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Introduction 

Protein-protein interactions are of utmost importance for almost all cellular 

processes including replication, transcription, translation, signal transduction, immune 

responses and cell growth. Proteins involved in these processes usually perform their 

function by binding to target proteins and forming protein-protein complexes. Hence 

identification of the potential interacting partners of a given protein is crucial for 

understanding the molecular details of a variety of cellular processes. Experimental 

approaches for identification of such interaction partners involve yeast two-hybrid 

systems, e-DNA expression library screenmg and coimmunoprecipitation 

experiments. These techniques coupled with truncation and mutagenesis experiments, 

have been used to define the region of interaction between pairs of proteins. These 

experimental studies also indicate that many interactions occur over short contiguous 

stretches within one protein, often less than 15 amino acids in length. For example, 

recognition of substrate proteins by various kinases during cell signaling events is 

governed primarily by specific interactions between the kinase and a contiguous 

peptide stretch containing the phosphorylation site. Modular signal transduction 

domains like SH2, FHA etc. also recognize short peptide motifs on their interaction 

partners. A number of cellular processes are also governed by interaction of short 

length polypeptides with the proteins. Several receptors have peptide fragments as 

ligands e.g. Major histocompatibility complex (MHC), receptors of nervous system, 

receptors for endocrine peptide hormones etc. Thus, understanding molecular details 

of interactions between proteins and short peptide motifs is essential for dissecting 

underlying mechanism of several major cellular processes. Among the vanous 

proteins which interact specifically with short peptide motifs, MHC and kinases 

represent two major protein families whose substrate specificities have been 

extensively studied by various experimental approaches. 

Major histocompatibility complex (MHC) proteins are a class of proteins of 

immune system which are present on the surface of antigen presenting cells. Their 

function is to bind processed peptides and provide a continuous update of cellular and 

environmental composition for the scrutiny by T -cell receptors (TCR) on the surface 

of cytotoxic T-lymphocytes (CTL). They bind peptides of cytosolic origin during 

their maturation in Endoplasmic Reticulum (ER), which are processed by proteasome 

and transferred by Transporter Associated with Antigen Processing (TAP). MHC 

class-11 molecules are expressed on professional antigen presenting cells. MHC 
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Introduction 

system ts characterized by extensive degree of allelic polymorphism. Correct 

prediction of t-cell epitopes has important implications for modem epitope based 

vaccines design and also cancer therapy. 

The phosphorylation of the Ser/Thr/Tyr residues in various target proteins by 

their respective protein kinases, also involves interaction between the kinase and a 

short peptide stretch. This phosphorylation is one of the key mechanisms which is 

used in signal transduction pathways to alter the functional state of various partner 

proteins. Protein kinases constitute one of the largest known protein families referred 

to as eukaryotic protein kinase (ePK). These share a common 3D fold. Since protein 

kinases mediate such vital cellular functions as apoptosis, growth, division, 

differentiation etc., they are attractive targets for the in depth analysis of signal 

transduction pathways. Therefore, identification of substrate proteins for various 

kinases is crucial for understanding signaling networks in various organisms. 

Availability of the complete genomes of many organisms has led to the identification 

of their whole kinome complements. However, deciphering the substrate specificity of 

these large number of kinases remains a major challenge. 

Although few prediction programs employing different strategies are currently 

available for prediction of substrates for protein kinases and MHC binding peptides, 

most of them are trained on a set of known substrate peptides. As a result, they can 

only predict for those families for which such experimental data is available. 

Discovery of newer MHC alleles and identification of large number of kinases in 

various genomes require development of novel computational methods which can 

give reliable clues about their substrate specificities even in absence of extensive 

experimental data. Structure based substrate prediction methods can in principle 

address these problems. In this thesis, an attempt has been made to develop a novel 

structure based substrate prediction method for MHCs and kinases. This prediction 

method involves a multiscale approach, where at the first level putative high scoring 

substrate peptides are identified by threading of peptide sequences on the structural 

templates of kinase-peptide or MHC-peptide complexes and scoring them by residue 

based statistical pair potentials. High scoring peptides short listed by initial screening 

are modeled in the peptide binding pocket using rotamer library and detailed all atom 

molecular mechanics potentials, and their binding affinity is re-ranked using binding 

free energy values computed by MM/PBSA approach. The prediction accuracy of 
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Introduction 

this approach has been extensively benchmarked usmg experimentally verified 

substrate peptide information available in Phospho.ELM and SYFPEITHI database. 

Chapter one describes the review of current published literature on the protein 

kinases, MHC proteins and the various methodologies and computer programs 

currently available for the prediction of their respective substrate peptides. This 

chapter also discusses the crystal structures available for various kinases and MHC 

proteins. In addition, this chapter also gives a brief overview of the literature on novel 

theoretical methods like rotamer library and statistical pair potential which have been 

used for modeling of protein structures or protein-peptide complexes. 

Chapter two describes the development of the MODPROPEP, a knowledge 

based program for modeling of protein peptide complexes, especially peptides in 

complex with the MHCs and protein kinases. The available crystal structures of 

protein-peptide complexes in PDB are used as templates for modeling peptides of 

desired sequence in the substrate-binding pocket of MHCs or protein kinases. If no 

crystal structures are available for a given protein kinase or MHC protein, the 

program can model its structure in complex with peptide of desired sequence using 

the crystal structure of the most homologous protein-peptide complex. The substrate 

peptides are modeled using the same backbone conformation as in the template and 

the side-chain conformations are obtained by SCWRL program which uses a rotamer 

library approach. This software also provides appropriate interface for identifying 

putative MHC-binding peptides in the sequence of an antigenic protein, and 

phosphorylation sites on the substrate protein of a protein kinase, by identifying and 

scoring inter-molecular contacts between protein and peptide, using residue based 

statistical pair potentials. User-friendly interfaces are provided for the detailed 

analysis, and visualization of structure of modeled protein-peptide complexes and 

analyzing the contacts made by the modeled peptide ligand in the substrate binding 

pocket of MHC or protein kinase. 

Chapter three describes m detail the results on the prediction of 

phosphorylation sites in the putative substrate proteins of various protein kinases 

using MODPROPEP. Benchmarking of prediction accuracy of MODPROPEP on the 

dataset of known substrates catalogued in phospho.ELM has indicated that our 

structure based method can predict more than 60% of the experimentally identified 

substrate for 11 protein kinase families. Comparison with predictions by other 

available programs indicated that MODPROPEP performs significantly better than 
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other structure based prediction tools like PREDIKIN for most of the protein kinase 

families, while the performance is similar or better than other widely used sequence 

based prediction tools such as GPS, PPSP and SCANSITE. These results also 

demonstrate that residue based statistical pair potential can be successfully used for 

scoring putative substrate peptides of kinases. Chapter three also reports development 

of a novel multiscale approach which involves re-ranking of the high scoring peptides 

shortlisted by pair potential approach using all atom MM/PBSA method. For several 

kinase families MM/PBSA method was able to further improve the ranks of the 

known substrate peptides among all possible Ser/Thr containing peptides present in 

the substrate proteins. 

Chapter four reports the results of the analysis of solvent accessible surface 

areas of phosphorylation sites in the crystal structures of known substrates of protein 

kinases or their structural homologues. In order to understand the importance of 

surface accessibility of the phosphorylation site in phosphorylation event, the 

accessibility values for the phosphorylation sites were compared to the accessibility 

values of their non-phosphorylated counterparts. The average relative solvent 

accessible area of phosphorylation site residues was found to be significantly more 

than their non-phosphorylated counterparts. The difference between phospho and 

non-phospho residues was statistically significant as judged by Wilcoxon test p-values 

of 2.20 x 10-16
, 5.07 x 10-6 and 2.34 x 10-8 for serine, threonine and tyrosine 

containing sites. These results suggest that incorporation of solvent accessibility term 

along with the current scoring function based on the residue-residue statistical energy 

can further improve the prediction accuracy. 

Chapter five describes the benchmarking of MODPROPEP for prediction of 

substrates for class I and class II MHC proteins. Analysis of available class I and class 

II MHC-peptide complexes using MODPROPEP indicate that residue based statistical 

potential can distinguish the MHC bound peptide with high accuracy from among all 

possible overlapping peptides present m the corresponding source proteins. 

Benchmarking of MODPROPEP using the substrate peptide data catalogued in 

SYFPEITHI database indicate that our structure based method can predict substrate 

peptides for 16 class I and class II alleles with an accuracy above 60%. This chapter 

also discusses results of multi-scale modeling approach for prediction of substrates for 

MHC proteins. It is found that, when high scoring peptides obtained by pair potential 

are modeled using all atom forecfield and re-ranked as per their binding energy by 
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MM/PBSA approach, in 8 out of the 16 alleles there is improvement in the rank of the 

true substrate peptides. 
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Chapter 1: Review of Literature 

1.1 PROTEIN - PROTEIN INTERACTION 
Proteins perform a wide variety of functions in a diverse range of cellular 

processes. However most proteins in the cells do not function in isolation, but through 

interactions with other proteins in a pathway or interaction network. In order to 

understand the biological pathways responsible for execution of various cellular 

functions, it is necessary to identify the interacting partners for the proteins involved 

in these pathways. Although, the whole genome sequencing projects for a number of 

species have identified and annotated the proteins, their interacting partners are 

largely unidentified. 

Identification of protein interaction network is important for the study of 

processes such as molecular evolution, cell perturbation and understanding the 

molecular basis of the diseases (ldeker and Sharan, 2008). Genome mining studies 

for deciphering protein interaction networks in some disease causing organism have 

provided novel insights for better understanding the mechanisms of pathogenesis of 

these organisms. Using the yeast two hybrid system, LaCount eta!. (2005) identified 

the protein-protein interaction network of P. falciparum. They identified 2846 unique 

interactions from 32000 yeast two hybrid screens. Their analysis of the protein 

interaction network in P. falciparum has resulted in identification of proteins which 

are implicated in various important cellular processes such as chromatin modification, 

transcription, mRNA stability, ubiquitination, and proteins involved in invasion of 

host cells. Apart from experimental studies, in silica approaches have also been used 

for identification of protein interaction networks. Mawuenyega et a/. (2005) 

identified, through a combination of high throughput proteomics and computational 

approach, globally expressed 1044 proteins and their localization in subcellular 

compartments. Computational analysis of metabolic pathways was used to integrate 

proteomics and reconstruct the response networks (Mawuenyega et a/., 2005 ). In a 

recent study, Yellaboina et a/. (2007) have used SVM trained on the known 

interactions in EcoCyc database to predict the protein interaction networks. They 

observed that the proteins involved in the replication, DNA repair, transcription, 

translation, and cell wall synthesis are highly connected in the interaction networks. 

Even though a number of experimental and theoretical studies have helped in 

unraveling protein interaction networks in various organisms, many of these studies 
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Chapter 1: Review of Literature 

do not gtve sufficient insight into the molecular details of the protein-protein 

recognition process. Interacting pairs of amino acids which control the specificity of 

recognition can be identified only when crystal structures are available for protein­

protein complexes or interacting pairs of protein have been analyzed by specific site 

directed mutagenesis studies (Kube et a!., 1992). Protein-protein recognition is 

governed by non-covalent interactions. Janin et a!. (2008) have analyzed the 

noncovalent interactions responsible for stabilization of protein-protein complexes. 

They have also deduced that the biologically significant interfaces are well packed, 

whereas the interfaces involving nonspecific interactions are loosely packed. In 

contrast to protein-protein interactions, molecular details of the recognition process 

are better understood for protein-peptide interactions. 

Many protein-protein interactions in the cells are mediated by short contiguous 

peptide stretches on the proteins which specifically interact with modular domains in 

the interacting protein. Modular signal transduction domains like SH2, FHA etc. also 

recognize short peptide motifs on their interaction partners (Pawson and Nash, 2000). 

In addition, a number of cellular processes are also governed by interaction of short 

length polypeptides with the proteins. Several receptors have peptide fragments as 

ligands e.g. Major histocompatibility complex (MHC), receptors of nervous system, 

receptors for endocrine peptide hormones etc. Thus, understanding molecular details 

of interactions between proteins and short peptides motifs is essential for 

identification of interaction networks and dissecting underlying mechanisms of 

several major cellular processes. Among the various proteins which interact 

specifically with short peptide motifs, MHC and kinases represent two major protein 

families whose substrate specificities have been extensively studied by various 

experimental approaches. 

1.2 PROTEIN KINASES 
The protein kinases are an important class of proteins which phosphorylate a 

number of proteins in cells. The importance of protein kinases can be estimated by the 

fact that about 30% of all the proteins in the human genome are phosphorylated 

(Cohen, 2000; Ubersax and Ferrell, 2007), reflecting the importance of the kinases. 

Post translational modification of proteins by kinases has evolved as a means of 

transferring the information among the proteins in an orderly manner. A majority of 

cellular processes such as transcription, translation, replication, signal transduction, 
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immune responses, cell growth, differentiation, apoptosis etc. are known to be 

regulated by means of phosphorylation and dephosphorylation of regulatory proteins 

by kinases and phosphatases respectively, which modify the activity of regulatory 

proteins. This phosphorylation and dephosphorylation event either results in the 

change of functional state of the protein, or produces a docking site for the modular 

interaction domains present in interacting partner proteins (Bauman and Scott, 2002). 

The change in the functional state of the protein upon phosphorylation often forms the 

part of positive or negative feedback mechanisms aimed to tightly control the 

regulation of the cellular processes (Morgan, 1997). The docking site arising as a 

result of phosphorylation event recruits a number of proteins containing modular 

docking domains such as SH2, PTB, polo-box domain, FF domain, BRCT domain, 

WD40 domain, MH2 domain, FHA domain, 14-3-3 domain etc. (Pawson and Nash, 

2000; Pawson et al., 2002). Phosphorylation event by kinases, followed by interaction 

through modular domain forms a network of dynamically interacting proteins which 

is essential for transfer of information as well as proper functioning of cellular 

processes (Pawson and Scott, 1997). Due to their involvement in many processes, 

kinases have been found to be associated in many diseases including various types of 

cancers, diabetes and inflammation (Pawson, 1994). As a result, they are a target for 

treatment of a number of diseases and the role played by kinases in various diseases is 

an important area of active research. 

Protein kinases form one of the largest superfamily of proteins called 

"eukaryotic protein kinase (ePK)". All the family members of protein kinases share a 

common homologous catalytic domain of approximately -250-300 amino acids 

(Hanks and Hunter, 1995). However, the length of protein kinases is usually more 

than 300 amino acids. The rest of the sequence comprises of the accessory domains. A 

combination of these domains imparts the unique role to protein kinases in their 

function. In most cases, the regulation of protein kinases is also achieved through 

these regulatory domains. Apart from higher vertebrates, the members of ePK have 

also been found in a wide range of phyla such as plants, fungi and prokaryotes. Before 

the identification of eukaryotic like PKs (Kennelly, 2002) in bacteria, it was widely 

considered that they were exclusive to higher eukaryotic species where they are 

involved in phosphorylation-dephosphorylation networks. However the discovery of 

phosphorylation events in Escherichia coli and Salmonella typhimurium provided the 

evidence for the existence of protein kinases in prokaryotes. A number of eukaryote 
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like protein kinase genes have now been identified and characterized from bacterial 

genomes. There is another set of protein kinases called atypical protein kinases (aPK) 

(Kennelly, 2002) which do not share sequence homology to eukaryotic kinases, but 

have been shown to contain kinase activity. These kinases have been shown to have 

similarity to ePKs at the structural fold level (Kennelly, 2002). At functional level, the 

protein kinases are also broadly classified into two classes, Ser/Thr kinases and Tyr 

kinases. Ser/Thr kinases transfer the phosphate group specifically onto serine or 

threonine residue in the substrate protein while Tyr kinases phosphorylate tyrosine 

residues. Most of the kinases identified and characterized are Ser/Thr kinases 

belonging to various functional subclasses. Tyr kinases show more similarity to each 

other and belong to the Tyrosine kinase group (Hanks and Hunter, 1995). There is 

also a small number of kinases called dual specificity kinases capable of 

phosphorylating Ser/Thr as well as Tyr residue. 

The catalytic domain of the protein kinase is about 250-300 amino acids long. 

The phosphotransfer reaction is catalyzed by binding and orientation of ATP/GTP­

Mg2+ /Mn2+ complex, as well as the substrate protein to the kinase, and the transfer of 

the phosphate group from A TP/GTP to the hydroxyl group of Ser, Thr or Tyr residue 

(Hanks and Hunter, 1995) on the substrate protein. Sequence analysis has revealed a 

GxGxxG 

Amino-terminal lobe 
(A TP binding) 

Carboxy-terminal lobe 
(peptide binding and phosphotransfer) 

Figure 1.1: The ePK catalytic domain. The 12 conserved sequence stretches are indicated by 
Roman numerals. The positions of amino-acid residues and motifs highly conserved 
throughout the ePK superfamily are indicated above the conserved stretches using the single­
letter amino-acid code with x as any amino acid. Crystal structures show that ePK domains 
adopt a common fold consisting of amino-terminal and carboxy-terminal lobes connected by a 
hinge region. Binding ofMg-ATP is largely the function ofthe amino-terminal lobe and hinge 
region, while peptide-substrate binding is mediated by the carboxy-terminal lobe. Particularly 
important for catalytic function are the invariant lysine in conserved stretch II and the 
invariant aspartate in the conserved stretch VII that function to anchor and orient ATP, and the 
invariant aspartate in subdomain VIB which is the likely catalytic base in the phosphotransfer 
reaction. (Figure is adapted from Hanks, S. K., 2003.) 
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number of conserved features in kinase domains. A total of 12 conserved sequence 

stretches have been identified in the kinases (Hanks and Hunter, 1995; Hanks, 2003). 

Figure 1.1 depicts the arrangement and function of these conserved sequence stretches 

on the kinase domain. 

1.2. 1 Classification of protein kinases 
Protein kinases have been classified into various groups on the basis of 

sequence similarity in their catalytic domain, the presence of accessory regulatory 

domains, and their mode of regulation. For example, PKA are activated by cyclic­

AMP, CDKs work in complex with cyclin proteins (Morgan, 1997) which help in 

recruiting their substrates, and CaM kinases are dependent on calcium binding 

proteins calmodulins (Hunter and Schulman, 2005). Based on the alignment of the 

available sequences of protein kinase catalytic domains, Hanks and Hunter in 1995 

proposed a classification scheme wherein they grouped all eukaryotic protein kinases 

into 5 major groups (Hanks and Hunter, 1995). The first four groups were based on 

the phylogenetic tree obtained from the sequences of the catalytic domains. The last 

group contained those kinases which did not cluster, and hence could not be classified 

into any of the other four groups. Each one of these major kinase groups comprise of 

families which had similar substrate specificity and common mode of regulation and 

hence could be used to classify the new sequences. These major groups are AGC 

group (containing PKA, PKG and PKC families), CaMK group ( calmodulin 

dependent protein kinases), CMGC group (including CDK, MAPK, GSK and CLK 

families), protein tyrosine kinase group (PTK), and other protein kinase group. The 

sequences of the protein kinases and their alignments have been catalogued and made 

publicly available through protein kinase resource website (Niedner et a!., 2006; 

Smith el a!., 1997) (http://www.nih.go.jp/mirror/Kinases/, 

http:/ /pkr.genomics. purdue .edu/pkr/Welcome .do). 

A high degree of conservation in the catalytic domain of protein kinases has 

also enabled the identification of new kinases on the basis of sequence similarity in 

the catalytic domains. In fact, a combination of sequence based methods such as 

sequence similarity searches using BLAST, PSI-BLAST, RPS-BLAST and HMM 

profiles of known protein kinase catalytic domains, have enabled the identification of 

putative protein kinases in a number of organisms whose full genomes have been 

sequenced. Completion of such whole genome sequencing projects for a number of 
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Table 1.1: The list of organisms whose protein kinase complement "kinome" has been 
identified. The list contains the total number of kinases identified and citation to the work 
reporting it. 

Or~anism Number of kinases Reference ---~ 
Saccharom~es cerevisiae 113 i Hunter and Plowman, 1997 ' 

Ceanorhabditis eleg_ans 411 : Plowman et al., 1999 ' ' 

· Drosophila melanogaster 239 Morrison et al., 2000 ------1 
; Homo sapiens 518 Krupa and Srinivasan, 2002·: 

' I 

Manning et al., 2002b : 
I 

Mus musculus 540 Caenepeel et al., 20Q4 --~ 

Plasmodium falciparum 65 Ward et al., 2004 : 
Sterechinus neumayeri 353 Bradham et al., 2006 
Dictyostelium discoideum 285 Goldberg et al., 2006 
Entamoeba histolytica 307 Anamika et al., 2008 
Monosiga brevicollis 380 Manning et al., 2008 

species has resulted in identification, cataloguing and analysis of "kinome" 

complement of various genomes. Such whole genome studies have classified the 

putative kinase sequences into major protein kinase families based on their sequence 

similarities. The kinome of human (Krupa and Srinivasan, 2002; Manning et al., 

2002b ), mouse (Caenepeel et al., 2004 ), Caenorhabditis (Plowman et al., 1999), sea 

urchin (Bradham et al., 2006), drosophila (Morrison eta!., 2000), yeast (Hunter and 

Plowman, 1997), Dictyostelium (Goldberg et al., 2006), E. histolytica (Anamika et 

al., 2008), and plasmodium (Ward et al., 2004) have been identified and classified 

into major kinase groups. Although many of these groups are conserved across 

different species in evolution, some of the kinases have been found to be unique to 

some organisms (Manning et al., 2002a). Table 1.1 lists the species whose "kinome" 

complement has been identified, and the number of protein kinases in their genomes. 

The initial classification of protein kinases by Hanks and Hunter (1995) 

comprising of five groups was further extended by addition of four new groups after 

the identification of yeast, worm and fly kinomes. The additional four groups are STE 

(comprises of MAPK cascade families Ste7/MAP2K, Ste 11/MAP3K, and 

ste20/MAP4K), CKl group (contains CK1, TTBK, and VRK families), TKL 

(contains MLK, LISK/TESK, IRAK, Raf, RIPK, and STRK families that resemble 

both Ser/Thr and Tyr kinases) and RGC group. This extended classification system 

consisted of 134 families, and 201 subfamilies belonging to 9 groups (Manning et al., 

2002b ). This included 13 families of atypical protein kinases which showed no 
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sequence similarity with any of the ePK families but have been shown to be having 

protein kinase activity. These atypical kinase families are alpha, PIKK, PHDK, RIO, 

BRD, ABC1, TIF1, H11, FASTK, G11, BCR, TAF, and A6 (Manning et af., 2002b). 

Table 1.2: Kinase distribution into major groups in human and model systems. (Table is 
adapted from Manning eta/., 2003.) 

-I 

IF T 

I 

! Fly ! Human 
Novel I Human 

Group 
Sub- Yeast Worm 

pseudo-amttes 
families kinases kinases 1 kinases kinases 

human . 
genes kinases 1 

AGC 14 I 21 I 17 30 30 63 6 7 

! CAMK 17 33 21 46 32 74 39 ho -
CK1 3 5 4 85 10 12 5 
CMGC 8 24 ' 21 49 33 61 12 13 
Other 37 39 38 67 45 I 83 . 21 23 
STE 3 13 14 25 18 47 6 4 
Tyrosine 

30 30 10 
I 90 32 90 5 '5 _j 1 kinase 

Tyrosine I I n--: 
kinase- 7 13 0 15 17 43 6 I 5 ' 
like 

I I I 
I 

RGC ! 1 1 0 27 .6 5 3 0 
Atypical-

1 1 2 1 1 5 0 10 PDHK ' I --
1 Atypical-

jo 
I 

+t~ Alpha 
1 2 4 ' 1 16 

Atypical-
1 3 :2 3 3 3 

RIO 
I --~ 

Atypical- ' I 

1 I 1 1 2 1 '2 2 I o A6 
Atypical- I 1 ,7 7 2 1 2 9 10 -t: 1 Other ' I 

Atypical-
1 I 1 13 3 3 5 0 ' 

ABC1 
·~ 1 Atypical- I 

1 1 0 1 ' 1 14 0 
BRD I 

Atypical- 16 15 I 

1 5 5 6 10 .o 
PIKK l l l i 1 71-~ Total 134 201 130 454 i 240 518 106 
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The human kinome has been analyzed and consists of 518 kinases. Out of 

these, 478 kinases belong to ePK and 40 belong to aPK families (Manning et al. , 

2002b). Table 1.2 and Figure 1.2 show the distribution of human kinases and kinases 

from other model organisms into various families belonging to 9 major groups. The 

comparison of the protein kinase families in these genomes has indicated a number of 

interesting evolutionary relationships among each other. The 51 protein kinase 

families are found in all fly, worm, yeast and human genomes, which indicates that 

kinases belonging to these families function in cellular processes essential for 

existence of eukaryotic cells. In addition, there are 93 families common to fly, worm 

and human indicating that these families function in the processes specific to 

metazoan cells (Manning et al. , 2002b). In another study, Krupa and Srinivasan 

(2002) have also carried out analysis of human genome to identify the functional 

protein kinases. They have identified 448 distinct eukaryotic protein kinase 

sequences. Their analysis of the domain combinations in kinase sequences has 

CKI 
STE AGC 

TKL 

CAMK 

TK 

RGC 

CMGC 

Figure 1.2: Dendrogram of 491 ePK domains from 478 genes of human genome. Major 
groups are labeled and colored. (Figure is adapted from Manning eta/., 2002b.) 
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suggested the roles of several kinases in a number of pathways. Their analysis has 

also indicated the alternative modes of regulation for kinases as suggested by 

interesting combination of regulatory domains (Krupa and Srinivasan, 2002). 

Various genome mining studies for identification of kinase genes make use the 

HMM profiles derived from the experimentally characterized sequences of protein 

kinase domains. The identified sequences are then clustered, and classified into 

various families, subfamilies and groups primarily based on sequence similarity, 

accessory domains, and the mode of regulation. The kinase sequences identified from 

the genomic sequences of various species have been catalogued in the KinBase 

resource (http://www.kinase.com/kinbaseD. The sequence entries in the KinBase are 

verified by experimental characterization of their eDNA sequences. Miranda­

Saavedra and Barton (2007) have recently used the family specific HMM profiles for 

finer classification of the protein kinases of 21 genomes. This strategy was able to 

classify some of the previously unclassified kinases into main ePK families for a 

number of genomes. For example, 27 out of 28 kinases which were till now classified 

into "other kinases" in yeast, were classified into AGC, CAMK, CMGC and STE 

families (Miranda-Saavedra and Barton, 2007). 

Protein kinases have also been discovered in the bacterial genomes. Krupa et 

a/. (2004) have analyzed in detail the kinases identified from the prokaryotic genomes 

and their domain combinations, in addition to eukaryotic domains. A comprehensive 

database KinG (http://hodgkin.mbu.iisc.emet.in/- king) was developed by them which 

contains the sequences of protein kinases along with various functional domain 

combinations identified using the Pfam HMM profiles (Krupa et al., 2004). The latest 

release of the database contains 17457 protein kinases belonging to 54 eukaryotic 

genomes, 275 eubacterial genomes, 49 archaeal genomes and 19 viral genomes. KinG 

also provides a tool for the identification of catalytic domain in the putative sequences 

and other functional domains present alongside kinase domain (Krupa et al. , 2004). 

The comparative analysis of such domains across genomes gives interesting insights 

into evolutionary aspects of the functions of kinases. 

1.2.2 Structure of protein kinases 
Long before the fust crystal structure of any kinase was solved, the high 

degree of conservation in the sequence of catalytic domain of the protein kinases had 

indicated that they are likely to take a similar fold. Protein kinase A (PKA) was the 
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first kinase whose crystal structure was solved. It was a binary complex with a 

pseudosubstrate peptide (TTY ADFIASGRTGRRNAIHD) having an alanine instead 

of serine residue at the phosphorylation site (Bossemeyer eta/., 1993; Knighton eta!., 

1991 ). Soon after that, a ternary structure with pseudo substrate peptide and A TP was 

solved (Zheng et a/., 1993). Subsequently a number of crystal structures of different 

protein kinases have been solved. The crystal structures of kinases solved till date 

have confirmed that all kinases adopt similar structural fold. These crystal structures 

have also revealed the roles of various conserved motifs found in the kinase 

sequences. 

