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Introduction and CJl§view of Literature 

Traditionally research in biology has inclination the reductionism approaches, although 

the nature of biological responses are often complex. The more recent emergence of 

system level approaches have, however, sought to correct this limitation by considering 

the larger system as object of study. It is interesting to note that, while biological system 

are complex, this complexity - nonetheless - elicits from a fundamental simplicity at the 

root level of its organization (Alon, 2007b). Further, the smallest building block of the 

organizational complexity of higher organisms is the cell. 

From a functional perspective, a cell may be defined to consist of three 

interacting systems namely (1) Geneti0 (2) Metabolic and (3) Signaling .rystem. The Genetic 

system comprises mainly of DNA and RNA, along with the associated polymerases, the 

splicing apparatus, ribosomes, and posttranslational machinery. The coordinated 

functioning of these components, however, is dependent upon the metabolic system. 

The Metabolic system is involved in the production of energy and synthesis, as well as 

processing and recycling of essential structural units of cellular architecture such as the 

various types of lipids, amino acids and nucleotides. On the other hand, the Signaling 

system functions to receive extra cellular cues and relay them across membrane and 

through the cytoplasm, to eventually induce changes in the genetic and metabolic 

networks so as to drive an appropriate phenotypic response. 

Of these three systems, the last one (Signaling System) is unique in the sense that 

it is this system that constitutes the central regulator of other functional modules of the 

cell. The response of a given cell to environmental cues is ensured by the various 

receptors that are expressed on the cell surface. Extra cellular factors can influence 

diverse biological processes such as cellular proliferation, differentiation and cell death 

(apoptosis) through their binding to their specific receptors. The activation of these 

receptors leads to alteration in gene expression and, consequently, in the biological 

response. This process of information transfer involves the activation of various 

signaling intermediates including kinases and phosphatase as well other secondary 

signaling molecules, some of which may connect signaling to metabolism. A few of these 

signaling intermediates also translocate to the nucleus and lead, through the activation of 

transcription factors. to alterations in the 2:ene exoression status of the cell. 
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Various approaches have been used to delineate the mechanisms by which signal 

1s interpreted, during its transmission from the cell membrane to the nucleus. Such 

studies (Aldridge et al., 2006; Altan-Bonnet and Germain, 2005; Bauman and Scott, 2002; 

Bhalla and Iyengar, 1999; Binder and Heinrich, 2002; Birtwistle et al., 2007; de Menezes 

and Barabasi, 2004; Ferrell, 2002; Huang and Ferrell, 1996; Kumar et al., 2008; Kumar et 

al., 2007; Ma'ayan et al., 2005; Singh et al., 2005) in this direction has shown a promising 

outcome, yielding important insights into biochemical pathways mediating signal 

processing. One such mechanism involves the differential stability of the intermediates, 

which can be explained and defined by the dynamics of the activated versus non­

activated or inhibited form of signaling molecules, over time and/ or space (Bhalla and 

Iyengar, 1999; Bhalla et al., 2002; Neves et al., 2008). Different forms of molecules are 

often represented by covalent modifications (phosphorylation, dephosphorylations), 

transportation/ compartmentalization (e.g. Ca ++) or generations of new chemical species 

by degradation or modifications of biomolecules into secondary messengers (e.g. PIP2, 

IP3, IP4, DAG). Monitoring such species over relevant time courses and interpreting the 

changes in dynamics over time and space have provide clues on the information 

processing system that exists in living cells. 

Immunity, Immune system and B lymphocyte Signaling 

While single cell organisms deal with pathogenic invasion in a relatively empirical 

manner, in the case of more complex, multicellular, organisms this requires coordinated 

communication between cells of various functional categories. Importantly, this 

communication is facilitated through intracellular signaling events, which then induce the 

expression of specialized proteins on the cell surface for inter-cellular interactions. 

Like cells, the tissues of biological systems are also evolved, but through 

cooperation and co-ordination of selective cell types and such tissues (e.g. lymphatic 

tissue) posses' the ability to perform specific functions. The immune system represents 

one such system, which in tum functionally integrates with the circulatory system in 

order to perform its primary role of defending against infections. 

The immune system has two functional arms namely the innate and the adaptive 

arms. The innate arm of the immune systems provides the first line of defense and is 

considered to be antigen non specific. In contrast, adaptive immunity is generated 

through a complex set-up of diverse cell types, and is specific for either the infection or 
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antigen. The adaptive immune system mainly consists of different subsets of 

lymphocytes, each equipped to undertake specific actions aga4lst the infinite spectrum of 

antigens presented by the various pathogens. Purely from a functional point of view, the 

immune response is defined through the activities of lymphocyte populations existing in 

one of two phenotypically distinct populations. One of these is the subset of naive 

lymphocytes (i.e. lymphocytes that have not yet encountered an antigen), which 

constitute the population available for the recognition of new antigens. Memory 

lymphocytes (i.e. an antigen experienced lymphocyte populations), on the other hand are 

geared for a robust and quick response to re-exposure to a given antigen. Each of these 

two pools, in turn, can be divided into two populations of cells, the B and the T cells. B 

cells, both naive and memory, together constitute the humoral component of an immune 

response and contribute through the production of specific antibodies against the 

antigen/ pathogen. T cells, on the other hand, contribute in terms of cell mediated 

