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ABéTRACT

Performance Evaluation is tﬁe central problem in the
s?udy of the economics of computer systems. The prcoblem of
performance evaluation, difficulties in assessing perform;nce,
aims of performance evaluation and techniques developed to
date are cfitically discussed. Computer systems like the
IBM 7044-1401 are examined in the light of performance
evaluation. Various operatioP schedules for the IBM 7044-1401
are proposed and compared. A software mohitor to obtain the
user job profile is cutlined and a model to compare configu-

‘rations of this system is proposed.
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CHAPTER I

. INTRODUCTION

Electrenic digital computers heve been ih existence for
ﬂjust over two decades. From early beginnings, like the
ENIAC in 1946, successive developments in speed, size,

.; versatility and usage of computer systems have been rapid,
especially in the last six‘years or so. Today, in the
industriallf advanced countries of fhe Wess in particular,
compufers_ﬂeVe pervaded many spheres of human activity and
endeavour. Surﬁrisiqgly enough, the design, usage and the
economics of computers is yet faf from an exact science; the_
aft of computer ptogramming is one such glaring example.

-The study of one of these aspects, the economlcs of computer.
systems, forms the main theme of work reported here in

thlS the51s.

Section 1.1: Motivation for assessing performance of.
computer systems

The study of the economics of computer systems

necessitates a detailed study of factors that affect their

manufacture, operation, maintenance, application and
utilization. Hence motivation for improvements and
innovations in computer system architecture, system design

-and software support can be tracked to the econonic
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‘behefits or trade offs'obtaineda A brief review of major
advances in computer systeﬁs is therefore in order.

The-évolutidn of computér systems is a weli reported

topic in iiteratﬁre. To quote a few,>Richards'[l}, Hassitt
[2] and Rao [3] have given excellent accounts of it in their
wofks. Therefore, no attempt is made here to elaborate
on this subject or trace its history. However, certain
developments relevant to the subject of study aré outlined
here; their understanding constitutes some of the requisites
for ﬁhe study of the'economics of computer Systems. It may
be~noted in passing that terms like évaluation, performance,
workload have to bé defined in the context of computer systems
and will be elaborated upon in the next section.

. Advances in computer haréware can be categorised as
shown below: |

(i) Technological advances in terms of device speeds,
reliability etc.

(ii) Advanées in logical orgaﬁisation, Specifically, the
development of interrupt facility, memory protect feature
and over-lapbed input/outpht operations by use of
data channels which together provide for non local
concurrency in the operation'of the compute: system.
The introducticn of instruétion look ahead and
memory hierarchy in primaryvstorage provide local

concurrency in operation.
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in cdmputer éystem software fall into two clasges:
the development of programming aids through the
formulation of ﬁser oriented, procedure and problem
oriented, ?rogramming languages;

and the development of operating systems [4,5,6].
'latter is of interest; it provides a logical environment
the user may conduct his work and it allocates him
ssary resources to accomplish the work. Important
of an oﬁerating system are:

file management .[7] and input/output control;
segmentation [8] and memory management ;

multiprogramming, time sharing and processor allocation

_[9, 10, 11, 12, 13, 141,

As

.generati

is evident from these devélopments, a present

on computer system is an integrated complex of hardware

and software resources which afford the user necessary

facilities for problem sclving. An analysis of such a system,

'in the 1
design,
ehsuing

systems

ight of various economic factors imbibed in their
should provide the necessary motivation for the

study of this subject. The outlook that computer

are a collection of hardware and software resources

has its advantages. The motivation of the manufacturer to

produce such systems and the stﬁdy of resources to be

allocated to the user to suffice his needs are both



4
presented in a uniform manner.

Hardware resources of the computer system are an

aggregate of the following:
| (i) computational resource, provide by the comprehensive
and powerful instruction repg;ﬁgire of the central
processing unit;
(ii) membry resources for program and data storage
brovided by the main ncmory;
(iii) a hierarchy of auxilary storage, for storing large
volﬁmes of information, provided by peripheral storage

devicefoperating over a large range of information

transfer rates; in general their storage capacity

e

s inversely related to their information transfer
rate; | |
(iv) facilities for communication between the main memory
and the peripheral auxllary storage Gevices,
provided by the data channels znd. device controllers
or intérfaces;
(v) and facilities for communication between the user
and. the computer system, provided by the host
of ever increasing input/output devices.
The underlying philosophy in the design of hLardware is
to achieve modularity, compatibility, adaptability and
reliability in computer systems. To a certain extent, these

factors have been motivat=d by economic considerations.
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Modularity in system design allows interchangebility
of syéfem components or subsystems and flexibility in their
: intercohnection. This means that virtually any desired
‘system‘can‘be.assembled. Compatibility has given scope to .
the development of a whole line or family of computer éystems '
with very nearly the same machine 1anguage; Such computer
systems are upward and downward compatible. This means
tﬁét the same machine language program can be run or executed
on any computer system in the family. It is therefore an easy
matter to upgrade or downgrade the system depending on the
changes percieved in the workload. Conséquently, effort in
reco'ding of already available or developed software is kept
to a minimum, if not absent altogether. Ther~fore, modularity
and compafibility make it possible to most eccnomically
configure any computer system of desired size and speed or
change the system to'suit changes in demand with least
expenses incurred.

Therusage of computers for a wide range vaapplications
ié enhanced by those features in system design which permit
ease in adapting thé éystem resources to the needs of the
application on hand. A good example of adaptabiliity in
system design is the basic unit of storage in the IBM system/
360: the eight bit 'universal’ byte. This eight bit byte stores
a character, two decimal digits and of course eight binary

bits of information. This facilitates character handling,
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decimal arithmetic and binary arithmetic and high utilizaﬁidn'
of main memory. Therefore,‘this "univeral byte' can be easily
'édapted to any type>of application. Such features result in
good dividends as thé manufacturer does not have to produce
several different systems to cover the range of applications.
Reliability in computer systems is an oufcome of technological
progress and redundancy in system design. This feature has
made possible, among other things, the space expleoration
mission énd is absolutely necessary for the development of a
'computer utility'. Configurations of the IBM system/360
Model 67 [15] and the MULTICS System [11] embody ali these
.principles and illustrate the extreme complexity of hardware that
is now possible wifh present day technology.

Stand alone hardware resources cannot provide the necessary
problem solving environment to the user. In fact, the user
works only on a virtual machine presented him by the
operating system. Saltzer [16] gives an intefesting illus-
tration of the virtual machine seen by the user of the MULTICS
System. The operating system shielas the user from the
details of hardware and its limitations and offers the user
a logical environment for programming his problemS, Hence,
software rescurces available to the user are analysed in

the following paragraphs. These resources are:
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(i) a number of language processors whiéh simplify
his programming bhurden by giving him the pewer
te express procedures for solution of his problems

~in a manner akin to his way cof thin*ing;

(ii) a large program library providing the user with
'ready made' debugged program paékages which
perform commonly needed functions;

(iii) a filing system which facilitates the creation,
editing and retriewval of large files of information:,v

(iv) and a set of procedures which allgqate to the user
any of the system resources as he needs them.

The main features in the design of thz afore-named software

-resources aré:

(i). features to attract and catef to the needs of a
large user population and creating a machine or
hardware independent environment to the user;

(ii) and incorporation of proper resource allocation
algorithms which are to ensure an efficient
utilization of the overall system and pro§ide
the best grade of service;.

It is seen that economic henefits that arise from the

various consideraticns in hardware design are very easy to

point out. They are very.tarcible in the sense that
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quantitative assessment of trade offs obtained is possible.
This is not the case witﬁ the benefits gained by use of
 software. Questions can be raised about the increase in
efficiency of programming by use of higher level languages.
Studies of the behavicur of programmers, in terms of time
taken to develop programs for given problems, when
progrbﬁming in different environments and having different
tyée and amount of interaction with the computer system, have
been conducted and these results summarised [17]. Answers
to such questions and results of such studies are difficult
to evaluate as they ére subjective in nature. It is:apparent
that there are many such pr&blems in assessing the utility
of software. Nevertheless, the benefits aocrued from software
are obviocus even though not quantifiable. ' :

Usage of computers is costly. Resource allocation by the
operating system is.therefore an important aspect of the tasks
to be performed by it. Performance assessment of computers and
hence the evaluation of various techniques of resource
allocation indeed invite attention.

| The design of computér systems described in the

preceeding pages is always open ehded so as to leave room
for future developments. It shculd be clear by now that
the extent of analysis to be carried out before the design

of computer system hardware and software is quite
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tremendous and these anaiyses'contribute greatly to the
economics cof manufacture of computer systems and their.
usage; Experience about the performance of such systems
prove invaluable forfthe design of future systems.

Amongst the man? other problems in the area, the
selection of computers and the pfiéing‘of compﬁter
services have evinced interest and are worth mention.
Joslin [18] and Sharpe [19] have discusse? problems
associated with computer selection.> The main problem in
the selection of computer system is the evaluation of
tenders and contracts offered by the manufacturer or the
vendor. Trade offs between rental costs and purchase
costs have to be estimated. The main components of
rental costs are the Basic Monthly Rental charges, the
Extra Usage'charges and the Mainﬁenance charges. On the
other hand the break up of costs in the purchase of
computér systems is the Purchase chargas. and the
Maintepance_chques, There are severel hitcﬁes in the
cqmparison of competitive effcrs. The first difficulty is
in_eétimating accurately the expcected or projected workload,
which the computer system in question is expected to
service. Secondly, to £ind proccdures to estimate
quantitatively, criteria for pefformance of the computer
systém in the light of the worklcad. On overcoming“these

problems, the comparison of varinne =ental contracts
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and purchasé terms can be obtained. The types cf contracts
offered have been discussed by Sharpe and he proceeds to
conduct an initial analysié of the relationships between
the various costs quoted in them. Other issues in computer
selecticn have been reviewed by Sharpe and Joslin. Certain
périodicals like Datamation and Computers and Automation
bring out articles frequently on related topics. As they
are numerious and the material presented in them is not the
central thome »er~, ,reference to such works are omitted.

Two problems are prominent when pticing computer serviées
The first is to fix‘thé'price for usagé of the computaticnal
facilitiés and type of service given. Thesg issues clearly
necessitate the evaluation of performance of £he computer
system. The second problem is one of_thé devising proper
accounting schemes for logging the actual usage of system
resourcés by the user [20]. The log, besides being useful
in accurately billing the user, provides a rich soufce-of
information about user characteristics.,

Problems of mainténance, of operation, of management
and personnel for manning computer installations also
come under the investigaﬁions in the economics of computer
systems. As is evident from the nature of all the
“lssues raised =so far, a number of subjective criteria will
play an important role in the final solution of any of these

issues.
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At this stage, it is quite apparent that the solutions
to the afore-mentioned problems depend on the evaluation of
pérformanée of computer systems. Due to the central
charactér of performance evaluation in the study of the
economics of computef systéms, this is the only problem
considered at length/in this thesis. The problem of
imposing economic constraints on the performanceiof
computer systems in order to solve other problems mentioned
is considered secondqryrhere.

Section 1.2: The problem ofvgprformance evaluation

The word ‘'performance’ means the manner or success of
working or the eXecutién 6f a task. The enginéering‘sense
of the word is related'to efficiency. 2And by efficiency
is meant the power to produce the intended result; for
most purposes, it is thé ratio of machine's output of
energy to its input. Unfortunately, the usefulness of
computér is in no way related tc the energy they consume to
produce the intended result. They deal with a volatile and
’ intangible.commodity that information is. Therefore, the
normal usage of words like efficiency and performance do not
apply to computer systéms°

~ It is well known that computers can deal with only
those problems in which quantification is possible, even

through mere.coding. The study of computation as an
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abstract entity is a hot topic of current research. And
this effort is unfortunately not addressed to the problem
of quantification of computation as in the context of a
general purpose computer. A machine independent measure
"for computation is therefore not a reality as cof now.
Hence, it is noted regrettablyp ‘performance' of computer
systems has not yetrbeen defined in a machine independent
manner. |

Be that as it may, in the absence of rigour concerning
the fundamentals of this areeof computer science, and for
the lack of a better wefd, performance'of computer systems
will be conveniently assumed to be their 'behaviour' in the
execution of 'workload' presented them by the users. Several
'criteria for ‘'behaviour' of the computer systems have been
propbsed; examples are the utilization of system components,
service renderedlto users, time taken for given tasks or
just a trace of the operation of the system. 'The 'workload'
of a computer syetem is much more éifficult to define. For
the purposes of this thesis, the workload of a computer
systen is defined in terms of statistical measures of féctors
that are deemed‘to affect system performances. véerfornance
evaluation of computer systems is thus a set of techniques
for reiating user requirements (the workload) to the
capabilities of the eomputer system in the contexﬁ of such

criteria as explained above.



Two types of_iﬂvestigations-are undertaken in
performance assessmént'or performance evaluation of
computer_systems‘-.The firs£ concérns the study of the
| sensitivity bfvthe behavicur of the computer system with

'
respect to certain system parameters. Examples of system
.vparameters.couid be the configuration of the computer
system or the variocus resource allocation algorithms in the
‘opefat}ng system. Such studies are direcfed towards
improvement of the behaviour of the system for a given
workload. Hence the effectiveness of cértain features
of system design are éxamined. In so far as the relation-
ships between various aspects of the computer sysﬁem and its
operation are not well understood, this type of inVestigation
may be carried out merely to gain insight into these
matters. Most of the effort in performance evaluation has
been of this typea. |

The second.type of performance evaluation study is one
concérning comparison of different computer systems for a
given workload. Due to the fact that the worklcad of the
computer syétem too has not been defined in a machine
independént manner, thié problem is much more difficult
to tackle than =2 prdblem of the first type. However,
this is animportant problem to soive'in order to compare

various approaches to system design on a common footing.
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With this background, it is appropriate at this stage
to ponder about desirable ?héractéristics of performance
evaiuatioﬁ techniques. 'In essence, performance evaluation
entails the following: |

- (1) chéractérisation of uéer woikload, thé jargon

~is user job profile,.in a machine independent
mannér;

(ii) definition of suitable criteria for the behaviour
of the computer system;

(iii) imposition of software constfaints on user job
profile to obtain the actuai work to be done
by the hardware'system;

(iv) determining the behaviour of thé;system and hencé
quantitatively finding the values_of.variods
criteria set forth earlier by uéing the abcove.

No performaﬁce evaluation technique really'attempts a clear
and detailed solution of the problem as outlined above. The
difficulties faced in evaluéting performance are many, their
discussion is held over to a later section.

‘Techniques of performance evaluation»have had éarly
beginnings. In the late 1950's, such techniques wére
developéd tc aid in ﬁhe system désign of Projecf STRETCH.
But it is only in the last few years that such efforts have
gathered force. The interest. théy have arcused is
.evident'f;om survey papers on performance evaluation py

Calingéert [21], Meredith Smith {[22], Wickensf[23]Aand
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Drummond [24]. As the problem covers mény facets and
activities of computer systems, these surveys have not
done full justice in-bringing out the nature of the
problem in its entirety.l HoweVer,‘they hrve succeeded in
pointing out Various‘difficulties faced when seeking
solution to the problem and have given a’broad classifica-
tiqn of efforts in this direction to date.

Performance evaluation techniques are concerned with
the modelling of computer systéms and users. Rather than -
modelling the computér system or the user in complete detail,
most of these téChniques only attempt to‘study one aspect of
the user de mand and system behaviour at a time. Modelling ‘
has been done either by means of analysis, analytlcal or
otherw1se, of computer systems and users or by use dlgltal
computer discrete system simulation techniques. These efforts
are discussed in the succeeding chapters.

Other chafacterstic featufes of techniques of assessinq
- performance of computer systems are:

(i) the techniques give an aﬂsoiute or relative
measure of performance,
(ii) the methods give a measure of potential or

actual performance.

'
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Section 1.3: Aims of performance cvalu~ti-n invaztications

The preceeding sections present an intuition for
performance evaluation of computer systéms. It is worth-
while to consider for the sake of completeness, what the
aims in assessing performance could be. As pointed out
earlier, a number of subjeétive values creep into the
solution of issues raised earlier: it follows naturally that
the aims of an evaluative study are subjective. It is not
possible to present these issues in any measure of complete-
ness due to lack of experience and as such information is
not readily available. However; to lend some clarify in
specifying the objectives of assessing performance of |
computer systems, a perfunctory classification and analysis
is attempted. . ’~

Obviously, the aims of assessing performance of
computer systems depeﬁd on the group of people conducfing
the evaluative study. These groups can be broadly classified
into the following catagories:

(i) the ‘'user group' which comprises people interestéd

in the'selectign of suitable computers;

(ii) the ‘systems group', comprising system analysts

and system programmers: | | |
(iii) and the ‘'manufacturers groﬁp','compefitors iﬂ

the computer industry who want to stay in business!
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What follcws is an attempt to analyse thé interests of each
group and hence. arrive at some of their objectives in
performance evaluation and the type of techniques they need.

The user group is interested in acquiring a computing

facility which will suffice their needs. Unfortunately, it
is not easy, even for the experienced user to define or -
specify the expected workload. This»point will bé amplified
in a iater section of this chapter. Assuming that the
workload has been estimated,.the strategy for selection would
depend on the cost per unit work, the overall cost and the |
grade of service offered to thé various priority groups in the
user community. To this end the user group would have need
for the following techniques.

(1) Procedures to estimate workload that the computer
system is expected to service and projection of
load growth in years to come.

(ii) Procedures to estimate trade cffs betweenvharanre
and software available in the light of the defined
workload.

(iii) Procedures to determine suitable mode of cperation.

(iv) Procedures to estimate the grade of service to be
expected. |

(v) Procedures for comparing performance of various
configurations of a computer system for the defined
workload and comparing various computer systems

-to the same end.
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If the above considerations are quantitatively worked out
for eligible systems then the final choice madé is a
compromise between economic constraints and trade offs
available with extra investment.

The systems group is directly concerned‘wifh the
management of the éomputer system. TheirQinﬁerests are
primarily in affording a powerful computer service‘to the
user community and ensuring the maximum utilization of the
system resources. Naturally, details of the computer
system resources indicated in the preceding section are
of immediate interest tc them. Their purpose in performance
evaluation would be: .

(i) to compare various resource allocation algorithms,

(ii) to compare software packages |

(iii) and to develop new techniques for the above in
order to provide better service or improve system
utilization.

This group will find it essential to monitor the operatioh
of the system so as to obtain information td do the above
tasks. Trade offs between system utilization and service
rendered to the user community are chief factors of interest
in their performance evaluation studies. |

The interests of the manufacturers group are oﬁly
too well known.- Théir aim is to maximize the returns on

their investments. Besides, they have to survive in a
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competitive market. This group might have for its
objectives in performénce evaluation thg»following;
(i) measu:e&ent of improvement in performance due to
the introduction of new hardware features;
(ii) compé:ison of their computer system with those
manufactured by competitiﬁe firms: |
(iii) development of software features in crder to attract
users.
In order to accomplish-the above, a survey of current and
projected épplications of computer systems and their relative
impprtance in thé market is necessary. Techniques need be
developed to achieve the same.

