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Chapter 1 

Introduction 

The concept of universality has been familiar in physics for several decades now [lJ 

and has received widespread llilage in many areas. In this thesis we examine the applica­

bility of this concept to the domain of amorphous systems [2-22J. In particular we examine 

the theme of universality in the context of the vibrational spectra of such systems. We 

consider both clusters and bulk systems. Amorphosity immediately introduces some severe 

complications that have been the subject of a lot of attention for many years now [23-65J. 

Thus, even within the harmonic approximation, which we use consistently everywhere in this 

thesis, computation of the vibrational spectrum poses serious difficulties in any analytical 

scheme and invariably various kinds of approximations are used. These approximations may 

be with respect to both the equilibrium structure of the disordered system and the actual 

computation of the normal modes around this structure. Our computation, which is entirely 

n~lmerical in nature, however makes no assumptions beyond the nature of the potential that 

describes the interaction amongst the constituent particles of the system. This is due to the 

fact that any candidate configuration for a solid state structure, amorphous or crystalline, 

must correspond to a local minimum of the potential energy function which can be com­

puted very accurately using standard numerical techniques. These minima are also called 

'inherent structures'. For amorphous states the positional arrangement of the constituent 

units is highly disordered. The vibrational spectrum corresponding to a particular stable 
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configuration is derived from the solutions of an eigenvalue problem in which the Hessian 

matrix for that configuration is involved. When the configuration is disordered, it is clear 

that the corresponding Hessian matrix will have substantial amount of randomness in it. 

Thus, it is not surprising that ideas from the theory of Random Matrices have been used 

in recent times to examine the vibrational spectra of disordered systems [32-34,55,61,66-68]. 

Infact, this is a key element in our analysis of the universal aspects of the vibrational spec­

tra of disordered systems. Random Matrix theories have been used extensively [69-78] for 

the analysis of statistical fluctuations of the spectra of complex quantum systems such as 

complex nuclei, atoms, molecules, quantum chaotic systems, disordered mesoscopic systems 

etc. Study of the spectra of these systems has revealed that although the smooth part of the 

density of states will be system dependent, the fluctuations around the mean densities are 

universal and there are only three universality classes. In contrast, we look for universality 

both in the spectral fluctuations and in the density of states. 

We have studied both clusters and bulk systems while investigating amorphous states. We 

have varied the nature of interaction amongst the particles of the system under consideration 

in order to reveal the possible presence of universality (Le. independence of the potential). 

For clusters, the number of particles is varied to investigate the effect of finite size on various 

properties. To study bulk amorphous systems, we actually use periodic crystals with as large 

a primitive cell as possible. For any finite disorder, the number of particles in the primitive 

cell should ideally be made arbitrarily large. However, in practice, this is limited by the 

available computational resources. We should note here that due to the periodic nature 

of our approximation to the bulk disordered system, the analysis of spectral fluctuations 

becomes a lot more subtle and has not been reported in this thesis. We report results 

only on: (1) Universality in the density of states for clusters, (2) Universality in spectral 

fluctuations in the case of clusters, and (3) Universality in the density of states for bulk 

amorphous systems. In the following two paragraphs, we provide a summary of the results 
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reported in the subsequent chapters. 

Chapter 2 describes the study of universality in both density of states and statistical 

fluctuations in clusters made up of only one type of particle. We have used four different 

kinds of potentials. Of these, two belong to the 'sum over pairs' category and the other two 

contain many body interactions and hence are suitable for metals. The two primary results 

are: (1) The spectral fluctuations are described by the Gaussian Orthogonal Ensemble of 

random matrices to an extraordinarily high degree of accuracy and (2) Over a large central 

region of the vibrational spectrum, the density of states is described by the same functional 

form, containing one scale of frequency, in all cases. In chapter 3 we extend the studies of 

chapter 2 to binary systems in, order to see how general are the results obtained for single 

component systems. We find that, at least for the limited class of binary systems that we have 

studied, results for single component systems are reproduced. Thus, additional complexity 

does not cause any essential change in the results. In chapter 4 we examine the question of 

possible universality of the density of states over the entire spectrum rather than over only 

a limited central part of it. From our analysis of the data, it seems that universality of the 

form of the density of states does not extend over the entire spectrum for the potentials and 

system sizes investigated as far as clusters are concerned. This question is again taken up, 

for bulk systems, in the next chapter. 

In chapter 5 we show that there are indeed certain limiting situations in which the 

normalized density of states assume a universal shape over the entire spectrum. Here we 

study systems made up of point particles that interact via two body forces only. The generic 

shape of this two body potential has a minimum at a certain distance at which the potential 

is negative. For larger distances the potential rapidly rises zero. At shorter distances also the 

potential rapidly rises either to a finite value or to an infinite value. The critical parameter 

for our purposes is how fast the curvature of this potential changes around the minimum. We 

introduce a parameter that quantifies the rapidity of this variation and we find that when 
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this parameter becomes very large, the vibrational spectrum for completely disordered states 

assumes a shape that does not depend on the specific functional form of the potential that is 

tuned to achieve the very fast variation of the curvature around the minimum. We study the 

implications of these observations in understanding the quasi-universal shape that has been 

observed recently for the vibrational spectra of molecular glasses [65]. The methodology that 

is used for the investigation of the bulk amorphous systems has also been used in this chapter 

to study how the nature of the vibrational spectrum changes as one goes from crystalline 

state to completely amorphous states. For example, this gives a detailed picture of how 

excess vibrational modes develop in both the low frequency and high frequency domains 

of the spectrum. The accumulation in the low frequency domain is the reason behind the 

existence of what are called 'hoson peaks' [21-22, 45-65]. Although there are model theoretical 

calculations that study the evolution of the vibrational spectrum with increasing disorder, 

our calculation is distinguished by the fact that we do not need to use any specific model 

of disorder. Once the choice of potential is made, there is no need to make any further 

approximation. 
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Chapter 2 

Universality of Statistical 
Fluctuations : Single-Component 
Amorphous Clusters 

In this chapter we explore the theme of universality in the vibrational spectra of amorphous 

clusters made up of only one kind of constituent units (atoms or molecules) [67-68]. All 

our clusters are three dimensional and to check for universality, we use different kinds of 

potentials available in the literature [79-82]. More specifically, they are Lennard-Jones, 

Morse, Sutton - Chen and Gupta potentials. The explicit expressions of these four types are 

given by 

Lennard-J ones potential: 

V=4L - --[ ( 1 ) 12 (1) 6] 
i<j rij rij 

with the factor of 4 omitted while calculating vibrational frequencies. 

Morse potential: 

v = L [exp(-2a(rij -1)) - 2exp(-a(rij -1))] 
i<j 

with the value of a = 6. 
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Sutton - Chen potential: 

N ( 1 )9 N ( 1 )6 
V = (1/2) t;~ Tij - (3t; ~ Tij 

We take the value of (3 to be equal to 39.432 which corresponds to nickel. 

Gupta potential: 

N N 
V = I)A L exp( -p(Tij - 1))) - L L exp( -2q(Tij - 1) 

i=l Hi i=l Hi 

(2.3) 

(2.4) 

The values of A, p and q are material specific and we have used the values applicable to 

nickel or vanadium. 

In all the expressions given above Tij is the distance between the particles labelled i and j. 

N is the total number of particles in the cluster. As far as the functional forms are concerned, 

Lennard-Jones and Morse are of the type 'sum over pairs' whereas the Sutton - Chen and 

Gupta potentials, which are often used to describe metallic clusters, contain many body 

interactions in them. Choice of these two distinct families of potentials is deliberate since 

universality is a primary theme here and we want to explore as many qualitatively distinct 

kinds of potentials as possible. 

In order to compute the vibrational spectra of amorphous clusters the first step that 

needs to be taken is the generation of the stable geometries around which vibration takes 

place. Obviously, any such geometry will correspond to a local minimum of the potential 

energy function in the configuration space. Configurations corresponding to these minima 

are also called "inherent structures". Each such inherent structure is a candidate for the 

geometry of a (atleast) metastable cluster at sufficiently low temperature. There are many 

methods available to generate these inherent structures. The method we have used is called 

"Homotopy Minimization" [83]. In this method if we need to generate a local minimum 

of a function V, we actually perform minimization of a sequence of functions of the form 

(OV + (1 - O)U). Here U is an appropriately selected simple function. 0 is a parameter that 
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changes its values from 0 to 1 in a finite number of steps (about 20). In the first step of 

the homotopy minimization the initial guess of the configuration is a random distribution of 

the elements of the cluster within a sphere of suitable radius. If the radius is too large, the 

process of minimization is very slow and if it is too small, it may cause numerical instability 

due to high gradients that may be generated. As the value of 0 keeps changing subsequently, 

the initial guess at any stage for the configuration is the one that minimized the function 

(BV + (1 - O)U) for the previous value of O. In all our calculations the number of particles is 

never below 100. For such a large number of particles the method of homotopy minimization 

leads, in one trial, to one of the higher energy local minima and the number of such minima 

is essentially limitless for the syptem sizes we utilize. But since the actual number of minima 

we generate is relatively small, the range of energies for the local minima produced is rather 

narrow. 

After generating an inherent structure it is straightforward to compute the corresponding 

vibrational spectrum in the harmonic approximation. For this purpose the Hessian matrix of 

the potential energy function is computed for the configuration at hand and the subsequent 

steps for calculating the frequencies for various normal modes of oscillations are standard. 

This process involves solving an eigenvalue problem where the eigenvalues are proportional 

to the squares of the frequencies. In this chapter we denote the square of the frequency of 

a mode by A and analysis of the density as well as fluctuations will be presented only for A. 

One could equally well choose the frequency itself. But this would have made no difference 

to the kind of analysis that we present in this chapter. 