immunity and are the main execution arm of the immune system against systemic 

infections. Both B and T cells are connected via a network of chemokines secreted by 

these and other cells. In addition, lymphocytes also freely move through the circulatory 

system and migrate constantly in and out of the spleen and lymph nodes, ready, to mount 

a response when they encounter either antigens, cytokines, bacterial toxins or any other 

stimuli (Bishop and Hostager, 2001; DeFranco, 1997; Hasler and Zouali, 2001). This 

migration of lymphocytes is directed through a co-operative set of chemokines and, 

survival is promoted by environmental stimuli (Cyster, 1999; Klaus et al., 1997; Rolink et 

al., 2002). Once a B cell encounters its cognate antigen and receives an additional signal 

from a T helper cell, it can further differentiate into one of the two types of B cells, 

either plasma B cells or memory B cells. An absence of such stimulation causes the 

programmed cell death in B cells (farakhovsky, 1997). 

B cell receptor signaling 

Each B cell expresses a unique receptor protein (B cell antigen receptor, or BCR) on its 

surface that will bind to one particular antigen. A critical difference between B cells and 

T cells is how each lymphocyte recognizes its antigen. B cells recognize their cognate 

antigen in its native form while T cells identify it in a processed form that is presented in 

association with MHC molecules by antigen presenting cells (APCs) such as 

macrophages and B cells. The BCR serves the purpose of identifying intact antigens in 

order to eventually initiate an antibody response. The cytoplasmic tail of the BCR is 

3 
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associated with immunotyrosine based activation motifs (ITAMs). Although B cell 

immunoreceptors lack intrinsic catalytic activity, their engagement results in the 

induction of rapid protein phosphorylation signals (Kurosaki, 2000; Moretta et al., 2001; 

Tamir and Cambier, 1998; Turner and Kinet, 1999). These signals are essential for the 

immunoreceptor mediated signaling. The ITAMs are the motifs which consist of 

sequence YxxL/I-x(6-8)-YxxL/I (where Y is tyrosine, Lis leucine, I is isoleucine and x 

is any residue). ITAM function normally involves recruitment of three classes of 

cytoplasmic protein tyrosine kinases (PTKs), namely the Src Family, the Syk family, and 

the Btk family (Kurosaki, 2000; Moretta et al., 2001; Tamir and Cambier, 1998; Turner 

and Kinet, 1999). The Src-related PTKs, which include c-Src, Lyn, are responsible for the 

initiation of immunoreceptor signaling. In response to immunoreceptor engagement, 

they become activated and phosphorylate the two tyrosine residues of the ITAMs (Chow 

and Veillette, 1995; Rolli et al., 2002). This phosphorylation is the key phosphorylation 

step in the chain of phosphorylation events proximal to immunoreceptors. 

Autophosphorylation in the activation loop of Lyn (Y 416) results in an increase in its 

catalytic activity. The phosphorylation of ITAMs by Src kinases allows recruitment of the 

tandem Src homology 2 (SH2) domain containing PTK, Syk (Chan et al., 1994; Latour 

and Veillette, 2001; van Oers and Weiss, 1995). The enzymatic activity of Syk is also 

regulated via tyrosine phosphorylation. Phosphorylation of a tyrosine residue in the 

activation loop of the kinase domain of Syk (Y520) is the key to the enzymatic activation 

of this molecule. The phosphorylation of this site occurs in a Src kinase dependent 

manner. In particular a phosphorylated tyrosine in the so called linker domain of Syk 

(Y317) inhibits the function of Syk family kinases, as a result, increasing its capacity to 

recruit the negative regulator c-Cbl. When activated, Syk family kinase also 

phosphorylates downstream adaptor proteins like BLNK. 

Activated Syk also phosphorylates ITAM at three more tyrosine sites making it 

hyper-phosphorylated and thus establishing a positive feedback loop at the BCR (Rolli et 

al., 2002). In a a parallel pathway, activated Src kinase Lyn also phosphorylate membrane 

anchored CD22 which, upon phosphorylation, recruits SH2 domain containing protein 

tyrosine phosphatase 1 (SHP1) to the membrane. The SHP1 along with other potent 

PTPs (SHP2, HePTP) is a major negative regulator of BCR proximal signaling and act 

through dephosphoryalting Lyn, Syk, Btk, and the ITAMs (Kurosaki, 1999; Kurosaki, 

2002) . This forms a negative feedback loop at the BCR. Interestingly these are not the 
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only small feedback loops and, as discussed later, there is another strong feedback loop 

that couples to this negative feedback loop following PLCy activation. 

Adapter molecules also co-operate to with Src family kinases to phosphorylate 

phospholipase C(PLC) y and Vav, and the Btk family of PTKs which includes Btk, Tee, 

and an atypical member termed Rlk/Txk (Lewis et al., 2001; Yang et al., 2000). Typical 

Btk kinases are recruited to the plasma membrane by a mechanism that requires prior 

activation of phosphoinositol (PI) 3 kinase by Src and Syk family kinases and also 

involves membrane anchored CD19 and B Cell Adapter Protein (BCAP) which recruits 

the different subunits of PI3K active complex (Okada et al., 2000). Activated PI-3-kinase 

generates membrane bound PI metabolites phosphorylated at 3' position of the inositol 

ring. One of these, PI(3,4,5)P3 , can bind with high affinity to the pleckstrin homology 

(PH) domain of Btk kinases and allow their membrane association. After reaching 

membrane Btk kinases are activated by tyrosine phosphorylation. In the case of Btk it 

occurs in the activation loop (Y551) and the Src homology 3 (SH3) domain (Y223). It is 

mediated in part by Src kinases, and in part by autophosphorylation. Despite the fact that 

Btk family kinases play important role in the BCR signaling, information regarding their 

substrate is limited. However, it seems that the phosphorylation of PLCy is particularly 

dependent on proper Btk function. 