Section 1.4: Obstacles to performance evaluation

In the preceeding sections, thé problem of performance
e&aluation and techniqgues neéessary to accogplish it were
sketched in simple terms. Questions raised in this connection
are either fundamental in character or examine details of
design features and operation of computers. Illustrations
of questions of a fundamental nature are: for the pufposes
of system performance, what does a job or task or application
mean? and how does itlload the system resources? Examples
of questions regarding details of design or details of opera-
tion for evaluative studies are: what‘improvement in
performance can be expected by the introduction of a scratch

pad memory or an instruction look ahead feature? Or, what
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scheduling algorithm should be used for processor allocation
in a time shared, ﬁulti programmed environment? Questions
similar to the latterttwé are quite objéctive and much °
fruitful analysis has been done in solving such problems.
The chief difficulties in perfopmance evaluation are in
obtaining answeré to questioﬁs of the first type and these
- are considered in the following éaragraphs°

An automaton 1is said to be univérsal in computation
if it can perform the mapping specified by any ‘computable’
function. Digital computers ate engineering approximations
to automata exhibiting this property of universality in
computation. In the same vein, computer programs are
indeed engineering approximations to the specifiéation of
-the computable functions and they normally have limitations
as to the range of daté they can handle for any given
problem. Therefore, it is seen that results from the
Theordies of Automata, Formal Languages and Computation
~are not useful in describing programs for the pragmatic.
purpose of defining the workload of computer systems. This
situation behoves the development of a different attitude
towards programs and computers. A more detailed look at
what might this attitude be is nécessary and is presented
in a later chapter; It suffices to stress.here that
as of now there exists no precise fcrmulation or

quantification of user requirements.
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A consequence of this state of affairs is that the user -

machine interface is ill defined, be it a language or a

device. This is evident from the ever increasing number of

user oriented languages and 'tailormade’ input/output devices
being designed; Alsc, there exists a2 lack of accepted

standards and hence communication between various levels of

- people interacting with the computer system is greatly hampered.

All this stems out of the fact that the study of cémputers
is more of an art than a science at present. -

Besides these difficulties, there are some technological
difficulties in conducfing a performance evaluation study.
For example, the dynamic measurement of data of all types'
Qithin a computer system so as to determine its behaviou; or
characterise the user job profile is not always possible with

available tocls like hardware or software monitors. However,

.these problems will be hopefully overcome in the:near

future. At the University of California, Los Angeles, it
is reported that the operation of several computers, including
the IBM System/360 Model 67, is being monitored by a SDS

Sigma 7 computer! Information nbtaired from such experiments

. 3 ] ) % VR S A :
should prove interesting indeed. -ﬁ? ~TN
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In this section, the concept of ‘behaviour® of the

computer system is elaborated upon by defining some
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performance. At the outset it must be made clear that.
the actual computation of values for some of theée criteria
may not yet be possible due to difficulties outlined earlier.
Again,“for similar reasons, it is easier to evaluate these
criteria for a computer system with change in some system
parameters than for different computer systems. A few
of these measures are abstracted here from the multitude
devisable as the goals of evaluation of computer systems are
subjective. Some of these measures are more suited te a
batch processing environment and others to a time shared
méde of computer operation. They are the fcllowing:
(i) Throughput. This is a measure éf the steady state
| state capacity of the system. In other words, it /
refars tc the volume of work done in an accepted
unit of time. Constrained by‘cost, this is the
most objective perfofmanée criterion to those
managing the system.
(ii) Turnaround ér,average response time. Tbis
represents the average the average time between
the receipt of a specific service request of a
user by the sytem and the satisfaction of that
request at the terminal or to the user. Again,
constrained by cost, this is the single most

useful measure of performance to a user.
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(1ii) Average waiting time. This measure is an
indication the load in each priority group of
the user population and time required to |
. service the.group.

(iv) Average queue length. This measure is linked
with the average waitiﬁg time and indicates

b the loadlfor each priority group. The relation-
ship bet&een allocation of priorities tc user
groups and their effect on these measures
merits attention.

(v) Availability. This criterion concerns the number
of hours, excluding maintenance and breakdown,
the computer system is available for use. It is

~a measure of the percentage of total time the
system is, in service for ﬁser prcgrams .
(vi) Reliabili:ty° This measure ihdicates the frequency
¢f hardware and software failures and is measured
as the mean time befween hardware failures or .
mean error free time. '
The mentioned measures of perfocrmance are the quantitatiﬁe
end results of an esvaluative effort. The goals of performance
evalpation themselves can be realised in terms of the
criteria mentioned above. These are nct all the useful
measures; more will be introducéd at -apprcpriate stages

in succeeding chapters.
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Secticn 1.6 Scope of work reported

Literature on computer system performance evaluation is
scattered over a wide Spectrum of technical journqls° An-
exhaustive survey of ail literature has not been possible.
Instead, a ccgent and uniform treatment of problems of
performance evaluation 'is presented here. lotlvation for
particular approaches to the solution of these proklems and
cléséification schemas.for techniques ceveloped or studies
conducted is alsc given: in this report.

In Chapter II areldiSéusseé various analyses of computer
systems for the purpose .of performance evaluation. They.are,
the analysis of computer hardware, the analysis of cperating
systems and the analysis of workload. The usefulness and
‘limitations of certain techniques for comparison of computer
hardware are brought out. As-én illustration, sample calcula-~
tions are made for'compa#ison of central prccessing units by
the instruction nix techﬁi@uee In the discussion on operating
systems, attention is reskricted to the various resource alloca~
tion algorithms. .In view of the preceding analyses, a”
guantification of wcrkloaé is attempted.

Chepter III enbodieé an introducticon and review of
simulation techniques for the study of computer systems. In
order to compare different techniques of discrete system

simulation, the GASP II & simulation package was debugged
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and implemented in the IBSYS operating system of IBM 7044,
(Earlier, GPSS III was the only available programming system
for discrete system sirulation.) Ilotivation for use cof
simulation techniques, c¢lassification of simulaticn experiments
and a comprehensive look at difficulties faced when using this
technique are the mainvfeatures of this chepter. Chapters II
and IIT form a critical state-of-the~art appraissal of ccomputer
system performance . evaluation.

Batch processing ccmputer systems with off line satellite
systems to manage slow peripheral work - in particular ‘the IBM
7044~1401 computer s§stem at Indian Institute of Technology,
Kanpur - ore examined\from the point of view of performance
evaluatidn in Chapter ?V, Operation schedules for such systems
are discussed. in relatipn to throughput and turnaround. These
operation schedules were implemented for the IEM 7044-1401
systems. lNext, models aré proposedvfor this system. Of
particular interest is a model which takes care of parallel
input-cutput cperations. 3?his model shcould prove useful in the
evaluation of several configuratiéns of a system for a given
workload. No pragmatic evaluative work is nossible till
statistics to éharacterise ﬁSGr workload are gathered and the
system studied in relation_té this workloada"Therefore, the
 requirements bf a software moﬁitor to achieve this and
techniques fo implement the same are outlined,

The concluding chapter, Chapter V. contains suggestions

for further work and mention cof problems not discussed here.

-



CHAFTER II

ANALYSIS OF COMPUTERS SYSTEMS FOR EVALUATIVE
' - STUDIES

The analysis oficomputer systems from the sténdpoint of

performance evaluation can be categorised in the following

manner:

(1) Analysis of ccmputer hardware facilities and
logical orgénisation? The purpose of this
analysis is to examine various hardware
features and their contribution to system
perforﬁance in the light of the workload.

(ii) Analysis of ﬁhe operating system. Twc aspects
of the operating system are of interest. First,
the features¥of the virtual machine offered to
the user. And second, the effectiveness of
varioﬁs rescurce allocation algorithms in terms
of utilizatioh cf system resources in presenting
the user this virtual machine. Of special
interest is the ‘overhead’ incurred in providing
the virtual mgchine and in aliocating the system
resources. Héreg 'overheads® are understocd to
mean the utilizatinn Ef system resources by the

system itself in order to provide this virtual

N
[#3
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machine to the user,

(iii) Analysis of}workloadp The workload of a computer
system 1is a}composite of user demands ©of system
rescurces and the cverheads incurred in cffering
. these resources tc the uscr. &n attempt is made
“to élearly d@lineate these two components cf the -
worklead and?characte;ise the user workload in
terms of itsigemand on the system resources.

In this chapter, Qaricus attempts at such analyses will be
reviewed. Froblems yet;to be tackled are pointe¢ out and wherever
possible a brief.qualitative analysis will be included.

Section 2.1: Analysis of dicital computer hardware

Cemputer system hardware is a collecticn of resources
like the Central Processing Unit (CPU), main memory space,
input/output channels, avxilary memory, communication links and
input/output devices. The analyses of these resources will be

: .
gualitative as information abeut details of their design is not
forthcoming. The study of_their interconnecticn is even mere
‘
intriguing. The latter indced poses a very challengiﬁg‘problem
in perfcrmance evaluation.énd is the central issue in the study
of computer structures. It is hoped that the analysis of

corputer hardware will aid in the characterisation of worklcad

attempted in a later sec¢tion.
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The CPU is the most complex subsystern: in computer hardware.
In the following discussion, the CPU is ¢onsiéered ocnly as a
ccomputational resource. Hénce, for the purposes of performance
evaluation, the main'feéturés of the CPU are the instruction
repertoire,loéal and non local concurrency and the data path
bétween the CPFU circuitry and the main memory. Main memory
space is a system resource by itself and the study of user
demands on it will be considéred separately.

The instructionrarerto-irs also termed ‘instruction set’,
offers a computational facility to the user. The executicn of
these instructions reguires a wide variety of operations ranging
from simple CPU register manipulations to complicated arithmétic
operatiéns. In general thereiare two phases in the execution of
an instruction: the instructién decoding phase and the operation
phase. Time taken to decode'an instructiecn is a function of
. the length of the instruction and the generation of the effective
address of the OPGrané° And the time for the operation phase
is related to the number cf c?érations tc be performed.

In some present day computers ﬁhese cperaticons are realised as

sequences of micro-cperxations. ' Through proper design of
!

instructicn codes and micro-cperations, the user is given the

flexibility to set up non-standard instructions to perform

[

"often needed functicns. Such a feature is called f‘micro

program contrcl' and it uses a ‘wired in logic’ or ‘read only

Bl

memorv. Systematic design of instruction sets is possible
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due to such features in systeﬁ design,

Instructicn sets of computers are modular. The manufacturer
offers the machine with a 'hasic instruction set! or an 'extended
instructioﬁ set’. The extended instructiocn set offers useful
instructions for particular type of applications} For example;
instructicns for variable length operations are needed in
commercial data processing Opérations and floating point, double
precision arithmetic instructions for use in scientific computa-
tions. The need for powerful instructicns is therefore seen to
arise from the frequency of ochrrence cf certain types of
cperations in typical applications.

A measure of effectiveness of the computational reecurce for
a particular type of applicatién is the average instruction
time. PAn arithmetié mean of ail instruction.times does not
suffice for the simple reason that the nature of the application
or workload is in no way refleéted in the average obtained.
Weighted instruction timwes arc more suitable for obtaining the
same. The weights assigned to;éach instruction in the instruction
set could for example be simply compufed'from.the frequency of
occurrence of that instruction in the wcrkload. -As the
instruction éet of computer system can be quite extensive,
instructions are grouped into ciasses by the operations they
perform and the time taken té execute them. ¥Yeights are
assigned tc cach of these classes by<f£equency of occurrence of

instructions in the class. Weighted groups as described
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above are termed as 'instruction mixes'. Put another way, if
there are n groups of instructions with weights %y, Wy, ..., W

no then the average

and with execufion times Ty, Tor oo T

instruction time is:

i=n -
. Wi.Ty
i=1
where
i=n _
I wWy=1 and  W; >0 for all i [21,22].
i=1 -

\

Instruction mixes are very simple to deal with but very
difficult to definé° That is, the grouping of instructions intc
classes and assignipg weights to them is not at all an easy thing
to do. Firstly, a @ynamic instrucﬁion«trace of the workload
~ must be available.  The instruction-—trace of a program can be
anything between 50 to 100 times slower than the actual execution
of the program. #nd hence a few minutes of '"typical® computation
is actually traced in{practice and an instructicn mix is defined
using this data. vSec@ndly; there.is no standardization of the
instruction set yet. i;n fact, each machine is empowered with
scme special instructigns for simplZfying computaticn of a
particular type of appiication and this feature cénnot be
reflected in an instruction mix.

The implication of the above is that it is difficult to
compare CPUs of two different computer systems using just an
instruction mix. It is seen that the speed of execution of

instructions is a function of several factors mentioned
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earlier, notwithstanding the memory speed. Hence comparison

of CPUs which differ in any cf these factors by using instruc-

. '

ticn mixéé can give misleading results. However, comparison

cf CPUs with Similar featu?es by this technique can be quite
s

fruitful.

Soﬁe of the wellbknoﬁn instruction mizes for scientific
computation are the Arbuckle Mix [25] and the Gibson III ¥Mix [22].
As an illustration, the Arbhckle Mix is given in Table 2.1 and a
Cormercial Mix [22] is giveg in Table 2,2. Also shown in tables
is the - ccmputationzof average instructicn tiﬁe‘obtained
by use of ﬁhese mixes, for iBM 7044 system. It should be noted
that the grcup éf instructicﬁs in the 'miscellaneous’® category
of thé Arbuckle mix is reall§ an instruction mix in itself, For
the sake of simplicity, the ﬁixed point add instruction time is
used as the computation time for this category. The reason for
this is that the fixed pcint édd instruction requires both the
instruction decode phase and the operate phase whith uses the
sophisticated circuitry of thé CFU. Hence, maén mémcry speeds
and CPU arithmetic speeds are both reflected in the fixed point add
time. In the ccﬁputatians for evaluating the commercial nix, it
should be noted that c@erati0n$ rather than instructions have

been specified., Sequences of instructions to realise these

operations have therefocre been used.
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FREQUENCY IBM 7044 TIME ON IRM
INSTRUCTION OF INSTRUCTION 7044
OCCURRENCE u SECONDS u SECONDS
Floating point add 9.5 11.0 104.5
Floating point
multiply 5.6 20.0 112.0
Floating point
divide 2.0 36.0 72.0
 Load/Store 28.5 4.0 114.0
Indexing 22.5 4.0 90.0
Conditional branch 13.2 2.0 36.4
Miscellaneous 18.7 4,0 74.8
593.7

Lverage instruction time for IBM 7044

: 5.937 u seconds

Table 2,12‘

The Arbuckle Mix for scientific ‘computation
and sample calculation of average
instruction time for IBM 7044.
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IBY 7044 TOTAL TIME

OPERATION EXTENT WEIGHT TIME FOR ON _
1 OPERA- -IBM 7044
TION p€EC . uSEC
Compare Character 1 5 10 90
« 2 5 16 80
3 7 18 136
6 1 10 10
10 1 : 26 26
12 3 20 60
Move Character 1 i 10 | 19.
10 1 36 36
60 2 44 ' 88
Branch Taken 15 2 30
) Not 132 26
Taken
Add 3
Characters 2 4 8
_IndeXing 40 4 ’ 160
Total ‘ 100 ’ 756

Average instruction time for IRM 7044 = 7.56 u seconds
Table 2.2: A commercial mix and sample calculations for IBM 7044
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Cross comparison of compiitational power of CPUs belonéing'
ﬁb a famii§ of computer systems liké the IRM System/360.s§ries
Br the ICL 1900 series is very easy, by tsing thié teshnique,
Tthe average insttuction time:, for scientific and comtercial
workloads, for some word oriented computer systéms is
tabulated in Tablé 2.3. A word of caution is necessary when
considering figures for average instruction times given in the
téble. Due to lack of familiarity with assembly language
programming in PLAN (for the ICL 1900 series) and unavailabi-
‘lity of correct information regarding usage bf special
features provided, the average instruction times for commercial
computations could be conservative. Computation of this time
for some bigger members of this fémily was not possible due
to incomplete information given ih,thé ICL 1900 series
introductory text. No Eomputation of averagé instruction times
could be under téken for models of the IBM System/360 series,
other than Mcdel 44, due tc unavailability of their functional
characteristics. &As all the computer systems compared in this |
table are word oriented and have some features in common,
the average instruction times give a fair idea of their

relative computational power.
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COMPUTEPR - MEMORY FLOATING STORAGE TO AVERAGE INSTRUC-
SYSTEM. ‘SPEED “POINT STCRAGE TION TIMEY SEC Re-
u SEC OPERATIONS OPERATIONS Commercial Zrbu- mar-
Mix ckle ks .
Mix

Codes

IBM 7040 8.0 - H B 22.48 15.41 used=
: : ‘ H-Hard-
IBM 7044 2,0 H B 7.56 5.93 ware

» . S-Saft-
IBM System. . ware
360 BRasic 1.0 H S 7.63 5.1 :
Model 44

IBM System Speed
360 Model , incre-
44 with 1.0 E 5.02 3.39 ase by
high speed : consta-
General . : ‘ : nt fac~
Registers tor of

1.6

wn

ICL 1902 6.0 S g 52.97 599.56

, ' 1803~
ICL 1903 2.0 S v S 17.96 253.17 1904

' H/S
trade
cff
availa-
.ble
with
MOVE
instruc-
tion

ICL 19C4 2.0 S B 14.50 37.79 1904~
' 1905
B/S
-trade
off
with
float~
ing pt
arith-
metic

ICL 1905 2.0 " H 14.50 8.97
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ICL 19406 1.1 - 2.25. H B 9.09 1906-1907
. CPUs are

identical

except

for float-
ing point

arithmetic

ICL 1907 1.1 - 2.25 H H 3.18

oJ

ICL 1909 . 6.0 - H 15,26

Table 2.3: Compafison of some wofdmoriented computer
systems for commercial and scientific
applications
From the results in the table, the following observations
can be made: Corpariscn éf IBM 704C and IBM 7044 is given below:
(i) The IBM™ 7044 is about 2.6 times faster for scientific
computations and about 2.9 times faster for commercial
workload. The main contribution tq this increase in
séeed-comes from the higher main memory speed of the
IBM 7044 (it is 4 tiﬁes faster)o' These machinés are
more suited for scientific computations. ’The main
drawback of their instruction sets is the paucity of
charaéter handling instructions.
(ii) The IBM System/360 Model 44 is also a machine suited

for scientific computation, as advertised. This

system is provided with fast hardware for floating



(iii)
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point arithmetic. However, the advertisement that
this systém is ‘optimised for scientific c_pmputationE
also refers to the fact that several of the excellent
character handling instructions available with other
mcdels have been excluded in the instruction set of
Model 44. Trade offs in speed available with faster

registers are easily sBen. As is evident, the speed

increase by a factor of 1.6 in both scientific and

oL N

commercial computation, is solely due tc use of'high
speed General Registers.

ICL 15902, 1903 and 1904 computer systéms are clearly
meant for commercial workloads. Fleoating point
arithmetic is done by scoftware in these models and
hence the anwwly in speeds for the two types cof
workloads. ICL 1903 doces not have storage-to-stcrage
instructions. In all other aspects (except floatin§
point operations), it is equivalent to ICL 1904 and
1905. Hence the difference between commercial
computation speeds cof these models and the other two.

It is seen that ICL 1904 and ICL 1905 are equally

powerful for commercial werkload but ICL 1905

has hardware for flcating peint arithmetic. This is
a gcod example of hardware-software trade offs

available with the flcating point feature. The same
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.could be expected cf the next pair in the family,

the ICL 1906 and 1907 systems. Another surprising
result is, that even though ICL 1906 has faster core
merory speed than ICL 1905, it is slower in scientific
computations. The tcotal percentage of flecating point
operations in the Arbuckle Mix is only 17.1. Even

so, better floating point hardware of ICL 1905 coff-
sets the higher core memory speed of ICL 1906 for

this type of computation.

In all the above calculations, varicus instructioﬁ times,
given in the introductbry téxts and programming manuals supplied
by the manufacturer; have been used. Normally, these figures
qﬁoted by the manufacturer are optimistic insﬁruction times.
This is done in order to account for any local concurrency inv
the action of the CPU. 1In practiﬁe the effectiveness of these
features depends on the nafure of the ‘user worklcad. This will
be elabcrated in the ferllewing paragraphs. 2 closer lecok at
some of the components of a CPU, which provide the basis for
local concurrency in its operation, is necessary.

Local ceoncurrency is overlap in the execution of neigh-
bouring instructions in an instruction stream. That is, one
or more instructions are in- the decode phase while one or more

preceding instructions are in the operation phase concurrently.

