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ABSTRACT 

Performance Evaluation is the central problem in the 

study of the economics of computer systems. The problem of .. 
performance evaluation, difficulties in assessing performance, 

aims of performance evaluation and techniques developed to 

date are critically discussed. Computer systems like the 

IBr-1 7044-1401 are examined in the light of performance 

evaluation. Various operation schedules for the IBM 7044-1401 
r 

are proposed and compared. A software monitor to obtain the 

user job profile is outlined and a model to compare configu-

rations of this system is proposed. 
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CHAPTER I 

.INTRODUCTION 

Electronic digital computers have been in existence for 

ju~t over two decades. From early beginnings, like the 

ENIAC in 1946v successive developments in speed, size, 

versatility and usage of computer systems have been rapid, 

especially in the last six years or so. Today, in the 

industrially advanced countries of the West in particular, 
· ... ·. 

computers have perVaded many spheres of human activity and 

endeavour. Surprisingly enough, the design, usage and the 

economics of computers is yet far from an exact science~ the 

art of computer programming is one such glaring example. 

The study of one of these aspects, the economics of computer 
. 

systems, forms the main theme of work reported here in 

this thesis. 

Section 1.1: Motivation for assessing performance of 
computer systems 

The study of the economics of computer systems 

necessitates a detailed study of factors that affect their 

manufacture, operation, mail!tena:nce, application and 

utilization. Hence motivation for improvements and 

innovations in computer system architecture, 'system design 

·and software support can be tracked to the econonic 
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·benefit~ or trade offs obtained. A brief revie\'7 of major 

advances in computer systems is therefore in order. 

The evolutiOn of computer systems is a well reported 

topic in literature. To quote a few, Richards ·[1] 1 Hassitt 

[2] and Rao [3] have given excellent accounts of it in their 

works. Therefore, no attempt is made here to elaborate 

on this subject or trace its history. However, certain 

developments relevant to the subject of ~tudy are outlined 

here; their understanding consti tu'ces some of the requisites 

for the study of the economics of computer systems. It may 

be noted in passing that terms like ev·alnatior., performance, 

workload have to be defined in the context of computer systems 

and will be elaborated upon in the next section. 

Advances in computer hardware can be categorised as 

shown below: 

(i). Technological advances in terms of device speeds, 

re~iability etc. 

(ii) Advances in logical organisation. Specifically, the 

development of interrupt facility, memory protect feature 

and over-lapped input/output operations by use of 

data channels which together provide for non local 

concu!:"rency in the operation of the computer system. 

The introduction of instruction look ahead and 

memory hierarchy in primary. stor~ge provide local 

concurrency in operation. 
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Adyances in computer system software fall into two classes~ 

(i) the development of programming aids through the 

formulation of user oriented, procedure and problem 

oriented, programming languages; 

(ii) and the development of operating systems [4;5,6]. 

The latter is of interest; it provides a logical environment 

in which the user may conduct his work and.it allocates him 

the necessary resources to accomplish the work, Ireportant 

features of an operating system are~ 

(i) file management .[7] and input/output control; 

(ii) segmentation [8] and memory management; 

(iii) multiprogramming, time sharing and processor allocation 

[9, 10, 11, 12, 13, 14]. 

As is evident from these developments, a present 

. generation computer system is an inte.grated complex of hardware 

and software resources which afford theuser necessary 

facilities for problem solving. An analysis of such a system, 

in the light of various economic factors imbibed in their 

design, should provide the necessary motivation for the 

ensuing study of this subject. The outlook that compu,er 

systems are a collection of hardware and software resources 

has its advantages. The motivation of the manufacturer to 

produce such systems and the study of resources to be 

allocated to the user to suffice his needs are both 
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presented in a uniform manner. 

Hardware resources of the computer system are an 

aggregate of the following~ ' 

(i) ·computational resource,provide by the comprehensive 

and powerful instruction repertcire of the central 

processing unit; 

(ii) memory resources for program and data storage 

provided by the main ri.cmory; 

(iii) a hierarchy of auxilary storager for storing large 

volumes of informationr provid8d by peripheral storage 

devic~operating over a large =ange of information 

transfer rates; in general thei~ storage capacity 

is inversely related to their information transfer · 

rate; 

(iv) facilities for com.'llunication bet,•men the main memory 

and the peripheral auxilary storage devices, 

provided by the data chan:r..els 2~1d. de~Jice controllers 

or interfaces; 

(v) and fac:i_li·ties for communication betv1een the user 

and the computer s7stem; provi6cd by the host 

of ever increasing input/output devices. 

The underlying philosophy in the design of t.ardware is 

to achieve modularity, co~patibility? a1aptability and 

reliability in computer syste~s. To a certain extent, these 

factors have been motivatAd by economic considerations. 
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Modularity in system design allows interchangebility 

of system components or subsystems and flexibility in their 

interconnection. This means that virtually any cesired 

.system can be assembled. Compatibility has given scope to 

the development of a whole line or family of computer systems 

with very nearly the same machine languagea Such computer 

systems are upward and downward compatible. This means 

that the same machine language program can be run or executed 

on any computer system in the family. It is therefore an easy 

matter to upgrade or downgrade the system depen1ing on the· 

changes percieved in the workload. Consequently, effort in 

reco·ding of already available or developed software is kept 

to a minimum, if not absent altogether. 'I'herAfore, modularity 

and compatibility make it possible to most economically 

configure any computer system of desired size and speed or 

change the system to' suit changes in demand with least 

expenses incurred. 

The us~ge of computers for a wide range of applications 

is enhanced by those features in system design which permit 

ease in adapting the system resources to the needs of the 

application on hand. A good example of adaptability in 

system design is the basic unit of storage ~-n the IBM system/ 

360: the eight bit 'universal' byte. This eight bit byte stores 

a character, two decimal digits and of course ·eight binary 

bits of information. This facilitates ~:-.aracter handling, 
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decimal arithmetic and. binary arithmetic and high utilization· 

of main memory. Therefore, this 'univeral byte' can be easily 

adapted to any type of application. Such features result in 

good dividends as the manufacturer does n0t have to produce 

several different systems to cover the range of applications. 

Reliability in computer systems is nn outcome of technological 

progress and redundancy in system design. This feature has 

made possible, among other things, the space exploration 

mission and is absolutely necessary for the development. of a 

'computer utility'. Configurations of the IBM system/360 

Model 67 [15] and the MULTICS System [11] embody all these 

. principles and illustrate the extreme complexity of hardware that 

is now possible with present day technology. 

Stand alone hardware resources cannot provide the necessary 

problem solving environment to the user. In fact, the user 

works only on a virtual machine presented him by the 

operating system. Saltzer [16] gives an interesting illus­

tration of the virtual machine seen by the user of the MULTICS 

System. The operating system shields the user from the 

details of hardware and its limitations and offers the user 

a logical environment for programming his problems. Hence., 

software re~ources available to the user are analysed in 

the following paragraphso These resources are: 
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(i) a number of language processors v.:hich simplify 

~is progrr .. mming burden ~y giving him the pcwer 

to express procedures for solution of his problems 

in a manner akin to his vmy of t:1ini'ing; 

(ii) a large program library providing the u~er with 

'ready made' debugged program packages which 

perform c~mmonly needed function~; 

(iii) a filing system which facilitates the creation, 

editing and retrieval of large files of information; 

(iv) and a set of procedures which all?cate to the user 

any of the system resources as he needs them. 

The main features in the design of thG afore-named software 

.resources are ~ 

(i). features to attract and cater to the needs of a 

large user population and creating a machine or 

hardware independent environment to the user; 

(ii) and incorporation of proper resource allocation 

algorithms ~:vhich are to ensu:re a:1 e:e=fici~nt 

utilization of the over~ll system and provi~e 

the best grade of service • 

. It is seen that economic benefits that arise from the 

various considerations in hard'tJare design are very easy to 

point out. They are very.tcn'}ible in the sense that 
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quantitative assessment of trade offs obtained is possible. 

This is not the case with the benefits gained by us~ of 

software. Questions c"an be raised about the increase in 

efficiency of programming by use of higher level languages. 

Studies of the behaviour of prosrammers, in terms·of time 

taken to develop programs for given problems, when 

programming in different environments and having different 

type and amount of interaction w3.th the computer system, have 

been conducted and these results sl.llttT1arised [17]. Answers 

to such questions and results of such studies are difficult 

to evaluate as they are subjective in nature. It is apparent 

that there are many such problems in assessing the utility 

of software. Nevertheless, the benefits aocrued from software 

are obvious even though not quantifiable. 

Usage of computers is costly. Resource allocation by the 

operating system is therefore an important aspect of the tasks 

to be performed by it. Performance assessment of computers and 

hence the evaluation of various techniqt;_es of resource 

al·location indeed invite attention. 

The design of computer systems described in the 

preceeding pages is always open ended so as to leave room 

for future developments. It should be clear by nm,.· that 

the extent of analysis to b~ carried out before the design 

of computer system hardware and software is_quite 
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tremendous and these analyses contribute greatly to the 

economics of manufacture of computer systems and their 

usage. Expe~ience about the performance of such system~ 

prove invaluable for the design of future systems. 

Amongst the many other problems in the area, the 

selection of computers and the pricing of computer 

services have evinced interest and are worth mention. 

Joslin [18] and Sharpe [19J have discusseG problems 

associated with computer selection. The main problem in 

the selection of computer system is the evaluation of 

tenders and contracts offered by the manufacturer or the 

vendor. Trade offs between rental _cost::; and purchase 

costs have to be estimated. The main components of 

rental costs are the Basic Monthly Rental charges, the 

Extra Usage charges and the Maintenance ch"lrges ., On the 

other hand the break up of costs in the p~rchase of 

computer systems is the Purchc::.3e charge~.- and the 

Maintenance charges. There are severc:.J. h:.·::c:ws in the 
~ . . . 

comparison of competitive effors. The first difficulty is 

in estimating accurately the expected or projected workloadF 

which the computer system in question is expected to 

service. Secondly, to find proc-:.;dures to estimate 

quantitatively, criteria for performance of the computer 

system in the light of the workload. On overcoming these 

problems, the comparison of V"'trir.,,~ ~ental contracts 
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and purchase terms can be obtained. The types of contracts 

offered have been discussed by Sharpe and .he proceeds to 

conduct an initial q.rialysis 9f the relationships betv;een 

the various costs quoted in them. Othe~ issues in computer 

selection havebeen reviewed by Sharpe and Joslin. Certain 

periodicals like Datamation and Computers and Automation 

bring out articles frequently on related topics. As they 

are nurnerious and the material presented in them is not the 

cGntral thc:QG :·:.:::r·"'·, ,reference to such works are omitted. 

Two problems are prominent when pricing computer services 

The first is to fix the·price for usage of the computational 

facilities and type of service given. These issues clearly 

necessitat~ the evaluation of performance of the computer 

system. The second problem is one of the devising proper 

accounting schemes for logging the actual usage of system 

resources by the user. [20]. The log, besides being useful 

in accurately billing the user~ provides a rich source·of 

information about user characteristics. 

Problems of maintenance, of operation, of management 

and personnel for·manning computer in~tallations also 

come under the investigations in the economics of computer 

systems. As is evident from the nature of all. ·::he 

issues raised so far, a number of subjective criteria wiil 

play an important role in the final solution of any of these 

issues. 
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At this stage 1 it is quite apparent that the solutions 

to the afore--mentioned problems depend on the evaluation of 

performance of computer systems. Due to.the central 

character of performance evaluation in the study of the 

economics of computer systemsr this is the only problem 

considered at length;in this thesis. The problem of 

imposing economic constraints on the performance of 

computer systems in order to solve other problems mentioned 

is considered second~ry here. 

Section 1.2: The problem of performance evaluation 

The word 'performance' means the manner or success of 

working or the execution of a task. The engineering ·sense 

of the word.is related to efficien~J. And by efficiency 

is meant the pm..rer to produce the intended result; for 

most purposes, it ·is the ratio of machine's output of 

energy to its input. Unfortunately, the usefulness of 

computer is in no w1:iy related to the energy they consume. to 

produce the intended result. They deal with a volatile and 

intangible commodity that information is. Therefore, the 

normal usage of words like efficiency and performance do.not 

apply to computer systems. 

It is l4ell known that computers can deal with only 

those problems in which quantification is possible,· even 

through mere.coding. The·study of computation as an 
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abstract entity is a hot topic of current research. And 

this effort is unfortunately not addressed to the problem 

of quantification of computation as in the context of a 

g~neral purpose computer. A machine independent measure 

for computation is therefore not a reality as of now. 

Hence, it is noted regrettably 1 rperformance' of computer 

systems has not yet- been defined in a machine independent 

manner. 

Be that as it mayv in the absence of rigour concerning 

the fundamentals of this are!of ~omputer science, and for 

the lack of a better word, performance of computer systems 

will be conveniently assumed to be their 'behaviour' in the 

execution of 'workload' presented them by the users. Several 

criteria for 'behaviour' of the computer systems have been 

proposed; examples are the utilization of system components, 

service rendered to users, time taken for given tasks or 

just a trace of the operation of the system" ·The 'workload' 

of a computer system is much more difficult to define. For 

the purposes of this thesis, the workload of .a computer , 
system is defined in terms of statistical measures of factors 

that are deemed to affect system performa~ces. Performance 

evaluation of computer systems is thus a set of techniques 

for relating user requirements (the workload} to the 

capabilities of the computer system in the context of such 

criteria as explained above.· 



. 
~io types of investigations are undertaken in 

performance assessment or performance evaluation of 

computer systems. The first concerns the study of the 

sensi tivi·ty of. the be'haviour of the computer system with 

respect to certain system pa.rameters. Examples of system 

parameters couid be the configuration of the computer 

system or· the various resource allocation algorithms in the 
. ' 

operating system. Such studies are directed towards 

improvement of the behaviour of the system for a given 

workload. Hence the effectiveness of certain features 

of system design are examined. In so far as the·relation-

ships between various aspects of the computer system and its 

operation are not well understood, this type of investigation 

may be carried out merely to gain insight into these 

matters. r>iost of the effort in performance evaluation has 

been of this type;, 

The second type of performance evaluation study is one 

concer~ing comparison of different computer systems for a 

given workload. Due to the fact that the workload of the 

computer system too has not been defined in a machine 

independent manneru this problem is much more difficult 

to tackle than· a problem of the first type. Hm•rever, 

this is a~important problem to solve in order to compare 

various approaches to system design on a com~on footing. 
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With this background, it is appropriate at this stage 

to ponder about desirable ·characteris-tics of performance 

evaluation techniques. In essence·, performance evaluation 

entails the following~ 

( i) characterisation of user -vJOrkload, the jargon 

is user job profile, in a machine independent 

manner; 

(ii) definition of suitable criteria for the behaviour 

of the computer system; 

(iii) imposition of software constraints on user -job 

profile to obtain the actual work to be done 

by the hardware system; 

(iv) determining the behaviour of the/ system and hence 

quantitatively finding the values of variou's 

criteria set forth earlier by using the above. 

No performance evaluation technique really attempts a clear 

and detailed solution of the problem as outliEed above. The 

difficulties faced in evaluating performance nre many, their 

discussion is held over to a later section. 

Techniques of.perforrnance evaluation have had early 

beginnings. 
..r 

In the late 1950's, such tec~niques were 

developed to aid in the system design of Project STRETCH. 

But it is only in the last few years that such efforts have 

gathered force. The interest they have aroused is· 

evident ·from survey papers on performance eva1nation by 

Calingaert [21], Meredith Smith [22], Wickens [23] and 
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Drummond [24]. As the .problem covers many facets and 

activities of computer systemsr these surveys have not 

done full justice in bringing out the nature of the 

problem in its entirety. Hmvever, they hr.ve succeeded in 

pointing out various dif~iculties faced when seeking 

solution t:o the pn:>blero and have given a broad classifica­

tion of efforts in this direction to date" 

Performance evaluation techniques are concerned with 

the modelling of computer systems and users. Rather than· 

modelling the computer system or the user in complete detail, 

most of these techniques only attempt to study one aspect of 

the user demand and system behaviour at a time. Modelling 

has been done either by means of analysis, analytical or 

otherwise, of computer systems and users or by use digital 

computer discrete system simulation techniques. These efforts 

are discussed in the succeeding chapters. 

· Other characterstic features of techniques of assessing 

performance of computer systems are: 

(i) the techniques give an absolute or relative 

measure of performance, 

(ii) the methods give a measure of potential or 

actual performance. 
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Section 1. 3.: ldms Of performancG ovc:lu,.ti~,n inv;-:;;_tiqations 

The preceeding sections present an intuition for 

performance evaluation of computer systems. It is worth­

while to consider for. the sake of completeness, what the 

aims in assessing performance could beo As pointed out 

earlier, a number of subjective values creep into the 

solution of issue? raised earlier: it follows naturally that 

the aims of an evaluative study are subjective. It is not 

possible to present these issues in any measure of complete­

ness due to lack of experience and as such information is 

not readily available. However, to lend some clarity in 

specifying the objectives of assessing performance of 

computer systems, a perfunctory classification and analysis 

is attempted. 

Obviouslyv the aims of assessing performance of 

computer systems depend on the group of people conducting 

the evaluative study. These groups can be broadly classified 

into the following catagories: 

(i) the 'user group' which comprises people interested 

in the selection of suitable computers; 

(ii) the 'systems group', comprising system analysts 

and system programmers, 

(iii) and the 'manufacturers group', competitors in 

the co~puter industry who want to stay in business! 



17 

What follows is an attempt to analyse the interests of each 

group and hence.arrive at some of their objectives in 

performance evaluation and the type of techniques they need. 

The user group is interested in acquiring a computing 

facility which ~.vill suffice their needs. Unfortunately, it 

is not easy, even for the experienced user to define or · 

specify the expected workload. This point ~oTill be amplified 

in a later section of this chapter. Assuming that the 

workload has been estimated; the strategy for selection would 

depend on the cost per unit work, the overall cost and the 

grade of service offered to the various priority groups in the 

user community. To this end the user group would have need 

for the follovling techniques. 

(i) Procedures to estimate workload that the computer 

system is expected to service and projection of 

load growth in years to come. 

(ii) Procedures to estimate trade offs between hardware 

and software available in the light of the defined 

workload. 

(iii) Procedures to determine suitable mode of operation. 

(iv) P~ocedures to estimate the grade of service to be 

expected. 

(v) Procedures for comparing performance of various 

configurations of a computer system for the defined 

workload and comparing various computer systems 

·to .the same end. 
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If the above considerations are quantitatively worked out 

for eligibil.e systems then the final choice made is a 

compromise between economic constraints and trade offs 

available with extra investment. 

The systems group is directly concerned with the 

management of the computer system. Their interests are 

primarily in affording a powerful computer service to the 

user community and ensuring the maximum utilization of the 

system resources. Naturally, details of the computer 

system resources indicated in the preceding section are 

of immediate interest to them. Their purpose in performance 

evaluation would be~ 

(i) to compare various resource allocation algorithms, 

( ii) to compare sofblare packages 

(iii) and to develop ne't>l techniques for the above in 

order.to provide better service or improve system 

utilization. 

This group will find it essentic..l to monitor the operation 

of the system so as to obtain information to do the above 

tasks. Trade offs between system utilization and service 

rendered to the user community are chief factors of interest 

in their performance evaluation studies. 

The interests of the manufacturers group are only 

too well knowno Their aim is to maximize the returns on 

.their investments. Besides, they have to survive in a 
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competitive market. This group might have for its 

objectives in performance evalua.tion the following.~ 

(i) measurement of improvement in p0rforrnance due to 

the introduction of new hard~,rare features' 

(ii) comparison of their computer system with those 

manufactured by competitive firms[ 

(iii) development of software features in order ·to attract 

users. 

In order to accomplish· the above, a survey of current and 

projected applications of computer systems and their relative 

importance in the market is necessary. Techniques need be 

developed to achieve the same. 

Section 1.4~ Obstacles to performance evaluation 

In the preceeding sections, the problem of performance 

evaluation and techniques necessary to accomplish it were . 
sketched in simple terms. Questions raised in this connection 

are either fundamental in character or.exarnine details of 

design features and operation of computers" Illustrations 

of questions of a fundamental nature are: for ~che purposes 

of system performance, what does a job or task or application 

mean? and how does it load the system resources? Examples 

of questions regarding detai~of design or details of opera-

tion for evaluative studies are: what improvement in 

performance can be expected by the introduction of a scratch 

pad memory or an instruction look ahead feature? Or, what 



20 

scheduling algorithm should be used for processor allocation 

in a time shared, multi programmed environment? Questions 

similar to the latter• two are quite objective and much · 

fruitful analysis has been done in solving such problems. 

The chief difficulties in performance evaluation are in 

obtaining answers to questions of the first type and these 

are considered in the following paragraphs. 

An automaton is said to be universal in computation 

if it can perform the mapping specified by any 'computable' 

function. Digital computers are engineering approximations 

to automata exhibiting this property of universality in 

computation. In the same vein, computer programs are 

indeed engineering approximations to the specification of 

·the computable functions and they normally have limitations 

as to the range of data they can handle for any giyen 

problem. Therefore, it is seen that results from the 

Theories of Automata, Formal Languages and Computation 

are not useful in dwscribing programs for the pragmatic 

purpose of defining the ~,;orkload of computer systems. This 

situation behOves the development of a differGnt attitude 

towards programs and computers. A more detailed look at 

what might this attitude be is necess2ry and is presented 

in a later chapter. It suffices to stress here that 

as of now there exists no precise formulation or 

quantification of user requirements. 
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A consequence of this state of affairs is that the user -

machine interface is ill defined, be it a language or a 

·device. This is evident from the ever increasing number of 

user oriented languages and 'tail~rrnade( input/output devices 

being designed. Also 1 there exists a 18ck of accepted 

standards and hence communication between various levels of 

people interacting \•li th the computer system is greatly hampered. 