Let us denote the elements of the eigenvalue spectrum for a particular local minimum 

(arranged in increasing order) by A(i), with i=1,2, ... ,3N. Since any potential that we deal 

with describes the interactions of particles amongst themselves only, the conditions of trans­

lational and rotational invariance must obviously be satisfied. This also implies that the six 

lowest frequency modes will have A = O. For the remaining (3N - 6) values of A, charac-
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terization is done in terms of an analysis of the mean local density and fluctuations around 

it. Consider the quantity ~i - (A(i + 1) - A(i)). This raw value of the nearest neighbor 

spacing, when considered as a function of i, will have a smooth component and a rapidly 

fluctuating component. The inverse of the smooth component is called the local Density of 

States (DOS). This is ~ physical quantity that can be measured through various experimental 

techniques and plays a direct role in determining various thermodynamic properties of the 

system. Here we denote this DOS function by g(A). It turns out that for a precise numerical 

analysis of the nature of fluctuations, a precise knowledge of g(A) is required. However, 

it is rarely the case that one has an analytical knowledge of the g(A) function. For our 

present examples also this is the situation. Hence, we can determine g(A) only numerically 

in the present analysis. The procedure employed for extracting the g(A) function from the 

numerically computed eigenvalue spectrum is described in the next paragraph. 

Let the number of eigenvalues less than or equal to A be represented by H(A). Now 

plot the eigenvalue A along the x - axis and the corresponding eigenvalue number (in the 

ordered spectrum) along the y-axis. By definition, this plot is monotonically increasing 

and H(A) is a staircase function that passes through all the points of this plot. Let S(A) 

be the smooth best fit function for this plot. For any finite eigenvalue spectrum S(A) is not 

actually uniquely defined. But for our purposes an approximation maybe made as follows. 

Generate a suitable function space by combining various elementary functions and using a 

small number of parameters. The actual construction of the function space is done through 

the inspection of the data and by trial and error. Now this best fit function S(X) maybe 

generated by varying the parameters in the function space and performing a least square fit. 

Since the best fit S(A) function is known analytically now, we can simply take its derivative 

and that constitutes our numerically determined DOS function for A. 

The first key result of this chapter is the following observation. If we exclude about 10% 

to 15% of all the eigenvalues at both the low frequency and high frequency ends, 
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S(>') can be approximated quite accurately by the functional form D(>.) _ a-bexp( -c>.) 

for the rest of the spectrum. This observation is applicable to all the four potentials we have 

studied and also for every system size (2: 100). 

How well does the function D(>') approximate S(>') ? This question can be answered by 

defining a misfit function m(i) _ i - D(>.(i)). In the range in which we do the fitting (i.e. 

excluding 10% to 15% at each end) let mmax be the maximum absolute value of the misfit 

function as calculated with the best fit values of the parameters a,b and c. Then, if we divide 

mmax by the total number of eigenvalues within the range of fit, we get an index that can be 

considered to be an appropriate measure of the accuracy of the approximation. For all the 

cases that are reported in this ~hapter, the value of this index stays around or below O.Ol. 

In figures 2.1, 2.3, 2.5 and 2.7 we show how closely the best fit D(>.) function approximates 

the integrated density of states. We have taken one sample local minimum with the largest 

cluster size for each of the four types of potentials. An alternative demonstration is given in 

figures 2.2, 2.4, 2.6 and 2.8 where we plot the misfit function for the same four local minima. 

Before we proceed to perform an analysis of the statistical fluctuations of the eigenvalue 

spectra, a general comment regarding the density of states function is in order. This is 

regarding the evolution of the g(>.) function with the number of particles in the cluster for 

a given potential. The existence of thermodynamic limit would suggest that g(>.) will have 

the structure N f(>.) when N is sufficiently large. Here f(>.) does not depend on the cluster 

size but should be a function of energy per particle. Given the structure of the g(>.) function 

that we are using, f(>.) will have the form (bc/N)exp( -c>.). Thus, c and (bc/N) define the 

scales of >. and the normalized density of states - both these quantities being, in general, a 

function of the energy of the local minimum in question. In our case, for a given potential 

and a given number of particles, the local minima are generated only in a rather narrow 

range of energy. If we make the standard assumption that the density of states function 

evolves smoothly with the energy of the local minimum, the implication of 
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11 



1 200 ~"'-"'-"'--'-'--'-'--'-'--'-'-"---'-'-T"""T"T"""T"'" 

Eig1.-nvalue number/ 

be t fit 
900 

600 

300 

Sutton - Chen (400) 

o ~~~~~~~~~~~~~ 
o 5000 10000 15000 20000 25000 

Eigenvalue 

Figure 2.5: Best fit function for Sutton - Chen potential. 

Misfit Function for Sutton - Chen 

5 

-5 

-15 

_ 25 ~-'--L-J....-'--'--J.......I....-J'--J.......I....-J-..L..-'---'---'---'---'--L.....J 

o 250 500 750 1000 
Eigenvalue Number 

Figure 2.6: Misfit function for Sutton - Chen potential. 

12 



1 200 r-r--r-.....--r---,-,---r-...,..---,-,-....---r---.--.--r-r--r--r---,--, 

Eige~value number/ 
best fit 

900 

600 

300 

Gupta (400) 

o ~~~~~~~~~~~~~ 
o 10 20 30 40 

Eigenvalue 
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the narrowness of the range of the energies produced is that both e and bel N should 

also be in a correspondingly narrow range. We have computed the mean and the standard 

deviation of these two parameters and the data is displayed in Table 2.1. 

Table 2.1 

Potential Number of c cblN s 
Particles Average Standard Average Standard Variance 

, 
Deviation Deviation 

200 1.60xlO 2 6.80xlO 4 1.56x10 2 4.02x10 4 0.2844 
LJ 500 1.38xlO -:& 4.49xlO -4 1.37x10 -;& 2.18x10 -4 0.2844 

1000 1.26xlO-:& 2.51x10-4 1.27xlO-:& 1.34x10 -4 0.2852 
2000 1.17xlO -;& 1.51x10 -4 1.20x10 .:& 8.19xlO -5 0.2854 
200 3.63x10-3 1.43x10-4 3.65x10 3 9.59x10 5 0_2864 

Morse 500 3.21xlO-3 7.97x10-5 3.29x10-3 5.07x10 -5 0.2844 
1000 2.97xlO -3 5.50x10 -t) 3.09x10 -3 3.29x10 -5 0.2857 
2000 2.78xlO-3 3.66x10-5 2.95x10 -3 2.26x10 ·5 0.2845 
100 1.74x10-4 6.76xlO-6 1. 71x10-4 6.44x10- 6 0.2908 

SC 200 1.65xlO -4 4.19xlO -0 1.65x10 -4 4.34x10 ·0 0.2882 
300 1.60xlO -4 3.37x10-O 1.62x10 -4 4.25x10 ·0 0_2833 
400 1.58xlO-4 2.70x10-o 1.61xlO-4 4.45x10-o 0.2856 
100 1.96x10-2 8.76xlO-4 1.86x10-:& 8.53x10 4 0.2942 

Gupta 200 l.71xlO -;& 6.14x1O -4 1.63x10 -;& 3.83xlO -4 0.2838 
400 1.49x10 -:& 7.39x10 -4 1.46x10 -:& 2.48x10 ·4 0.2841 

Inspection of this table shows that the standard deviation decreases with increase in 

the value of N in all the cases. Simultaneously, the mean values appear to go to a non -

zero limit. This suggests the existence of a well defined density of states function as the 

number of particles in the cluster becomes very large_ For the algorithm that weare using to 

generate the local minima, we have no direct control over their energies. Thus, the apparent 

convergence of e as well as bel N suggests that the energy per particle goes to some limiting 

value in the large N limit. However, we have no a priori control over this limiting value of 

the energy per particle. 

In order to analyze the statistical fluctuations of the eigenvalue spectra, we use procedures 

that are standard in the theory of Ra,ndom Matrices [69-72]. The first step is to convert the 
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spectrum of eigenvalues into what is called an "unfolded" spectrum. This is done by using 

the map s(i) S(,X(i)). Given the definition of the S('x) function that has been provided 

earlier, it is obvious that the average nearest neighbor spacing of the transformed eigenvalues 

will be unity everywhere in the spectrum. This staridardization of the scale of spacing makes 

it possible to compare the nature of fluctuations between different parts of the same spectrum 

or two entirely different spectra. One benefit of the process of unfolding is that the statistics 

of the analysis of the fluctuations can be significantly improved by combining the data from 

many different unfolded spectra if there is reason to believe that the nature of the statistical 

fluctuations is the same for all the spectra. However, it should be kept in mind that the 

transformation from the raw spectrum to the unfolded spectrum is implemented by using 

the D(,X) function with the best fit values of a,b and c specific to that local minimum. To 

summarize the procedure: 

(1) Take the ensemble of local minima generated for a particular potential with a specific 

number of particles. 

(2) Generate the eigenvalue spectra for all the minima, and 

(3) Unfold all the spectra. 

On this collection of the unfolded spectra, we perform the following kinds of analysis of 

statistical fluctuations: 

(1) Calculate the distribution (p( s )) of the nearest neighbor spacing (s). 

(2) Define the variable n(r) to be the number of levels within a window of length ofr placed 

randomly in the spectrum. Then we calculate variance [E2(r)], skewness ['Yl(r)] and excess 

h2(r)] parameters of the distribution of the variable n(r). 

Before we present the data on the statistical analysis, we should reiterate that the ap­

proximation D('x) to the S('x) function holds good only over a large central region of the 

spectrum. We consistently take this region to be what is left after excluding the lowest 10% 

and the highest 20% of each spectrum. This is called 'region II'. We refer to the spectral 
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regions below and above this range as 'region l' and 'region III', respectively. Analysis of the 

spectral fluctuations for these two relatively small regions are performed separately when­

ever they contain adequate number of eigenmodes. We now proceed to present the results of 

the analysis of the statistical fluctuations for the Lennard-Jones, Morse, Sutton - Chen and 

Gupta (for nickel) potentials. The largest cluster sizes that we have used with these four 

potentials are 2000, 2000, 400, and 400, respectively. The reason behind the largest system 

size being much smaller for Gupta and Sutton - Chen potentials is the presence of the many 

body terms. This causes a very large increase in the requirement of the computational power. 

As a result, we are constrained to use much smaller system sizes and fewer local minima as 

compared to Morse and Lennard-Jones potentials (which are of the form of sum over pairs). 

Region II 
In this section we present the results of the analysis of statistical fluctuations in the large 

central region of the spectrum for all the four types of potentials. Analysis of individual 

spectra suggests that in every case the fluctuations have the characteristics of the Gaussian 

Orthogonal Ensemble (GOE) of random matrices. However, the quality of the statistics is 

unsatisfactory owing to the relatively small number of levels in the region II of each spectrum 

- not exceeding about 4000 in any case. Since all the spectra individually have the features 

of GOE, we are able to improve statistics by combining the data for all the spectra obtained 

for a given number of particles with a particular potential. 