The kinase fold consists of two lobes, a small N-terminal lobe consisting 

mainly of~ sheets, and a large C-terminal lobe consisting mainly of a helices. Figure 

1.3 shows the structure of PKA highlighting important structural features of the 

kinase fold. The N-terminallobe consists of 5 antiparallel ~ sheets and a small a helix. 

This includes conserved stretches I-IV and primarily contains the ATP binding site 

and hence is involved in the binding and correct orientation of ATP/GTP-Mn2+/Mg2+ 

complex. The N-terminal domain also contains conserved GXGXXG (X represents 

any amino acid) motif between ~ 1 and ~2 strands. The binding site of the substrate 

peptide is located in the cleft between the two lobes (Hanks and Hunter, 1995; Zheng 

et a!., 1993). The majority of the contacts the peptide makes with the kinase is in the 

C-terminal lobe. A long activation loop of 20-30 residues forms a part of C-terminal 

lobe and occupy the region between the clefts. This activation loop adopts different 

conformations in active and inactive states of the kinase and contains the Asp 166 

which facilitates the phosphotransfer reaction by extraction of a proton from hydroxyl 

group of the substrate. The conformation of activation loop is an important 

determinant of the active or inactive form the protein kinases, and is controlled by the 

phosphorylation of Ser/Thr residue in activation loop (Hanks and Hunter, 1995). This 

phosphorylation induces many secondary changes like re-orientation of the lobes and 

the positioning of the catalytic residues in relation to the substrate peptide. 

A number of crystal structures of protein kinases have been solved. These 

kinases are in complex with the ATP, GTP, kinase inhibitor compounds, substrate 

peptide and/or inhibitor peptide. The substrate peptide bound structures of kinases 

have provided valuable information for understanding the molecular basis of the 

substrate recognition by the protein kinases. The crystal structures in complex with 

substrate peptide have been solved for PKA (Knighton et al. , 1991; Zheng et al., 

17 



Figure 1.3: Ribbon diagram of Catalytic subunit of cAMP-dependent protein kinase in 

ternary complex with Protein kinase inhibitor substrate, and MgATP. Conserved residues 

scattered throughout the core are indicated by dots (Giy50, Glu52, Lys72, Glu91 , Aspl66, 

Asn171 , Asp 184, Glu208, Asp220, and Arg280 ). Several ofthe side chains are indicated. 

The salt bridge between Arg280 and Glu208 is indicated by dashed lines. The numbering and 

nomenclature of the ~ strands and helices is based on Knighton et al. ( 1991 ). Asp 166, near the 

site of phosphotransfer, is positioned to serve as catalytic base. The Ala side chain at the P­

site in the inhibitor is also marked with an arrow indicating where phosphotransfer would take 

place if a Ser was located at this site. The dotted line bridging the ~andy-phosphates indicate 

the position ofthe activating Mg2
+ ion . (Figure is adapted from Hanks and Hunter, 1995 ) 
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1993), PKB (Yang et al., 2002), CDK2 (Brown et al. , 1999), and PHK (Lowe et al. , 

1997) which are Ser/Thr kinases and ABL (Levinson et al., 2006), and IRK (Parang 

et al., 2001) which are Tyr kinases. All these crystal structures reveal that the 

substrate peptide binds in an extended conformation in the cleft between the two lobes 

of kinase. PKA structure has been solved in complex with an inhibitor peptide which 

has an Ala in place of Ser or Thr at the phosphorylation site. The structures of other 

kinases have been solved without the substrate peptides. These crystal structures have 

revealed that the side chains of the substrate amino acids are accommodated in the 

binding pockets formed between the two lobes of the kinases. The site of 

phosphorylation is called PO and the residues towards N and C terminal side to PO are 

referred to as P-1 , P-2, P-3 and P+l , P+2, P+3 and so on. The binding pockets on the 

protein kinase which accommodate these residues have been designated as S-1 , S-2, 

S-3, S+1, S+2, S+3 and so on. Figure 1.4 depicts the substrate binding in PKA and 

various binding pockets accommodating the side chains of the substrate peptide. 

1.2.3 Substrates of protein kinases 
Protein kinases play major functional role in a variety of cellular processes. As 

a consequence, the protein kinases phosphorylate a large number of proteins. It has 

been estimated that more than 30% of all proteins encoded in the human genome are 

phosphorylated (Cohen, 2000; Ubersax and Ferrell, 2007). Even though based on 

genome analysis it has been possible to identify the protein kinase complement of 

various organisms, the substrate proteins phosphorylated by these kinases still remain 

largely unknown. Even after years of targeted biochemical studies by several groups, 

only a small subset of kinase substrates has been identified so far. As the cascades of 

phosphorylation network play a major role in signal transduction (Pawson and Scott, 

1997; Pawson et al. , 2002), the identification of substrate proteins of the kinases is 

crucial for understanding the information transfer during cellular processes. However, 

the identification of the substrates of kinase has been a slow process. The 

characterization of the substrate protein of a kinase based on biochemical assays 

requires an educated guess about the choice of substrate by the given kinase. 

1.2.3.1 Experimental methods for identification of substrates 
of kinases 
Biochemical assays used for identification of the substrates of kinases involve 

incubation of purified protein with the protein kinase in presence of radio labeled A TP 
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Figure 1.4: Substrate binding in protein kinase A. (A) Schematic representation of the 

binding sites of the side-chains of the substrate peptide with the specificity-determining 

residues (SDRs or determinants) listed in each subsite. The sub-sites are coloured: S-3, red; S-

2, yellow, S-1 , green; SO, orange-red; S+I , dark blue; S+2, magenta; and S+3, light blue. The 

same colour scheme for the subsites is used in (B) and (C). (B) Interactions of the 

heptapeptide region of the substrate (grey; sequence RRASIHD) with the SDRs, coloured 

according to the subsite. (C) Surface representation highlighting the individual subsites, 

coloured as in (A), and a heptapeptide region of the substrate (black; sequence RRASIHD). 

(Figure is adapted from Kobe eta/., 2003.) 
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under optimal conditions. This is followed by detection of phosphorylation state by 

autoradiography (Wooten, 2002). Although this method requires the previous 

experimental cues for the choice of putative substrate, this is still a widely used 

method. A modification of this method involves the use of whole cell lysate incubated 

with the kinase of choice to identify the subset of proteins which are phosphorylated 

by kinase. Another method involves the use of oriented peptides libraries which is 

based on the idea that kinases recognize primary sequence motif in the substrate 

proteins. In this method, a mixture of randomized soluble distinct peptides of same 

length, and containing only one phosphorylatable site, is incubated with the kinase of 

choice in the presence of radio labeled A TP (Songyang et a/., 1994 ). Cognate peptides 

are phosphorylated by kinase which are separated on a ferric column, and sequenced 

by Edman degradation. The analysis of phosphorylated peptide sequence gives 

information about the relative abundance of amino acids at each position and hence 

the phosphorylation motif preferred by that kinase (Nishikawa et al., 1997; Songyang 

et al., 1994; Songyang et al., 1996). Phage display libraries have also proved useful in 

identifying a set of putative substrates for a selected kinase (Cujec et a/., 2002 ). A 

relatively new development involves the mass spectrometric identification of 

phosphorylated peptides from whole cell lysates (Mann et al., 2002; McLachlin and 

Chait, 200 I). Even though this method can identify the phosphoprotein and the site of 

phosphorylation, this does not provide any information about the kinases responsible 

for the phosphorylation events. 

Techniques for in vivo identification of protein kinase substrate make use of 

the phospho-specific antibodies for tracking of the phosphorylated protein. These 

antibodies can identify the single phosphorylated amino acid in the protein (Zhang et 

al., 2002). The phosphorylation motif specific antibodies are also used which can 

recognize and bind to a certain motif specific for a kinase (Zhang et al., 2002). The 

substrate proteins are identified by mean of immunoprecipitation or immunoblotting 

and analyzed by mass spectrometry. Some methods such as yeast two-hybrid screens 

(Yang et al., 1992), which are based on the physical interaction between the kinase 

and substrate, are also used for identification of kinase substrates (Cujec et al., 2002). 

1.2.3.2 Protein kinase substrate databases 
Various in vitro and in vivo experimental techniques have led to the 

identification of a number of substrate proteins for a large number of kinases. The 
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amount of experimental data on kinase substrates is growing rapidly. This data is 

extremely valuable for understanding the mechanism of substrate recognition by 

protein kinases. Therefore, several groups have attempted to organize the information 

on substrate proteins along with their phosphorylation sites in the form of the 

databases. Phospho.ELM is one such widely used database which catalogues the 

experimentally verified substrates of the protein kinases along with the site of 

phosphorylation (Diella et al., 2004; Diella et al., 2008). The database is also 

interlinked to the SWISSPROT and the PUBMED. If the structure of the protein is 

available then the PDB ID of the substrate protein is also reported. This searchable 

database has been extensively used for the development of prediction rules for in 

silica identification of protein kinase substrates. PhosphoSitePlus 

(~w.phosphosite.org) is another database containing the phosphorylation sites along 

with a variety of associated information such as subcellular localization, tissue types, 

and cell lines used in experiments. The sites identified in the MS/MS experiments are 

also catalogued. PHOSIDA is a database of phosphorylation sites obtained from the 

high throughput mass-spectrometry based proteomics analysis (Gnad et al., 2007). 

This database also gives information about the predicted secondary structure of the 

phosphorylation sites along with other attributes of the protein and phosphorylation 

sites. Phospho POINT (Yang et al., 2008) annotates the interaction between kinase and 

phosphoproteins along with the cataloguing of substrate proteins and phosphorylation 

sites. It also lists cSNPs that result in disease phenotypes. mtcPTM (Jimenez et al., 

2007) is a collection of human and mouse phosphorylation sites and patterns under 

different physiological conditions. It also stores the information about structural 

features ofthe phosphorylation sites (Jimenez et al., 2007). 

1.2.3.3 Phosphorylation site prediction programs 
Although various in vitro and in vivo experimental approaches have succeeded 

in identifying substrate proteins and phosphorylation sites for a significant number of 

kinases, substrates for a large number of kinases are still unknown. Discovery of the 

kinome complement of genome for several organisms has necessitated the 

identification of kinase substrates so as to better understand the role of kinases in 

various cellular functions and pathways. The experimental discovery of the substrates 

at the genomic scale is impractical, if not impossible. Therefore, a number of 

computer programs have been developed based on the analysis of the phosphorylation 
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Table 1.3: List of the commonly used computational tools and their methodology for 
the prediction of the sites of phosphorylation by various kinases. 

Software World wide web link Methodology 
r-----------~----------------------------------+--------~- ----

Intrinsic disorder in 
phosphorylation sites 

DIPHOS 1.3 _htt.pj}w\Vw .ist.temple.edu/D IS~HO~ 

. SCANSITE 2.0 : http://scansite.mit.eduL PSSM 
1 KinasePhos 2.0 http://kil)a~hos2.rnb~.nctu.edu.tw/ SVM 

NetPhos 2.0 http://www.cbs.dtu.dk/sery_i~e~C'~tPhQ~/ i ANN 

~N~et~P~h~o~sK~I~.O~~h~tt~p=:/=/w~_w~w~.~~b~s~.g~tu=·=d=k/=se=~==ic=e=s~=·=·e=tP=h=o=s=K=/-----~A~N~N~-----------~ 