All this stems out of the fact that the study of computers 

is more of an art than a science at present. 

Besides these difficulties, ther~ are some technological 

difficulties in conducting a performance evaluation study. 

For example, the dynamic measurement of data of all types 

·~~ within a computer system so as to determine its behaviour or 
.. -

characterise the user job profile is not always possible with 

available tools like hardware or software monitors. However, 

these problems will be hopefully overcome in the·near 

future. At the University of California, Los Angeles, it 

is reported that the operation of several computers, including 

the IBM System/360 Model 67, is being monitored by a SDS 

Sigma 7 computer! Information nbtairced from such experiments 
.h -0' :~ 

. ·4o(· •-. .j.' should prove interesting indeed. ~fiT ,

1
, ,-;~\ 

:~~' ~~n f:: 
Section 1.5: Some measures of performance ~~\ ~ j/ 

' 4'"'""' J.{"''l. 

In this sectionu the concept of 'behaviour~ of the 
~~~?~.;§~·/ .• 

computer system is elaborated upon by defining some 

measures or criteria for assessing computers system ,-"-t.J..\J ' 
S&t ·3·0~ 

N 7*ltr· 
Cl..._ ' 
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performance. At the outset it must be made clear that· 

the actual computation of values for some of these criteria 

may not yet be possiQle due to difficulties outlined earlier. 

Again, for similar reasons, it is easier to evaluate these 

criteria for a computer system t'l7i th change in some system 

parameters than for different computer systernso A few 

of these measures are abstracted here from the multitude 

devisable as the goals of evaluation of computer systems are 

subjective. Some of these measures are more suited to a 

batch processing environment and others tn a time shared 

mode of computer operation. They are the following~ 

(i) Throughput. This is a measure of the steady state 

state capacity of the system. In other words, it 

refers to the volume of work done in an accepted 

unit of time. Constrained by cost, this is the 

most objective performance criterion to those 

managing the syste~. 

(ii) Turnaround or.average response time. This 

represents the average the average time between 

the receipt of a specific service request of a 

user by the sytem and the satisfaction of that 

request at the terminal or to the user. Again, 

constrained by cost, this is the single most 

useful measure of performance to a user. 
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(iii) Average 'waiting time. This measure is an 
I 

indication the load in each p·riori ty group of 

the user population and timG· required to 

. service the group. 

(iv) Average queue length. This measure is linked 

with the average waiting time and indicates 

the load for each priority group. The relation-

ship between allocation of priorities to user 

groups azld their effect on these measures 

merits attention. 

(v) Availability. This criterion concerns the number 

of hours,' excluding maintenance and breakdown, 

the computer system is available for use. It is 

a measure of the percentage of total time the 

system is, in service for user programs. 

{vi) Reliability. This measure indicates the:::: frequency 

of hardware and software failures and is measured 

as the mean time beb,reen ha.rdware failures or. 

mean error free time. 

The mentioned meast:fres of performance are the quantitative 

end results of an evaluative effort, The goals of performance 

evaluation themselves can be reatised in terms of the 

criteria mentioned above. These are not all the useful 

measures; more vlill be introduced at. ·appropriate stages 

in succeeding chapters. 
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Section 1. 6 Scope of \..tork re_porte~. 

Literature on computer system performc:mce evaluation is 

scattered over a 'I..Vide spectrum of technical journals" .t-m · 

exhaustive survey of all literature has not been possible. 

Insteadf a cogent and uniforrrt treatment of problerns of 

performance evaluation '.is presented here. rlot::.vati.on for 

particular approaches to the solution of these problems and 

classification schemes 'for techniques developed or studies 

conducted is also given· in this report. 

In Chapter II are,discussed various analyses of computer 

systems for the purpose .of performance evaluation. 'i'hey are r 

the analysis of c0mputer hardvvare ,7 the analysis of operating 

systems and the analysis; of \-vorkload. The usefulness and 

·limitations of certain techniques for cor:parison of computer · 

hard~i'are are brought out. As an illustratio!l, sample calcula-· 

tions are made for ·comparison of central precessing units by 

the instruction mix technique. In the discussion on operating 

systems, attention is res~ricted to the v~~~ous resource alloca­

tion algori thnts. . In vie~v· of the precec.ing analyses r a·· 

quantification of workload is attemptedo 

Chapter III E~mbodies an introduction and revie\•J of 

simulation techniques for the study of computE!r systems o In 

order to compare different techniques of discrete system 

simulation., the GASP II J:.s. simulation packa.ge -v.ras debugged 
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and implemented in the IBSYS operc-.ting system of IBH 7044. 

(Earlier, GPSS III vJas the only available programming system 

for discrete s~stem siwulation.) t~tivation for use of 

simulation tcchniques 9 classification of simulation experiments 

and a comprehensive look at difficulties ft=tced when using this 

technique are the main features of this ch2.pter. Chapters II 

and III form a critical ste..tc-of~the~·art cT)praissal of computer 

system performcmce"evaluation. 

' 
Batch processing computer systems "'lith off line satellite 

, 
systems to mcmage sl:o\v peripheral work ·~ in particular the IBI:"( 

·, 

704L!-1401 computer S}~stem at Indian Institute of Technology, 
I 

Kanpur - are examined from the point of vievtr of performance 
I 

evaluation in Chapter 'rv. Operation schedules for such systems 
'I 

are discussed.in relation to throughput and turnaround. These 

operation schedules Ner~ implemented for the IE.I:'i 7044~·1401 

systems. 'Next, rr:odels a~e proposed for this system. Of 

particular interest is a model v1hich takes care of parall(·~l 

input-output operations. This mod!.'.~l should prove useful in the 

evaluation of several configurations of a system for a given 

,,,orkload. No prac:1matic evai u.:rti vc ivork is possible till 

statistics to characterise Us£:r vmrkload are gathered and the 

system studied in n~lation to this 'ivorkload. Therefore u the 

requirements of a softv,rare monitor to achieve this and 

techniques to implement the sar;:e are outlined., 

The concluding chapteru Chapter Vc contains suggestions 

for further work e_nd roention of problems not discussed here. 



CHAPTER II 

AJ:JALYSIS OF COi"'PU'l'ERS .SYSTEr,iS FOR EVALUA.TIVE 

The analysis of computer systetns from the standpoint of 

performance evaluation can be categorised in the follo\•ling 

manner~ 

(i) lillalysis of computer hardware facilities and 

logical organisation. 'l'he purpose of this 

analysis is 'to examine various hardware 

features and their contribution to systeB 
I 

performance in the light of the workload. 

(ii) Analysis of the operating system, 'I\V'O r1spects 

of the operating system are of interest. First, 

the fea.tures of the virtual machine offered to 

the user. .A.nd second, the effectiveness of 

various resource allocation alc:ICJri thms in terms 

of utilization cf system rcsourcos in presenting 

the user this virtual machine. Uf special 

interest is the ;overhead 1 incurred in providing 

the v:_;_rtual machine and ih allocatins: the system 

resources. Here, 1 overheads' arE'~ understood to 
' . 

mean the utilization c.f system resources by the 

system i tsolf in order to provic~e this virtua.l 

26 
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machine to the usero 

(iii} Analysis of. \vorkloadc The vmrklnad of a computer 

systero is a'composite of user demands of system 

rE:scurces and the overheads incurred in offering 

· these resources to the user o. Im atterr..pt is rGade 

to clearly delineate these t~·m components of the 

work lead and :characterise the user 'l.vorkload in 

terms of its .dema.nd on the system resources. 

In th;is chapter,, various a.ttempts at such r1nalyses will be 

reviewedo Problems yet· to be tackled are pointed out and \vherever 

possible a brief qualitative analysis will be included. 

Section 2.1~ l-illalysis of di£ital computer hardwar~ 

Computer system haro~are is a collection of resources 

like the Central Processing Unit (CPU}, main memo~y spacer 

. t/ t t h 1 . 1 . \. 1 . k d 1npu ou pu c c.nne s, au.x1 ary memory u commun1cat1on 1n s an 

input/output devices. 'l'he analyses of thes(~ resources will be 

qualitative as information about details of their design is not 

forthcoming. The study of their interconnection is even more 

intriguing. The latter indeed poses a very challenging. probloi~ 

in performance evaluation and is the central issue in the study 

of computer structures. It is hoped that the analysis of 

computer hard~tmrc \rlill aid in the characteris0.tion of workload 

attempted in a later section. 
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The CPU is the most complex subsyster;:, in computer hardware. 

In the following discussion; the CPU is considered only as a 
I 

computational resource. Hence~ for the purposes of performance 

evaluation~ the main features of the CPU are the instruction 

repertoire, local and non local concurrency and the data path 

between the CPU circuitry and the main memory. I·1ain memory 

space is a syster.1 r.:;sourc? by itself and the study of user 

demands on it ~dll be considered separately o 

The instruction r.c~·crb "ire, also termed ~instruction set 1 , 

offers a computational facility to the user. '.rhe execution of 

these instructions requires a wide variety of operations ranging 

from simple CPU register manipulations to complicated arithmetic 

operations. In general there. are t'l;vo phases in the execution of 

an instruction~ the instructiqn decoding phase and the operation 

phase. Time taken to decode an instruction is a function of 

the length of the instruction and the generation of the effective 

address of the operand. And the time for the operntion phase 
I 

is related to the number. of c·pera.tions to be performed 0 

- I 

In some present day computers ~hese operations are realised as 

sequences of micro-operations 0 •• Through proper design of 
I 

instruction codes and micro~operations 7 the user is <:..;iven the 

flexibility to set up non-standard instructions to perforffi 

·often needed functions. Such a feature is called emicro 

program .control u and it uses a Pvdred in log·ic~ or 1 read only 

memo~~ System~tic design of instruction sets is possible 
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due to sucb fea.tures in system. design. 

Instruction sets of co1aputers are modular. The manufacturer 

offers the machine with a 1 basic instruction setg or an 1 extendecl. 

instruction set 1 
0 'Ihe extend~d instruction set offers useful 

instructions for particular type of applications" For example, 

instructions for variable length operations are needed in 

commercial data processing operations and floating pointv double 

precision arithmetic instructfons for use in scientific computa·--

tions. The need for powerful instructions is therefore seen to 

arise from the frequency of occurrence of certain types of 

operations in typical cpplicationso 

A measure of effectiveness of the computational resuurce for 

a particular type of applicatiqn is the average instruction 

time. Fn arithmetic mean of all instruction times does not 

suffice for the simple reason that the n.=:tture of the application 

or workload is in no way refleqted in the average obtained. 

i•Jeighted instruction tirr;es are .more sui table for obtaining the 

same. The weights assigned to :each instruction in the instruction 
I 

set could for example be simply, computed from the frequency of 

occurrence of that instruction ;in the v.rorkloacL · A.s the 

instruction set of computer system can be quite extensivep 
; 

instructions are grouped into classes by the operations they 

perform and the time taken to e~ecute them, ~-~eights are 

assigned to each of these classes by frequency of occurrence of 

instructions in the class. Weighted groups as described 
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above are termed as ginstruction mixes'. Put another way, if 

there are n groups of instructions 'ivi th lATeights Tr~l, T.rJ2, ••• s Wn 

and with execution times T1 , T2 , ... , Tn, then the average 

instruction time is~ 

where 

i=n 
l: Pi=l 

i=l 
and 

i=n 
. [ 

i=l 

T,.J, m.J.., 
V··~ o ~ 

w. > 0 for all i 
l. 

[21,22]. 

Instruction mixes are very simple to deal ui th but very 

difficult to define. That is, the grouping of instructions into 

classes and assigning \'!eights to them is not at all an easy thing 

to do. Firstly, a ~ynarnic instruction-trace of the workload 

must be availablE:. The instruction·~trace of a program can be 

anything bebveen 50 to 100 times slo"tver than the actual execution 

of the progra.m. tmd ·hence a few minutes of 1 typical' computation 

is actually traced in practice and an instruction mix is defined 

using this data. Secondly, there is no standardization of the 

instruction set yet. :.In fact, each machine is empowered with 
' .. 

some special instructions for simpl.::fying computation of a 

particular type of application and this feature cannot be 

reflected in an instruction mix. 

The implication of the above is tl1at it is difficult to 

compare CPUs of two different computer systems using just an 

instruction mix. ·rt is seen that the speed of execution of 

instructions is a function of several factors mentioned 
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earlier, nobTi thsta.nding ·t-he ~1.emory speed. Hence comparison 

of CPUs which.differ in ariy of these factors by using instruc~ 
.. . 

tio~ mixes can give misleading results. However, comparison 

of CPUs with similar features by this technique can be quite 

fruitful. 

Some of the ;,-vell knm•m instruction mixes for scientific 

computation c.re the hrbuckle Hix [25] c.nd the Gibson III Iviix [22]. 

As an illustration, the Arbuckle I'".ix is given in 'l'able 2.1 and a 

Cornroercial r·!iix [22] is given in Table 2 o 2. Also shm•m in tables 

is the computation .of c:verage instruction time.ohtained 

by use of these mixes, _for IBM 7044 system. It should be noted 

the.t the group of instructio:r-s in the 1 miscellaneousl category 

of the l'irbuckle mix is really an instruction mix in itself. For 

the sake of simplicity, the fixed point add instruction time is 
I 

used as the computation time for this category. The reason for 

this is that the fixed point add instruction requires both the 

instruction decode pha_se and the operate phase lj\Jhich uses the 
\ 

sophisticated circuitry of th~ CPU. Hence, mafl.l memory speeds 

and CPU arithmetic speeds are both reflected in the fixed point add 

time. In the con~putations for, evaluating the cornmercial mix, it 

should be noted that operations rather than instructions have 

been specified. Sequences of instructions to realise these 

operations have therefore beGn used. 

.' 
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FREQUENCY 
INSTRUCTION OF 

OCCURRENCE 

Floating point add 9oS 

Floating point 
multiply 

Floating point 
divide 

Load/Store 

Indexing 

Conditional branch 

Hiscellaneous 

5.6 

2.0 

28.5 ,, 

22.5 

13.2 

18.7 

IBM 7044 
INSTRUCTION 
11 SECONDS 

20.0 

36.0 

4.0 

4.0 

2.0 

4.0 

TUKE ON IBH 
7044 

l-1 SECONDS 

104.5 

112.0 

72.0 

114.0 

90.0 

36.4 

74.8 

5'93. 7 

l;verage instruction time for IBN 7044 5.937 l-1 seconds 

Table 2.1:; The A,rbuckle lJJix for scientific ·computation 
and sample calculation of average 
instruction time for IBM 7044. 



OPERATION 

Compare Character 

t-1oYe Character 

Branch 

-----·----
Add 3 
Characters 
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IB~l 7044 
EXTENT WEIGHT TIME FOR 

TOTAL TU1E 
ON 

-rm1 7044 
J::l.SEC 

1 

2 

3 

6 

10 

-------
12 

1 

10 

-~----· 

60 

Taken 
., 

Not 
Taken 

1 OPERA~­
·---·- TION__H.~.E_C_; _ _, 

9 10 

5 16 

7 18 

1 10 

1 26 

3 20 

1 10 

1 36 

90 

80 

136 

10 

26 

60 

10. 

36 

---- ··-·----·----------------
2 88 

--- ·------·-··-------
15 2 30 

13 2 26 

---------·-·-·----·----

2 4 8 

----------'""'-=----------- ·-------·-·---------
.Indexing 40 4. 160 

Total 100 756 

---·-· 
Average instruction time for IBM 7044 = 7.56 ~ seconds 

Table 2. 2 ~ f.:.. commercial mix and sample calculations for IBM 70114 
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Gross comparison of computational power of CPUs belongi.ng · 

to a family of computer systems 1ike! the IB~ System/3GO series 
• 

8r tha IC:U 1900 series is very easy, by ~13ing thi~ ttehtr!que. 

The average ins~ruction time; p for scientif;i.c and dort!lflat-c:ial 
\ 

workloeids, for some word oriented computer systems is 

tabulated in Table 2.3. A word of caution is necessary when 

considering figures for average instruction times given in the 

table. Due to lack of familiarity with asserobly langu'age 

progr~ing in PLAN (for the ICL 1900 series) and unavailabi·· 

lity of correct information regarding usage of special 

features provided, the average instruction times for commercial 

computations could be conservative. Computation of this time 

for some bigger members of this family was not possiBle due 

to incomplete information given in .the ICL 1900 series 

introductory text. No 'computation of average instruction times 

could be under taken for models of the IBH System/360 series, 

other than .M.odel 44r due to unavailability of their functional 

characteristics. l!.s all the computer systems compared in this 

table are ,..,ord briented and have some features in common, 
. . 

the average instruction times gfvc a fair idea of their 

relative computational power. 
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ICL 1906 H 

-------·-------
ICL 1907 Ll ~ 2.25 H 

ICL 1909 6.0 H 

H' 
l ' 

H 

? 15.26 

1906·-1907 
CPUs are 
identical 
except 
for float-· 
ing point 
arithmetic 

------· 

Table 2. 3 ~ Comparison of some ~mrd·"·oriented computer 
systems for commercial and scientific 
applications 

; 

From the results in the tabler the following observations 

can be madE~~ Corc:parison cf IBJ:.I 7040 anr1 IBI-1 7044 is given belov:: 

(i) The I~M 7044 is about 2.6 times faster for scientific 

computations and about 2.9 times faster for commercial 

\1\rorkload. The main contribution tq this increase in 

speed comes from the_ higher main memory speed of the 

Im1 7044 (it is t1 times faster). These machines are 

more suited for scientific computations. The main 

drawback of their instruction sets is the paucity of 

character handling instructions. 

(ii) The IBM System/360 l'1.odel 4tl is also a machine suited 

for scientific cornputationv as advertised. This 

system is provided with fast hardware for floating 
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point arithmetic. However v the ad\rertisement that 

this system is voptimised for scientific ~amputation~ 

also· refers to the fact that several of the excellent 

character· handling instructions available with other 

models have been excluded in the instruction set of 

M0del 411,. Trade offs in speed available with faster 

registers are easily s~en. l-1s is evident J the speed 

increase by a factor of 1.6 in both scientific and 
··- ··-~ . .i.~~., 

corrunercial computationg is solely due tc use of high 

speed General Registers. 

{iii) ICL 1902v 1903 and 1904 computer systems are clearly 

me?~t for commercial workloads. Floating point 

arithmetic is done by s0ftware in these mode.ls and 

hence the an-~~>.,.~ ly in speeds for the two types of 

workloads. ICL 1903 does not have storage .. ·to-storage 

instructions. In all other aspects (except floatin~ 

point operations) v it is equivalent to ICL 1904 and 

1905. Hence the difference between commercial 

computation speeds of these models and the other two. 

It is seen that ICL 1904 and ICL 1905 are equally 

powerful for commercial workload but ICL 1905 

has hardware for floating point arithmetic. This is 

a good example of hardware-·soft\vare trade offs 

available ~'7! th the floating point feature. The same 
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could be expected of the next pair in the familyr 

the ICL 1906 and 1907 systems. ~nother surprising 

result is,that even though ICL 1906 has faster core 

memory speed than ICL 1905v it is slower in scientific 

computationso The total percentage of floating point 

operations in the Arbuckle Eix is only 17.1. Even 

so, better floating point hardware of ICL 1905 off-

sets the higher core mem0ry speed of ICL 1906 for 

this type of computation. 

In all the above calculations, various instruction timesu 

given in the introductory texts and programming manuals supplied 

by the manufacturer; have been used. Normally, these figures 

quoted by the manufacturer are optimistic instruction times. 

This is done in order t0 account for any local concurrency in 

the action of the CPU. 
J 

In practice the effectiveness of these 

features depends on the nature of the ·user workload. This wi~l 

be elaborated in the f0lloTt;ring paragraphs. A, closer look at 

some of the components of a CPU r which provide·· the basis for 

local concurrency in its operationu is necessary. 

Local conc~rrency is overlap in the execution of neigh~ 

bouring instructions in an instruction stream. That isv one 

or more instructions are in the decode phase while 0ne or more 

preceding instructions are in the operation_phase concurrently. 
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To make this possible, the CPU is designed as a set of functional 

hardware units as in the CDC 6600 computer systemo These units 

each perform a micro-operation in the sequence of operations 

required to execute an instfUCtiono Conventicnally 9 in order 

to simplify the logical design of the CPUr these units are not 

available for processing succeeding instructions throughout 

the execution time of the current instructiono For better 

utilization of such hardwareu the current practice is to release 

the units.on completion of their operationr the released unit 

is reset or initialised iznmediately s.o as to make it available 

for the operation required by the next instructionQ regardless 

of the completion of execution of the current instructiono 

Examples of functional hardware units are the fixed point 

arithmetic unit, the floating point arithmetic unitp the logical 

unit Q the operation-·code decoding unit and the effective 

address generation unito 

Parallel independent operation of these functional 

hardware units is possible only if enough information 

(instructions and operands) are available to themo There exists 

a need for buffering this information in 0. fast accessable store 

so as to bridge the CPU-speed rnain~·memory··speecl. mismatch 0 

Various techniques have been implemented.~ their design and 

performance have been studied by simulation techniques and are 

discussed in the next chaptero. Hmvev.er,. so long as the speed 
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mismatch exists, the number of registers in the CPU and extent 

of the data path between the main memory and the CPU determine 

the extent of local concurrency possible. The CDC 6600 CPU can 

process upto three.instructions concurrently, these instructionsare 

necessarily net int~rdependent, i.e. the o~tcorne of any of these 

instructions does not depend on the outcomes of the preceding 

instructions 0 An even more pct-verful. example of local concurrency 

in the CPU is Project Stretch, IBt•i 7030, in this sytemv upto 

eleven instructions can be in various stages of processing and 

any interdependen'ce within these instructions is automatica.lly 

taken care of by the instruction look ahead unit of the CPU. 

Another point to be noted is the density of information 

retrieved per memory reference. With regard to instructions; 

th::.s could mean the number of instructions packed int.o the. 

width of the data path between the CPU and the main memory. 

Maximum density is achieved by provision of instructions of 

variable length; normallyQ instructions need either no memory 

refe!rence or specification of one to t~"'o addresses for their 

execution. For operands, the density of information retrieved 

depeJ?.ds on the flexibility of the addressing scheme providecl. 

in the instruction format. The maximum density is related 

to the smallest addressable unit of main memory. 

The reason for this. e~crbo:rate digression on local 

concurrency features of the CPU is to bring out the inadequacy 
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of the simple instruction mix (representing any given 

application) in evaluating the speed of computation of 

the CPU. It is clear that a let of information about 

the vmrkload -~ other than the occurrence of types of 

instructions ~ is neces,13ary to evaluate the performance 