First of all we present the data for the distribution p( s) of the normalized nearest neighbor 
• 

spacings (s) for the largest cluster size generated with each potential in figures 2.9, 2.10, 

2.11 and 2.12. In each of the figures we also show the prediction from the Wigner's surmise 

[p(s) = (7rs/2)exp(-7rs2 /4)J as well as the exact prediction for the GOE [69J. 

The Wigner surmise is an approximate but highly accurate formula for p( s ). Its deviation 

from the exact prediction is typically of the order of 1 % or less and it has been extensively 
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Figure 2.9: Probability density [P(s)] for normalized nearest neighbor spacing (s) for 
Lennard-Jones potential. Filled circles: Our data. Crosses: Wigner's surmise for GOE. 
Continuous line: Exact prediction for the GOE. 
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Figure 2.10: Probability density [p(8)j for normalized nearest neighbor spacing (8) for Morse 
potential. Filled circles: Our data. Crosses: Wigner's surmise for GOE. Continuous line: 
Exact prediction for the GOE. 
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Figure 2.11: Probability density [P(s)] for normalized nearest neighbor spacing (s) for Sutton 
- Chen potential. Filled circles: Our data. Crosses: Wigner's surmise for GOE. Continuous 
line: Exact prediction for the GOE. 
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Figure 2.12: Probability density (p(s)] for normalized nearest neighbor spacing (s) for Gupta 
potential. Filled circles: Our data. Crosses: Wigner's surmise for GOE. Continuous line: 
Exact prediction for the GOE. 
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used in the literature. Part of the reason behind this extensive use of a formula that is 

known to be approximate is that the level of statistics in most applications is simply not 

large enough to be able to meaningfully distinguish between the approximate formula and 
-

the exact result. However, in our case tine ensembles for Lennard-Jones potential and Morse 

potential are large enough (of the order of one million levels) to make it possible to verify 

in a statistically significant manner whether our data follows the Wigner's surmise or the 

exact result. The plots for p(s) in figures 2.9 and 2.10 for Lennard-Jones and Morse potential 

show clearly that our data agrees with the exact predictions for GOE rather than the Wigner 

surmise. 

t'- ~ For the Sutton - Chen and. the Gupta potential ( figures 2.11 and 2.12), the data for 

f\.1 p( s) show a significantly higher level of scatter around the two predictions but it turns out 

~ that even for these two cases, the data points fall essentially within the range of permissible 

statistical fluctuations. For example, the absolute number of data points in a bin near the 

peak of the p(s) curve are about 12000, 19000, 1200 and 2300 for the Lennard-Jones, Morse, 

Sutton - Chen and Gupta potential, respectively. From this, the level of allowed statistical 

fluctuation can be computed and we find that the extent of scatter in the actual data is 

within permissible limits. 

A single valued indicator that follows from the p( s) function is the variance of the nearest 

•. neighbor spacing. We have calculated this parameter also for every ensemble and the results 

are available in the last column of Table 2.1. From the exact prediction for the GOE, this 

variance should be 0.286 whereas the Wigner's surmise leads to the value of 0.273. Inspection 

of Table 2.1 shows that the computed values of the variance are in much closer agreement 

with the exact GOE prediction. 
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We should point out here that the distribution of the nearest neighbor spacing is not 

too sensitive with respect to the size of the cluster. Even for a system with only about 

100 particles, there is very good agreement between the computed p( s) function and the 

predictions (see figures 2.13, 2.14, 2.15 and 2.16). 

The significance of this observation is the following: 

Any attempt at verifying these predictions in laboratory experiments or ab - initio calcula­

tions will involve only relatively small clusters (ofthe order of 100 or so) since bigger sizes are 

not feasible presently. Thus, it is important that the GOE properties should be observable 

even for systems of such small sizes. Our results for the clusters containing only 100 particles 

suggest that this is indeed the case. 

Now we consider the computation of 2;2(r), which is the variance of n(r), the number 

of levels within a window of length r placed randomly in the spectrum. For a credible 

computation of this characteristic, special care must be taken while unfolding the spectrum. 

As we have mentioned earlier, the function D(>..) with appropriately chosen values of a, b, 

and c does provide a rather close approximation to the ideal smooth function S(>"). But an 

examination of the misfit functions (see figures 2.2, 2.4, 2.6 and 2.8) shows that it is still 

not close enough as far as the computation of 2;2 (r) is concerned. Specifically, the misfit 

functions have an amplitude of fluctuations (around zero) of the order of 1% of the range 

of the fit and large scale systematic mismatch is apparent. Since the value of 2;2 (r) for 

GOE stays around unity, even for fairly large values of r, this level of systematic mismatch 

renders any calculation of variance for large values of r unacceptable. For GOE the spectrum 

is extremely rigid and 2;2(r) grows only as In(r). On the other hand, the error in the 

computation of 2;2(r) which is caused by the systematic mismatch that we have mentioned 

earlier grows proportional to r2 and the constant of proportionality grows with the extent of 

the mismatch. Hence, it is quite essential that the amplitude of mismatch should be brought 

down to the lowest possible level and ideally the mismatch function should reflect 
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Figure 2.13: Probability density (p(s)] for normalized nearest neighbor spacing (s) for 
Lennard-Jones potential with N = 100. Filled circles: Our data. Crosses: Wigner's surmise 
for GOE. Continuous line: Exact prediction for the GOE. 
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Figure 2.14: Probability density (p(s)] for normalized nearest neighbor spacing (s) for Morse 
potential with N = 100. Filled circles: Our data. Crosses: Wigner's surmise for GOE. 
Continuous line: Exact prediction for the GOE. 
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Figure 2.15: Probability density (p(s)] for normalized nearest neighbor spacing (s)for Sutton 
- Chen potential with N = 100. Filled circles: Our data. Crosses: Wigner's surmise for 
GOE. Continuous line: Exact prediction for the GOE. 
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Figure 2.16: Probability density (P(s)] for normalized nearest neighbor spacing (s)for Gupta 
potential with N = 100. Filled circles: Our data. Crosses: Wigner's surmise for GOE. 
Continuous line: Exact prediction for the GOE. 
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only the statistical fluctuations which are inherent to GOE. In our analysis we have ef­

fected a reduction in the amplitude of the mismatch function by adding a correction term 

to the principal fitting function D{)..). To do this we first of all identify the regions of the 

mismatch function where the behavior is rather irregular. Since there is no simple way to get 

a smooth fit through these regions they are eliminated from further consideration. For the 

remaining relatively smooth regions ( which we call 'accepted regions') ,which are typically 

2 or 3 in number, we separately construct quadratic fits to the mismatch function. Adding 

these quadratic functions to the principal fitting function D{)..), we get the final approxima­

tion to S{)") for each of the accepted regions separately. Thus, the approximation to S{)") 

which is actually used for unfolding is somewhat different for each of the accepted regions 

within the same spectrum. We should mention here that all the data for the normalized 

nearest neighbor spacing that are reported in this thesis are generated from spectra that 

have been unfolded by using the combined unfolding function - although the p{ s) function 

would not be altered recognizably even if we omitted the quadratic correction term in the 

unfolding function. For the calculation of L;2{r) for a given value of r, we use the ensemble 

of n{ r) computed for all the accepted regions of all the spectra for a given cluster size and a 

given potential. This same ensemble is also used for calculation of the skewness bl{r)] and 

excess b2 (r )] parameters which are defined as 

M 

Il{r) = (11M) 2:){nj - n)lal 
j=l 

M 
12{r) = (11M) L{{nj - n)lcr)4 - 3 

j=l 

(2.5) 

(2.6) 

where M is the number of data points in the ensemble for n{ r). cr and n are the standard 

deviation and mean of n{r), respectively. 

Data for L;2{r) is displayed for the four potentials in figures 2.17,2.18,2.19 and 2.20. In 

each figure we combine the data for several cluster sizes to exhibit the trend of dependence 

on 
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Figure 2.17: Variance of the number of levels in interval of length r plotted as a function of 
r for Lennard-Jones potential. Continuous line: Prediction for the GOE. Filled Circles: Our 
data. Number of particles N = 200, 500, 1000 and 2000 from top to bottom. 
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Figure 2.18: Variance of the number of levels in interval of length r plotted as a function of 
r for Morse potential. Continuous line: Prediction for the GOE. Filled Circles: Our data. 
Number of particles N = 200, 500, 1000 and 2000 from top to bottom. 
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Figure 2.19: Variance of the number of levels in interval of length r plotted as a function of 
r for Sutton - Chen potential. Continuous line: Prediction for the GOE. Filled Circles: Our 
data. Number of particles N = 100, 200 and 400 from top to bottom. 
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Figure 2.20: Variance of the number of levels in interval of length r plotted as a function of 
r for Gupta potential. Continuous line: Prediction for the GOE. Filled Circles: Our data. 
Number of particles N = 100, 200, and 400 from top to bottom. 
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Figure 2.21: Skewness and Excess parameters of the distribution of n(r), the number of 
levels in interval of length r, plotted as a function of r for Lennard-Jones potential with 
N = 2000. Continuous lines: Predictions for the COE. Filled Circles: Our data. 

Figure 2.22: Skewness and Excess parameters of the distribution of n( r), the number of 
levels in interval of length r, plotted as a function of r for Morse potential with N = 2000. 
Continuous lines: Predictions for the GOE. Filled Circles: Our data. 
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Figure 2.23: Skewness and Excess parameters of the distribution· of n(r), the number of 
levels in interval of length r, plotted as a function of r for Sutton - Chen potential with 
N = 400. Continuous lines: Predictions for the GOE. Filled Circles: Our data. 
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Figure 2.24: Skewness and Excess parameters of the distribution of n(r), the number of 
levels in interval of length r, plotted as a function of r for Gupta potential with N = 400. 
Continuous lines: Predictions for the GOE. Filled Circles: Our data. 
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N. Common to all the figures is the observation that the agreement between the predic­

tions for the GOE [69J and the computed data becomes closer as the system size increases. 

Data for the skewness and excess parameters are presented in the figures 2.21, 2.22, 2.23 and 

2.24 for the largest system size used with each of the four potentials. In each case the exact 

predictions for the GOE are also included. These "exact predictions" have been calculated 

on the basis of a large ensemble of 500 X 500 matrices belonging to the Gaussian Orthogonal 

Ensemble. 

