binding TICAM1 TRAF1 0 Binding EP300 NCOA2 0 Methylation 

BIN1 MYC + Binding AKT1 DYNLL1 0 Phosphorylation FHL2 EP300 + Binding 

JUN STAT3 + Binding AKT1 CDC2L5 0 Binding EP300 TP73L 0 Binding 

JUN TBP + Binding AKT1 PTEN 0 Phosphorylation EP300 TOG 0 acetylation 

JUN TOP1 + Binding AKT1 RAF1 Phosphorylation EP300 STAT5B + Bindif'_l_g_ 

EED ITGB7 0 Binding AKT1 IRS1 0 Binding EP300 STAT5A 0 Binding 

POLD1 PTPN2 0 Phosphorylation AKT1 FOX01 Phosphorylation ZBTB17 GTF21 + Binding 

DLGAP4 SYNGAP1 0 Binding AKT1 PRG2 0 Phosphorylation GTF21 STAT1 + Binding 

POLD1 EEF1D 0 Binding V..KT1 CASP9 0 Phosphorylation VAV1 XRCC6 0 Binding 

RIPK3 EEF1D 0 Phosphorylation AKT1 BIRC4 + Phosphorylation TANK IKBKG + Binding 

KIF23 YWHAQ 0 Binding AKT1 MAP3K5 Phosphorylation CCNA1 RBL1 0 Binding 

PTK2 STAT1 + Binding AKT1 GSK3B Phosphorylation DNMT3A MYC 0 Binding 

BRCA1 RBL1 0 Binding ARHGEF7 RAF1 + Binding DNMT3A ZBTB17 0 Binding 

BRCA1 E7 0 Binding ARHGEF7 SHC 0 Binding CREBBP ZBTB17 0 Binding 

NBN BRCA1 0 Binding ARHGEF7 NCK1 0 Binding CREBBP MYC + a~__!t!_ation 

BRCA1 SMAD4 0 Binding ARHGEF7 MAPK8 0 Binding CREBBP E2F1 + Binding 

RBBP4 BRCA1 0 Binding ARHGEF7 PARP1 0 Binding CREBBP JUN - sumo 

BRCA1 ELK1 Binding ARHGEF7 PKN2 0 Binding ELF3 MYC 0 Bindi~ 

SMAD3 BRCA1 Binding ARHGEF7 RB1 0 Binding ELF3 EP300 0 Binding 

RBBP7 BRCA1 0 Binding ARHGEF7 PSMA3 0 Binding PKN1 TANK 0 Binding 

BRCA1 E6 0 Binding ARHGEF7 PRG2 0 Binding EGFR GRB2 + Bindi~ 

BRCA1 SMARCC1 0 Binding ARHGEF7 CASP3 0 Binding PTPN2 EGFR Dephosphorylation 

BRCA1 FHL2 0 Binding BCL2 PPP1CA 0 Binding EGFR TUBA4A + Binding 

BRCA1 SMAD2 0 Binding BCL2 SPNS1 0 Binding EGFR LYN + Binding 

JAK1 BRCA1 0 Binding BCL2 MYC 0 Binding EGFR STAT1 0 Phosphorylation 

BRCA1 SMARCB1 0 Binding MAPK14 BCL2 0 Phosphorylation PTEN TRP53 0 Binding 

PRKDC BRCA1 0 Binding BCL2L 1 BCL2 0 Binding PPP1CA PTEN 0 Binding 

EGFR CDC25A 0 Binding UBB CDC25A Ubiquitination ABL1 RB1 Phosphorylation 
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Source Target Effect Interaction Source Target Effect Interaction Source Target Effect Interaction 
TERT XRCC6 0 Binding CDC25A MAP3K5 Binding ADRB2 GRB2 0 Binding 

IKBKB NFKBIA . Phosphorylation CDC25A YWHAB 0 Binding CBL SRC Ubi uitinahonquitination 