of the CPU. 

One way of dealing with differences in central 

processors and coping 'ltJith difficulties like local 

concurrency is to compare the times required to perform 

specified tasktcalled ukernels~. Thes~tnsks are coded 

in the assembly language of the computer system and hence 

can utilize all the features of the computational facility 

offered. There is of course no standardisation either of 

the t .. :-.sk~ to I?e performed or their magnitude. According to 
1.-f:~..:~- v;· 

Calinga~rt [2lt a kernel is "the central processor coding 

required to execute a task of the order of magnitude of 

calculating a social security tax~ or inverting a matrix, 

or evaluating o. polyncmial 1
'. An attempt is made to have 

the problem coded with equal levels of sophistication by 

experienced programmers in assembly language. 

Againv to represent actual \•1orking conditions~ a fairly 

comorehensive set of kernels must be defined. The problem 

of assigning proper weights to these kernels in synthesising 

the workload is crucial in evaluating the computational 
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speed of the central processor by this ~ethodo An idea of 

the types of kernels defined and used :::;o far has been given 

by Sharpe [19]o Examples are matrix multiplicationv square 

root approximation of fl9ating point numbers u field manipula~· 

tion (qontrol card scansF source statement_ scans) p editingv 

field comparisonu BCD arithmeticr character rr.ianipulationu 
. . 
polynomial evaluation etco Elaborations on these kernels is 

given by Sharpe [19] o 

Kernels are much more general than instruction mixes-as 

they make ·it possible to compare CPUs with entirely different 

characteristicso Even in the comparison of CPUs of a family 

of computers with the same instruction setr kernels are more 

powerful than instruction rr.ixes as they give the actual dis·-

tribution of types of instructionso Henceu it is possible 

to compute CPU times in the light of the actual local 

concurrency possible 0 Put in another ~,yay,, the kernel apnroach 

in compar~<...; CPUs tvi th identical instruction sets does not 

degenerate to instruction mix com:rarisons due to reasons cut·-

linef.t above (Sharpe he.s opined that the kernel approach 

degenerates to the instruction mix approach for the above 

casec an observation that is objected to here) 0 

This appioach has been very successfully used in the 

selection of computers for postal services in Britain [26]o 
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FeatQres like the 'stack 0 and associated operations can 
-

be included in evaluaticn o~ computation speed by this approach 

whereas this is not at all possible with the instruction mix 

technique" Stu.cks prove to. be very useful in certain applica··" . 

tion. Stack oriented programming technique is explained by 

Dijkstra [27] and an implementation of such a feature in KDF9 

is explained by Hassit [21. 

Non local concurrency ~tJi thin a CPU is 1 simultaneous u 

processing of instruction streams which are net necessarily 

interdependent. This is made possible by the interrupt 

feature of the CPU. In view of performanceu the effort 

required to switch from one instruction stream to another 

and levels of priority in the interrupt feature 7 are the 

main interests. 

As is well knovm p the CPU operates in two modes 

or is in onP of two states. These are~ 

(i) the privileged mode or supervisor state an~ 

(ii} the normal mode or the problem state. 

In a general purpose computer system? the 0ccurrence of an 

interrupt switches the CPU to the privileged mode. All 

computations needed to service an interrupt. constitute a 

part of the overhead incurred .. 
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Interrupts occur due to all sorts of causes. ~External' 

interrupts can occur due to end of operation of a device on a 

channel (channel interrupt) or due to on---line user initiated 

attention requests and the like. cinternal' interrupts are 

caused by abnormal conc1i tions v.Ji thin the CPU v s operat_ion' 

examples areu executi0n of priviled instructions by the user 

in problem program state or interval timer overflow etc etc. 

Asynchronous parallel operation of various hardware subsystems 

of a computer system and pseudo parallelism in the execution 

of user problem programs are made :: 'ossibl0 b•r intorrunt foatures. 

In other wordsu the interrupt feature acts as a vehicle of 

communication and a means of synchronisation between almost 

all of the parallel processes '"i thin a computer system. 

In a large, third generation computer system 0 the 

complexity of operations being performed is tremendous. 

Dijkstra [28] has pointed out that re-creating the sequence. 

of interrup;_s in such a system is · impossible. Not only 

does this make the development and debugging of operating 

systems difficult u but it is the root cause 'lc<?hy incorporation 

of this feature in the modelling of computer systems has 

hardly been attempted yet. A.s a result; input=output 

operations have almost been totally excluded in such efforts 

so far. 

In general purpose computer systerns 8 as opposed to 

real~tirne computer systems, there is no stringent time bouno 
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on system response. Therefo.r€ 9 interrupts that occur during 

the execution of an instruction a.re serviced only on completion 

of this operation. Some real·-time systems c,llnvl interrupts to . 

be serviced at the end of the micro=operation being performed 

for the instruction currently under executione The servicing 

of an interrupt might necessitate the saving of CPU status 

at that instant. System design of the CPU is such that its 

status can be saved by a single instruction specifically provided 

for this purpose, or at t~e most by fe-v! normal instructions. 

As the cost of hardtv-are is coming down u some systems duplicate 

all the CPU registers so as to switch right away from normal 

mode to priviledged mode without saving the CPU's status. 

However, at least current 1 Program status \vord v {PSW - as in 

IB.£11 System/360 or SDS 9400) is saved and loading of the ne'v 

PS':J is effected by CPU hardware. 

The time for servicing an interrupt depends on the type 

of interrupt- and will be discussed in section 2. 2 .. Priori ties 

in interrupts cause queuing of interrupt services, the stage 

of service of each level is indicated·by their respective 

PSirJs. Facilities to inhibit certain interrupts ~.vhile servicing 

one etc., are provided to ensure proper logic in the execution 

of programs. 

1-!ain memory space is a set of locations whose addressing 

is linear. Associated with it is an addressing schem~ 'ttJhich 

maps the effective addresses (ge9erated by .instructions in a 



t;16 

program) to locations in it. This mapping can either be as 

sirnple as a one··to"·one !napping as in simple· batch processing 

systems or be quite complicated {its complexity depends on 

the dyrtt'i.mic storagG allocation feature of the computer systGin) 

Obviousiy, the retrieval time of instructions and operands 

depends on the time taken to map the affective addresses 

generated, to memory locations. Eard"tare to perform these 

bperations has been discussed by ~ilkes [29] at length. 

Attributes of the main memory '-vhich c.ffect the performance 

of the systeR are~ 

(i) the size of the main memory 

(ii) unit of information accessable and 

(iii) the organisation of this store - the effective 

sycle time is dependent on this. 

Other features of main memory ~ like the type and flexibility 

of st.orage protection ;;rovided ·~ are important 1 but not in the 

context of performance evaluation o 1\ttributes of user programs· 

-v.rhich affect the utilization of the main memnry ctre ~ 

(i) their sizeu i.eo the nUIPber cf core:; loads etc. 

(ii) data structures manipulated by them and 

(iii) the pattern of addresses they generate. 

J\1odules 0f core memory are available with almost all 

computer systems. However, for every systemp there is an 

upper bound on the size of the main memory instc.lled. In 
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models for computer systemsr this will naturally be reflected 

as a constrained resource available. Next; the packing of 

information into the main memnry f.,"Jpends OJ! features of 

c::'lc.ptability in syE-:tem design (Section 1-.1)". This is an 

indication of the ease of mapping user·~c~ata··structures on 

to the linear structure of thG m.a:i.n memnry i ts<::.~l£" The 

.. f .. ~ ~ 1 1 l ..:! • t 1 . organ~sat~on o memory 1n lncJ.ePenw:mt D oc,,:s a.nc.c 1n er eav1ng 

of addresses within these blocks sn as to r2duce the 

effective memory cycle timeu have been stuC'ied by simulation 
i 

techniques and are discussed in Section 3. <1. Lastly f effects 

of the pattern of addresses generated ~· on performance of 

computer systems --· can be discussed only in the context of 

features of dyna8ic storage allocation and organisation of 

memory hierarchies. Hence this aspect vdll be brought up at 

an appropriate place in the next section. 

The CPU and main memory arc important resources frorr• the 

users viewpoint. Oth2r resources like auxilary storage~ input­

output devices r data channels 1 cormnunication links etc. r 

•contribute jointly to system 9erformance as a part of the 

system configuration. ·The problem here is to find the effective-

ness of asychronous parallelism in input-"output operations, 

with reference to, the 'I:'Orkload. There have been a fm<~J 

attempts to produce a. simple empirical forrnula.e which yield 

a single figure of merit for the systGm as ct ~s1hole [ 30 f 31] • 

For example, Knight 9 s formula for ~computif:'':..J Pov.:rcr 111 • f31J 
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is· 

Computing power = Fe:mory Factor :~ 0Dcrations per secon6 

. J 0 17.; . h. h . vvhcre operations rer second. J.S . · [t + t ·;o] J.n '"· J.c. tc J.s 
c . 

• (' • ..:1 ) . • d t . . .. , . tJ.me 1n mJ.cro scconus requ1re .o execu1~ one ~l.~~J.on 

operations (instructions) ~nd t 110 is the :no~ 0vc~rlapped 

input-·output tir"'c (in IT~.icro seconds) neccs;:::ary to perfon< one 

'"' million orerations o • Knight neasures tlm kinds of cr-rnputin0 

pm-rer ,, coi'i'mercial ane scientific o Therefore r the con:nnercia.l 

or scientific instruction mix~ v'rhich .he too h'.'.s defined, is 

used to compute tc. ~rhc definition of tr;o is somewha.t vRgue;: 

its comDutation is based on channGl '"Ji'::>_th, transfer rate a.nf.!. 

start, stop, rewind times for orimary and secondary input~ 

output unitsr plus estimates of possible overlap in the input~ 

output system and extent of utilizntion of pr~mary ann 

secondary units. Several coefficients required in this 

complex comrutation of tr;o are provided by I<:night u often '·7i th 

c-ne v.':l.lue for com_rnercial ~'17orklond a.nd another for scientific 

vwrkload. 

•· The sccr.nd coiT'ponent of computing poFer iB defined 

as follows~ 

Vemory f 0.ctor 

v.rhere 

K is a. constant 

L word length in bits 



FF is 1 for fh~ed ~'!crd l1:;ngth systems 
is 2 for variable ~mi·d length systems· 

P is 0.5 for scientific corti)utations 
is r). 33 for corr.rncrcial coro::=>utatic,ns 

This formula is ]J.ri:::n.a.rily based en opinions~ "T. toted of 43 

engineers r programmers and other knot,rledqeable people \-7ere 

contacted ano asked t0 evaluate the influence of computing 

memory on performan~er· o [31]. 

Such an ar·proach is open. tocfi~icisF. ,"'l_s it is baRed on 

the· opinions of various people~ hrt._rever cualified. ;z:, m.ore 

comprehensive, logical procedure for evaluating configurations 

"ms developE":d by Z':.uerbach Info, Inc. , a firm of cemputer 

consultants. Their approach is knolfm as the 0 benchmark 

problem u technique [32 u 33] 0 'I'he general attorrrot here is to 

compare 'standard: confi?utations (as defined by .?\ucrbach 

Info. Inc) of different computer systems by computing total 

program execution tirn.es for certain 9 typical 1 application 

programs called v:benchrnark problems'. Exarnnles of benchmark 

problems defined by T:uerbach. Inf~ Inc" 7 are~ th8 sequential 

file update pro::>ler.,. updating files on randorn access storage r 

scrting p matrix inversion 0 evaluati(:m of co:r.rplex equations 

and statistical corrputationso 

In order to ensure unifc,rm cor"!.parison. of computer 

systems in question f the benchmark prnble:t:ns are r_igidly 
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specified in terms of certain parameters like avaiL1ble input 

data, comp':ltations to be performed and ex.:-9cted output of 

results. So as t0 f.'.llmrl maximum utilization of the various 

distinctive capabilities of each computer systemu the method 

for coding the problem and design of files is left flexible. 

1\s mentl.oned .• comparisons are mad(:;! for st.:mdard equipment 

confiqurations. The execution time of each benchmark :pr0bler'1 .. ·-

for each standard configuration is calculated by computing all 

input~output times and central processor times and combining 

these ttA10 ~-,i th due regard for the computer systems c~pabili ties 

for simultaneous operations. To do this the problems are 

coded in assembly language and a detailed estimate of these 

times is computed with the help of this code. To better 

appreciate the magnitude of w·ork . inv0l ved in cnropc.ring 

systems using this techniquev the sequential file update 

benchmark nroblem is taken up in detail in the follol:'l7ing 

paragraphs. 

In the sequential file uponte problemv a rn.aster file is 

read and updated to reflect transaction datn contained in 

a detail file~ I':.. record for each transaction is '1.>7ri tten in 

a report file. Thus u there a.re two input files (old 

master file and detail file) and two output files (upCI.ateC. 

master file and report file). Such a problem situation is 
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typical in applications like ·payroll, inventory; billing etc. 

It is important that the problem be parameterised in such 
. 

a \tolay as to set up the actual .o;-"1eratin.g c<'~H"i tions. Parameters 

of inter~st cf the sequ~ntial file update problem could be: 

· (i) activity factor~ ioG. ratio of items in 

detail file to items in master file. 

(ii) size of record~ in master, detail and 

teport files (these affect I/0 tir':l.es r 

a!ld packingu and editing operations) and 

(iii) amount of computation per activity. 

~fuen computing the execution time of the program, the following 

need be cohsidered carefully; 

(i) effective CPU and I/0 speedsu 

(ii) I/O and CPU overlapu 

(iii)· available core storage for program, data and 

service routinesr 

(iv) desire.bility to use off=line carcl.=to=tape and 

tape=tc~-printer operations etc. and . 
(v) special features of the computer system under 

consideration. 

An example of a st::mdard configuration specified by A.uerbach 

Info, Inc.v is configuration III shown belowg 
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Configuration III 

6 Tape Business system 

Internal storage : 2000 one address instructions 
8000 characters of data 

r1agnetic Tapes 

Card ReadGr i 

Line Printer 

Card Punch 

Indexing ~ 

Overlapped I/O ~ 

6 units @ 30,000 ch/sec. 

500 cares/min. 

500 lines/min 

100 cards/min 

Yes 

Yes 

t·Jhen ccnsidering a specific compute~ system, equipment closest to 

the specified configuration is chosen. An assembly language 

coding of the problem is obtained. Using this program code, the 

following basic timings are computed~ 

(i) I/O times to read/write a physical record 

of the masteru detail and report files. 

(ii) Processor delays during I/0, taking into 

consideration the CPU··I/0 overlap available. 

(iii) Computatinns invnlved in searching the master 

file records for a match \ATi th the detail 

transaction .and corn.put.":l.tions necessary· to 

update the appror.ri&te master file record. 

Detailed block diagrams u flo".Jcharts are 

available with Auerback Info, Inc.Q which 

~Tec:_fy prcC!h:ely th.e computab.ons to be 
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performed. The analyst iATho codes the 

problem can therefore take full advantaqe .. -
of incU vidual features of each computer 

system. 

On completion of all these calculations u graphs of prngr.m 

execution time (say for processing 10 uOOO records of master f~_::;_e) 

vs. the activity factor are plotted for each configuration4'.. The 

transformation of program execution times on standa.rd configura~· 

t~ons to the same on suitable configutations quoted in the 

manufacturers tenders is achieved \'7i th the help of the 'User's 

Guide v of A.uerbach Standard EDP reports. Unfortunately 11 this 

information is not published in those technical articles which 

promote this technique. 

Some of the dra.wbacks of the a benchmark problem v technique 

are~ 

(i) It is not. possible to examine the effects 

of features like multiprogr~~ing etc. that 

are_ possible with the given hardt'lare confi-· 

guration. 

(ii) Sharpe [19] has reported an attempt to 

estimate benchmark problem times by actually 

running the program on competitive standard 

configurations. There ~1ere numerous diffi~-· 

cul ties in doing so. r:one program could 

nc•t be compilec1 on one of thP sy~tems. 
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Executinn times for another proved 

incomnarable because the execution nath 
~ ~ 

'll!as cepen0ent on the sequer.ce 0.f psuedo 

random numbers generated and each system 

generateG a differ8nt sequence. Execution 

time for yet another c0uld not be comrared 

because one manufacturer ra~ the problem 

in a multiprograromed mode and obtained 

an elapsed processor time of nearly zero. 

Another simulated tapes on a magnetic· 

drum 1'. It is easy to observe that actual 

configurations and operating conditions 

are not very close to the stan0ards 

specified by Auerbach Infou Inc. Execution 

time of programs obtained by directly . 

running the program on the computer system 

are at best grossly approximate, Limitation 

on measuring time is either due to the 

resolution of the interval timer or due to 

. th13 resolution of the meters proviC'.ed on 1 

Vi:.lrious conre>'1ents of the system. p, more 

accurate estimate cf time may be quite 

necessary in some circumstar..ces r esrecially 

if certain programs are executed frequently 

in production runs. 
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(iii) The set of benchmark problems is too 

small to cover all the application 

areas or all types of workload. Hence 

benchmark problem times ~o not directly 

yield solution to the problem of 

comparing configura.tions. These results 

must therefore be viewed with proper 

caution and in perspective ·Nith the rest 

of the workload and other operating 

conditions prevalent. 

Irrational as it might seemf there have been several attem:;:--·­

to compare the instruction mix or the kernel technique with the 

benchmark problem approach [21 ;22]. Clearly u the fnrmer provi~-, 

only a measure of effectiveness for the CPU whereas the latte:r 

a technique for comparing configurations of a system. 

The general problem of c0mparison of configurations is s:.:: : .. 

an open problem and not much \'mrk has yet been done to~rards it.:-; 

solution.· This problem is rendered more difficult by the comp-~r,c_:cL::: 

of operation of n.resent day general purpose computer systemr.;. ;:r-~: 

exalllple p how does one compare the effectiveness of the ccnfigt·ra·--; ·· 

of CDC 6600 system (shmm in Figure 2.1) tc that of the GF 6/: 

lt1UL'):'ICS system (shown in Figure 2.2)? There !sa marked accent 0~1 

parallelism in the design of the CDC 6600 configuration. There 

are 10 identical peripheral processing units (PPUs) connected 

to 12 data channels through a 10 x 12 s\'ri tch. Programrring 
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Figure 2.2: The GE 645 ~ULTICS configuration 
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the system so as to make maximum utilization of the PPUs and 

parallel I/0 paths provided is indeed a tc:.ll order. It has 

not been pointed out anywhere in literature,, ho~r best to use 

the resources of such a system. F'hen comparing these two 

computer systems (GE 64.5 anci. CDC 6600} one thing stands ou.t. 

The GE 6·15 system architecture is such tha·t it exhibits a 

vfail soft' characteristic in operation. By this is meant 
_r·· 

that . " . system perforn:ance is gracefully O.egradecl. on the 

failure of any_ system component (the system is not rencl.er~d 

im.operative t'l!hen a component fails} o This is not the cae'-;; 

for the CDC 6600 system as it has only one CPVe Howeverc 

unless C':l. good user and system model (which include I/0 

activity) is developedp no comparison of rerforrnance of 

these· b-10 configurations can be made o 

Interestingly enough, CDC has been the only manufacture~ 

to produce a configuration like their 6600 system. ,L.ll big 

systems produce( by. IBM, GE, R.CP~v UNIVAC and SDS follow the 

MULTICS architecture evolved by Project M.i'\C o 

In retrospw·t in this secti0n the .chief problems in 

evaluating performance .of the CPU, main memory and the 

system configuration have been reviewed, Of the various 

techniques mentioned, the instruction mix 1 kernel and 

bendu'1lark problem ·:1:pproaches have been elaborated on. 
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Ses::tion 2.2 Analysis of the operating system 
;:;__:_~;..;.;;_,;,....._ ____ --- ------------------ _,_ . 

The operating system is a growing collection of programs 

'17hich are organised in \\That is called a systeni. library. Some 

of these progra.ms are executed by the systerr1 in the privileged 

mode whereas the, rest are executecl· in 'che normal mode. The 
vJ'hich 

main interest here is centred around those programs ~ontrol the 

overall operation of the system and h•3ncc to a. great extent 

determine its behaviour. Examples of these programs are the 

interrupt processing routines f the input.~output control routines v 

the group of programs known by the general name of supervisor 

etc. etc. Some of these routines, the intc~rrupt processing 

routines for example, have to reside in the main memory at all 

times. Such routines are commonly referred to as 1'\'Jin-::d in r 

routines. 

One of the functions of the operating system is to present 

a virtual machine to the user, For exampl•'2, the user··ma.chine 

interface is a set of higher level. progr.:unming languages. In 

order to give such a facility to the user; the operating system 

has in it translator programs which convert user programs to 

a form executable by the hardware ~ystem. This necessary 

function of translation forms a part of the workload of the 

computer system. However, the CPU time required for this 

task is not accounted under 'overheads'. The importance 
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this function is accorded in the operation of the system 

depends on the nature of the user population. For instance, 

in a University computing servicef translation Gf user 
.. 

programe could form a major part of the workload. So, it is 

an important aspect from the point of viet7 of performance 

evaluation. Itmust be noted that thesq translator programs 

(appropriately termed as 'langua.g~~ processors') a.re executed 

in the problem mode. 

The virtual machine performs some housekeeping and 

~~tility; functions for the user. For example, the system 

resources are m9.de available to the user by a 'command 

language'.. Programs to interpret statements in the command 

language and perform corresponding actJons arc a part of the 

operating system;s supervisory program and are executed either 

in the privileged modE! or normal n.odc depending on the function 

being performed" Also, the user is given c>c powerful means 

of filing information and edi t.ing ito Creation 21.nd maintenance 

of file directoriesr searches in the directory to locate an 

elementu allocation of auxiliary memory space etc.r are some 

of the house kee?ing functions to be performec"' by the system o 

In addition the system performs other housekeeping functions 

like maintaining a log of user usage of syst~m resources. 

Computations performed for such tasks are a part of the 

'overhead' incurred in providing these f~cilities. Therefore 7 

an analyst in·terestcd in evaluating a computer system must 
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look into these features of the operating system and the 

capability of hard\·.rare in this direction. Once again the 

cornmentv that the nature of user population determines the 

importance of these facilities in the overall operation of 

the system, is aprlicable" 

From the point of vieT,.; of performance, the main features 

of the virtual machine are~ 

(i) the strictly sequential execution of progra~s 

(despite the fact thr.t there is parallelism in 

the operation of tho system) 2 and 

(ii) the provision of a virtual, largev addressable 

name space. 

The first feature is made possible by the interrupt 

handling routines and input-output manageriai routines. 

The second feature is a result of implementing segmentation 

and paging for the purpose of dynam.ic storage allocation. 

The resource allocation algorithms needed to accomplish the 