N
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Tc make this nossible, the CPU is designed as a set of functional
hardware units as in the CDC 6600 computer system. These units
each perform a micro-coperation in the sequence cof operations
required tc execute an instructicn. Conventicnally, in order

to simplify the logical design of the CPU, these units are not
available for preocessing succeeding instructicons throughout

the execution time of the current instruction. For better
utilization cof such hardware, the current practice is to release
the units_onicompletion of their operation; the released unit

is reset or ihitialised immediately so as to make it available
for the operation required by ﬁhe next instructicn, regardless
of the completion nf execution of the current ir').struction°
Examples of functional hardware units are the fixed pcint
Varithmetic unit, the flocating point arithmetic unit, the 10gica1
unit, the operétionwcode decoding unit and the effective

address generaticn unit.

Parallel independent operation of these functional
hardware units is possible only if enouch information
(instructions and operands) are available to them. There exists
a need foi buffering’this information in a fast accessable store
sc as to bridge the CPU.speed main-memory-speed mismatch.
Various technigues have been implemented: their design and
performance have been studied byrsimulatién techniques and are

discussed in the next chapter. Howewver, so long as the speed
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mismatch exists, the number of registers in the CPU and extent
of the da£a>path between the main memcry and the CPU determine
the extent of local concurrency possible. The CDC 6600 CPU can
process upto threelinstructions cdncurrently; these instructions are
necessarily nct interdependent, i.e. the outcome of any of these
instructions does not depend on the outcomes of the preceding
instructions. An even more pcwerfulAéxample of lncal concurrency
in the CPU is Project Stretch, IBM 7030; iﬁ thié syteﬁzy upto
ecleven instructions can be in various étages of prcocessing and
any ipterdependeﬁcelwithin these instructions is automatically
taken care of by the instructién look'éhead unit of the CPU.

Enother point to be noted is the dénsity of ipformation
retrieved per memory reference. With regard to instructions,
this could mean the number of instructions packed into the
width of the data path between the CPU and the main memory.
Maximum density is achieved by provision of instructions of
variable length: nQrmaliyy instructions need either ﬁo memory
reference or specification of one to two addresses for thei;
execution. Fér operands, the density of information retrieved
depends on the flexibility cf the addressing scheme provicded
in the instruction format. The maximum density is related
to the smallest addressable‘unit 0of main memory.

The reason for this. elaborate digression con local

~concurrency features of the CPU is tc bring cut the inadequacy
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of the simple instruction mix (representing any given
application) in evaluating the speed of computation of
the CPU. It is clear that a lot of information about
the workload -~ other than the occurrence of types of
instructions - is necessary to evaluate the perfermance
of the CPU,.

One way of dealing with differences in central
processors and coping with difficulties like lncal
concurrency is to compare the times required to perform .
speéified taskg#called ‘kernels‘. TheséEﬂ§E§_are coded
in the assembly language of thevcomputer system and hence
can u?ilize all‘the'featu?es of the computational facility
offered. There is of course no standardisaticn either of
thegigfg,ta Sé performed cr their magnitude. According to

Calingaert [217 a.kernel.is'“the central processor coding
required to execute a task of the order of magnitude of
calculating a sccial security tax, or inverting a matrix,
or evaluating a polyncmial”. An attempt is made to have
the problem coded with ecqual levels of scphistication by
experienced programmers in assembly language.

Bgain, to represent actual working conditions, a fairly
comprehensive‘set of kernels must be defined. The prcblem
of assigning proner weights to these kernels in»synthesising

the workload is crucial in evaluating the computational
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speed of the central processor by this method. 2An idea of
the types of kernels defined and used so far has been giVen
by Sharpe [19]. Examples aie matrix multiplication, square
root approximation of fleating point numbérs, field manipula-
tion (control card scans, source statement scans), editing,
field comparison, BRCD arithmetic, character manipulation,
bolynomial evaluation etc. Elaborations on these kernels is
given by Sharpe [19].

Rernels are ﬁucﬁ more general than instruction mixes -as
they makérit possible tb compare CPUs with entirely different
characteriéticso Even in the comparison of CPUs 5f a family
of computers with the same instructicn set,; kernels are more
powerful than instructionimixes as they give the actual dis-
tribution of typég of instructions. Hence, it is possible
to compute CPU times in the light of the actual local
concurrency pcssible. Put in another way, the kernel apnroach
in comparimec. CPUs with identical instruction sets drnes not
degenerate to instructicon mix comparisons due to reaséns out-
lined above (Sharpe has opined that the kernel approach
degenerates to the instruction mix approach for the above
case, an observation that is objected to here).

This approach has been very successfully used in the

selection of computers for postal services in Britain [26].
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Features like the ‘stack' and associated operations can
be included in evaluaticn of computation séeed by this approach
whereas this is nof at all possible with the instruction mix
technique. &tacks prove to be very useful in certain applica-.
tion. Stack oriented programming technique is explained by
Dijkstra [27] and an implementation of such a feature in KDFg

is explained by Hassit [2].

Nen local concurrency within a CPU is ‘simultaneous’
procéssing of instruction streams which are not necessarily
interdepehdent° This is made possible by the interrupt
feature of the CPU. In view of performance, the effort
requifed to switch from one instruction stream to another
and levels cf priority in the interrupt feature, are the
main interestso -

As is well known, the CPU operates in two modes.
or is in one of two states. These are:

(i) the privileged mode.or supervisor state and

(ii) the normal mode or the problem state.

In a general purpcse computer system, the occurrence of an
interrupt switches the CPU toc the privileged mode. All
computations needed to service an interrupti constitute a

part of the overhead incurred..
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Interrupfs occur due to all sorés of causes. ‘External'’
interrupts can occur due to end of operation of a device on a
channel (channel interrupt) or due to on-line user initiated
attenticn requests and the like. f‘Internal' interrupts are
caused by abnormal conditions within the CPU's operation:
examples are, execution of pfiviled instructions by the user
in problem program state or interval timer overflow etc etc.

Asynchroncus parallel operation of various hardware subé&stems
cof a computer system and pseudo paréllelism in the executien
of user problem programs are macde .0ssible by interrunt features.
In other words, the interrup£ feature acts as a vehicle of
cdmmunicationﬁand a means of synchronisaticon between almost
all of the parallel nrocesses within a computer system.

-In a large, third generation computer system, the
complexity of operations being performed is tremendous.
Dijkstra [28] has pcinted out that re-creating the sequence.
of interrupis in such a system is - impossgible. 'Not only
does this make the development and debugging of cperating
systems difficult, but it is the roct cause why incorporation
of this feature in the modellihg of computer systems has
hardly been attempted yet. As a result, inputwoutput
opefations have almost been totally excluded in such efforts
so far.

In general purpose computer systems, as opposed té

real-time computer systems, there is no stringent time bound
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on system response. Therefore, interrupts that occur during
the executicn'of an instruction are serviced only on completion
of this operation. Some real-time systems a2llow interrupts to .
be serviced at the end of the micro=coperaticn being performed
for the instruction currently under execution. The servicing
of an interrupt might neCessitaté the saving of CPU status

at that instant., System design 6f the CPU is such that its
status can be_saved by a single instruction specifically provided
for this purpose, or at the moét by few normal instructions.

As the cost of hardware is ccming down, some systems duplicate
all the CPU registers so'as te switch right away from normal
mode to priviledged mode without saving the CPU's status.
However, at least current 'Program status word®' (PSW - as in
IBM System/360.or SDS 9400) is saved and loading of the newv
pPS% is effected by CPU hardware.

The time for servicing an interrupt'depends on the type
of interrupt and will be discussed in secticn 2.2. . Priorities
in interrupts cause queuing of interrupt services: the stage
of service of each level is indicated by their respective
PSWs. Facilities to inhibit certain interrupts while servicing
cne étc@, are provided to ensure proper logic in the execution
of programs.

Main memory space is a set of locations'whése addressing
is linear. Associated with it is an addressing scheme which

maps the effectivé addresses (generated by instructions in a
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program) to locations in it. This mapping can either be as -
simple as a one-to-one mapping as in.simple‘batch processing
systems or be quite complicated {its complexity depends on
the dynamic storage allocation feature of the computer é?étem)
Obvicusly, the retrieval time of instructions and operands
depends cn the time taken tc map the cffective addresses
generated, to memory lccations. Hardware to perform these
operations has been discussed by Wilkes [29] at length.
Attribﬁtes of the main memory which affect the nerformance
of the syster are: |
(1) the size of the main memory
(ii) unit of information accessable and
(iii) the organisation of this store mnthe effective
eycle time is dependent An this.
Other features of main memory -~ like the type and flexibility
of storage protection nrovided - are important, but not in the
context of‘performance evaluation. Attributes of user programs
) /
which affect the utilizaticn of the main memory are:
(i) their size, i.e¢. the number cf core loads'étc,
(ii) cata structures manipulated ty them and
(iii) the pattern of'addresses they generate.
Modules nf core memory are available with almost all
computer systems. However, for every system, there is an

upper bound cn the size cof the main memory instelled. 1In
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ﬁodels/for computer systems, this will naturally be reflected.
as a constrained rescurce available., Next, the packing of
information into the main memofy Capendce on features of
edaptability in gystem design (Sectinn 1.1}. This is an
. indication cf the ecase of mapping user-data-structures on

to the linear structure of the main memory itself. The
oréanisation of memory in indepenéent blocks and interleaving
of addresses within these blocks 55 as to rzduce the
effective memory cycle time, have been studied by simulationF
techniqUes’and are discussed in Section 3.4. Lastly, effects
of the pattern of addresses generated - con performance of
computer systems - can be discussedvonly in the context of
features of dynamic Storage allocation and organisation of
nemory hierarchies. Hencé this aspect will be brought up at
an appropriéte place in the next section.

The CPU and main memory arc»important'resources fromvthe
users viewpoint. Othar resources like auxilary storage, input-
output devices, data channels, comrunication links ete.,
contribute jointly to system performance as a part of the
system configuratione "The problem here is to find the effective-
ness of asychroncus prarallelism in input-output operations,
with reference to.the wérkload. There have been a few
attempts to produce a simple cmpirical formulae which vield
a single figure of merit for the system as a whole [30, 31y .

For example, Knight's formula for ‘Computirn:, Power®™ [31}



is:

Computing power = Memory Facter ¥ Opncrations ner second

. . . 12 . . .
whore operations per second is 10*9/[¢ + tA/O] in which t.. is
- . c ) [
time (in micro ceconds) required to execuic one pillion

operations {instructiocons) aﬁa tI/G is the non averlapped
input--output time (in micré secends)vnec05$ary to pérform one
million oreraticns. Xnight meagareé two kinds cf computing
power %vcommercial an¢ scientific. Therefore, the commercial
or scientific insfruction miz, which he too has defined, is

used to compute t The definition of tr /0 is somewhat vague;

ce
its comnutation is baséd on channel wicth, transfer rate and
start, stop, rewind times for »rimary and secondary input-
output units, plus-estimétes cf pqssible overlap in the input-
ﬁoutput system anc extent of utilization of primary and
secondary units. Several ccefficients required in this
éomplex computation of ty /o are rrovided by Knight, often 7ith
cne value for'commercial:workload and:another for scientific
workload. |

The sacond component of computing power is defined

as follows:
_ b
[(L-7) ¥ (WF)]

Memory factor = -
K
where
¥ is a constant
L

. woré@ length in kits
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¥ total number of wcrds ir memory

VP ig 1 for fixed word length systems
is 2 feor variable word length systems
P is 0.5 for scientific comnutations

is 7.33 for commercial computaticns
This formula ig grimarily based con opinions: “7 total of 43
engineers, nprogrammers and other knowledaeable people were
contacted and asked to evaluvate the influanée of computing .
memory on performance”. [31].

‘ Such an arproach is open toc*iticism as it is based on
the opinions cfvvaricus peoplég>hhwever cualified. & more
comprehensive, logical nrocedure for cvaluating configuratinns
wasAdeveloped by Iuerbach Infe, Inc., a2 firm of computer
consultants. Their approach is known as the ‘benchmark
problem' technicuve [32, 33j° The general attemnt here is to
compare ‘standard’ cenfigufations (as defined by Auerkach
Infp° Inc) of different computer systems by computing total
program exXecuticn times for certain 'typical' application
programs calleé ‘renchmark problems®. FExamples of benchmark
problems defined by 2uerbach Infe Inc., are: the sequential
file undate 5r0blemﬁ updating files on randeom access storage,
sorting, matrix inversion, evaluation cf comnlex equations
and statistical computations.

In order to ensure uniform comparison of computer

systems in question, the benchmark problems are rigidly
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‘épeéified in terms of certain paramefers like availsble input
data, computations to be performed and exracted oﬁtput of_
results. S0 as to allow maximum utilization of the various
distinctive capebilities of each computerlsyétem, the method
for coding the preoblem and design of files is left flexible..
As mentioned, comparisons are made for standard equipment
cgnfigurations° The oxecution time of each benchmark problem
for each standaré configuration is calculated by computing all
input-cutput times and central processor times and combining
theée two with due regard for the computer systems capabilities
for simuitaneous operations. .To do this the problems are
coded in assembly language and a detailed estimate of these
times is cémputed with the help of this code. To better
appreciate the magnitude of work invelved in comparing
systems using this technigue, the sequential file update
benchmark problem'is taken up in detail in the following
raragraphs.

In the sequential file update problem, a master file ig’
read and updated to reflect transaction data contained in
‘a detail file. 2 record for each transaction is written in
a report file. Thus, there are two inbut'files (old
master file and detail file) and two output files (updated

master file and report file). Such a problem situation is



typical in applicaticns like payroll, inventory, billing etc.
It is impértant that the problem be parametcrised in such
a way as to set up the actﬁai,cperating conditions. Parameters
of intefest of fﬁe séquentiél fiie update problem could be:
’(ii activity factor; i°e°~ratio of items in
detail file to items in master fi}.e_°
(ii) size of records in master, detail and
fepo;t files (these affect I/0Q times,
.apd nacking, and editing operations) and
(iii) amount of computation per activity.
When computing the execution time of the program, the following

need be cohsidered carefully:

(i) effective CPU and I/0 speeds,

-

(ii) I/0 and CPU overlap,
(iii)'availablé core storage for program, data and
service rcutines,
(iv) desirébility to use off-line card-to-tape and
tapemtefprinter operations etc. and
(v) special features of the computer system under
consideration.,
An example of é standard configuration specified by Auerbach

Info, Inc., is ccnfiguration III shown below:
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Configuration III
- o 6 Tape Businessg system

Internal storage : 2000 cne address instructicns
800G characters of data

Magnetic Tapes : 6 units @ 30,000 ch/sec.

Card Reader : 500 cards/min.
Line Printer : 500 lines/min
Card Punch 100 cards/min
Inlexing : Yes
Overlapped I/0 : Yes

When censidering a specific_computer system, equipmentrclosest to
the specified configuration is chosen. 2An assembly ianguage
coding of the prcblem is obtained, Using this program code, the
fsiiowing basic timings are computed: .
(1) I/Q times to read/write a physical record
of the master, detail and report files.
(ii) Processor delays during I/0, taking into
consideration the CPU-I/C overlap available.
(iii) Computations invnlved in searching the master
file records for a match with the detail
transaction and computations necessary tc
update_the appropriate master file record.
Detailed block diagrams, flowcharts’are
available with Zwerback Info, Inc., which

especify nreocisely the computations to be
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performed° The énalyst whé codes the
problem can therefore take full advantage
of individual features of each computer
system.

On completion of all these calculations, graphs of program
execution time ksay for processing 10,000 records of master f£iie)
vs, the activity factor are plotted for each configurations  The
transformation of program execution times on standard configura-
tions to the same cn suitable configutrations quoted in the
manufecturers tenders is achieved with the help of the 'User’s
Guide’ of Auerbach Standard EDP reports. Unfortunately, this
information is not published in those technical articles whiéh
promote this technique.

Some of the drawbacks of the ‘benchmark problem® ﬁechnique
are:

(i) It is not péssible to examine the effects

of features like multiprogramming etc. that

a?e'possiblé with the given hardware confim\

guration.
(ii) Sharpe [19] has reported an attempt to

estimate benchmark prdblem times by-actually

running the program on competitive standard

configurations. There were numerous diffi-
culties in doing so. “One program could

not ke compiled on one of the syctems.
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Execution times for another proved
incomparable becausc the execution path

was dependent on the sequerce of péuedo
random numbers generated and each system
generated a different‘sequence° Execution
time for yet another could nct be compared
because one nmanufacturer ran the p;oblem

in a multiprogrammed mode and obtained

an elapsed processor time of nearly zero.
Another simulated tapes on a magnetic-
drum¥. It is easy to observe that actual
configurations and operating conditiocns

are not very close to the standards
specified by Auerbach Irnfo, Inég Execution
time of prograﬁs obtained by directly
running the program on the compufer system
are at best grossly approximate. Limitation
on measurihg time i8 either due to the
resolution of the interval timer or due to
.the resclution of the meters provided on *®
varicus components of the system. 2 more
accurate estimate cf time may be quite
necessary in some circumstances, especially
if certain programs are executed frequently

in production runs.
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(iii) The set of benchmark problems is toc
small to covet all the applicatien
areas or all types of workload. Hence
benchmark problem times do not directly
yield + solution to the problem of
comparing configurations. These results
must therefore be viewed with proper

_ caution and in perspective with the rest

of the workload and cther operating
conditions prevalent.

Irraticnal as if might seem, there have been several attem> -
to compare the ihstruction mix or the kernel technique with the
benchmark problem approach [21,22]° Clearly, the former pfoviie
only a measure of effectiveness for the.CPU whereés the latter
a technique for comparing‘configurations'of a éystem°

The general ?roblem nf comparison of configurations is sti:
an open problem and not much work has yet been done towards itas
solution.” This problem is rendered more difficult by the compleicil
of operation of present day general purpose computer systems. I~
example, how does one compare the effecti?eness ~nf the configvra™i-
of CDC 6600 system (shown iﬁ Figure 2.1) tc that of the GF €77
MULTICS system (shown in Figure 2.2)? There s a marked accent o¢n
parallelism in the design of the CDC 6600 configuration. There
are 10 identical peripheral processing units (PPUs) connected

to 12 data channels through a 10 x 12 switch. Programming
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the system sc as to make méximum utilization of the PPUs and
parallel I/0 paths provided 1is indeed a tall order. It has
not been poinfed cut anywhere in literaturey how best to use
the resources of such a system. When compéiing these two
computer systems (3% 645 and CDC. 6600) one thing stands out,
The G 645 system architecture is such-that it exhibits a
"fail soft’ characteristic inAoperationu By this is meant -
that .~ 'systemlgerformance is gracefully degradedlgﬁ the
failure of any system compcnent (the system is not render=d
imoperative when a component fails). This is not the cas=
for the CDC €600 sysfem as it has oniy one CPUI. However,
unless a gocod user and system model (which include I/0
activity) is developed, no comparison of rerformance of
these two configuraticns can be maae;

Interestingly encough, CDC has been the only manufacturer‘
to preoduce a confiacuration like their 6600 systerﬁ° 211 big
systems produced by. IBM, GE, RCA, UNIVAC and SDS follow the
MULTICS architecture evolved by Froject MAC.

‘In retrospert in this section fhe.chief problems in
evaluating performance .of the CPU, main memory. and the
s?stem COnfiguration have been reviewed. O©Of the various
techniques mentioned, the instruction mix, kernel and

benchmark problem approaches have been elaborated on.
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Section 2.2 Analysis éf-the operating system

Thé operating system 1is a growing collection of programs
-which are corganised in what is called a system library. Some
of these programs are executed by the system in fhe privileged
mode whereas the rest are executed in the normal mode. The

ﬂ which

main interest here is centred around those programs fontrol the
Qverall operation of the system and hence to a great extent
‘determine its bchaviour. Examples of these programs are the
interrupt processing routinesf the input-output control routines,
the aroup of programs known by the general name of supervisor
etc. etc. Some of these_routines, the interru?tprocessing
routines for_éxample, have to reside in the main memory at all
times. Such routines are commonly referrgd to as ‘'wirad in'
routines. | '

One of the functions of the operating system is to present
a virtual machine to the user. For example, the user-machine
interface is a set of higher level programming languages. In
order to give such a facility to the user,; the operating system
has in it translator programs which éonvert-user programs to
a form executable by the hardware system. This necessary
function of translation forms a part of the workload of the

computer system. However, the CPU time required for this

task is not accounted under ‘overheads'. The importance
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this function is accorded in thé operation of the system
depends on the nature of the user population. For instahce,
in a University computing service, translation of user
programe could form a major part of the workibad, So, it is
an'important aspect from the point of view of performance
evaluation. It must be noted that these translator programs
(appropriately termed as ‘'language processors’) are executed
in the problem mode.