Gps http://bioinformatics_J~g- ! 
ustc.on!l!!:os web/faa.oho • Clustering 

PPSP htt_J?://bioinformatics.lcd-ustc.o_rgL~~S~/ Bayesian model 
~~~------~~~~==============~~-~~-----+~~~~~~----~ 

I Rules based on 
PREDIKIN I http://florey.biosci.uq.edu_.~u/~ins!lblh.Qme.htm structure and sequence 

analysis ---~ 

sites of various families of protein kinases. These prediction programs employ a 

number of methodologies such as position specific scoring matrices (PSSM), 

clustering and bayesian analysis, artificial neural network (ANN), support vector 

machines (SVM), and structural analysis of kinase-peptide complexes. All of these 

programs are based on the rules derived from the already known phosphorylation sites 

of some of the protein kinases. Some of these programs predict only for a specific 

protein kinase family e.g. pkaPS (Neuberger et al., 2007) predicts only for PKA. 

Similarly, Cheng et al. (2007) have developed a method for prediction of substrates of 

CDK. On the other hand, there are generalized methods predicting substrates for a 

number of protein kinases. Table 1.3 lists some of the widely used computer 

programs for prediction of phosphorylation sites in the putative substrate proteins of 

various kinases. The salient features of some of the major phosphorylation site 

prediction programs are described below. \H _ \ 
6 3 

{? 
1.2.3.3.1 SCANSITE 

SCANSITE (Obenauer et al., 2003) is one of the widely used programs for the 

prediction of protein kinase phosphorylation sites. It uses the protein kinase specific 

position specific scoring matrices (PSSM) derived from the peptide library 

experiments. PSSM for each kinase represents the favored amino acid residues 

flanking the phosphorylation site Ser/Thr/Tyr residues. Based on the score of each 

Ser/Thr/Tyr containing putative peptide, high scoring peptides are predicted as 
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phosphorylation sites. SCANSITE also takes into account the predicted surface 

accessibility value of peptides for prediction of the phosphorylation sites. However, a 

major limitation of the SCANSITE program is that, it can predict substrate only for 

those kinases for which peptide library data is available. 

1.2.3.3.2 KinasePhos 
The first version of KinasePhos (Huang et a/., 2005) used the kinase specific 

HMM profiles generated from the known phosphorylation sites for predicting the 

phosphorylation sites in putative proteins. The second version, KinasePhos 2.0 (Wong 

et al., 2007) employed the SVM model based on the coupling patterns between the 

amino acids at different positions in the known substrate proteins. 

1.2.3.3.3 NetPhos 
Netphos (BJorn et al., 1999) uses machine learning approach. Artificial neural 

network (ANN) trained on a dataset of known phosphorylation sites and non­

phosphorylation sites is used to predict whether a Ser/Thr/Tyr containing peptide is 

phosphorylated or not. 

1.2.3.3.4 NetPhosK 
Instead of kinase independent ANN model used by NetPhos, NetPhosK (BJorn 

eta/., 2004) uses kinase specific ANN models trained for prediction of substrate for 

specific kinase families. It predicts for PKA, PKC, PKG, CKII, Cdc2, CaM-II, ATM, 

DNA PK, Cdk5, p38 MAPK, GSK3, CKI, PKB, RSK, INSR, EGFR and Src kinase. 

1.2.3.3.5 GPS 
GPS: group based phosphorylation site predictor (Xue et a/., 2005), uses 

statistical model for predicting the phosphorylation sites of kinases. It groups the 

protein kinases similar in sequence and function together. The phosphorylation sites 

for each of these groups are clustered together based on the similarity in the amino 

acids at each position. The clustering is done based on the BLOSUM62 similarity 

matrix scores for the alignments of substrate peptides. If a peptide shows similarity to 

the phosphorylation site peptides of a kinase group, as judged by the BLOSUM62 

score, that peptide is predicted as the phosphorylation site for that protein kinase. GPS 

nredicts for about 70 nrotein kinase a.rouos belonging to Ser/Thr and Tyr kinase. 
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1.2.3.3.6 PPSP 
PPSP: prediction of PK-specific phosphorylation site (Xue eta/., 2006) uses 

statistical model based on the Bayesian decision theory for phosphorylation site 

prediction. Like GPS, it also groups the similar kinases into different groups. 

BLOSUM62 matrix is used in the Bayesian statistical model. PPSP also predicts for 

about 70 protein kinase groups. 

GPS and PPSP both make use of statistical models based on clustering and 

bayesian analysis of sequences of known substrates respectively. Since for every 

kinase family, the number of known substrate peptides is not large, GPS and PPSP 

group the substrates of similar kinases together to increase their number for each 

kinase group. All of these programs are trained on the already available protein 

substrates data while employing different sequence based approaches for prediction. 

Although these programs perform well for those protein kinases, for which sufficient 

amount of substrate information is available, they cannot predict for other protein 

kinases for which little or no substrate information is available as yet. 

1.2.3.3.7 PREDIKIN 
PREDIKIN (Brinkworth et al., 2003) uses the empirical rules derived from 

examination of kinase sequences, kinase-peptide structures, and peptide library data. 

For a given kinase sequence, it identifies the residues that would interact with three 

peptide residues on each side of phosphorylation site in the substrate, and predicts a 

motif most likely to be compatible for binding with the kinase. The substrate proteins 

which contain the predicted motif for a kinase, are likely to be its target 

phosphorylation sites. In contrast to the large number of sequence based 

phosphorylation site prediction programs, PREDIKIN uses a structure based 

approach. PREDIKIN has been used to reconstruct cell cycle control pathway, and 

DNA damage checkpoint control pathway in yeast (Brinkworth et al., 2006). 

1.2.3.3.8 DIPHOS 
DIPHOS (disorder Enhanced phosphorylation site predictor) (lakoucheva et 

a/., 2004) predicts the potential phosphorylation sites in the substrate proteins based 

on property of sequence stretch around the phosphorylation site Ser/Thr/Tyr residues. 

The predictor is based on the analysis of known phosphorylation sites of protein 

kinases which show that the disorder around the phosphorylation site is an important 
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prerequisite for the phosphorylation. DIPHOS, however, does not identify the protein 

kinase which phosphorylates the predicted phosphorylation sites. 

1.2.4 In silico identification of protein phosphorylation 
networks 

Recently, there has been increased interest in the understanding and 

reconstruction of signaling networks and pathways involving phosphorylation 

cascades at a genomic scale. Two recent studies have investigated the reconstruction 

of phosphorylation networks in yeast and human (Brinkworth et al., 2006; Linding et 

a!., 2007). Brinkworth et al (2006) have used their prediction program PREDIKIN to 

identify the substrates for the protein kinases identified in the yeast genome 

(Brinkworth et a!., 2006). The experimentally identified phosphorylation sites in the 

high throughput mass spectrometric experiments were assigned to the protein kinases 

based on the prediction results. Linding et al (Linding et a!., 2007) developed an 

approach called NetworKIN to identify the protein kinases responsible for the 

phosphorylation of the in vivo identified sites (Linding et a!., 2007; Linding et a/., 

2008). In their method, they have combined the motif based approach of SCANSITE 

(Obenauer et a!., 2003) with the context dependent information of the localization, 

scaffold and expression, for associating a site with the protein kinase. Success of such 

projects depends largely upon the correct identification of substrate proteins of the 

protein kinase involved in the signaling pathways. However, specific programs tend 

to predict well only for specific classes of kinases, making any single program 

unsuitable for the prediction on a genomic scale. Hence, a systematic analysis of the 

prediction accuracies of different programs on the known dataset is very important in 

deciding which program should be used for the prediction of substrates for a 

particular class of kinases. As the prediction accuracy of all programs varies for 

different kinase classes, the choice of correct program for making predictions 

becomes very important. Although individual programs have reported the comparison 

with other programs for a specific set of kinases for defined problem sets, only one 

study has carried out systematic analysis of prediction accuracies of these prediction 

programs using an unbiased phosphorylation dataset (Waneta!., 2008). 
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1.3 MAJOR HISTOCOMPATIBILITY COMPLEX (MHC) 
Major histocompatibility complex (MHC) region of genome is found in most 

vertebrate species and contains a tightly linked cluster of genes of immunological 

importance. MHC region is found on short arm of chromosome 6 in human, and on 

chromosome 17 in mouse. The protein products of these genes play a key role in the 

self and non-self discrimination and the development of cellular immune responses. 

The MHC cluster is also known as HLA in human and H2 in mouse. It spans and 

encodes three groups of genes i.e. class I, class II and class III. Class I MHC genes 

encode glycoproteins which are expressed on the surface of almost all nucleated cells 

(Bjorkman and Parham, 1990; Klein et al., 1983). Class II MHC genes also encode 

for the glycoproteins which are expressed on the surface of professional antigen 

presenting cells only. Class III genes encode for the proteins of vanous 

immunological functions. In case of human, class I MHC genes are organized in three 

loci A, B and C whose products are referred to as HLA-A, HLA-B and HLA-C 

respectively. In case of mouse, these are encoded by K and D region and are called 

H2-K and H2-0. Class II MHC protein are encoded by lA and IE region producing 

H2-IA and H2-IE proteins in mouse, and DP,DQ, and DR encoding HLA-DP, HLA­

DQ and HLA-DR in human (Klein et al., 1983). The MHC alleles are highly 

polymorphic with a large pool of alternative forms existing at each locus within the 

population. This variation in the MHC alleles creates a vast repertoire and variability 

enabling them to bind a variety of antigenic peptides of foreign origin (Klein et al., 

1983 ). HLA haplotyping studies have identified a number of alleles in case of human. 

These alleles have been sequenced and deposited in the IMGT/HLA database 

(Robinson et al., 2003) after approval by WHO HLA nomenclature committee. The 

October 2008 release of IMGT/HLA database reported 2187 class I, and 980 class II 

classical MHC alleles. The high degree of polymorphism has been reported to be 

associated with the different levels of susceptibility to various infectious diseases. 

MHCs have also been shown to be associated with autoimmune diseases such as 

multiple sclerosis, diabetes, arthritis etc. 

The function of MHC molecules is to bind the processed antigens and present 

them to the cytotoxic T -cells. The T -cell receptor (TCR) on the surface of T -cells 

recognizes the MHC bound peptide and mount an immune response if the peptide is 

antigenic. Class I MHC molecules present the peptide to CD8+ T-cells and class II 

molecules present to CD4 + T -cells. The presentation of peptides to the TCR on T -cell 
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ensures a continuous update of peptides of various origins for scrutiny by the immune 

system (Bjorkman and Parham, 1990). 

1.3.1 Antigen processing 
The antigenic peptides presented by class I and class II MHC molecules are of 

different origins and processed by different processing pathways. Figure 1.5 depicts 

schematically the cytosolic and endosomal pathways for antigen processmg 

(Cresswell, 1994; Yewdell et al., 2003). Class I MHC pathway for antigen processing 

or cytosolic pathway provides peptides for loading to MHC class I molecules (Pamer 

and Cresswell, 1998). These peptides are derived from the cytosolic proteins in the 

healthy cells. However in the infected or mutated cells, the peptides of foreign origin 

are also loaded onto MHC molecules and recognized by T-cells. In this pathway, the 

proteins in the cytosolic milieu are degraded by multicatalytic proteasome complex 

into smaller peptides. Some of these peptides are transported by transporter associated 

with antigen processing (TAP) into endoplasmic reticulum where they are loaded onto 

MHC class I molecules and transported to the cell surface. Since the peptides loaded 

in pathway are first cleaved by proteasome and transported by TAP transporter, the 

cleaving patterns and the selectivity of TAP have been used for assisting in the 

prediction of MHC binding peptides (Pamer and Cresswell, 1998; Yewdell et al., 

2003). 

Class II MHC molecules are loaded through the endosomal pathway (Watts, 

1997). The extracellular antigenic protein, microorganism etc. are internalized by the 

phagocytosis by specialized cells such as macrophages, dendritic cells and B­

lymphocytes. Inside the cells, the phagosomes fuse with the lysosome and the 

internalized proteins are digested by lysosomal aminopeptidases. The cleaved 

peptides are loaded onto the MHC class II molecules in the golgi apparatus and the 

peptide loaded MHC molecules are transported to the cell surface. 

1.3.2 Structure of MHC proteins 
The three dimensional structure of a number of class I and class II MHC 

alleles have been solved by x-ray crystallography. Class I MHC consists of a 45 KDa 

glycoprotein a chain which is noncovalently associated with ~2 microglobulin chain. 

The a chain folds into three domains a1 a2 and a3 (Bjorkman et al., 1987). The a1 

and a2 domains are nearly identical to each other and form a platform of 8 antiparalle1 

~ sheets which are spanned by two a helices. This combination of sheets and helices 
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Figure 1.5: Schematic representation of the peptide presentation via MHC class I and II. 

(Figure is adapted from Apostolopoulos eta!., 2004.) 

Figure 1.6: Representative structures of class I (I AKJ) and class II (I A6A) MHC molecules 

in complex with the bound peptide. 
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forms a well defined groove known as peptide binding cleft. The a3 and ~2 

microglobulin are organized into immunoglobulin fold and interact with each other 

(Figure 1.6) (Bjorkman and Parham, 1990). 

Class II MHC structure is identical to class I MHC structure. It consists of two 

non-identical chains, an a-chain and a ~-chain . The a-chain folds into a1 and a2 

domains and ~ chain folds into ~ 1 and ~2 domains. The a2/ ~2 pair is identical in 

structure to a3/~2 microglobulin pair of class I MHC. The all ~1 pairs form a 

platform to 8 antiparallel ~ sheets spanned by two alpha helices and form a peptide 

binding cleft very similar to that of MHC class I (Figure 1.6) (Brown et al. , 1993). 

1.3.3 MHC-peptide interaction 
The antigen binding groove in both class I and class II MHC molecules is 

nearly identical and the antigenic peptides bind in the cleft in an extended 

conformation running between the a helix on the floor of ~ sheets. MHC class I 

Figure 1.7: The top view of mouse MHC class I allele H2-Kd in complex with the 
peptide. The constituent residues of six binding pockets A, B, C, D, E, and F in the 
peptide binding groove are shown in red enclosed by ovals. The peptide backbone is 
shown in magenta and the side chains of peptide residues are depicted in blue color. 
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molecules bind the 8-1 0 mer peptides. This is explained by the fact that, peptide 

binding cleft in class I MHC is closed at the ends and thus, limiting the size of bound 

peptide (Bjorkman et al., 1987; Bjorkman and Parham, 1990). MHC class I molecules 

can recognize vast repertoire of peptides due to the presence of so called anchor 

residues whose side chains are accommodated in the well defined binding pockets on 

the MHC (Rammensee et al., 1993). These anchor residues are identified from the 

experimentally known binding peptides. Most of the class I binding peptides have 

anchor residues at the second or third positions and the carboxyl terminal. Matsumura 

et al. ( 1992) have reported the presence of six binding pockets designated as A, B, C, 

D, E, and F which accommodate the side chains of the bound peptides in class I 

MHC. Figure 1.7 depicts these six binding pockets and their constituent residues in 

H2-Kd allele. 

In class II MHC molecules, the ends of the peptide binding cleft are open and 

the peptides of upto 18mer can be accomodated. Normally the region of peptide that 

interacts with the MHC is about 13 amino acids long and the remaining residues hang 

outside the open cleft of the class II MHC molecules. Unlike the peptides which bind 

class I MHC, peptides binding to class II MHCs Jack well defined anchor residues, 

but some specificity determining residues on the peptides make key contacts with the 

MHC molecules (Brown eta!., 1993 ). 

A large number of MHC binding peptides have been identified which 

specifically bind to class I and class II MHC alleles. Combinatorial peptide libraries 

(Wilson et al., 1999) have been extensively used for the identification of the binding 

repertoire of various MHC alleles. Analysis of these peptides have resulted in 

identification of some sequence patterns which have been broadly used for predicting 

putative MHC binding peptides with variable degree of success (Rammensee et al., 

1993). In the view of the importance of the MHC epitopes in the rational design of 

vaccines, identification of MHC binding peptides has been an area of active research. 

However, polymorphism in MHC alleles (Parham et al., 1995), coupled with vast 

variety of potential peptides has made the experimental approaches for identification 

of the MHC epitopes a difficult task. This has Jed to development of a number of 

computational tools for predictions of MHC epitopes. 
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1.3.3.1 Computational tools for prediction of MHC epitopes 
A variety of computational tools have been developed for prediction of MHC 

binding peptides present in putative antigenic proteins. All of these methods break 

down the protein sequence into all possible overlapping peptides of a fixed length and 

calculate the MHC binding score for each of them. The peptides with high scores are 

classified as the potential epitopes for the MHC allele in question. These 

computational methods adopt various methodologies for calculating the scores for the 

peptides. Broadly, two types of computational methods have been developed. One 

group of computational methods can be broadly categorized as sequence based 

methods. These computational methods predict epitopes based on the sequence motifs 

derived from the known epitopes of various MHC alleles. The modification of this 

method is the matrix based methods, which use the matrices containing the 

frequencies of the amino acids at various positions in the peptides precalculated from 

the known MHC binding peptides. It is known that a significant number of peptides 

bind to MHC, even if they do not contain any known MHC binding motifs. They are 

Table 1.4: List of commonly used computational tools and their methodology for the 
prediction of MHC binding peptides. 

-
Software 1 World wide web link - Methodology 

I Half life of 
BIMAS I b!t_p:/ /~ww-bimas.c it.n th__,gQ_v /J!IO I t>io/h Ia bind/ 

dissociation 
--

I 

I 

: btt_Q:/ /v.vy_v.. imtech.res. i!1Lragha_ya/_prq_pr~gl.L ProPred I Matrices, and ~ 
proteasomal_ cJeava e 

I Matrices calculated 
1 MMBPred btt_p:/ I'!IW...W. imtech .res. i n/ra_gha_va/m11Jt>med/ from MHCBN 
I database I 1--· 

I 1 Matrices from ' 
1 EPIPREDICT btt_p://w~w .epipredict.d~/inge~htm I combinatorial peptide 

' library experiments 
RANKPEP htt_Q:/ /bio.dfc i .harvard.e_d_~/RA ~ K_P EP I PSSM 

--
SYFPEITHI btt_p:/ /v.v.w .S):fpeith i .de/h?me._btfll Weighted matrix I 

MHCPred http:/ /www_$nn~r .a c. uk/~ HC Pr_e_9{ QSAR I 

nHLAPred btt_pj/btc.uams.edu/mtrror/n_hll!J?r~d/t_nqex.html ANN 
~--------------~ 

I 
NetMHCpan 

1 
htt_p:/6-vwv.&bs.dtu.dk/servicesf.\leJMHC_pan/ ANN 

. NetMHC . htt_p://www.cbs.dtu.dk/s~r_vic~~/N~tMJ:K/ ANN and PSSM 

SVM KISS 
! http://www-b~jnfgrmatik.uni­
l tuebi_og_tm.Q~/SV~HC/ 

SVMHC btt_p://~bio.ensmp.fr/klli~l SVM 

PREDEP I 
http://rnru-.Miit._huji.ac.il/Teppred/mh~.: 
bind/index.html 

1 Threading type 
------~-------------
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called noncanonical MHC binding peptides and they make use of alternative binding 

pockets for binding to MHC (Apostolopoulos and Lazoura, 2004). Sequence based 

programs often fail to predict these noncanonical binders. In contrast to sequence 

based methods which only use the sequence information to predict putative MHC 

binding peptides, a second group of methods known as structure based approach, use 

the information from the crystal structures of MHC-peptide complex for calculating 

the binding scores of the peptides to various MHC alleles. The structure based 

programs can in principle identify noncanonical MHC binding peptides. Table 1.4 

gives a list of the commonly used epitope prediction programs. A brief description of 

their methodology for prediction is given below. 

1.3.3.1.1 SIMAS 

BIMAS (Parker et a!., 1994) predicts binding peptides for 36 class I MHC 

alleles based on the predicted half life of dissociation of peptides to MHC alleles. The 

prediction is based on the coefficient tables containing scores for each amino acid at 

each position of the peptide. These coefficient tables are derived from the 

experimental data on the stabilization of ~2-microglobulin complex by the peptides. 

This method assumes that each residue of the peptide contributes to some extent 

towards the stability of the complex. 

1.3.3.1.2 ProPred1 
ProPredl (Singh and Raghava, 2003) uses matrices derived from the BIMAS 

server for scoring the peptides from putative antigenic proteins. It can predict for 4 7 

class I MHC alleles. However, instead of considering all possible overlapping 

peptides, it also finds the proteasome cleavage sites based on matrices derived by 

Toes eta!. (2001) based on the sequence patterns in the known proteasome cleavage 

sites. In summary, it finds the promiscuous MHC binding peptides which have 

proteasomal cleavage sites at their ends. 

1.3.3.1.3 ProP red 
ProPred (Singh and Raghava, 200 I) uses the quantitative matrices reported by 

Sturniolo et a!. ( 1999) for prediction of class II MHC binding peptides. It can predict 

for 51 class II alleles belonging to HLA-DRBl and HLA-DRB5. The quantitative 

matrices used by ProPred contain the pocket specificity profiles deduced from 

experimental peptide binding data for various MHC class II alleles. 
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1.3.3.1.4 MMBPred 
The quantitative matrices calculated from known MHC binders in MHCBN 

(ht~//www.imtech.res.in/raghava/mhcbDL) database are used for scoring of peptides 

from the antigenic protein. MMBPred (Bhasin and Raghava, 2003) has been designed 

for identification of mutations required in a protein sequence for the creation of high 

affinity binders for the given MHC alleles. It is useful in identification and selection 

of candidates for knowledge based vaccine design. 

1.3.3.1.5 EPIPRED/CT 
EPIPREDICT (http://\\'ww.e_pipredict.de/) predicts the class II MHC binding 

peptides for few alleles. It uses the quantitative matrices derived from the 

combinatorial peptide library experiments which identified the relative preference of 

each residue at each position ofthe peptide. 

1.3.3.1.6 RANKPEP 
RANK PEP (Reche et al., 2002; Reche et al., 2004) is another prediction 

program which uses the information on the known MHC allele specific binding 

peptides for predicting of class I and class II MHC binders. RANKPEP algorithm uses 

position specific scoring matrices calculated from known MHC binding peptides 

available in the public databases, for evaluating the binding scores of the peptides. It 

also combines the predicted scores for proteasomal cleavage site with these binding 

scores. 

1.3.3.1.7 SYFPEITHI 
S YFPEITHI (Rammensee et a!., 1999; Schuler et a!., 2007) is a widely used 

program for the prediction of T- cell epitopes for a number of class I and class II 

MHC alleles. It maintains a database of the experimentally verified MHC binding 

peptides and the confirmed epitopes for a wide range of alleles. An analysis of 

sequences of these peptides have revealed the anchor residues, unusual residues, 

auxiliary anchor residues, and preferred residues at certain positions in the peptides. 

The score for the putative peptides is calculated by assigning weights for the most 

frequently occurring residues at these positions. Negative scores are given to 

unfavorable residues at these positions. The peptides with a score above a certain 

cutoff value are predicted as the potential binders. 
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1.3.3.1.8 MHCPred 
MHCPred (Guan et al., 2003a; Guan et al., 2003b; Hattotuwagama et al., 

2004) uses quantitative structure activity relationship (QSAR) models derived from 

experimental peptide binding data for making the predictions. The server calculates 

the score of the query peptides in terms of their IC50 values. The peptides having a 

score less than the threshold score are predicted as the binders. The server also 

predicts the high affinity heteroclitic peptides differing only at certain positions from 

a given peptide. 

1.3.3.1.9 nHLAPred 
nHLAPred (Bhasin and Raghava, 2007) is an artificial neural network based 

prediction server which predicts epitopes for about 30 class I MHC alleles. The binder 

and nonbinder peptides catalogued in MHCBN database are used for the training of 

allele specific ANN models. The predicted peptides are refined by filtering through 

the proteasomal cleavage matrices. 

1.3.3.1.10 NetMHCpan 
NetMHCpan (Nielsen et al., 2007) also uses ANN models trained on a large 

set of peptides having experimental binding data for more than 80 alleles. In addition 

to various alleles belonging to human class I and class II MHC, NetMHCpan can also 

predict antigenic peptides for non human primates, mouse and pig alleles. The binding 

affinities ofthe peptides are predicted as their IC50 values. 

1.3.3.1.11 NetMHC 
Like NetMHCpan, NetMHC (Buus et al., 2003; Nielsen et al., 2003; Nielsen 

et al., 2004) also uses ANN models for prediction of the MHC binding peptides. But 

in addition to ANN, it also uses PSSM matrices and HMM profiles generated from 

the MHC binding peptides catalogued in SYFPEITHI database. 

1.3.3.1.12 KISS and SVMHC 
KISS (Jacob and Vert, 2008) and SVMHC (Donnes and Elofsson, 2002) are 

webservers which predict the MHC binding peptides based on support vector machine 

models trained on data from MHCBN (http://www.imtech.res.iru:r~_g_havalmhcbn/), 

SYFPEITHI (Rammensee et a!., 1999; Schuler et al., 2007}, IEDB 

(http://www.immuneepitope.or_g(_l}o_rn~.do}, and HIV Molecular Immunology 

Database (www._hiv.lanl.gov). While KISS predicts only for class I MHC alleles, 
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SVMHC also predicts for class II MHC alleles usmg the quantitative matrices 

developed by Stumiolo eta!. ( 1999). 

1.3.3. 1. 13 PREDEP 
In contrast to the sequence based approach used by programs and webservers 

described before, PREDEP (Schueler-Furman et a!., 2000) uses a structure based 

approach for epitope prediction. It predicts the MHC binding peptides by threading 

them over the backbone conformation of the bound peptide in the available crystal 

structure of MHC-peptide complexes. The score is calculated by scoring the contacts 

the query peptide makes with the MHC molecules using residue based statistical pair 

potentials. The high scoring peptides are classified as potential MHC binding 

peptides. PREDEP has been successful in predicting the epitopes for several class I 

MHC alleles whose crystal structures are available (Altuvia et a!., 1995; Altuvia et 

a!., 1997). 

1.3.4 Docking and molecular dynamics studies 
Most of the computational methods for predicting MHC binding peptides rely 

heavily on the availability of experimental data on known binders, and hence can only 

predict for those alleles for which such data is available. Structure based methods can, 

in principle, predict binding peptides for any MHC allele, however their use in limited 

by their complexity and high computational cost. Although PREDEP uses a novel 

threading based approach, it has only been tested on a limited number of MHC alleles. 

Other structure based computational approaches such as molecular modeling, docking 

and molecular dynamics simulations are powerful techniques, but only a limited 

number of studies have been carried out because of the computational complexity. 

Tong eta!. (2004) have explored the potential of the docking based methods for the 

identification for the binding conformations of the peptides in the MHC binding 

groove of the MHC alleles. Using a three step approach involving the docking of 

anchor residues in the binding pockets, modeling the intervening backbone structure 

subject to the spatial constraints of other residues and refinement of the entire 

backbone, they could successfully predict the structures bound peptides in case of 40 

crystal structure complexes. Molecular dynamics studies also have been used to 

predict conformations of peptides bound to MHC and calculate their binding affinity 

to discriminate the binders from non binders (Pohlmann et a!., 2004 ). However, 

because of the compute intensive nature of the MD simulations, only a few molecular 
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dynamics studies have been conducted on the MHC-peptide complexes (Pohlmann et 

a!., 2004 ). The nanosecond scale MD simulation of a antigenic peptide bound in 

complex with two MHC subtypes HLA-A *2705 and HLA-A *2709 has successfully 

explained why HLA-A *2705 is associated with disease, while the other is not 

(Pohlmann et al., 2004). 

1.4 ROTAMER LIBRARIES 
A rotamer or rotational isomer is a unique side chain conformation represented 

as a set of values for each dihedral angle degree of freedom. Rotamer libraries are a 

collection of these rotamers for every residue collected from the solved crystal 

structure of proteins (Dunbrack, 2002). The rotamer libraries are usually derived from 

the statistical analysis of the clustering of the side chain conformations encountered in 

the crystal structures. The libraries also contain the frequency, mean, and standard 

deviation of sampled conformations. Rotamer libraries are of two types: backbone 

dependent, and backbone independent. Backbone-independent libraries contain the 

rotamers without any reference to their backbone conformation. They are calculated 

from all available side chain conformations for every amino acid residue. Backbone 

dependent libraries have conformations and frequencies for all available backbone 

conformations as presented by backbone <P and \jl angles (Dunbrack, 2002 ). 

Rotamer libraries are used for rapid modeling of the sidechains when the 

backbone conformation of the protein or peptide is known. These have been used 

successfully in a number of studies for modeling, redesigning and improving the 

stability of the proteins. Shifman et al used rotamer library to redesign the protein­

binding interface of calmodulin protein to improve the binding affinity towards 

myosin light chain kinase (Shifman and Mayo, 2002). Mooers et al have reported an 

automated redesign protocol for repacking the core of phage T4 lysozyme (Mooers et 

al., 2003). For rapid modeling of side chain residue, Canutescu et al have developed a 

computer program SCWRL which can mutate and model the side chain residues 

based on backbone dependent rotamer library, over a given backbone conformation 

(Canutescu eta!., 2003). 

The problem of epitope prediction for MHC alleles is the problem of 

recognition of cognate peptides by MHC receptor wherein the side chains of the 

peptide chain are accommodated in the compatible binding pockets in the MHC 

molecules. In this thesis, we have used SCWRL (Canutescu et al., 2003) program to 
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model the MHC-peptide and Kinase-peptide complexes by mutating the backbone of 

the peptide bound in the crystal structural templates. 

1.5 RESIDUE BASED STATISTICAL POTENTIALS 
Residue based statistical pair potentials are empirical energy scores for all 

possible residue-residue pairs, which are found to be in contact in a protein structure 

or protein-protein complex. These potentials are calculated from the count of residues 

in contact with each other in the available non-redundant crystal structures. The 

residues are considered as solid spheres centered at their C~ atoms. Every possible 

residue pairs in contact with each other are counted from the high resolution crystal 

structures. The contacts among residues are usually defined as those residue pairs 

which are within 6.5A cutoff distance. The residue pairs which are proximal in the 

polypeptide sequence are explicitly left out from the counting, while long range 

contacts are taken into consideration. The counts are converted to energy 

contributions by each pair by means of quasi-chemical approximation with an 

appropriate treatment to account for the effect of chain connectivity. Residue pairs 

which are found to be in contact more often get a high energy value as compared to 

those which are found less often. The pair potential is in the form of a 20x20 matrix 

containing the energy values for all residue pairs possible. The pair potential matrix 

calculated by Miyazawa and Jernigan (1996) (MJ) is widely used for the threading 

and calculating the stability of proteins and folds. MJ matrix has been used 

successfully for predicting the class I MHC allele binding peptides in a threading type 

approach (Schueler-Furman el al., 2000). MJ matrix tends to give a high emphasis on 

the hydrophobic amino acids and hence the polar contacts are not sufficiently scored. 

This problem was resolved by Betancourt and Thirumalai (BT) when they derived a 

new matrix with threonine as the reference solvent within the MJ scheme (Betancourt 

and Thirumalai, 1999). BT matrix has been shown to perform equally good for 

hydrophobic as well as hydrophilic contacts (Betancourt and Thirumalai, 1999). In 

this thesis, we have used MJ and BT matrices wherever appropriate for calculating the 

binding scores ofpeptides in complex with the MHC alleles and the protein kinases. 
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Chapter 2: Development of a computational tool for modeling of protein-peptide complexes 

2.1 INTRODUCTION 
Proteins involved in a majority of cellular processes usually perform their 

function by binding to some target proteins and forming protein-protein complexes. 

Interactions between two or more proteins often occur over short contiguous stretches 

of amino acids within one protein. For example, recognition of substrate proteins by 

various protein kinases during cell signaling events is governed primarily by specific 

interactions between the kinase and a contiguous peptide stretch containing the 