The reason why, for skewness and excess parameters, we show only the data for the largest 

system size in each case is that there is hardly any detectable dependence on the system size. 

Even for N as small as 100 this is true - as can be seen in the figures 2.25, 2.26, 2.27 and 2.28. 

Thus, along with the nearest neighbor spacing, skewness and excess parameters form ideal 

candidates for observing the GOE nature of the fluctuations in possible future experiments 

and ab - initio calculations. In all the data on Il{r) and 12{r) we have included information 

up to r = 5 since both these functions become very small in absolute value beyond 
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Figure 2.25: Skewness and Excess parameters of the distribution of n{r), the number of 
levels in interval of length r, plotted as a function of r for Lennard-Jones potential with 
N = 100. Continuous lines: Predictions for the GOE. Filled Circles: Our data. 
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Figure 2.26: Skewness and Excess parameters of the distribution of n(r), the number of 
levels in interval of length r, plotted as a function of r for Morse potential with N = 100. 
Continuous lines: Predictions for the GOE. Filled Circles: Our data. 
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Figure 2.27: Skewness and Excess parameters of the distribution of n(r), the number of 
levels in interval of length r, plotted as a function of r for Sutton - Chen potential with 
N = 100. Continuous lines: Predictions for the GOE. Filled Circles: Our data. 
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Figure 2.28: Skewness and Excess parameters of the distribution of n( r), the number of 
levels in interval of length r, plotted as a function of r for Gupta potential with N := 100. 
Continuous lines: Predictions for the GOE. Filled Circles: Our data. 

this range. For r :S 5, the agreement between the predictions for the GOE and our 

calculations is very close - as can be seen in the figures 2.21 to 2.28. As mentioned earlier, 

in the procedure adopted for the calculation-of E2(r), 11(r) and 12(r), we have excluded 

some regions of spectra where the misfit function has irregular behavior. Although the 

broad contours of the misfit function are more or less same for all the spectra with a given 

potential and a given number of particles, the exact locations of these irregular regions do 

vary somewhat from spectrum to spectrum. However, since we are dealing with a very large 

number of spectra (of the order of 1000 in some cases) and the exclusion of the irregular 

regions is done only through visual inspection, we have actually selected the same groups of 

frequencies for all the spectra after inspecting only a few of them. This process is somewhat 

subjective (and improper, strictly speaking) and causes some degradation in the quality of 

unfolding. All the data on E2 (r) that have been presented in figures 2.17, 2.18, 2.19 and 

2.20 suffer from this limitation. However, in the cases of Lennard-Jones potential and Morse 

potential with 2000 particles (the number of spectra being 262 and 49, respectively) we have 
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examined the misfit function for each spectrum separately and excluded the irregular regions 

accordingly. The results of this analysis for E2(r) are shown in figures 2.29 and 2.30. 
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Figure 2.29: Variance of the number of levels in interval of length r plotted as a function of 
r for Lennard-Jones potential with N = 2000 and with spectrum-specific choice of accepted 
regions. Continuous line: Prediction for the GOE. Filled Circles: Our data. 

One can see that now there is essentially overlapping agreement with the predictions of 

GOE all the way up to r = 20. This is to be compared with the data in figures 2.17 and 

2.18. 
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Figure 2.30: Variance of the number of levels in interval of length r plotted as a function of 
r for Morse potential with N = 2000 and with spectrum-specific choice of accepted regions. ' 
Continuous line: Prediction for the GOE. Filled Circles: Our data. 
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Regions I and III 
In this section we present the results of the analysis of statistical fluctuations for the 

top 20% (region III) and the bottom 10% (region I) of the spectra. This is done only for 

Lennard-Jones and Morse potentials. For the other two potentials the number of eigenvalues 

in either of these two regions is too small to permit any statistically significant analysis -

even for the largest system sizes used. For the Lennard-Jones and Morse cases the number 

of levels in these two regions are reasonably high for the largest system size of N = 2000. 

The reasons why we perform the analysis separately for these two regions are two-fold: 

(1) As we have seen earlier, analysis of fluctuations is preceded by the construction of an 

analytical unfolding function. However, we are unable to construct such a function for the 

entire spectrum in one go. 

(2) We have calculated the participation ratios of the eigenmodes and the values indicate 

that the modes are extended in a large central part of the spectrum overlapping region 

II. However, towards the top of the spectra, the eigenmodes are more and more localized 

and they are completely localized at the top of region III. In the region I the eigenmodes 

seem to be a mixture of extended and localized type. Since, from literature, we expect a 

connection between the nature of spectral fluctuations and the localization characteristics of 

the eigenmodes, it is better to analyze these regions separately so as not to mix up regions 

with possibly different types of spectral fluctuations [32,66J. 

As before, we have to make a proper choice of the unfolding function that fits the cu­

mulative density of states data sufficiently closely. We choose this fitting function to be a 

quadratic function in region I since the range of the fit is rather limited. For region III, the 

unfolding function has the same form as in region II but with different values of parameters. 

We remove a further 5% of the spectra from the top of region III and 1 % from the bottom 
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of region I in order to make the fit sufficiently close. 

Figures 2.31, 2.32, 2.33 and 2.34 show the distribution of the normalized nearest neighbor 

spacing for the regions I and III with the two different potentials. Also shown in each figure 

are the two types of theoretical predictions. Inspection of these figures show that the closeness 

of the numerically computed nearest neighbor spacing distribution to the exact prediction 

for the GOE is essentially as good as it is for region II. However, on account of the lower 

level of statistics for regions I and III, scatter of the data around the prediction is somewhat 

higher than it is for the region II. Thus the deviation from the GOE statistics ,if any, is 

certainly weak even in those sections· of the eigenvalue spectra where localization is much 

more pronounced. To summarize the results for the spectrum as a whole, any departure 

from the GOE statistics much be limited to a small fraction of levels at the two ends of the 

spectrum (five percent at the top and one percent at the bottom); These regions, even for 

the maximum system sizes we have used, contain such a small number of levels that it is not 

presently possible to perform an independent study of the spectral fluctuations. 
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Figure 2.31: Probability density (p(s)] for normalized nearest neighbor spacing (s), obtained 
with Lennard-Jones potential (N = 2000) in region I of the spectrum. Filled Circles: Our 
data. Crosses: Wigner's surmise for GOE. Continuous line: Exact prediction for the COE. 
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Figure 2.32: Probability density [p(s)] for normalized nearest neighbor spacing (s), obtained 
with Lennard-Jones potential (N = 2000) in region III of the spectrum. Filled Circles: Our 
data. Crosses: Wigner's surmise for GOE. Continuous line: Exact prediction for the GOE. 
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Figure 2.33: Probability density [p(s)] for normalized nearest neighbor spacing (s), obtained 
with Morse potential (N = 2000) in region I of the spectrum. Filled Circles: Our data. 
Crosses: Wigner's surmise for GOE. Continuous line: Exact prediction for the GOE. 
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Figure 2.34: Probability density (p(s)] for normalized nearest neighbor spacing (8), obtained 
with Morse potential (N = 2000) in region III of the spectrum. Filled Circles: Our data. 
Crosses: Wigner's surmise for GOE. Continuous line: Exact prediction for the GOE. 

Data for the variance ~2 (r) for the two regions and with the two potentials are presented 

in figures 2.35, 2.36, 2.37 and 2.38. It is immediately obvious that the deviation of the 

numerically computed values of the variance for the different window lengths from the exact 

predictions for the COE is significantly higher now as compared to region II - especially 

when higher values of r are considered. The probable reasons for this higher deviation are: 

(1) The quality of the fit of the unfolding function. 

(2) The possibility that there is a presence of Poissonian statistics due to higher level of 

localization in regions I and III which are located at the two ends .of the spectra. 

It is difficult to make a clear statement on the relative importance of these two probable 

causes. However, since the agreement of the nearest neighbor spacing distribution to the 

prediction for the COE is so close, it seems reasonable to conclude that it is the quality of 

the unfolding that is the primary reason for the deviation of variance from the prediction 

for the CaE. In arriving at this conclusion we have kept in mind the fact that the nearest 

neighbor spacing distribution is much less sensitive to the quality of the process of unfolding. 

38 



1 .25 .---r-r-r-r.....-.--r-r-.,.--r-,-..... --.-.....-r--,-..,--,. r:-I. 

E2(r) ••• • • • 
1.00 

0.75 

0.50 

0.25. 

Lennard-Jones (2000) 

Region I 

o ~~~~~~~-L~-L~-L~~ 
o 5 10 15 r 20 

Figure 2.35: Variance of the number of levels in intervals of length r plotted as a function ofr 
for region I of the spectrum obtained with Lennard-Jones potential (N = 2000). Continuous 
line: Prediction for the GOE. Filled circles: Our data 
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Figure 2.36: Variance of the number of levels in intervals of length r plotted as a function 
of r for region III of the spectrum obtained with Lennard-Jones potential (N = 2000). 
Continuous line: Prediction for the GOE. Filled circles:· Our data 
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Figure 2.37: Variance of the number of levels in intervals of length r plotted as a function of 
r for region I of the spectrum obtained with Morse potential (N = 2000). Continuous line: 
Prediction for the CaE. Filled circles: Our data 
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Figure 2.38: Variance of the number of levels in intervals of length r plotted as a function 
of r for region III of the spectrum obtained with Morse potential (N = 2000). Continuous 
line: Prediction for the COE. Filled circles: Our data 
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Finally, in figures 2.39, 2.40, 2.41 and 2.42 we display the plots of skewness and excess 

parameters as a function of window length for the two potentials . Also superimposed are 

the predictions for the GOE. The closeness of agreement are quite apparent in the figures. 
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Figure 2.39: Skewness and Excess parameters of the distribution of n( r)) the number of levels 
in interval of length r) plotted as a function of r for region I of the spectra obtained with 
Lennard-Jones potential (N = 2000). Continuous lines: Predictions for the GOE. Filled 
circles: Our data 
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Figure 2.40: Skewness and Excess parameters of the distribution of n( r), the number of levels 
in interval of length r, plotted as a function of r for region III of the spectra obtained with 
Lennard-Jones potential (N = 2000). Continuous lines: Predictions for the GOE. Filled 
circles: Our data 
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Figure 2.41: Skewness and Excess parameters of the distribution of n(r), the number of 
levels in interval of length r, plotted as a function of r for region I of the spectra obtained 
with Morse potential (N = 2000). Continuous lines: Predictions for the GOE. Filled circles: 
Our data 
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Figure 2.42: Skewness and Excess parameters of the distribution of n(r), the number of 
levels in interval of length r, plotted as a function of r for region III of the spectra obtained 
with Morse potential (N = 2000). Continuous lines: Predictions for the GOE. Filled circles: 
Our data 
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Chapter 3 