The wvirtual machine performs some housekeeping and
‘utility’ functions for the user. For cxample, the system
resources arc ma&e available to the user by a ‘COmmana
language®. Programs to interpret statements in the command
language and perform COrresponaing actions are é part of the
operating system's supervisory program and arc executed either
in the privileged mode or normal mode depehding on the function
being performed. Also, the user is given a powerful means
of filing information and editing it. Creation and maintenance
- of file directories, searches in the directory to locate an
eleménfp allocation of auxiliary memory space etc., are éome
of the house keering functions to beperformee'by the system.
In addition the system performs other housekeeping functions
like maintaining a log of user usage of system resources.
Computations performed for such tasks are a part of the
‘overhead® incurred in providing these facilities. Therefore,

an analyst interested in evaluating a computer system must
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look into these features of the operating systém gnd the
capability of hardware in this direction. Once again the
coﬁment, that the naturg of user ﬁopulation determines the
importance of thesé facilities in the overall operation of -
the system, is appliéableu'

From the point of view of performance, the main features
of the virtual machine are:

.(i) the strictly seguential execution of programs
(despite the fact that there is parallelism in
the operation of the system): and

(1i) the provision of a viftualp large, addressable

name spéce° |

The first feature is made possible by the interrupt
handling routines and input-output manageriai réutinés.

The second feature is a result of implementing segmentation
and paging for thé purpose of dynamic storage allocation.
The resource allocation algorithms needed to accomplish the
above are: |
(i) allocation of channels for I/C requests and
'(1ii) paging schemes.

In addition to the above; processor allocation is
necessitated by multiprogrammed operation of the system. 2
discussion of each of these re;ource allocation algorithms is
given in the rest of the section. Computations done in

connection with the resource allocation algorithms is a major



part of.the ”oVerheéd“ incurred. The attempt should be to
minimize both space‘and time required by these programs. This
is a desirable objective as the ﬁoverhead?'is kept to a minimum,

Interrupt service routines and input-output managerial
routines are probably the most difficult sections of the
operating system in terms of their logic and coding. This is
‘the general experience with simple bétch processing systems,
Lack of first hand knéwledge about details of operating syStems
for multiﬂprocessor/configurationsV in which intricate
protection schemes etc.afe implemented, renders the comment
to be somewhat incomplete in the general sense.

The time for servicing an interrupt depends on the type
of interrupt and the operations needed to service it. The
normal range of service time'can be anything from a few machine
cycles (i.e. a few micro seconds) to a few milli-seconds (the
average page fault service time in the MULTICS system is a
few milliseconds {[34]). For examrle, service of interrupts
caused by many abnormal procgram or machine conditions is
quite éimple (floating point underflowy'floating.point overflow,
storage parityv error etc). On the other hand, an interrupt
due to say interval timer overflow causes an entry to the
processor allocaticn routine. Depending on the.allocation
strateqgy and the operating conditicns prevalent at the time

. -

of such an interrupt,-the time for setting up the next program

to take control of the CPU will vary. The minimum time required
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is that for saving the ‘status’' of the current program and
lodding the CPU registers with the 'status® of the-next’ready
proéram° Page faults or missing rage interrupts cause an
entry to the page schedulihg routines. Here too,; the ﬁime for
‘service Qf such an interrupt depends onlthe complexity of

the paging scheme empléyed° An interesting account of the
detailed operations that occur in a multi-access system is
given by Saltzer [15]. He sketches the types of interrupts
likely to occur when a user is 'logging in'.

The input-output managerial routines offer -to the user,
many schemes for making use of the o varallelism
in input-output (I/O) operations that the system is capable
of. Two main features of these routines affect thefoverall
program execution times:

(i) The buffering scheme employed. -And

(ii) the strategy for servicing I/C requests

" generated by programs beiﬁg execﬁted.

Buffering scﬁemes available in IBM'‘s Onerating System/360
are outlined by Rosen [S]O_ User access to these buffers can
be either of a segquential nature or ofvthe direct access type.
In érder to save main memory space, I/0 buffers are normally
pocled together. This means that only as many buffers required
at any time are created and are dynamic&ﬂl& assigned to the
I/0 files. This assignment of buffers can again be either,user
controlled or be automatically taken care cf by the input-

- output managerial routines.
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Normally, when dealing with data in a buffer, the data is
either moved to user work area (within his program) or the user
is allowed to do the necessary computations within ‘the buffer
itself,i.e. the daté is manipulated within the buffer and hence this

- reduces overall program storage requiremeﬁts (no work area is
needed within the prbgram)o Yet another way of getting around
this problem is to allow the user to set aside in his program,
a block of words equal in size to a I/O buffer, and this block
of words is used as a I/0 buffer or as a work area deDendlng
on the need for either.

Two. types of buffering schemes are cited in literature [6].
First, the simple buffering technique, is the most fiexible
technique devised sc far. In this technique, one or more buffers
are assigned to each I/0 file (data set in IBM System/360
terminoclogy). An idea of how parallelism in input-output is
used can be had from the explanation of thc doﬁble'buffering sCheme
explained below. To each logicale/d file two buffers are
assigned; these buffers are large enough to accomodate the
}argest record read from the I/0 file, they are assigned to.

If the file is an ‘input file', the 1/0 managerial routines
issues one read command ahead of the actual ihput requirements
of the current program being executed. That is, while.the
requirements cof input data to the program are met from the

contents of one buffer, the second buffer is being filled
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with input from the ”inpuf file' concurrently. On the other
hand, for an ‘output file', the contents of a filled’buffer are
written out ontec the auxilary storage while concurrently the
prcgram being executed, fills the next buffer with output it
generates. Design of proper size of buffers to take maximum
advantage of the parallelism in the aétion of hardware, has been
discussed by Hellérman [35]. Iowéver, he assumes that an
extremely good estimate of time for processing a logical record
is available; something quite desirable but unrealistic in
nost cases due to the dependency of the path of computation on
.input data. | N

The second type of buffering scheme is known as‘the
exchange buffering scheme. 1In this scheme, the buffers do not
.belong to the ‘input files' cr the ‘output files' but subsume
the role of an input buffer, an output buffer or a work area
depending on the course of computation in the program.

The only model in literature, for a'buffe*ing scheme
énd its effect on performance.of the system, is the one reported
'by Woodrum [36]° This study is of a fleoating buffe;ing scheme,
’ﬁﬁzcase cf simple buffering in which the buﬁfers are pooled.
The model has a lot of constraints on progrém conditions
(cne récOrd of every input file EEEi.be available in some
buffer or the other etc) and hence results reported are of ;

. limited value. This aspect of system opneraticn has been
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sorely neglected in the efforts to produce models (analytical
or otherwise) for computer systems. That it is an important
\aspect needs no special emphasis; its inclusion in models for
computer systems will lead to the solution of the problem of
- configuration- evaluation.

The other function of I/0 managerial routines, i.e. the
strategies for allocation of available parallel paths to
- waiting I/O requests, has not yet been intrnduced into models
for computer systems. One particular case of I/0 requests
generated due tc the paging schemes has been modelled and will®
be discussed alongwith the problems of paging. Excert for
this one single instance, this prcblem has not been studied
.from the performance evaluation angle.

One of the things to be noted in cohnection with the
study of this.part of the I/C managerial routines is that no
I/0 is initiated directly'by a user_{especially because,
almest all users program in a higher level prggramming language
in whigp the,uéer is given no control over ‘actual operations
but is allowed to_specify logically his réquirements of input
or output and the positibnél relation bétweehjl/o and
comnutation for the séquential execution of his program). In
fact, the actual I/0 operations depend on the buffering

¢
scheme employed. For example, the user program produces output
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at the end of intervals of processing data. This output is
filléd infb a buffer of the output file as it is generated.
Cnly when the buffer is full, an output operation need be
initiated. However, initiation of t?is operation is possiblé
if a parallel data path'(to that particular part of auxilary
storage where the output file resides) is free. And if a para-
llel data path is not freep this I/O request is queued with
other I/0 requests of equal priority and is serviced only

when no other request of higher priority cor preceding request
of equal priority are present. A user cannot keep track of

all these conditions in syétem,operation° This fact is
accentuated by the presence of many active users who generate
I/0 requests simultaneously. It is therefore the job of

the I/0 managerial routines to take care of all these conditions
and service the user I/0 requests a‘ccoréingly° The I/0
managerial routines are therefore carefully structured intb
éeveral functional levels. |

| " The user deals with the level which provides him a
buffering scheme. Even this may be implicit when he uses a
highervlevel nrogramming language to express his computational
procedures. In this case he simply indicates his requirements
of input data or generates desired output. It is the
responsibility of the language processor of the higher level
language to generate or provide the necessary interface between

the ‘user I/0 specifications and the I/0 buffering system.
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The buffering system generates at ‘run time®, calls to the
next level of the I/0 managerial routines. This level could
for example locate the actual pesition of residence of the
I1/0 filerin the aukilary memory, genérate the hardware
instructions necéssary to accémplish the transfer cof informa-
tion, Queuelthe reques; after processiné it for priority,
check for an available data path to the proper peripherél
device and either service the request (if no other is

| waiting for service) or return contrel to calling program.
Another level gets control on the occurrence of an event like
the.completion of an I/0 activity (and hence a data path is
now free). This level might check the cperation for correct
trénsfer, re~try in case of some hardware malfunction or
transmission error, or start off service of a request waiting
in queue. Service disciplines for such queues are guite
simple. The requests are stofed in tables with tags for
.priority operation. At most one reguest per peripheral device
is entered into this table, Possibly, the entry pésition for
each‘device is fixed in the table (at the discretion of

those who prepared the initial operating system) and a ‘top-
down' search is made for the entry with thé hichest priority.
This entry is then serviced (the corresponding I/O operatiocn

is initiated).
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Naturally-enough, these routines deprive user programs of
'ready' or 'active' status wﬁen they cannct cope with the volume
of I/0 requested by them (eg, both buffers are full for an out-
put file and yet more output is to be generated or the program
needévinput and the buffers are ampty or cne is empty an& the
other is in the érocess of being filled - in éll such cases, -
computation by the program comes to a halt and the program is
said to be in an 'I/0 delay' state or ‘dormant’' state). On
such conditions, an entry to the processor allocation routine
to find the‘next program to be executed, is caused.

The'reasoﬁ for taking a closer lock at these functions of
the operating system is that in order to be able to model
such a system in its entirety, its detailed operétion and
relationships between its many facets must be understocd clearly.
It is common knowledge that the ‘overhead® incurred by avlarge,
general multiprogrammed computer system is about 30 to 50
pércené of the total time the system CPU is operative. In the
case of the time sharing computer utilities like the IBM System/
360 Model 67 or the MULTICS, these overheads céuld be more than
that (as quoted by Neilscn [37] for the IBM System/360 Mcdel
67 at Stanford University,'California, UsA). B part of
these overheads is prbcessorﬁidle time as forced by I/0
waits and such like. If such phenomena are to be understood
in any measure of c&mpleteness.and proper counter.measures

to be designed, an evalualive study or an effort in mocdelling
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the computer system must include these details. However, the
argument that usage of such systems is unwarranted, especially
‘in the light of overheads in CPU time incurred, is not totally
sound. Firstly, the benefits accrued from such system operation
(the provision of powerful features in the virtual machine,

like segmentation,. for.example)'are not expressable quantitativel-
And secondly, the CPU is only cne of many resources available
(an important resource no doubt) and at the cost of overheads in
. CPU time, the rest of thé system components have increased
utilization (and econcmically speaking, the rest of the system
figures in a large way in the total costs).

Turning to the dynamic memory spacc allocation problem,
Demning [38] has discussed and compared several page scheduling
rroblems. Briefly, the problem of dynamic storage allocation
problem can be explained as feollows. The user programs in an
addressable segmented name space. This means that specification
of an address in an instruction is achieved by supplying a
segment name and the displacement (page number, line number)
within that segment (the set of all possible segments gives
the total addressable memory of the virtual rmachine). Each
segment is divided into smaller parts called ‘pages’. Normally
the size of a page corresponds tc the size of a block of
main mémory (the main memory itself is partitioned intoc blocks

of a ccnvenient size). Normally, all of the segmented name
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space (that is required by the active progréms within the system)
is stored on a fast back up storage medium like a set of drums..
. The page schéduling pfoblem is tc bring pages of program
residing)on the drum, into blocks of main memory so that it is
available when needed in the execution of that program. There
'~ are two ways of tackling this problem. Tﬁe first is to
anticipate the needed pages and initiate ‘fetch' operations.
This sort of predictive approach leads to several pitfalls
which have been outlined by Denning [38]. The seccond method is
to fetch the page from the drum wheh addkesses in that page
are generated by the program being executed. This technique is
porularly known as ‘demand paging® and is the technique used
in all paging schemes. A pedagcgical notation to explain the
commonly used page SCheduling algorithms is given by Gecsel
et al [32]. Given the dynamic page trace (obtained by
monitoring the execﬁtion of the program for effective addresses
generated and the addresses of instructions in the instruction
stream), a measure of effectiveness of a paging algnrithm is the
number of times a freshly addressed page is found in the main
memory. The attempt is tovmaximize this number. This also
means that the I/0 traffic, caused by pages being brought
info main memory from the drum or written out from main memory
on to the drum, is reduced. - a very desirable thing as all

1/0 is considerably slower than computation by CPU. It is to

¥
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be noted that there is no difficulty in knowing which page to
bring into main memory as an address in that page will be
generated by the program in-execution, but the problem is to
find place in the main memory where the incoming page is to
‘be located. If the main memory is not yet full at that moment,
then there is no problem in finding space for the incoming
page. However, if the main memory is already full of pages,
the job of the paging algorithm is to find a page which can
be turnéd out. This page may or may not have tc be dispatched
to the drums depending on whether it has been written into
or not (there is already a copy of this page in the drums).

Scme of the ccmmon paging'algorithms are the First In
VFirst Out (FIFO) scheme and the Least Recently Used (LRU) scheme.
The attributes FIFO and LRU refer tc the scheme for selecting |
the page to be turned oﬁt° The FIFO scheme is very easy to
impleﬁent. Just a linear list of pages in ccre memory need be
maintained. The top element of the list indicates the page
first brought into the main memory (amongst those present in it).
This page is selected to be turned out. As the scheme does
not concern itself with actual feferences te the page during
the time of its residegce in the main memory, there is
no attempt to maximize the success of finding a freshly
referenced page in the main memory. Each page resides in the

memory for the largest possible duration at the end of which
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it is turned out without regard to the behaviour of the prograr
tc which it beiongso

In the LRUls¢heme, when a page not in main memory is
referenced, a search is made to find the page that has not been
referenced for the longest period of time. Conceptually, a
clock may be associated with each page in memory. These clocks
are feset wheneVet the associated page is referenced. When a
page is tc be turned out, the page whose clock has the maximum
value is selected. In practice, a shift register is simulated
in the entries for each page in the.page table (page tables
are maintained in order to aid in the ﬁapping of addresses in
the name space, generated by instructions being executed,
to main Memory locations in which the contents of the pagé
reside). The left most bitvof this shift register, known as
tHe ‘use' bit, ié turned on whenever the corresponding page is
referenced. On an entry tc the ‘page fault® service routine
(a page fault is said to occur when a page ncot in main memory
is referencecd), £he simulated shift register contents are
shifted one bit to the richt. The éontents ~f all these shift
registers are compared and the page associated with the shift
register having the least numerical value is selected to
be turned out. It is easily scen that a shift register of

infinite length is necessary to implement the LRU scheme and
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a shift fegister of zero length gives a scheme equivalent to
the FIFO scheme. An interesting experiment on paging was
conducted in the MULTICS system to determine a p;agmatic
length for the shift register [34] and a register one bit
iong was found to be an econcmic feasibility.

Another paging scheme is the Least Frequently Used (LFU)
scheme. The page selected to be turned.out by this scheme is i«
one that has the fewest number of references to it. Such an
algorithm.may be implemented in pracﬁice by a similar technique
tc that of LRU tephniqueg A count of references to the page
is kept in the appfopriate entry of the page table and is used
in selecting the page to be turned out.

Denning [38] observés that paging is no substitute for
real core memory. Except in the case of the FIFQ scheme, over-
heads are incurred due to techniques of their impleméntatién.
Very heavy paging cccurs in worst case_conditions (in varying
degrees for different »nage turning élgorithms)° This can |
lead to unstability of éystem operation (system "thrashihg"
or system °‘crash' as it is commonly called). Therefore,
appropriate hardware need be designed to help in memory manajer“h.
or page turning.

In an effort to achieve economic operation of the system
and impiement a géod page turning schenme, Denning proposed

the 'Working Set® model for program behaviour [38]. The
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working set is definedlas the set of pages referenced in time
t - T to t, where time t 1is the present value of time in
the execution of the'program‘under ccnsideration and T
is the ‘backward windew®, an interval over which program page-
referenciﬁgmhistory is accumulated. A page jeins’the working set
if it is freshly referenced during the interval t-T1 to t. A
page, already in the working set, leaves it when it is not
referenced for' T seconds. Pages in the working set are
considered ‘hoiy“ and should not be turned out. And programs
are not considered to be in ‘ready’ status unless at least the
pages ir thé working set are in the main memory.

A quantitative comparison of cverhead involved with each
of the page turning algorithms is quite possible. Also, it is -
possible to estimate the size of the roﬁtine which carries out

the necessary computation for selecting the page to be turned oui

~p?

for each algorithm. However, the success of the paging algofithhr
in terms ofvminimizéticn of page traffic, is dependent on the
nature of worklcocad. Important design paramseters of the paging
» scheme which depend on the workload are the following:
(i) The optimal size of a pace; a page should be of
such size so as to contain effective loops ofb
- ' program code so that fhe control of program
does not pass out of the page toc soon -~ this

reduces the number of fresh pages referenced.
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Again, the paées should be of such a size so
that the utilization of available space in
it is a maximum.

(ii) The magnitude of the °backward‘windmﬂLT or
other like parameters for the correspohding
algorithmse This parameter gives an indica-
tion of the extent of program-execution.
history tc be maintained. For example, in
the case of the working set model, if 1 1is
too small then pages pass out of the working
set £od soon and may have to be recalled
soon .after they have been turned out.

Qn the oﬁher hand if T 1is too largé, then

the working set grows too big and the .
nemory réquirements for the program to be

in ready status also increases. This

limits the number of programs that can be

in main memory and hence imposes some”
restrictions on the number of procrams that

can be executed in a multiprogrammed

fashion at a given time.