phosphorylation site. Several receptors have peptide fragments as ligands e.g. the 

major histocompatibility complex (MHC) (Pamer and Cresswell, 1998). Thus, 

understanding molecular details of interactions between proteins and short peptide 

motifs is essential for dissecting underlying mechanism of several major cellular 

processes. Among the various proteins which interact specifically with short peptide 

motifs, protein kinases and MHCs represent two major protein families whose 

substrate specificities have been extensively studied by various experimental 

approaches (Pawson, 1994; Songyang et al., 1994; Udaka et al., 2000). 

Although a number of computational tools such as NetPhosK (Blom et af., 

2004), KinasePhos (Huang et a/., 2005), GPS (Xue et af., 2005), SCANSITE 

(Obenauer et al., 2003), SYFPEITHI (Rammensee et al., 1999) and ProPred (Singh 

and Raghava, 200 I) etc. are available for predicting the putative substrate peptides 

for protein kinases and MHC proteins, these methods are mostly based on available 

experimental binding data for a given class of protein kinase or MHC. These tools 

predict substrate peptides based on identification of the conserved motifs in a set of 

known peptide substrates and do not use information from the three dimensional 

structure of the protein-peptide complex. Hence, these sequence based prediction 

tools do not give information about key residues in kinases and MHCs which control 

substrate specificity. Information about specificity determining residues (SDR) can 

help in design of novel peptide ligands. Correct identification of SDRs of a given 

protein kinase or MHC can help in prediction of substrates for those protein kinases or 

MHCs for which no peptide binding data is available, as demonstrated successfully in 

structure based substrate prediction methods like PREDIKIN (Brinkworth et a/., 

2003) and PREDEP (Schueler-Furman et af., 2000). These studies have demonstrated 

that structural analysis of interactions in protein-peptide complexes can lead to novel 
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insight into the mode of substrate recognition. Therefore, molecular modeling of 

peptide-MHC and peptide-kinase interactions have been carried out by several groups 

using ab initio docking (Tong eta/., 2004) or MD simulation approach (Pohlmann et 

al., 2004). However, the compute intensive nature of these calculations have limited 

such studies to few protein-peptide complexes. Since knowledge based methods are 

less compute intensive, and have better prediction accuracy, development of suitable 

knowledge-based tools for modeling protein-peptide complexes would permit quick 

structural analysis of MHCs and protein kinases with their substrate peptides. A 

knowledge-based approach has been used recently for developing kinDOCK (Martin 

et a/., 2006), a powerful tool for modeling of A TP analogs into the active site pocket 

of protein kinases. However, no such user-friendly tool is presently available for 

knowledge-based modeling of peptides in the binding pockets of MHCs or protein 

kinases. 

Therefore, we have developed MODPROPEP, a web server for structural 

modeling of peptides of any desired sequences in the active site pockets of 

kinases/MHCs having known crystal structures or homology models of 

kinases/MHCs. This chapter gives a brief description of the development of 

MODPROPEP, various assumptions made in the knowledge-based modeling 

protocol, various features of MODPROPEP and few examples of its use. 

2.2 METHODS 

2.2.1 Compilation of crystal structures 
The available crystal structures of MHC and protein kinases were downloaded 

from PDB website at http://www.rcsb.org (Berman et al., 2000). The structures were 

divided into two groups, i.e. structures in complex with substrate peptide ligand and 

structures without the bound peptide ligand. These crystal structures were manually 

examined and chain/residue numbering was appropriately edited if necessary. All the 

crystal structures were categorized into three major classes, i.e. class I MHC, class II 

MHC and protein kinases. Each of these three classes was further grouped into 

various functional families of protein kinases or MHC alleles. 

Detailed analysis of these crystal structures indicated, that all the protein 

kinases shared a conserved structural fold despite their sequence divergence. For 

example, crystal structures of IR and PHK which share a sequence identity of only 

40% can be superposed with a ca RMSD of 1.6A. Similar conservation of structures 
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were also observed both for class I and class II MHC structures which share a higher 

degree of sequence identity within themselves. BLAST alignment of large number of 

protein kinases and MHC proteins available in sequence databases with these crystal 

structures indicated that, homology models can be obtained for most of these 

sequences with reasonable accuracy. Comparison of the bound peptide structures 

indicated that in all these three classes of proteins, the substrate peptides bind at a 

structurally homologous site on the conserved fold and the bound peptides maintain a 

more or less similar extended conformation. This suggested the possibility that bound 

peptides from protein-peptide complexes can be transformed to the protein structures 

lacking the bound peptide based on optimum superposition of the protein structures. It 

may be noted that similar assumption has been used successfully in structural 

modeling studies of protein ligand complexes involving protein kinases (Brinkworth 

eta!., 2003 ), MHCs (Schueler-Furman eta!., 1998; Schueler-Furman eta!., 2000) and 

other enzyme families (Ansari et a!., 2004; Trivedi et a!., 2005). There are several 

examples where more than one crystal structure of an allele is found with bound 

peptides of different length. It is generally assumed that, three residues on each side 

of the phosphorylation site make significant contact with the protein kinase and are 

responsible for the specificity of a kinase (Brinkworth eta!., 2003). Therefore, bound 

peptides having more than 7 amino acids were truncated to three amino acids on 

either side of the phosphorylation site. All these structures were stored in the template 

library ofMODPROPEP. 

2.2.2 Modeling of protein-peptide complexes 
The current template library of MODPROPEP has protein-peptide complex 

crystal structures for 16 alleles of class I, 12 alleles of class II MHC proteins and 6 

different protein kinase families. Figure 2.1 shows a flowchart depicting various tasks 

which can be performed using MODPROPEP. For these MHC alleles and protein 

kinase families, substrate peptide of any desired sequence can be modeled. Modeling 

of peptide in the binding pocket of MHC or protein kinase is carried out by using the 

same backbone conformation as in the template complex and the side chain 

conformations are generated by the program SCWRL (Canutescu eta!., 2003), which 

uses a backbone dependent rotamer library approach. The template library of 

MODPROPEP has structures for many MHC alleles or kinase families without the 

bound peptide substrate. For modeling of peptide substrates in complex with any of 
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Sequence of Peptide(s) Query Antigenic Protein I 
Protein Kinase Substrate 

Transfer Peptide to 
Structure 

All overlapping Peptides 

No Enter the Sequence of 
Protein 

Scwrl Model of 
Protein 

Model Peptide in Complex with Template Use Your Own 
Scoring 
Scheme Detailed Protein-Peptide Interactions 

View Interactions in Jmol 
e 

Score Peptide using MJ 
orBT 

Pair Potential Matrix 

Figure 2.1: A flowchart depicting the organization and features ofMODPROPEP. Pink boxes 
represent the information provided by the user as input. 

these MHC alleles or kinase families, peptide conformations are transformed from the 

available crystal structures of the protein-peptide complexes after optimum 

superposition of the proteins. If no crystal structures are available for a given protein 

kinase or MHC protein, the program can model its structure in complex with peptides 

of desired sequence using the crystal structure of the closest homologous protein­

peptide complex. Sequences of various MHC alleles have been obtained from the 

IMGT/HLA database (Robinson et al. , 2003) and stored locally so that the user can 

select from the list of alleles the protein to be modeled. The crystal structure having 

maximum sequence similarity is used as a template for modeling the structure of 

query allele. All sequence alignments are carried out using a local version of the 

program BLAST. The SCWRL program is used for mutating the residues as per the 

BLAST alignment and generate the desired homology model. Since only protein­

peptide complexes are used to generate the homology models, the backbone of the 

bound peptide is appropriately mutated by SCWRL to model the substrate of desired 
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sequence. Thus, MODPROPREP provides options for modeling peptide of any 

desired sequence in complex with any MHC protein or protein kinase. 

In order to analyze the int4ractions between the peptide and the protein, the 

residues of the MHC or the kinase, which are in contact with different side chains of 

the modeled peptide are identified using a distance based cut off. Based on these 

contact residues, putative binding pockets are defmed for each of the residues in the 

peptide. MODPROPEP provides a user friendly Jmol java applet interface 

(http://jmol.sourceforge.net) for visualizing the modeled complexes and analyzing the 

binding pockets in detail. 

Apart from structural mrldeling of the peptide of a given sequence in the 
I 

substrate binding pocket of M~C protein or protein kinase, MODPROPEP is also 

capable of scanning an antigenic protein for potential MHC binding peptides. 

Similarly, putative substrate proteins for various protein kinases can be scanned for 

potential phosphorylation sites. Scanning of input sequence is done by breaking the 

protein sequence into all possib~e overlapping peptides of a given length. This length 

is usually the length of the bound peptide present in the template protein-peptide 

complex, i.e. 9 or 10 mer for class I MHC and longer peptides for class II MHC. 

However, for protein kinases only heptameric peptides containing Ser/Thr/Tyr as 

central residue are chosen. For each of these peptides, instead of building all atom 

side chain conformations, as a first step, contacting residue pairs between peptide and 

the protein are identified based on C~ -C~ distances. The binding score of these 
I 

peptides with the MHC or kir ase is evaluated using residue-based statistical energy 

function by Miyazawa and Jernigan (MJ) (Miyazawa and Jernigan, 1996). It may be 

noted that a similar scoring scheme has been used earlier for identifying MHC 

binding peptides using a threading approach (Schueler-Furman et a/. , 2000). Apart 

from MJ statistical potential,1the program also has options for ranking peptide binding 

affinities using residue-based statistical energy function by Betancourt and Thirumalai 

(BT) (Betancourt and Thirw/nalai, 1999) or other user defined residue based schemes. 

The peptides are sorted according to their binding score and the user can select some 

or all of these peptides for detailed side chain modeling by SCWRL depending on 

their preliminary scores. 
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Figure 2.2: A snapshot from MODPROPEP showing \the result of transfer of bound peptide 

from the kinase CDK2 (template: 1 QMZ) to GSK3-beta (template: 1 GNG). Links are provided 

for downloading PDB coordinates of the modeled complex and viewing the superposition of 

the two protein structures along with the peptide in the Jmol applet. A pop-up window shows 

the BLAST alignment between CDK2 and GSK3-beta. 
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Chapter 2: Development of a computational tool for modeling of protein-peptide complexes 

2.2.3 Query interface 
Currently, the structural library of program contains crystal structures of class 

I MHC, class II MHC, and protein kinases. The modeling of protein-peptide 

complexes involving these three classes of protein is possible. User can access the 

features involving each class by clicking the links on the horizontal bar just below the 

header graphics. 

The program requires user to select a MHC allele or protein kinase from the 

pull down menu. The program automatically shows the peptide length options 

available for modeling for that MHC allele or protein kinase. Program takes the user 

to available crystal structure templates for the selected protein and peptide length. 

From here the user can decide a task which is either modeling of peptides or scanning 

a protein sequence for favorable binders. The user is prompted to enter the sequence 

of peptides as one letter code of amino acids. The program models the peptides in 

complex with the selected protein which are available for download as files in PDB 

format. If no ligand bound structure is available for the selected protein, the peptide is 

modeled by transferring the ligand peptide coordinates from a homologous protein­

peptide complex. Figure 2.2 shows an example where a peptide has been modeled in 

Figure 2.3: Modeling of a peptide in complex with PKB (template: I 06K) by transforming 
the bound peptide from the crystal structure of PKA-peptide complex (template: IJBP). 
Modeled peptide is shown is magenta while original PKA bound peptide is shown in blue for 
comparison. PKB is shown in cartoon representation in green. 
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complex with GSK3-beta kinase by transferring the coordinates from CDK2. In order 

to test the accuracy of this ligand transformation approach, we modeled a peptide in 
I 

complex with PKB by transforming the bound peptide from PKA. Figure 2.3 shows 

the superposition of the modbled and the experimentally determined bound peptide in 

the active site of PKB. As can be seen, backbone of both the peptides superpose quite 

well with an RMSD of 1.3 A. 

MODPROPEP provides a user-friendly interface to analyze each modeled 

peptide in detail for contact with the protein. Inter residue contacts can be calculated 

either based on the distance between cP atoms or based on the distance between any 

two atoms in a pair of residues. A list of neighboring residues in the protein is 

displayed for each residue i~ the peptide. These amino acids on the protein define the 

binding subsite for each of the peptide residues. Residue pairs having steric clashes 

are highlighted in yellow. The program also provides interface for analyzing detailed 

atomic contacts between each pair of residue. Additionally, MODPROPEP uses Jmol 

applet for the rapid visualization of these subsites in the proteins. Mouse click on a 

peptide residue shows that residue and the neighbouring residues in the protein in 

Jmol applet on right hand side. Clicked peptide residue is depicted in ball and stick, 

while the neighbouring residues are shown in CPK. The protein backbone is shown in 

ribbon while the peptide backbone is shown in the sticks. 

As mentioned earlie~, the current version of MODPROPEP permits scoring 

various bound peptides using residue based statistical scoring matrices given by MJ 

and BT. Both these scoring matrices have been used in the literature for evaluating 

binding energy of protein-peptide complexes. It has been reported that, while MJ 

potential gives better results for binding of peptides involving hydrophobic interfaces, 

BT potential is more appropriate for binding of peptides involving polar contacts. 

Here, we discuss a typical e 'ample of ranking the site of phosphorylation on the beta­

adducin protein (accession no: P35612) by protein kinase A (Matsuoka et al., 1996). 

Out of a total of 118 S/T containing heptamers, R TPSFLK containing the 

experimentally identified phosphorylation site S713, is ranked 8 by MJ potential, 

while scoring by BT matrix gives it a rank of 3. Modeling of this peptide in complex 

with PKA shows R710 is stabilized by contacts with E127 and E170. Prediction of 

phosphorylation site in Limulus myosin III by PKA (Kempler et al. , 2007), and PS 1 

by GSK3-beta (Prager et al., 2007) indicates that, the true phosphorylation sites 

identified in recent experiments are ranked as high scoring peptides by MODPROPEP 
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using BT matrix. We have also tested the predictive ability of MODPROPEP on the 

known substrates of protein kinases cataloged in phospho.ELM database (Diella et al. , 

2004). We have discussed the results of benchmarking for protein kinases in detail in 

chapter 3. 

Figure 2.4 shows the ranking of a recently identified class I MHC allele HLA­

A*0201ligand by MODPROPEP (Kruger eta/. , 2005). As can be seen, out of a total 

of 625 nonameric peptides present in the antigen CABLl _HUMAN (accession no: 

Q8TDN4), V ALEF ALHL has a rank of 13 and 26 by MJ and BT potentials 

respectively. Analysis bf inter-molecular contacts indicate that, this peptide is 

stabilized by interactions involving K66, AlSO, V152, Y159 and W167. Our results 
I 

indicate that, in 76% of eases the true phosphorylation site can be ranked within top 

30% using BT matrix. Chapter 5 of this thesis discusses the result of benchmarking 

on experimentally veri~ed MHC binding peptides catalogued in SYFPEITHI 

database. 

2.2.4 lmplementati~n of the web server 
MODPROPEP has been implemented using Perl, CGI scripts, java scripts, 

Jmol applet and apache web server. BLAST program downloaded from NCBI website 

is used for local alignments. SCWRL3 is used for the side chain modeling. Various 

structural superpositions have been carried out using the program ProFit 

(http://www. bioinf.org. uk/software/profit). 

2.3 DISCUSSION 
MODPROPEP is a web server for knowledge based modeling of peptide ligands in 

the active site of various MHCs and protein kinases. The software uses available 

crystal structures as templates and uses the program SCWRL to mutate the sequence 

of the protein as well as the peptide to model any peptide-MHC or peptide-kinase 

complex. It provides a n$lber of user friendly interfaces for visualization and 

analysis of binding pockets in these protein-peptide complexes. This software has 

been developed based on the assumption that MHCs and protein kinases have 

conserved structural fold and the ligand peptides bind essentially at the same site. A 

major advantage of MODPROPEP over other structural modeling programs is that, it 

can be used to quickly model a large number of peptides in the binding pockets of 

MHCs and protein kinases. It can also be used for designing inhibitor peptides which 
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Figure 2.4: A snapshot from MODPROPEP showing the result of scanning of 

CABLl_ HUMAN protein for HLA-A *020 I restricted antigenic peptides. The experimentally 

identified substrate peptide V ALEF ALHL, is chosen for modeling in complex with l-ILA­

A *0201 using lAKJ as template. The residues of ~LA-A *020 I in contact with. the peptide 

residues are depicted in tabular format. The right hand side frame shows the 30 structure of a 

selected peptide residue and its contacts with HLA-A *020 I. 
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do not have senne, threonine or tyrosine residue at the phosphorylation site. 

Identification of kinase inhibitor peptides on the substrates or kinase would aid in 

understanding the mechanism of regulation of protein kinases. Thus MODPROPEP 

will complement various available sequence based programs for predicting peptide 

ligands for MHCs and protein kinases. Using this software the user can identify amino 

acids on the MHC or kinases, which are crucial for selection of a peptide ligand. Such 

information is important for design of novel peptide ligands or assigning specificities 

to new alleles of MHCs or novel families of kinases. This software also has an option 

for searching the MHC binding peptides in the sequence of an antigen or 

phosphorylation sites on the substrate protein of a protein kinase using structure based 

approach. Presently, the binding energy is being accessed using residue based 

statistical potential. This scoring function is appropriate for quick preliminary ranking 

of putative peptide ligands. High ranking peptides need to be modeled and detailed 

interactions with the proteins should be analyzed for prediction of actual binders. The 

results of benchmarking of MODPROPEP on the experimentally known substrates of 

protein kinases and MHCs have been discussed in chapter 3 and chapter 5 

respectively. 
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3.1 INTRODUCTION 
Post-translational modification of proteins by phosphorylation is a maJor 

regulatory mechanism for a variety of cellular processes such as transcription, 

translation, replication, signal transduction, immune responses, cell growth, 

differentiation and apoptosis. The importance of phosphorylation can be estimated by 

the fact that about 30% of all proteins in the human genome are phosphorylated 

(Cohen, 2000; Ubersax and Ferrell, 2007). The protein kinases are an important class 

of enzymes which phosphorylate a number of proteins at specific amino acids. 

Phosphorylation of proteins by kinases, either results in the change of functional state 

of the protein, or produces a docking site for the modular interaction domains such as 

SH2, PTB etc. present in interacting partners proteins (Pawson and Scott, 1997). 

Phosphorylation event by kinases, followed by interaction through modular domain 

forms a network of dynamically interacting proteins which is essential for transfer of 

information as well as proper functioning of cellular processes. Due to their 

involvement in many essential functions, kinases have also been found to be 

associated with many diseases including various types of cancers (Pawson, 1994). 

In view of the importance of phosphorylation event in various biochemical 

and cellular processes, correct identification of the substrate protein, that a kinase is 

likely to phosphorylate, is crucial for understanding the molecular details of various 

cellular and disease processes. Availability of the complete genomes of many 

organisms has led to the identification of their kinome or the protein kinase 

complements of the given organism. Prediction of the function of these kinases in 

various genomes has been an area of active research. Recent bioinformatics analyses 

using various sensitive and powerful sequence analysis tools like BLAST, PSI­

BLAST and profile HMMs have successfully identified and annotated the whole 

kinome complements of several eukaryotic genomes. These studies have succeeded in 

identifying 518 putative kinases in human genome (Manning et al., 2002b ), 540 

kinases in mouse (Caenepeel et al., 2004), 411 kinase like proteins in caenorhabditis 

(Plowman el al., 1999) and 353 kinase domains in sea urchins (Bradham et al., 2006). 

Similarly the number of kinases found in Dictyostelium (Goldberg el al., 2006) and 

Drosophila (Morrison et al., 2000) are more than two hundred, while yeast (Hunter 

and Plowman, 1997) and Plasmodium (Ward et a/., 2004) seems to have 113 and 65 
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kinases respectively. These in silico studies have also classified these large numbers 

of kinases in various genomes into various kinase groups and families, thus giving 

valuable clues about putative signaling pathways in which they could possibly be 

involved. However, deciphering the specific substrate proteins of these large numbers 

of kinases still remains a major challenge. Recent studies on reconstruction of 

phosphorylation networks in yeast and human have demonstrated that, for identifying 

phosphorylation cascades and deciphering signaling networks at a genomic scale, it is 

essential to identify the substrate proteins of various kinases (Brinkworth et a/., 2006; 

Linding eta/., 2007; Lin ding eta/., 2008). Therefore, it is necessary to develop novel 

and powerful computational methods for predicting the substrate proteins for a given 

kinase and precisely identifying the sites of phosphorylation. 

In fact a number of different softwares are available for predicting the 

substrates for kinases, even though there have been relatively fewer efforts to 

benchmark the prediction accuracy of these programs (Waneta!., 2008). The various 

prediction programs can be broadly classified into two major groups, naR1ely the 

sequence based methods and structure based methods. All sequence based methods 

derive their prediction rules from analysis of the Ser/Thr/Tyr containing sequence 

stretches which are known to be phosphorylated by various kinases. This information 

about known substrate peptides for various kinases typically comes from peptide 

library experiments or from experimental identification of phosphorylation sites on 

substrate proteins of various kinases(Songyang et al., 1994 ). Recent studies have 

attempted to curate the experimental information and compiled comprehensive 

resources on phosphorylation sites (Amanchy et a/., 2007). Even though all sequence 

based methods use the same experimental information as their knowledge base for 

formulating prediction rules, different programs employ different methodologies, 

features and scoring functions for evaluating the phosphorylation potential of putative 

sites in substrate proteins. NetPhos uses artificial neural network trained on known 

phosphorylation sites to identify phosphorylation sites in query protein sequences. 

NetPhos, however, does not provide any information regarding which protein kinase 

phosphorylates the predicted sites (Blom et al., 1999). On the other hand, the 

programs, such as NetPhosK (Blom et al., 2004), SCANSITE (Obenauer eta/., 2003), 

GPS (Zhou et al., 2004), and PPSP (Xue eta/., 2006) predict Ser/Thr/Tyr containing 

sites which are likely to be phosphorylated by specific families or groups of kinases. 

NetPhosK uses the artificial neural networks trained for individual kinase families, 
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and hence can predict substrates of these kinases. SCANSITE uses position specific 

scoring matrices (PSSM) derived from peptide library data for various kinase families 

for calculating the scores of phosphorylation probability. GPS and PPSP make use of 

statistical models based on clustering and bayesian analysis of sequences of 

phosphorylation sites from known substrates of various kinases. Since for many 

kinase families, the number of known substrate peptides is relatively fewer, GPS and 

PPSP group the substrates of similar kinases together to increase the number of 

known substrate peptides for each kinase group. All these prediction methods are 

trained on sequence information derived from experimentally characterized 

phosphorylation sites for various kinases, thus limiting their applicability to only 

those kinase families for which sufficient amount of substrate information is available 

from experimental studies. Hence, a major limitation of the various sequence based 

methods is that, they cannot predict substrates for the other protein kinases for which 

little or no substrate information is available. Even though recently developed 

programs like DIPHOS (Iakoucheva et al., 2004) make use of disordered regions and 

predicted secondary structures as features, and employ logistic regression model for 

the prediction of phosphorylation sites, their predictive abilities have not been tested 

extensively. 

In contrast to sequence based methods, structure based methods attempt to 

predict the substrate peptides for kinases based on structural modeling of the putative 

Ser/Thr/Tyr containing peptides in the peptide binding pocket of the kinase and 

ranking various peptide ligands as per their interaction energy with the receptor 

kinase. The crystal structures of various kinase-peptide complexes are used as 

structural templates for modeling. Thus, unlike sequence based methods which use 

only sequence information of the putative substrate peptides for prediction, the 

structure based methods use information from structural features of kinase-peptide 

complexes apart from sequence information of substrate peptide as well as receptor 

kinases. Secondly, in principle the structure based methods do not require 

information about known substrates for a given kinase as preferred substrates are 

predicted based on physico-chemical interactions between kinase and the peptide. 

Therefore, structure based methods can in principle be applied for predicting 

substrates for novel kinase families for which no experimental information is 

available. Conservation of kinase fold despite divergence in sequence makes them 

ideal candidates for application of structure based prediction methods. However, the 
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survey of available literature indicates that potential of structure based methods have 

not been exploited to the full extent. In contrast to large number of sequence based 

methods for predicting substrates for kinases, as of now, PREDIKIN (Brinkworth et 

al., 2003) is the only structure-based program available for prediction of 

phosphorylation sites in proteins. Even though PREDIKIN was a major development 

in demonstrating for the first time the utility of structural information in successful 

prediction of kinase substrates, it has not been extensively benchmarked on various 

kinase families other than PKA, CDK and CHK. Secondly, the scoring scheme it 

uses for estimating the binding energy of the substrate peptides, uses information 

from peptide library data. In view of its reliance on experimental substrate peptide 

data, PREDIKIN will also share some of the disadvantages of sequence based 

methods so far as its applicability to new kinase families identified in the genomes. 

The primary reason for the lack of generalized structure based substrate 

prediction method is the computational complexity associated with structural 

modeling of the protein-peptide complexes. Prediction methods based on the 

evaluation of the binding energy between a protein structure and a given peptide 

ligand require reliable scoring functions as well as adequate CPU time for efficient 

conformational search. Therefore, structure based methods like PREDIKIN use 

structural information to a limited extent and only consider the binding pocket 

environment based on 30 structure of the kinase, rather than structural modeling of 

the substrate in the binding site. This prompted us to explore the feasibility of 

developing alternative structure based approach which does not use any experimental 

information on known kinase substrates. 

Recognition of substrate peptides by protein kinases is essentially a problem 

of protein-peptide interaction. An analogous problem is the recognition and binding 

of peptides by MHC proteins. Structure based approaches have been extensively used 

for predicting binder peptides for MHC proteins (Pohlmann et al., 2004; Tong et al., 

2004 ). One such structure based method which permits fast automated scanning for 

potential MHC binding peptides used a threading type approach (Schueler-Furman et 

a!., 2000). In this approach, the peptide structure in the MHC groove is used as a 

template upon which query peptide sequences are threaded. The compatibility 

between threaded peptide sequence and MHC binding pocket is evaluated by 

statistical pair potential derived from the analysis of amino acid packing in protein 

structures. This method has been successful in identifying good binders for several 
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MHC alleles (Altuvia eta!., 1995; Schueler-Furman eta!., 1998; Schueler-Furman et 

a!., 2000). Therefore, we wanted to investigate whether residue based statistical 

potentials can be used for predicting substrate peptides for various kinases. 

In this chapter, we have developed a novel structure based method for 

identification of peptide stretches which can be phosphorylated by various Ser/Thr 

kinases. We use a multi-scale approach, where putative high scoring substrate peptide 

candidates are identified by threading of peptides on structural templates of kinase­

peptide complexes and scoring them by residue based statistical pair potentials. High 

scorer peptides short listed by initial screening are modeled in the peptide binding 

pocket of the kinase using MM/PBSA approach and ranked as per their binding free 

energy. Benchmarking of our prediction method on the experimental data available in 

phospho.ELM (Diella et a!., 2004) and extensive comparison with other kinase 

substrate prediction programs indicate that, prediction accuracy of our method is 

comparable to other sequence based methods even though it does not use any kinase 

specific experimental data. 

3.2 METHODS 

3.2. 1 Modeling of peptides in the active site pocket of kinases 
and scoring the binding energy by statistical pair 
potentials 

The crystal structures of kinase-peptide complexes available in PDB (Berman 

et a!., 2000) were used as templates for modeling various query peptides in complex 

with the respective kinases. In order to model different query peptides, the backbone 

was kept fixed in the peptide binding pocket of the kinase in the bound conformation 

and side chains were modeled using backbone dependent rotamer library approach of 

SCWRL (Canutescu et a!., 2003). In cases where no structures were available for 

kinase-peptide complex, but crystal structures were available for kinase alone, the 

peptide was modeled by transforming the coordinates of peptide from maximally 

homologous kinase-peptide complex. If structures were available neither for the 

kinase-peptide complex nor for kinase alone, kinase of appropriate sequence was 

modeled by SCWRL using the most homologous kinase structure as template and 

peptide was modeled subsequently using coordinate transformation approach. All the 

modeling tasks mentioned above were carried out using MODPROPEP (Kumar and 

Mohanty, 2007), a software developed in our laboratory for knowledge based 
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modeling of kinase-peptide and MHC-peptide complexes. The contacting residue 

pairs between the kinase and the peptide were identified using the criteria of any two 

atoms of the residue pair being at a distance less than or equal to 4.5A. Based on total 

number of contacts between the kinase and the peptide, the binding energy was 

evaluated using Betancourt-Thirumalai (BT) statistical pair potential (Betancourt and 

Thirumalai, 1999) and all the Ser/Thr containing heptameric peptides in a query 

protein were ranked as per their binding energy using appropriate interface of 

MODPROPEP. Since all computations for our structure based method were carried 

out using MODPROPEP, we will refer our structure based prediction method as 

MODPROPEP while comparing with other phosphorylation site identification 

methods. 

3.2.2 Dataset for benchmarking prediction accuracy of 
MODPROPEP 

Experimentally identified phosphorylation sites cataloged in Phospho.ELM 

database were used to compare the prediction accuracy of MODPROPEP with other 

available softwares for prediction of protein kinase substrates. Phospho.ELM (Diella 

et al., 2004) (version 5.0, May 2006) dataset contains a total of 13603 

phosphorylation instances in 4422 proteins by 263 kinase families. Out of these 263 