Universality of Statistical 
Fluctuations : Binary Amorphous 
Clusters 

In this chapter we continue the study of statistical fluctuations in the vibrational spectra 

of amorphous systems. But now we consider systems that are made up of two different 

kinds of constituent units. Studies in chapter 2 showed that for a large central region of the 

vibrational spectra of single-component amorphous systems, the integrated density of states 

can be described very accurately by a functional form that does not depend on the nature 

of the interaction. Also, the spectral fluctuations turned out to be of the GOE type to a 

very high level of accuracy in all cases. It is natural to ask whether these kinds of universal 

properties will hold even when the system is more complicated. The simplest situation 

to which one can extend these investigations is the one pertaining to binary systems. In 

situations where the potential can be written as a sum over pairs, three functional forms are 

needed for binary systems corresponding to the three distinct pairs of constituent units that 

are possible. In our investigation we take a Lennard-Jones type of potential for every pair i.e. 

the potential for the pair involving two units of type P and Q separated by a distance r is 

given by 4EPQ[(O"PQ/r)l2 - (O"PQ/r)6]. Thus, the values of EpQ and O"PQ for all the three pairs 

are needed to completely specify the potential energy of the system for a given configuration. 
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We have studied situations with different ratios of the numbers of the two different kinds 

of units, different system sizes and different rules for the construction of the Lennard-Jones 

interaction parameters between the two species. Also the masses of the two types of units 

are sometimes the same and sometimes different. Here we will present the results for four 

different situations. Common to all of them are the following: (Denoting the two types of 

units as A and B) EBB/EAA = 0.5, (JBB/(JAA = 0.88 and NA + NB = 2000. Here NA and 

NB denote the numbers of units of type A and B, respectively. The four cases for which we 

present the results here are specified in Table 3.1 in which mA and mB denote the masses 

of the two types of the units. 

Table 3.1 

NA/NB EAB/EAA (JAB/(JAA rnA/rnB 

Case I 1 VEBB/EAA [1 + ((JBB/(J AA)l/2 2/3 
Case II 4 1.5 0.8 2/3 

Case III 1 VEBB/EAA [1 + ((JBB/(J AA)l/2 1 

Case IV 4 1.5 0.8 1 

It may be noted that in cases I and III, the parameters of the Lennard-Jones potential 

for the pair with nonidentical units are the same and are constructed via the Lorentz -

Berthelot rule. However, the ratios of the masses are different in the two cases. In cases II 

and IV, the parameters for the nonidentical pair correspond to a choice that has been used 

extensively in the literature [9-10, 12-13J. Here ,again, the only difference between the cases 

II and IV comes from the mass ratio. 

While generating the random initial configuration for the process of minimization, we as-

sign a type (A or B) to each particle and that completes the definition of the potential. After 

this the process of generating the local minima is the same as that for a single-component 

cluster. The construction of the eigenvalue problem is slightly more complicated when the 

masses of the two units are not identical. 
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Once the spectra for the various local minima are generated, the rest of the analysis is 

essentially the same as in the case of a single-component cluster. For example, we find that 

the functional form D()") = a - bexp( -c)..) fits the cumulative density of states to a very 

high degree of accuracy in region II. The maximum absolute value of the misfit function 

stays at the level of 1.5% or less of the range of the fit. Here again, we improve the process 

of unfolding by adding a quadratic correction to the D()..) function for various sub domains 

of each spectrum. Since our primary interest here is to investigate whether the universal 

properties observed for single-component clusters are also present for the binary systems, we 

present results only for the region II and ignore the other parts of the spectrum (i.e. region 

I and region III). 

Figures 3.1 to 3.12 show the data for the nearest neighbor spacing, variance and skewness 

( plus excess) for the four cases. 
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Figure 3.1: Probability density [p(8)] for normalized nearest neighbor spacing (8) for binary 
Lennard-Jones system ( Case I ). Filled circles: Our data. Crosses: Wigner's surmise for 
GOE. Continuous line: Exact prediction for the GOE. 
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Figure 3.2: Probability density (p(s)] for normalized nearest neighbor spacing (s) for binary 
Lennard-Jones system ( Case II ). Filled circles: Our data. Crosses: Wigner's surmise for 
GOE. Continuous line: Exact prediction for the GOE. 
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Figure 3.3: Probability density [p(s)} for normalized nearest neighbor spacing (s) for binary 
Lennard-Jones system ( Case III ). Filled circles: Our data. Crosses: Wigner's surmise for 
COE. Continuous line: Exact prediction for the COE. 
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Figure 3.4: Probability density (p(s)] for normalized nearest neighbor spacing (s) for binary 
Lennard-Jones system ( Case N ). Filled circles: Our data. Crosses: Wigner's surmise for 
CaE. Continuous line: Exact prediction for the CaE. 
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Figure 3.5: Variance of the number of levels in intervals of length r plotted as a function of 
r for the spectra of binary Lennard-Jones system ( Case I ). Continuous line: Prediction for 
the GOE. Filled circles: Our data 
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Figure 3.6: Variance of the number of levels in intervals of length r plotted as a function of 
r for the spectra of binary Lennard-Jones system ( Case II ). Continuous line: Prediction 
for the GOE. Filled circles: Our data 
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Figure 3.7: Variance of the number of levels in intervals of length r plotted as a function of 
r for the spectra of binary Lennard-Jones system ( Case III ). Continuous line: Prediction 
for the GOE. Filled circles: Our data 
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Figure 3.8: Variance of the number of levels in intervals of length r plotted as a function of 
r for the spectra of binary Lennard-Jones system ( Case IV). Continuous line: Prediction 
for the GOE. Filled circles: Our data 
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Figure 3.9: Skewness and Excess parameters of the distribution of n(r), the number of levels 
in interval of length r, plotted as a function of r for the spectra of binary Lennard-Jones 
system ( Case I ). Continuous lines: Predictions for the GOE. Filled circles: Our data 
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Figure 3.10: Skewness and Excess parameters of the distribution of n( r), the number of levels 
in interval of length r, plotted as a function of r for the spectra of binary Lennard-Jones 
system ( Case II ). Continuous lines: Predictions for the GOE. Filled circles: Our data 
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Figure 3.11: Skewness and Excess parameters of the distribution of n( r), the number of levels 
in interval of length r, plotted as a function of r for the spectra of binary Lennard-Jones 
system ( Case III ). Continuous lines: Predictions for the GOE. Filled circles: Our data 
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Figure 3.12: Skewness and Excess parameters of the distribution of n( r), the number of levels 
in interval of length r, plotted as a function of r for the spectra of binary Lennard-Jones 
system ( Case N ). Continuous lines: Predictions for the GOE. Filled circle..-": Our data 
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It can be seen that the agreement with the predictions for the GOE is at the same level 

as that for single component systems as far as the nearest neighbor spacing and skewness ( 

plus excess) are concerned. However, in the case of variance (~2(T)) the disagreement with 

the predictions for the GOE seems to be somewhat higher for larger values of T. It is quite 

likely that this is merely a consequence of not choosing the accepted regions of the spectra 

separately for each local minimum. 
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Chapter 4 

Universality of the Density of States 
for Amorphous Clusters 

The two previous chapters on the vibrational properties of amorphous clusters have dealt 

mostly with an examination of the nature of statistical fluctuations in the language of Ran­

dom Matrix Theories. The first step in such an analysis is the unfolding of the spectrum. 

Let us recall that we needed a smooth and highly accurate fitting function for the plot of 

eigenvalue versus eigenvalue number. The analytical form of this fitting function D(>"') is 

given by [a - bexp( -c>...)]. This function fitted the cumulative density of states quite closely 

over the large central region of the spectrum which was labelled as Region II. This was true 

for all the potentials and all the system sizes that we studied. Note that the function D(>"') 

has only one scale (>"'0) for >..., namely 1/ c. This means that if >"'0 is chosen as the unit of>..., all 

the density of states curves can be mapped into a single master curve in the Region II to a 

rather good approximation - which is what we mean by universality in the density of states. 

However, since the fit is close only in Region II it is not clear whether the universality extends 

over the whole spectrum. It is certainly possible, in principle, that there exists a universal 

fitting function over the entire spectrum but we do not know its functional form and the 

functional form D(>"') ( = a - bexp( -c>...)) happens to provide a very good approximation 

to the true underlying universal function in the large central region provided a, b and c are 
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chosen properly. In this chapter we examine this possibility through a numerical analysis of 

the vibrational spectra. In this connection it is appropriate to remember that for a given 

potential and a given number of particles, the 10cal minima that correspond to amorphous 

clusters will be distributed over a range of energies. Of all these possible energies, we obtain 

the ones that have the largest basin of attraction with respect to our method of generation 

of local minima. Thus, our procedure permits us to examine the theme of universality over 

the entire spectrum only for these minima. 

Since different potentials will have different scales offrequency w, (w = v'A) it is necessary 

first of all to decide on the appropriate unit of frequency in each case before the density of 

states functions can be compared. We choose, for any given spectrum, the unit of frequency 

to be the average frequency of that spectrum. Once the frequencies are normalized in all the 

spectra corresponding to a given potential and a given number of particles, we can combine 

the histograms for the normalized frequencies to generate its distribution. The normalized 

form of the distribution of the normalized frequency (1/) is denoted here by n( 1/). In figure 

4.1 we present the data for the normalized density of states function for six different cases 

for which the cluster sizes are comparable (400 or 500). This grouping of data according to 

system size is done keeping in mind the presence of finite size effects. The cases which are 

shown in figure 4.1 correspond to (with the size of the cluster shown in parenthesis): (1) 

Single-component Lennard-Jones (500), (2) Morse (500), (3) Sutton - Chen (400), (4) Gupta 

(400) for nickel, (5) Gupta (400) for vanadium and (6) Binary Lennard-Jones mixture with 

parameters of Case I of chapter 3 (500). Before normalization of frequency, the maximum 

values of w for these six cases are approximately 16, 33, 150, 18, 5 and 32 respectively. 