Proteins that undergo tyrosine phosphorylation upon BCR stimulation can be 

subdivided into two categories: enzymatic effectors and adaptors. Here the receptor 

proximal signaling event leading to the activation of PLCy cleaves phosphatidylinositol 

4.5-bisphosphate (PIP2) to generate IP3 and Di-acyl Glycerol (DAG) as the secondary 

metabolites. BLNK plays crucial role in both the recruitment of PLCy to the membrane, 

and positioning it in proximity with PIP2 (Kurosaki and Tsukada, 2000). The IP3 

generated in this process binds to receptors on the endoplasmic reticulum, causing a 

release of the intracellular stores of Ca2
+. The released Ca2

+ in conjunction with DAG, 

activates a variety of signaling intermediates including Calcineurin, CaM Kinases as well 

as various forms of PKCs. 

The release of calcium also activates membrane anchored Duox through binding 

to its EF hand motifs. Activated Duox then generates .reactive oxygen species (ROS) 

which although has very short life still reacts with SHPl's active site and deactivates its 

phosphatase activity by oxidation. This causes blocking of SHP1 action on the activated 
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BCR sites and thus effectively leads to an enhanced and sustained tyrosine 

phosphorylation at BCR and, therefore, sustained PLCy and Ca2
+ responses. This creates 

a strong positive feedback loop of BCR signaling (Singh et al., 2005). This loop has a 

wider impact on signaling owing to the involvement of the diffusible signaling molecule, 

Calcium. Calcium diffuses rapidly and therefore, may serve to connect the non-uniformly 

activated BCR patches of the membranes, thus integrating the response over complete 

cellular volumes. 

An important pathway activated downstream to BCR is the MAP kinase pathway. 

This pathway, also known as the ERK pathway, can be activated by Ras-mediated 

activation of MKKKs such as Raf. While the p38 and JNK are among other MAP 

kinases which are activated by BCR, these are induced through the activation of Rho 

GTPases such as Rae and Cdc42. Candidate MKKK that are activated by Rho proteins 

include members of the MEKK and mixed lineage protein kinase (MLK) groups. All 

these MKKs can be activated by selective/ specific activation of the adapter molecules 

like BLNK, She, Grb2 or Vav. Signal transduction through the MAP kinase pathways are 

facilitated by scaffold proteins like KSR (Veillette et al., 2002). BLNK mediated ERK 

activation is dependent on classical Grb2 adaptor proteins and SoS as standard GTP 

exchange factor, but at basal level of signal it also utilizes the recently discovered 

RasGRP proteins as well. This could likely establish a powerful positive feedback system 

for robust baseline ppERK levels (Coughlin et al., 2005; Roose et al., 2007). 

The MAP kinases are activated by dual phosphorylation at the tripeptide motif 

Thr-Xaa-Tyr. The sequence of this tripeptide motif is different in each group of MAP 

kinases: ERK (Thr-Glu-Tyr); p38 (Ibr-Gly-Tyr); and JNK (Thr-Pro-Tyr). The dual 

phosphorylation of Thr and Tyr is mediated by a conserved protein kinase cascade. The 

ERK MAP kinases are activated by the MAP kinase kinases (MKK) MKK1 and MKK2; 

the p38 MAP kinases are activated by MKK3, MKK4, and MKK6; and the JNK pathway 

is activated by MKK4 and MKK7. These MAP kinase kinases are activated, in tum, by 

several different MAP kinase kinase kinases (MKKK). Different upstream signals can 

lead to the activation of these MKKK (Dong et al., 2002). The dynamics of 

phosphorylation of these MAP kinases are in tum regulated by various dual specificity 

phosphatases as well as many PTPs or Ser/Thr Phosphatases. Therefore, overall 

signaling event represents a mere interplay between kinases and phosphatases. 

6 
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Network, Patterns and Motifs in Dynamics of Cellular Signaling 

Phenotypes and associated underlying cellular functions are well interconnected and 

these connection patterns remains conserved across functionally and biologically diverse 

organisms. All biological processes share the various modules (Ravasz et al., 2002) of 

specific functionalities, and combinatorial exploitation of modules underlies the 

complexity and efficacy of cellular functional diversity. When it comes to complexity, 

graphs are best way to represent complex systems. At least most, if not all, biological 

processes can be represented by graphs, by showing molecules and their biochemical 

conversions, what we often term biological networks. The biological networks in genetic 

and metabolic systems are well studied (Albert, 2007; Alon, 2007b; Barabasi and Oltvai, 

2004; de Menezes and Barabasi, 2004; Ravasz et al., 2002) and the networks in the 

cellular signaling shares some of the features described in these studies. Such similarities 

usually inspire the use of similar protocols for decoding the actual network structure and 

the corresponding dynamics of the same across different systems. 