families, 188 families belonged to Ser/Thr kinases. However, various sequence based 

methods have grouped many members of these 188 kinase families to single substrate 

specific classes. Based on the classification scheme proposed by GPS (Xue et al., 

2005), II 0 out of these 188 Ser/Thr kinases were grouped into 38 classes with 

number of members in different classes varying from I to 12. Since, some of these 

kinase classes contained too few substrates; we removed those classes which 

contained less than 20 phosphorylation instances. Kinases which did not show 

significant homology with structural templates available in MODPROPEP were also 

excluded. Finally, out of the 38 substrate specific classes, 22 classes containing 70 

kinase families were selected for benchmarking of various substrate prediction 

programs (Table 3.1 ). They contained a total of 2457 phosphorylation instances in 

1180 proteins by 70 kinase families. 
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Table 3.1: The list of 22 kinase groups that have more than 20 substrates catalogued in 
phospho.ELM database. The individual kinases which constitute each group and the crystal 
structure template used by MODPROPEP for prediction during benchmarking are shown. The 
numbers in the brackets are the percentage similarity of the kinases with their structural 
template. 
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3.2.3 Benchmarking of MODPROPEP, GPS, PPSP, SCANSITE, 
NetPhosK and PREDIKIN 

MODPROPEP scans a given substrate protein and identifies all heptameric 

peptides containing Ser/Thr (three amino acids on either side of S/T) as the central 

residue. Each of these Ser/Thr containing heptamers are modeled in the substrate 

binding pocket of the respective kinase crystal structure or structural model. The 

binding energy for each of the kinase-peptide complexes are evaluated using BT 

statistical pair potential. All modeled peptides are sorted as per their binding energy 

and assigned a rank. We consider a prediction to be correct if the peptide containing 

the known phosphorylation site has a rank within top 30%. This procedure is 

repeated for all the known substrate proteins for a given kinase group and percentage 

of substrates for which MODPROPEP gives correct prediction is evaluated. 

Similarly, prediction accuracy was calculated for all the 22 kinase groups. 

GPS, PPSP and SCANSITE take the protein sequence of the substrate protein 

as input and report the potential phosphorylation sites as output. GPS predict the 

phosphorylation sites by finding the similarity between the Ser/Thr containing 

peptides in the query sequence and the peptides in training sets consisting of known 

phosphorylation sites. PPSP uses Bayesian statistics and SCANSITE predicts using 

the scoring matrices derived from the alignment of phosphorylated peptides identified 

by peptide library experiments. Each of these programs predicts a set of potential 

phosphorylation sites for each substrate protein and the actual number of sites 

predicted by a given program depends on the threshold values of various parameters 

or the choice of the stringency level. For GPS, the default threshold values were 

selected. PPSP provides three prediction options: high sensitivity, balance and high 

specificity. We selected "balance" for PPSP. SCANSITE has provision for three 

stringency levels i.e. high, medium and low. For SCANSITE, low stringency level 

was used in this study. NetPhosK does not permit a selection of stringency level, 

hence all NetPhosK predictions were carried out using default values. If the known 

phosphorylation site is not in the list of potential phosphorylation sites listed by the 

program, then the prediction is considered incorrect. However, if the correct 

phosphorylation site is listed, but the output list contains more than 30% of all 

possible Ser/Thr containing peptides, then also the prediction was considered as 

incorrect. This additional criterion makes the stringency level of all these three 

programs comparable to that ofMODPROPEP. 

53 



Chapter 3: A structure based multisca/e approach for identification of substrates of kinases 

PREDIKIN uses the amino acid sequence of the kinase as input and predicts a 

heptameric amino acid motif as putative phosphorylation site. However, it was found 

that, most often the correct phosphorylation site deviated from the predicted motif at 

many positions. Since, a relaxed criterion was used for estimating prediction 

accuracy of other programs, similar flexibilities were also allowed in evaluating 

predictions by PREDIKIN. The number of positions at which the correct 

phosphorylation site matched with the motif predicted by PREDIKIN was calculated 

and a score was assigned to the correct phosphorylation site based on a simple scoring 

scheme of+ 1 for match and -1 for mismatch. All other Ser/Thr containing peptides in 

the substrate protein were also scored in a similar manner. All Ser/Thr containing 

peptides having scores higher than the correct phosphorylation sites were considered 

as predictions by PREDIKIN. The prediction for the substrate protein was considered 

correct, if the number of peptides having the score greater or equal to the score of the 

phosphorylation site, are within 30% of all Ser/Thr containing peptides in the 

substrate protein. 

3.2.4 Human Kinome Analysis 
A total 518 kinase sequences have been identified in human genome (Manning 

et a/., 2002b ). The sequences of these kinases were downloaded from the KinBase 

website (bttp://www.kinase.com/kinbaseD. All the tyrosine kinases were removed 

from this data set and this resulted in 424 Ser/Thr kinases belonging to 104 kinase 

families. Each of these 424 kinases were aligned with representative kinase sequences 

belonging to each ofthe 22 substrate specific classes considered in this study. A local 

version of BLAST program from NCBI was used for pairwise alignments. A total of 

324 kinases showed statistically significant alignments with length more than 250 

amino acids. Out of these 324 kinases, a set of 160 kinases had percentage identity of 

more than 40% with representative members of our 22 substrate specific groups. 

Hence, substrate specific classes could be assigned with high confidence to each of 

these 160 human kinases based on the best matching representative sequence. 

3.2.5 Re-ranking of high scoring substrate peptides using 
MMIPBSA 

The binding free energy of substrate peptides in complex with the protein 

kinase was evaluated usmg MM/PBSA approach. MM/PBSA involves 

supplementing the conventional molecular mechanics (MM) energy terms with 
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solvation energy terms calculated using poisson-boltzman electrostatic calculations 

and accessible surface areas of polar and nonpolar atoms. For each substrate protein 

sequence, the high ranking 30% SeriThr containing peptides scored using BT 

statistical potential by MODPROPEP, were 

selected and re-ranked as per their MMIPBSA binding free energy. The kinase­

peptide complexes were first energy minimized. The MMIPBSA module of AMBER 9 

molecular dynamics package (Case et a!., 2006) was used to calculate the binding 

free energy of these energy minimized kinase-peptide complexes. 

3.2.6 Receiver operating characteristic curves (ROC) 
calculations 

The discriminatory power of our prediction method was calculated using ROC 

method. ROC is generally favored over the percent accuracy because it does not 

depend on the cutoff value chosen for the classification of prediction outcomes. The 

outcome of prediction event for a peptide may be classified into four categories: true 

positive (TP), the binding peptides which are predicted to be binders; true negative 

(TN), nonbinding peptides predicted not to bind; false positive (FP), nonbinding 

peptide predicted to bind; false negative (FN), binding peptide predicted not to bind. 

ROC is a plot of true positive rate (TPR) vs. false positive rate (FPR) as the cutoff 

value is varied from minimum to maximum. True positive rate (TPR) is calculated as 

the fraction of true positive among all positives (TPR = TP I (TP + FN)). TPR, also 

known as sensitivity, is the fraction of binding peptides among predicted binding 

peptides. FPR is calculated as the fraction of false positives among all negatives (FPR 

= FP I (FP + TN)). Specificity is another quantity calculated as the fraction of true 

negative among all negatives (specificity = TN I (TN+FP)). The area under the ROC 

curve in the plot is indicative of the predictive power of the prediction method. For 

each of the prediction exercise during the benchmarking, ROC function of R 

statistical language environment (http:l/~.r-project.or_g) was used for calculation 

of ROC, specificity and sensitivity values. 

3.3 RESULTS 

3.3. 1 Identification of phosphorylation sites by modeling 
kinase-peptide complexes 

The crystal structures of various SeriThr kinases in complex with substrate 

peptides were obtained from PDB. Structural alignment of the crystal structures of 
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serine/threonine kinases PKA (Madhusudan et a!., 1994), PKB (Yang et a!., 2002), 

CDK2 (Brown eta!., 1999), and PHK (Lowe eta!., 1997) revealed that they share a 

conserved fold in spite of the sequence divergence, with RMSD values ranging from 

1.0 to 1.5 A. This implies that the homology models of the kinase sequences can be 

built with high confidence level. Also, the substrate peptide is bound in the catalytic 

site in more or less similar conformation with a maximum Cu RMSD of 1.3 A among 

PKA, PKB, and PHK. The only exception was CDK2, which had the substrate 

peptide in a different conformation. A careful analysis of these crystal structures 

indicated that, protein kinases homologous to these crystal structures are likely to 

adopt similar structural folds and conserve their peptide binding pockets. 

Since the substrate peptide is bound in the similar extended conformation and 

relative orientation in most of the crystal structures of kinase-peptide complexes, the 

peptide binding pocket on the kinase fold has been described in literature in terms of 

subsites (Kobe et al., 2005) corresponding to binding pockets for each residue of the 

substrate peptide (Figure 3.1 ). The site of phosphorylation on the substrate peptide is 

referred as PO, while the three residues flanking the phosphorylation site on the N­

and C-terminus are referred as P-3, P-2, P-1 and P+1, P+2 and P+3 respectively 

(Kobe et al., 2005). The subsites in the protein kinase which accommodate these 

seven residues of the substrate peptide are referred as S-3, S-2, S-1, SO, S+ 1 etc. 

(Kobe et a!., 2005). The specificity of the substrate peptide for a given protein kinase 

is determined by the complementarities between the peptide residues and the residues 

lining these subsites. Therefore, theoretical estimation of the binding energy between 

the peptide and the kinase can be obtained by appropriately scoring the interactions 

between the amino acids of the kinase and the substrate peptide. 

We have previously developed a computational protocol, named 

MODPROPEP, which can model all possible Ser/Thr containing peptides from a 

putative substrate protein in the binding pocket of the corresponding kinase. If the 

crystal structure is not available for a protein kinase, a homology model is built using 

the crystal structure showing the highest similarity as structural template. For each 

amino acid of the substrate peptide, the list of contacting residues in each subsite is 

obtained based on a distance based cutoff. If any atom of a residue in the peptide is 

within 4.5 A of any atom belonging to a residue in the kinase structure or structural 

model, the corresponding residue pairs are defined as contacting residue pairs by 

MODPROPEP. Binding energy for a query peptide is calculated by scoring the 
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Figure 3.1: Crystal structure of PKA (IJBP) in complex with bound substrate peptide. The 
small N-terminal lobe and large C-terminal lobes are shown in yellow and cyan ribbons 
respectively. Binding subsites accommodating the side chain of the peptide residues are 
shown within the ovals marked -3 to +3. Kinase residues within each subsite which are within 
a cutoff distance of 4.5A from the peptide residues they accommodate, are shown in magenta 
color. Residues which are used in the modified version of the algorithm are shown in the stick 
representation. Residues represented in orange stick are those which do not come within the 
distance cut off, but have been reported in the literature to be involved in the determination 
of substrate specificity. Peptide backbone is shown in blue and the side chains are shown in 
green. 
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interactions of each of its amino acids with the residues in the corresponding subsites 

of the protein kinase, and summing the scores of all amino acids in the peptide. Given 

a putative substrate protein of a protein kinase, all the Ser/Thr containing peptides are 

scored for their binding energy values and the peptides are ranked as per their binding 

affinity. 

3.3.2 Benchmarking predictive power of statistical pair 
potentials 

We have used residue-residue statistical pair potentials for scoring the 

interactions between the residues of the substrate peptide and the residues lining the 

various subsites of the protein kinase. These knowledge based potentials are derived 

from the analysis of the packing preference of the various amino acids in the crystal 

structures present in PDB. Since these pair potentials are derived from analysis of a 

set of non-redundant structures belonging to various different fold families present in 

PDB, they are suitable for scoring protein-peptide interactions in general. Therefore, 

unlike the scoring functions used in sequence based substrate prediction methods for 
I 

kinases or hybrid methods like PREDIKIN, the scoring functions are independent of 

the protein kinase ~amilies. Therefore, knowledge based potentials can also be used 

for protein kinase families for which no experimental substrate peptide data is 

available. We wan~ed to investigate the predictive ability of the two widely used pair 

potential matrices {riz. Miyazawa and Jernigan (MJ) (Miyazawa and Jernigan, 1996), 

and Betancourt and Thirumalai (BT) (Betancourt and Thirumalai, 1999). Earlier 

studies on application of statistical pair potentials for estimating the binding energies 

of protein peptide complexes have suggested that, MJ matrix is appropriate for 

interactions involying primarily hydrophobic interfaces, because it has been derived 

using the solvent as the reference state for the estimation of the favorability of 

interactions between different amino acid pairs. However, it does not score correctly 

the interactions ipvolving hydrophilic amino acids. On the other hand, BT matrix 

overcomes this by changing the reference state to a solvent like molecule threonine. 

Our analysis on a data set of known kinase substrates also demonstrated that, BT 

matrix is more suitable for ranking the known kinase substrates with high score. Since 

the substrate peJ1tides for various kinases often contain charged and polar amino acids 

in addition to hydrophobic contacts, BT matrix gives better results compared to MJ 

pair potential. ~1: may be noted that, similar observations have also been made in the 
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context of identification of the MHC binding peptides using statistical pair potential 

(Altuvia et al., 1995; Schueler-Furrnan et al., 1998; Schueler-Furrnan et al. , 2000). 

We discuss below the prediction results obtained for various kinase families using BT 

matrix. 

All Ser/Thr kinase fami~ies for which at least 20 different substrate proteins 

were cataloged in Phospho.ELM database were used to benchmark the predictive 

power of our structure based approach. MODPROPEP along with BT scoring matrix 

was used to predict substrates for 22 different kinase groups. As discussed before, all 

Ser/Thr containing heptameric peptides were modeled in the active site pocket of the 

respective kinases and were r~ed as per their binding energy score. A prediction for 

a given substrate protein was considered correct, if the actual experimentally 

identified phosphorylation site was ranked among the top 30% of all the Ser/Thr 

containing peptides present in the substrate protein. Figure 3.2 shows the results of 

our structure based prediction method for 1 0 different kinase families, namely PKA, 

PKB, PKG, PAK, PDK, CHK, CK2, DAPK, ROCK and MAP3K. As can be seen 

from Figure 3.2, prediction accuracies of our structure based method for PKA, PKB 

and PDK are above 70%, while for PKG the prediction accuracy exceeds 80%. For 

the kinase families PAK, CHK, CK2, DAPK, ROCK and MAP3K, our structure 

based method could also predict with accuracy higher than 65%. For the purpose of 

comparison, Figure 3.2 also shows the results from other commonly used programs 

for prediction of phosphqrylation sites using the same dataset, which was used for 

benchmarking the prediction accuracy of MODPROPEP. Our structure based 

prediction method outperformed all other programs for PKG, PDK, ChK, CK2, 

DAPK, ROCK, and MAP3K. For the protein kinases PKA, PKB, and P AK, although 

MODPROPEP had an accuracy of more than 65%, PPSP did better than 

MODPROPEP for P AK, while for PKA and PKB, GPS performed better than 

MODPROPEP. These results were per se extreme1y encouraging, because our 

structure based approach was comparable in performance to best performing sequence 

based methods, even tHough it does not use any experimental data for training. 

3.3.3 Improvement of prediction accuracy by alteration of 
scoring scheme 

Figures 3.3 and 3.4 show the prediction results for the other 12 protein kinas( 

families in our data set. As can be seen, for PKC, IKK, PLK, CaMKII, PHK anc 
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Figure 3.2: Comparison of the prediction accuracies of MOD PRO PEP for ten different kinase families with other phosphorylation site prediction programs, 
namely, GPS, PPSP, PREDIKIN, SCANSITE, and NetPhosK. MODPROPEP has a prediction accuracy of more than 60% for these kinases. The total number 
of known substrate peptides used in prediction is mentioned below the name of respective kinase family. 
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Figure 3.3: Comparison of pred iction accurac ies by modified version of MODPROPEP for those kinase families where prediction accuracy by original 
MODPROPEP was less than 60%. The total number ofknown substrate peptides used in prediction is mentioned below the name of respective kinase family. 
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MAP2K the prediction accuracy of MODPROPEP was between 35% to 40%, while 

for the remaining six kinase families MODPROPEP had a prediction accuracy of 20% 

or lower. It must be noted that, for many of these 12 kinase classes other sequence 

based prediction tools also had a prediction accuracy of lower than 50%, thus 

indicating that, they might be genuinely difficult cases for prediction. Therefore, we 

proceeded to analyze the possible reasons for the failure of MODPROPEP to rank the 

known phosphorylation sites with high score in case of these kinases. Our modeling 

protocol had used the crystal structures of PKA and PKB as structural templates in 

case of five of these kinases, the crystal structures of CDK2 had been used as 

templates for five other kinase families, while the crystal structure of PHK was used 

as template in the remaining two cases. The fact that the prediction accuracy for PKA 

and PKB was good, led us to examine the reasons for the poor prediction accuracy for 

other kinases families which were homologous to PKA and PKB. We analyzed the 

crystal structure of PKA for the composition of each of the subsites which 

accommodate the peptide residues. Analysis of the residues lining each of the subsites 

indicated that, because of our simplistic distance based cutoff, some residues are 

included in list of subsites even though they are occluded by other residues and do not 

make direct contact with the residues of the substrate peptide. Similarly, many 

residues were included as putative substrate binding pocket residues, even though the 

interactions were mediated primarily by backbone atoms. Such interactions are 

unlikely to be determinants of specificity of recognition, but their inclusion as binding 

pocket residues was resulting in poor scores for actual substrate peptides. For 

example, in subsite S-1, kinase residues K 168, T20 1, and P202 are included as pocket 

residues, even though their side chains do not make contact with the side chain of Ala 

at P-1 (Figure 3.1 ). On the other hand, residues 052 and S53 have been reported to be 

the specificity determining residues for the amino acid at P-1 position of the peptide, 

even though in the crystal structure of PKA they do not have direct contact with the 

Ala at P-1 position in peptide. Therefore, by careful examination of the crystal 

structure and inclusion of information from literature about additional specificity 

determining residues (Nishikawa et al., 1997; Obata eta!., 2000), we modified the list 

of binding pocket residues for each of these 12 kinase families. Predictions were 

carried out again by MODPROPEP for these 12 kinase families after these 

modifications. Figures 3.3 and 3.4 also show the results from modified version of 

MODPROPEP. As can be seen from Figure 3.3, the inclusion of selected residues 
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resulted in further improvement of prediction accuracy for PKA and PKB. Prediction 

accuracy ofPKA improved from 71.4% to 84.8%, while for PKB the improvement in 

prediction accuracy was from 70.9% to 77.6%. Most dramatic improvement was 

observed for PKC with prediction accuracy reaching to 73.4% from 43.3%. The 

accuracy improved only slightly for CK 1 and GRK, but for these kinases other 

programs also did not predict well. IKK and PLK showed a decrease in accuracy. 

CaMKII and PHK whose template was PHK did not show a significant improvement. 

GSP and PPSP clearly performed better in case of these kinases (Figure 3.3). 

The predictions by MODPROPEP for the kinases CDKl, CDK2, GSK3 beta 

ar APK had accuracy lower than 20%, while GPS, PPSP, PREDIKIN and 

SC )ITE performed significantly better in these cases (Figure 3.4). Our analysis of 

th sible reasons for this poor performance of MODPROPEP indicated that, most 

of ;ubstrates of all these kinases had Pro at P+ 1 position. Since, these sequence 

be: nethods were trained to use Pro as a signature motif, they could predict the 

substrates of these kinase families with higher accuracy. On the contrary, for MAP2K 

family which lacked any conserved motif in the substrate peptides, MODPROPEP 

had a prediction accuracy of 47%, while GPS and PPSP showed accuracy of 12% and 

34% respectively (Figure 3.4). These five kinase families were modeled using 

peptide bound CDK2 as template. We analyzed various modeled peptides in complex 

with CDK2 based templates to understand, why our method failed to rank known 

binders with high score. Figure 3.5 shows the interacting residues in various 

subsites in the crystal structure of CDK2-peptide complex. As can be seen, Arg at 

P+2 position on the substrate peptide residue is in fact exposed to the solvent and does 

not make direct contact with any of the kinase residues. Therefore, one would a priori 

expect that substrates having polar or charged residues will be preferred at P+ 2 

position. However, our algorithm does not include any penalty for the hydrophobic 

residues being exposed to the solvent. Hence, it fails to discriminate peptides having 

hydrophobic residues at P+ 2 position. Similarly, the Pro at P+ I position on the 

substrate peptide has Glui62 and Argi69 as potential interaction partners in S+I 

subsite based on distance based cut off. However, careful examination of the 

orientations of the side chains in S+ I pocket indicates that, Glu I62 is oriented away 

from Pro and Val164 occludes direct contact between Argi69 and Pro. However, our 

distance based criteria includes these two charged residues as inteni'ttion partners for 

Pro, thus resulting in poor score for peptides containing Pro at P+2. Similarly, the 
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Lys at P+ 3 is stabilized by interactions with the phospho-Thr 160 residue in the kinase 

(Figure 3.5). However, our current scoring potential does not contain any score for the 

interaction involving non standard amino acids. Therefore, while investigating effect 

of modifications to the scoring scheme and pocket residues, we used the potentials of 

Asp in place of phospho-Thr for scoring the peptides and excluded the subsites P+ 1 

and P+2 from scoring. As can be seen from Figure 3.4, this resulted in a dramatic 

improvement in the prediction accuracy for CDK1 and CDK2. The prediction 

accuracy for CDK2 changed from 7% to 49%, while that of CDK 1 the improvement 

was from 11% to 41%. However, in case of other kinases the improvement was only 

marginal. This may be because of the involvement of other regulatory mechanisms in 

determination of the substrate specificity of these kinases. Thus, our detailed analysis 

of the predictions for these 12 kinase families by MODPROPEP clearly highlighted 

the possible reasons for the poor performance of the structure based method and it 

gave valuable clues for improvement in the prediction accuracy by suitable alteration 

to the computational protocol. 

3.3.4 Receiver operating characteristic curves (ROC) analysis 
Since our structure based method performed comparable to or better than the 

best available sequence based methods for 11 kinase families and kinomes of several 

organisms are known to have many members belonging to these families, we decided 

to further benchmark the robustness of our predictions for these kinase families by a 

rigorous analysis involving ROC curves. As discussed earlier, we classified a 

prediction of phosphorylation site for a given substrate as correct, if the known 

phosphorylation site was ranked within top 30% of all Ser/Thr containing peptides in 

terms of the calculated binding energy score. Altering the cut off for this rank 

percentile will not only alter the overall prediction accuracy, but it will also change 

the number of false positive predictions. Therefore, detailed analysis of sensitivity and 

specificity of prediction through ROC curve is necessary to judge the true significance 

of the predictions by MODPROPEP. We computed the ROC curve for each of the 10 

kinase families which showed a prediction accuracy of higher than 65% in our 

analysis by unmodified MODPROPEP. Figures 3.6A and 3.68 show the ROC curves 

for the representative case of CK2 and also when all these 10 groups were merged 

into a single class. As can be seen, the values for area under the curve (AUC) are 

0.792 and 0.764 respectively. Table 3.2 gives the values for AUC, sensitivity (Sn) 
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Figure 3.5: Crystal structure of CDK2 (I QMZ) in complex with bound substrate peptide. 
Binding subsites accommodating the side chain of the peptide residues are shown within the 
ovals marked -3 to + 3. Kinase residues in each subsite which are within a cutoff distance of 
4.5A from the peptide residues they accommodate are shown in magenta color. Peptide 
backbone has been shown in blue and the side chains of peptide residues are shown in green. 
The small N-terminal lobe and large C-terminal lobes are shown in yellow and cyan ribbons 
respectively. 
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Table 3.2: Receiver operating characteristic curve (ROC) analysis for I 0 protein kinase 
groups whose prediction accuracy by MODPROPEP was more than 60%. 

Kinase Area under curve Sensitivity (%) Specificity (%) 
PKA 0.8 72.6 i 74.4. 
PKB 0.794 74 70.6l 
PKG 0.838 80.7' 81.6 

. PAK 0.736 64.2 I 75.4 
PDK 0.729 76.9 + 68.8 
ChK 0.738 83.6' 61.3 -
CK2 0.792 74.6 71.9 ----
DAPK I 0.776 61.1 86.4 ' 
ROCK 0.76 88 

f-- ------
61.5 

MAP3K 0.681 ! 94.3 42.1 ----
All kinases 0.764 68.3 73.2' - . 

and specificity (Sp) for the predictions by MODPROPEP for each of these 10 kinase 

families. These results further establish the statistical significance of our predictions. 

3.3.5 Analysis of human kinome 
Recently, there has been increased interest in the reconstruction of signaling 

pathways involving protein phosphorylation networks (Brinkworth et a!., 2006; 

Linding et a!., 2007; Linding et a/., 2008). These studies require the identification of 

the substrate protein for the known and putative protein kinases. As different 

prediction programs predict with different accuracy, correct choice of prediction 

program for each family of kinase becomes very important. However, it is often 

observed that, for in silica analysis of substrates of kinases only one or two prediction 

approaches are used irrespective of the kinase family and no attention is paid to the 

prediction accuracy of those particular programs for the kinase family being analyzed. 

A major bottleneck in the choice of most appropriate phosphorylation prediction tool 

for different kinase families is the lack of systematic benchmarking studies on large 

data sets. Apart from the current study, the only other systematic comparative analysis 

of the predictive ability of phosphorylation site prediction tools is a recent study by 

Wan et a/. (2008). However, analysis by Wan et a!. (2008) only compared the 

available sequence based prediction methods. Since our analysis of the comparative 

prediction accuracy of sequence and structure based prediction methods clearly 

demonstrated the superior performance of different prediction methods for different 

kinase families, we decided to identify best prediction tools for various different 
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kinase groups present in human genome. The human kinome consists of 518 

functional genes for protein kinases which have been classified into 10 major groups 

and 133 families. Sequence homology searches were carried out for these kinases, 

against a library of kinase sequences belonging to the 22 kinase families, which have 

been analyzed in the current work for prediction accuracy of different programs. 

These homology searches showed that 160 kinases belonging to 33 families produced 

an alignment of length more than 250 and sequence identity more than 40% with 

members of the 22 substrate specific kinase families. These genomic protein kinases 

are homologous to at least one of the kinases in this library, so the closest homologous 

kinase in the library can be used to predict substrates of each one of these kinases. 

Table 3.3 shows the number of different human kinases belonging to each of the 22 

kinase groups present in our library. It also lists for each group the prediction 

methods which perform with an accuracy higher than 60% listed in the decreasing 

order of their prediction accuracy. As can be seen from Table 3.3, our structure based 

approach MODPROPEP, predicts best for the 15 out of 33 kinase families. For the 

remaining families, PPSP and GPS were best predictors. Therefore, during in silico 

exploration of the phosphorylation network, different prediction programs can be 

selected based on our results in Table 3.3, and the structure based program developed 

in the current work could be a powerful tool in addition to available sequence based 

methods. One of the puzzling observations from this analysis is the absence of 

SCANSITE (Obenauer et al., 2003) in Table 3.3, even though it is a widely used 

kinase substrate prediction tools. It must be noted that, SCANSITE is primarily 

trained on peptide library data, while our benchmarking was carried out on data from 

in vivo phosphorylations of proteins. It appears that, there are distinct differences in 

the phosphorylation patterns seen in peptide library data verses in vivo 

phosphorylation data. 

3.3.6 Re-ranking of kinase-peptide complexes using 
MMIPBSA 

Our analysis demonstrated that, MODPROPEP is a powerful structure based 

approach which successfully predicts substrates for ten different kinase families, even 

though it does not use any kinase family specific substrate data for training. 

Moreover, because of the scoring by simple statistical pair potential it is not compute 

intensive and can be used for high throughput analysis of sequences in a genomic 
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Table 3.3: The protein kinases from human genome belonging to 33 families which show 
similarity to 22 kinase groups present in our dataset. For each group the prediction methods 
which performed with accuracy higher than 60% are also listed in the decreasing order of 
their prediction accuracy. 

1 Group 
--------------, 

Family Genomic Template Programs recommended 
I 

kinases ' I 

--- -- -1 

'AGC Akt 3 PKB PPSP, Scansite, GPS, NetPhosK, 

' 
MODPROPEP 

I --~ 

I DMPK I 2 l ROCK 1 MODPROPEP, GPS 
-· 

I GRK I 7 I GRK I GPS 

PDKl 1 PDK MODPROPEP, PPSP 
------ - - ~ 

PKA 5 PKA PPSP, GPS, NetPhosK, MODPROPEP, I 

Scan site I 

----- - - - - - - - i 
I PKC 9 PKC MODPROPEP, PPSP, GPS 

I - -- - - - ~ 
I PKG 2 PKG MODPROPEP, PPSP ' 

I 1 PKN 3 PKC MODPROPEP, PPSP, GPS 
I 

------1 
RSK 8 PKB . PPSP, Scansite, GPS, NetPhosK, J 

I I : MODPROPEP ______ -·-· ___ 
SGK 3 1 PKB : PPSP, Scansite, GPS, NetPhosK, ' 

I 

I · MODPROPEP I 
1 

CaMKII 
-~-:; -------------- - - - ; 

CAMK CAMKl 5 GPS, PPSP I 

----i 

CAMK2 4 CaMKII GPS, PPSP 
' 

I CAMKL 1 ChK MODPROPEP I 

---- - - - -i 

I I CASK 1 CaMKII GPS, PPSP 
I 

1 DAPK 5 DAPK,CaMKII MODPROPEP, PPSP, GPS I -·-- ----1 

I I DCAMKL 2 DAPK,CaMKII MODPROPEP, PPSP, GPS 

: DAPK 
-- ---- - - - - - - '-i 

MLCK I 3 : MODPROPEP, PPSP 
·- -----; 

PHK I 2 1 PHK 1 GPS, PPSP 

I ChK I MODPROPEP 
------1 

RAD53 1 
-··---

CKl CKl 7 CKl GPS, NetPhosK 
----- --------------- - -i 

1 CMGC 1 CDK 18 CDK2,CDK1 GPS, PPSP 
---

I I CDKL 2 CDK2,CDK1 GPS, PPSP J I 

I CK2 
-- - -

2 CK2 MODPROPEP, PPSP, NetPhosK, GPS, 
I 

0 0 

I GSK 
i Pred1km ---- --------; 

2 I GSK3 I PPSP, GPS 
---~ 1 

MAPK 14 1 MAPK I GPS, PPSP 
-----

RCK 1 I CDKl I PPSP, ~PS, S~ansite 
-------1 

i STE STEll 7 MAP3K MODPROPEP, PPSP ' 

I I STE20 21 PAK PPSP, GPS, MODPROP~P ~ ~ ~ ~ ~ - : ~ ~ 
I 1 STE7 6 MAP2K MODPROPEP I 

I 1 STE- 2 I MAP3K I MODPROPEP, PPSP 
I I Unique I : 

; Other IKK 2 ! IKK I PPSP I 

-----
I TKL PLK i 4 1 PLKl . GPS 

- - - - - _______. 
I MLK 5 : MAP3K MODPROPEP, PPSP 
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scale. However, its utility can be further improved if percentile cut off for bracketing 

the correct phosphorylation site can be further lowered from 30%. As demonstrated 

earlier in case of protein structure prediction problems, multiscale modeling strategy 

can potentially help in improving the rank of the correct substrate. Therefore, scoring 

by pair potentials can be used as a first level of search, while sites ranked within top 

30% can be reranked using all atom forcefield. For the ten kinase families for which 

MODPROPEP could successfully rank the correct binding site within top 30%, we 

carried out detailed all atom modeling of all the Ser/Thr containing peptides in the 

binding site of the respective kinases. Figure 3. 7 shows the ca RMSD values for the 

kinase and the peptide backbone from the respective template structures for all the 