above areg 

(i) allocation of channels for I/O requests and 

· (ii) paging schemes. 

In addition to the above~ processor allocation is 

necessitated by multiprogrammed operation of the system. A 
\ 

discussion of each of these resource allocation algorithms is 

given in the rest of the section. Computations done in 

connection with the resource allocation algorithms is a major 
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part of the voverhead~ incurredo The attempt should be to 

minimize both spc:~ce :md time required by these programs. This 

. . . h u ,.., "' • • 1- t t . . is a deEnrable ob]ect1ve as t e .overl:eaa · 1s ,-,.ep o a m1n1mum. 

Interrupt service routines and input··output managerial 

routines are probably the most difficult sections of the 

operating syetem in terms of their logic and coding. This is 

the general experience '"'ith simple batch processing systems. 

Lack of first hand knowledge about details of operating systems 

for multi~processor/ ccnfigurationsr in which intricate 

protection schemes etc.are implemented, renders the comment 

to be somewhat incomplete in the general sense. 

The time for servicing an interrupt depends on the type 

of interrupt end the. operations needed to service it. The 

normal range of service time can be~ anything from a few ma.chine 

cycles (i.e. a fet"J micro seconds) ·to a fe'tA! milli-seconds (the 

average page fault service time in the H.ULTICS system is ~'l 

few milliseconds [34]) o For exarnpler service of interrupts 

caused by many abnormal progrru~ or machine conditions is 

quite simple (floating point underflcwr.floating point overflow, 

storage parity error etc) o On the other h.:md r an interrupt 

du~ to say interval timer overflm•J causes an entry to the 

processo~ allocat.ion routine. Depending on the allocation 

strategy and the operating conditions prevalent at the time 

of such an interrupt,, the time for setting up the next program 

to take control of the CPU '~ill varyo The minimum time required 
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is that for saving the vstatus' of the current program and 

loading the CPU registers with the 'status 1 0f the next ready 

program. Page faults.or missing page interrupts cause an 

entry to the page scheduling routines. Here toor the time for 

service of such a.n interrupt depends on the complexity of 

the paging scheme employed. An interestinq account of the 

detailed operations tha.t occur in a multi-,access system is 

given by Saltzer [16]. He sketches the types of interrupts 

likely to occur -v.rhen a user is o logging- in' . 

The input··output manctgerial routines offer -to the user u 

many schemes for making use of the ~arallelisn 

in input~-·output (I/O) operations that the system is carable 

of 0 ~70 main features of these routines affect the overall 

program execution times~ 

(i) The buffering scheme employed. ·And 

(ii) the strategy for servicing I/O requests 

generated by programs being executed. 

Buffering s~~e:nes available in IBr-1! 1 R Operating Systern/360 

are outlined by Rosen [6]. User access to these buffers can 

be either of a sequential nature or of the direct access type. 

In order to save main memory space i I/O buffers f:re normally 

pooled together. This means tha.t only as many buffers required 

at any time are created and are dynamic.mly assigned to the 

I/O files~ This assignment of buffers. can again be either, user 

controlled or be automatically taken care of by the input~ 

OU!:put managerial 'routines. 
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Normally, when dealing with data in a buffer, the data is 

either moved to user work area (within his program) or the user 

is allowed to do the necessary computations within 'the buffer 

i tself1 i.e. the data is manipulated within the buffer and hence this 

reduces overall program storage requirements (no work area is 

needed within the program) • Yet another ""~ray of getting around 

this problem is to allow the user to set aside in his program, 

a block of words equal in size to a I/0 buffer, and this block 

of words is used as a I/O buffer or as a work area depending 

on the need for either. 

Two types of buffering schemes are cited in literature [6]. 

First, the simple buffering technique, is the most flexible 

technique devised so far. In this techniqueu one or more buffers 

are assigned to each I/O file (data set in IB.M System/360 

terminology). An idea of ho't-1! parallelism in input-output is 

used can be had from the explanation of thG double buffering seheme 

explained below. To each logical I/O file two buffers are 

assigned~ these buffers are large enough to accomodate the 

largest record read from the I/O file" they are assigned to. 

If the file is an 1 input file', the I/O 'managerial routines 

issues one ~ead co~and ahead of the actual input requirements 

of the current program being executed. That is, while the 

requirements of input data to the progra.Iil. are met from the 

contents of one buffer, the second buffer ·is being filled 
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with input from the 1 input file' concurrently. On the other 

hand, for an 'output file', the contents of a filled buffer are 

\vritten out onto the auxilary storage 'l.vhile concurrently the 

prcgram being executed; fills the next buffer with output it 

gen~rates. Design of proper size of buffers to take maximum 

advantage of ·the parallelism in the action of hardwareu has been 

discussed by Hellerman [35]. However, he assumes that an 

extremely good estimate of time for processing a logical record 

is available; something quite d(;sirable but unrealistic in 

most cases due to the dependency of the path of computation on 

input data. 

The second type of buffering scheme is known as the 

exchange buffering scheme. In .this schemev the buffers do not 

belong to the 'input files' or the 1 output files 1 but subsume 

the role of an input buffer; an output buffer or a work area 

depending on the course of computation in the program. 

~he only model in literaturer for a buffering scheme 

and its effect on performance of the system, is the one reported 

by T'!oodrum [ 36 J • This study; is of a floating buffering scheme, 
.4;, .. : 

a case of simple buffering in which the bu~fers are pooled. 

The model has a lot of constraints on program conditions 

(one record of every input file must be available in some 

buffer or the other etc) and hence results reported are of 

limited value. This· aspect of system operation has been 
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sorely neglected in the efforts to produce models (analytical 

or otherwise) _for computer systems. That it is an important 

aspect needs no special emphasisr its inclusion in models for 

computer systems will lead to the solution of the problem of 

configuration" evaluation. 

The other function of I/0 managerial routines, i.e. the 

strategies for allocation of available parallel paths to 

waiting I/O requestsu has not yet been introduced into models 

for computer systems.· One particular case of I/0 requests 

gen·erated due to the paging schemes has been modelled and will· 

.be 'discussed alonC]"li th the problems of paging. Except for 

this one single instance, this problem has not been studied 

.from the performance evaluation angle. 

One of the thing's to be noted in connection vd th the 

study of this part of the I/O managerial routines is that no 

I/O is initiated directly by a user (especially because 9 

almost all users program in a higher level programming language 

in whicp the.user is given no control over 1actual operat.i,.ons 

but is allowed to specify logically his requirements of input 

or output and the positional relation between I/O and 

computation for the sequential execution of his program) . In 

fact, the actual I/O operations depend on the buffering 

scheme employed. 
·~ e 

For exarnpler the user program produces output 



67 

at the end of intervals of processing data. This output is 

filled into a buffer of the output file as it is generated. 

Only when the buffer is fullu an output operation need be 

initiated.. Ho'I.'Tever u initiation of this operation is possible . 
if a parallel data path (to that particular part of auxilary 

storage where the output file resides) is free, And if a para~ 

llel data path is not freev this I/0 request is queued with 

other I/O requests of equal priority and is serviced only 

when no other request of higher priority or preceding request 

of equal priority are present. A user cannot keep track of 

all these conditions in systern,operation. This fact is 

accentuated by the presence of many active users who genera.te 

I/0 requests simultaneously. It is therefore the job of 

the I/0 managerial routines to take care of all these conditions 

and service the user I/O requests accordingly. The I/0 

managerial routines are therefore carefully structured into 

several functional levels. 

The user deals with the level which provides him a 

buffering scheme. Even this may be implicit when he uses a 

higher level programming language to express his computational 

procedures. In this case he simply indicates his requirements 

of input data or generates desired output. It is the 

responsibility of the language processor of the higher level 

language to generate or provide the necessary interface between 

the·user I/O specifications and the I/O buffering system. 
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The buffering system generates at 'run time'u calls to the 

·next level of the I/O managerial routines. This level could 

for example locate the actual position of residence of the 

I/O file in the auxilary memoryv generate the hardware 

instructions necessary to accomplish the transfer of informa~· 

' tion, queue the request after processing it for priorityp 

check for an available data path to the proper peripheral 

device and either service the request (if no other is 

waiting for service) or return control to calling program. 

~~other level gets control on the occurrence of an event like 

the completion of an I/O activity (and hence a data path is 

now free). This level might check the operation for correct 

transfer, re~try in case of some hardware malfunction or 

transmission error, or start off service of a request waiting 

in queue. Service disciplines for such queues are quite 

simple. The requests are stored in tables with tags for 

priority operation. At most one request per peripheral device 

is entered into this table. Possiblyv the entry position for 

each device is fixed in the table {at the discretion of 

those who prepared the initial operating system) and a 'tnp~ 

downv search is made for the entry with the highest priority. 

This entry is then serviced (the corresponding I/O operation 

is initiated). 
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Naturally enoughF these routines deprive user programs of 

'ready' or ~active 0 status when they cannot cope with the.volurnc 

of I/O requested by them (egu both buffers are full for an out­

put file and yet more output is to be generated or the program 

needs input and the buffers are ~mpty or 0.ne is empty and the 

other is in the process of being filled ~ in all such cases, · 

computation by the program comes to a halt and the program is 

said to be in an 'I/O delayw state or 1 dormant 0 state). On 

such conditions, an entry to the processor allocation routine 

to find the next program to be executedp is caused. 

The·reason for taking a closer .look at these functions of 

the operating system is that in order to be able to model 

such a system in its entirety, its detailed operation and 

relationships betvreen its many facets must be understood clearly" 

It is common knowledge that the uoverhead' incurred by a large, 

general multiprogramrned computer system is about 30 to 50 

percent of the total time the system CPU is operative. In the 

case of the time sharing computer utili ties like the IBM. System/ 

360 Model 67 or the HULTICS, these overheads could be more than 

that (as quoted by Neilson [37] for the IBM System/360 Hodel. 

67 at Stanford University, California, USA). A. part of 

these overheads is processor. idle time as forced by I/O 

waits and such like. If such phenomena are to be understood 

in any measure of completeness and proper counter measures 

to be designedv an evalualive study or c:m effort in modelling 
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the computer system must include these details. However, the 

argument that usage of such syst8ms is unwarrantedv especially 

in the light of overheads in CPU time incurredu is not totally 

sound. Firstly, the benefits accrued from such system operation 

(the provision of powerful features in the virtual machine, 

like segmentation 9• for example) ·are not expressable quantitative> 

And secondlyu the CPU is only one o~ many resources available 

(an important resource no doubt) and at the cost of overheads in 

CPU timer the rest of the system components have increased 

utilization (and economically speaking, the rest of the system 

figures in a large way in the total costs) . 

Turning to the dynamic memory space allocation problemu 

Demning [38] has discussed and compared several page scheduling 

problems. Briefly, the problem of dynamic storage allocation 

problem can be explained as follo¥rs. The user programs in an 

addressable segmented name space. This means that specification 

of an address in an instruction is achieved by supplying a 

segment name and the displacement (page number~ line number) 

within that segment (the set of all possible segments gives 

the total addressable memory of the virtual machine) . Each 

segment is divided into smaller parts called 'pages'. Normally 

the size of a page corresponds to the size of a block of 

main memory (the main memory itself is partitioned into blocks 

of a convenient size). Normally, all of the segmented name 
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space (th~t is required by the active programs within the system) 

is stored on a fast back up storage medium like a set of drums. 

, The page scheduling problem is tc bring pages of program 

residing on the drump into blocks of main memory so that it is 

available when needed in the execution of that program. There 

are two ways of ·tackling this problem. The first is to 

anticipate the needed pages and initiate vfetch' operations. 

This sort of predictive approach leads to several [,itfalls 

which have been o'utlined by Denning [38]. The second method is 
~ 

to fetch the page from the drum when addresses in that page 

are generated by the program being executed. This technique is 

popularly known as 1 demand pagingv and is the technique used 

in all paging schemes. A pedagogical notation to explain the 

common·ly used page scheduling algorithms is given by GG·cse:t 

et at [39]. Given the dynamic page trace (obtained by 

monitoring the executi0n of the program for effective addresses 

generated. and the ackl.resses of instructions in the instruction 

stream), a measure of effectiveness of a paging algorithm is the 

number of times a freshly addressed page is found in the main 

memory. The attempt is to maximize this number. This also 

means that the I/0 traffic, caused by pages being brought 

into main memory from the drum or written out from main memory 

on to the drum, is reduced.= a very desirable thing as all 

I/0 is considerably slower than computation by CPU. It is to 
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be noted that there is no difficulty in knowing which page to 

bring into main memory as an address in that page will be 

generated by the program in-executionr but the problem is to 

find place in the main memory where the incoming page is to 

be located. If the main memory is not yet full at that moment; 

then there is no problem in finc1.ing space for the incoming 

page. However, if the main memory is already full of pages, 

the job of the paging algorithm is to find a, page '1t1hich can 

be turned out. This page may or may not have to be dispatched 

to the drums depencing on whether it has been written into 

or not {there is already a copy of this page in the drums). 

Some of the common paging algorithms are the First In 

First Out {FIFO) scheme and the Least Recently Usef!. {LRU) scheme. 

The attributes FIFO and LRU refer to the scheme for selectin9 

the page to pe turned out. The FIFO scheme is very easy to 

implement. Just a linear list of pages in core memory need be 

maintained. The top element of the list indicates the page 

first brought into the main memory {amongst those present iri it). 

This page i_s selected to b~ turned out. As the scheme does 

not concern itself with actual references to the page-curing 

the time of its residence in the main memoryf there is 

no attempt to maximize the success of finding a freshly 

referenced page in the main memory. Each page resides in the 
' 

memory for the largest -possible duration at the enC. of which 
• 
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it is turned out without regard to the behaviour of the prograr. 

to which it belongs. 

In the LRU schemer when a page not in main memory is 
. . -

referencedu a search is made to find the page that has not been 

referenced for the longest period of time. Conceptuallyu a 

clock may be associated with each page in memory. These clocks 

are reset whenever the associated page is referenced. When· a 

page is to be turned out 8 the page whose clock has the maximum 

value is selected. In practicer a shift register is simulated 

in the entries for each page in the page table (page tables 

are maintained in order to ·aid in the mapping of addresses in 

the name space, generated by instructions being executedu 

to main memory locations in which the contents of the page 

reside). The left most bit of this shift register, known as 

the 'usea bitu is turned on whenever the corresponding page is 

referenced. On an entry to the vpage fault' service routine 

(a page fault is said to occur when a page not in main memory 

is referenc~e) , the simulated shift register contents are 

shifted one bit to the riqht. The contents 0f all these shift 

registers are compared and the page associated with the shift 

register having the le-ast numerical value is selected to 

be turned out. It is easily seen that a shift register of 

infinite length is necessary to implement the LRU scheme and 
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a shift register of zero length gives a scheme equivalent to 

the FIFO scheme. An interesting experiment on paging was 

conducted in tho MULTICS system to determine a pragmatic 

length for the shift register [34] and a register ·one bit 

long was found to be an economic feasibility. 

Another paging scheme is the Least Frequently Used (LFU) 

scheme. The page selected to be turned out by this scheme is f<, 

one that has the fewest number of references to it. Such an 

algorithm may be implemented .in practice by a similar tech:1.1iquc 

to that of LRU technique. A count of references to the page 

is kept in the appropriate entry of the page table and is used 

in selecting the page. to be turned out. 

Denning [38] observes that· paging is no substitute for 

real core memory. Except in the case of the FIFO scheme~ over­

heads are incurred due to techniques of their implementation. 

Very heavy paging occurs in worst case"'conditions (in varyin0 

degrees for different page turning algorithms). This can 

lead to unstability of system operation (system 'thrashing 1 

or system 8 crashv as it is commonly called). Thereforev 

appropriate hard"t>mre need be designed to help in memory mana~:reF-. 

or page turning. 

In an effort to achieve. economic operation of the system 
. -

and implement a good page turning scherneu Denning proposed 

the 'Working Set' model for program behaviour [38]. The 



75 
• 

working set is defined. as the set of pages referenced in time 

t ~ T to t, where time t is the present value of time in 

the execution of the program under consideration and T 

is the 'backward windmv ~, an interval over which program pag~"~ 

referencing·-·history is accumulated. A. page jt;:,ins the working set 

if it is freshly referenced during the interval t~-r to t. A. 

pageu already in the working set, leaves it when it is not 

referenced for T seconds o Pages in the ~rorking set are 

considered 1 holyv and should not be turned out. And programs 

are not considered to be in_ 1ready 0 status unless at least the 

pages i0 th.;; vmrki~g set are in the main memory. 

A quantitative comparison of overhead involved with each 

cf the page turning algorithms is quite possible. Also, it is· 

possible to estimate the size of the routine \F.rhich carries out 

the necessary computation for selecting the pc.ge to be turned oc~. 
"';t' 

for each algorithm. However, the success of the paging algorith:r'_~-

in terms of minimization of page traffic, is depenaent on the 

nature of workload~ Important design parameters of the paging 

, scheme which depend on the workload are the following~ 

(i) The optimal size of <"~. page., a rage should be of 

such size so as to contain effective loops of 

program code so that the control of progr""..m 

does not pass out of the page ton soon o•• this 

reduces the number o£ fresh pages referenced. 
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Again, the pages should be of such a size so 

that the utilization of available space in 

it is a maximum. 

(ii) The magnitude of the 0 backward "vlincbwL·T or 

other like parameters for the corresponding 

algorithms. This parameter gives an indica~ 

tion of the extent of program--execution .. 

history to be maintained. For example, in 

the case of the working set modele if T is 

too small then pages pass out of the working 

set too soon and may have to be recalleCl 

soon .after they have been turned out. 

On the other hand if T is too larger then 

the working set grows too big and the 

memory requirements for the program to be 

in ready status also increases, This 

limits the number of programs that can be 

in main memory and hence imposes some 

restrictions on the number of pros;rams that 

can be executed in a multiprograromed 

fashion at a given timeo 

The fact is that there is not sufficient crtical experience 

in the details of working of systems sporting such features, to 

authoritatively conclude about their performance (in terms of 
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the success of the paging scheme} or determine values for the 

design/parameters mentioned aboveo Experiments in monitoring . 
. paging behaviour ·are now more frequentl~ !:'eported in .lfte:..:a·::u::-·:~ 

;. 

~tatistics about segment sizes have been reported by'Batson · 

et al [ 40] • ·Randell ha$ discussed storage Fragmentation (loss ·: : 

storage utilizat:.on due to segmentation and paging} ·in detaD. . 

[41]. Belady et al have given instances (found by experimentr;) 

in which there is a decrease in running time'of programs as 

a result of decrease in size of main memory [42]! This 01:ly 

tc show how little is understood of program behaviour and :!'lo~'l 

difficult it is· to produce a general monel for it. 

~·-. 

;') 

Finally, a last point of inter.est in connection with p.sqir.. .. . - .. 

schemes. The utilization of the drums .and the transfer pGth 

between them and the main memory should be a maximum. In 

general, the problem here is to sequence the list of page13 J 
•/ 

to be either read out from the drums or written into them so . 

as to make maximum uso of the drums. Denningury ar:alysis :4~:1 

of this aspect (fer a segment turning sche~.:1e ·instead of a .rac,e 

turning scheme) is applicable here. T i!O scheduling algorithr:1s 

have been discussed. The first is th,: FIFO method. Here u 

fresh requests for pages, to be eithe~ read from or written 
.. 

into the drums, are added to the bottom of the list and this. 

queue is serviced by doing the proper operations for the firs~ 
. . . 

page in the list. An obviously better algorithm is the Leas-e 
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Access Time First (LA.TF) method of sequencing the list of 

requests. In the execution of this algorithmv the page 

nearest to th'e drum r,)osition (,o~Tith respect to the read/ 

't~rite heads) is read out or the first empty space is \11ritten 

fnto. It is quite possible that though the drum is utilized 

to a maximum in this mannerr certain pages are not read out 

for a long time o Therefore l' in actual impl.ementation a mixed 

policy may be 'followed. For exampleu if a particular page 

read request is not honoured for a specified quantum of time, 

then it is assigned a priority over other requests and 

immediately serviced. 

The processor allocation problem ha.s by far aroused 

maximum interest and prolific attempts to model this aspect 

is evident in recent literature as indicated in a survey 

of analytical models for time shared computer systems [44]. 

A survey of computer proc~ssor scheduling methods and counter 

measures adopted by users to gain favour of the system has 

been ably presented by Klienrock an0. Coffman [45] o Further r 