Identifying the network similarity is attributed to the patterns it forms. A pattern 

is defined as the part of the graph which is formed when nodes and "vertices connecting 

nodes" are placed together and has a repetition of the similar arrangements in the same 

or different graphs. Directionality in the vertices in the graph makes it directed (termed 

as directed graph). In biological network nodes are usually the molecules, while vertices 

may be biochemical reactions (binding, catalytic, cytoplasmic shuffling) or the 

biochemical modifications. 

Earlier work (Alon, 2007a; Ma'ayan et al., 2005; Mangan and Alon, 2003; Milo et 

al., 2002) has shown that various patterns repeatedly occurs in biological networks. These 

patterns, if occurring at a frequency more than that expected in the similar random 

networks are termed as "Motifs"; while if these occur at a frequency not significandy 

different from that expected in similar random networks, they are termed as "Non­

motifs". In rare instances, some patterns show a frequency that is lower than that which 

is expected in the similar random networks. Such is pattern is called "Anti-motif''. 

Motifs are of key importance in the biological networks for owing to 

characteristic dynamics associated with each of them (Alon, 2007 a; Mangan and Alon, 

2003; Milo et al., 2002). A topological feature may provide distinct dynamic properties. 

Thus investigating topological features is the first step towards system level approaches 

7 
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in signaling, although alternative approaches also sometimes provide the insights into the 

intriguing aspects of intracellular signaling Oanes et al., 2005; Krogh, 2008; Kumar et al., 

2007; Noble, 2006). But owing to more informative and mechanistic details about 

network organization, topology based deterministic methods remain widely acceptable. 

In most instances, we are interested in topology, not for static information but 

for the real interplays and the result of the dynamics, offered solely by topology. 

Dynamics associated with topology usually offers information on modes of regulation by 

accelerating responses or slowing down the responses while at the same time it can 

further add the additional characteristic features such as delays in responses (Alon, 2007 a; 

Mangan and Alon, 2003). Thus the patterns formed in biological networks are largely 

responsible for the dynamics of signal transmission in the network (Ma'ayan et al., 2005). 

Mathematical modeling and Cellular networks 

A mathematical model uses mathematical language to describe a system. Eykhoff (1974) 

defined a mathematical model as 'a representation of the essential aspects of an existing 

system (or a system to be constructed) which represents knowledge of that system in 

usable form'. 

Based on the methods a mathematical model can be either of two kinds, 1. Black 

box model if there is no a priory information is available 2. White Box (Glass Box or 

Clean Box) model if all necessary information is available. Real systems, especially 

biological systems, lie somewhere between the black box model and white box models. 

Generally it is good to have more and more a priori information available to make 

a model more accurate. This is the reason why a white box model is easier and, provided 

information is used correcdy, leads to correct behavior of the system. While if there is 

no a priori information is available, we use functions as general as possible to cover all 

different models. In such an approach we try to estimate the functional form of relations 

between variables and numerical parameters in those functions. Thus this approach is a 

black box approach and have various difficulties associated with it especially it becomes 

increasingly difficult when the amount of parameters and different types of functions 

mcreases. 

A mathematical model defmes a system by a set of mathematical equations that 

defines relationship between variables. Variables in a model can be of different types but 

8 
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broadly we can divide them into six groups, although it is also quite possible to further 

divide groups into sub groups. These six types include: decision variables, input variables, 

state variables, exogenous variables, random variables and output variables. Decision 

variable can also be defmed as independent variables (e.g. Time in some cases). 

Exogenous variables are sometime called as parameters or sometime constants (in case 

of models with lumped parameters). Output variable is dependent on the state variables 

(which include the interdependencies of decision, input, random, and exogenous 

variables). The variables are generally represented by vectors. 

Biological networks are often well described in the way as perceived either 

entirely by a biologist, or entirely by a mathematician. Thus understanding at the level of 

creating in-silico equivalents is more realistic in models with details of bio-molecular 

reactions underlying actual mechanisms rather than the models with oversimplifications, 

like that with a Chemical Master Equations (CME). Although owing to less scope for 

biologists the latter method has advantage of describing system with simplicity and 

inviting attention from other related disciplines. 

A method is termed as deterministic if it uses realistic/ definite sets of variables, 

whereas it is called as stochastic if it uses largely probabilities and/ or random numbers. 

Earlier work on biological networks has used ODE based models (Bhalla and Iyengar, 

1999; Bhalla et al., 2002; Birtwisde et al., 2007), Flux Balance Analysis (FBA)(Segre et al., 

2002), Boolean networks (Kachalo et al., 2008; Thakar et al., 2007), Stochastic models 

(Locasale et al., 2007) and combinations of these. Most of time the models in biology 

ascertains certain properties which are the result of nothing but the modulation of 

signaling and metabolic intermediates over time. This introduces important attributes of 

biological networks which include ultra sensitivity (Huang and Ferrell, 1996), bistability 

(Bhalla et al., 2002), and delays (Alon, 2007a; Angeli et al., 2004; Mangan and Alon, 2003) 

like behaviors which may be exploited by cellular networks to isolate signals from noise, 

or adapting cells itself for a threshold of signal. Although the same network may behave 

differendy to the signals depending on the concentrations of species, often referred to as 

weightage Oain and Krishna, 2001) of the nodes. Thus the population dynamics of these 

networks play important roles in determining the way network behaves in different 

conditions Qain and Krishna, 2001). 