energy minimized kinase peptide complexes analyzed in case of PKA. As can be 

seen, in all cases modeled complexes remain close to the template structure. Similar 

trend was also observed for kinase-peptide complexes belonging to other families. For 

each kinase-peptide complex, interaction energy between the kinase and the peptide 

was computed using MM-PBSA approach and all the modeled peptides were re­

ranked as per their MM-PBSA binding energy values. Figure 3.8 shows the 

comparison of the ranking by MM-PBSA and pair potential for all the ten kinase 

families. As can be seen for PKA, out ofthe total of332 substrate proteins, in case of 

237 proteins MODPROPEP could rank the true phosphorylation site within top 30%. 

As per pair potential ranking, out of these 23 7 cases, in case of 128 the 

phosphorylation site was within top 10%, in case of additional 66 proteins the 

phosphorylation site was ranked within 10% to 20%. Thus, for a total of 194 cases 

the phosphorylation site was ranked within top 20% and in case of 43 proteins the 

phosphorylation site was ranked within 20% to 30% by MODPROPEP. Interestingly 

upon re-ranking by MM-PBSA approach the number of true phosphorylation sites 

within top 10% increased to 188 and the number of true phosphorylation sites within 

top 20% increased to 217. Thus by re-ranking there is a significant enrichment of true 

phosphorylation site in top 10% and 20% window. In Figure 3.8, similar results have 

been plotted for all 10 kinase families and since there were different number of 

substrate proteins for different families, they have been represented as percentage of 

the total number of substrate proteins considered for modeling by MM-PBSA. As can 

be seen, in case of 7 out of ten kinase families re-ranking has helped in increasing the 

number of cases where true phosphorylation site could be bracketed within top 10% 

64 



A 

~ 0.305 

ll.. 0.3 
ll.. 
10 
~ 0.295 
I: 

Kinase RMSD in PKA 

~ 0.29 +---+ --+--+-+li-+--+--._-++==+H = +-tH-! 
CIS 
I: 
:;: 
E e ... 
c 
1/) 

::!!: 
0::: 

401 801 1201 1601 2001 2401 2801 3201 3601 4001 4401 

Minimised PKA·peptide complexes 

8 
Peptide RMSD in PKA 

~ 0.45 

!!::.. 0.4 +.:-:1---
ll.. 
!:!l 0.35 .... 
.!: 0.3 
Q) 

~ 0.25 
c. 
[ 0.2 
E e o.15 +-__.'~--...;__ __ _ ... 
~ 0.1 +-------~--L---------------; 
::!!: 
0::: 0.05 +-------------------------; 

0~------------------------------------401 801 1201 1601 2001 2401 2801 3201 3601 4001 4401 

Minimised PKA-peptide complexes 

Figure 3.7: Distribution of theCa RMSD values of (A) kinase, and (B) modeled peptide from their template structure IJBP for all energy minimized kinase­
Jeptide complexes in case of PKA. 



100% 

90% 

80% 

70% 

60% 

50% 

40% 

30% 

20% 

10% 

0% 

~---+~--~+----~~~--------+~---------+~--~+------Improvement 

"' 

~"'?-
~ 

~~0 

( 237) ( 64) ( 31 ) (239) ( 21 ) 

~~ 
~ 

( 23) 

~~ 
<:;)"?' 

( 15) 

(.,~ 
~0 

( 26) 

Pair potential 

PBSA 
Among top 20-30% 

"'?-~ ~~ 
~ .J 

( 42) ~ ( 13) 

Figure 3.8: Comparison of the ranking of true phosphorylation site among top ranked 30% peptides by pair potential and MM/PBSA method. For each of the 
ten protein kinase groups for which BT matrix had good prediction accuracy, the distribution of the percentage of cases in which the actual phosphorylation 
site was among 0-10%, I 0-20% and 20-30% of top scoring peptide is shown. The filled bars represent scoring by pair potential , while bars with stripes 
represent scoring by MM/PBSA methods. 



Chapter 3: A structure based rrzultiscale approach for identification of substrates of kinases 

window. Figure 3.9 show the AUC values obtained from ROC analysis for the 

ranking using pair potential as well as MM-PBSA. As can be seen, AUC values have 

increased in all cases except for ChK and MAP3K, thus demonstrating the utility of 

re-ranking the pair-potential ~redictions using MM-PBSA approach. Figure 3.6 shows 

the representative ROC curves for CK2 and all kinases. Thus our results demonstrate 

that, prediction accuracy of MODPROPEP can be further improved if a multi-scale 

modeling approach involvin~ re-ranking of pair potential predictions by MM-PBSA 

energy values is implemented. 

3.4 DISCUSSION I \ 

In this chapter, we have developed a novel structure based approach for 

predicting substrates of proteiT kinases. The putative substrate peptides are modeled 

in the substrate binding pod:lts of kinases using the available crystal structures of 

kinase-peptide complexes as templates. The binding energy of these peptides in 

complex with the kinase are evaluated using a residue based statistical pair potential 

derived by Betancourt and T' irumlai. We have carried out detailed benchmarking of 

this approach on the experimental data available in the Phospho.ELM database and 

compared our results with those from a number of other phosphorylation site 

prediction tools. Our results indicate that, the structure based method developed in 

this work can predict more than 60% ofthe experimentally identified substrates for 10 

protein kinases. The predictior accuracies for PKA, PKB, PKG, and PDK were well 

above 70% with PKG havin 
1 

the highest prediction accuracy of 81.5%. The other 

kinase groups for which our approach showed good prediction accuracy were ChK, 

CK2, DAPK, ROCK, and MAP3K. Our approach also outperformed all other 

prediction tools for PKG, P~, ChK, CK2, DAPK, ROCK, and MAP3K. We also 

carried out receiver operating characteristic (ROC) curve analysis for analyzing the 

robustness of our structure baked prediction approach. The area under curve (AUC) 

values for these 10 kinases fanged from 0.681 (MAP3K) to 0.838 (PKG). It is 

encouraging to note that, the prediction accuracy of our method is comparable to other 

sequence based methods like GPS, PPSP, SCANSITE and NetPhosK, even though 

it does not use any experl ental phosphorylation site data for training unlike 

sequence based methods. We have also compared our prediction results with 

PREDIKIN which is the onl~ other structure based approach, but uses a different 

scoring scheme. Our results clek ly demonstrate the better prediction accuracy of our 
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method compared to PREDIKIN. However, it may be noted that, we have compared 

our results to PREDIKIN 1.0 (Brinkworth et a!., 2003) as that was the available 

version when this work was carried out. The recent version of PREDIKIN (Saunders 

et a!., 2008; Saunders and Kobe, 2008) uses a scoring scheme derived from 

experimental phosphorylation site data and hence has higher prediction accuracy. 

Since it uses experimental data for its scoring scheme, it becomes similar in 

methodology to other profile based methods. Therefore, we have not compared our 

results with results from recent PREDIKIN server. 

A common utility of phosphorylation site prediction programs is the prediction 

of substrates of genomic kinases for the prediction of phosphorylation networks in the 

organism. With the objective to identify the most suitable programs for different 

kinase families, we compared the accuracies of PREDIKIN, SCANSITE, NetPhosK, 

GPS, PPSP and MODPROPEP for various protein kinase families in human genome. 

Our structure based method, MODPROPEP was able to predict best or comparable to 

the closest competitor for 15 out of 33 kinases compared. This suggests that 

MODPROPEP can be used for identifying protein phosphorylation networks in 

various genomes. Since the scoring function used in MODPROPEP is not dependent 

on experimental data for any given kinase family, it can be potentially useful for 

kinase families for which no experimental data is available. 

It must also be noted that, the predictions of MODPROPEP which have been 

compared with other methods are based on scoring by pair potential alone. We have 

also demonstrated that, use of a multi scale approach and re-ranking the high scoring 

peptides identified by pair potential using all atom MM/PBSA improves the percentile 

score of the true phosphorylation site. More detailed studies are necessary to test 

whether implementation of the complete multiscale approach can further improve the 

prediction accuracy of our structure based approach. 
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Chapter 4: Analysis of solvent accessible surface areas of phosphorylation sites 

4.1 INTRODUCTION 
The various available programs for prediction of phosphorylation sites by a 

given kinase, break the substrate proteins into all possible Ser/Thr/Tyr containing 

peptides and then evaluate the scores for the phosphorylation of each of these 

peptides. The high scoring peptides above certain cutoff value for the score are 

reported to be the most likely targets for phosphorylation. In the sequence based 

prediction methods, the score is computed in a probabilistic manner as per the 

probability of occurrence of various amino acids flanking the phosphorylatable 

Ser/Thr/Tyr. On the other hand, structure based methods calculate the score based on 

the binding affinity of each of Ser/Thr/Tyr containing peptides in complex with the 

protein kinase in question. All these programs assume that, all the peptides 

containing Ser/Thr/Tyr residues are equally accessible to the protein kinases for the 

phosphorylation reaction. The selectivity of the kinase for a target phosphorylation 

site is attributed exclusively to the residues flanking the phosphorylatable Ser/Thr/Tyr 

residues in the substrate protein. These residues, usually three on each side of the 

phosphorylation site make favorable contacts with the specificity determining 

residues in the protein kinase. 

Although complementarities between the peptide residues and the kinase 

substrate binding pockets play a crucial role in the phosphorylation event, 

experimental evidences suggest that it is not the only factor determining the substrate 

selectivity. Other factors, such as the proximity of the substrate to the protein kinase 

play an equally important role (Ubersax and Ferrell, 2007). This process, called 

substrate recruitment, is any mechanism, which brings substrate and kinase in close 

proximity and thus increases the chances of substrate-kinase complex formation. One 

of the mechanisms of substrate recruitment involves the interaction between docking 

motifs on the substrate and interaction domain of the kinase (Biondi and Nebreda, 

2003). These motifs are located far apart from the phosphorylation site in the substrate 

protein and increase the affinity of the substrate for the kinase many fold. In some 

substrates, phosphorylation event increases the affinity of the substrate for the next 

phosphorylation in the same substrate, this is a recurring theme in the phosphorylation 

by protein kinases. Localization of protein kinase in a specific subcellular 

compartment provides a further layer of specificity. Sometimes kinases interact with 
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the substrate through an intermediary of scaffold protein, which acts as a platform for 

both interacting partners. Similarly, accessibility of the Ser/Thr/Tyr containing 

peptide stretch on a substrate protein also plays a major role in the substrate 

recognition by kinases. Some of the peptides, which otherwise fulfill the 

requirements of the high affinity to protein kinase, might be buried and hence not 

accessible for the protein kinase for the transfer of phosphate group. Therefore, in the 

absence of a conformation change in the substrate upon recruitment, only a subset of 

peptides, which is spatially located on the surface of the substrate protein, can 

potentially be phosphorylated. 

Thus, a number of factors help m maintaining the high level of substrate 

specificity that is observed in the cellular phosphorylation networks. However, it is 

very difficult to incorporate all these effects in the prediction programs. Solvent 

accessibility of the phosphorylatable peptides can in principle be calculated, hence 

incorporation of the surface accessibility terms in the prediction algorithms might 

help in improving their prediction accuracy. However, none of the currently available 

computation programs for the substrate prediction with the exception of SCANSITE 

(Obenauer et a!., 2003 ), make use of the surface accessibility of the peptides while 

making predictions. 

Large-scale high throughput mass spectrometric experiments have discovered 

a huge number of phosphorylated peptides which are substrates of protein kinases 

(Olsen et a!., 2006). Conventional kinase assays and peptide library experiments have 

also contributed to the known phosphorylation sites of the kinases (Songyang et al., 

1994). Phospho.ELM (Diella et al., 2004) is a database, which catalogues these sites. 

Although substrate data stored in this database has been used for the development, or 

benchmarking of a number of prediction programs, no information about the 

accessibility of these peptides in their substrate protein is available. This, in part, is 

because of the crystal structures for most of the substrate proteins have not yet been 

solved. Phospho3D (Zanzoni et al., 2007) is a database, which catalogues and stores 

the substrate protein whose structure has been solved along with the functional 

annotations at the phosphorylation site. It also stores the results of local structural 

alignment of substrates at the phosphorylation site. Although it provides the 

accessibility of phosphorylation sites, it is only for those few substrates whose 

structures are available in PDB. In another study, large-scale calculation of predicted 

values of solvent accessible area of known phosphorylation sites concluded that the 
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phosphorylation sites are mostly accessible on the surface of the substrate protein, and 

are mostly found in the loop and hinge regions of the proteins (Gnad et al., 2007). 

Although these two studies have shed some light on the surface accessibility of the 

known site of phosphorylation, one of these has information about a very small 

number of substrates, while the prediction of accessibilities from sequence alone 

becomes a limitation of the second study. Therefore, before inclusion of the solvent 

accessible area terms in the prediction algorithms, it is necessary to carry out an 

exhaustive analysis of the solvent accessibilities of phosphorylation sites in the known 

substrate proteins. 

In this study, we have attempted to investigate whether inclusion of solvent 

accessibility probabilities of putative substrate peptides can help in improvement of 

prediction accuracy. We have calculated the solvent accessibilities of phosphorylation 

sites in the crystal structures or homology models of known substrate proteins. The 

accessibilities of the known phosphorylation sites have been compared with the 

accessibilities of the Ser/Thr/Tyr containing peptides which are not phosphorylated. 

Based on this analysis, we have attempted to estimate if statistically significant 

correlation exists between solvent accessibility and propensity for phosphorylation. 

4.2 METHODS 

4.2.1 Dataset of substrate protein of kinases 
Substrate proteins of protein kinases catalogued in Phospho.ELM (Diella et 

al., 2004) database (version 5.0, May 2006) were downloaded from UNIPROT 

database (http://www.uniprot.org). Information about the location of sites of 

phosphorylation on these proteins was also extracted. This version contains a total of 

13563 phosphorylation sites in 4422 protein sequences. 

4.2.2 Identification of structural homologs. 
PDB (Berman et al., 2000) database as on 27'h November 2007 was used for 

identifying the structural homologs of substrate proteins. This PDB release consisted 

of 107691 polypeptide chains from 45658 unique structures. Amino acid sequences of 

these polypeptides chains were downloaded from RCSB website 

(http://\V'WW.rcsb.org). All PDB sequences were converted to a searchable database 

using the formatdb program of NCBI blast suite of softwares. For finding the 

structural homologs of the substrate proteins of various kinases, blast search was 

70 



carried out against sequences in PDB with an e-value cutoff of 1 o-6
. The most 

significant BLAST hit for each substrate protein was selected as structural template. If 

the alignment between the template and the substrate protein showed a gap over the 

known phosphorylation site, the corresponding substrate sequence was removed from 

the data set. Figure 4.1 shows a flowchart depicting the protocol for mapping of 

phosphorylation sites onto the PDB structures. The PDB coordinate files 

corresponding to the structural templates of the substrate proteins were downloaded 

from PDB website. 

4.2.3 Calculation of solvent accessible area of 
phosphorylation sites 

The fragments of the structural templates aligning with the heptameric 

sequences of the substrate proteins containing the phosphorylation sites were 

identified. The absolute and relative solvent accessible surface areas of these 

heptameric peptide fragments in the template structure were calculated using the 

NACCESS (Hubbard and Thorn tan, 1993) program. The solvent accessible surface 

areas of all other Ser/Thr/Tyr containing heptapeptides which are not phosphorylated 

were also calculated. Apart from the solvent accessible surface areas of the 

heptameric peptide fragments, the relative and absolute accessible surface areas were 

also calculated for the central Ser/Thr/Tyr residues. 

4.2.4 Development of web server 
All the computational steps discussed above have been implemented in a user 

friendly web server pAccess (.ht~//www.nii.ac.in/pacces~.l:nmO, for automatically 

carrying out the analysis of the solvent accessible areas of Ser/Thr/Tyr containing 

peptides present in putative substrate proteins of various kinases. Given the sequence 

of the substrate protein of a kinase as input (Figure 4.2), the software identifies its 

structural homolog in PDB, and calculates the solvent accessible surface area of all 

seven residue long peptides that contain Ser/Thr/Tyr as the central residues. All of 

these peptides are compared against the experimentally known phosphorylation sites 

catalogued in Phospho.ELM database. Any of these Ser/Thr/Tyr containing peptide 

that is already known to be a phosphorylation site, is reported along with the name of 

protein kinase responsible for its phosphorylation. The accessibilities of the 

Ser/Thr/Tyr containing peptides are displayed using a jmol applet (Figure 4.3 ). 

71 



•Blast Alignments 
•Complete alignment over phosphorylation site 
•Conservation of phosphorylation residue 

1088 phosphorylation instances mapped to 584 PDB chains 

1728 Ser/Thr sites I I 360 Tyr sites I 

l l 
Solvent accessibilities using NACCESS program 

Figure 4.1 : Flowchart depicting mapping of phosphorylation sites in the substrate protein to 
the structural homolog identified from PDB. 



Figure 4.2: A snapshot of the query interface ofthe pAccess program. 

Figure 4.3: A snapshot of the result page of pAccess program for the analysis of solvent 

accessible surface area values for a query protein kinase substrate protein. The absolute and 

relative surface area values of all heptapeptides in the query protein containing Serffhrffyr as 

the central residue are reported. If any of these peptides is an experimentally known 

phosphorylation site, the substrate protein containing that peptide and the protein kinase 

responsible for the phosphorylation are reported. Clicking on the peptide shows the peptide in 

the template structure in an interactive Jmol applet at the right hand side of the page. 
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Chapter 4: Analysis of solvent accessible surface areas of phosphorylation sites 

4.3 RESULTS 

4.3. 1 Structural homologs of substrate proteins of kinases 
Out of 4422 substrate protein sequences catalogued in the Phospho.ELM 

database, structural homologues could be identified for 1425 proteins containing 2860 

phosphorylation sites. The structural templates for these 1425 substrate proteins 

corresponded to 990 PDB structures. A careful examination of the sequence 

alignments of substrate proteins with the structures in PDB showed that, in some of 

the alignments the region corresponding to the phosphorylation site contained a gap in 

the structure, or the phosphorylatable Ser/Thr/Tyr residue was replaced by a non­

phosphorylatable amino acid. In such cases, the sequence of the substrate protein was 

removed from the data set. After applying this filter, the data set consisted of 1088 

phosphorylation instances from 719 substrate proteins which could be mapped on to 

584 polypeptide chains from 571 PDB entries. These included 526, 202 and 360 

instances containing serine, threonine and tyrosine as phosphorylation residues 

respectively. Figures 4.4 and 4.5 show the distribution of the alignment length and 

percentage identity respectively. As can be seen from Figure 4.4, 85.8% of all hits 

show an alignment over a length of 100 or more amino acids. Similarly, the 

percentage identities of the hits were also significant as about 44% of hits showed a 

percentage identity in the range of 90-100%, while 90% of the hits showed identity 

above 30% (Figure 4.5). Thus, the structural templates have good homology with the 

substrate proteins over a significant length of alignment. Hence, these 719 substrate 

proteins are likely to have structures similar to those of the templates in PDB. 

Therefore, the solvent accessibilities of the Ser/Thr/Tyr containing peptide stretches 

in the substrate proteins can be estimated based on accessibility of the corresponding 

structural fragments in the identified PDB hits. 

4.3.2 Solvent accessibility of phosphorylation sites 
Solvent accessible surface areas of the phosphorylation sites on the substrate 

proteins were calculated from their crystal structures when available, or from their 

structural homologs. Seven amino acids long peptide stretches with phosphorylation 

site as the central residue were selected for the calculation of solvent accessible 

surface areas by NACCESS computer program. For each substrate protein, apart from 

the phosphorylation site, the accessible surface areas of all other Ser/Thr/Tyr 

containing potential sites which are not phosphorylated, were also calculated. In 
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Chapter 4: Analysis of solvent accessible surface areas of phosphorylation sites 

every case, absolute as well as relative surface areas were calculated. The relative 

surface area values represent the surface accessibility in comparison to the 

accessibility of a residue in extended conformation when it is surrounded by alanine 

residues on both sides. Figure 4.6 shows an example of the analysis of solvent 

accessibility of a representative query substrate protein 3-phosphoinositide dependent 

protein kinase-1 whose solvent accessible surface area of phosphorylation site is 

calculated from the structural homolog with PDB ID 2BCJ. Figure 4.7 shows the 

average solvent accessible surface areas for the central Ser/Thr/Tyr residues as well as 

the heptameric peptide fragment corresponding to sites which are known to be 

phosphorylated as well as for those which are not phosphorylated. As can be seen, in 

general the average solvent accessible surface area of the phosphorylation site 

residues is higher as compared to the accessibilities of Ser/Thr/Tyr containing 

peptides that are not phosphorylated. The statistical significance of the difference 

between the accessibilities of phosphorylation site residues and non-phosphorylated 

residues was judged by Wilcoxon test. The difference in average relative solvent 

·accessible area between phospho and non-phospho residues was statistically 

significant as judged by p-values of 2.20 x 10-16
, 5.07 x 10-6 and 2.34 x 10-8 for Ser, 

Thr and Tyr residues. Similarly, p-values for the difference between the average 

relative solvent accessible area of phospho-peptide and non-phospho peptides were 

2.20 x 10-16
, 2.05 x 10-13 and 4.77 x 10-12 for Ser, Thr and Tyr containing peptides 

respectively. Figure 4.7 also shows that the difference between the average solvent 

accessibility values for the absolute area was also significant with great degree of 

confidence as judged by Wilcoxon test p-values. Thus, based on average accessibility 

values the phosphorylation site residues/peptides were found to be more exposed to 

the solvent. Figure 4.8 shows a comparison of the distribution of absolute 

accessibilities of phosphorylation site containing peptides with their non­

phosphorylatable counterparts. As can be seen from Figure 4.8, at high accessibility 

values (> 400 A2
) the percentage of phosphorylated peptides are higher than the 

percentage of peptides which are not phosphorylated, while the trend is reversed in 

the low accessibility range. However, a surprising observation from this analysis is 

the occurrence of a significant number of phosphorylated peptides even at 

accessibility values below 200 A 2. 

Since the results shown in Figure 4.8 is based on analysis of accessibility 

values in crystal structures homologous to various kinase substrates, we decided to 
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Figure 4.6: An example of analysis of solvent accessibility of heptapeptide containing site of 

phosphorylation in kinase substrate protein, calculated by NACCESS program from the 

homologous protein identified by BLAST search ofPDB sequences. (A) Sequence alignment 

of query substrate 3-phosphoinositide dependent protein kinase- I (0 15530) with the 

sequence of structural homologue guanine nucleotide binding protein:GPCR kinase 2 (PDB 

identifier: 2BCJ). The phosphorylation site residue has been shown in green and three 

residues on each side are shown in red. (B) Cartoon representation of2BCJ. Phosphorylation 

site and the residues surrounding it are shown in red and green respectively. (C) Surface 

representation of 2BCJ. The peptide stretch corresponding the phosphorylation site and 

surrounding residues have been shown in green and red. The surface area of this region was 

calculated by NACCESS program. 
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Figure 4.7: The average solvent accessible surface area values as calculated by NACCESS 

program for phosphorylation site Ser, Thr and Tyr residues and heptapeptides consisting of 

three residues on each side of these residues. The surface accessible areas of these residues 

and heptapeptides are compared to the surface accessible areas of Ser, Thr and Tyr residues 

which are not phosphorylation sites (non-phospho), and heptapeptides containing these non­

phospho residues as the central residues. For every case, relative and absolute surface 

accessible areas are calculated from either the crystal structure, or the structural homolog of 

the substrate proteins (see methods). (A) Relative solvent accessibilities of Ser, Thr and Tyr 

residues. The difference between phospho and non-phospho residues is statistically significant 

(Wilcoxon test: p values 2.20 x 10-16
, 5.07 x 10-6 and 2.34 x 10-8 for Ser, Thr and Tyr 

respectively). (B) Relative solvent accessibilites of heptapeptides containing Ser/Thr/Tyr as 

the central residues (Wilcoxon test: p values 2.20 x 10-16
, 2.05 x 10-13 and 4.77 x 10-12 for Ser, 

Thr and Tyr respectively). (C) Absolute solvent accessibilities of Ser , Thr and Tyr residues 

(Wilcoxon test: p values 1.19 x 10-10
, 2.30 x 10-5 and 5.20 x 10-8 for Ser, Thr and Tyr 

respectively). (D) Absolute solvent accessibilites of heptapeptides containing Ser/Thr/Tyr as 

the central residues (Wilcoxon test: p values 2.20 x 10-16
, 1.98 x 10-13 and 1.68 x 10-10 for Ser, 

Thr and Tyr respectively). 
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Chapter 4: Analysis of solvent accessible surface areas of phosphorylation sites 

nalyze separately the accessibilities of phosphorylation sites in substrate proteins for 

vhich crystal structures were available. Some of the protein kinase substrates in our 

lata set had structural hits from PDB with 100% match over alignment length of more 

han 200 amino acids. Table 4.1 lists 25 such proteins that showed 100% match with 

'DB entries. In 19 of these proteins, the peptides harboring the phosphorylation site 

1ad accessibility values higher than 350 A2
• However, for the remaining six proteins 

he known phosphorylation sites were less accessible than the other potential sites. 

'his suggests that observation of known phosphorylation sites at low accessibility 

'alues is not an artifact arising from structural homologs included in our analysis. 

In our analysis of solvent accessibility of known phosphorylation sites, a lot of 

ites considered in dataset had been identified by high throughput mass spectroscopic 

xperiments. The protein kinases that phosphorylate these sites are not known and 

here is a possibility that some of these sites are false arising because of the 

tncertainty in correctly assigning the sequence of the phosphorylation site from the 

n.ass spectrometry data. For these reasons, we reanalyzed the average solvent 

ccessible surface area and the distribution of the solvent accessible surface area after 

emoving the phosphorylation sites identified by mass spectrometry from the dataset. 

~fter removing such site, we were left with 223, 90 and 119 instances containing Ser, 

'hr and Tyr residues respectively. Figure 4.9 shows the average relative and average 

bsolute solvent accessible surface area of phosphorylation site residues and the 7mer 

1eptide harboring phosphorylation site as compared to their nonphosporylatable Ser, 

'hr and Tyr containing counterparts when instances identified by mass spectrometry 

vere not considered. It can be seen that the average surface area values in every case 

emain more or less same as when such site were considered (Figure 4. 7). Figure 4.10 

hows the comparison of distribution of absolute solvent accessible area values of 

1hosphorylation sites containing peptides with their nonphosphorylatable counterpart 

vhen the phosphorylation instances identified by mass specrtometry were not 

ncluded. It can be seen clearly from Figure 4.1 0, at low accessibility value ( <400A 2) 

he percentage of phosphorylated peptides has reduced as compared to the values 

vhen sites by mass spectrometry were included in the analysis (Figure 4.8). 

We analyzed in details the substrate proteins having known phosphorylation 

ites at low accessibility. Table 4.2 lists substrate proteins with phosphorylation sites 

vhose relative surface areas are less than 10 A 2• Many of these sites are buried in the 

espective proteins and phosphorylation of such sites might require conformational 
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Table 4.1: The solvent accessible surface areas of phosphorylation site in protein kinase 
substrates which show I 00% match over more than 200 alignment length with a PDB 
structure. The absolute solvent accessible area of heptapeptide containing phosphorylation 
site, and absolute and relative areas of phosphorylation site Ser/Thr/Tyr residues are 
calculated by NACCESS. 
Table headers: (A) Substrate protein containing the phosphorylation site for protein kinase in 
column J. (B) Swissprot I TrEmbl code for the substrate protein. (C) Residue number of 
phosphorylation site Ser/Thr/Tyr in the protein sequence of substrate. (D) Heptapeptide 
sequence containing the phosphorylation site (red). (E) PDB 10 of structural match of 
substrate protein. (F) Absolute solvent accessible surface area of heptapeptide (in column D) 
as calculated by NACCESS program. (G) Absolute solvent accessible area of 
phosphorylation site Ser/Thr/Tyr residue (colored red in column D). (H) Relative solvent 
accessible area of phosphorylation site Ser/Thr/Tyr residue. (I) Average relative solvent 
accessible area of all Ser/Thr/Tyr residues in the structural match. (J) Protein kinase 
responsible for phosphorylation of the substrate at the phosphorylation site. 
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Table 4.2: The substrate protein of protein kinases with relative surface accessible area of 
phosphorylation site less than I 0 A 2. All these substrates show a significant alignment over 
200 amino acids with the sequence of a match from the PDB database. The relative solvent 
accessible area was calculated by NACCESS program. 
Table headers: (A) Swissprot I TrEmbl code for substrate protein containing the 
phosphorylation site for protein kinase in column H. (B) Residue number of phosphorylation 
site Ser/Thr/Tyr in the protein sequence of substrate. (C) Heptapeptide sequence containing 
the phosphorylation site (red). (D) PDB ID of structural match of substrate protein. (E) 
Alignment length of the substrate with the structural match (F) The percentage identity of 
substrate protein with structural match over the alignment length. (G) Relative solvent 
accessible surface area of phosphorylation site Ser/Thr/Tyr residue (shown in red in column 
C) as calculated by NACCESS program. (H) Protein kinase responsible for phosphorylation 
of the substrate at the phosphorylation site. 
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Figure 4.9: The average solvent accessible surface area values of known phosphorylation 

sites, without including sites from high throughput mass spectrometry experiments, as 

compared to non-phosphorylation sites. {A) Relative solvent accessible surface area of 

Ser/Thr/Tyr residues. (B) Relative solvent accessible area of heptapeptides containing 

Ser/Thr/Tyr as the central residue. (C) Absolute solvent accessible surface area of Ser/Thr/Tyr 

residues. (D) Absolute solvent accessible area of heptapeptides containing Ser/Thr/Tyr as the 

central residues. 
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Figure 4.10: Distribution of solvent accessible surface area of phosphorylation site containing 
peptides, without including the sites identified from high throughput mass spectrometric 
experiments, as compared to nonphospho-site containing peptides. 



Figure 4.11: An example of substrate protein cytosolic phospholipase A2 containing a 

phosphorylation site with very low solvent accessible area. The crystal structure of human 

cytosolic phospholipase A2 has been identified from the PDB by blast alignments. (A) 

Alignment of cytosolic phospholipase A2 (P47712) with the sequence of PDB entry lCJY. 

(B) Cartoon representation of I CJY. The Phosphorylation site and the residues surrounding it 

are shown in green and red respectively. (C) Surface representation of 1 CJY showing that the 

phosphorylation site and the surrounding residues are buried in the protein. (D) The residues 

covering the phosphorylation site have been removed from the suface represention of 1 CJY to 

show the buried phosphorylation site (shown in red). 
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Chapter 4: Analysis of solvent accessible surface areas of phosphorylation sites 

shift in the protein, before they can be accessed and phosphorylated by the protein 

kinases. For example, phosphorylation site containing peptides AGLSGST in 

cytosolic phospholipase A2 has been found to be buried as judged from its solvent 

accessibility area from crystal structure (Figure 4.11 ). It would be interesting to 

analyze the phosphorylation mechanism of such proteins. It would also be interesting 

to see if the binding of such substrates to protein kinase leads to the unfolding and 

binding of phosphorylation site, or interaction with other cellular factors unfolds the 