The fact is that there is not sufficient crtical experience

in thevdetails of working of systemg sporting such features, to

authoritatively conclude about their performance (in terms of
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" the success of the‘paging scheme) or determine values for the
design’parametérs mentioned above., Experimen?s in monitecring
.pgg{ng behaviour are now more frequently reported in .litexatura
%tatistics about ségment sizes have been reported by Batson -
et al [40]. Raﬁdell has discussecd storage Fragmentation (loss =°
storage utilization due to segmentation and paging) ‘in detail
[41]). Belady et al have given instancés {found by experiments}
in which there is a‘decrease in running time ‘'of programs as
a result of decrease in size of main mehory {42]! This ouly 5-.
tc show how little is understood of program behaviour a;d how
"difficult it is to produce a general model for it.
Finally, a last point of interest in connection with pﬁgiﬁj
schemes. The utilization of the drums .and the transfer path '

between them and the main memory should be a maximum. In

general, the problem here is to sequence the list of pages :

to be either read out from the d:ums or written into them s0

as to make maximum use of the drums. ‘Denning”g a@alysis (451
of this aspect (for a segment turning scheme?insteéd of a:page
turning schéme) is applicable here, P séheduling algorithms
have been discussed. The first is th. FIFO method. Here, .
fresh requests for pages, to be eithex read from or writteﬁ .
into the drums, are added to the bottom of the list and this.
gueue is serviced by deoing the proper operaticns for the first

page in the list. An'obviously better algorithm is the Least
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Aécess Time First (LATF) method of sequencing the list of.
requests. In the executicn of this algorithm, the page
nearest to the drum position (with respect to the read/
writé’heads) is read out or the first empty space is written
into. It is quite possible that though the drum is utilized
to a maximum in this manner, certain pages are not.read out
for a long timeo. Therefore, in actual implementation a mixed
~policy may be followed. For.example, if a particular page
read request is not honoured for a specifiéd quantum of time,
then it.is assigned avpriority over other requeéts and
immediately sefviced_°

The processor alloqation problem has by far aroused
maximum interest and prelific attempts to model this aspect

" is evident in recent literature as indicated in a survey

of analytical models for time shared computer systems [44].
A survey of computer processor scheduling metﬁods and counter
measures adopted by users to gain favour of the system has
been ably presented by Klienrock and Coffman [45]. further,
a pédagogical notation for a whole range cof existing time
sharing scheduling aléorithms and introduction of a new
interesting scheduling algorithm is presented by Klinrock [46].

When considering processor allocation algorithms,
the important issues to be studied are:

(i) how is the assignment of priority ﬁo users

effected? 2né
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(ii) what is the service discipline used in

selecting users from various priority

groups for service?
.In answer to the first issue, priorities can be bought (in
disciplines where bribing is allowed) or earned (by programs
exhibiting desirable characterstics) or deserved (due to
knowledge about favourable characteristics of program prior
to executicn). Pricrity disciplines can be classified
according to the properties listed belows

(i) Pre_emptive 'vs non preemptive disciplines

zii) Resum: vs restart for preemptive disciplines

(iii) Source of priority information

(iv) Time at which priority information becomes known.

+ This classification has been preocposed by Klienrock and Céffman
[45].

-Some of the commonly found priority scheduling disciplines
are the FIFO discipline, the Shortest Job First (SJF) discipline,
thé Round Robin (RR) discipline and the multiple level feedback_
(Foregroundeackgroﬁnd, FB) discipline. Hostly implemented
priority diséiplines in processcr allocation are minor variationr
or combinations of the above. Greenburger [47] has indicated
the difficulties in studying. even simple priority'disciplines
analytically. The measures of effectiveness of various

processor allocation strategies are the system response time
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for various pricrity groups (or turn;pround, in other words)
and throﬁghput achieved by each of them.

The FIFO discipline has already been explained in
connection with paging schemes. 2As it is not any different
in the case of prdcessor aliocation, no further explanation
is necessary. Acgain, here too it is the simplest of the various
processor allccation algorithms. In all cases, preemptive
versions of these allocaticn schemes cause control*to be
transferred to incoming high priority programs; the running
low priority programs are interrupted in the middle of the
processor time slice allotted to them. The SJF scheme causes
the shortest (in running time) program in ‘ready' status to
be executed next. Such a discipline would be particularly
useful in a batch processing environment in which users can
be assigned priorities prior to submission of their programs,
depending on their requirements of prbcessor time. In a
‘multiprogrammed timé shared environment, user identification
- of type of jcb wculd be necessary for effective implementatiocon
of this scheme. Compared to the FIFO discinline, short jobs
clearly have higher priority and faster turn around with the
SJF discipline. Long jobs are seen té suffer long waiting
times before service. There is no appreciable increase in
overhead over that incurred in the FIFO queue, due to the

SJF strateqy of operation. Hence throughput is the same
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for both the FIFO and SJF disciplinesc

The round robin scheme (RR) is also seen to favour short
jobs and is normaliy used in time sh;rinq systems. 2n analysis
of this scheme for the CTSS operating conditions, has been
presented by Scherr [48]. In this scheme, each job is run for
a fixed quantum of time. If the service of the job'is complete
within this allocated guantum of time, the job’simply leaves the
system. FElse, it is cYcled to the end of a sinale queue of
waiting jobs that neecd yet one or more guanta of time for
completion. It is ohserved that an infinite quantum renders
the RR scheme equivalent to the FIFC scheme. |

As the guantum is reduced to near zero, the available
processor time is divided equally amongst all jobs in the system,
In effect, there will be' no waiting line and all jobs will be
executed in parallel with an effective épeed pronortional to :
the number of jobs in the system.

The FB discipline is a little more intricate than the RR
discipline. In the impleméntation of this scheme, the system
may be viewed as one with mﬁltiple gueuve-levels numbered 1.2.,3,
... MNew arrivals are put in queue-level 1 and executed for a.
quantum of time as in the ER scheme.  After a quantum of service
. the incomplete jobs are pushed to the next higher level. Jobhs
in the highér levels are taken up only when a lower level is
completely empty. Though the throughput without the FB scheme

is lesser than that obhtained with the PR scheme,
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long jobs are not allowed to interfere or delay excessively the
execution of short jobs.

This section and the preceding section cover the study of
computer systems from the point of view of performance evaluation.
The material presented should provide the necessary pointers in
modelling the system as well as its workload.

Section 2.3: Analysis of workload

A point of note at large is that there has been a tremendous
increase in the application of computers to solve problems
occurring in all forms human endeavour. Computer résﬁlts are
therefore increasingly used everywhere. It is indeed alarming to
see such faith in computer output without really having any theory
for estimating the reliability with which correct resulﬁs are
};\rc»d\.IceciLr That is, there is yet no defined procedure in the
offing, which determines with a measure of confidence that a
program is well and truly debugged. There have been efforts to
prodﬁce higher level programming languages (which are universal in
computation) in. which completeness of logic c;n be checked out
[43] and ambiguiﬁies in lcgic that arise in the exccution of -
pfograms_canvbe resclved or pointed out at run time. These are
indeed very desirable charécteriséics for programming languages .
and shoula be emphasised in their design. Programs constitute
the workload of computer systems. And programs are engineering

implementations of algorithms developed for solving problems.



83

A pragmatic analysis of algorithms (and hence computer programs)
should take into consideration'the following:

(i) The fact that computers work only with a finite
range of numbers in the integer domain (an
approximate notation for real numbers - the norma-
lised flcating pbinﬁ numbaf notation -~ is used
and such numbers can be mapped ontc the set of
inteéers)° Investigations in the theory of
computation; tc produce échemata for representing
programs, always examine the behaviour of érograms
for all input data possible in order to deduce
results about their properties (for example, will
the algorithm terminaté for all input®}. Such an
effort has led toc some general (hut ncgative)
results. Like, there is no algorithm to aecide

- whether any given algcrithmvwill terminate for
all input. Such a result is very useful no doubt
as it helps in delineating the sclvable problems
from the unsolvable problems. In an effort to be
ﬁdre pcsitive, attention has been drawn towards

. finding properties of subclasses of algorithms.
For example, what is the set of algcrithms that
terminate for all inputs. If something very

useful has to be said about computer programs,

the restriction on the set of all input data tc
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the set of numbers representable internally in a
computer (i.e. finite bound on numbers depending

on memory word size etc) should be given due

emphasis in the study of their properties.

Writing programs is indeed like making machines

to automate certain procedures, Therefore a

great deal of care in their‘design and analysis of
problem being solved and procedure for its solution
is definitely warranted. Moreover, procedures

for solution of problems need not be unigue. The
analysis of such procedures, with a2 view to find
the range or type of data fcr which they are
applicable and efficient, {in terms of the number
of steps necssary to arrive at the result) is
important. So is the comparison of storage
requirements necessitated by each algorithm. >The
sensitiveness of pfocedures to input data is all
the more an intricate problem in the case of
numerical techniques of solution to the

problems cof classical mathematics. Extensive
usage of such technigues blossomed with arrival

of computerse' It is.not uncommon to see people
rush to apply these techniques for scluticn of

their problems by using ’rea&y made' programs
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without a careful analysis of the effectiveness of

the technique employed by the program in relation

to their problem and associated inpdt data. The
result is an unpleasant tangle with the idiosyncrasies
of the computer used. To illustrate, nobody would
knowingly use equipment in the range cf operation it
was not desiéned for. The effccts could be materially
disastrous, scmething to which immediate heed is paid.
Similarly, the result of using a numerical technique
unsuited for range of data presented by a particular
case of the problem could be disastrous too. The
outcome of such usage of computers can be subtle and
hence unncticed or just incomprehensible; in any case
it is quite dangerous.

Effecting a transition from algorithms to computer
programs is an art in itself. In all seriousness,
computer programming is no tool for a high school
drop out as is commonly and sometimes derisively
opined. It is all the more distressing to note
disclaimers taggedvon to pro&rams distributed by

user groups etc which state that the originator

of the program is not respensible for its malfunction
for pérticula; types or values of input data,

but he would be happy if any bugs found in his

program were communicated to him! The user of
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such programs is expected to conduct his own analysis
with whatever information which can be gleanéd from.
the documentation. Programming seems to need a
peculiar acumen which is unique by itself.

A seemingly harmless algebraic expression could run
intc problems of numerical instability in its compu-
tation for some ranges of data, simply due to the
manner in which the expression is coded in the pro-
gramming languaged used. Being aliVe tghghese problems
and being able tco work harmoniously in/environment of
the computer cannot be emphasized enough. Efficiency
of coding is attained by prcper factoring and
sequencing of expressions and terseness in expréssion
of logic of the program (for example, invclved logic
can be neatly expressed with the aid‘of Deéision
Tables). It is to be noted that normally the coding
of programs imposes limitations other than those
inherent to the élgorithmAit implements, which may or
may'not be easily stretched. Examples are: the
insensitiveﬁess to accuracy beyond a certaih self
imposed 1limit, of input éata; the accuracy with which
results are reported; the maximum size of the problem
~ that can be tackled etc.. This further restriction,
either artificial or forced; alongwith the rest

already listed, should provide the grounds for
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an estimate of what can be practically feasible with
_programs;

The above digression outlines factors to be considered for
“software evaluation®. These ideas have been iﬁ the air for
sometime, OCnly, thers is a need for a massive éffort to be
positive and to progress in this direction. In view of the
increasingly important roie that computers play in day-toc-~day
matters, such investigations are essential. Corbato has analysed
téuchy or sensitive managerial issues in the design development
of large software systems [50]. The success of such efforts
depends a g;eat déal on the documentation of the software system.

"He gtates that the success cf CTSS and the develcopment of MULTICS
at Project MAC was chiefly due to the attentibn given to this
problem. In canclusion, the main thing in °‘software evaluation'
is to enforce a quality control and standardisation of programs
that are marketted. |

Coming to the main prcblem to be tackled for computer system
performance evaluation purposes, static and dynamic characterization
of workload has to be done to this end. Traditionally, static
characterisation of programs is achieved by use of flow graphs or
directed graphs or connectivity matrices and so on. For a
great part, these schemata try to portray the logic of the
program and computations which affect the logic. Investigations
fegarding equivalence of programs naturally need a formalism

~with which'the detailed nature of computations made by the program
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can alsc be specified. For the purposes of performarice evaluaticn,
the static characterisation of workload should portray the followine

(1) Control log;c.of the program: For this purpose, the

schemata already available should suffice. Information
that can be obtained from this represeutation of programs
is useful in preperly segmenting them with a view to
retain contrcl within each segment for the maximum
possible time in a pass through the program. A point

of note is that this information can be readily cbtained
from the translation stage. As the intefrest is in
characteriéing a workload rather than individual programs,
a statistical measure for this aspect of programs that
constitute the workload is necessary. Tc this end,

let a be the number segments in a program. Then £(a)
gives the probability distribution function for initial
segments in programs and E(a ) gives the mean.

- (ii) The size cf static programs: This is an indication of

the initial size of segments of a program pricr to its
execution. The size can ke expressed in terms of the
basic unit of storage in the main memory (bytes, for
example). Statistics about this information can be
collected during the translation phase. Two factors
centribute ?o-the initial size of programs. One 1is
the program code which is normally fixed in size,

even during their execution. And the second is the
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émount-of data area and 1its assbciated data structures
which need not be fixed and can grow during the execution
phase of programs. In such a situaticn, an effert to
separate progrém code and data arca and assign them to
different segments can be expected. Therefore, let @

be the segment size and f(8) and E(8) give the proba-
bility distribution functicn of g and its mean respectively.

are
I/0 requests: Two static qualities/cf interest here.

The first is the number of logical I/0 files a program
uses ( < input file, maximum input records'>,< odtput
file, maximum output records> , < work file 1, « reccrds>
< work filé 2, records > ... = the use of work files
may be obliteréted by use of segmentation and paging
techniques and is included here. only for the sake of
generality) and second is the buffering technique
employed (<access method, buffering scheme>- the valid

combinations were indicated in the preceding section)

Let v and v be the number of I/0 files and buffering

techniques used respectively. Then, f(u), E(u), £(v),£(v)

provide the necessary statistical measures. It must
be noted that similar measures are necessary for the
values of maximum input and output records for the

input and output files.
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(iv) Nature of computation: This perhaps is the most difficult

parameter to characterise as.already seen in section 2.1.
For the present purpcse, a finite set ¢' of parameterised
kernels will suffice, Géneralisations at this stage
being tgntamcunt impossible, this will be an initial
limitaticn to work with., Let ¢ be the kernels used by
a program, so that ¢ C ¢'. |

A macroscopic description of z program i is given
by the sequence of job steps or tasks Xi = X31¢X50, Xj3700-
required to service its job request. In the case of
_batch processing systems, this sequence could be something
like - compile routine 1, compile routine 2, ..., load
program, execute. In fhe case of time sharing interactive
systems, each user request may be just one job step.
The sequence in which job steps are executed is of course
importaht for the proper execution of the job. Each
job step is characterised‘by the static attributes of
programs tﬁat have been discussed sc far and other
static and dynamic attributes yet to be discussed. The
sequence of jcb steps required by a job can be ohtained
from the transitioq matrix A whose elements 6j5 indicate
the probability of job step j £following jcb stepv i.
A is therefore a charécterisation of the nature workload

in a gross sense. The starting step is always the same.



91

iastly, let r be the user's estimafe of time
ne%deé to service ‘him. 2And so f£(r) is the sta;istical
measﬁ;e for this attribute of the incoming program.

To summérize, the static characterisation of a program is giver
by the 7 éugle <a, B: U, v, &, X, z>. And the worklcoad is
characterised by probability distributions ofa,B8,u,V,C and the
set Q;banc the transition matrix A. It would be providential
if the dynemic characterisation of the worklcad could be obtained
frém the static model. However, this is not the case at present
and therefore the dynamic behavicur of the worklcad must bé
considered in detaii.

Dynamic attributes of programs, important for a dynamic rodel
of the workload are: |

(i) page tracé of programs

(ii) density of I/0 requests and the volume of
- I/Q traffic

(iii) processor time for completion.

It must be noted that these processes have to be tied down
in the time scale of program executicn,

The notation used here fdr the addressing pattern in terms
of the pages referenced in time (page trace) by brogram i is
. adapted from the one déveloped by Gecsel et al [39]. Let ©
represent the page trace generated by a2 program so that
8y = eil'eiz, éi3,',ae, 0it, where @ 5 is the page referenced

at program execution time t=1 and is drawn from the initial
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.set of pages in the programo_The initial set of pages in the
program has a magnitude of [aj x 83]1/k, where k is the page
size séécified as a number of basic storage units of main memory
and a4sB8j are obtained from static charécteristics. This
number may or may not grow depending on the dynamic storage
requirements of the program, a'phenomon which can be statistically
describeé if the need arises. For the present, the storage
iequirements magnitude~wise of a prdgram will be assumed to be
static. Therefore @4 here is the page refefenced at time t
in the executiocn of the pfogram and is drawn from the set of
pages defined earlier,

Dynémic attributes of input-output requests of program i
are:

(i) the I/0 file selected for use

(i1) type of operation (read, write, control); and

{iii) the magnitude of the request {(number of characters
transferred etc).

To this end, let Qi be thé logical I/0 request tface of
program i'° So £y = Witr Bi2s oo where wi'é are the I/0
requests of program i and the second subscript is just the
sequehce number of the i-equest° The definition of win'is
piﬂ

given by the ordered triple < Pins din{ €in >, where

is the I/O‘file selected by the request'and $in is the type
of'6peratioh (control/transfer) and €3 Magnitude of

Ainformation transfer. Of these, pji, is drawn from v
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(using an appropriate discrete probabilifytfunction which
characterizes this dyﬁamic behaviour of program i), Oin is
Vgiven a value of Ol(depends on the probability of a control
operation) or 1 (depends on the probability cf an information
transfer operation) and ej, is given value from a probability
distribution of the leﬁgth cf 1I/0 requestéa

It is very difficult to characterise the dynamic nature
of computation done by the CPU. The normal trend has been
to concentfate more on the amount of CPU time a program needs.
Statistical description of this factor is given by f(£) where
ﬁ is the CPU time required by the proéramu An exponential
distribution of £ is not unusual especially because short jobs
.are accorded pridrify in most processcr scheduling zlgorithms.
Another important factor is the arrivai pattern of 505 requests.
Let Y~be the intervarrival time of jobs and hence f{y) characteri-
ses this aspect of the workload.

At this stage, it is necessary to tie down page referencing
and I/0 request generation with the central processor execution
5f programs. Page traces can be generated from a transition
matrix ¥; whose elements wlj give the probability of page 1
‘referencing page j. Associated with this matrix is a vector '
I; whose elements ﬂir(franging cver the set of pages [aj x B;1/
k) give the expected.timev(per unit) for which program control
remains within that page. That is to say, I 7 jr = 1 and

Y

e

iy < 1 for all =zr. For every instructicn executed while the
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program control remains within a page (i.e. for page r, the

.1, the page references can
i

uErt o

fraction Ty, of
be obtained from the appropriate row in the transitioh matrix.

‘In the case of I/0 requests, it is much easier to put
their occurrence in program execution time. Intervals of
processing ére followed by I/O requests. Inter arrival time
of I/0 request, say )i, i characterised by the probability
distribution-functioﬁ £(031) -

The dynamic model bf workload.explained above is still
crude and needs much more refinemcnt. - The chief attempt in
the‘mdéél’isifébput togéfﬁér‘ééﬁéréiﬁé;dcéséééﬂfha£.éhéfécéef;.
ise prcgram behaviour. This is in contrast to the'generai
approach of stﬁdying one feafure of the computer system at
a time so that only one featutre of program behavioﬁr need be
‘“modelled at a time.

' Iﬁstead of characterising the whole worklcad of the
system in_the manner presented here it would be more fruitful
to characterise user worklocad and the workload formed by
system programs separately. The usefulness of this approach
-would be in determining the overheads iﬁcurreé. Aiso, system
programs {which are executed in response to the job steps
specified or depending on the logic of system operation) are
peculiar in themselves and such a characterisation would

help in understanding their need for computer resources.
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Some of the ideas used here in characterising the workleocad are

© taken from already available literature [37, 38, 39, 40, 43,

47, 48}. But it is difficult to ascribe motivations for various
aspecfs in the‘chéracterisation ton particular wcrks seen in it.
This is because of an attempt to take a very geheral stand in
modelling all of the workload. ’

Section 2.4: Conclusicns

In this chapter, critical analysis of various resources
of computer systems and vaiious processes that occur in the
operation of the system are first presented. These analyses
culminate in an attempt towards a proposal fof-a methodology
for quantification of workload of computer éystems° As the
problem of performance evaluation necessitates the development
of techniques to relate the demands of the workload to the
capabilities of the system, models for cémputer systems should
be developed. | |

A tutcrial survey of analytical models for computer
s§stems is presented by Radhakrishnah et al [51]. One thing
stands out as a result of this survey. All these modelé
portray just one cof the many processes that characterise
system behaviour. Hence any inter relations between these
processes are just igncored. One of éhe outcomes of such
procedures of analysis is the compariscn of several

‘techniques of management for some of these processes. However,
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propexr prediction of éystemlbehaviour-is;rﬂt éossible with the -
aid of these models as the inter relations mentioned are not
taken care of.