Our recent understanding on the cellular networks has been quite improved by 

using mathematical modeling to describe them. Earlier biological maps of interaction are 

9 
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merely representation of the interaction maps of cells at a ftxed time, i.e. static maps. 

Describing models of networks in terms of mathematics has helped the investigators to 

think beyond the structural modularity. Mathematics has helped to think and expand 

towards time and space variations versions of earlier static maps/networks. Such 

developments have spurred the emergence of a new discipline that is more commonly 

referred to as "Systems biology" (Csete and Doyle, 2002; Davidson et al., 2002; Kitano, 

2002). 

Signaling through MAP kinase: models and signal processing 

There are certain pathways that are evolutionary conserved and these include kinase 

modules that link extra-cellular signals to the machinery that controls fundamental 

cellular processes. Mitogen activated protein kinase (MAPK) pathways are such kinase 

modules which are highly conserved (Lewis et al., 1998; Widmann et al., 1999). MAPK 

pathways are composed of three tier kinase modules in which a MAPK is activated upon 

phosphorylation by a Mitogen activated protein kinase kinase (MAPKK). This in turn is 

activated upon phosphorylation by a MAPKKK. To date six distinct groups of MAPKs 

have been characterized in mammals; Extracellular signal regulated Kinase (ERK) 1 /2, 

ERK3/4, ERKS, ERK7 /8, Jun N-terminal kinaseGNK)1/2/3 and p38 isoforms 

(Dhillon et al., 2007). Out of these B cells express three major MAPK including 

ERK1/2, p38 andJNK (Kurosaki, 1999; Kurosaki, 2000; Kurosaki, 2002). 

Among all these, the ERK pathway is the best studied of the mammalian MAPK 

pathways. ERK is activated by MEK, which in turn is activated by Raf. Raf and MEK are 

negatively regulated by the PP2A and ERK is negatively regulated by Mitogen Activated 

Protein kinase phosphatases (MKP) 1,2 &3. MKP1 is stabilized by ERK itself through 

phosphorylations which protects it against ubiquitnation (Brondello et al., 1999). This 

stabilization of MKP1 creates a negative auto regulation (NAR) on ERK. The ERK 

activation also induces transcriptional up-regulation of mkp1 transcript. A potential 

positive feedback of ERK on PKC, the activator of the Raf, is absent since cytoplasmic 

phospholipase A2 ( cPLA2) a target of ERK and responsible for activating PKC at low 

calcium levels is not expressed in the B cells (Gilbert et al., 1996). Activated ERK also 

hyper-phosphorylate Raf and results in inhibition of Raf population. The activation of 

Raf then primarily depends on Protein phosphatase 1 (PP1) through the reversal of this 

hyper-phosphorylation (Ueki et al., 1994). Another negative regulation of Raf is mediated 

10 
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through Akt-dependent phosphorylation at ser259, which then reqwres PP2A for 

dephosphorylation (Birtwisde et al., 2007; Dougherty et al., 2005; Hatakeyama et al., 

2003). Other phosphatases include MKP2 and 3 of which MKP3 has recendy drawn lot 

of attention owing to fact that this phosphatase has different levels of expression in 

different cell types and also expression levels changes with the developmental stages of 

the cells (Dickinson et al., 2002; Dickinson and Keyse, 2006; Echevarria et al., 2005; 

Kawakami et al., 2003). MKP3 might also regulate the developmental outcome of FGF 

signaling by setting appropriate level of activated ERK (Echevarria et al., 2005; 

Kawakami et al., 2003). In addition, MKP3 has been recendy identified in setting the 

threshold for thymocyte positive selection (Bettini and Kersh, 2007) which suggest its 

importance in tuning physiological responses via signaling. However, the mechanisms 

associated with MKP3 are probably varied since MKP3 is also phosphorylated like 

MKPl, although unlike in the case of MKPl, ERK mediated phosphorylation renders 

MKP3 prone to degradation. Further, MKP3 is also a substrate for phosphorylation by 

Casein kinase2a (CK2a) although the outcome of this process remains unclear (Castelli 

et al., 2004). 

Activation of ERK is known to regulate various cellular processes depending 

upon its mode of activation. Transient versus sustained ERK activation regulates growth 

versus differentiation processes in neuronal cell lines such PC12 (Sasagawa et al., 2005). 

The difference in the activation mode of ERK is attributed to the activation of different 

GTPases with the each receptor. Thus differential activity of the ERK in response to the 

different stimuli, Epidermal Growth Factor (EGF) and Nerve Growth Factor (NGF) 

induce transient and transient and sustained ERK activation respectively. These ERK 

dynamics depends on Ras and Rap 1 dynamics, the inactivation process of which are 

growth factor dependent and independent respectively. Ras activates c-Raf and B-Raf 

while Rapl activates only B-Raf which explains that this dynamics is a result of two 

different ways of input on the same signaling module. Here the role of network topology 

as we have discussed before becomes clear in separating signals of different kinds and 

developing them into unique dynamics. 