protein and makes the phosphorylation site accessible to kinase. 

As different protein kinases are known to be differentially regulated, with each 

one having a unique mechanism of regulation, we investigated if certain specific 

kinase families are responsible for phosphorylation of these sites which are buried to a 

large extent. Out of 1088 phosphorylation sites mapped to crystal structures, 628 sites 

did not have any information about the kinase responsible for their phosphorylation. 

The remaining 460 sites are phosphorylated by 134 kinase types as reported in 

Phospho.ELM database. Among these mapped phosphorylation sites in the crystal 

structure templates, we calculated the average accessible surface area for various 

kinase types. However, sufficient number of phosphorylation instances were not 
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Figure 4.12: Average relative solvent accessible areas for various protein kinase groups. 
Only those kinase groups have been shown which had more than 5 (values in brackets 
below the kinase group name) phosphorylation instances mapped to a structural template. 
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Chapter 4: Analysis of solvent accessible surface areas of phosphorylation sites 

mapped for most of the protein kinases. Therefore, we grouped together the 

phosphorylation instances assigned to similar kinases belonging to a specific group. 

We selected those groups which contained more than five phosphorylation instances. 

For this study, we considered only Ser/Thr kinases. A total of 237 phosphorylation 

instances could be grouped into 13 Ser/Thr kinase groups containing 56 individual 

kinases. Figure 4.12 and Figure 4.13 show the average accessibilities, and distribution 

of accessibilities of phosphorylation sites respectively for these kinase groups. 

CDKl, DAPK and PK.B are three groups whose substrates have lowest average 

surface accessible areas among all kinases in our study. Based on this, it is tempting 

to speculate that, these kinase groups might employ a mechanism involving slight 

unfolding/conformational shift in their substrate proteins. On the other hand, 

phosphorylation sites in substrates of some kinases like CKl, GSK and PLK show a 

very high average accessible area, suggesting that the substrates of these kinases can 

be easily accessed by the protein kinase catalytic site. 

4.4 DISCUSSION 
In order to understand how protein kinases maintain the specificity towards 

the selection of their substrates, it is imperative to investigate the factors other than 

sequence and structural complimentary of the binding region of the substrates. Most 

phosphorylation site prediction methods take into consideration only the sequence or 

structure of a short peptide stretch flanking the phosphorylatable amino acid. 

However, in reality the protein kinases phosphorylate a folded and structurally intact 

substrate protein in its functional form. Therefore, solvent accessibility of the 

phosphorylatable amino acid and its flanking residues is a major factor, which is 

expected to affect the phosphorylation of a substrate protein. In this chapter, we have 

analyzed the solvent accessible areas of known phosphorylation sites in various 

substrate proteins of different kinases. Solvent accessible surface areas of 

phosphorylation sites have been carried out in the crystal structures of the substrate 

protein or their structural homologues. The results of our analysis indicate that, the 

phosphorylation site residues are significantly more exposed to the solvent as 

compared to the other sites containing Ser/Thr/Tyr residues. Our results are m 

agreement with earlier studies which have also suggested that phosphorylation sites 

are mostly found in regions of proteins that are likely to adopt loop or coil secondary 

structural states and prefer to be exposed to the solvent (Gnad et al., 2007). Our 
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Figure 4.13: Distribution of relative solvent accessible surface areas of phosphorylation sites 
of various protein kinases as calculated by NACCESS program from the crystal structures of 
homologous proteins of their substrates_ On each panel, X-axis has relative accessible area, 
and Y -axis has the number of substrates for the protein kinase_ 
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current results based on the actual accessibility values from crystal structures reaffirm 

the same. 

Although, in general, the phosphorylation sites are more exposed than their 

non-phosphorylatable counter parts, our analysis has revealed few interesting 

examples of substrate proteins on which the phosphorylation sites have a very low 

solvent accessible surface area indicating that they are buried inside. Such sites cannot 

be easily phophorylated by the protein kinases in the absence of a considerable 

conformational change in the structure of the substrate proteins. It will be interesting 

to analyze such protein individually in detail to find out how they are phosphorylated. 

In this work, the accessibilities of the phosphorylation sites have been 

calculated from the crystal structure or the structural homologs. The use of homo logs 

for surface area calculation is appropriate as structures are known to be more 

conserved than sequences and the homologues have been identified based on 

significant sequence similarity. In addition, given the biological importance of the 

phosphorylation event, the phosphorylation sites are also likely to be conserved. 

Therefore, the probability of finding the phosphorylation site on a substrate protein in 

same structural context as in the structural match is very high, and the surface areas 

calculated from it are likely to be true representative of the surface area in the actual 

substrate proteins. 

The results from analysis of accessibilities of phosphorylation sites suggests 

that, the inclusion of the solvent accessibility terms in the phosphorylation site 

prediction programs might help in improving their prediction accuracy. However, our 

observation of several phosphorylation sites at very low accessibility values suggests 

that it would be difficult to fix a deterministic criteria based on accessibility value for 

identifying potential phosphorylation sites. Accessibility and structural flexibility of 

the potential phosphorylation sites can probably be combined with interactions 

between phosphorylation site and kinase to develop more powerful structure based 

methods for prediction of substrates for kinases. 
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Chapter 5: Structure based prediction of MHC binding peptides 

5.1 INTRODUCTION 
Major histocompatibility complex (MHC) proteins are present on the surface 

of antigen presenting cells. Their function is to bind processed peptides and provide a 

continuous update of cellular and environmental composition for the scrutiny by T­

cell receptors (TCR) on the surface of cytotoxic T-lymphocytes (CTL). T-cell 

receptors recognize the antigenic peptides in complex with the MHC molecule and 

trigger the immune response (Pamer and Cresswell, 1998). The resulting immune 

response plays a central role in defending the body against foreign pathogenic 

invasion. MHC class I molecules bind the peptides of cytosolic origin and presents 

them to CD8+ T-cells which in tum kill the infected cells. MHC class II molecules 

bind the processed peptides derived from the endocytosed proteins, and present them 

to CD4+ T-cells which triggers humoral and cellular responses against the foreign 

organisms. Of all the peptides present in the antigenic proteins from the pathogen, 

only a small set of peptides can bind and generate the immune response (Pamer and 

Cresswell, 1998). Binding of peptides to the MHC molecules is the most selective 

step in the antigen presentation, and hence the identification of such peptides has 

important implications in rational vaccine design and better understanding of immune 

system. Experimental approaches for identifying T -cell epitopes in antigens of viral or 

bacterial origin typically involve synthesis of overlapping peptides and assays for 

their binding to MHC proteins (Wilson et al., 1999). Approaches involving 

combinatorial libraries have also been extensively used to study binding of peptides to 

MHC molecules (Doytchinova et al., 2004; Sung et af., 2002; Udaka et a f., 2000). 

However, the genetic diversity of MHC system is characterized by extensive degree 

of allelic polymorphism (Pamer and Cresswell, 1998; Parham et al., 1995), making 

experimental approaches for identifying the antigenic peptides practically tedious, 

time consuming and cost-intensive if not impossible. 

Availability of a large volume of data on peptide binding preference of various 

MHC alleles has facilitated development of automated computer programs for 

prediction of peptides which can bind to various MHC molecules. Such programs can 

carry out a systematic scanning of the antigen protein sequence for candidate T -cell 

epitopes. Some of the early computational methods were based on identification of 

conserved motifs in a set of known MHC binding peptides. These binding motifs 
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Chapter 5: Structure based prediction of MHC binding peptides 

characterized the peptide specificity of different MHC alleles in terms of dominant 

anchor positions with a strong preference for a restricted set of amino acids (Sette et 

a!., 1989). Even though motif based scanning can identify MHC binding peptides in 

large number of cases, it was soon discovered that they produce many false positive 

and probably also a similar number of false negatives. Secondly, a simplistic 

classification of a peptide as binder or non-binder based on presence or absence of a 

motif is not adequate in cases where different peptides bind to a given MHC allele 

with different affinities. These shortcomings led to the development of so-called 

matrix based methods (Parker et a!., 1994; Stumiolo et a!., 1999). BIMAS (Parker et 

a!., 1994 ), ProPred (Singh and Raghava, 200 I), ProPred I (Singh and Raghava, 2003 ), 

MMBPred (Bhasin and Raghava, 2003) and EPIPREDICT are matrix based epitope 

prediction methods that are similar to conventional bioinformatics analysis based on 

sequence profiles. RANKPEP (Reche eta!., 2002; Reche eta!., 2004) is a method that 

utilizes position specific scoring matrices (PSSM) for predicting binding peptides. 

SYFPEITHI (Rammensee et a!., 1999) is another widely used weighted matrix based 

program. More sophisticated mathematical models employing quantitative structure 

activity relationship (QSAR) have also been used in programs such as MHCPred 

(Guan et a!., 2003a). These are methods based on powerful algorithms used in 

machine learning and artificial intelligence. nHLAPred, and NetMHCpan 2.0 (Nielsen 

et a!., 2007) are two methods which use artificial neural networks (ANN). NetMHC 

3.0 (Buus eta!., 2003; Nielsen eta!., 2003; Nielsen et al., 2004) is a method which 

uses PSSM also, along with ANN for making predictions. Support vector machines 

(SVM) based models are employed by two methods, KISS (Jacob and Vert, 2008) and 

SVMHC (Donnes and Elofsson, 2002). These methods in general have better 

prediction accuracy compared to motif based methods due to their ability to take into 

account complex correlations between various positions. However, their dependence 

on large amount of allele specific experimental data for training remains a major 

limitation as these methods can not be used for newer alleles for which experimental 

information on peptide binding is not available. They also often fail to detect MHC 

binding peptides with non-canonical motifs. Thus, the prediction performance of all 

these sequence based methods is limited by the amount and nature of training data as 

well as potential weaknesses in their methodology. 

In contrast to the large number of sequence based methods for prediction of 

MHC binding peptides, there are relatively fewer structure based approaches. These 
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structure based methods attempt to predict the MHC binding peptides based on 

structural modeling of the bound conformation of the peptide in the MHC binding 

pocket and ranking various peptides as per their interaction energy with the MHC. 

The crystal structures of various MHC-peptide complexes are used as structural 

templates for modeling. Such approaches can in principle help in understanding the 

structural basis of allele specific MHC binding. Even though several variants of 

structure based approaches involving, conformational search, ligand docking (Tong et 

a!., 2004) and molecular dynamics simulations (Pohlmann et a!., 2004) have been 

reported, the computational complexity has limited these studies to few MHC-peptide 

complexes. Therefore, these methods have not been used for fast automated scanning 

of antigen sequences. One structure based method PREDEP (Schueler-Furman et a!., 

2000), which permits fast automated scanning for potential MHC binding peptides 

uses a threading type approach. In this approach, the peptide structure in the MHC 

groove is used as a template upon which query peptide sequences are threaded. The 

compatibility between threaded peptide sequence and MHC binding pocket is 

evaluated by statistical pair potential derived from the analysis of amino acid packing 

in protein structures. Earlier studies (Altuvia et a!., 1997) using PREDEP (Schueler­

Furman et a!., 2000) have demonstrated that, this method successfully identifies good 

binders only for MHC molecules with hydrophobic binding pockets, probably 

because of high emphasis on the hydrophobic contacts in the statistical pair potentials. 

In view of these results, alternate scoring methods have been proposed for better 

identification of ligands for MHC molecules with hydrophilic pockets. Apart from 

PREDEP (Schueler-Furman et a!., 2000), MHC-Thread 

(http:/ /\Vww.csd.abdl;l:<lC. ukl.:-:gilk!MHC-ThreaQL) and adaptive double threading 

approach (Zaitlen et al., 2008) are two other structure based methods which predict 

potential MHC-binding peptides by using threading principles for scoring the 

compatibility ofthe peptide with the MHC. 

Even though sequence based in silica prediction tools are widely used for 

identifying MHC binding peptides on proteins, they can not be applied in case of 

MHC alleles for which no experimental data is available. Discovery of newer MHC 

alleles require development of novel computational methods which can give reliable 

clues about their substrate specificities even in absence of extensive experimental 

data. Structure based substrate prediction methods can in principle address these 

problems. High homology between various MHC sequences and conservation of 
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structural fold despite divergence in sequence make them ideal candidates for 

application of structure based prediction methods. However, the survey of available 

literature indicates that potential of structure based methods have not been exploited 

to the full extent. The primary reason for the lack of reliable structure based substrate 

prediction method is the computational complexity associated with structural 

modeling of the protein-peptide complexes. Prediction methods based on the 

evaluation of the binding energy between a protein structure and a given peptide 

ligand require reliable scoring functions as well as adequate CPU time for efficient 

conformational search. Therefore, structure based methods like MHCPRED, MHC­

thread etc. use structural information to a limited extent and only consider the binding 

pocket environment based on 30 structure of the MHC, rather than structural 

modeling of the substrate in the binding site. 

The binding of peptides in the MHC groove is a problem of recognition of a 

peptide ligand by a protein receptor. Computational approaches have proved to be 

very useful in the identification of ligands for proteins (Hou et a!., 2006; Martin et a!., 

2006). Recent work in the field of computational protein design (Mooers eta!., 2003; 

Oelschlaeger et a!., 2005) have demonstrated that use of rotamer library is a powerful 

approach for the rapid and accurate modeling of the amino acid side chains in the 

context of a given structural environment. This method has been employed 

successfully for redesigning a number of proteins. It has been used for the redesigning 

of the calmodulin protein for increased affinity towards its target protein by 

optimizing the binding interface (Shifman and Mayo, 2002). Recently, the same 

approach was used for predicting the metallo-beta-lactamase mutants that produced 

enhanced catalytic activity (Oelschlaeger et a!., 2005). Rotamer library has also been 

employed successfully to design the entire sequence for the small proteins (Oahiyat 

and Mayo, 1997), to design protein variants with improved stability (Malakauskas and 

Mayo, 1998; Marshall et al., 2002; Street et a!., 2000), and to induce ligand binding in 

a large protein by stabilizing its active conformation (Shimaoka et al., 2000). 

Therefore, in this chapter, we report the development and benchmarking of a 

structure based substrate prediction method for MHC molecules using rotamer library 

approach. The methodology used is a multi scale approach, in which threading of 

putative peptides on the structural template of MHC-peptide complex crystal structure 

has been used to identify the high scoring peptides by scoring them by residue based 

statistical pair potential (Betancourt and Thirumalai, 1999; Miyazawa and Jernigan, 
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1996). Good binders, as judged by their pair-potential scores, are modeled in binding 

groove of their respective MHC protein by rotamer library approach and ranked as per 

their binding free energies calculated by MM/PBSA method. The results were 

benchmarked on the experimental data on substrate peptides of class I and class II 

MHCs cataloged in SYFPEITHI database. The modeling of peptide-MHC complexes 

have been carried out using the MOOPROPEP which was described in chapter 2. In 

this chapter, we describe the results on benchmarking and evaluation of the prediction 

accuracy. 

5.2 METHODS 

5.2.1 Modeling MHC-peptide complexes from protein 
sequences of MHC alleles 

The protein sequences of all characterized MHC alleles belonging to class I 

MHC, and class II MHC were obtained from IMGT/HLA database at EBI 

(http://WW\\i.ebi.ac.uk/imgtlhlW) (Robinson et al., 2003). A total of 1591 and 746 

alleles are currently available for class I and class II MHCs respectively (Table 5.1 

and Table 5.2). The crystal structures of MHC-peptide complexes were also 

downloaded from the POB website (http://~.n;sb!m:g) (Berman et al., 2000). All 

the crystal structures were classified according to their allele and MHC class. Crystal 

structures containing bound unnatural synthetic peptides were removed from the 

Table 5.1: List of human class I MHC allele sequences obtained from IMGT/HLA database. 

-, 
Serial Number Class I MH C Allele Number of Alleles 
1 HLA-A 494 ---
2 HLA-B 833 
3 HLA-C 264 

-
Total 1591 

Table 5.2: List of human class II MHC allele sequences obtained from IMGT/HLA database. 

Serial Number Class II MHC Allele 1 Number ~f Allele~! 
1 ORA 2 

I 524 
-- -------1 

2 ORB 
-~ 

3 OQAl 25 
4 OQ~l. 66 ----1 -
5 OPAl 15 
6 OPB1 114 _ _j -
Total 746 

~-

83 



Chapter 5: Structure based prediction of MHC binding peptides 

dataset. A total of 148 structures are currently available for 32 class I MHC alleles 

(Table 5.3), while there are 42 structures for 10 class II alleles (Table 5.4 ). Apart 

from these 190 human MHC crystal structures, 73 murine MHC crystal structures 

belonging to 10 different alleles are also available in our structural library (Table 5.5). 

These crystal structures were used as templates for modeling of MHC-peptide 

complexes in case of alleles for which crystal structures were not available. In order 

to model a given MHC allele, the most homologous MHC crystal structure, as 

identified by BLAST alignment, is used as structural template. The backbone 

coordinate of the structural template is kept fixed and the side chains of the query 

allele are modeled using SCWRL (Canutescu et al., 2003) program. SCWRL uses 

backbone dependent rotamer library approach for side chain fixing. Similarly, while 

modeling putative substrate peptides in the binding pocket of a given MHC allele, the 

backbone coordinates of the bound peptide in the original template structure are 

preserved and side chains are modeled using SCWRL. This procedure generates a 

MHC-peptide complex in which the MHC part is that of query allele modeled on the 

backbone of homologous structure, and peptide is exactly in the same backbone 

conformation as in the template peptide. All these steps are carried out by using 

MODPROPEP (Kumar and Mohanty, 2007) program. 

Table 5.3: List of human class I MHC-peptide complexes obtained from PDB. 

Serial Number Class I MHC Allele \ ~umber of Structu~s_ 
1 A*0101 
2 A*0201 66 
3 A*0265 7 -- - -~ 
4 A*0312 2 
5 A*0326 5 I 

-- --i 

6 A*1101 4 I 

7 A *6801 1 
I 

8 8*0733 
- - _____, 

1 
t---

9 8*0801 2 

--~ --
10 8*0802 1 
1 1 B* 1505 3 

12- 8*2705 1 
I 8*2709 

- -----1 

13 i4 
14 : 8*2713 i4 ----
15 8*3501 I 1 
~ 8*3508 IS -

17 8*3542 11 ---
18 8*3709 12 ---
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Serial Number Class I MHC Allele Number of Structures~ 
19 _l 8*4402 1 ___j 

20 8*4403 2 I 

21 8*4405 1 I 

--i 

22 8*5101 2 I 

23 8*5301 12 I 

24 8*5703 3 I 

25 8*5711 1 
----

26 8*5815 1 - -
27 Cw*0304 1 - --
28 Cw*0401 2 ---
29 Cw*0602 : 1 ---
30 Cw*0741 12 --
31 Cw*1202 17 
32 Cw*1802 1 

-
Total 148 

Table 5.4: List of human class II MHC-peptide complexes obtained from PDB. 

Serial Number Class II MHC Allele 1 Number of Structures I 

I 1 HLA-DR81 *0301 
- --j 

i 1 
~ 

2 HLA-DRB1 *0101 ·n I 
3 HLA-DRB1 *1501 2 I 

4 HLA-DR8 1 *040 1 2 
5 HLA-DRB3*0101 1 I 

6 1 HLA-DRB5*0101 4 
- ____, 
--j 

7 1 HLA-DQA1*0501 HLA-DQ81*0201 1 
--1 

8 I HLA-DQA I *0302 .. HLA-DQ8 1 *0302 3 I 
1 HLA-DQA1 *0102 HLA-DQ81 *0602 

_, 
9 I I 

1 HLA DQA 1 *030f HLA . DQ8 1 *031 0 
~ 

10 4 I 

Total 42 I 

Table 5.5: List of mouse class I and class II MHC-peptide complexes obtained from 
PO B. 

Serial Number I Mouse Allele MHC Class No of Structures I 
I 1 I H2-0 Class I 1 I 

-1 

12 H2-Db Class I 16 --3 H2-Dd Class I 3 
4 H2-Kb Class I 34 

i 

... --5 H2-Ab Class II 2 
6 H2-Ad Class II 2 
7 H2-Ak Class II 4 

. --
8 H2-A-nod Class II 2 -
9 H2-Ek Class II 8 -- --
10 H2-E Class II 1 
Total I 73 -
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5.2.2 Conformational analysis of peptides bound in the MHC 
binding groove in crystal structures 

MHC proteins bind and stabilize the antigenic peptides in the peptide-binding 

groove formed between two alpha-helices on the floor of antiparallel beta-sheets. 

Availability of a large number of crystal structures in our structural library enabled us 

to perform a systematic analysis of the binding conformation of peptides in complex 

with the MHC proteins to investigate whether all peptides adopt similar extended 

conformation when they bind to the MHC molecule. We removed the peptide 

coordinates from the MHC-peptides complexes and grouped them in two broad 

groups belonging to class I and class II MHCs. Each group consisted of a set of 

peptides of different lengths in the same conformations as they were in complex with 

MHC proteins. Class I MHC set contained 8 mer, 9 mer, 10 mer and 11 mer peptides, 

while the class II MHC set contained peptides up to 16mer in length. The long class II 

MHC peptides usually contained the overhanging regions on C and N terminal of 

peptides which did not make any contact with the MHC proteins. Such peptides had 

been already trimmed to remove the overhanging regions. For each set of peptides, 

the longer peptides are broken down into all possible peptides of shorter lengths. For 

example, a 10 mer peptide is broken into 2 overlapping 9mers, and 3 overlapping 

8mers. For each MHC class groups, the peptides of same len!:,rth were compared and 

their backbone RMSD values were calculated after their optimum superimposition. 

The orientation of the peptides in the MHC binding pocket were also 

compared for various alleles of class I as well as class II MHCs. For a pair of MHC­

peptide complex, the structures were superimposed using only the Ca atoms of MHC 

protein coordinates. This brought up the coordinates of structure bound peptides in a 

common frame of MHC protein. The peptide coordinates were used to calculate the 

RMSD values of peptides pair without superimposition. This procedure was repeated 

for all possible pairs which could be compared for each allele. 

5.2.3 Scoring the binding energy in MHC-peptide complexes 
by statistical pair potentials 

The interacting residue pairs between peptide and the MHC protein were 

identified using the criteria of any two atoms of the residue pair being at a distance 

less or equal to 4.5A. For each interacting residue pair, a score was assigned using 

the residue based statistical pair potentials. Binding energy was computed by 

summing the scores for all possible interacting residue pairs present in the complex. 
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All these steps were also carried out using MODPROPEP. Two different statistical 

pair potentials, namely Miyazawa-Jemigan (MJ) (Miyazawa and Jernigan, 1996) and 

Betancourt-Thirumalai (BT) (Betancourt and Thirumalai, 1999) were used. For 

scanning a potential antigenic protein for putative MHC binding peptides, all possible 

peptides of length same as that of template bound peptide, were ranked as per their 

binding energy values. 

5.2.4 Scoring of crystal structure bound peptides from their 
source proteins 

If crystal structure is available for a peptide in complex with the MHC, the 

peptide is generally a preferred substrate for the corresponding MHC. Since a typical 

antigenic protein contains only a few MHC binding peptides, it is reasonable to 

assume that, the bound peptide has favourable interactions with the MHC, while all 

other peptides in the corresponding antigenic protein have unfavourable interactions 

with the particular MHC allele. Therefore, a predictive computational approach 

should be able to discriminate the structure bound peptide among all other peptides 

from its parent protein. In order to check the predictive power of the statistical pair 

potentials, we identified the source proteins for each of the peptides bound in the 

MHC-peptide complexes in our structural library. These protein sequences were 

downloaded from the SWISSPROT database (Boeckmann et a/., 2003). A few 

complexes in the library contained unnatural or synthetic peptide bound to MHC 

proteins. Such complexes were removed from the dataset for this exercise (Tables 5.6 

and 5. 7). The amino acid sequences of each of these source proteins were scanned for 

all possible overlapping peptides. All overlapping peptides were modeled in the 

peptide binding groove of MHC allele by SCWRL program using the backbone 

dependent rotamer library approach. The interaction energy for each peptide was 

calculated using the BT and MJ residue-residue statistical pair potential matrices. 

Apart from these two statistical pair potentials, each peptide MHC complex built by 

SCWRL was also ranked as per penalty for steric clashes i.e. peptide having minimal 

or no steric clash being preferred binder. All modeled peptides were ranked as per 

their interaction energy values. The prediction was considered to be correct if the 

template bound peptide was ranked among the top 30% of the peptides from its source 

protein in terms of interaction energy score. The procedure is repeated for all the 

MHC-peptide template structure present in the structural library using the program 
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MODPROPEP. For each of the three scoring methods, the percentage of MHC­

peptide complexes for which the above mentioned procedure gives the correct 

prediction was calculated. 

Table 5.6: List of crystal structures of class I MHC alleles which bind a peptide 
whose source protein could be identified in the SWISSPROT database. 

Serial Number MHC Allele Number of 
------., 

I 
structures 

1 A*0101 1 
2 A*0201 I7 

i3 A*0265 I 
* : 

I i ( 0312 I~ 
: : 

i A*0326 
~------------------~---~~-------------~ ------------~ 

1 A*IIOI '4 
-

'7 A*2402 : I 
----·--·-··--i 

:8 A *6801 : 1 

:9 B*0733 I I 

i 10 B*080I I -
II B*1505 3 
I2 B*2705 1 

-·-
I3 B*2709 3 
14 B*2713 2 
15 B*350I I 

: I6 B*3508 4 
: I7 B*3542 3 

I8 i B*3709 I 
I9 B*4402 1 I 

00 

! * I 

B*4405 
22 B*510I '2 

: 23 B*530I :2 : 

; 24 B*5703 3 
: 25 B*57II I 

26 Cw*0304 I ' : 
-

27 Cw*0602 I 
28 Cw*074I 3 ! 

29 Cw*I202 3 
30 Cw*I802 I i -
3I E*OIOI I ! 

32 O*OIOI I 
33 0*0104 I 
34 H2-Db 5 
35 H2-Dd I 
36 H2-Kb 7 
Total 84 
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Table 5.7: List of crystal structures of class II MHC alleles which bind a peptide whose 
source protein could be identified in the SWISSPROT database. 

Serial Number I Class II MHC allele ! Numb~~ of structures 
I I i H2-Ad I I 

2 H2-Ak ·3 I 

3 H2-Ek :2 ; 

-I 
4 HLA-DQAI *0102_HLA- I 

I 

DQBI *0602 I I 
5 HLA-DQAI *0302_HLA- I 

I 

DQBI *0302 13 I 
-------1 

6 HLA-DRBI *OlOI 7 -- - --i 
7 HLA-DRBI *040I I 

----1 

8 HLA-DRBI *I50I I 
- . . -i 

9 HLA-DRB5*0IOI 3 
Total 22 

- 1 

5.2.5 Benchmarking of MODPROPEP on peptide binding data 
obtained from SYFPEITHI database 

MHC binding peptides catalogued in SYFPEITHI (Rammensee et al., 1999) database 

were used to estimate the prediction accuracy of MODPROPEP. SYFPEITHI 

contains experimentally verified peptides known to bind with a number of different 

alleles of class I and class II MHC proteins. Most of the alleles bind to peptides of 

different length. We identified those alleles which have at least 20 substrate peptides 

in the database. A total of 30 such alleles (Table 5.8) were selected for testing the 

prediction accuracy of MODPROPEP. These 30 alleles included 28 class I MHC 

alleles and 2 class II MHC alleles. All of these alleles together bind to 1654 peptides 

as reported in SYFPEITHI database. The source proteins of these peptides were 

downloaded from SWISSPROT database. If the crystal structure was not available for 

a given allele, we modeled it using a homologous MHC crystal structure. The length 

of the bound peptide in the structural template was identified and the source protein 

containing the substrate peptide was broken into overlapping peptides of the same 

length as the template bound peptide. All these overlapping peptides were modeled in 

the binding pocket of the MHC allele and binding energy values were calculated 

using BT matrix. All peptides are sorted as per their binding energy and assigned a 

rank. The prediction was considered to be correct, if the known substrate peptide 

cataloged in SYFPEITHI was ranked among top 30%. The procedure is repeated for 
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all source proteins containing known substrate peptides of a given MHC allele and 

prediction accuracy was calculated. Similar procedure was followed for evaluating the 

prediction accuracy of each of the 30 alleles listed in Table 5.8. 

Table 5.8: List of MHC alleles, which have at least 20 known binding peptides catalogued in 
the SYFPEITHI database. These alleles were used for the calculation of accuracy of 
MODPROPEP for prediction of epitopes of MHC. 

S.No MHC Allele No of epitopes in Template used for I 
SYFPEITHI predictio_n_/modeling I 

I 
I 

: I HLA-A*0201 (10) 74 IHHH I 

:2 HLA-A*0201 (9) 347 IAKJ I 
I - . - -~ 

:3 HLA-A*IIOI (9) 38 IQ94 I 

' 
;4 HLA-A *2402 (9) 28 28CK ' _____ , 
:5 HLA-A *260 1 (9) 57 IQ94 ' I 

- - - - - - - - ----1 

:6 HLA-A *6801 (9) 1 25 IAKJ ' 
~ 

17 HLA-8*0702 (9) ! 29 IM05 ' 

Is I HLA-8*0801 (9) !21 -----1 

IM05 -----~ I 

9 ! HLA-8*1501 (9) I 62 IA98 

10 I HLA-8*1801 (9) Ill I IA98 
-----

I I I HLA-8*2703 (9) 23 : IHSA 
- --

12 HLA-8*2704 (9) 38 : IHSA 
--

13 HLA-8*2705 (9) 115 i IOGT 
----- - --

14 HLA-8*2705 (10) 40 I IJGD 
-------

15 HLA-8*2706 (9) 33 ~ IK5N 
-----

16 HLA-8*2709 (9) 43 , IK5N 
----------

17 HLA-8*3701 (9) 22 I ISYV 

18 HLA-8*3901 (9) 76 ! IM05 
---

19 HLA-8*4001 (9) 24 IM05 
------

20 HLA-8*4402 (9) 42 · IM60 
-------· 

21 HLA-8*4701 (9) 20 1N2R 
--------------

22 HLA-8*4901 (9) 100 · IE27 _____ , 
: 23 HLA-8*5101 (9) 33 IE27 

-------; 

I 24 HLA-Cw*040 1 (9) 48 1QQD 
--------; 

25 HLA-DRB I *0401 1 45 18X2 
(14) 

I 
I 

: 35 
---------1 

26 H2-Db (9) 1BZ9 
- ~ 

27 H2-Kb (8) I 46 18QH 

28 H2-Kd (9) : 38 18Z9 
-

I 29 H2-Kk (8) I 21 IBQH 
-

30 H2-Ab (15) I 20 IMCJ -- _____ __, 
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5.2.6 Re-ranking of high scoring peptides using MMIPBSA 
The high scoring 30% peptides from each of the test proteins containing 

known substrates were re-ranked using the all atom force-field and MM/PBSA 

method following a procedure similar to that described in chapter 3. AMBER9 

molecular dynamics suite of programs was used for these calculations. The models of 

MHC-peptides complexes involving the top ranked 30% peptides were energy 

minimized using the sander program of AMBER9 suite. The binding free energy of 

these minimized complexes were evaluated using the MM/PBSA module of 

AMBER9. MHC-peptide complexes were rearranged as per their binding free 

energies. This procedure was repeated only for those MHC alleles, whose prediction 

accuracy was more than 60% as evaluated by Betancourt and Thirumalai pair 

potential matrix. 

5.2. 7 Receiver operating characteristic curve (ROC) 
calculations 

The ROC curves were calculated for the predictions by BT matrix as well as 

MM/PBSA approach. AUC, specificity and sensitivity values were estimated for the 

predictions carried out for each of the MHC alleles. Here again the procedure 

followed was similar to the one described in chapter 3. 

5.3 RESULTS 

5.3.1 Analysis of bound conformations of antigenic peptides 
in the crystal structures 

In order to identify the degree of conservation in the binding modes of 

antigenic peptides in the MHC-peptide crystal structures, the peptide conformations in 

the individual crystal structure complexes were superimposed over each other to 

calculate their RMSDs. Since, the bound peptides were of different length, the larger 

peptides were truncated to all possible peptides of smaller length bound in the other 

crystal structure complexes. For example, the peptides bound to class I MHC vary in 

length from octamers to decamers. Hence, all decamer peptides were fragmented as 3 

overlapping octamers and two overlapping nonamers. Figure 5.1A shows a 

distribution of the RMSD values of all possible peptide pairs of same length. Peptides 

of 8 amino acid length, in complex with class I MHC, bind in a very similar 

conformation as 89.3% of all pairs show RMSD values less than lA. Peptides of 9 

amino acid length showed slightly greater deviations as their distribution showed 
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Figure 5.1 : Distribution of backbone RMSD values when the peptide bound in MHC-peptide 
complexes were compared to each other. All peptides of same length were superimposed on 
each other and the RMSD value of every possible pair was calculated. 
(A) Distribution for class I MHC bound peptides. (B) Distribution for class II MHC bound 