TANK IKBKB . Binding CDC25A YWHAE 0 Binding CBL GRB2 Ubiquitinationquitination 

NCOA6 TUBA4A 0 Binding CDC25A CDK2 . Dephosphorylation GRB2 GAB2 . Binding 

SRC SHC . Phosphorylation CTDP1 POLR2A 0 Binding PTPN18 SRC . Dephosphorylation 

GRB2 ITK 0 Binding JUN EGR1 0 Binding EP300 PCNA . Binding 

GRB2 TEK 0 Binding TAOK2 ELK1 . Binding EP300 MAF 0 Binding 

GRB2 SH2B3 0 Binding PIAS1 ELK1 Sumolation MAP2K1 EP300 . Phosphorylation 

GRB2 PTPN22 0 Binding SRC RGS16 . Phosphorylation PRKCD EP300 Phosphorylation 

KIT GRB2 0 Binding APC CSNK2A1 Binding SRC GTF21 . Phosphorylation 

INPPSD GRB2 + Binding MCM7 CDC6 0 Binding IKBKG SRC 0 Binding 

GRB2 JAK1 + Phosphorylation SMARCE1 SRC 0 Binding UBB IKBKG + Ubiquitination 

WASL GRB2 . BindinQ RB1 DGKZ . Binding CCNA1 E2F1 0 Binding 

GRB2 PSMD10 0 Binding ATM E2F1 0 Phosphorylation CCNA1 RIS2 Phosphorylation 

PTPRC GRB2 0 Binding ATM TOPBP1 . Phosphorylation CREBBP POLR2A 0 Binding 

GRB2 TAOK2 0 Binding TUBA4A HSPH1 0 Binding ELK1 CREBBP . Binding 

SYK GRB2 + Phosphorylation EP300 E2 . Binding TOPBP1 E2F1 Binding 

LCK ESR1 0 Phosphorylation SKP2 DUSP12 Ubiquitination E7 E2F1 . Binding 

MNAT1 ESR1 0 Binding UBB DUSP12 Ubiquitination RB1 E2F1 Binding 

GADD45G ESR1 0 Binding MYC MSH6 0 Binding E2F1 TRP53 . Binding 

MDM2 ESR1 0 Binding POLR2A SMARCE1 0 Binding SKP2 E2F1 Binding 

SRC TRAF1 0 Binding POLR2A CASP10 0 Binding E2F1 POLD1 0 Binding 

SRC STAT3 . Phosphorylation CHEK2 RB1 . Phosphorylation RBP1 E2F1 Binding 

SRC TIAM1 . Phosphorylation CHEK2 E2F1 . Phosphorylation NCOA3 E2F1 . Binding 

SRC STATSB + Phosphorylation RIS2 ORC1L 0 Binding BCAR1 SRC 0 Binding 

SRC YTHDC1 Phosphorylation KIT STAT1 . Phosphorylation BCAR1 GRB2 0 Binding 

LCK STAT1 0 Binding LYN DOK1 . Phosphorylation MST1R SRC 0 Binding 

LCK TEK 0 Phosphorylation RB1 HDAC1 0 Binding PTPN6 SRC . Dephosphorylation 

LCK PTK2 . Binding SKP2 RIS2 Binding PDE6G SRC 0 Binding 

LCK SH2B3 0 Binding LYN CDK2 0 Binding DAG1 GRB2 0 Binding 

LCK NFKBIA Phosphorylation CDK2 RtS2 Phosphorylation SRC DAG1 . Binding 

LCK SPNS1 0 Phosphorylation TRAF6 MCM7 0 Binding SRC tKBKB . Phosphorylation 

LCK TUB 0 Binding RAD52 MCM7 0 Binding SRC NCOA6 0 Binding 