Figure 4.2 shows similar data with the number of particles N = 2000 for: (1) Single 

- Component Lennard-Jones, (2) Morse, (3) Binary Lennard-Jones, Case I and (4)Binary 

Lennard-Jones, Case II. The scales of intrinsic frequencies for the six cases in figure 4.1 vary 

by a factor of almost 30. Given such variations of the intrinsic scales, the extent of overlap of 
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Figure 4.1: Normalized density of states [n( 1/) 1 for rescaled frequency (1/) with rescaling done 
by the average frequency of the corresponding spectrum. Vertical bars denote approximately 
the limits of region II. Filled circles: Lennard-Jones (500). Open circles: Morse (500). Open 
triangles: Sutton - Chen (400). Stars: Gupta for nickel (400). Filled squares: Gupta for 
vanadium (400). Open squares: Binary Lennard-Jones (500), Case I. 
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Figure 4.2: Normalized density of states [n(v)] for rescaled frequency (v) with rescaling done 
by the average frequency of the corresponding spectrum. Vertical bars denote approximately 
the limits of region II. Filled circles: Lennard-Jones (2000). Open squares: Morse (2000). 
Crosses: Binary Lennard-Jones, Case I (2000). Open inverted triangles: Binary Lennard-
Jones, Case II (2000). 
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the normalized density of states curves in figures 4.1 and 4.2 is certainly strongly suggestive. 

But in the light of the observation that the function D().,) = a - bexp( -c).,) describes the 

cumulative density of states to within 1% in Region II, which includes approximately 70% 

of the spectrum, this apparent overlap of the different normalized density of states functions 

is somewhat misleading. To demonstrate this, we replot the data of figures 4.1 and 4.2 in 

figures 4.3 and 4.4 by choosing the unit of frequency to be the inverse of the square root of 

the best fit value of c - which is the natural scale of frequency suggested by the functional 

form of D().,). It is obvious from figures 4.3 and 4.4 that the quality of overlap in Region II 

is much better now. 

Data presented in figures 4.1, 4.2, 4.3 and 4.4 suggest that the universality of the density 

of states holds fairly accurately over the large central region of the spectrum but not over 

the rest of the spectrum. The inclusion of regions I and III, where there is a violation of 

the universality, while computing the scale of frequency in figures 4.1 and 4.2 causes the 

significant deviation around any master curve in these two figures. It can also be seen in 

figures 4.1 and 4.3 that the Sutton - Chen spectrum for nickel and the Gupta spectrum for 

vanadium contain small but visible peaks in addition to the broad central peak. 

To understand these features we need to use a physical insight that was first provided 

by Rehr and Alben [38J regarding the mechanism of how the sharp peaks of a crystalline 

spectrum transform into the rather broad peaks of an amorphous solid as more and more 

disorder is introduced in the system. According to this line of reasoning, the computation of 

the vibrational spectrum of a disordered system can be divided into two steps. In the first 

step it is necessary to construct a geometry for the configuration around which the vibration 

takes place (For us any configuration corresponding to a local minimum of the potential 

energy function is a candidate). The next step is to construct a model of vibration. This 

is done by connecting all pairs of elements within an appropriate cut-off distance via linear 

springs. The spring constants for the pairs within the cut-off distance have a well defined 
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Figure 4.3: Normalized density of states [n(v)] for rescaled frequency (v) with rescaling done 
by the best-fit frequency parameter of the region II of the corresponding spectrum. Vertical 
bars denote approximately the limits of region II. Filled circles: Lennard-Jones (500). Open 
circles: Morse (500). Open triangles: Sutton - Chen (400). Stars: Gupta for nickel (400). 
Filled squares: Gupta for vanadium (400). Open squares: Binary Lennard-Jones (500), Case 
I. 
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Figure 4.4: Normalized density of states [n(v)] for rescaled frequency (v) with rescaling 
done by the best-Et frequency parameter of the region II of the corresponding spectrum. 
Vertical bars denote approximately the limits of region II. Filled circles: Lennard-Jones 
(2000). Open squares: Morse (2000). Crosses: Binary Lennard-Jones, Case I (2000). Open 
inverted triangles: Binary Lennard-Jones, Case II(2000). 
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functional dependence on the corresponding pair separation. Thus, the vibrational modes of 

a solid are computed as the normal modes of this interconnected spring-mass system. Now 

even if the spring constants for all the pairs included are taken to be the same, the sharp peaks 

of the crystalline spectrum will still transform to the broad peaks for disordered systems. 

This is due to the change in the topology of the spring-mass system induced by disorder 

which changes the connectivity pattern. Thus, this 'topological disorder' [38] will destroy the 

van-Hove singularities of the crystalline spectrum but the broad features will still survive -

since, even for amorphous states, the local geometry is still substantially like that present in 

a crystal. Now if we consider a situation in which the spring constants do change from pair 

to pair according to the pair separation, disorder will introduce another source of broadening 

the time scales of vibration via the random variability of the pair separation distances. The 

precise extent of this effect is controlled by the sharpness of the variation 0f the spring 

constant with pair separation and is quantified by the third derivative of the potential. This 

has been referred to as 'quantitative disorder'[38]. If we keep on increasing the strength of 

the dispersion of the spring constant, it will ultimately cause the disappearance of even the 

broad features that resulted from the imposition of only topological disorder. Hence, it is 

possible to have a spectrum with just one peak in the presence of disorder if the nature of 

the inter-particle potential is such that there is strong enough 'quantitative disorder'" This 

also suggests that if the dispersion of the spring constant is not strong enough, even for 

disordered systems vibrational spectra may show more than one peak. We believe this to be 

the explanation for the existence of weak extra peaks in case of Sutton - Chen potential for 

nickel and Gupta potential for vanadium. Please also note that we are dealing with clusters 

here and the presence of the surface can be considered to be a source of 'topological disorder' 

- since the elements on the surface will have a different connectivity pattern compared to 

those in the interior. However, the effect of this 'topological disorder' due to finite size will 

decrease as the cluster size increases since the fraction of elements on the surface will keep 
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decreasing. In that limit more crystalline features will be recovered. For example, the extra 

peaks in the two cases that we have just discussed are expected to grow in strength as the 

cluster size increases and this will cause an even stronger violation of universality. 

The idea that there may be universality in atleast parts of the vibrational spectra of dis­

ordered systems has also been put forward recently on the basis of laboratory experiments 

with a variety of glasses [65]. These experiments are on bulk systems and the constituent 

units are too complex to be realistically represented by only the positional degree of freedom. 

These extra complications will introduce additional features in the vibrational spectra. Nev­

ertheless, if we confine our attention to collective vibrations with coherence length greater 

than the size of a constituent unit, it will still be permissible to compare the experimental 

results with theoretical calculations of the type we are considering. The fact that we are 

dealing with clusters rather than bulk systems will certainly make a quantitative difference. 

But the main point here is the very existence of universality itself in the vibrational spectra of 

amorphous systems. To that extent these new experiments put forward the same concept of 

universality that we have discussed here in the context of clusters. The functional form that 

has been proposed for the universal density of states function for the bulk glasses is different 

from what is implied by our D(A) function but it also has only one scale of frequency and thus 

satisfies the necessary condition of shape universality. Infact we have used this functional 

form also to construct an alternative cumulative density of states function for the purpose of 

analyzing statistical fluctuations for clusters. To do this please note that the density of states 

function for win ref.65 is given by G(w) = aw2 exp(,8w). This implies that the cumulative 

density of states has the form I(w) = canst - (2a/ ,83)[1 +,8w + (1/2) (,8w) 2] exp( -,8w). Now 

we can repeat the analysis of fluctuations by replacing A and D(A) [as used in chapters 2 

and 3] by w and I(w), respectively. The misfit function now has amplitude that is compa­

rable to or somewhat smaller than what is obtained with A and D(A). However, this has 

no quantitative consequence for the analysis of statistical fluctuations since any difference 
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in the quality of unfolding caused by the difference of functional forms at the first level is 

made up by the process of correction with the quadratic fit to the residue. 

It is also possible to study the issue of universality of the density of states function by 

examining the various moments of the frequency. Let us remember that the information 

content of the density of states function can be expressed equivalently through the discrete 

but infinite collection of all the moments. Although we do not presently have a theory 

for the universality that is observed empirically, it is likely that the preliminary effort in 

that direction will be in terms of a random matrix type theory which typically concentrates 

on these moments. We can define these moments both in terms of A and w but since A 

appears in a somewhat more immediate way in theoretical calculations, we have chosen to 

calculate the moments of only A here. In the present context universality is signalled by the 

presence of only one scale of A in its density of states function. This implies that if we define 

R(n) -< An > /< A >n for every positive integral value of n and if universality holds over 

the entire spectrum, R( n) should be universal. We show the data for this ratio of moments 

in Table 4.1 for the various cases we have studied. 
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Table 4.1 

Number 
Potential of :\ ,X2/:\2 ,X3/:\3 ,X4/:\4 

Particles 
100 5644.5 1.6676 3.4641 8.1032 

Sutton - Chen 200 5657.8 1.6513 3.3821 7.7913 
300 5677.3 1.6368 3.3139 7.5395 
400 5693.4 1.6286 3.2775 7.4116 

Gupta 100 56.9 1.8360 4.5041 13.0656 
(Nickel) 200 61.7 1.8087 4.3018 11.9598 

400 66.3 1.7621 4.0328 10.7267 
Gupta(Vanadium) 400 7.9 1.7034 3.6336 8.7015 

200 261.5 1.7452 3.9473 10.3628 
Morse 500 280.4 1.7063 3.7216 9.3429 

1000 291.6 1.6825 3.5934 8.7990 
2000 300.8 1.6634 3.4933 8.3869 
200 62.8 1.7968 4.2480 11.7732 

Lennard-J ones 500 69.0 1.7621 4.0360 10.7592 
(Monatomic ) 1000 72.7 1.7375 3.8950 10.1187 

2000 75.8 1.7148 3.7687 9.5627 
Lennard-J ones 500 195.8 1.9088 4.9043 14.9385 

(Binary, Case I) 1000 206.2 1.8798 4.7182 13.9731 
2000 214.7 1.8558 4.5728 13.2627 

Lennard-J ones 1000 376.6 1.7662 4.0473 10.7777 
(Binary, Case II) 2000 364.2 1.7684 4.0430 10.7030 

(L-J Binary, Case III) 2000 250.8 1.7539 3.9856 10.5159 
(L-J Binary, Case IV) 2000 389.8 1.7463 3.9386 10.301 

Please note that the scale of frequency in various situations (as measured by the corre­

sponding average frequency) varies very widely - infact over almost three decades. Second 

point to be noted is that with increase in the order of moment the high frequency domain 

of the spectrum plays progressively more dominant role in determining the ratio. Thus, the 

effect of any deviation from universality in the high frequency domain will be visible more 

and more in the moment ratio for higher order moments. In Table 4.1 R( n) decreases grad­

ually with increase in the system size while keeping the composition, the potential and the 

value of N fixed. However, the signature of convergence is not strong enough. If we focus 
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on the pattern of convergence for the various cases, we cannot draw definite conclusions but 

the data is also not consistent with the conjecture of universality at this leveL 
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Chapter 5 

Universality in the Vibrational 
Spectra of Bulk Amorphous Systems 

In this chapter we address the issue of universality in the vibrational spectra of bulk amor­

phous systems rather than clusters. In chapter 4 we observed the presence of shape univer­

sality over a large central region of the vibrational spectra of clusters with various types of 

interparticle interactions. The questions we want to address here are: (1) What happens 

when the system size approaches the bulk limit and (2) Whether there are any situations 

in which shape universality extends over the entire spectrum rather than over only a large 

central region. 