The manner in which a given stimulus activates ERK has also been suggested to 

depend on the phenotypic context of the cells, leading to unique response patterns 

following variation in strength of the stimulus. However, studies in this direction have 

remained limited. Previous work has shown that MAPK (ERK) exhibits ultra sensitivity 
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and that this feature enables the system to discriminate between signal and noise (Altan­

Bonnet and Germain, 2005; Huang and Ferrell, 1996). In addition to this, it has also been 

shown that the ERK response to signal may lie in either of two stable states of low and 

high activity, a feature termed as bistability. A bistable response system provides 

robustness to the activation of ERK, wherein the response can either be ultrasensitive or 

proportional, depending on the concentration of the Mitogen activated protein kinase 

phosphatase 1 (MKP1) (Bhalla et al., 2002). This phosphatase acts as a regulator of MAP 

kinase, wherein high concentration of MKP1 ensure a proportional response system, 

whereas low concentrations of MKP1 facilitate the ultrasensitive response mode that 

functions as an all or none switch. Thus the phosphatase MKP1 can control the way 

MAPK system responds to the signal. Therefore, it becomes obvious that phosphatases 

can play significant roles in defining the way a system responds to the stimulus. The 

effect of concentration-dependent effects also emphasizes the importance of nodal 

weightages in the network as a parameter that contribute in defining the flow of the 

signal, wherein network behavior can be altered through modulations in nodal weightage. 

Many computational models of MAPK signaling also inferred oscillations depending on 

the feedbacks (Kholodenko, 2000) or on certain set of parameters, sequestration effects, 

or relative phosphatase strengths, (Bluthgen et al., 2006; Qiao et al., 2007). All of these 

direcdy relate to the relative weightage of nodes in the network. Although the role of 

phosphatases has been shown in regulating the response in signaling (Heinrich et al., 

2002), an active role for phosphatase dynamics was first shown by Bhalla (Bhalla et al., 

2002). Scaffold and sequestration effect also define the dynamics of MAPK signaling. 

However, these studies have concluded that the shape of response falls into regimes 

which may again controlled by the strength of phosphatase activities (Bluthgen et al., 

2006; Locasale et al., 2007). 

Bistability is a feature that is often described as switches in biological systems. 

Recent mathematical models have, however, provided insights into the new dimensions 

offered by bistability in terms of regulating the flow of signal through large cellular 

volumes through bistability dependent phosphoprotein waves (Markevich et al., 2006). In 

this connection the proportional response configuration of MAPK has also revealed the 

possibility that regulation by modulating duration of signal can shift the range of dose for 

which a proportional response can be obtained (Behar et al., 2008). Thus the emergence 

of modulation in proportional response systems offers versatile modes of fme-tuning the 

input-output relationships. Such a system also offers modules allowing tuning of various 
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dimensions of signals, an exact mechanism for which may be extended from receptors t~ 

MAPKinase in various modules. 

From the above discussion of the phosphatase-mediated regulation of system 

behavior, it becomes obvious that local modules may exploit such mechanisms t~ 

integrate/interpret spatial patterns into the signal (Neves et al., 2008). In other word~ 

signaling module can significandy use modulation of negative regulators in order t< 

describe the allowed regimes of responses. Incorporation of strength of signal, dynami' 

assembly/ formation of network and modulations of nodal weightage may also contribut' 

towards expansion of ranges of such regulations in multiple dimensions. As discussed i1 

this thesis, this feature emerges as a powerful operating principle for informatiot 

processmg. 
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Binding of Extracellular messengers ("ligand" in a wider perspective) to the 

receptor cause relay of signal across the membrane, up to the nucleus. In nucleus it may 

cause the alteration of gene expression. Interestingly this effecter mechanism needs to be 

carefully interpreted and regulated before it reaches nucleus. In addition to this the 

interpretation should also integrate the "net sum of earlier signals" so that the 

interpretation cah be more context specific and responses will be unique. A good way to 

achieve the same may be the regulation of signal processing by means of those changes 

which are the result of earlier "relevant" signals faced by cells. Mechanism like these 

becomes more obvious when it comes to highly conserved signaling modules, which are 

involved in regulating wide variety of cellular functions/processes. 

Signal processing in artificial systems i.e. electronic circuit, is achieved by the 

combinatorial use of modules. Even different kinds of modules can be built by the 

combinatorial use of components. At the crude level of function and architecture the 

human built high tech devices resembles the biological systems (Csete and Doyle, 2002). 

Cellular signal processing can also be viewed like this and the combinatorial modules as 

described already, could be the part of the signaling network, having topology associated 

with the characteristic dynamics, better called patterns or motifs, making functional 

modules. Cbmbination of the motif can provide the unique function(s). So unit of 

signaling can be the very unique components (signaling molecules) while the unit of 

signal processing can be signaling modules/motifs. Of these the similar modules/motifs 

can be formed by different and unique components, adding specificity and co-ordination 

in signaling machinery. 

Network motifs as suggested by earlier works, are able to filter signal, out of 

noise and can set/regulate the timing of output as well (Alon, 2007a; Mangan and Alon, 

2003; Milo et al., 2002). An earlier study has shown that the different aspects of any 

specific component's activity /kinetic features are responsible for the context specific 

response of the cell and fate is determined only upon the certain aspects of the 

components only (Kumar et al., 2007). It refers to the existence of specific 

motifs/modules operational on these components which function to shape only that 

specific feature which in turn shapes the net output of the response. A detailed dissection 
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of such small networks and extraction of the new topological features responsible for the 

very unique context specific responses becomes essential. 