A static and dynamic model for system behaviour can in
principle be specified with the help of all the information
given in sections 2.1 and 2.,2. Section 2.3 helps in indicating
the detail cf the'model. Aas the ldgic cof system operation
(and hence the dynamic behaviour of the system) is‘very
intricate, decision tables could be used in specifying it.
Besides aiding in a concise and cogent presentation of the
logic, this technique proves very useful in checking out its
completeness. The complexity of the model makes already
available analytical techniques of queuing theory and
Markov models (these are the most commonly found techniques
used in the modelling of computer systems) quite insufficient
in handling the probiem. Simula£ion techniques; explained
in the next chapter, are the cnly other available tools.

Even here, the extreme detail of the modsl makes the use of
simulation techniques inadeguate,

The main point is: in the exeéption of a program, other
things like page referencing and I/b reguests alsc occur.

In view of this, is it justifiable to allccate processor time
to a program without any regard to the oéher phencmena?

Denningvhas made a beginning with his ‘working set' model
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for program behavicur which accounts for page referencing in

2

program execution time. This concept should also be extended

tc include I/C behavicur of a program.



CHAPTER III

SIMULATICN TECHNIQUES FOR COMPUTER SYSTEM EVALUATION

Section 3.1: Introduction

Simulaticn techniques can be bfoadiy divided into two
classes. Each class is characterised by the type of system
being simulated. The two classes beSyStems are the class.
of continuous time systems and the class of diserete fime
systems., Cbmputér systems beiong'to the latter category, and
bthereforé, only the techniques. for simulating discrete time
systems are considered in this chapter. In general simulation
. problems are characterised as being mathematically inﬁfaétable
and having resisted solution by analytic means for a léng |
time, vSimulatioh teéhniques can nc.longer be considered as
last resort technigques for studying ahy system. In fact
they have come to be the only techniques available for studying
large behavioural systems in all complexity. In the ehsuing
discourse ‘systems’ will be understood to mean discrete time
systems and ‘simulation' to ﬁean simulation of discrete time
systems. | ‘

Discrete time'systemé are idealised és natwork flow
systems that are characterised by the following:

(i) the system consists of ‘components’ or
”c.—:?l_emen‘ts.E each of which performs a

prescribed function;
98
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(ii)interconnections between»various components
are specified, giving a 'structure' to the
sYstem; |
(iii) ‘items® flow through the system from one
| component to anocther iéquiring the performance
of a funcﬁion (service) at a componeﬁt
(facility) before the item can move to the
- next component;
(iv) the structure of the system governs the flow
ol of items;
(v) the COmponents have a finite capacity to
process items and therefote items have to
wait in 'queues' before reaching a coﬁbonenﬁc
Normally, the objectives of studying discrete'systems are
to study the steady state capacity of the systeﬁ. For example,
consider a simple single server queuing proceés. The server
is a system 'component', the customers waiting to be served are
'items* tha£ flow through the system and the queue discipline
is ‘*first in first out' (FIFO). Given an arrival pattern for
the customers and the service time distribution for the server;
the steady state server busy pericd distribution and the
customer waiting time distribution and the queue length
distribution are to»be obtained. |
A simulation.study of this type mostly deals with

keeping track of where individual items are at any particular
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instant cf time,; moving them from queues to components,
timing them for processing py components and removing
processed ‘items to cther que¢ :s. The result of a
simulation 'run’ is a set of statistics describing the
behaviour of the system over simulated time.,

The study of complex behavioural systems, using
techniques as cutlined above, has beccme feasible only due
to the advent of large digital computers. Therefore a
large class of users are motivated to obtain soclutions to
problems hithertc untried or solved unsaiisfactorily
after making gross simplifying assumptions. The computations
and other manipulations needed for simulation work being quite
different from those required by ‘scientific’ computations
or business data processing applications, a new set of
'lahguages tailored for programming simulation problems have
been invented. | |

Section 3.2: Intrcduction to simulation languages

Before discussing and comparing some simulation languages,
an introduction to various terms and concepts uéed in simulation
is in order. When simulating discrete time systems [52], the
operétions of the system -are considered at discrete points in
time. These discrete points in time are called 'events' in
simulation parlance° In the’framewofk of systems presented
earlier, as nétwqik flow systems, events occur when an item

leaves a component having been processed by it or when an item
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joins a queue at a component or when a component starts
processing a fresh item. The time intervals between events
are called factivities'. The occurrence of a event changes
the estatus‘.of the system at a discrete point in time. The
system is énclosed within a ":bcmndaryi and. all that is outside
- the boundary is called the 'envi:onmentf, The environment
can influence the gystem but the system cannot influence'or
‘alter the environment in any way. »

The simulated system is a collection of ‘'entities',
'attributes of entities' and ‘sets or files of entities'
[53]. Any type of unit independently identified in the
system is called an 'entity'. The server in a queueing
process is an entity. However, he is present throughout the
simuléted tiﬁe of the system and hence such entities'are
termed 'permanent entities’. The customer who waits in a gueue
and departs when serviced is a ‘temporary eﬁtity' as
information about him heed not be retained once he is served.
Each type of entity is in turn deécribed by 'attributes';
The attributes 5f a server can be the time he takes to service
& customer. The attributes of a customer can be the time of
his arrivél and the priority he wields over others in queue.
The 'status description' of a simulated systém may comprise
of any number of entities or even many entities of the same
type. Entities are said to be of the same type if their

attribute names are identical; the values of the attributes can



102

be different. Inter relation between entities may be
depicted in the status description by grouping entities of
the same type into ‘sets' or 'files',

A simulaticn run is said to terminate or come to a finish
when the system assumes or arrives at a particular status
description or the simulatién lasts a predetermined pericd
of simulated time. For a more complete discussion and
illustrative examples to explain various terms, concepts and
techniques for conductingia_simulation study using digital
computers, one is referred to introductory texts'and programming
manuals of SIMSCRIPT, GPSS III and GASP [33, 54, 52], Further
work on on line simulation languages is given by Greenburger
[55] and Buxton [56].

An excellent survey and comparison of simulation
languages is given by Teichreow and Lubin [57]. As GPSS IiI
and GASP 1II A are the only simulation packages implemented at
IIT-K, some details, observations and criticisms are given
here.

GASP is an acronym er General Academic Simulation
Program. GASP II A is not a simulation language. It is a
set of FORTRAN subroutineé which afford the user a basic set
of functions needed to accomplish computer simulation of any
discrete time system. Simulation in GASP is essentially an
event based study of the simulated system., By this is meant

that the simulation cf any system is achieved by scheduling
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- some éequence of events in simulated time. The GASP user,

who really programs in FORTRAN, is expected to generate or
supply the event schedule and ccllect statistics about the
system status description at points of his interést° Therefore,
the GASP user is expected to know a great deal about the basic
functions provided by GASP and also about the system he simulates.
As the level of programming a simulation model in GASP is low,
the user is also given a great deal of flexibility in building
the simulation model. For instance, FIFO and LiFO gueue
disciplines are natural when using GASP and pricrities in

queue disciplines are very éasy to handle. Markov processes

¢can be directly simulated. Besides queuing problems, PERT and
CPM networks and inventory systems can also be simulated with
the help of basic functions provided by GASP. Any GASP function
can be altered by the user to suit his'special needs.

The timing mechanism in the executive routine of GASP
directly advances simulated time to the time the next event is
scheduled to occur. The fact that only one event is examined
at any point in time makes the GASP simulation technigue
conceptually simple. That is, no attempt is made to retain
any of the inherent parallelism in the system being simulated;
computations required at each event time are done in a sequential
fashion. If two events happen to occur at the same point in
simulated time, computations required for each event are done

one after another in the order scheduled by the user.
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Facilities to ;nitialise a system model and conduct multiple

runs for a model are available. As all prograﬁming by the

user ié done in FORTRAN, the user can build the simulation

model in a parametric fashion and study the sensitivity of the

system tc change in certain parameters without any reprogramming

effort. However, even to simulate a simplé queuing situation,

the GASP user haslto become very familiar with most basic

functions of GASP. This seems to be the main drawback in GASP;
GPSS III on the other hand is a higher level language for

simulation work and is highly adapted to modelling of queuing

situétions° When using GPSS, models for systems are constructed

as flow diagrams using standard GPSS III 'blocks’. Coding

GPSS programs is dcne by simply transcribing the blocks in the

- flow diagrmm in a sequential manner. Parallel paths in the flow

diagram are identified by labels in the code produced,‘ Items,

called ‘transactions' in GPSS terminélogf, can be created and

. destroyed by the_user and ‘flow’ fhroUgh the madel from block

to block as specified by the flow diagram. Certain blocks, -

like QUEUE, DEPART, SEIZE etc., are event blocks and change

the status of the simulated world whenever transactions flow

through them. Statistics about transactions, as they enter and

‘leave such blocks, are automatically kept by GPSS. So are

statistics for the behaviour of permanent entities; in GPSS

III these are blocks of the form FACILITY, SAVEVALUE etc. An

irksome feature of GPSS III is that no computation can be done
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at all unless a transaction flows through some block. The
shortest operation performed in the simulated system is
considered as a unit interval in simulated time and all ‘times
for other operations are expressed in terms of this unit.
This is a cumbersome artifice a GPSS user has to put up with.
As in GASP, GPSS updates simulated time tc the time of the
next most imminent event.

To simulate.the flow of transactions through the system
model, tra;sactions are grouped together in different ‘'chains’.
The 'current events chain' holds transactions in 'active scan
status' cor 'delay scaﬁ status'. The overall GPSS séan routine
will always try to move transactions in active scan status
into some block as dictated by the logic of the model. The
"future events chain' holds transactions being processed by
a FACILITY block or any of its like. The user can control
transactions by entering or removing them from a 'user chain'.
GPSS III simulation is carried out on an interpretive basis
and hence is slow,

Both GASP II A and GPSS III have built in trace features
and this aids in debugging programs. In both programming
systems, modelling of lérge and complex systems is equally
difficult. '

Section 3.3: Motivation for simulation of computer systems

Simulation of computer systems with a view to assess
their performance is not at all a new phenomenon. Neilson [58]

gives a brief history and account of use of simulation techniques
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to study computer systems. However, this information needs
to be updated as much work has been done in this area since
his survey.

One of thevearliest usages of computer systems to simu-
late computer systems was to check ocut the logical design of
large digital systems and compare several logical designs of
large digital systems. The need for simulation arose from
the inadequacy cf available analytical procedures to deal with
digital systems of such magnitude. This sort of work.was
mainly done by the manufacturers of computer systems. The
technique proved useful enough to warrant the design of
special purpose computer languages for easy specification of
such prcblems [9]1. An example of such a language mentioned
by Neilson is LOCS, an acronym for Logic and Control Simulation.

Soon enough, computer applications outgrew the qapacity
and capability of existing computer systems. Design of large
computer systems with special hardﬁare, for lncal and non local
concurrency in opé;ation, was contemplated [60]} As‘no great
technological acdvance was forthcoming, the break through came
when new logical organisations for computer systems were
proposed. Detailed design of several system components was not
possible till a number of system criteria were established.

The complexity of the systenm made analytical studies difficult.
Trade off factors for arithmetic speeds, instruction unit speeds,

memory speeds and many other parameters had to be established.
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To detefmine_the effectiveness of hardware features introduced,
timing simulaticn programs were written.

The input to the timing simulation progréms were typical
~instruction streams tepresenting projected applicaticns of
vthat time. The timing s%mﬁlator did not actually execute
instructions in the arifhmetic sense; but timed the execﬁtion
of instructions by the proposed logical organisation. The
output cf the érogram was the total time taken by the proposed
system to complete the given tasks. Bucholz [0 ], in his
lucié account of the design of Project Stretch, shows how such
simulation programs were used to fix up various design parameters
of the system. The most interesting results are the relation-
ships obtained between the various parameters with respect to
.computer speed.

Upto_fhis stage in the development of computers, the
only vardstick for measﬁring performance of computer_systems was
the capability of their ‘hardware resources' to meet the demand
of typical and projected applications of the day. The term

'hardware rescurces' refers to the computational power of the
CPU and the effectiveness of overlap beﬁween I/0 operations

and cdmputation by CPU. In most simulation experiments, as

in those conducted for Project Stretchp the computational power
of the CPU was the only factor examined. Even so, timing
simulation technigues were resorted to for lack of any

substantially better tool than an instruction mix.
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Thé only simulation ﬁodel seen in literature which attempts
to study the second factor mentioned above is a simulation
program called SCERT. Itais considered to be an improvemént
over the benchmark approach to computer evaluaticn. SCERT,

L&

an écronym for S8ystem and Computer Evaluation and Review
Technique, is a éroéuct of Comress Incorporated” cf Washington
DC, and like benchmarks it is the brain child of a firm of
computer consultants, ~The.result isvthat very little is kncwn
about SCERT except that it is a five phase program which
expects a very detailed description of user'worklbad and the
computer system of interest from the user. In;the iong list

- of things SCERT can do for a‘prospective customer of the
computer market, there is a claim that, for a spécified workldad,
it can evaluate configurétions Of any given system [61]. It is
contended here that tﬁe input information to the'program about
I/0 load is insufficient for configuration evaluation purposes.
Discussion of this point is held over a later chapter.

With the arrival of operating systems,. ideas about computer
system evaluaticn have changed considerably. The computer
system, as seen by a user, is no longer just a piece of hardware
but an integrated system of hardware ané software resources-s
. The resoufce allocation problem alongwith the interrupt system
made the'behaviour of cbmputer systems very complicated. As
a result even building of simulatioh'models has become a very

difficult task; perhaps as difficult as building the
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oéerating system itself. The difficulties‘facéd in mocdelling
and simulating multi-access muiti—pfocessor computer systems
is given in a later section.

2Analytical models attempted range from simple Markov models
for batch processing systems to multi server multi queue models
for time shared multi processor computer systems. Some of these
models have proved to be gquite accurate in their precictions
about the behaviour of the system modelled. Most analytical
models are constructible only after simplifying assumptions
are made about the actual system. This is deemed necessary
as mathematical analysis is not possible otherwise. 2lso,
due to the complexity of the system, the detail is lacking
in the models. 2ll these factors lead to the conclusion that
simulation techniques, albeit expensive, are the only tools
available presentlyvfor stuéying large and complex behavioural
systems like the third generation computer systems.

Section 3.4: Classification scheme for various simulation models

The variety and humber of simulation experiments reported
ih recent literature are numerous. A classification scheme is
proposed here so that a unifofm appraisal of this work is
possible. Before explaining the classification scheme, an
analysis of features of computer systems which yield dividemds
in terms of improved performance when studied with the help

of 'simulation models, is considered.
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The management of computer systems can be considered
akin to a traffic control problem. It is the work of the
operating system assisted by appropriate hardware features
to deal with various traffic congestion problems that exist
within a'cohputer system. Such circumstances are seen to
stem from two basic aspects of computer systems. The first
aspect is the fact that fhere are inherent speed mismatches
between various components of the computer systems. Thé
second aspect is that the operatihg system gives the user a
logical environment within‘which he may conduct his work
and this environment transcends any of the actual physical
bounds of the system itself.

The design of some features of hardware and softwaré for
any'computer system partly depencds on the various schemes
buiit into the systém which try to bridge the speed mismatches
or shield the user from the physical nature of the system.
For example, thevI/O managerial rocutines Which are a part of
every executive or supervisor of any operating system, shield
the.user from the actual nature of the configuration and the
physical characteristics of the I/0 device that he might
chance to use during the course of his computation. These
routines also attempt to make much use of the parallelism
between I/0 cperations and CPU computations by queuing I/O
operations and servicing them as and when the data paths.

to the I/0C device are free. In short, these routines
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éffer a logical environment for progrémming I/0 operations
and try to bridge the memory specd I/0 spegd mismatch. Another
example could be the dynamic storage allccation feature of the
operating system. The user is agiven a very large virtual
memory for his programs. Real core memory space is allccated
to him as and when his program needs it. These operations are
transparent to the user,

The point made is, the improvement in speed of components
due to technological advances is nearing a saturation and
so are their physical capacities. Therefore most improvement
in performance has been brought about by better and more
flexiblé ways of interconnecting these components and attempting
to make programming as independant of physical boundaries
of the system as possible. It follows naturally that most
sdmulatioﬁ experiments have been directed towards examining
logical organisations within the system which attempt to
bridge speed mismatches or shield the user from physical
béundaries‘of the‘systemo

Most éimulation experiments can be classified under the
fcllowing cateqoriesc The simulation models study
(1) scheméslwhich bridge the CPU speed - main
memory speed mismatch,
' (ii) schemes which bridge the memory speed -
I/0 speed mismatch, |
(ii1) scﬁemes which bridge the user arrival rate -

computer system service rate mismatch,
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(iv) schemes which offer the user a large
virtual memory. -

As mentioned earlier, the number of simulation experiments
reported in recent literature is very large and scattered over
atwide range of technical and non-technical journals. As it
‘is not possible to collect and classify all of thém, only a
few successful simulation models are given here as examples
of'eéch category.

The first category, aimed at the CPU -~ core memofy rnismatch,
consists of simulation studies which examine closely the following
type of logical organisatidnse System parameters studied by
the models and the input and output information of simulation
programs for tnem are cited against each case..

(i) Partitioning the main memory into blocks and
interleaving addresses (consecutive) between
them cculd be one strategy for reducing the
speed gap. Simulation models for studying'
such logicél organisations have tried to study
system Barameters like the plocksize and
number of blocks, speed of main memory and the
way instructions and data should be distributed
in the main memory so as to make the most
effective use of such strategies. Input to

simulation programs for studying such logical
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organisations is a dynamic instruction
trace of typical programs and information
about khe data storage allocation
techniques used by language translator
which produced the object code for them.
The output of the program could be the
computer speéd as a function cof each of
the system parameters being examined.
This could help in fixing up values for
each of these parameters [60].

~(ii)  Another strategy could be tc interpose a
fast 'scratchpad' memory between the
CPU and main ﬁemoryo Parameters of design
studied by simulation models'for such a
scheme [62] are the size of the scratchpad
memory and the algorithm used foi loading
this scratchpad. Initial work fbr conduct-
ing a simulation study cof this type is.to
cbtain a dynamic trace of typical programs
which form the workloac and analysis of
loops in thgse programs. The outcome of such
a study could be the cptimum size of the
scratchpad and the best replacement

algorithm,
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(iii) An extension of the above strategy could be
an increase in the size of the‘scratchpad SO
that it is comparable to 'a block of main
merory. An example of such an organisation is
thgfg;stem/360 Model 85 which has a ‘cach&’
memory of 16K bytes and a 80 nano second
cycle. Simulation techniques were used to
determine the size of cach@, choice of replace-
ment algorithms [63] and imprcvement in
performance [64]. An interesting result was
that the performance of é system with this
cach? memory was 80 percent of a system with
a large main memory of 80 nanc seconds.
"Most work on study of such schemes is reported under the
study of memory hiefarchyav |
" The main memory -~ I/C operation speed mismatch and
schemes devised to get around this problem have hardly been
studied by simulation techniques. Thiz fact does not
undermine the importance of the problem as such schemes could
: directly affect the total CPU icdle time. The main steps
taken to reduce the effect of this mismatch are to use buffering
schemes provided by the I/0 managerial routines'of the
executive and overlapped data channels. Thé problem posed
is;: how to use.such features most effectively? So far, alil

that has been done is to provide such features and hope for
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the best. A more detailed 1look at this problem is given

Pe

in a later chapter.