a pedagogical notation for a whole range of existing time 

sharing scheduling algorithms ana introduction of a new 

interesting scheduling algorithm is presented by KlEnrock [461 o 

When considering processor allocation algorithms; 

the important issues to be stuciec are~ 

(i) how is the assignment of priority to users 

effected? And 
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(ii) what is the service discipline used in 

selecting users from various priority 

groups for service? 

In answer to the first issue, priorities can be bought (in 

disciplines where bribing is allOlN'ed) or earne·c (by programs 

exhibiting desir~ble characterstics) or neserved (due to 

knowledge about favourable characteristics of program prior 

to execution). Priority disciplines can be classified 

according to the properties listed below~ 

(i) Pre...,.emptive vs non preemptive disciplines 
J • 

(ii) Resume vs restart for preemptive disciplines 

(iii) Source of priority information 

(iv) Time at which priority information becomes known. 

This classification has been proposed by Klienrock and Coffman 

[ 45] • 

·Some. of the commonly found priority scheduling disciplines 

are the FIFO discipline u. the Shortest Job First (SJF) discipli~e r 

the Round Robin (RR) o.iscipline and the multiple level feedback 

(Foreground--Background, FB) discipline. Mostly implemented 

priority disciplines in processor allocation are minor variationr 

or combinations of the above. Greenburger [47] has indicated 

the difficulties in studying,even simple priority disciplines 

analytically. The measures of effectiveness of various 

processor allocation strategies are the system response time 
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for various priority groups (or turn aroundv in other words) ..... . 

and throughput achieved by each of them. 

The FIFO.discib-line has already been explained in 

connection with paging schemes. As it is not any different 

in the case of processor allocation, no further explanation 

is necessaryc Againf here too it is the simplest of the various 

processor allocation algorithms" In all cases, preemptive 

versions of these allocation schemes cause control""to be 

transferred to incorn·ing high priority programs, the running 

low priority·programs are interrupted in the middle of the 

processor time slice allotted to them. ·The SJF scheme causes 

the shortest (in running time) program in 'ready' status to 

be executed next. Such a discipline l-lOUld be particularly 

useful in a batch processing environment in which users can 

be assigned priorities prior to submission of their prograrnsr 

depending on their requirements of processor time. In a 

multiprogrammed time shared environment, user identification 

of type of job w~uld be necessary for effective implementation 

of this scheme. Compared to the FIFO discipline, short jobs 

clearly have higher priority and faster turn around with the 

SJF discipline. Long jobs are seen to suffer long waiting 

times before service. There is no appreciable increase in 

overhead over that incurred in the FIFO queue, due to the 

SJF strategy of operation. Hence throughput is the same 
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for both the FI~O and SJF disciplines. 

The round robin scheme (RR) is also seen to favour short 

jobs and is normally used in time sharing systems. An analysis 

of this scheme for the CTSS operating conditionsr- has been 

presented by Scherr [48]. In this scheme 1 each job is run for 

a fixed quantum of time. If the service of the job is con~pl~te 

l,,rithin this allocated quantum. of time u the job simply leaves the 

system.- Else u it is cycled to the end of a single queue of 

'"aiting jobs that need yet one or more quanta of time for 

completion. It is ·observed that en infinite quantum renders 

the RR scheme equivalent to the FIFO sc~erne. 

As the quantum is reduced to near zero" the available · 

processor time is divided equally amongst all jobs in the system. 

In effect, there will be' no waiting line and all jobs will be 

executed in parallel with an effective speed proportional to 

the n~~ber of jobs in th~ system. 

The FB discipline is a little more intricate than the ~R 

discipline. In the implementation of this scher<.>e, the systeM 

may be vieHed as one ~7i th xnul tiple queue=levels numbered 1 "2 e 3 i' 

'NeN arrivals are put in queue~level 1 and executed for a 

quantum of time as in the !l.R scheMe. A.fter a quantum of service 

. the incomplete jobs are pushed to the~ next higher level. Jobs 

in the higher levE'~ls are taken up only t-.rhen a lm'ler level is 

completely empty. Thou9h the throughput 'lt.ri thout the FB scheme 

is lesser than that obtained 'IIlith the RR scheme~-
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long jobs are not allowed to interfere or delay excessively the 

execution of short jobs. 

This section and the preceding section cover the study.of 

computer systems from the point of view of performance evaluation. 

'I'he material presented should provide the necessary pointers in 

modelling the sy8tem as w·ell as its workload. 

Section 2.3~ Analysis ofworkloaC!_ 

A point of note at large is that there has been a tremendous 

increase in the application of computers to solve problems 

occurring in all forms human endeavour. Computer results are 

therefore increasingly used everywhere. It is indeed alarming to 

see such faith in computer output without really having any theory 

for estimating the reliability with \vhich correct results are 

produced. That is, there is yet no defined procedure in the 

offing, which determines with a measure of confidence that a 

program is well and truly debugged. There have been .efforts to 

produce higher level programming languages (which are universal in 

computation) in. w·hich completeness of logic can be checked out 

[49] and ambiguities in logic that arise in the execution of 

programs can be resolved or pointed out at run time. These are 

indeed very desirable characteristics for programming languages 

and should be emphasised in their design, Programs constitute 

the workload of computer systems. And programs are engineering 

implementations of algorithms developed for solving problems. 
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A pragmatic analysis of algorithms (and hence computer programs) 

should take into consideration the following~ 

(i) The fact that computers lt7ork only i.Yith a finite 

range of numbE~rs in the integer domain (an 

approximate notation for real numbers - the norma­

lised flcating point number notation - is used 

and such numbers can be mapped onto the set of 

integers). Investigations in the theory of 

computation, to produce schemata for representing 

programs, always examine the behaviour of programs 

for all input data possible in order to deduce 

results ·about their properties (for example, will 

the algorithm terminate for all inpuB)" Such an 

effort has lea to some g~neral (but negative) 

results. Like, there is no algorithm to decide 

whether any given algorithm will terminate for 

all inputo Such a result is very useful no doubt 

as it helps in delineating the ~olvable problems 

from the unsolvable problems. In an effort to be 

more positive, attention ha.s. been drawn towards 

finding properties of subclasses of algorithms. 

For example, what is the set of algorithms that 

terminate for all inputs. If something very 

useful has to be said about computer programs, 

the restriction on the set of all input data to 
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the set of nuwbers representable internally in a 

computer (i.e. finite bound on numbers depending 

en memory vwrd size etc) should be: given due 

emphasis in the study of their properties. 

(ii) ti!Triting programs is indeed like making machines 

to automate certain procedures. Therefore a 

great deal of care in their design and analysis of 

problem being solved and procedure for its solution 

is definitely warranted. Moreoverp procedures 

for solution of problems need not be unique" The 

analysis of such procedures, with a view to find 

the range or type of data for vvhich tt-.,_ey are 

applicable and efficient, (in terms of the number 

of steps necssary to arrive at the result} is 

important. So is the comparison of storage 

requirements necessitated by each algorithm. The 

sensitiveness of procedures to input data is all 

the more an intricate problem in the case of 

numerical techniques of solution to the 

problems of classical mathematics. Extensive 

usage of such techniaues blossomed with arrival 

of computers. It is not uncommon to see people 

rush to apply these techniques for solution of 

their problems by using 'ready made' programs 
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without a careful analysis of the effectiveness of 

the technique employed by the program in relation 

to their problem and associated input data. The 

result is an unpleasant tangle with the idiosyncra.sies 

of the computer used. To ilh:strate, nobody would 

knowingl:y use equipment in the range cf operation it 
I 

was not designed fore The effc;cts could be materially 

disastrous, something to which immediate heed is paid. 

Similarly; the result of using a numerical technique 

unsuited for range of data presented by a particular 

case of the problem could be disastrous too. The 

outcome of such usage of computers can be subtle and 

hence unnoticed or just incomp.t·ehensible; in any case 

it is quite dangerous. 

Effecting a transition from algorithms to computer 

programs is an art in itself. In all seriousness; 

computer programming is no tool for a high school 

drop out as is co~~only and sometimes derisively 

opined. It is all the more distressing to note 

disclaimers tagged on to pro~rarr.s distributed by 

U:?er groups e~c which state that the originator 

of the program is not responsible for its malfunction 

for particular types or values of input dat_a, 

but he would be happy if any bugs found in his 

program were com..r.mnicated to him! The user of 
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such programs is expected to conduct his cn;vn analysis 

with whatever information which can be gle~ned from 

the documentation. Programming seems to need ct 

peculi~r acumen which is tmique by itself. 

A seemingly harml~ss algebraic expression could run 

into problems of numerical instability in its compu-

tation for some ranges of data 6 simply due to the 

manner in which the expression is coded in the pro-

gramming languaged used. Being aliVe to these problems 
the 

and being able to \.'lork harmoniously in/ environment of 

the computer cannot be emphasized enough. Efficiency 

of coding is attained by proper factoring and 

sequencing of expressions and terseness in expression 

of logic of the program (for example, involved logic 

can be neatly expressed \vi th the aid of Decision 

Tables). It is to be noted that normally the coding 

of programs imposes limitations other than those 

inherent to tl1e algorithm it implements, which may or 

may not he easily stretched. Examples are~ the 

insensitiveness to accuracy beyond a certain self 

imposed limit, of input data; the accuracy with which 

results are reported; the maximum size of the problem 

that can be tackled etc •. This further restriction, 

either artificial or forced, along-with t.he rest 

already listed, should provide the grounds for 
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an estimate of what can be practically feasible with 

programs. 

The above digression outlines factors to be considered for 

v softv1are evaluation 1 • These ideas have been in the air for. 

sometime. Onlyr there is a need for a massive effort to be 

posi ti vc and to progress in t.his direction. In view of the 

increasingly important role that computers play in day-to-day 

matters, such inw~stigations are essential, Corbato has a.nalysed 

touchy or Sf.:msitive managerial issues in the design devel0pment 

of large software systems [50] • 'I'he success of such efforts 

depends a great deal on the documentation of the software system. 

·He states that the success of CTSS and the development of MULTICS 

at Project JVI..AC was chiefly due to the attention given to this 

problem. In conclusion, the main thing in 'software evaluation' 

is to enforce a quality control and standardisation of programs 

tnat are markettede 

Coming to the main problem to be tackled for computer system 

performance evaluation purposes, static and dynamic characterizatioD 

of workload has to be done to this end. Tr<::ditionally, static 

characterisation of programs is achieved by use of flow graphs or 

directed graphs or connectivity matrices and so on. For a 
• 

great part, these schemata try to portray the logic of the 
' 

program and computations which affect the logico Investigations 

regarding equivalence of programs naturally need a formalism 

with which the detailed nature of computations made by the program 
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can also be specified. For the purposes of perforrriarice evaluation; 

the static characterisation of workload should portray the followinr 

(i) ~ontrol logic of the proqram~ For this purpose, th~ 

schemata already available should suffice. Information 

that can be obtained from this represfmtation of programs 

is useful in properly segmenting them with a view to 

retain control within each segment for the maximum 

possible time in a pass through the programo A point 

of note is that this information can be readily obtained 

from the translation stage 0 As the intetest is in 

characterising a workload rather than individual programs, 

a statistical measure for this aspect of programs that 

constitute the workload is necessary. To this end, 

let a be:~ the number segmen'!=s in a program. Then f (a) 

gives the probability distribution function for initial 

segments in programs anq E(a ) gives the mean. 

· (ii) The size of static programs: This is an indication of 

the initial size of segments of a program prier to its 

execution. The size can be expressed in terms of the 

basic unit of storage in the main memory (bytes, for 

example).· $t.q.tistics about this information can be 

collected during the translation phase. Two factors 

contribute to the initial size of programs~ One is 

the program code "t<7hich is norm<!lly fixed in size, 

even during thsir execution. And the second is the 
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arnotmt-of data area and its associated data structures 

\vhich need not be fixeq and can grow during the execution 

phase of programs, In such a situation, an~ effort to 

separate program code and data area and assign them to 

different segments can be expected. Therefore, let S 

be the S8gment size and f(S) and E(S) give the prob.a-

bility distribution functicn of (3 end its mean respectively. 
are 

(iii) I/O requests~ Two static gualities;of interest hereo 

The first is the nur~er of logical I/O files a program 

uses ( < input file? maximum input records >,< output 

file, maximum output records> , < work file 1, oo records> 

< work file 2,ro records > - the use of work files 

may be obliterated by use of segmentation and paging 

techniques and is included here.only for the sake of 

generality) and second is the buffering technique 

employed (<access method, buffering scheme>-· the valid 

combinations were indicated in the preceding section) 

Let ~ and v be the number of I/O files and buffering 

techniques used respectively. Then, f(~), E(~), f{v) ,f(v) 

provide the necessary statistical-measures. It must 

be noted that similar measures are necessary for the 

values of maximum input and output records for the 

input and output files. 
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(iv) Nature of computation: This perhaps is the most difficult 

parameter to characterise as already seen in section 2.1. 

For the present purpose, a finite set ~· of parameterised 

kernels will sufficeo Generalisations at this stage 

being -1-:.~ .. ntamount impossible, this will be an initial 

limitation to work with. Let 9 be the kernels used by 

a progr&"TT; so that ¢ C ¢' • 

A macroscopic description of a program i is given 

by the sequence of job steps or tasks Xi= Xil'Xi2' xi3t••c 

required to service its job request. In the case of 

batch processing systems, this sequence could be something 

like- compile routine 1, compile routine 2, .•• 1 load 

program, execute. In the case of time sharing interactive 

systems, each user request may be just one job step. 

The sequence in which job steps are executed is of course 

important for the proper execution of the job. Each 

job step is characterised· by the static attributes of 

programs that have been discussed so far and other 

static and dynamic attributes yet to be discussed. The 

sequence of job steps required by a job can be obtained 

from the transition matrix D. whose elements Oij indicate 

the probability of job step j following job step i. 

6 is therefore a characterisation of the nature workload 

in a gross sense. The starting step is always the same. 
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Lastly, let t be the user's estimate of time 

needed to service him. l;.nd so f (;;:) is the stai;istical 

measure for this attribute of the incoming program. 

To summer.izer the static characterisation of a program is givet 

by the 7 tu.ple. <a, S; ll, v, <P, ')( r ?:; >. And the workload is 

characterised by probability distributions ofa,B,u,v,s and the 

set <P' and the transition matrix IJ. It vmuld be providentia~ 

if the dynamic char.?.cterisation of the workload could be obtained 

from the static model. However, this is not the case at present 

and therefore the dynamic behaviour of ths workload must be 

considered in detail. 

Dynamic attributes of programs, important for a dynamic model 

of the workload are~ 

(i) page trace of programs 

(ii) density of I/O requests and the volume of 
I/O traffic 

{iii) processor time for completion. 

It roust be noted that these processes have to be tied down 

in the time scale of program executicn. 

The notation used here for the addressing patterri in terms 

of the pages referenced in time {page trace) by program i is 

adapted from the. one developed by Gecsei et al [39]. Let 0 

represent the page trace generated by a program so that 

Gi = 9il 6i2, 8i3, ..• , Bitr where eil is the page referenced 

at progra~ execution time t=l and is drawn from the initial 
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set of pages in the program. The initial set of pages in the 

program has a magnitude of [ai x ~i1/k, where k is the page 

size specified as a nurr~er of basic storage units ~f main memory 

and ai,Bi arc obtained from static characteristics. This 

number may or may not grow depending on the dynamic storage 

requirements of the program, a phenomon which can be statistically 

described if the need arises. For the present, the storage 

requjrements magnitude-wise of a program will be assumed to be 

static. Therefore Bit here is the page referenced at time t 

in the execution of the program and is drav.m from the set of 

pages defined earlier. 

Dynamic attributes of input-output requests of program i 

are: 

{i) the I/O file selected for use 

{ii) type of operation (read, write, control); and 

{iii) the magnitude of the request· (number of characters 
transferred etc) . 

To this end, let Qi be the logical I/O request trace of 

program i. So sti = wil' wi2 , ... where wi's are the I/O 

requests of program i and the second subscript is just the 

sequence number of the request. The definition of Win is 

given by the ordered triple < Pin' oin' Ein >, where Pin 

is the I/O file selected by the request and oin is the type 

of operation (control/transfer) and Ein magnitude of 

information transfer. Of these, Pin is drawn from v 
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(using an appropriate discrete probability function which 

characterizes this dynamic behaviour of ~rograrn i), ain is 

given a value of 0 (depends on the probability of a control 

operation) or 1 _(depends on the probability of an inforrnatibn 

transfer operation) and sin is given value from a. probability 

distribution of the length cf I/0 requests, 

It is very difficult to char<J.cterise the dynamic nature 

of computation done by the CPU. The normal trend has been 

to concentrate more on the amount of CPU time a program needs. 

Statistical description of this factor is given by f(~) where 

~ is the CPU time required by the program. An exponential 

distribution of ~ is not unusual especially bGcause short jobs 

are accorded priority in most processor scheduling algorithms. 

Another important factor is the arrival pattern of job requests. 

Let Y be the inter arrival time of jobs and hence f(Y) characteri­

ses this aspect of the workload. 

At this stage, it is necessary to tie down page referencing 

and I/O request generation with the central processor executir,n 

of programs. Page traces can be generated from a transition 

matrix ':f' i whose elements lVl.j give the proba.bili ty of page 1 

referencing page j. Associated with this matrix is a vector 

ni whose elements TiirCrranging over the set of pages [ai x Bill 

k) give the expected time (per unit} for \!lhich program control 

remains within that pageo That is to say, ~ 1r ir = 1 and 

Tiir ~ 1 for all r. For every instructicn executed while the 
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program control remains within a page (ioe. for page r, the 

fraction .,., ('{': 
"~r ~·.·-

the pasc references can 

be obtained from the 2.ppropria.te row in the transition matrix. 

In the case of I/O requests, it is much easier to put 

their occurrence in progrc~ execution time. Intervals of 

processing are followed by I/O requests. Inter arrival time 

of I/O request, say )d, i characterised by the probability 

distribution function f (A. i) < 

The dynamic model of workload explained above.is still 

Gr.ude and needs much more .refipemcnt. The chief attempt in 
' I • . • .' ' .~· -

the.model is to P\lt together sever.al processes that character-

ise program behaviour. This is in contrast to the general 

approach of studying one feature of the computer system at 

a time so that oniy one feature of program behaviour need be 

modelled at a time. 

Instead of charact.erising the whole workload of the 

system in the manner presented here it would be more fruitful 

to characterise user workload and the \vorkload formed by 

system programs separately. The usefulness of this approach 

would be in determining the overheads incurred. Also, system 

programs {which are executed in response to the job steps 

specified or depending on the logic of system operation) are 

peculiar in· themselves and such a characterisation would 

help in understanding their need for computer resources. 



95 

Some of the ideas used here in characterising the workload are 

taken from already available literature [37, 38, 39r 40, 43, 

47, 48]. But it is difficult to ascribe motivations for various 

aspects in the characterisation to particular works seen in it. 

This is because· of an attempt to take a very general stand in 

modelling all of the workload. 

Section 234: Conclusions 

In this chapter; critical analysis of various resources 

of computer systems and various processes that occur in the 

operation of the system are first presented. These analyses 

culminate in an attempt towards a proposal for. a methodology 

for quantification of \'lOrkload of computer systems. As the 

problem of performance evaluation necessitates the development 

of techniques to relate the demands of the workload to the 

capabilities of the system, models for computer systems should 

be developed. 

A tutorial survey of analytical models for computer 

systems is presented by Radhakrishnan et al [51]. One thing 

stands out as a result of this survey. All these models 

portray just one of the many processes that characterise 

system behaviour. Hence any inter relations between these 

processes are just ignored. One of the outcomes of such 

procedures of analysis is the comparison of several 

techniques of management for some of these processes. However, 
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proper prediction of system behaviour. is, ;-,-)t possible with the 

aid of these models as the inter relations mentioned are not 

taken care of. 

A static and dynamic model for system beho.viour can in 

principle be specified with the help of all b;e information 

given in sections 2.1 and 2.2. Section 2.3 helps in indicating 

the detail c..f the·model. As the logic of system operation 

{and hence the dynamic behaviour of the system} is very 

intricate, decision tables could be used in specifying it. 

Besides aiding in a concise arid cogent presentation of the 

logic, this techniq~e proves very useful in checking out its 

completeness. The complexity of the model.makes already 

available analytical techniques of queuing theory and 

Markov models {these are the most commonly found techniques 

used in th~ modelling of computer systems) quite insufficient 

in handling the problem. Simulation techniques, explained 