The methodology that is used to produce the bulk amorphous systems is also used here to 

address another question which is not a central topic of this thesis but is a rather important 

issue in its own right. This concerns the presence of 'boson peaks' in the vibrational spectra 

of disordered systems [21-22, 45-65]. This results from the existence of extra modes in the 

low frequency region of the spectrum. Here by 'extra' one means that the density of states 

is higher than what would be predicted by a Debye type theory based on the speed of sound 

in the zero frequency limit. Although there are many theories regarding the origin of these 

extra modes, one aspect to which enough attention has not been paid is to have a detailed 

and realistic picture of how the build up of the modes in the low frequency region (as well 
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as in the high frequency region) takes place as one goes from the crystalline ground state 

to the amorphous states. It may be remembered that crystalline vibrational spectra have 

sharp peaks and van-Hove singularities whereas amorphous states don't have such features. 

Here we generate a detailed description of this morphological change in the spectra through 

a numerical study in which we can create stable solid structures with variable amounts of 

disorder i.e. any solid structure ranging from perfect crystal to completely amorphous solids. 

We check our results regarding the evolution of the vibrational spectrum with the predictions 

of some existing theoretical works in which disorder itself is modelled in a specific fashion 

[85-90]. In contrast, we model only the interaction between the particles. Disorder follows 

naturally from it and does not have to be modelled separately. 

To generate stable solid structures with variable extent of disorder the first step is to 

select a model for the interaction among the constituent units (atoms or molecules). Here 

we assume that every unit has only a position vector as its degree of freedom and the potential 

energy of the system is of the form of sum over pairs. The route to generating amorphous 

structures which, strictly speaking, have no periodicity on any length scale is actually via 

crystalline structures. Let us denote the number of constituent units per primitive cell by N. 

Ideally, N should be infinity to produce systems with finite disorder. In practice, however, 

one takes as large a value as possible within the available computational resources. Now let 

us denote the three edges of the unit cell by a, band c. The positions of the particles within 

the unit cell can be defined by ri = 01 (i)a + O2 (i)b + 03( i)c with the values of 01 (i), O2 (i) and 

03(i) being all between 0 and 1 for every value of i = 1, ... , N. For economy of notation l we 

denote the triad (01 (i), O2 (i), 03 (i)) by if( i). 

In order to generate states with variable amount of disorder we begin with a fcc lattice for 

which the lattice constant is adjusted to minimize the potential energy. Now this system is 

subjected to a N PT type Monte-Carlo simulation. Here N, P and T represent the number of 

particles per unit ceil, pressure and temperature, respectively, and are held constant during 
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the simulation in which the variables are a, b and c (which define the geometry of the unit 

cell) and the 8s for all the particles. In the present calculation we have taken P = 0 and 

thus the potential energy per unit cell (U) constitutes the Hamiltonian of the system. At 

the end of every m (typically 2) cycles of the N PT simulation, we take the instantaneous 

configuration and subject it to a conjugate gradient minimization for U with respect to a, b, c 
and all the 8s [84]. We repeat the process of generating the local minima with various values 

of the seed of the random number generator in the Monte-Carlo simulation. Finally, the 

information regarding this collection of solid structures is displayed in the form of a volume 

per particle (0) versus energy per particle (E) diagram. Figure 5.1 provides an example of 
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Figure 5.1: Volume per particle (0) vs. energy per particle (E) diagram for Lennard-Jones 
potential. Data for N = 216, 343 and 2197 are shifted upwards with respect to the data for 
N = 125 by 0.04, 0.08 and 0.12, respectively to avoid overlap. 
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this kind of volume versus energy diagram for the standard Lennard-Jones potential [ i.e. 

V{r) = {1/r)12 - (1/r)6] which has been properly cut off and smoothed so that the function 

as well as all derivatives upto second order are continuous for all values of r. In figure 5.1 

the completely amorphous states correspond to the group at the highest energies. Isolation 

of this group from the rest of the minima is visible more and more clearly as the number of 

particles in the unit cell increases. This is due to the progressively decreasing probability of 

generating states in the domain of energies just below the amorphous group as the number' 

of particles in the unit cell increases. For the purpose of demonstrating the evolution of the 

vibrational spectrum with disorder, these minima are of critical importance. Any calculation 

such as ours will naturally generate only a small subset of all the local minima that exist. 

In particular, the data shown in Figure 5.1 certainly do not correctly represent the relative 

densities of the local minima except in the completely amorphous band. 

For the amorphous band the functional dependence of the relative density of the local 

minima on the value of energy per particle (t) is given by a Gaussian function whose width 

is proportional to 1/ m. This follows from the extensivity property of the configurational 

entropy and has been observed earlier also in calculations with constant density. It should 

be noted that our calculations are done under the condition of constant 'inherent' pressure. 

For a given value of energy per particle, dispersion in the value of volume per particle is 

expected to go to zero in the thermodynamic limit. For the amorphous band we have 

verified the validity of this observation in our case in the following manner: Compute the 

best fit quadratic function S{t) through the data points in the amorphous band of the n - t 

diagram. Then calculate the root mean square deviation of n from the best fit curve. We 

find that this measure of scatter around a smooth curve indeed goes to zero in the completely 

amorphous band as l/m. 
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Figure 5.2: Density of states (g (w)) plotted against frequency (w) for Lennard-Jones poten-
tial with N =343. Following the arrow in the figure the plots correspond to energy per unit 
cell equal to -724, -713, -706, -700, -689, -685, -677, -672, -666 and -662, respectively 

For any local minimum in the n - E plane the associated vibrational spectrum can be 

computed through standard methods. As energy per particle increases the system becomes 

more and more amorphous and the density decreases i.e. there is swelling in the system. 

At the same time there is a continuous change in the nature of the associated vibrational 

spectrum. Figure 5.2 illustrates this for the case of Lennard-Jones potentia]... with N = 343. 

Here we have picked, from figure 5.1, a few local minima which are spaced roughly equally 

m energy. For the selected minima we calculate the vibrational spectra and the density of 
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states for each case is plotted in figure 5.2. One can clearly see a gradual transformation from 

a crystal-like spectrum to one which is characteristic of amorphous states. We can compare 

g(ro) 0.8 

(arbitrary 
scale) 

0.6 

0.4 

0.2 

20 

Figure 5.3: Density of states (g (w)) plotted against frequency (w) for Lennard-Jones poten-
tial (with N =343) for the four highest energy values out of the set for which the density 
of states plots are shown in figure 5.2. The two arrows point to the two approximate fixed 
points of g(w). 

the data available in this figure with the results presented by Mattis and coworkers for some 

model calculations on the evolution of the density states as the strength of disorder changes 

[85-90J. These calculations are for a quantum mechanical model of vibration in which a 

specific model term is included in the Hamiltonian to describe the effect of disorder. The 

amplitude of this term quantifies the strength of disorder. It so happens that the spectrum 

for the model becomes unstable when the strength of the .disorder exceeds a critical value. 
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To avoid this it is technically necessary to include an anharmonic term in the Hamiltonian 

- although, at the end, the strength of anharmonicity can be made arbitrarily small. On 

the other hand, we use harmonic approximation to compute the normal modes of a classical 

disordered solid and no explicit model of disorder is needed. To compare the results of our 

calculation regarding the evolution of the vibrational spectrum with disorder with previous 

theoretical calculations, it is useful to summarize the mainresults of these latter calculations, 

For a simple cubic lattice, they are the following [90]: (1) For any finite value of the 

disorder parameter there are no van-Hove singularities. (2) As the strength of the disorder 

parameter increases, more and more modes are transferred to the domains with the lowest 

and highest frequencies. (3) There is a critical value of the disorder parameter which marks 

the boundary between finite long range order [disordered crystal] and vanishing long range 

order [glass]. When the disorder parameter exceeds this value the density of states function 

develops two fixed points i.e. there are two frequencies WI and W2 where the value of the 

density of states function does not change with change in the value of the disorder parameter. 

The value of W2, the higher of the two frequencies, is approximately 3.5 times the value of 

WI. (4) When the disorder parameter exceeds the critical value, the value of the density of 

states function at zero frequency becomes finite and increases with disorder. 

While comparing the predictions listed in the previous paragraph with our results, two 

limitations must be kept in mind. (1) Our starting crystal has a face centered cubic lattice 

rather than a simple cubic lattice. (2) As we have noted earlier, modelling any finite extent 

of disorder requires the size of the unit cell to go to infinity, strictly speaking. In our case, 

the value of N is only 343. Despite these limitations, we find that our data is consistent 

with the first two predictions. Also, if we examine only those spectra in figure 5.2 which 

correspond to completely disordered states (shown separately in figure 5.3), we notice the 

presence of two approximate fixed points. However, the ratio W2/WI is close to 2.4. The fact 

that it is substantially different from the value of 3.5 obtained in the analytical calculation 
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may be due to the difference between the starting crystal structures of the two calculations. 