The éffects of the third category, the user arrival rate
computer system service rate miématch, are reduced by the
introduction of multi programming and priority levels of ﬁsers
fer the conventional batch processing systems. Ideas of time
sharing and multi processing recuce the effects of this mis-~
match even more. Simulation studies of such features have
tried to compare the task or job scheduling algorithms. For
exarple, Scherr [48] has tried to compare the CTSS scheduling
algorithm with the rounc¢ robin scheduling algorithm. Saltzer
[16] has considered the allocation of'processor resources és a
traffic control broblem° Priority assignment to users,
shortesﬁ’job next for example, and its effect on the response
and service time for each priority class has also been studied.

When considering the implementation of the dynamic stdrage
allocation feature by the operating system, two scheduling
problems are evident. The first one deals with the following
decision problem: what page or segment in main memory should
be turned cut next and dispatched to the drums or disks? Thé
second scheduling problem is, given the pages or segments to
be brought into main memory from the druéé or disks, find
the sequence which makes the best use of the drums or the

disks. »The fourth category deals with the above problems.
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Simulation work on this problem has been mainly - -directed
towards finding the best algorithm for pagevturning or segmﬁht‘
turning.

| The problems of allocation of main memory space and
processors_haVe-been linked gbgether by Denning [38].
Information about the workload, required by simulation.model
.,‘for simulating these aspects of the system, is of the following
~type. Inter arrival tim@ distribution of jobs or requests
for each priority claos, probability distribution of time
required to service jobs or requests from each vrlorlty class an<
storage requirements by jobs or requests are the necessary
pieces of information for conducting such experiments.

For more examples of simulation experiments, one is
referred to Bucholz'a bibliography on computer system
evaluation [65].

At this juncture, it is noted that each of the indicated
class of simulation models, examines the behaviour'of computer‘
systems at one particular level of detail. To uamplifyg the
behaviour of the computer system is not studied in its
entirety but what is examined is the manner in which each of
the several aspects of computer systems affects the performance
of the CPU or the system as a whole.

There have been a few attempts to study a complex
time sharing system like the IB! GSystem/360 Model 67 in

great detail [37 , 661. Here too the effect of I/0 load
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created directly by the user have not been examined. FInSpite
of this aimplificaticn there are numerous difficulties in
modelling such systems and the next section is devoted to a
brief discussion of problems with such simulaticon models and’
program difficulties that arise in them,

Section 3.5: Difficulties in simulating multi processor
systemns

In the preceding section, it was shown that simulation
experiments restricted themselves to a single aspect of
computcr systems at a time and determined its effect on system
performance. Interplay between various aspects and their
combined effect on system performance could not be studied.
The interest iﬁ simulating systems in great detail is' to
find out such results.

Conventionally, fhe resource allocation or resource
management problem in computer systems has been conveniehtly
analysed as extensions of the job shop technigues. In a job
shop, jobs arrive and are spli£ into smaller tasks which
compete for resources (machines in the job shop). The problem
is tc schedule operations'so as to resolve conflicts for
resources in the best way.

| Computer systems differ from job shops in the

following way.
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(i) In a job shop, the rescurce allocation is done

(ii)

(iii)

by an external agent:; e.g. the shop manager.
In computer systems the rescurce management
problem is tackled by the operating system
which itself competes for the system'resources
like processor and main memory etc. The time
required for performing these functions is

sionificant for system performance purposes.

‘This time constitutes the ’'overheads' in opera-

ting the system as no useful user load is served
during this time.

Normally, jobs ortaskg in a job shop are
non interruptible once they are being
serviced by a system component. In other
words, they seize complete contrcl of a
system resource once they have captuted it.
The system resource is released only on
completion of the task. This is nct so in
computer systems simply because of the
flexible interrupt system_that is provided
with the present day systems.

The attributes of a job shop are few and
are easily describable. In the case of
computer systems however, descriptiocon

of the workload in terms of typical programs
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and detailed description of these programs
in terms of the resources required to execute
it is by no means amsimple thing.

It is evident that computer systems cannot be studied
in the same way a job shop is analysed. The necessity to
examine the detail and also the higher level activities of
computer systems have given rise to some problems in simulating
such systems., The coming of multi processor systems have-
added a new dimension to the complexity of the behaviour ef the
system. This is due to the increase in parallel activity
in the system and possible relaticnship Qetween activity of
various processcrs.

Hutchinson [g7 ] points out three main diffiéulties in
simulating computer systems. These problems are more acute in
the case of multi processor computer systems.

(1) The first difficulty is the degradation of
ability to differentiate between time of
oocurrence of successive events. .This
point needs some clarification. The
detail of the experiment dictates the
smallest unit of time by which the
simulated time is updated. This unit of
time may be lookéd upon as the time
required by the smallest activity in the

system. At the end of this activity an
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event is scheduled tc occur. This is

achieved by placing in the event schedule

a code for this particular event. An
attribute of this cvent is the time it

occurs., This is obtained by adding to the
present value cof simulated time the time
required for completion of this activity.

The danger in doing this is that if

the simulation has been in progress for quite-
some time, the addition of a small amount of
time to schedule the occurrence of another
event may make no difference to the sum.

The smallest unit of time which a simulation
program can use is therefore dependent on

the word size.bf the computer system being
used and the format for storing floating peint

data. This pfoblem is therefore a technological

" problem and decreases with increase in word size

of the computer system used,

The second difficulty faced in simulating
computer systems is the occurrence of simulta-
neous events. This problem can become more
severe as a direét consequcence of the point
made earlier. Such occurrence of events can

cause logical problems. This is due to the



(iii)

facf thet most simulation languages do not
consicder such situations. For example, both
GASP and SIMSCRIPT stcre the event schedule
in a2 linear list. The list. is ordered accorc-
ing to the time of occurrence of events, If
twe events happen to occur at the same time,
one of them takes precedence cver the other
depénﬁing on the logic used by the program
which updates the cvent schedule. 1In
simulating the system, events are taken up
one at a time and hence any time relation
between two simultanecus cvents is lost.

Due to the first difficulty pointed out, it
may not be even poésible to decide if two
events in the event schedule heving the same
time of occurrence are really simultaneous
or a consequence of deg:adation of the
master clock resclution.

Another major difficultv with simulation of
conputer systems in great detail is the
representation of worklcad. Some of the
requirements in characterising the user‘are
proper depiction of parallelism in user
programs and machine independence in

specifying the various activities in the

workload.
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Due to the unsatisfactory development of simulation:

techniques and languages to cdeal with problems posed,

Hutchinson observes that the most successful simulation study of

multi processor computer systems was programmed in FORTRAN
[37]! This ?rogram é¢eals with the simulation of IBM System/
36Q Model 67. SIMECRIPT and GPSS 360 have also been used to
study some multi processor compukter systems [66, 68], but
have proved to be expensive in corputer time. For example,
a one minute simulation of IBM 9040, »nrogzammed in GPSS 360,
took around 30 minutes cn an IBM fystem/360 Model 50,
Inferences, about system.performéﬁce over long periods of
operation, drawn from the informa:zion obtained from such
simulation studies are quite questionable.

It is interesting to note that in the 1867 IFIP Working
Confersnce on Simulation Programring Languages, in the
discussion following a paper on on-line incremental simulaticn
[69], there was a general agresement that the use of simulation
in studying lerge and complex behavioural systems is more to
understand the system through mocel building than to obtain
some statistics about its behaviour,

When attemrting tc undertake a simulaticn study cof a

computer system, the following twc points should be clearly
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thought out.
(1)

i)

The first thing is tc put down the cbjectives

of the simulation study. For example, a cood

detailed simulation model sheould serve the
fellowing purpeoses. It should aid in cenfigu-

rating the system, act as a test vehicle for

various resource management algorithms (memory

[y

2llocaticn, %task scheduling and I/0 scheduling
algorithms) and help in studying the effect

of various job mixes in user workload on
system performance.

zcondl, the level of deteil cof the actual

n
0

sy{tem a simulation model attempts to inspect
should@ be clear from the start. This is import-
ant because the characterisation of the user
worklnad is greatly dependent on it. Ieilson
[37] indicates that the detail of time and

space for an IBM SYstem/36O Model 67 simulation
sfudy was fixed up at 190 micro seconds and

a page of program respectively. Anything an

[0}

order of magnitude finer in detail than these

limits were just ignored in the simulation study.
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Section 3.6: Acquisition cof data for assessing system
performance ' a

So far the cmphasis has been on the system and the
boundaries that demark it when considered at different
levels of detail. HWo simulation study can be undertaken
however, unless the environment within which the system
cperates is determined [y9]. Therefcre, acquiring data
about this environment forms the first phase of work
done when trying to analyse or simulate a system. Design
of experiments on computer systems to obtain such data is
of paramount importance as the data collected should
represent the actual conditions in the system and shcould not
be adulterated by the measurement technique used.

Two classes of techniques for acquisition of data for
evaluation purpcses are currentlj being used - software
méasurement technigues and hardware measurenent techniques.
Almosf all data can be obtainecd by usinag software measurement
techniques. lcwever, the same cannot be said for the hardware
measurement methods. Ease of implementaticrn, ~ase of use and
the-ability to obtain data without interfering with work in
progress are the principal fe&sbns for using hardwara
measurement technigue=. 2ll meagurement t2chnigues can be
classified as one cof two types. The summary tyvpe, which
yield a summary c<f the behaviour of the aspcct being monitored

at the end of the experiment. And the dynamic trace type,
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which record all information about the feature being
monitocred from the start of the experiment.

bDescription of hardware monitors and their use in
monitoring system performance has been reported in
literature [71, 721. All suéh references to such work have
come -from IBM. Hardware menitors featgr@ ste registere,
counﬁers and logic modules and are programmable by
patchboérdso Several probes arc availabi= which can be
introduced at strategic pcints inithe CPUl, data channels:
hardwaré etc., Measurement of total I/0O time for each device,
éhannél busy time, CPU busy time, CPU and channel,busy time
etc., 1is quite easy with such equipment. Meaningful dynamic
instruction traces can also be obtained as this»doeé not
interfere toc heavily with normal computation by the processecr.
The main drawback of hardware monitors is that information
that is cependent on the context of work in progress cannot bé
detected -and hence monitcored. Examplas of éuch information are
job identification, data set identificatior, origin-of requests
for system resources etc.

Software measurement techniques can ke readily used to
vobﬁain all such information. The most natural way of
monitoring a system in operation, using such techniques, is
"by use of Hhierarchial control proérams“ [73]1. »ns is well

known, computer systeme operate in twc states or modes; the



126

'supervisor state' or ‘privileged moce’ +nd the ‘problem
program statc’ or 'normal modef. It is seen that when
priorities are assicned to users, there is a hierarchy
established even in the 'normal mode®. This concept of
hierarchial structuring of-?rograms is carried a step
further for providing a software system monitoring
technique. The operating system and user programs are
executed in the ‘problem program state' with the operating
system enjoying the highest priority. Tuz 'supervisor
state’ executes the software monitor which controls
execution cf all other programs. 2ny return of control *o
the software system monitor causes it to 2xamine the reason
for the return of control and this inforration is logged in
if it is of interest.

In computer systems where this is not easily possikle,

he same ehd result may be achieved by introducing at

strategic points in the operating system, instructions which
£ransfer control to the central routine which handles all
monitoring requestgof An example of such monitoring
operations is Scherr's work in measuring the CTSS users'
characteristics ([48].

As the level of detail of the informaticn being
monitored becomes finer, scoftwarc measurcement tcechniques
.prove tec be costly in computer time and can alsc lead to

Gistortion of time sensitive data. Another severe
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limitation imposed on the software mcasurement techniques is
that the smallest unit of time measurable by program is the
unit interval of the interval timer. This can drastically
affect the measurement cf detail and.of time dependent
information. Finally, these techniques being the only ones
available to mest people interested in evaluative work, a very
thorough understanding ¢f the program cocde (mostly in

assembly language) cf the cperating system is absolutely
necessaryn Therefore, successful evaluative studies published
in literature have been cconducted by organisations which have
developed their own software support te a large extent. With
system documentation being what it is presently, a novice to
this field is faced with the unpleasent task of digging through
tricky and unexplained masses of assembly language programs
which fcorm the operating system.

Secticn 3.7: Conclusions

The inadequacy of mathematical models to depictsatisfacto-
rily the behavicur of computer systems is one of the factors
that have made simulation techniques indispensable for assessing
performqnce of systems. Indeed they have been.the only tools
available to study some of the prcblems encountered. Much
work needs tc be done in developing techniques and languages
to deal with parallelism in the systems to be simulated.

Choicevof proper machine indepéndent measures to portray
user workload is a very important problem to be tackled if

any standardisation of workleoad specification is to be
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+

achieved. This onective is indeed a desirable one to cbtain
and it alsc necessiates the procurement of information about
user load from a wide variety of application areas. Sco far,
‘most evaluative work has been conducted mostly by academic
institutions and most information avgilable_about workload
concerhs the environment of computer systems in such organisa-
tions. A lot of field work, in terms of collecticn of data,
especially from computer installations serving a commercial
data processing lcad, is hecessary and seems to have evaded
the reach of academic institutions and coﬁputer system
manufacturers so far.

Standardisaticn of this type can readily lead to the
synthesis of the workload of a computer system. Present
difficulties in understanding the behaviour of computer
systems are bound to rececde in the coming years. The major
problem in evaluation of performance will be tc characterise

the environment for input tc a computer model.



CHAPTER IV

044-1401

STUDY OF EVALUATIVE PROBLEMS FOR THE IBM 7
COMPUTRER SYSTEM AT INDIM INSTITUTE OF TECHROLOGY

KANPUR

Batch processing computer systems are very much in use
N
today. A decade agc, in such systems, unit record equipment like
card reacders and line printers wersz attached te the CPU through
non overlapped data channelsu These factors led to an ineffectual
utilization of the computational reéource whencver the media for
system input and ocutput were unit record egquipment. A more
effective operation of these systems was achieved by prcviding'
off line card~to—tape'and tape—-to-~printer functions using a small
cff-line satellite computer. Variaticns and elabcrations of
such techniques were developed. |
The medium-scale present generations batch—précessing

-

systems'do away with the Cffmline satellite-computer concept by
using a technique called ‘'spocling®. These machines have all
peripheral equipment cconnected through overlapped data channels to
the CPU and are run in the mulﬁi~prcgrammed mode. High priority

card-to-tape and tape-tc-printer system routines are specled

with the rest of the user programs. Such an operation of the

u

system is seen to exhibit high utilization of resources an

achieve the same end result cceonomically.

129
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In this chapter, the interest is in evaluative problems
of computer systems having off-line satellites to perform
peripheral tasks. In particular, the IBY 7044~1401 systexn
at Indian Institute of Technology, Kanpur is singled out for
such study. The motivation for this is obvicus: IIT/Kanpur
has purchascd this system from IBM and sG, it is ver desiyable
to make the best usage of this rescurce. Mbregever, the system
has been operating in saturated conditions, i.e. it services
,the maximum load possible with its present capabilities.
IThe:efore, it is werthwhile to éonsider in depth the problem
of ecocncmically changing the system to increase its capability
to service the present workload.

The various investigaticns reported in thié chapter

can be anplied to gtiwr ﬁ%gt@mg 1ite the IBM 7044~-1401 toc.

Section 4.1: Computational resources at IIT"Kan;ur

The major computational resource at IiT/Kanpur is an
IBM 7044-1401 system. Currently evailable hardwere facilities
and the projected system arc both given in Figure 4.1. The
problem solving facilities and programming environment is
provided by the IBSYS version 5, medification levél S, operating
system. In addition to the muléifarious utility functions
performed by the system {74, 15, 76, 77, 78] several new

facilities have been introduced into IBSYS at IIT~-Kanpur [79].
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Figure 4.1: The IBM 7044-1401 System configuration
at IIT/Kanpur (Legend on next page)
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Legend for Figure 4.1

- 7107 CPU, 32K Memory, extended instruction set

7904 IT,7Twe overlapped simplex data channels

2 x 1414 VII, I/0 Syncronizers
1414 1V, 1/0 Syﬁchronizer.
6 x 1014, Remote enguiry units
72, Censole typewriter
1402 11, Card reacer/punch, 8060/250 cpm
2 x 1403, Line printer, 132 ch., 600 lpm
8 x 727 VI, Magnetic tape 30 ke/s-
7631,File contral;unit
1301 11, Bisk, 2 arms
7155, Tape switchipg ﬁk;t
1401 CPU, 16K, exténa;dlfeatureé
5 x 1311, bisks - |
729 V,Magnetiévtapes;SG KC
1402, Card readexr/punch, &00/250 cpm

1407, Conscle enquiry unit
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Section 4.2: Operation schedules for the IBM 7044-1401 system
at Indian Institute of Technology, Kanpur

The IBM 7044-1401 system was shifted in June 1969 to the
new Computer Centre builéing,into a single room. The Computer
Centre was then servicing nearly 500 jbbsva day. The prcbhblem
of proper sequencing of operations on these machines so as to
utilize them best and the problem of system design of various
other support services for the efficient operation of the

ctal system demanded immediate attention. ‘Several operation
schedules were tried out. An optimal schedule in terms of
throughput, turnaround and adaptability of the schedule to
~actual operating conditions has been'developed and implemented.
The design of support sepvices that were implémented and an
informal argument to prove the optimality of the schecdule
developed are presented here.

The organisation of a batch processing system is
siﬁilar to that of the job-shop. The variocus services that
are necessary here are: :

(i) Job identification:
(ii) Receipt of input jobs
(iii) Distribution of jcb output alcngwith
input card deck
(iv) System cperation schedule,

The design of interfaces between these servicgs is

important. The effort was to keep communications between

them down tc a minimum,
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Incoming jobs are assigned priority by its type and
resources it needs. The decision table shown below gives
the prioxity scheme. Identification of jobs is according to

Else

Special job ?
WATFOR jcb 2 -
| Time < 3 min? -
Time < & min? ~
Pages < 30 -
Cards outout <200 ~-

Special job I ox

Express job X

Sheort job X

. Long job X

B LN
i

A b

their briority° Serial numbérs are assigned to jobs in a
priority group as they arrive. A card bearing the serial
number is introduced into the input card deck. This card
bears the follcwing information.
(i) Prcoper control characters in columns
1 and 2 |

(ii) Priority group

(iii) Serial number -

{iv) Date

The IBM 519 programmable reproducing punch was brogrammed

to gang-punch the contrcl characters, priority group and date,
step-up and punch_the serial number and nrint the serial
number and date, all in one pass (the first card bearing the
initial serial number and the rest of thé information is

pre-punched). Duplicate sets of serial number cards are
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produced and collated. Identification cards for Long Jobs anc
Special Jobs are produced for a period of one month at a time
as the number is quite small in cither éase, A fixed number of
Short Jobs are serviced everyday and hence corresponding
identification cards are produced for a week. However, there
is no limit on the number c¢f Exprsss Jcbs run in a day. As
there is a lot of fluctuation irn this number,;iﬁ.is advisable
to produce the identification cards for these jobs in small
lots for this is guite easy with the set up indicated here.

Input service counter opérations are depicted in
Figure 4.2 and need no further elaboration. To minimise card
and cdeck handling input jobs are put into card cabinet trays,
processed by IBM 1401 and introduced into card cabinets
(this is yet to be implemented). Trays are tagged to
indicate jobs in them. The output service counter operations
are depicted in Figure 4.3.