in the next chapter, are the only other available tools. 

Even here, the extreme det.ail of the mod(:;l makes the use of 

simulation techniques inadequate. 

The main point is: in the exec,ution of a program, other 

things like page referencing and I/0 requests also occuro 

In view of this, is it justifiable to allocate processor time 

to a program without any reg-ard to the other phenomena? 

Denning has made a beginning with his 'working set' model 
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for program behavicur which accounts for page referencing in 

program execution time, This concept should also be extended 

to include I/O behaviour of a program. 



CHAPTER III 

. 
SIIviULATION TECHNIQUES FOR COIY1PUTER SYSTEN EVALUATION 

Section 3.1~ Introduction 

Simulation techniques can be broadly divided into two 

classes. Each class is characterised by the type of system 

being simulated e The bvo classes of systems are the ~ass 

of·continuous time systems and the class of discrete time 

systems. Computer systems belong to the latter category~ and 

therefore, only the techniques for simulating discrete time 

systems are considered in this chapter. In general simulation 

problems are characterised as being mathematically intractable 

and having resisted solution by analytic means for a long 

time. Simulation techniques can no longer be considered as 

last-resort techniques for studying any system. In fact 

they have come to be the only techniques available for studying 

large behavioural systems in all complexity. In the ensuing 

discourse 'systems' will be understood to mean discrete time 

systems and 'simulation~ to mean simulation of discrete time 

systems. 

Discrete time systems are idealised as network flow 

systems that are characterised by the following: 

(i) the system consists of ccomponents' or 

1 elements' each of which performs a 

prescribed function; 

98 
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(ii)interconnections between various components 

are specified, giving a 'structure' to the 

system; 

(iii) 'items 1 ·flow through the system from one 

component to another requiring the performance 

of a function (service) at a component 

(facility) before the item can move to the 

next component; 

(iv) the structure of the system governs the flow 

1 of items; 

(v) the components have a finite capacity to 

process items and therefore items have to 

wait in 'queues' before reaching a component. 

Normally, the objectives of stodyin~ discrete systems are 

to study the steady state capacity of the system. For example, 

consider a simple single server queuing process. The server 

is a system 'component', the customers waiting to be served are 

'i terns' that flmv through the system and the queue discipline 

is 'first in first out' (FIFO). Given an arrival pattern for 

the customers and the service time distribution for the server, 

the steady state server busy period distribution and the 

customer waiting time distribution and the queue length 

distribution are to be obtained. 

A simulation study of this type mostly deals with 

keeping track of where individual items are at any particular 
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instant of time; moving them from queues to components, 

timing them for processing r.y components and removing 

processed · i terns to ether que .:s. The result of a 

simulation v run' is a set of stc:.tistics describing the 

behaviour of ·the system over simulated time. 

The study of complex behavioural systems, using 

techniqu~?s as outlined above, has become feasible only due 

to the advent of large digital computers. Therefore a 

large class of users are motivated to obtain solutions to 

problems hitherto untried or solved unsatisfactorily 

after making gross simplifying assumptions. The computations 

and other manipulations needed for simulation work being quite 

different from those required by 'scientific' computations 

or business data processing applications, a new set of 

languages tailored for programming simulation problems have 

been invented. 

Section 3.2: Introduction to simulation languages 

Before discussing and comparing some simulation languages, 

an introduction to various terms and concepts used in simulation 

is in order" When simulating discrete time systems [52), the 

operations of the system -are considered at discrete points in 

time. These discrete points in time are called 'events' in 

simulation parlance. In the framework of systems presented 

earlier, as ne'b1qrk flow systems, events occur when an i tern 
. . 

leaves a bomponeil.t 'h'aving been processed by it or when an i tern 
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joins a queue at a component or when a component starts 

processing a fresh item. The time intervals between events 

are called 'activities'. The occurrence of a event changes 

the 'status' of the system at a discrete point in time. The 

system is enclosed within a 'boundary.i and. all that is outside 

· the boundary is called the 'environment 1 
• The environment 

can influence the system but the system cannot influence or 

alter the environment in any way. 

The simulated system is a collection of 'entities', 

'attributes of entities' and 'sets or files of entities' 

[53]. Any type of unit independently identified in the 

system is called an 'entity~. The server in a queueing 

process is an entity. However, he is present throughout the 

simulated time of the system and hence such entities are 

termed 'permanent entities'. The customer who waits in a queue 

and departs when serviced is a 'temporary entity' as 

information about him need not be retained once he is served. 

Each type of entity is in turn described by 'attributes'~ 

The attributes of a server can be the time he takes to service 

a customer. The attributes of a customer can bo the time of 

his arrival and the priority he wields over others in queue. 

The 'status description' of a simulated system may comprise 

of any number of entities or even many entities of the same 

type. Entities are said to be of the same type if their 

attribute names are identical; the values of the attributes can 
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be different. Inter relation between entities may be 

depicted in the status description by grouping entities of 

the same type into 'sets; or 'files'. 

A simulation run is said to terminate or come to a finish 

when the system assumes or arrives at a particular status 

description or the simulation lasts a predetermined period 

of simulated time. For a more complete discussion and 

illustrative examples to explain various terms, concepts and 

techniques for conducting a simulation study using digital 

computers, one is referred to introductory texts and programming 

manuals of SIMSCRIPT, GPSS III and GASP [53, 54, 52]. Further 

work on on line simulation languages is given by Greenbur.ger 

[55] and Buxton [56]. 

An excellent survey and comparison of simulation 

languages is given by Teichreow and Lubin [57]. As GPSS III 

and GASP II A are the only simulation packages implemented at 

IIT-K, some details, observations and criticisms are given 

here. 

GASP'is an acronym for General Academic Simulation 

Program. GASP II }\ is not a simulation language. It is a 

set of FORTRAN subroutines which afford the user a basic set 

of functions needed to accomplish computer simulation of any 

discrete time system. Simulation in GASP is essentially an 

event based study of the simulated system. By this is meant 

that the simulation of any system is achieved by scheduling 
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some sequence of events in simulated time. The GASP user, 

who really progra~s in FORTRAN, is expected to generate or 

supply the event schedule and collect statistics about the 

system status description at points of his interest. Therefore, 

the GASP user is expected to know a great deal about the basic 

functions provided by GASP and also about the system he simulates. 

As the level of programming a simulation model in GASP is low, 

the user is also given a great deal of flexibility in building 

the simulation model. For instance; FIFO and LIFO queue 

disciplines are natural when using GASP and priorities in 

queue disciplines are very easy to handle. Markov processes 

can be directly simulated. Besides queuing problems, PERT and 

CPM networks and inventory systems can also be simulated with 

the help of basic functions provided by GASP. Any GASP function 

can be altered by the user to suit his special needs. 

The timing mechanism in the executive routine of GASP 

directly advances simulated time to the time the next event is 

scheduled to occur. The fact that only one event is examined 

at any point in time makes the GASP simulation technique 

conceptually simple. That is, no attempt is made to retain 

any of the inherent parallelism in the system being simulated; 

computations required at each event time are done in a sequential 

fashion. If two events happen to occur at the same point in 

simulated time, computations required for each event are done 

one after another in the order scheduled by the user. 
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Facilities to initialise a system model and conduct multiple 

runs for a model are available. As all programming by the 

user is done in FORTRANu the user can build the simulation 

model in a parametric fashion and study the sensitivity of the 

system tc change in certain parameters without any reprogramming 

effort. Ho\omver, even to simulate a simple queuing situation, 

the GASP user has to become very familiar with most basic 

functions of GASP. This seems to be the main drawback in GASP. 

· GPSS III on the'other hand is a higher level language for 

simulation work and is highly adapted to modelling of queuing 

situations. When using GPSS, models for systems are constructed 

as flow diagrams using standard GPSS III 'blocks'. Coding 

GPSS programs is done by simply transcribing the blocks·in the 

flow diagrmm in a sequential manner. Parallel paths in the flow 

diagram are ~dentified by labels in the code produced. Items, 

called ~transactions' in GPSS terminology, can be created and 

. destroyed by the user and 1 flow' through the model from block 

to block as specified by the flow diagram. Certain blocks, 

like QUEUE, DEPARTe SEIZE etc.r are event blocks and change 

the status of the simulated ~rJorld whenever transactions flow 

through them. Statistics ru>out transactions, as they enter and 

leave such blocks, are automatically kept by GPSS. So are 

statistics for the behaviour of permanent entities, in GPSS 

III these are blocks of the form FACILITYP SAVEVALUE etc. An 

irksome feature of GPSS III is that no computation can be done 
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at all unless a transaction flows through some block. The 

shortest operation performed in the simulated system is 

considered as a unit interval in simulated time and all ·times 

for other operations ·are expressed in terms of this unit. 

This is a cumbersome artifice a GPSS user has to put up with. 

As in GASPr GPSS updates simulated time to the time of the 

next most irr~inent event. 

To simulate the flow of tr2nsactions through the system 

' model, transactions are grouped together in different 'chains'. 

The 'current events chain' holds transactions in 'active scan 

status' or 'delay scan status'. The overall GPSS scan routine 

will always try to move transactions in active scan status· 

into some block as dictated by the logic of the model. The 

'future events chain' holds transactions being processed by 

a FACILITY block or any of its like" The user can control 

transactions by entering or removing them from a 'user chain'. 

GPSS III simulation is carried out on an interpretive basis 

and hence is slmv. 

Both GASP II A and GPSS III have built in trace features 

and this aids in debugging programs. In both programming 

systems, modelling of large and complex .systems is equally 

difficult. 

Section 3.3~ Motivation for simulation of computer systems 

Simulation of computer systems with a view to assess 

their performance is not at all a new phenomenon. Neilson ~8] 

gives a brief history and account of use of simulation techniques 
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to study computer systems. However, this information needs 

to be updated as much work has been done in this area since 

his survey. 

One of the earliest usages of comput.er systems to simu-

late computer systems was to check out the logical design of 

large digital systems and compare several logical designs of 

large digital systems. The need for simulation arose from 

the inadequacy of available analytical procedures to deal with 

digital systems of such magnitude. This sort of work was 

mainly done by the manufacturers of computer systems. The 

technique proved useful enough to warrant the design of 

special purpose computer languages for easy specification of 

such problems 59]. An example of such a language mentioned 

by Neilson is LOCS, an acronym for Logic and Con·trol Simulation. 

Soon enough,- computer applications outgrew the capacity 

and capability of existing computer systems. Design of large 

computer systems with special hardwareg for local and non local 

concurrency in operation, was contemplated ~0]. As no great 

technological acvance was forthcoming, the break through carne 

when new logical organisations for computer systems were 

proposed. Detailed design of several system components was not 

possible till a ~umber of system criteria were established. 

The complexity of the system made analytical studies difficult. 

Trade off factors for arithmetic speeds, instruction unit speeds, 

memory speeds and many other parameters had to be established. 
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To determine the effectiveness of hardware features introduced; 

timing simul~ tion programs. were \'lri tten. 

The input to the timing simulation programs were typical 

instruction streams represent~ng projected applications of 

that time. The timing si]Hillator did not actually execute 
/ 

instructions in the arithmetic sense, but timed the eeecution 

of instructions by the proposed logical organisation. The 

output of the program was the total time t?ken by the proposed 

system to complete the given tasks. Bucholz ~0], in his 

lucid account of the design of Project Stretchv shows how such 

simulation programs were used to fix up various design parameters 

of the system. The most interesting results are the relation-

ships obtained between the various parameters with respect to 

computer speed. 

Upto this stage in the development of computersv the 

only yardstick for measuring performance of computer ~ystems was 

the capability of their 'hardware resources 1 to meet the demand 

of typical and projected applications of the d.ay. The.term 

'hardware resources 0 refers to the computational power of the 

CPU and the effectiveness·of overlap between I/O operations 

and computation by CPU. In most simulation experiments, as 

in those conducted for Project Stretch, the computational power 

of the CPU was the only factor examined" Even so, timing 

simulation techniques were resorted to for lack of any 

s'\lhstantially better tool than an instruction mix. 
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The only simulation rnode1 seen in literature which attempts 

to study the second factor mentioned above is a simulation 

program called SCERT. It is considered to be an improvement 

over the benchmark approacp to computer evaluation. SCERT, 

an acronym for System and Computer Evaluation and Review 

Technique, is a product of Cornress Incorporatedu of Washington 

DC, and like benchmarks it is the brain child of a firm of 

computer consultants. The result is that very little is known 

about SCERT except that it is a five phase program which 

expects a very detailed description of user workload and the 

computer system of interest from the user. In. the long list 

of things SCERT can do for a prospective customer of the 

computermarket, there is a claim that, for a specified workloadg 

it can evaluate configurations of any given system [6l]. It is 

contended here that the input information to the program about 

I/O load is insufficient ·for configuration evaluation purposes. 

Discussion of this point is held over a later chapter. 

~Jith the arrival of operating systems,. ideas about computer 

system evaluation have chc>.ngec1. considerably. The computer 

system., as seen by a user r is no longer just a piece of hardl.AJare 

but an integrated system of hardware and. software resources, 

. The resource. allocation problem alongwi.th the interrupt system 

made the behaviour of computer systems very complicated. As 

a result even puilding of simulation models has become a very 

difficult task; perhaps as difficult as building the 
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operating system itselfo The difficulties faced in modelling 

and simulating multi-access multi-processor computer systems 

is given in a later section. 

Analytical models attempted range from simple Markov models 

for batch processing systems to multi server multi queue models 

for time shared multi processor computer systems. Some of these 

models have proved to be quite accurate in their prec.ictions 

about the behaviour of the system modelled. Host analytical 

models are constructible only after simplifying assumptions 

are made about the actual system. This is deemed necessary 

as mathematical analysis is not possible otherwise. Also, 

due to the complexity of the system,, the detail is lacking 

in the models. All these factors lead to the conclusion that 

simulation techniques; albeit expensiveff are the only tools 

available presently for studying large and complex behavioural 

systems like the third generation computer systems. 

Section 3.4~ Classification scheme for various simulation models 

The variety and number of simulation experiments reported 

in recent literature are numerous. A classification scheme is 

proposed here so that a uniform appraisal of this work is 

possible. Before explaining the classification schemef an 

analysis of fentures of computer systems which yield dividem.s 

in terms of improved performance \vhen studied ~!'lith the help 

of·simulation models~ is considered. 
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The management of computer systems can be considered 

akin to a traffic control problemo It is the '''ork of the 

operating system assisted by appropriate hardware features 

to deal with various traffic congestion problems that exist 

'"ithin a computer systemo Such circumstances are seen to 

stem from two basic aspects of computer systems. The first 

aspect is the fact that there are inherent speed mismatches 

between various components of the computer systems. The 

second aspect is.tha.t the operating system gives the user a 

logical environment within v1hich he may conduct his work 

and this environment transcends any of the actual physical 

bounds of the system itself. 

The design of some features of hardware and software for 

any computer system partly depends on the various schemes 

built into the system lr.Thich try to bridge the speed mismatches 

or shield the user from the physical nature of the system. 

For example u the ~/0 managerial routines •vhich are a part of 

every executive or supervisor of any operating systemu shield 

the user from the actual nature of the configuration and. the 

physical characteristics of the I/O device that he might 

chance to use ci.uring the course of his computation. These 

routines also attempt to make much us~?. of the parallelism 

bebwen I/O operations and CPU computations by queuing I/O 

operations and servicing them as and vJhen the data paths 

to the I/O device are free. In shortu these routines 
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offer a logical environment for programming I/O operations 

and try to bridge the memory speed I/0 speed mismatch. · Mother 

example could be the dynamic storage ~!location feature of the 

operating system. The user is given a very large virtual 

memory for his programs. Real core memory space is allocated 

to him as and \\Then his program. needs it. These operations are 

transparent to the user. 

The point made is, the improvement in speed of components 

due to technological advances is nearing a saturation and 

so are their physical capacities. Therefore most improvement 

in performance has been brought about by better and more 

flexible ways of interconnecting these components and attempting 

to make progr~ming as independant of physical boundaries 

of the system as possible. It follows naturally that most 

sJmulation experiments have been directed towards examining 

logical organisations within the system ~.rhich attempt to 

bridge speed mismatches or shield the user from physical 

boundaries of the system. 

~1ost simulation experiments can be classified under the 

following categories" The simulation models study 

(i) schemes v,rhich bricl.ge the CPU speed ~ main 

memory speed mismatch, 

. {ii) scherces which bridge the memory speed -

I/O speed mismatch, 

(iii) schemes which bridge the user arrival rate -

computer system service rate mismatch, 



112 

(iv) schemes -which offer the user a large 

virtual mernoryo 

As mentioned· earlierr the number of simulation experiments 

reported in recent literature is very large and scattered over 

a wide range of technical and non·=t;.echnical journals o As it 

is not possible to collect and classify all of them, only a 

few successful simulation models are given here as examples 

of ·each category" 

The first category~ aimed at the CPU ., core memory mismatchr 

consists of simulation studies which examine closely the following 

type of logical organisationso System parameters studied by 

the models and the input and output information of simulation 

programs for them are cited against each casen. 

(i) Partitioning the main memory into blocks and 

interleaving addresses (consecutive) between 

them could be one strategy for reducing the 

speed gapo Simulation models for studying 

such logical organisations have tried to study 

system ~arameters like the b locksize and 

number of blocksr speed of main memory and the 

way instructions and data t>hould be distributed 

in the main memory so as to make the most 

effective use of such strategieso Input to 

simulation programs for studying such logical 
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organisations is a dynamic instruction 

trace of typical programs and information 

B~out the data storage allocation 

techniques used by language translator 

\'lhich nroduced the obiect code for them. 
1. ~ 

The output of thc3 proc;:rram could be the 

computer speed as 0 function of each of 

the system parameters beinq examined. 

This could help in fixing up values for 

each of these parameters [60]" 

(ii) Another strategy could be to interpose a 

fast 'scratchpad' memory between the 

CPU and main memory. Parameters of design 

studied by simulation models for such a 

scheme [62] are the size of the scratchpad 

memory and the algorithm used for loading 

this scratchpad. Ini~ial work for conduct-

ing a simulation study of this type is to 

obtain a dynarrdc trace of typical programs 

\vhich form the vJOrkloc>.c': and analysis of 

loops in these programs. The outcome of such 

a study could be the optimum size of the 

scratchpad and the best replacement 

algorithm. 
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(iii) An extension of the above strategy could be 

an increase in the size of the scratchpad so 

that it is comparable to·a block of main 

memory. P...n example of such em organisation is 
~i.M 

the"System/360 r1odel 85 which has a v cache 0 

memory of 16K bytes and a 80 nano second 

cycle. Simulation techniques were used to 

determine the size of cache, choice of replace-

ment algorithms [63] and improvement in 

performance [64]. An interesting result was 

that the performance of a system with this 

cache memory was 80 percent of a system with 

a large main memory of 80 nano seconds. 

· Most work on study of such schemes is reported under the 

study of memory hierarchy. 

The main memory ~ I/O operation speed mismatch and 

schemes devised to get around this problem have hardly been 

studied by simulation techniques. This fact does not 

undermine the importance of the problem as such schemes could 

direct~y affect the total CPU idle time. The main steps 

taken to reduce the effect of this m~smatch are to use buffering 

schemes provided by the I/O managerial routines of the 

executive and overlapped data channels. The problem posed 

is; hm-v to use such features most effectively? So far p all 

that has been done is to provide such features and hope for 
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the best. A. more detailec~ look at this problem is given 

in a later chapter. 
/ 

The effects of the third category, the user arrival rate 

computer system service rate mismatch, are reduced by the 

introduction of multi programming and P:t;"iority levels of users 