peptides. 
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46.2% peptide pairs show a RMSD deviation in the 1-2A range. A small fraction of 

the pairs had deviation in the 3-4A range. However, 38.4% have RMSD in the range 

of 1-2A, thus a majority of 84.6% peptide pair had the RMS deviation less than 2A. 

The peptides of length 10, however, showed a greater deviation than 8mer and 9mer 

peptides. 

In case of Class II MHC (Figure 5.1B), bound peptides showed conservation 

in their binding modes for 8mer and 9mer peptides. The RMSD deviation for 8mer 

peptides was less than 1A for 44.2% of all peptide pairs. An additional 48% of 

peptide pairs showed RMSD values in 1-2A range. Only a small fraction of 5.7% 

peptide pairs showed as RMSD values more than 2 A. Peptides of 9 mer length were 

less conserved in their binding modes than 8mer peptides. A fraction of 62.6% 

peptide pairs showed a RMSD of less than 2A. The 10 mer peptides in case of MHC 

class II showed less conserved binding conformations. A significant fraction of 74.8% 

peptide pairs had an RMSD values more than 2A. 

We also carried out analysis of the orientations of the peptides in the binding 

pockets of MHC molecules. RMS deviations in the peptide coordinates were 

calculated, when only MHC part of the complexes were superimposed to bring the 

peptides to the same reference frame. Figure 5.2 shows an analysis of the orientations 

of the peptides bound to class I MHC allele A*0201. Our structure library had 61 

complexes of A *0201 allele which have a 9 mer peptide bound in the MHC-complex. 

All of these crystal structures were superimposed over each other using the 

coordinates of Ca atoms of MHC protein alone. The peptide coordinates in the 

superimposed structures were used to calculate the deviation of every peptides with 

every other peptide. The clustering of the peptides using their RMSD values showed 

that all the peptides were bound in the similar conformation and at the same site, as 

they clustered together (Figure 5.2A). However, one peptide was bound in a slightly 

different conformation (shown in red color in Figure 5.2A). The distribution of the 

RMSD value of the peptides also confirmed this observation. Figure 5.2C shows the 

binding modes ofthree representative 8 mer, 9 mer and 10 mer peptides to the MHC 

allele A *0201. In order to show all three peptides in the same frame, the 

corresponding MHCs have been superposed and only a single MHC structure is 

shown for clarity. As can be seen, the 8mer peptide binds in a conformation very 

similar to the 9mer, but the 1 Orner peptide binds in a slightly different conformation. 

The difference in the conformation of the 10 mer can probably be attributed to the 
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Figure 5.2: Peptide backbone conformation analysis of the class I allele HLA-A *020 I crystal 
structure bound peptides. (A) Clustering of 9mer peptides bound in 61 HLA-A *020 I crystal 
structures on the basis of their Ca RMSD values when every peptide was compared to every 
other peptide. Before RMSD calculation the peptides were brought in a common reference 
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structural rearrangement required to accommodate the extra amino acid in the class I 

MHC pocket which is optimum for 9 mer peptides. Thus, the analysis of the bound 

conformations of a large number of peptides in MHC-peptide complexes 

demonstrated that, the peptides bind the MHC molecule in an essentially similar 

conformation and at the same site. 

5.3.2 Scoring of crystal structure bound peptides in complex 
with MHC 

We next proceeded to investigate whether the peptides bound in various 

MHC-peptide complexes can be distinguished based on their binding energy scores 

from all possible overlapping peptides of similar length present in the source proteins 

of the bound peptides. As described in the methods section, for a given MHC-peptide 

complex the bound peptide was considered as true positive binder and all other 

overlapping peptides of similar length from the corresponding source protein were 

considered as true negatives. Each of these peptides were modeled in complex with 

the corresponding MHC crystal structure and the binding energy score was calculated 

using Miyazawa-Jernigan (MJ) and Betancourt-Thirumalai (BT) residue based 

statistical pair potentials. The score was also calculated using residual steric clash 

function of SCWRL program as described in the methods section. The peptides were 

ranked as per their binding energy scores and the prediction was considered to be 

correct, if the bound peptide had a rank within top 30%. The cutoff value of 30 

percentile for classifying a prediction as "correct" was arrived after several pilot 

studies. Figure 5.3 shows the prediction results for all the class I and class II MHC­

peptide complexes, with percentile cutoff values of 10%, 20% and 30%. As can be 

seen in Figure 5.3A, only in 40.5% of the class I MHC-peptide complexes, the BT 

matrix could rank the bound peptide within top 10% of all possible pep tides present in 

the source protein. On the other hand, in 79.8% of the cases BT matrix could rank the 

bound peptide within top 30%. Similarly, MJ matrix and SCWRL residual score could 

rank the bound peptide within top 30% in case of more than 65% of the class I MHC­

peptide complexes. Thus, in case of class I MHC, BT matrix performed best among 

all three scoring schemes. Even at 20% cutoff level, the prediction accuracy of BT 

matrix was 64.3%. Similarly for class II MHC, BT matrix performed best at all cutoff 

levels (Figure 5.3B). The prediction accuracy of BT matrix was 72.7% at 30% cutoff 

level which is significantly better than prediction accuracy of 40.9% by MJ matrix. 
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The prediction accuracy based on SCWRL residual score was less than that by BT 

matrix at 30% cutoff level. The same trend was also observed at 20% cutoff level. 

Based on these results, the percentile cutoff of 30% was chosen for classifying the 

prediction for a given complex as correct. The choice of such larger percentile cutoff 

can also be justified by the fact that, ranking based on pair potential is used only for 

the first round of screening to shortlist peptides for detailed binding energy 

calculations using all atom forcefield . Thus, the results of benchmarking on MHC­

peptide complex crystal structures indicated that BT matrix with 30% as percentile 

cutoff was most appropriate to ensure that true positive binder is sort listed in most 

cases. We next proceeded to investigate if the same criteria can be used to predict the 

known substrate specificity data on class I and class II MHCs cataloged in 

SYFPEITHI database. 

5.3.3 Benchmarking on data obtained from SYFPE/THI 
database 

In order to evaluate the predictive power of our structure based approach 

MODPROPEP, 30 different alleles, each having at least 20 known antigenic peptide 

substrates were selected. The source proteins of these peptides were scanned for all 

overlapping peptides. Since BT matrix performed best in predicting the crystal 

structure bound peptides, it was used as scoring matrix for benchmarking on 

SYFPEITHI data. A percentile cutoff level of 30% was chosen as criterion for correct 

prediction. Figure 5.4 shows the results of benchmarking on SYFPEITHI data. As 

can be seen, out of 30 alleles, 16 showed a prediction accuracy of more than 60%, i.e. 

in 16 alleles the known substrate peptide was found to be among top 30%, when all 

peptides from the source proteins were ranked using BT matrix. We also carried out 

the ROC analysis for these 16 alleles. A typical example of ROC analysis has been 

shown in Figure 5.5A for class I MHC allele A*0201 which contained maximum 

number of known antigenic peptides in SYFPEITHI data set. Figure 5.5B shows the 

distribution of AUC values for various alleles. Apart from AUC, the sensitivity and 

specificity for the 16 alleles are listed in Table 5.9. As can be seen, except for the 

allele H2-Db all others have AUC values higher than 0.7, and good sensitivity and 

specificity values. The AUC value for H2-Db was 0.597, with specificity and 

sensitivity of 98.5% and 43.8% respectively. The highest AUC value was 0.961 for 

the allele HLA-B*0801. The sensitivity and specificity value of HLA-B*0801 was 
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Figure 5.4: Benchmarking results of MODPROPEP for various MHC alleles on the peptide 

binding data in SYFPEITHI database. The BT matrix has been used for calculation of binding 

affinities of peptides to MHC alleles. A prediction was considered to be correct if the binding 

peptide was among top ranked 30% peptides among all peptides from its source protein. 

Number in the first bracket next to allele name indicates the length of peptide bound in the 

template structure. The total number of antigenic peptides used in prediction is mentioned in 

the last bracket. Red arrows indicate alleles with prediction accuracy more than 60%. 
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83.2% and 100% respectively. These values were consistent with the I 00% prediction 

accuracy for this allele. When all alleles were considered together, the AUC value 

was 0.795 with specificity of 84.2% and sensitivity of 63.5%. Hence, the overall 

results from benchmarking on SYFPEITHI data suggests that, 8T statistical pair 

potential can successfully identify potential MHC binding peptides for a large number 

of alleles. This result is specially encouraging, because our structure based approach 

MODPROPEP does not use any experimental data for training. Hence, it is likely that 

MODPROPEP can predict substrate peptides for new MHC alleles with high 

accuracy. 

Table 5.9: List of Area under curve (AUC), sensitivity (Sn), and specificity (Sp) values for 
ROC analysis of 16 MHC alleles. 

I I Antigenic 
-

I I 
I 

MHC Alleles proteins Prediction (%) AUC So fYo) Sp (%) 
HLA-A*0201 (10) (741 74 75.7 0.795 63.8 I 85.1 

- - - ---
HLA-A*0201 (9) (347) 347 75.5 0.758 73 I 70.9 

--
HLA-A *2402 (9) (28) 28 82.1 0.831 65.6 . 92.6 
HLA-8*0702 (9) (29) 29 72.4 0.808 60.3 I 100 ----

21 100 0.961 83.2 100 I HLA-8*0801 (9) (21) 
I 77 

- - -1 

HLA-8*1501 (9) (62) 62 64.5 0.735 60.9 
-

HLA-8*2703 (9) (23) 23 95.7 0.912 76.6 95.7 
HLA-8*2704J9l(38) 38 I 60.5 0.748 46.3 100 

-
HLA-8*2705 (9) (115) 115 I 75.7 0.814 66.1 86.1 I HLA-8*2705 (10) (40) 40 I 82.5 0.824 65.4 86.8 . ----j 

HLA-8*2706 (9) (33) 33 I 84,8 0.841 66.1 97 ; 
-

HLA-8*2709 (9) (43) 43 I 74.4 0.795 57.2 95.1 
~ 

HLA-8*4701 (9) (20) 20 I 78.9 0.794 83.8 73.7 
HLA-Cw*0401 (9) I i I 

(48) i 48 93.8 : 0.943 
I 

91.7 I 84,9 
I H2-Db (9) (35) 35 60 I 0.597 I 43,8 98.5 

I -t 
H2-Kb (8) (461 I 46 89.1 1 0.886 • 71.1 95.1 ------

. All alleles I ~ 0.795 1 63.5 84.2 

5.3.4 Re-ran king of high scoring peptides using MMIPBSA 
As per our multiscale strategy for identifying putative MHC binding peptides, 

in the first round we used residue based statistical pair potential matrix for screening 

of peptides which are most likely to have the favorable interaction with the MHC 

proteins. In case of a large number of MHC alleles, 8T matrix was able to rank the 

true positive substrate peptide within top 30% of all possible peptides present in a 
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given antigen. We wanted to investigate if re-ranking these top 30% high scoring 

peptides using all atom MM/PBSA approach can further improve the rank of the true 

positive peptides. For each of the 16 alleles, where BT matrix had a prediction 

accuracy above 60%, the top ranking 30% of the peptides were modeled using an all 

atom forcefield. MM/PBSA method was used for calculation of the binding free 

energies of these peptides. The MHC-peptide complexes were energy minimized 

before the calculation of binding energies. Figure 5.6 shows results of re-ranking of 

shortlisted peptides by MM/PBSA. For each allele, the left bar represents the 

percentages of substrates (out of those short listed in the first stage) for which the true 

binder could be ranked within 0%-10% (blue), 10%-20% (red) and 20%-30% (green) 

of all possible overlapping peptides in terms of BT matrix binding energy score. Since 

only top 30% of the peptides are shortlisted, in each case the total adds up to 100%. 

Right bar shows the same results after re-ranking using MM/PBSA binding free 

energy. Hence, an improvement in the rank of the true binder peptide will reflect as 

enhancement of percentage of substrates for which true binder could be ranked within 

top 10%. As can be seen from Figure 5.6, out of the 16 alleles, 8 alleles showed an 

improvement of the rank of known binder peptide. For example, in case of HLA­

A *020 1, only in case of 58.4% substrates, the known binder peptides were among top 

ranked 10% when scored by BT matrix. However, upon re-ranking by MM/PBSA 

method, in case of 72.1% of substrates, the known binder peptides fell among top 

ranked 10% peptides. Similarly, percentage of substrates for which the binder 

peptides were ranked within top 20%, increased from 84.4% to 91.6%, when the 

peptides shortlisted by BT matrix were re-ranked by MM/PBSA. Thus, these results 

suggests that re-ranking by MM/PBSA approach is indeed able to enhance the rank of 

the true binder peptide. Therefore, the multi scale structure based approach proposed 

in this thesis is indeed a promising approach for substrate peptides for new MHC 

alleles. To the best of our knowledge, this work also reports the most comprehensive 

benchmarking for prediction of the substrates for class I as well as class II MHCs 

covering a very significant number of antigens from a large number of alleles. 

5.4 DISCUSSION 
Rapid and correct identification of MHC-binding peptides is very important 

for development of knowledge based design of subunit vaccines. The limitations of 

experimental techniques, and the availability of a large amount of potential antigenic 
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Figure 5.6: Re-ranking of top ranked 30% peptides short listed by pair-potential matrix with 

a MM/PBSA based all atom force field. The first bar for each allele shows the fraction of 

cases in which known binding peptide is among top ranked 0-10%, I 0-20% and 20-30% of all 

peptides from their respective source proteins. The second bar represents the redistribution 

when these 30% peptides are re-ranked by MM/PBSA method. Red arrows indicate the alleles 

for which the re-ranking by MM/PBSA led to improvement in the rank of known binding 

peptides. Number in the first bracket next to allele name indicates the length of peptide bound 

in the template structure. The total number of antigenic peptides used in prediction is 

mentioned in the last bracket. 
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Chapter 5: Structure based prediction of MHC binding peptides 

protein data from genome sequences has led to the development of a number of 

computational methods for prediction of antigenic peptides in context to a number of 

class I and class II MHC alleles. Most of these methods are sequence motif, PSSM, 

artificial intelligence based methods which rely upon the training on already known 

MHC binding peptides. A very high degree of conservation in the MHC allele 

sequences and the structure fold holds the promise for the development of a structural 

based approach. The problem of identification of MHC binding peptides is essentially 

a problem of protein-peptide interaction rooted in the physical principles of 

identification of a favorable peptide by MHC protein. In this chapter, we have used 

the crystal structure of MHC-peptide complexes for prediction of MHC binding 

peptide where the MHC-peptide complexes are modeled using the existing complexes 

as structural templates. The overlapping peptides of a given length from an antigenic 

protein are modeled in complex with MHC and are scored by pair-potential matrix. 

The high scoring peptides are shortlisted and scored by the detailed all atom based 

MM/PBSA potential. 

Our analysis of RMSD values of peptide backbone in the crystal structure 

bound conformation, when compared to each other in pairs, showed that mostly they 

bind in the MHC binding groove in more or less same conformation. This observation 

was same for class I as well as class II MHC proteins. Only a small fraction of peptide 

pairs exhibit slightly more deviation which may be attributed to few peptides which 

bind in an alternative conformation. The analysis of conformation of bound peptides, 

when only MHC protein coordinates are superimposed, also confirmed that most of 

the peptides bind in the same extended conformation. Detailed analysis of HLA­

A * 0201 revealed that 9mer peptides bound in the 60 complexes traverse the same 

path while only one 9mer peptide bind in different conformation. 

The conservation in the binding conformation of the peptides implies that the 

contacting residues in MHC allele, which interact and stabilize peptide residues, can 

be identified with a good degree of confidence. As these same residues would also 

stabilize the peptide of unknown sequence, the compatibility of a peptide in the same 

conformation can be evaluated by employing a threading like approach. We used 

MODPROPEP, to identify the template crystal structure bound peptide from among 

all possible peptides from its source protein. To evaluate the interaction energy of a 

peptide, BT, and MJ pair potential matrix and van der Waals energy based SCWRL 

energy functions were used. BT matrix performed best among all three sconng 
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schemes for class I as well as class II MHC complexes. BT matrix has been shown 

previously to perform well in cases involving hydrophilic as well as hydrophobic 

interface. In contrast, MJ matrix performs well at hydrophobic interface as it tends to 

score well for residues involving hydrophobic-hydrophobic interactions. Since, 

prediction accuracy was best when BT matrix was used for scoring, it implies that 

MHC-peptide complex involves abundant hydrophilic as well as hydrophobic 

residues as interaction partners between MHC and peptide. 

When benchmarked on experimentally known binding peptide data using BT 

matrix, the prediction accuracy was found to be more than 60% for 16 alleles 

belonging to class I MHC. The prediction accuracy and AUC for HLA-8*0801 

reached as high as 100% and 0. 961 respectively. Therefore, BT pair potential matrix 

could rank the known binding peptides with high score as compared to other 

nonbinding peptides in the same protein. However, BT matrix could not predict so 

well for other 14 alleles. As the correct scoring of the peptide depends on the list of 

residue-residue contacting pairs between MHC and peptide, the correct identification 

of contacting residue pair is very important. For some models, when the structural 

similarity is not very high, or peptide bind in different conformation than that in the 

template crystal structure used for modeling, the incorrect residue pair identification 

may have led to the failure to predict known binding peptide among high ranking 

peptides. In addition, residue-residue pair potential is a coarse grained potential which 

works at the residue level and does not take into account the detailed atomic 

interaction while calculating the interaction energy. Scoring of binding energy of 

shortlisted peptides, using an all atom potential MM/PBSA, improved the ranks of the 

known binding peptide in case of 8 MHC alleles. Hence, all atom based MM/PBSA 

potential has shown promise as a good method for prediction of MHC binding 

peptides when coupled with BT matrix pair-potential. However, considering a large 

number of protein-peptide complexes involved while calculating the binding energy 

using MM/PBSA, we performed only a short energy minimization of 1000 steps on 

MHC-peptide complexes. For some complexes, this short minimization may be 

insufficient in removing the steric conflicts which might have occurred during side 

chain modeling by rotamer library. As a result, in such cases, the MM/PBSA binding 

energies would not be the true representative of actual binding affinity of peptide to 

MHC proteins. This might have led to the failure of MM/PBSA in improving the rank 

of binding peptide in some alleles. The full energy minimization of all peptides prior 
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to the calculation of binding energy holds the promise in further improving the rank of 

binding peptide. 
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Summary and Conclusions 

Proteins involved in majority of cellular processes usually perform their 

function by binding to some target proteins and forming protein-protein complexes. 

Hence, identification of the potential interacting partners of a given protein is crucial 

for understanding the molecular details of a variety of cellular processes. 

Experimental approaches for identification of protein-protein interactions indicate that 

often receptor protein recognizes short contiguous peptide stretches on the interaction 

partner. Among the various proteins which interact specifically with short peptide 

motifs, MHC and kinases represent two major protein families whose substrate 

specificities have been extensively studied by various experimental approaches. 

Correct identification of MHC binding peptides has important implications for 

modem epitope based vaccine design and also cancer therapy. Similarly, protein 

kinases are essential for regulation of the diverse cellular processes including 

metabolism, stress responses and cell-cycle control. Therefore, identification of 

substrate proteins for various kinases is crucial for understanding signaling networks 
. . . 
m vanous orgamsms. 

Even though sequence based in silica prediction tools are widely used for 

identifying MHC binding peptides and phosphorylation sites on proteins, they rely on 

identification of sequence motifs which are found in a known set of substrate 

peptides. Therefore, these methods can not be applied in case of MHC alleles or 

kinase subfamilies for which no experimental data is available. Discovery of newer 

MHC alleles and identification of large number of kinases in various genomes require 

development of novel computational methods which can give reliable clues about 

their substrate specificities even in absence of extensive experimental data. Structure 

based substrate prediction methods can in principle address these problems. 

In this thesis, we have developed a novel structure based substrate prediction 

method for MHCs and kinases. This prediction method involves a multiscale 

approach, where at the first level putative high scoring substrate peptides are 

identified by threading of peptide sequences on the structural templates of kinase­

peptide or MHC-peptide complexes and scoring them by residue based statistical pair 

potentials developed by Miyazawa and Jernigan or Betancourt and Thirumalai. High 

scoring peptides short listed by initial screening are modeled in the peptide binding 

pocket using rotamer library and detailed all atom molecular mechanics potentials, 
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and their binding affinity is re-ranked using binding free energy values computed by 

MM/PBSA approach. In order to test the predictive ability of statistical pair 

potentials, detailed benchmarking was carried out on the experimentally identified 

substrate peptide data sets cataloged in Phospho.ELM and SYFPEITHI database. All 

these steps were carried out using MODPROPEP, a software developed for 

automating above mentioned computational tasks. 

This software has been developed based on the observation that all the protein 

kinases shared a conserved structural fold despite their sequence divergence. Similar 

conservation of structures were also observed both for class I and class II MHC 

structures which share a higher degree of sequence identity within themselves. 

BLAST alignment of large number of protein kinases and MHC proteins available in 

sequence databases with the crystal structures also indicated that, homology models 

can be obtained for most of these sequences with reasonable accuracy. Comparison of 

the bound peptide structures indicated that in all of these three classes of proteins, the 

substrate peptides bind at a structurally homologous site on the conserved fold and the 

bound peptides maintain a more or less similar extended conformation. This 

suggested the possibility that bound peptides from peptide-protein complexes can be 

transformed to the protein structures lacking the bound peptide based on optimum 

superposition ofthe protein structures. 

The prediction accuracy of MODPROPEP for prediction of phosphorylation 

sites was benchmarked on the experimentally verified phosphorylation sites 

catalogued in Phospho.ELM database (version 5.0, May 2006). It contained a total of 

13603 phosphorylation instances in 4422 proteins by 263 kinase families. The 

analysis was restricted to Ser/Thr kinases having at least 20 phosphorylation instances 

in Phospho.ELM. Kinases which did not show significant homology with available 

structural templates were also excluded. Finally, out of the 38 substrate specific 

classes, 22 classes containing 70 kinase families were selected for benchmarking of 

our structure based substrate prediction program, MODPROPEP. They contained a 

total of 2457 phosphorylation instances in 1180 proteins by 70 kinase families. The 

results of MODPROPEP were compared with other prediction tools, namely, GPS, 

PPSP, SCANSITE, NetphosK and PREDIKIN. Each of the Ser/Thr containing 

heptameric peptides were modeled in the substrate binding pocket of respective 

kinase or the structural model. The binding energy of each peptide was calculated 

using the BT pair potential matrix. All modeled peptides were sorted as per their 
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binding energy and assigned a rank. The prediction was considered to be correct if the 

peptide containing the known phosphorylation site had a rank within top 30%. This 

procedure was repeated for all the known substrate proteins for a given kinase group 

and percentage of substrates for which MODPROPEP gave correct prediction was 

evaluated. Similarly, prediction accuracy was calculated for all 22 kinase groups. It 

was encouraging to note that, our structure based method could predict more than 

60% of the experimentally identified substrates for I 0 protein kinases. The prediction 

accuracies for PKA, PKB, PKG, and PDK were well above 70% with PKG having the 

highest prediction accuracy of 8I.5%. The other kinase groups for which 

MODPROPEP showed good prediction accuracy were ChK, CK2, DAPK, ROCK, 

and MAP3K. MODPROPEP also outperformed all other prediction tools for PKG, 

PDK, ChK, CK2, DAPK, ROCK, and MAP3K. However, for protein kinases PKA, 

PKB, and PAK performance of other prediction tools were better than MODPROPEP, 

even though MODPROPEP had prediction accuracy more than 60% for these kinase 

groups. We also carried out receiver operating characteristic (ROC) curve analysis for 

analyzing the robustness of our structure based prediction approach. The area under 

curve (AUC) values ofthese IO kinases ranged from 0.68I (MAP3K) to 0.838 (PKG). 

The prediction accuracy of MODPROPEP for the remaining I2 protein 

kinases was low, because many of the actual phosphorylation sites were not being 

ranked among the top 30% of all Ser/Thr containing peptides in these cases. The 

structural models of kinase-peptide complexes were analyzed in detail for each of 

these cases to understand the reasons for poor prediction accuracy. It was found that 

certain crucial residues which have been reported to be determinants of substrate 

specificity were not predicted as binding pocket residues based on our distance based 

criteria. Similarly, some residues were included in list of subsites even though they 

did not make significant contact with the peptide residues. Therefore, appropriate 

modifications were carried out to the list of binding pocket residues and a modified 

version of the algorithm was used to re-evaluate the prediction accuracy for all the 

kinase families. It was found that, for I 0 kinase groups where prediction accuracy 

was more than 60% earlier, modified version of MODPROPEP also showed good 

prediction accuracy with further improvement in few cases. Prediction accuracy of 

PKA and PKB improved to 84.8% and 77.6% from 71.4% and 70.9% respectively. 

Most significant improvement was in case of PKC with prediction accuracy reaching 

73.4% from 43.3%. However, for the remaining cases where earlier version of 
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MODPROPEP had shown low prediction accuracy, no significant improvement could 

be observed despite the modifications to the binding pocket residues. 

Thus our results indicate that, BT pair potential was able to successfully rank 

the substrate peptides within top 30% of all Ser/Thr containing peptides for 11 kinase 

families. We also wanted to investigate whether modeling of peptides at an all atom 

level and evaluating their binding free energy by inclusion of electrostatic and 

desolvation terms can further improve the ranks of substrate peptides. The high 

scoring top 30% peptides obtained from pair potential based screening were modeled 

in the binding site of their respective kinases using rotamer library approach. The 

resulting protein-peptide complexes were energy minimized and their interaction free 

energy was calculated by MM/PBSA method. The peptides were ranked and arranged 

as per their binding free energy. The AUC values for 8 kinase families significantly 

improved for MM/PBSA approach when compared to the AUC values obtained from 

pair potential based approach. Thus MM/PBSA method was able to further improve 

the ranks of substrate peptides among all possible Ser/Thr containing peptides present 

in the substrate proteins 

We also investigated whether inclusion of solvent accessibility probability of 

putative substrate peptides can help in improvement of prediction accuracy. Although 

some computational method for prediction of phosphorylation sites take into account 

solvent accessibility of peptides, the importance of solvent accessibility has not been 

analyzed thoroughly. To investigate the importance of the solvent accessibility in the 

phosphorylation event by protein kinase, we systematically analyzed the solvent 

accessibilities of phosphorylation sites in known substrate proteins, and compared 

with the accessibilities of sites which are not phosphorylated. Out of a total of 13563 

phosphorylation sites in 4422 protein sequences, a total of 1088 phosphorylation 

instances could be mapped to 990 PDB entries. These included a 526, 202 and 360 

instances containing serine, threonine and tyrosine as phosphorylation residue 

respectively. The solvent accessible surface area of these residues and the 

heptapeptides containing these as central residues were calculated using NACCESS 

program. The average relative solvent accessible area of phosphorylation site residues 

was found to be significantly more than their non-phosphorylated counterparts. The 

difference between phospho and non-phospho residues was statistically significant as 

judged by Wilcoxon test p-values of 2.20 X 1 0" 16
, 5.07 X 1 0"6 and 2.34 X 1 0"8 for 

serine, threonine and tyrosine containing sites. These results suggest that 



Summary and Conclusions 

incorporation of solvent accessibility term along with the current scoring function 

based on the residue-residue statistical energy can further improve the prediction 

accuracy. An internet based resource, pACCESS has been developed in this thesis for 

the analysis of the solvent accessible surface area of phosphorylation sites, which is 

made available at http://www.nii.ac.in/paccess_,html. 

Benchmarking was also carried out to evaluate the prediction accuracy of 

MODPROPEP for identifying substrate peptides recognized by class I and class II 

MHC proteins. In contrast to a limited number of crystal structures available for 

kinases, a large number of MHC-peptide complexes were available in PDB. 

Therefore, the structure based approach was first benchmarked on the available MHC­

peptide complexes. We wanted to investigate whether the Betancourt-Thirumalai 

statistical potential can distinguish the MHC bound peptide from among the at"l 

possible overlapping peptides derived from the source protein of the bound peptide. It 

was encouraging to note that, in 79.8% of MHC class I crystal structures, the bound 

peptide was ranked among 30%. The prediction accuracy was found to be 72.7% in 

case of class II MHC-peptide complex dataset. Subsequently, MODPROPEP was also 

benchmarked using the peptide ligand information catalogued in the SYFPEITHI 

database. A total of 30 alleles which had more than 20 known peptide substrates, were 

selected for this analysis. MODPROPEP was used to scan the source protein of these 

peptides and the prediction was considered to be correct if the actual binder peptide 

was among the top 30% of all scored peptides. It was found that for 16 alleles, the 

prediction accuracy was more than 60%. The ALJC values for these alleles ranged 

from 0.597 to 0.912. The sensitivity and specificity values were also promising for 

most of these alleles. The high scorer peptides obtained by the pair-potential were 

modeled by rotamer library approach in the binding pocket of their respective MHCs 

and ranked as per their binding energy using MM/PBSA method. Analysis of 

MM/PBSA results indicated that, in case of eight out of the 16 alleles, use of 

MM/PBSA for re-scoring resulted in improvement in the ranks of the experimentally 

identified substrate peptides. The improvement was most striking in case of class I 

MHC allele B*2709 in which MM/PBSA ranked all the 43 peptides among 10% top 

ranked peptides. 

In this thesis, we have used a combination of rotamer library and sconng 

scheme using statistical pair potentials for developing a novel structure based 

computational approach for prediction of substrates for MHC and protein kinases. 
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Summary and Conclusions 

Our benchmarking studies on large number of known substrates available in 

Phospho.ELM and SYFPEITHI indicate that, this computational method has good 

prediction accuracy for a number of kinase families and class I as well as class II 

MHC alleles. Our analysis also suggests that the prediction accuracy of 

phosphorylation site prediction programs can be further improved by use of 

propensity for solvent accessibility. The computational protocol MODPROPEP, 

developed in this thesis has also been made available as a user-friendly web based 

software at http://www.nii.res.inlmpdpropep.html. Apart from prediction, this 

software also provides an easy interface to analyze the protein-peptide interactions to 

understand the role of crucial residues in recognition of substrate peptides. Although 

currently we have benchmarked MODPROPEP on MHCs and kinases, this method 

being general in principle, can be extended easily to other protein-peptide complexes. 

The work reported in this thesis has resulted in the following publication: 

Kumar, N. and Mohanty, D. (2007). MODPROPEP: a program for knowledge­

based modeling of protein-peptide complexes. Nucleic Acids Res, 35: W549-555. 
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