An attractive system for this kind of study is the MAPK cascade, which is highly 

conserved (Lewis et al., 1998) and known to regulate vast variety of cellular responses 

from activity and localization of individual proteins, transcriptional status of the cell, cell 

cycle entry, to cellular proliferation, differentiation, development, cell motility and other 

sequenced programs for animal development (Gille et al., 1995; Khoo et al., 2003; 

Levenson et al., 2004; Lewis et al., 1998; Maekawa et al., 2005). Plenty of work has 

suggested the roles of MAPK malfunction in various diseases like cancer (1'vlansour et al., 

1994; Roberts and Der, 2007; Ward et al., 2001; White et al., 1995; Zebisch et al., 2007; 

Zuber et al., 2000), diabetes (Arnette et al., 2003; Benes et al., 1998; Frodin et al., 1995; 

Gibson et al., 2006; Khoo and Cobb, 1997; Lawrence et al., 2007; Lawrence et al., 2005; 

Malecki, 2005; Oyadomari et al., 2002; Sumara et al., 2009) and recendy cardiac 

hypertrophy (Lorenz et al., 2009). Mutations and abnormalities in MAPK kinase tier and 

upstream activator like Ras, are associated with most of cancers. This strengthens the 

idea of looking at it for potential drug target in such disorders. ERK pathway, the best 

studied of the mammalian MAPK pathways, alone, is deregulated in approximately one 

third of all human cancers. ERK pathway responds to variety of stimuli of which the 

pathways activating ERK in response to growth factors and mitogens are of particular 

relevance of cancers. Mode of activation of ERK pathway for different stimulus in many 

cases depends on what kind of Ras or other GTPase activated (Sasagawa et al., 2005). 

Further it is subjected to network wide fluctuations which may incorporate the changes 

at the level of three-tier cascade of MAPK. Interestingly the MAPK specific 

phosphatases like MKPs known to be regulated via phosphorylations. Phosphatases are 

known to regulate the dynamics of kinases (Bhalla et al., 2002; Heinrich et al., 2002; 

Kumar et al., 2008) and they show wider range of substrate choices as compared to 

kinases. Hypothetically we can say that in this scenario phosphatase may contribute to 

buffer/influence local versus global changes in signaling networks, though may be 

indirecdy. Adding to this the phosphatases regulation itself may depend on kinases and 

this kind of mutual regulations are worth to study when it comes to signal processing. 

Cross regulation of phosphatases is another dimension which could be the another layer 

of "signal processing unit" hierarchy since the kinase mediated phosphatase regulation 

cannot be shaped alone until another/ same phosphatase negatively regulate this 

"process". Such kind of propositions can be studied on the MAPK cascade since it is 
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highly conserved across biological diversity and has its functional significance in variety 

of cellular functions. This may help in elucidating the signal processing mechanism which 

may contribute to the processing and simultaneous interpretation during signal relay 

across cell. 

Our earlier studies (Kumar et al., 2008; Kumar et al., 2007) has provided robust 

sets of data which has explained the modes of signal transmission as a function of 

discrete features of nodal contributions regulating the cell fate, while this contribution 

can be processive by phosphatases, enhancing the response spectrum, yet keeping system 

still under tight check. However, a mechanistic explanation to this remains unclear. 

Interestingly the data also examine the various effect of phosphatases perturbation on 

the MAPK tier. Enhanced understanding of the operating principles of this cascade can 

help to understand the fundamental signaling and its evolutionary basis, besides its 

conservancy. Keeping the aspects discussed so far we aimed at building mathematical 

model of BCR induced activation of MAPK (ERK) with special focus on the known 

phosphatases associated with this cascade. The study involves the extraction of new 

topological features of network around ERK (MAPK) cascade and creating a 

mathematical model fitting to original data, followed by the intensive analysis of the 

model and testing it on the new predictions that can be validated experimentally. 
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The BCR is composed of heavy and light chains and the associated immuno-tyrosine 

activation motifs (ITAMs). ITAMs get phosphorylated in response to BCR engagement 

by antigen, which then leads to cross linking of the BCR molecules. The BCR dependent 

phosphorylation of ITAMs is sustained through Syk dependent phosphorylation on three 

additional sites on the ITAMs. For simplicity, however, we have defined all stages of this 

multiple phosphorylated states as the doubly phosphorylated BCR (which represents­

ITAM + Immunoglobulin part of the BCR). Both singly and doubly phosphorylated 

BCR activates the src kinase Lyn. Syk, which is immediately downstream to Lyn, is then 

phosphorylated in a Lyn-dependent manner. This establishes a positive feedback loop at 

the BCR (Rolli et al., 2002). Antigen-bound BCR also undergoes internalization, although 

internalized receptors do not contribute towards further signaling (Hou et al., 2006). Lyn 

also phosphorylates CD22, a membrane anchored intermediate of B cell signaling. This, 

in turn, recruits the protein tyrosine phosphatase SHP1 to the membrane. Since SHP1 is 

a negative regulator of a majority of protein tyrosine kinases including Lyn and Syk, a 

negative feedback loop is established. Thus a negative and a positive feedback loop are 

both established in the immediate vicinity of the BCR. Both Lyn and Syk also activate 

Brutons' tyrosine kinase (Btk). Btk in turn phosphorylates PLCg when the latter is bound 

to the Syk-phopshorylated BLNK, a major scaffold protein that connects BCR initiated 

signaling to downstream events Qumaa et al., 2005; Kurosaki, 1999). Lyn via CD19, and 

Syk via BCAP (B Cell Adopter Protein), activate PI3-Kinase signaling with the 

consequent generation of PIP3. This leads to recruitment of cytoplasmic Akt and PDK 

to the membrane, where PDK then phosphorylates Akt Qumaa et al., 2005). 