for the conventional batch processing systems. Ideas of time 

sharing and multi processing recuce the effects of this mis­

match even more. Simulation studies of such features have 

tried to compare the task or job scheduling algorithms. For 

example, Scherr [48] has tried to compare the CTSS scheduling 

algorithm with the round robin scheduling algorithm. Saltzer 

[16] has considered the allocation of processor resources as a. 

traffic control problem. Priority assignment to users, 

shortest job next for exampleu and its effect on the response 

and service time for each priority class has. also been stuo.ied. 

tfuen .considering the implementation of the dynamic storage 

allocation feature by the operating system, t\-10 scheduling 

problems are evident. The first one Cleals Nith the following 

decision problem~ what page or segment in main memory should 

be turned out next and dispatched to the drums or disks? The 

second scheduling problem is 1 given the pages or segments to 

be brought into main memory from the dr~s or disks, find 

the sequence i.AThich makes the best _use of the drums or the 

disks. The fourth category deals with the above problem.s c 
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Simulation \'17ork on this problem has been mainly· directed 

tmvards finding the best algorithm for page turning or segrr.-r"r:t 

turning. 

The problems of allocation of main memory space and 

processors have been linked ~gether by Denning [38] • .. 
Infonnation about the workload, required by simulation model 

~ for simulating these aspects of the system, is of the following 

type. Inter arrival time distribution of jobs or requests 

for each priority class, probability distribution of time 

required to service jobs or requests from each priority class an{ 

storage requirements by jobs or requests are. the necessary 

pieces of information for conducting such experiments. 

For more examples of simulation experimentsr one is 

referred to Bucholz 1 a bibliography on computer system 

evaluation [65]. 

At this juncture; it is noted that each of the indicated 

class of simulation models, examines the behaviour of computer 

systems at one particular level of detail. To amplify; the 

behaviour of the computer system is not studied in its 

entirety but what is examined is the manner in which each of 

• 

the several aspects of computer systems affects the performance 

of the CPU or the system as a whole. 

There have been a few attempts to study a complex 

time sharing system like the IBH System/360 ~·1odel 67 in 

great detail [37 , 66 ] . Here too the effect of I/O load 
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created directly by the user have not been examined. Inspite 

of this simplification there are numerous difficulties in 

modelling such systems and the next section is devoted to a 

brief discussion of problems with such simulation models and 

program difficulties that arise in them. 

Section 3.5~ Difficulties in simulating multi ~rocesso~ 
systems 

In the precedin9 section f it v-1as shown that simulation 

experiments restricted themselves to a single aspect of 

computer systems at a time and determined its effect on system 

performance. Interplay between various aspects and their 

combined effect on system performance could not be studied. 

The interest in simulating systems in great detail is' to 

find out such results. 

Conventionally, the resource allocation or resource 

management problem in computer systems has been conveniently 

analysed as extensions of the job shop techniques. In a job 

shop, jobs arrive and are split into smaller tasks which 

compete for resources (machines in the job shop). The problem 

is to schedule operations so as to resolve conflicts for 

resources in the best wayo 

Computer systems differ from job shops in the 

following way. 
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(i) In a job shop~ the resource allocation is done 

by an external agent; e.g. the shop manager. 

In computer systems the resource management 

problem is tackled by the operating system 

which itself competes for the system resources 

like processor and main memory etc. The time 

required for performing these functions is 

significant for system performance purposese 

-This time constitutes the 'overheads 9 in opera­

ting the system as no useful user load is served 

during this time. 

(ii) Norraally, jobs or tasks in a job shop are 

non interruptible once they are being 

serviced by a system component,. In other 

wordsu they seize complete control of a 

system resource once they have captured it. 

The system resource is released only on 

completion of the task. This is not so in 

computer systems simply because of the 

flexible interrupt system that is provided 

with the present day systems. 

(iii) The attributes of a job shop are fmv and 

are easily describable. In the case of 

computer systems howeverv description 

of the -vmrkload in terms of typical programs 
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and detailed description of these programs 

in terms of the resources required to execute 

it is by no means a simple thing. 

It is evident that computer systems cannot be studied 

in the same way a job shop is analysed. The necessity to 

examine the dGtail and also the higher level activities of 

computer systems have given rise to some problems in simulating 

such systems. The coming of multi processor systems have 

added a new dimension to the complexity of the behaviour of the 

system. This is du·e to the increase in parallel activity 

in the system and possible relationship between activity of 

various processors. 

Hutchinson fu7l points out three main difficulties in 

simulating computer systems. These problems are more acute in 

the case of multi processor computer systems. 

(i) The first difficulty is the degradation of 

ability to differentiate between time of 

occurrence of successive events. This 

point needs some clarification. The 

detc.il of the experiraent dictates the 

smallest unit of time by which the 

simulated time is updated. This unit of 

time may be looked upon as the time 

required by the smallest activity in the 

system. At the end of this activity an 



120 

event is scheduled tc occur. This is 

achieved by placing in the event schedule 

a code for this particular event. An 

attribute of this event is the time it 

occurs. This is obtained by adding to the 

present value of simulated time the time 

required for completion of this uctivity" 

The danger in doing this is that if 

the simulation has been in progress for quite· 

some time 1 the addition of a small amount of 

time to schedule the occurrence of another 

event may make no difference to the sum. 

The smallest unit of time which a simulation 

program can use is therefore dependent on 

the word size of the computer system being 

used and th~ format for storing floating point 

data. This problem is therefore a technological 

problem and decreases with increase in word size 

of the computer system usee.. 

(ii) The second difficulty faced in simulating 

computer systems is the occurrence of simulta­

neous events. This problem can become more 

severe as a direct consequence of the point 

made earlier. Such occurrence of events can 

cause logical problems. This is due to the 
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fact the,t most simul2.tion langua.ges do not 

consider such situationso For example; both 

GASP and sn·1SCRIPT store the event schedule 

in a linear list. The list. is ordered accor~-

ing to the time of occurrence of events. If 

twc events happen to occur at the same timer 

one of them takes precedence over the other 

depending on the logic used by the prograrn 

which updates the event schedule. In 

simulating the system, events are taken up 

one at a .time and hence any time relation 

between two simultaneous events is lost. 

Due to the first difficulty pointed outu it 

may not be even possible to decide if bm 

events in the event schedule hc:.ving the same 

time of occurrence are really simultaneous 

or a consequence of degradation of the 

master clock resolution. 

(iii) Another major difficul·ty with simulation of 

computer systems in great detail is the 

representation of ~·mrkload. Some of the 

requirements in characterising the user are 

proper depiction of parallelism in user 

programs· and machine independence in 

specifying the various acti~itics in the 

v70rkload. 
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Due to the unsatisfa~tory c:evelopment of simulation" 

techniques and lan9uages to c1eal ''vi th problems posed 1 

Hutchinson observes that the r.:ast successful simulation study of 

multi processor computer systems 'l.v<1S pro']"rammed in FORTRAN 

[ 37] ! This progrcJ>J 6.c~c'1.1S FiU1 ti1e simulc.tion of IBI>·: System/ 

360 r'iodel 6 7 0 SH1SCRIPT a.r:d GPSS 360 he.ve also been us en to 

study some multi processor c0mput.e~c syster!'S [66 9 68], but 

have proved to be expensive in co~puter time" For example, 

a one minute simulation Of rm,~ 90~-0, prog~arnirrcd in GPSS 360, 

took around 30 minutes on an· IBr5 .System/3-60 r~odel 50. 

Inferences; about system perform2nce over long periods of 

operation, drm"ln from the informa.:.ion obtained from such 

simula.tion studies 21re quite que2-tionable 0 

It is interesting to note that in the 1967 IFIP Working 

Confere-nce on Simulation Programrring Lanqua.ges ,. in the 

discussion follovTing a paper on 0'1-line ~.ncremental simulation 

[ 69] , there was a general agrecme?1t that i::.he US<"? of simulation 

in studying lc.rge and complex behavioural systems is more to 

understand the system through mociel building than to obtain 

some statistics about its behaviouro 

~ilhen attempting to undertake a simulation study of a 

computer sy'stem'" tho follo~dnq two points should be clearly 
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thought out. 

(i) The first thing is to put dmvn the objectives 

of the simulation study. For exa.mple, a good 

detailed simulation nodel should serve the 

fcllo~..ring purposes. It should aid in configu= 

ratir.g· the systemu act as a test vehicle for 

various resource management algorithms (memory 

v.llocation p task scheduling an-::'!_ I/O scheduling 

algorithms) and help in studying the effect 

of various job mixGs in user ~'lorkload on 

system performance. 

(ii) Secondr the level of detail of the actual 

system a simulation model attempts to inspect 

should be clear from the start. This is import-

ant because the characterisation of the user 

\<7orkl0ad is greatly dependent on it. Neilson 

[37] indicates that the detail of time and 

space for an IB!'-1 System/360 Nodel 67 simulation 

study -r,·,;as fixed up at 100 micro seconds and 

a pa~re of prog-ram respectively. Anything an 

limits wen~ just ignor~c~ in the simulation study. 
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Section 3o6~ A.~quisition of data for assGssing sys~ern 
performance "--·------

So far the emphasis has been on the system and the 

boundaries that derr.:'lrk it I•Jhen considerec~ at different 

levels of detail. No simulation study can be endertaken 

hm·wver r unless the environment vJi thin vlhich the system 

operates is determined [70]. Therefc:..re, acquiring data 

about this environment forms the~ first phnse of ~~!ork 

done when trying to analyse or simulate R system. Design 

of experiments on computer systerns t:o obtain such data is 

of paramount importance as the data collected should 

represent the actual conditions in the system and should not 

be adulterated by the measu~ernent technique used. 

Two classes of techniques for acquisition of data for 

evaluation purposes are currently being used - software 

measurement techniques <;1nd hardware measurement techniques. 

lUmost all data can be obtained by usins softNare measurement 

techniques. no"'mver, the same cannot be said for the hard\1>.7are 

measurement methods 0 Ease of implemenb'!t5.cn c -:;c.se of use and 

the ·ability to obtain data '''i thout interfering ,.Ji th work in 

progress are the principal reasons for using hardware 

measurement techniqU•3~" All measu~e~en~ ~cchniques can be 

classifiec as one of two tyrK-'S" 'fhE:: summa.ry type u l'lhich 

yield a surmnary of the behaviour of the aspect being moni torec1 

at the end of the experiment. And the dynt•mic trace typev 
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't·lhich record all information about the feature being 

monitored from the start of the experiment. 

Description of hardware monitors and their use in 

monitoring system performance has be(:m reported in 

literature [71 r 72]. All such references :to such work have 

come ·from IBi•1.. HardvJare monitors feature· some register[. r 

counters and logic modules and a":-e progrc:mmable by 

patchboards. Several probes arc availab1 g whi.ch can be 

introduced.at strategic points in the CPnr data channels 

hardware etc. l'1easurernent of total I/O time for each devic'e 1 

channel busy time~ CPU busy time; CPU and channel busy time 

etc., is quite easy with such equipment. Meaningful dynamic 
.. 

instruction traces can also be oJJtainecl as this does not 

interfere too heavily with normal computation by the processor. 

The main drawback of hard~Jare monitors is that information 

that is c.ependent on the context of work in progress cannot be 

detected ·anc'. hence monitored. ExamplGs ot such information arc 

job identification, dc.ta set identificat:i or• u origin· of requests 

for system resources etc. 

Softvva.re :measurement techniques ca.n be readily used to 

obtain all such information. Tt.ll:: Most natural way of 

monitoring a syst:3m in operation,, using such techniques, is 

by use of 1 hierarchial control programs 9 
[ 73]. l\.s is ~~ell 

known; computer systems operate in t~"o sta.tes or modesu the 
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'supervisor state' or ~privileged mode c ;_-nd the 'problem 

program stc:tc \' -or 9 normal rn.oce c , It is seen that when 

priori ties are assigned to users, there is a hiera.rchy 

established even in the 1 normal mode' e r~'his concept of 

hierarchial structuring of programs is carried a step 

further for providins a software system m8nitoring 

technique" 'J.:'h,~ operating system and user programs are 

executed in the :problem program. state' ·with the operating-

system enjoying the highest prio~ity. T·--,;:, 
l.-

1 Gupervisor 

state~ executes the sofb.rare monitor whi~h controls 

execution of all other programs. Any return of control ~o 

the softvmre system rnoni tor causes it to 2xamine the rea.::wn 

for the return of control and this inforrr '1tion is loggec~ in 

if it is of interest. 

In computer systems ~,vhere this is not easily possible r 

the same end result m~y be achieved by introducing at 

strategic points in the operating system, instructions which 

transfer control to the central routin(~ uhich handles all 

monitoring requests. J..n example of such n"loni to ring 

operations is Scherr's t<Vork in measuring t.he CTSS users 1 

characteristics [48] 0 

A.s the level of detail of th<~ information being 

rnoni tored becomes finer r soft-1-mrc measure:t'1.c:mt techniques 

prove to be costly in computer time a'1d c.'!n nlsc lead to 

distortion of time sensitive data. l':.notr.::::r severe 
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limitation imposed on the:: software measurement techniques is 

that the smallest. unit of time measurable by program is the 

unit interval of the interval timer" This can drastically 

affect the measurement of detail and of H.me dependent 

information. Finally, these techniques being the only ones 

available t6 most people interested in e'\-aluative work r a very 

thorough Un(}orstanding Of the prograrn COO.e (mOstly in 

assembly language) of the operating system is absolutely 

necessary. Therefore, successful evaluative studies published 

in literature have been conducted by organisations which have 

developed their ovm software support to a large extent. \AJi th 

system documentation being what it is presently, a novice to 

this field is faced with the unpleasent task of digging through 

tricky and unexplained masses of assembly language programs 

which form the operating system. 

Section 3.7~ Conclusions 

The inadequacy of mathematical models to depictsatisfacto~ 

rily the behaviour of computer systems is one of the factors 

that have made simulation techniques indispensable for assessing 

perform~nce of systems. Indeed they ~ave been the only tools 

available to study some of the problews encountered. Much 

work needs to be done in developing techniques a.nd languages 

to deal with parallelism in the systems to be simulated. 

Choice of proper machine independent measures to portray 

user workload is a. very important problem to be tackled if 

any standardisation of 'i/JOrkload specification is to be 
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achieved 0 '!'his objective is indeed a desirable one to obtain 

and it also necessiates the procurement of information about 

user load from·a wide variety of c.pplication areas. So far; 

most evaluative work has been conducted mostly by academic 

institutions and most information available about workload 

concerns the environment of computer systems in such organisa-

tions o .A lot of field "l.v-ork r in terms of collection of data, 

especially from computer installations serving a commercial 

data processing loadv is necessary and seems to have evaded 

the reach of academic institutions and computer system 

rnanufactur~rs so far. 

Standardisation of this type can readily lead to the 

synthesis of the workload of a computer system. Present 

difficulties in understanding the behaviour of computer 

systems are bound to recede in the corning yea'rs. The major 

,problem in evaluation of performance will be to characterise 

the environment for input to a computer model. 



CHAPTER IV 

STUDY OF EVl\..LUl\TIVE PROBLEr-i;:S WOR THE Im1 7044-10:01 
COl•:J.J?UTER SYS'rEH AT INDil\N HJSTI'IUTE OF TECHNOLOGY 

KlLtii'PuR . 

Batch processin9 computer systems are very much in use 

today. A decade ago, in such systems, unit record equipment like 

card readers and line printers wen: attachec'J. to the CPU through 

non overlappeC data channels. These factors lee to an ineffectual 

utilization of the computational resource v;hencver the media for 

system input and output were unit record equipment. A :more 

effective operation of these systems wc:,s achieved by providing 

off line card-to-tape and tape-to-printer functions using a small 

off-line satellite computer. Variations and elabc;rations of 

such techniques were developed, 

The medium-scale present generations batch-processing 

systems do away with the cff~line satellite-computer concept by 

using a technique called I , • ! 
spoo..~..1ng . These machines have all 

peripheral equipment connecb:.:C through overlapped (Jata channels tc 

the CPU and nrc run in the multi-rrogr:a:r:\m.ed mode, High priority 

card-to-tar"'=-" and tape-tc-printE:r system routines are spoolec: 

with the rest of the user prr'grams, Such an operaticm of t..'le 

system is seen to exhibit high utilization of resources and 

achieve the same r:::nc" result economically. 

129 
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In this chapterv the interest is in evaluative pr0blems 

of computer systems having off-line satellites to perform 

peripheral tc.sks. In particular, tht:~ IBM 7044-1401 systera 

at Indian Institute of Technology, Kanpur is singled out for 

such study. The motivation £\Jr this is obvious~ IIT/Kanpur 

has purchasc:d this system from IBH anc scI it is Vi:}ry d.esirable 

to make the best usage of this rescuJ;CG. Ho;reoever, the system 

has been operating in.saturated conditions, i.e. it services 

,the maximum load possible with its present capabilities. 

Therefore, it is worthwhile to consider in c.'l.epth the problem 

of economically changing the system to increase its capability 

to service the present workload. 

The various investigations reported in this chapter 

can be a!)plierJ to orth.:.'-:r ;~~n:s-t.ems l.i:·:e the IBN 7044-1401 toe:. 

Section 4.1~ Comr;utational resources at IIT--Kanrur 

The major computational resource at IIT/Kanpur is an 

IBM 7044-1401 system. Currently available hardware facilities 

and the projected system aro both given in Figure 4"1. The 

problem solving facilities and proq:r-anuning· environment is 

provided by thc:: IBSYS version 0, I'[lor'iification level 9, operatins 

system. In addition to the multifarious utility functions 

perfor~ed by the system [74, 75, 76, 77, 70] several new 

facilities have been introduced into IBSYS at IIT-Kanpur [79]. 
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L :1 f 14'' 4 1 egena or ~1gure • 

1·~ 7107 CPU, 32K Meinory, extende(-1 instruction set 

2. 7904 II, Two overlappec: simplex c1ata channels 

3. 2 x 1414 VII,I/0 Syncronizers 

4. 1414 IV, I/O Synchronizer. 

5. 6 x 1014, Remote enquiry units 

6. 721 Console typewriter 

7. 1402 II,Card rea~er/punch, 800/250 cpm 

8. 2 x 1403
1

Line printer, 132 ch., GOO lpm 

· 9. 8 x 729 VI,MagnE.'tic tape 90 kc/s-. 

lt~ .. 7631, File control 'unit 

11. 1301 II, Disk, 2 arms 
,, 

12. 7155 1 Tape switching unit 
.. 

1;!. 1401 CPU, l6K, extended features 

14. 5 X 1311 1 Disks 

15. 729 V,Magnetic tapes,60 KC 

16. 1402,Card reader/punch, 000/250 cpm 

17. 140~ Console 6nquiry unit 
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I 

Section 4.2: Operation schedules for.the IBM.7044-1401 system 
at Indian Institute of Technology, Kanpur 

The IBivt 7044-1401 system was shifted in June 1969 ·to the 

new Computer Centre building, into a single room, The Computer 

Centre \AlaS then servicing nearly 500 j·obs a day. The problem 

of proper sequencing of operations on .these machines so ,':.s to 

utilize them best and the problem of system design of various 

other support services for the efficient operation of the 

total system demanded i~~ediate 2ttention. Several operation 

schedules were tried out. P ... n optimal schedule in terms of 

throughput, turnaround and adaptn.bility of the schedule to 

actual operating conditions has been developed and impleme:nteC.. 

The design of support services that were implemented and c.n 

informal argument to prove the optimality of the schedule 

developed are presented here. 

The organisation of a batch processing system is 

similar to that of the job-shop. The various services that 

are necessary here are: 

(i) Job identification· 

(ii) Recei:;:)t of input jobs 

(iii) Distributicm of jcb ;Jutput along\'17i th 

input card deck 

(iv) System operation schedule. 

The design of interfaces between these services is 

important. The effort ¥?as to keep communi.cations between 

them down to a minimum. 
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Incoming jobs are assigned priority by its type and 

resources it needs. The decision table shown below gives 

the priority scheme. Identification of jobs is according to 

Else 
Snec~al job ? l y - N 
WATFOR iob ? I: ·- y -
Time < 3 min? ·- y N 
Time < 8 . ? 

m~n. - - y 
Pacres < 30 - - y 
Cards output <200 - -· v ... 

Special job I! X 

Express job j I X I 

Short job I X 
Long job I X 

their priority. Serial nmr~ers are assigned to jobs in a 

priority group as they arrive. 1\ card bearing the serial 

number is introduced into the input card deck. This card 

bears the following information. 

(i) Proper control characters in columns 

1 and 2 

(ii) Priority group 

(iii) Serial number 

{iv) Date 

The IBH 519 programmable reproducing punch was prograJil.med 

to gang-punch the control characters,priority group and date, 

step-up and punch the serial number and prin·t the serial 

number and date, all in one pass (the first card bearing the 

initial serial nuwber and the rest of the information is 

pre-punched) • Duplicate sets of serial nlli~er cards are 
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produced and. collatedo Identification cards for Long Jobs and 

Special Jobs are produced for a period of one month at a time 

as the number is quite small in <2ither caseo A fixed number of: 

Short Jobs are serviced everyday and hence corresponding 

identification cards are produced for a week. However, there 

is no limit on the number of Express ,Jobs run in a day. P.s 

there is a lot of fluctuat.:Lun in t:his number,· it is advisable 

to produce the identification cards fer these j:obb in small 

lots for this is quite easy with the set up inaicated here. 

Input service counter operations are depicted in 

Figure 4.2 and need no further elaborationo To minimise card 

and deck handling input jobs are put into card cabinet trayss 

processed by IBM 1401 and introduced into card cabinets 

(this is yet to be implemented) • Trays are tagged to 

indicate jobs in them. The output service counter operations 

are depicted in Figure 4.3. 

It is easily observed that the IBM 1401 and 7044 systems 

have to act in t:andem. In other vwrds, the SE'quence of 

operations to provide service to a batch of jobs is cc,rd-to-tape 

on IBM 140lp processing on IBN 704 11 and tope-to-printer on 

IBM 1401. So, in a given period of time IBM 1401 is used to 