LCK SYNGAP1 0 Bindinq MYC MCM7 0 Binding CSNK2A1 ARR3 0 Phosphorylation 

PRKCA LCK 0 Phosphorylation PLK1 MCM7 0 Binding ARR3 SRC 0 Binding 

LCK PTK2B . Binding MCM3 STAT1 0 Binding GRB2 PTK2 0 Binding 

LCK VAV1 . Phosphorylation MYC E6 0 Binding GRB2 PTK2B 0 Binding 

LCK SHC 0 Binding TOG JUN 0 Binding GRB2 HNRNPC 0 Binding 

LCK PTPN6 0 Phosphorylation POLD1 RIS2 0 Binding GRB2 MST1R 0 Binding 

PTPN22 LCK Dephosphorylation CCNA2 BRCA1 0 Binding GRB2 PDE6G 0 Binding 

ARHGAP1 SRC 0 Binding CCNA2 E7 0 Binding GRB2 SHB 0 Binding 

ARHGAP1 TUBA4A 0 Binding CCNA2 TRP53 0 Binding GRB2 VAV1 . Binding 

PTPN2 PDGFRB Dephosphorylation CCNA2 CDK2 . Binding GRB2 PIK3R1 0 Binding 

PDGFRB STAT1 . Binding CCNA2 RIS2 Binding GRB2 SLC6A4 0 Binding 

PTK2B ASAP1 Phosphorylation CCNA2 POLD1 0 Binding GRB2 PKN2 0 Binding 

SRC ASAP1 . Phosphorylation CCNA2 UBTF . Binding GRB2 PTPN12 0 Binding 

PTK2B SNCA 0 Phosphorylation SMAD3 RBL1 0 Binding GRB2 PDGFRB 0 Binding 

PTK2B SORBS2 0 Binding BRCA1 ABL1 0 Binding GRB2 MAPK14 0 Binding 

PTK2B SYNGAP1 0 Binding BIN1 ABL1 0 Binding GRB2 SH2B2 0 Binding 

PTK2B SHC 0 Binding ABL1 DOK1 . Phosphorylation GRB2 SRC 0 Binding 

PTPN12 PTK2B 0 Dephosphorylation ABL1 YWHAE 0 Binding RB1 ESR1 0 Binding 

DYNLL 1 NFKBIA 0 Binding INPPL1 ABL1 0 Binding ESR1 SRC . Binding 

NFKBIA TRP53 0 Binding POLD1 ABL1 0 Phosphorylation ESR1 GRB2 0 Phosphorylation 

NFKBIA PIK3R1 0 Binding CDKN1B CDK5 Phosphorylation JUN ESR1 0 Binding 

NFKBIA TBK1 0 BindinQ SRC PDPK1 . Phosphorylation SRC CTNNB1 . Binding 

CSNK2A1 CDC25B . Phosphorylation PTPN1 SRC . Dephosphorylation SRC TUB 0 Binding 

CSNK2A1 DCLK1 0 Phosphorylation AKT1 EP300 Phosphorylation SRC TERT 0 Phosphorylation 

CSNK2A1 PSMA3 0 Phosphorylation AKT1 CHEK1 . Phosphorylation LCK DAPP1 0 Phosphorylation 

CSNK2A1 IRF2 0 Phosphorylation AKT1 IKBKB . Binding PDGFRB SRC 0 Binding 

CSNK2A1 MYB . Phosphorylation AKT1 ARHGEF7 0 Binding PTK2B SRC . Binding 

CSNK2A1 HSPH1 . Phosphorylation SRC AKT1 + Phosphorylation SRC NFKBIA 0 Phosphorylation 

CSNK2A1 GDNF 0 Phosphorylation AKT1 AREG Phosphorylation CSNK2A1 PTPN1 0 Phosphorylation 

CSNK2A1 TOP2A . Phosphorylation AKT1 SORBS2 0 Phosphorylation CSNK2A1 CTNNB1 . Phosphorylation 