It is easily cbserved that the IRE 1401 and 7044 systems
have to act in tandem. In other words, the sequence of
operations to provide service to a batch of jobs is card—-to-tape
on 1IBM 1401, processing on IBM 7044 and tape;to—printer on
IBM 1401. ©So, in a given period of time IBM 1401 is used to
prepare a new'in?ut tape'and print an '‘cutput tape' {a result
of the processing by the IBM 7044) while IBM 7044 is used to

process, sequentially, all available input tapes.
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Klienrock has shown with his analyticzl model for
Sequential Processing Machines[801 that optimal (least
machine idle time) uéagg cf such systems cccurs when both
machines take the same time to scervice a taskf This result
can be applied tc the IBM 7044-1401 ‘gystem very profitably.
The idea is to choose a batch size such that the time taken
by IBM 1401 to read input jobs in the batch and tape them
and to print the output tape of the batch,matchcs the time
vtaken by IBM 7044 to process' the batch. Maximum throughput
is the outcome of such design.

It is indicated in Section 2.2 that shoft jobs are
normally given better service {e.g. SJF, RR, FB service
disciplines for processor allocation). The RR and FB service
disciplines are suited for the time shariﬁg environment
and in multiprogrammed systems. For simple cne-job-st~a-~time
batch processing systéms, the SJF service discipline is
employed. Therefore at IIT/K, short dicbs have high priority.
Highest priority is given to Express‘Jobs; next level of
pricrity tco Short Jobé, the third level to spacial jobs and
the lowest to Long Jobs. Hence maximum turnarcund is given to
Express Jobs and next to Short Jcbs. Special Jcbs are run
once a day. Long Jobs join a queue and are serviced for
3 hours at night. If any Long Jcbs are left over, they are

gueued for the next night.
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The problem now is form a batch of jobs from the various
priority bins (see Figure 2.2) to satisfy the above constraints
of throughput and turn around. Statistical about user-jcb-running
times on IBM 7044 and taping and printing times on IBM 1401 were
coliected° The observafions at that time were the followings

{i) An average of 13 Short Jobs could be processed in

1 hour by the IBM 7044,

(ii) A batch of Express Jobs collected over 1 hour
took on an average the time taken to process 1
Shert Job., ¢

(iii) The time taken for taping one batchrof jobs
| consisting of 12 Short Jobs and 1 Batch of
Express Jobs and the time for printing the
output produced by such a batch was 1 hour.

The operation schedule developed turned out to be very
simple. 12 short Jobs and all available Express Jobs are
cleared at the end of every hour for taping on IBN 1401, At
the end of taping of one batch of jobs, tha output tape
of the previocus queue is printed. These ti:o operaticons on
the IBM 1401 are completely overlapped and matched by the
processing of an input batch on the IBM 7044, S;ecial'and
.Long Jobs are cleared at night and serviced during the allotted

period. This schedule is partly shcown in Figure 4.4.
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Time 1401 7044

Input Output PROCESS
Tape Print
.00 e
9.30 01
10.00 9, ‘ 0y
11.00 Qg o
11.30 | 0, Q3
00,00 - Special
01.00 . Long Jobs
Resume
04.00 other
' queues

Figure 4.4: Operation Schedule
Other design factors in the schedule wére (1) seperate time sloﬁs
for tape-cleaning at approximately 10 hour intervals and
developmental work for the system. This schédule was iﬁplé,ented
and found to work very satisfactorily. In fact, an un-
precedented service of about 400 Express Jobs, 185 Short Jobs
ahd the usual load of Special and Long Jobs was achieved (at

the expense of a supervisor to carefully monitor the operétions)g
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The cnly snag is that problems of human resource management
'seem to be much more difficult tc handle!
Given these operating conditions, this schedule has
some other very pleasing properties, For instancg:
(i) There is least accumalaticn of jobs at
the input counter.
(ii) There is no'accumalafion of jobs and
output tapes at the IBM 1401 and input
tapes at the IBM 7044 than the minimum
necessary.
(1ii) The modularity of queues or batches makes
it very eésy tc make decisions in actual
operating conditions. For example, when
unforéseen machine breakdowns occur,
it is very easy to decide how mahy serial
numbers to cancel etc.,so as to be able to
keep to the schedule.
Other schedules that have been implemented at this
Computer Centre do not mix priority levels when batching
“incoming jobs. Therefore ba£ches of high pricrity jobs have
to be rushed through the sequence of operations to be
performéd~fo; their service. Therefore, turnaround to the high
priority jobs is obtained at the cost of other lower priority jobs.
This leads to accumalation of input and output tapes of

lower priority jobs (the commitment cf turn around tc high
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priority jobs is seen to cause this) which are waiting for
service inside the computer room. To beat the exceséivé
constrainté on operations-of IBM 1401 caused by this situation,
the use of unit record equipment of IBﬁ 7044 is necessitated.
This drastically effects the throughput.

An overlap of operations in the I/0 operations of IBM
1401 is now possible. Therefore, the schedule has ‘to be
re~designed to suit its current capabilities. The principles
of design and the constraints remain the saﬁe, buﬁ a-different
batch size should be chosen to optimize the cperations in terms
of increased turnaround.

Section 4.3: Models for IBM 7044 systeﬁ

In this section are presented some models for the IBM
7044 system. The motivation for producing these models is to
help find interesting and economic changes to the system
whicﬁ will result in improved performance in terms of throughput.
The first model is an elaboration of a similar work
done to model the University of Michigan (Ann Arbor) Executive
System [81]. The behaviour of an operating system cén be
‘modelled as Semi-Markov process. Essentially, the model . looks
like a probabilistic finite state transition graph (i.e. a
probability is associated with each transition from a state).
Only, there is associated withbeach state a transition time
which depends on ;he next state. 1In fact, prcbability

. . . to A C o .
distributions /characterise each of these transiticn times are



143

necessary. For the pfesent case it is sufficient to associate
an expected value of transition time with each state.

A probabiliétic transition graph for the IBSYS Operating
System is given in Figure 4.5. The main difference between
this model and Foley's {81] is that states have beeh included
to r?cord the time for fetching various system library progréms°
This is meaningful under present operating conditions like
the residence of system library programs on a tape unit. The
chief result that can be obtained from this model is the
overhead incurred in fetching various library programs from the
system library tape. WNaturally, much depends on the position
of the system library tape. The position determines the amount
of time needed to access the Library program to??oaded next.

All information about variocus transition probabilitises
and times of residence in all the states is not yet known.f

car be got
However, some interesting results/from the model, For instance,
about 180 FORTRAN IV jobs, using the IBFTC (IBM supplied)
compiler, are run cvery day. Each successive $IBFTC card
(command language statement of IBSYS) causes the system
1ibrafy tape to be backspaced so as to fetch the SCAN phase
of the compiler. This operation is observed to take 9 seconds
approximately. If each job has on an average 3 subroutines,
then 2 x 180 x 9 seconds of the total operation time is

wasted in recalling the IBFTC compiler. It works out to be



Figure 4.5: 2. gross model for IREYS orerating system
' ¢ on next page)
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Legend for Figure 4.3

Description

Get new JOB, 5 JOB/SIITEND
System EBdit, $IBEDT
Processor Moniter, $IBJOB
Sort System, S$IBSRT

¥

- Installation Programs, SEXBCUTE

Lssemble MAP program
Get MAP from Library, S$SIBMAP/Compiler Interface

ST

Compile FORTRAN IV program

Get FORTRAN from library, $IBFTC

Compile COBOL Program

Get CCBOL from Library, S$IBCEC

Compile ALGOL Progra:

Get ALGOL from library SALGOL

keceive Binary Program, $IDLBR

Load user (relocatable) obiject program, SENDCHALIN/SENTRY
Load user (absolute) cobject program, $RELOAD/SRESTART
Compile WATFOR program, SWATFOR

Execute WATFOR program, S$ENTRY

Get UPDATE from lbirary

Get SNOBOL from library

Get GPSS III from library

Execute Program

Check point

Dump

System Reset, $IBSYS

by

4
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nearly 5% of the total operation time! Similarly, the WATFOR
compiler, GPSS III, UPDATE, Check point and Dump routines take.
20 seconds to fetch. The frequency of occurrence of sgch
Operations'ané total time wasted in such tasks are all cbtainable
from the propose@ model, Furthermore, quantitative improvements
available, if.fhe éystem library resides cn a disk instead of a
tape, can be easily predictede Re-organisation of programs

in the system li?rary and the relative merits of such‘efforts
can again be quaﬁtitatively obtained.

Another problem worﬁh investigating is the effectiveness
of the configuration in servicing the I/O lcad. SCERT (explained
in seétion 3.3) is claimed to be technique which sclves
| this problem. 1In this technique, file description'and
volume of I/0 expected on each file are the two att;ibutés
which characterise the I/0 load, This is indeed not sufficient
to find the effectiveness of the various parallel paths
provided in dealing with the I/0 load. A&An important point
missed is that the density and volume cf I/0 traffic are the
necessary attributes besides the file description of each
I/0 file. This was ﬁointed cut and characterised in Section
2.3,

Interesting questicns that can be asked in such a
study are:
(1) How does the introduction of one more

data channel affett the performance of

N\
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the system?
(ii) what I/0 files to shift from one
channel t¢ another? |

iAn elaboration of this point is made by discussing the
IBM 7044 system at IIT/Kanpur in this context. At present
there are 10 tape.units on a simblex data charinel (only cne
way cperation is possible at a time, either read or write).
Another similar data channel is on order and so is an additional
synchronizer to connect the available tapes to it, The problem
now is to shift some tapes on the existing channel to the new
channel so that performance is improved (examination of
processor idle time for each of the cases should suffice for
this g;urpose)°

In the case of a simple batch processing system like
IBM 7044, the behaviocur of programs may be simply characterised
as é sequence of logical I/0 requests that occur in program
execution time. The buffering scheme determines the way in
which actual cr phyéical I/0 requests age generated and
whether program execution can continue or not (this depends on
whether the I/O request can »e séheduled or not). Such a
. problem can easily be studied by use of simulation techniques.

The model for such a system may be constructed as
a multi-level server system. VThe first-level-server is the
buffering system. This level has a maximum queue length of

just one request. This occurs whenever the incoming request
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necessitates a physical'I/O to be initiated and at the same time,
the previous physical I/O request on the same file is not yet
serviced. The second-level-servers are the various pérallel'
data paths in the.system¢ Queues for this server can have at
most one entry per file that can be accessed through'ito
These.entries are put in a iist which has a pre»arianged sequence
(entry for device 1, entry for device 2, etc...). The order
could for example depend on the speed of the device. Service
discipline for this server is simple. The top element of

this list is serviced first.

‘The usefulness of this model is that it can indicate
the clashes of I/0 requests on each device. That is, the
.service of one is excessively delayed'due to the other. Such
devices should naturally be separated and connected to
different parallel path. If the clash is on the same device.
then the buffering scheme provided does not fully serve its
purpose. An interesting study of behavicur of system programs
which do a lot of I/0 in their execution is possible (e.g.
IBFTC compiler) ., The results obtained from this model would
be very useful in acccunting for processor idle time (time
for which the first levei server is blocked) and whether
it can be easily reduced.

Section 4.4: Specification of a software monitor and a
technique of implementation

*
The lack of any quantitative results by using these

models (to justify all their virtues which were extolled in
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the preceding section!) would seem to be a glaring omission in
the work reportéd here. However, it is very difficult to obtain
data to characterise the worklcad and cbtain statistics about
system behaviour. ‘(This point was discussed in Section 3.6).
Therefore, only a specificaticn of the software monitor to
obtain this information and a technique to implement it
in the IBSYS operating systém afe sketcheé{heréa

The scoftware monitor proposed here is a hybrid between
the hierarchical control programs [73] and monitoring~routines
distributed throughout operating system. Control is not
tfansferred to the monitor whenever the system switches to the
privileged mode of operation. Routines executed usually in
the privileged mode gain control and make en immediate call
to a ceatrol system monitor. This information is logged in
alongwith an identification tag so as to indicate the nature of
call. Other system routines alsc call the system monitor |
(FORTRAN compiler, for example) to log in date that characterises
theIBsTSs operating system. A detailed log of system usage is-
therefore available. External control of the system monitor
logic should be provided so as toc be easily mask the honitoring
operations for certain aspects of system hehaviogr. For
example, it might'be of great interest tc juét get the I/0

characteristics of the IBFTC compiler and igncre the rest.
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‘The system monitor has two major parts. The first part
logs in data about gross system operation or system behaviour
(e.g. IBFTC compile time, MAP assembly time, get IBFTC time, etc).
The second part logs in the information abcut I/0 either 5y a giv
given sybsystem -of IBSYS cr of the user program.

Several things have tc be kept in mind when implementing
such a software monitor. The first is that this work entails
dabblingwith the ‘'nucleus' cr ‘resident' (IBNUC in IBSYS) of
the operating system. Changes in this par£ of the system should
be kept to a minimum. Any change necessitates a fore knowledge
of all possible consequences of the system. Also, it must
be noted that chaﬁges cannot be made frequently in this part’
cf the system because it can cost enormcus amount of computer
time to effect a change. Té be more specific, re-assembly of
IBSYS due to a cﬁange in IBNUC Qould necessitate the following
steps:

(i) Get binary deck of IBNUC.in absolute mode.

(ii) Update system edit file with new IBNUC

(iii) Assemble the whole system library using the

new system edit file, |

These jobs need at least cne and half hours of IBM 7044
time. Therefore, the debugging of scftware monitors and
consequences of changes made to the system are worth a lot of

attention.
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Another important aspect ofnimplemgntation is that‘user
programs should not be in any way affected by the software
monitor, either in terms of time or SQacé {both the attributes

~of space, size and address). A nmemoryv map of the IBM 7044
system is given in Figure 4.6. From this it is seen that
there is a large blank area of ccre memory at upper end of the

‘protected zone,

The system monitor program and buffers to log in
informatién can be conveniently located in this place. This
does ngt interfere with user core area in any way. In fact,
if no I/0 has to be monitcred, then there is no addition or
modification to any nucleus routine at all. A change in the
entry for the instal.ation accounting routine (SSIDR) in the
liét of system transfer points (see Figure 406) is all that is
required. Normally, an entry to the installaticn accounting
routine 1is just screened for particular types of call,

For fhese calls the system regains control and for all éﬁhers?
control is immediately returned tc the calling program.

The only change to this part of the nucleus is that all calls_
to S.SIDR cause a call to the system monitcr. Other changés
to be made.tozﬁgyg‘are also quite’simpleb The entry to all
subsystems df IBSYS, depicted in the Semi-Markcv chain model,

should cause a call to S.SIDR to leg in accounting information.

PR N
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LOCATION

DESCRIPTION

START

IBNUC

00000

‘Machine functions/

engineering words

00100

Load area

00135

System Tranfer
points + data words

* Symbolic Units
Table

* ynit Contrcl
Rlocks

* System Control
Blocks

Nucleus routines
(system loader etc)

I0EX
Basic functions

* Channel tables

Interrupt schedu-
ler

JOoop
Header routines

Device routines

Common routines

I0LS
Reels processing
Labels check

end at
07777

Blank protected
area

10000

iOBS5S not storage
protected

5.5loc

File description

User procg

Unused core

I/0 buffers + pool
control table

end at
77777

User common
area -

Figure 4.6: Memory Map of IBM 7044

iy -

* length depenes on actual configuration.,



153

A simple buffer of 100-150 words, to log in information.for
all calls to S.SIDR, is sufficient, This buffer size depends
on the maximum expected number of jcob steps in a job. The
end of a job causes this info:mation:to be flushed cut onto
4an‘accounting tapel The overheads invclved in such a

scheme for monitoring gross system behavicur is minimal. A
‘point of note is that no change to any user program need

be made when implementing this part of the system monitor.

Monitoring I/0 is a bit more difficult. 1In this case,

.the main difficulty is to keep program execution time separate
from the time the system takes in servicing I/O channel
interrtllptso This is because the characterisation of I/O
traffic should be configuration independent. That is to say,
rall I/0 requests should be represented in program execution
time which in turn shcould not reflect any effects a particular
configuration may iriducs° Therefcre, a ‘software clock' may
be associated with the program being executed., Another
"software clock'.pontains the amount cf time spent in the
interrupt servicing or delay routines. The latter of course
necessitates changes in the lower levels of the input-output
managerial routines (IOCS in IBSYS) sc as to keep track of
above mentioned times. Every 1/0 reguest made by the program
causes its 'software clock to be properly updatéd and

information about inter-arrival time of I/0 requests,
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requested I/0 file-and magnitude of data tréﬁsfef ﬁeeded by‘the
I1/0 request are logged intc a buffer. This buffer is flushed
onto an accounting.tape when ever it is full so that a concise
trace of I/0 requests is obtained. The impleméntation of all
these procedures necessitates careful changes to IOCS and a
re-conversion of all (system and user) programs in 'absolute
mode' (such programs need no relocation and can be loaded into
core memory without'any changes). The buffer size dictates

the overheads that are incurred with this scheme for monitoring. “
However the data made ayailable by this monitoring scheme is
invaluable as such déta has not been reported anywhere in

literature.

Section 4.5: Conclusions

Particular problems in periormance evaluation can be
sclved very fruitfully with the aid of already available
techniques and scmetimes with available models for system
behavicur. In this particular instance, tangible results
were directly aqhieved by the design of an optimal operation .
schedule. The model for gross system behaviour proposed here,
should when gquantitatively solved, give a break down bf the
~manner in which the overall system resources are utilized.
Also the direction for reorganisation of the system to improve
system throughput can be perceived by analysing such results.
Finally, the configuration evaluation problem for a particular

simple type of computer system can be solved by usinhg
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the I/0 mocdel proposed here.



CHAPTER V

CONCLUSIONS AND SUGGESTIONS FOR
FURTHER WORK

Section 5.1: Summary and conclusions:

The material presented in this thesis is an attempt at

a comprehensive view of the probleh of computer system peffor—
mance eveiuation;. Inﬁretrospect, Chapter I iﬁtroduces_the
concel-toof performance evaluation and brings cut the 1mportance
of this problem in the study of the eccnomics of comDLter

de51gn, mapufacture, selectlon and usage. Chapter II encompasses
- an analysis of various important'factors in modelling computer
sysfems with a view to predict tﬁeir pefformance, It also
contains crltlcal dlecu5810ns of several technlques of perfor—'

mance evaluation developed and an analy51s of how and where

they can be used. Statistical characterisation .of system
. kY
%

workload is also presented for this provides the environment

. for a computer model. Chapter III gi&es a.Critical discussion
“of simulation techniques and.their USe and limitations in
modelling of'computer sy%tems. Chapter IV is ‘more down-to-earth;
a study of evaluative problems for the IBM 7044—2401 computer

system curqently operational herelat IIT~-Kanpur is presented.

156



157

The interesting results of this chapter are an optimal schedule
Y L

of operations for this computer system and a proposal of a
model for configuration évaluaticﬁ of such systems. The latter
is an_important probler and has not been studied or reported
elsewhere in literature. |

Objectively considered, this thesis contributes little

to the soluticn ¢of the general problem of modelling large-scale
-general-purpose computer systems. Hopéfully, the understanéing
.of the immensity of problem and difficulties with currently
available techniques are cogently presented. The difficulty
with such systems seems to be one of improper design. Briefly,
the problem is to;develop proper resource management procedures
which take into account the relationships bevweem page rcferencing,
I/0 requests and program execution. Except for the 'working set'
model for program behaviour, which relates page referencing and
program execution, there has not been effort in this direction.
Therefore, an analysis or evaluation of implementations of such
,design prove to be very cumbersome and difficult.

It is possible to be more positive in the case of the
problem of selection of computers. Technicgues discussed in
Chapters II, JIIX and IV can be used for a detailed analysis
of the capabilities of the computer system in guesticon.

This should indeed give a comparitive estimate of relative
capabilities of each computer system for different types of

tasks,
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Section 5.2: Suggestions for further work

Performance evaluation of computer systems is a rich
soﬁrce of challenging problems. Several references to
problems yet to be solved are distributed‘ithhe earlier
chapters of this thesis. The major problems'afé'presented
below:

(i) Inclusion of I/0 in the strategies for

resocurce allocation {(other than 1/Q
management, of coursej.

(ii) Collection of statistics to characterise

user job profiles,
(iii) Development of simulaticn techniques

to simulate, efficiently, parallel

events that occur ¥ a system.
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