' . I • t I prepare a nm..r 1.nput tape a.nd pr1.nt an output tape' \a result 

of the processing by the IB.r.-1 704tJ) while IBivi 7044 is used to 

process, sequentially, all avail2.J:•le input tapes. 



136 

I 
1 In;•ut joL 

~ 
Provide irl.Gntifica.tion C.lasify 

Clear 
every 
hour 

Inr:ut 
Service; 
Counter 

-----1 

-I 
I 

SHOPT ,TOES LONC JOBS SPI~C l~I.~ JODS 

Clcc:r 
12 

joLs 
every 
hour 

Cle2.r 
once ,;t. 

0t1y 

1·~01 
'f~1ping 

Lvice 

inrmt 
CTueues 

Clear 
once 2. 

c!.\~-':l 

Figure 'l "2 ~ Flov7 of operations fer system in;--.ut 



Siif)RT 

137 

l ~).UeU8 

for 
out rut 

·---:==:::._ __ 

Out; ut 
cc:··u.ntcr 
:service 

t 
,I 

Service on iContification 

1401 
Printing 
Service 

1 
queues~ .. , 
7 0 /'~ ( ou tcut ta.;_:;es 

Fisure <1:" 3 ~ Flovr of ore rations for system out,-,ut 



138 

Klienrock has sho-vm wit.~ his analytical model for 

Sequential Processing Machines[GO] that optimal (least 

machine idle time) usaae of such systems occurs 'lrlhen both 
~ '-

machines take the same time to service a ·task. This n~sult 

can be applied to the IBM ?O•H-1401 \system very profitably. 

The idea is to choose a batch size such tt.at the time taken 

by IB£.1 1401 to read input jobs in the batch and tape them 

and to print the output tape of the batch;matchcs tile time 

taken by IBM 7044 to process• the batch. throughput 

is the outcome of such design. 

It is indicated in Section 2.2 that shoft jobs are 

normally given better service {e.go SJF, RR, FB service 

disciplines for processor allocation) . 'I'he RR and FB service 

disciplines .are suited for the time sharing environment 

and in multiprogrammed systems. For simple one-job-at-a-time 

batch processing systems, the SJF service discipline is 

employed. Therefore at IIT/K, short jobs have high priority. 

Highest priority is given to Express Jobs, next level of 

priority to Short Jobs, the third ievel to special jobs and 

the lowest to Long Jobs. Hence maximurn turnaround is gi vE:n to 

Express Jobs and next to Short Jobs. Special Jobs are ru.l1 

once a day. Long Jobs join a queue and are serviced for 

3 hours at ni9ht. If any Long Jobs are left over, they are 

queued for the next night. 
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The problem now is form a batch of jobs from the various 

priority bins {see Figure 2.2) to satisfy the above constraints 

of throughput and turn around. Statistical about user-job-running 

times on IBH 7044 and taping and printing times on IBM 14'01 were 

collected. The observations at that time were the following~ 

{i) An average of 13 Short Jobs could be processed in 

1 hour by the IBM 7044. 

(ii) A batch of Express Jobs collected over 1 hour 

,took on an average the time taken to process 1 

Short Job. 

(iii) The time taken for tap'ing one batch of jobs 

consisting of 12 Short Jobs and 1 Batch of 

Express Jobs and the time for printing the 

output produced by such a batch vJas 1 hour. 

The operation schedule developed turned out to be very 

simple. 12 Short Jobs and all available Express Jobs are 

cleared at the end of every hour for taping on IBN 1401. 2\t 

the enc'l. of taping of one batch of jobsf the output tape 

of the previous queue is printed. 'These t·,·c, operations on 

the IB~l 1401 are completely c.verlappec:: and rr-.atc11ed by the 

processing of an input batch on the IBM 7044. Special and 

Long Jobs ·:'!re clearGG at night and service(1 during the allotted 

period. This schedule is partly shown in Figure 4.4. 
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Time 1401 
Input Output 
Tape Pr:lnt 

9.00 Ql 

9.30 

10.00 Q2 

10e30 Ql 

11.00 Q3 

11.30 02 

oo.oo 

01.00 

04.00 

7044 
PROCESS 

Ql 

Ql 

Q2 

Q2 

Q3 

Special 

Long Jobs 

Resume 
other 
queues 

Figure 4.-1: Operation Schedule 

Other design factors in.the schecule were (i) seperate time slots 

for tape-cleaning at approximately 10 hour intervals and 

developmental work for the system. This schedule was i~ple..,..cnted 

and found to work very satisfactorily. In fact, an un-

precedented service of about 400 Express Jobs, 185 Short Jobs 

anq the usual load of Special and Long Jobs was achieved {at 

the expense of a supervisor to caret~lly monitor the operations), 
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The only ~nag is that problems of human resource management 

seem to be much more difficult to handle! 

Given these operating conditions, this schedule has 

some other very pleasing properties. For instance: 

(i) There is least accumalation of jobs at 

the input counter" 

(ii) There is no accumalation of jobs and 

output tapes at the rm-1 1401 and input 

tapes a£ the IBM 7044 than the minimum 

necessary. 

(iii)The m0dularity of queues or batches makes 

it very easy to make decisions in actual 

operating conditions. For example, when 

~nforeseen machine breakdowns occur, 

it is very easy to decide how mnny serial 

numbers to cancel etc.,so as to be able to 

keep to the schedule. 

Other schedules that have been implemented at this 

Computer Centre do not mix priority levels when hatching 

·incoming jobs. Therefore batches of high priority jobs have 

to be Fushed through the sequence of operations to be 

performed· for their service. Therefore, turnaround to the high 

priority jobs is obtained at the cost of other lower priority jobs. 

This leads to aocumalation o~ input and output tapes of 

lower priority jbbs (the commitment of turn around to high 
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priority jobs is seen to cause this) which are waiting for 

service inside the computer room. To beat the excessive 

constraints on operations of IBM 1401 caused by this situation, 

the use of unit record equipment of IBM 7044 1s necessitated. 

This drastically effects b~e throughput. 

An overlap of operations in the I/O operations of IBM 

1401 is now possible. Therefore, the schedule has to be 

re-designed to suit its current capabilities. The principles 

of design ·and the constraints remain the same, but a different 

batch size should be chosen to optimize the operations in terms 

of increased turnaround. 

Section 4.3~ Hodels for IBM 7044 system 

In this section are presented some models for the IBM 

7044 system. The motivation for producing these models is to 

help find interesting ann economic changes to th~ system 

which will result in improved performance in terms of throughput. 

The first model is an elaboration of a similar work 

done to model the University of Michigan (Ann Arbor) Executive 

System [81]. The behaviour of an operating system can be 

modelled as Semi-Markov process. Essentially, the model . looks 

like a probabilistic finite state transition graph (i.e. a 

probability is associated with each transition from a state). 

Only, there is associated with each state a transition time 

which depends on ;the next state. In fact, probability 

distributions/J~~f~~terise each of these transition times are 

'. ·~ 
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necessary. For the present case it is sufficient to associate 

an expected value of transition time with each state. 

A probabilistic transition graph for the IBSYS Operating 

System is given in Figure 4.5. 'I'he main difference between 

this model arid Foley's {81] is that states have been included 

to record the time for fetching various system library programs. 

This is meaningful under present operating conditions like 

the residence of system library programs on a tape unit. The 

chief result that can be obtained from this model is the 

overhead incurred in fetching variou~ library programs from the 

system library tape. Naturally, much depends on the position 

of the system library tape. The position determines the amount 
be 

of time needed to access the Library program to;loaded next. 

All information about various transition probabilities 

and times of residence in all the states is not yet known.' 
pan be got 

However, some interesting results;from the model. For instance, 

about 100 FORTRAN IV jobs, using the IBFTC (IBM supplied) 

compiler, are run every day. Each successive $IBFTC card 

(command language statement of IBSYS) causes the system 

library tape to be backspaced so as to fetch the SCl>N phase 

of the compiler. This operation is observed to take 9 seconds 

approximately. If each job has on an average 3 subroutines, 

then 2 x 180 x 9 seconds of the total operation time is· 

wasted in recalling the IBFTC compiler. It works out to be 



Figure 4-cS~ 

1~4 

~ aross rno0el f0r IBSYS orcrntirig system 
(L~genC on next page) 
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Le51end for Ficplre ,1. 3 

State Description 

1 Get new ~10B, $ JOB/$II'l'END 
2 System Edit, $IBEDT 
3 Processor I'1oni tC"·r, $IBJOB 
4 Sort System, $IESRT 
5 Installation l?rcgrams, $EXECUTE 
6 li.ssemble MAP pro~1rmn 
7 Get lV.J.iP from Library, $IBI'~.Z-'I.P/Corn.pil"Jr Int.crface 
8 Compile FOH.THl'-iN IV prt)grarn 
9 (;et FORTR?\1-:J from library, ~IBFTC 

10 Compile COBOL Program 
ll Get COBOL from Library, $IBCBC 
12 Compile .ALGOL Pro~;ram 
13 Get 1\.LGOL frcm librcu:y $1\l,GOL 
14 H.ecei ve Binary Program, $ IDT ..... f>f,' 
15 Load user (r~locatable) object program, $ENDCHI.J.NF;EJ_'JTHY 
16 Load user {absolute) object program, $REJ.JOZ\D/$RESTZ'l.RT 
17 Compile \t~A'l'FOH proqram 1 $~\'hTFOE 
18 Execute 'i?ATFOR program: $EN'I':RY 
19 Get UPDATE from lbira.ry 
20 Get SNOBOL from library 
21 Get GPSS III from library 
22 Execute Prot;:rram 
23 Check point 
24 Dump 

.25 System Reset? $IBSYS 



nearly 5% of the total op.eration time! Similarly, the WATFOR 

compiler, GPSS r'rr, UPDATE, Check point and Dump routines take. 

20 seconds to fetch. The frequency of occurrence of such 

operations and total time wasted in such tasks are all obtainable 

from the proposed model. Furthermore, quantitative improvements 

available, if the system library resides en a disk instead of a 

tape, can be easily predicted. Re-organisation of programs 

in the system library and the relative merits of such efforts 
' 

can again be quantitatively obtained. 

Another problem worth investigating is the effectiveness 

of the configuration in servicing the I/O load. · SCE.RT (explained 

in section 3.3) is claimed to be technique which solves 

this problem. In this technique, file description and 

volume of I/O expected on each file are the two attributes 

which characterise the I/O load. This is indeed not sufficient 

to find the effectiveness of the various parallel paths 

provided in dealing with the I/0 load. An important point 

missed is that the density and volume of :L/0 traffic are the 

necessary attributes besides the ·file description of each 

I/O file. This was pointed out and characterised in Section 

2.3. 

Interesting questions that can be asked in such a 

study are~ 

(i) How does the introduction of one more 

data channel affect the performance of 
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the system? 

(ii) What I/O files to shift from one 

channel to another? 

An elabo:ration of this point is made by discussing the 

IBM 7044 system at IIT/Kanpur in this context. At present 

there' are 10 tape units on a simplex data channel (only cne 

way operation is possible at a time, either read or write). 

Another similar data channel is on order and so is an additional 

synchronizer to connect the available tapes to it. The problem 

now is to shift some tapes on the existing channel to the new 

channel so that performance is improved (examination of 

processor idle time for each of the cases should suffice for 

this purpose) • 

In the case of a simple batch processing system like 

IBM 7044, the behaviour of programs may be simply characterised 

as a sequence of logical I/O requests that occur in program 

execution time. The buffering scheme determines the way in 

which actual or physical I/O requests are generated and 

whether program execution can continue or not (this depends on 

whether. the I/O request can ~e scheduled or not). Such a 

problem can easily be studied by use of simulation techniques. 

The model for such a system may be constructed as 

a multi-level server system. The first-level-server is the 

buffering system. This level has a maximum queue length of 

just one request. This occurs whenever the in9oming request 
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necessitates a physical I/0 to be initiated and at the same time, 

tfie previous physical I/O request on the same file is not yet 

serviced. The second-level-servers aro the v~rious parallel 

data paths in the system. Queues for this server c~n have at 

most one entry ·per file that can be accessed through it. 

These entries are put in a list which has ~ pre-arranged sequence 

(entry for device 1, entry for device 2 1 etc ... ). The order 

could for example depend on the speed of the device. Service 

discipline for this server is simple. The top element of 

this list is serviced first. 

The usefulness of this model is that it can indicate 

the clashes of I/O requests on each device. That is, the 

service of one is excessively delayed due to the other. Such 

devices should naturally be separated and connected to 

different paral~el path. If the clash is on the same device. 

then the buffering scheme provided does not fully serve its 

purpose. An interesting study of behaviour of system programs 

which do a lot of I/O in their execution is possible (e.g. 

IBFTC compiler) . '!'he res tilts obtained from this model would 

be very useful in accounting for processor idle time (time 

for which the first level server is blocked) and whether 

it can be easily reduced. 
·• 

Section 4.4: Specification of a software monitor and a 
- technique of implernentat~on 

The lack of any quantitative results by using these 

models (to justify all their virtues which were extolled in 
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the preceding section!) would seem to be a glaring omission in 

the work reported here. However, it is very difficult to obtain 

data to characterise the workload and obtain statistics about 

system behaviour. (This point was discussed in Section 3.6). 

Therefore, only a specificatic. of the software monitor to 

obtain this i~formation and a technique to implement it 

in the IBSYS operating system are sketche~ her~. 

The software monitor proposed here is a hybrid between 

the hierarchical con_trol programs [73] and monitoring routines 

distributed throughout operating system. Control is not 

transferred to the monitor ''~henever the system switches to the 

privileged mode of oper'ation. Routines executed usually in 

the privileged mode gain control and make an immediate call 

to a ca~trol system monitor. This information is logged in 

alongwith an identification tag so as to indicate the nature of 

call. Other system routines alsc call the system monitor 

{FORTRlili compiler, for example) to. log in data tl1at characterises 

theiDS'!'S operating system. A detailed log of. system usage is­

therefore ava.ilable. External control of the system monitor 

logic should be provided so as to be easily mask the monitoring 

operations for certain aspects of system hehaviour. For 

example, it might be of great interest to just get the I/O 

characteristics of th~ IBFTC compiler and ignore the rest. 
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The system monitor has two major parts. The first part 

logs in data about gross system operation or system behaviour 

(e.g. IBFTC compile time, Mi\P assembly ti:me, get IBFTC time, etc). 

The second part loqs in the inforna.tion about I/O either by a giv 

given sybsystem --of IBSYS or of the user program" 

Several things have to be kept in mind v1hen implementing 

such a software monitor. 'l'be first is thai.: this work entails 

diilibl.i.nqwith the 1 nucleus• or 1 residEmt' (IBNUC in IBSYS} of 

the operating system. Changes in this part of the system should 

be kept to a minimum. Any change necessitates a fore knowledge 

of all possible consequences of the system. Also, it must 

be noted that changes cannot be made frequently in this part· 

of the system because it can cost enormous amount of computer 

time to effect a change. To be more specific, re-assembly of 

IBSYS due to a change in IBNUC -vmuld necessitate the following 

steps: . 
(i) Get binary deck of IBNUC in absolute mode. 

(ii) Update system edit file with new IBNUC 

(iii) Assemble the whole system library using the 

new system edit file. 

These jobs need at least one and half hours of IBr'-1 7044 

time. Ther~fore, the debugging of software monitors and 

consequences of changes mad·2 to the system are worth a lot of 

attention. 



151 

Another importa~t aspect of implementation is that user 

programs should not be in any way affected by the software 

monitor, either in terms of time or sDace (both the attributes ' ~ 

of space, size and address). A memory map of the IBM 7044 

system is given in Figure 4.6" From this it is seen that 

there is a large blank area of core memory at upper end of the 

protected zone. 

The system monitor program and buffers to log in 

information can be conveniently located in this place. This 

does not interfere with user core area in any way. In fact, 

if no I/O has to be monitored, then there is no addition or 

modification to any nucleus routine at all. A change in the 

entry for the instal_ ation accounting routine (S.SIDR) in the 

list of system transfer points (seG Figure 4.6) is all that is 

required. Normally, an entry to the installation accounting 

routine is just screened for particular types of call. 

For these calls the system regains control and for all others, 

control is immedi.';ltely returned to the calling programe 

The only change to this part of th.e nucleus is that all calls 

to S.SIDR cause a call to the system monitcr. Other changes 

to be made torneYs are also quite simple. The entry to all 

subsystems of IBSYS, depicted in the Semi-Markov chain model, 

should cause a call to S.SIDR to log in accounting information . 

• ,f ... 
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LOCATION DESCRIPTION 
START IBNUC 

00000 Machine functions/ 
engineering words 

00100 Load area 
00135 System Tranfer 

-
points + data words 
*'Symbolic Units 

Table 
* Unit Control 

Blocks 

* System Control 
Blocks 

Nucleus routines 
(system loader etc} 

t IOEX 
Basic functions - * Channel tables 

Interrupt schedu-
ler 

IOOP 
Header routines c= __ : Device routines 

Conrrnon routines 
IOLS 

Reels processing 
Labels check 

end at Blank protected 
07777 area 
10000 IOBS not storage 

protected ---·-s.sloc 
File description 
User :r2rog 
Unused core 
I/0 buffers + r·ool 
control table 

end at User cormnon 
77777 u.rea 

Figure 4"6: Hemory Map of IBM 7044 

* length depenis on actual configuration. 
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A simple buffer of 100-150 words, to log in information for 

all calls to S.SIDR; is sufficient. This buffer size depends 

on the maximum expected number of job steps in a job. The 

end of a job causes this information to be flushed out onto 

an 1accounting tape'. The overheads involved in such a 

scheme for monitoring gross system behaviour is minimal. A 

point of note is ~~at ££ change to any user program need 

be made when implementing this part of the system monitor·. 

Monitoring I/O is a bit more difficult. In this case, 

-the main difficulty is to keep program execution time separate 

from the time the system takes in servicing I/O channel 

interrupts. This is because the characterisation of I/O 

traffic should be configuration independent. That is to say, 

all r;o·requests should be represented in program execution 

time which in turn should not reflect any effects a particular 

configuration may induce. Therefore, a 'software clock' may 

be associated with the program being executed. Another 

5 software clock 1 contains the amount of time spent in the 

interrupt servicing or delay routines. The latter of course 

necessitates changes in the lower levels of the input-output 

managerial routines (IOCS in IBSYS) so as to keep track of 

above mentioned times. Every I/O request made by the program 

causes its 'software clock• to be ~roperly updated and 

information about inter-arrival. time of I/O requests, 
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requested I/O file-and magnitude of data transfer needed by the 

I/O request are logged into a buffer. This buffer is flushed 

onto an accounting tape when ever it is full so that·a concise 

trace of I/O requests is obtained. The implementation of all 

these procedures necessitates careful changes to IOCS and a 

re-conversion of all (system and user) programs in 'absolute 
. 

modp' (such programs need no relocation and can be loaded into 

core memory without any changes). The buffer size dictates 

the overheads that are incurred wi.th this scheme for monitoring. 

However the data made available by this monitoring scheme is 

invaluable as such data has not been reported anywhere in 

literature. 

Section 4.5: Conclusions 

Particular problems in pertuntlance evaluation can be 

solved very fruitfully with the aid of already available 

techniques and sometimes \vi th available models for system 

behaviour. In this particular instance, tangible results 

were directly achieved by the design of c.n optimal operation 

schedule., The model for gross system behaviour proposed here, 

should when quantitatively solved, give a break down of the 

manner in which the overall sy~tem resources are utilized. 

Also the direction for reorganisation of the system to improve 

system throughput can be perceiv~d by analysing such results. 

Finally, the configuration eval~at;J.on problem for a particular 

simple type of comput~r system can be solved by us..ibg 
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the I/0 model proposed here. 



CHAPTER V 

CONCLUSIONS AND SUGGESTIONS FOR 
FURTHER ~lORK 

Section 5.1: Suminary and conclusions 

The material presented in this thesis is an attempt at 

a comprehensive vie~ .... of the problem of computer system perfor-

mance evaluation. In retrospect, Chapter I introduces the 

concErt~of performance evaluation and brin<JS out the,importance 

of this problem in the study of the,economics of computer 

design, manufactureR selection and usage. Chapter II e~compasses 

an analysis of various important factors in modelling computer 

systems with a view to predict their performan.ce. It also 
-'-.:. -

contains critical discussions of several techniques of Pt?rfor-· _, . 
mance evaluation developed and an analysis of how and where 

they can be used. Statistical characterisation .. c)f system 
·'l:. 

workload is also presented for this 9 provid.es the environment 

.for a computer model" Chapter III gives a critical discussion 
l ~ 

of simulation techniques and.their use anc limitations in 
. 

modelling of computer systems. Chapter IV is )nore down-to--earth~ 

a study of evaluative problems for the IBH 7044-1401 computer 

system cur~ently operational here at IIT-Kanpur is presented . 
.. 
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The interesting results of this chapter ~re an optimal schedule 
~ # 

of operations fox this computer syster.1 an,: a proposal of a 

model for configuration evaluation of such systems. The latter 

is an important problem and has not been stlJ.died or reported 

elsewhere in literature. 

Objectively considered, th.i.s thesis contributes little 

to the solution of the general prcblem of modelling large·-scale 

-general-purpose computer systems 0 :Hopefully, the understanding 

of the imrnensi ty of pr•)blem and difficulties with currently 

available techniques are cogently presented. The difficulty 

-with such systems seems to be one of improrer design. Brieflyt 

the problem is to,.deve.lop proper resource management procedures 

which take into account the relationships bet:weem page referencin(; ,. 

I/O requests and program execution. Except for the 'working set' 

model for program behaviour, which relates page referencing and 

program ~xecution, there has not been effc-n:.·t in this direction o 

Therefore, an analysis or evaluation of implementations of such 

design prove to be very cumbersome and difficult. 

It is possible to be more positive in the case of the 

problem of selection of compu·ters" 'l'echniques discussed in 

Chapters II, ~III anc: IV can be used for a detailed analysis 

of the capabilities of the computer system in question. 

This should indeed give a comparitive estimate of relGtive 

capabilities of each computer system for different types of 

tasks. 
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Section 5.2: Suggestions for further work 

Performance evaluation of computer systems is a rich 

source of challenging problems. Several references to 

p:r;oblems yet to be solved are distribute(T in the earlier 

chapters of this thesis. The mA.jor problems at"e presented 

below~ 

(i} Inclusion of I/O in the strategies for 

resource allocation (other than J;jQ 

management, of course). 

(ii) Collection of statistics to characterise 

user job profiles. 

(iii) Development of simulation techniques 

to simulate, efficiently, parallel 

events that occur .:?n a system" 
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