CSNK2A1 EGR1 Binding AKT1 SLC6A4 0 Binding CSNK2A1 POLD1 0 Phosphorylation 

PAX2 WT1 0 Binding AKT1 GAB2 0 Binding CSNK2A1 HSP90AA1 . Phosphorylation 

CRK PTK2B 0 Binding AKT1 PTPN1 0 Phosphorylation CSNK2A1 HNRNPC 0 Phosphorylation 

XRCC6 MAPK8 Phosphorylation PDPK1 AKT1 . Phosphorylation CSNK2A1 NFKBIA 0 Phosphorylation 

MAPKB MYC 0 Binding AKT1 HSP90AA1 0 Binding CSNK2A1 SNCA 0 Phosphorylation 

TBK1 TANK . Phosphorylation AKT1 TOPBP1 . Phosphorylation CSNK2A1 PTPN18 Phosphorylation 

MYC SMAD3 Binding AKT1 TERT . Phosphorylation CSNK2A1 MYC 0 Phosphorylation 

MYC SMAD2 Binding AKT1 SH2B2 0 Phosphorylation CSNK2A1 TRP53 Phosphorylation 

KAT5 MYC 0 Binding AKT1 ESR1 0 Phosphorylation CSNK2A1 CTDP1 . Phosphorylation 

SP1 CCND1 0 Binding ARHGEF7 CCNA2 0 Binding CSNK2A1 UBTF . Phosphorylation 

GSK3B CCND1 0 Binding DAB2 SRC Binding TOP1 CSNK2A1 0 Binding 

CCND1 CTNNB1 0 Binding DAB2 GRB2 0 Binding CSNK2A1 HDAC1 . Phosphorylation 

PRKCA CCND1 0 Phosphorylation RB1 UBTF Binding SRC PKN2 . Phosphorylation 

TAF1 CCND1 0 Binding HSP90AA1 SRC 0 Binding CRK GRB2 0 Binding 

CDKN1B CCND1 0 Binding UBB CHEK1 Ubi uitination MYC XRCC6 0 Binding 

PCAF CCND1 0 Binding ADRB2 SRC 0 Binding TUBA4A MYC 0 Binding 

PRKDC ABL1 . Phosphorylation POLD1 CDC25A 0 Binding SHB SRC 0 Binding 
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Table SB: Classification of nodes according to their presence in 
different phase specific modules. 

Molecules 
Common Common 

Molecules 
Functional 

unique to 
molecules Molecules Unique to molecules 

unique to 
groups 

G1 
between G1 G1S between s 

and G1S G1S and S 

YWHAQ ADRB2 RGS16 ABL1 CDK2 

BAD AKT1 CDC25A CDK5 

HRAS CDC25B CHEK2 EGFR 

CRK PDGFRB WASL JAK1 

LCK GRB2 GNB2L 1 LYN 

PTK2B CSNK2A1 PRKCD PTPN2 

MAPK8 ERBB2 MNAT1 PTPN6 

PTPN12 MST1R MAPK14 PTPRE 
Signaling BCAR1 PDE6G CDKN1B RPS6KA1 

intermediates SYNGAP1 PDPK1 YWHAB CASP3 

ASAP1 PTPN18 PELP1 CASP9 

PRG2 SHB PRKDC PIAS3 

ARHGEF? SHC MAPK3 DUSP12 

SRC MAP2K1 

CTNNB1 CBL 

MDM2 

CREBBP EGR1 TRIP4 BRCA1 TAF1 

E2F1 ELK1 TRP73 E7 

ESR1 EP300 UBTF 

FOX01 GTF21 CITED1 

Transcription 
FOX03 JUN E2 

IKBKB MYB SMARCA4 
Regulators 

MYC STAT1 SMAD3 

STAT3 STAT58 UBB 

TRP53 NCOA3 E6 

TSC2 

SKP2 YTHDC1 CDC6 RIS2 
DNA SP3 MCM? 

replication 
TOPBP1 

factors 

HSP90AA1 CCNT1 RB1 CCNA2 RBL2 
Other YTHDC1 RBP1 RBL1 HDAC1 

Cell Cycle 
Regulators 
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