However, our data certainly does not corroborate the fourth prediction of finite value of the 

density of states function in the w -+ 0 limit. We always find that the density of states goes 

to zero as w -+ o. 
Now we address the central problem of this chapter. The question here is: Are there 

any situations where, for bulk amorphous systems, the vibrational density of states function 

assumes a shape that is universal over the entire spectrum? This question is motivated 

partially by our observations regarding the universality of the shape of the spectrum (but 

only in the large central region) for the cases of clusters interacting via several different kinds 

of potentials - as reported in the previous chapters [67-68]. The other motivation behind 

these investigations is to understand the aspect of universality observed for the density of 

states function in recent experiments with bulk molecular glasses [65] - as noted in chapter 

4. In these experiments the constituent units are too complicated to be adequately modelled 

as single particles. However, for vibrational modes with coherence lengths much larger than 

nearest neighbor spacing, replacing a somewhat complicated constituent unit by a point 

particle may not be a bad approximation. Our approach to discovering the possible situations 

in which there will be universality in the shape of the entire vibrational spectrum is influenced 

by the discussion ( see chapter 4 ) of the effect of the dispersion of the second derivative of the 

potential energy function around its minimum. Let us recall that, according to the insight 

provided by the work of Rehr and Alben [38], in the limit of the dispersion of the spring 

constant becoming very large, we expect only a single broad peak in the density of states 

function. In our calculations the geometries around which vibration takes place correspond 

to the local minima of the potential energy function. For such a configuration the significant 

pair distances will largely be distributed around the minimum of the pair potential. Thus, a 

quantitative dimensionless measure of the dispersion of the spring constant (DSC) is given 

by ¢ = [183V/8r3Ir=ro / 182V/8r2Ir=ro] ro where ro is the di~tance at which the pair potential 
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v (r) assumes its minimum value. Thus, ¢> ---+ 00 is the limit where we expect a featureless 

spectrum with a single broad maximum. The numerical data reported later in this chapter 

is indeed consistent with this expectation. But what is more important and interesting is the 

following: If the manner in which ¢> approaches infinity satisfies an additional condition (to 

be stated shortly), the vibrational spectrum approaches a shape that is universal to within 

the uncertainities of our numerical calculation. Here the property of universality implies 

that the asymptotic shape of the vibrational spectrum does not depend on the analytical 

form of the potential energy function whose parameters are varied appropriately to realize 

the ¢> ---+ 00 limit. 

It is possible, in principle, to construct many parametric functional forms which, with 

suitable variation of the parameters, can be made to approach the ¢> ---+ 00 limit. We have 

used only exponential and power law functions in our parametric functional forms since 

interatomic or intermolecular forces will typically have rapid spatial variation and the only 

elementary functions that are capable of describing such variations are the exponential and 

power law functions. The two types of functional forms that we have actually used are as 

follows: 

(1) The Generalized Lennard-Jones (GLJ) family where the pair potential has the form 

V(m, n; r) = (l/rm - l/rn ) where m and n are positive integers with m > n. 

(2) The Morse family in which the potential has only one parameter a and the expression 

is given by V(a; r) = exp( -2a(r - 1)) - 2 exp( -a(r - 1)). The overall shape of the pair 

potential is largely the same for both the types. They always have a single minimum where 

the potential function assumes a negative value. The function rises rapidly to zero at larger 

distances. At shorter distances also the potential rises fast but to a finite value for the Morse 

case and to infinity for the GLJ case. In the Morse case the rapidity with which the potential 

increases away from the minimum is controlled by the single parameter a. However, for the 

the GLJ type the rise of the attractive and repulsive sides are controlled separately by nand 
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m, respectively. It is easy to verify that the DSC parameter (</» is given by (m + n + 3) and 

3a for the GLJ and Morse families, respectively. 

Obviously, for the GLJ case there is no unique sequence for approaching the </> ~ 00 

limit even under the restriction of m > n. Here, either only m can go to infinity or both 

m and n can go to infinity while always satisfying m > n. Our observation is that only 

when both m and n go to infinity, universal shape of the vibrational spectrum is realized i.e. 

while the dispersion of spring constant goes to infinity, contribution must come both from 

the attractive and the repulsive sides of the minimum. 

We have already described how to generate the completely disordered states for any given 

potentiaL Of course they span a range of energies and there is variation of the vibrational 

spectrum with energy. Thus, a pertinent question is: which vibrational spectra should be 

considered representative of these band of states? We use the criterion of maximum likelihood 

of physical relevance. Thus, for each potential, we calculate the mean and the standard 

deviation of energy in the completely disordered region. Next, we choose a set of 10 local 

minima which are approximately equally spaced in energy in the band contained within one 

standard deviation of the mean. For each local minimum, the spectrum is computed and 

the frequencies are rescaled so that the average frequency is unity. We then calculate the 

distribution of these normalized frequencies and average the distribution over the 10 local 

minima. Finally, this averaged histogram is rescaled to compute the normalized density of 

states (G (w)) for normalized frequencies. Figure 5.4 shows the result of such calculation for 

a series of potentials belonging to the Morse family and figure 5.5 displays the data with the 

three highest values of a so as to show the pattern of convergence more clearly. For the GLJ 

family, the route to </> ~ 00 has been taken to be of two different types characterized by the 

value of m - n( = (3) for each potentiaL Here, of course m keeps increasing but the value of 

{3 is taken to be either 2 or 4. The spectra for {3 = 2 are presented in figure 5.6 with figure 

5.7 showing the cases corresponding to the three largest values of m - the idea being again 
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0.6 
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Figure 5.4: Normalized density of states (G (w)) vs. normalized frequency (w) in the fully 
disordered region for some selected cases of Morse potential. The values of a are: 3.0 (cross), 
4.5 (square), 7.5 (diamond), 10.5 (inverted triangle), 13.5 ( triangle) and 16.5 (star). 
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Figure 5.5: Normalized density of states (G (w)) vs. normalized frequency (w) in the fully 
disordered region for some selected cases of Morse potential. The values of a are: 13.5 
(triangle), 15.0 (circle) and 16.5 (star). 
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Figure 5.6: Normalized density of states (G (w)) vs. normalized frequency (w) in the fully 
disordered region for some selected cases of GLJ potential. The values of [min) are [6)4} 
(plus)) [1O)8} (square)) [14)2} (diamond)) [18)6} (triangle) and [22)20} (star). 

80 



0.8~----~----~------.-----.------.------~-, 

G(m) 

0.6 

0.4 

0.2 

1 2 m 

GLJ 
~=2 

3 

Figure 5.7: Normalized density of states (G (w)) vs. normalized frequency (w) in the fully 
disordered region for some selected cases of GLJ potential. The values of [m,nJ are [18,16J 
(circle), [20,18J (triangle) and [22,20J (star). 
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to show the pattern of convergence. 

For the sake of completeness, we also present the data for f3 = 4 in figures 5.8 and 5.9. 

Please note that the highest value of m that is used is 22 for both f3 = 2 or 4. But since 

f3 = 2 corresponds to the highest value of n, in figure 5.10 we superimpose the data for 

the three highest values of a in the Morse family and the three highest values of m in the 

GLJ family with f3 = 2 to show the relationship between the asymptotic normalized spectra 

for the two families. Within the error bars of our calculations, estimated by the standard 

deviation of normalized density of states in each bin with respect to the 10 local minima in 

each case, the asymptotic normalized density of states function seem to be identical over the 

entire spectrum. This is the most important result of this chapter. To restate it, asymptotic 

(¢ ----+ 00) density of states is independent of the explicit form of the parametric potential 

function which is used to achieve the asymptotic limit provided both the attractive and 

repulsive sides of the minimum of the pair potential contribute to the approach of ¢ to 

infinity. 

If we assume the validity of the observation at the end of the previous paragraph, an 

empirical explanation of the observation of universality in the trans-boson peak region of the 

vibrational spectra of several molecular glasses that has been observed recently emerges. In 

these experiments [65] it was observed that the semilogarithmic plot of g(w)jw2 as a function 

of w is a straight line in the trans-boson peak region for several different kinds of glasses. 

This implies the following functional form of 9 (w): 9 (w) = aw2 exp ( -w / wo) where Wo is the 

scale of frequency specific to the materiaL Our empirical explanation of this observation has 

to do with two facts: (1) The existence (or presumption) of the 8..')ymptotic universal density 

of states and (2) Change in the vibrational spectrum with the variation of parameter(s) 

becomes rather weak significantly before asymptotic conditions are reached. Thus, a large 

family of potentials will have vibrational spectra (in the amorphous region) that is close to, 

but not quite, universal. Since we do not know the exact nature of the potential function for 

82 



0.8~--~----~--~----~--~----1I----'---~ 

G(m) 

0.6 

0.4 

0.2 

1 2 m 

GLJ 
P=4 

4 

Figure 5.8: Normalized density of states (G (w)) vs. normalized frequency (w) in the fully 
disordered region for some selected cases of GLJ potential. The values of [m,nj are [8,4j 
(pius), [lO,6j (diamond), [14,lOj (triangle), [18,14j (square) and [22,18j (circle). 
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Figure 5.9: Normalized density of states (G (w)) vs. normalized frequency (w) in the fully 
disordered region for some selected cases of GLJ potential. The values of [m,n) are [18,14} 
(triangle), [20,16} (square) and [22,18} (circle). 
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Figure 5.10: Superposition of the data in figures 5.5 and 5.7 to compare the convergence 
pattern of the GLJ and Morse families. 
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Figure 5.11: Data on G(w) shown in figure 5.10 is divided by w2 and shown in a semi-
logarithmic plot for the purpose of comparison with experimental data. 

the specific materials, it is not possible to make a precise comparison with our calculations. 

The next best course of action is to check whether our asymptotic and (presumably) universal 

density of states has the functional form seen in the experiments. In figure 5.11 we show a 

semi-logarithmic plot of the asymptotic normalized density of states (divided by w2 ) against 

w. There is a substantial linear segment in the middle in common with the experimental 

observations [65]. From our discussion and also from the data presented for both the Morse 

family and the GLJ family for smaller values of q;, it should be clear that if the material at 

fland is described by a potential which is far from satisfying the asymptotic conditions, the 

vibrational spectrum will not be universal and can even show more than one peak. 

The asymptotic universality which is suggested by our numerical results poses a major 

theoretical challenge. At this moment, we have no understanding of this empirical observa-

tion. 
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