Syk mediated activation of BLNK also leads to the formation of a BLNK-Grb2-

SoS complex, which functions as the RasGDP-GTP exchanger in B cells. The GAP and 

GEF are modeled according to the scheme as described by Bhalla et. al.(Bhalla and 

Iyengar, 1999; Bhalla et al., 2002). We have summarized the activation of all PKC 

isoforms by DAG mediated PKC recruitment to the membrane. RasGTP binds to Raf 

and resulting complex of Raf-RasGTP is then phosphorylated by PKC. Phosphorylated 

Raf activates the classical Raf-MEK-ERK pathway. Although lymphocyte signaling also 

involves RasGRPs in activation of RasGTPs via SOS (Coughlin et al., 2005; Oh-hora et 



al., 2003), the effect of RasGRPs are better characterized in terms of maintaining the 

basal levels of RasGTP activity (Coughlin et al., 2005). The stimulus induced effect of 

RasGRPs on RasGTP kinetics is still unclear. Therefore, we kept our model at the level 

of RasGTP simple and invoked only the classical activation pathway of RasGTP via SoS 

as the standard GEF. The predicted ligand dose response yielded a good match with the 

experimental results and more importandy the simplification of the activation pathway of 

RasGTP did not affect the performance of our model. ERK negatively regulates Raf by 

hyper phosphorylating it (Bhalla et al., 2002; Ueki et al., 1994). In addition Raf is also 

negatively regulated through phosphorylation at Ser259 by activated Akt (Hatakeyama et 

al., 2003). This process has been modeled accordingly. Dephosphorylation of activated 

Raf is mediated through PP2A whereas the inactivated form represented by 

hyperphsophorylation or Ser259 phosphorylation, is dephosphorylated by both PP1 and 

PP2A. 

Several reports in the literature have indicated that phosphorylation of ERK1/2 

is also regulated by phosphatases (Bhalla et al., 2002). In more recent experiments we 

have demonstrated that the BCR dependent phosphorylation profiles of all the three 

constituents of the MAPK module (i.e. Raf, MEK1/2 and ERK1/2) were profoundly 

influenced when cells were depleted of a range of cellular phosphatases by siRNA. 

Interestingly, depending upon the phosphatases that were depleted, both negative and 

positive effects were noted suggesting the existence of diverse modes of regulation 

(Kumar et al., 2008). Therefore to explore this further, we also incorporated these earlier 

results for five phosphatases. These were PP1, PP2A, MKP1, MKP2 and MKP3. We 

started by linking core MAPK module recursively with the phosphatases in a manner that 

satisfied the experimental data. The phosphorylation proftle of ERK was used as 

eventual output, although the simulated proftles of Raf and MEK1/2 were also 

compared with the experimental data for the purpose of model validation. 

Whereas PP1 (or, Calcineurin) was treated as an unregulated pool, the dual 

specificity phosphatases MKP1 and MKP3 were modeled as previously described (Bhalla 

et al., 2002), but with the modification that phosphorylation of MKP1 was modeled as a 

single step process. An interesting aspect of our earlier experimental results was the 

finding that depletion of MKP3 by siRNA resulted in contrasting effects on the BCR­

stimulated phosphorylation profiles of MEK and ERK. Whereas phosphorylation of 

MEK-1/2 was markedly enhanced, the sensitivity of ERK-1/2 to BCR stimulation was 
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attenuated (Kumar et al., 2008). This observation could be rationalized by invoking the 

related finding of (Castelli et al., 2004), that the PKC substrate Casein kinase2tX both 

interacts with and phosphorylate MKP3. Thus, although MKP3 is known to negatively 

regulate ERK1/2 activation, the simultaneous over-expression of CK2a - however 

reversed this effect. This attenuating effect of CK2a on MKP3 involves phosphorylation 

of the latter (Castelli et al., 2004). In our present system we found that MKP3 expression 

was up regulated upon BCR stimulation (Fig1B) and our model depicts that the 

interaction of CK2a with this phosphatase modulates the MKP3-mediated co-ordination 

of the negative feedback loop influencing ERK-1/2 phosphorylation. Importandy our 

earlier results also implicated MKP1, which is positively regulated by ERK-1/2 as a 

direct target of MKP3. While modeling the MAPK pathway, however, the possibility that 

the MKP3 acted simultaneously on both ERK-1/2 and MKP1 seemed unlikely since 

such a proposition failed to explain the previously described experimental results. We 

therefore, considered the possibility that the ERK-1/2 and MKP1 may represent 

alternate substrate for MKP3, with substrate specificity being determined by the 

phosphorylation state of MKP3. Whereas the non phosphorylated MKP3 functioned as a 

negative regulator of ERK -1 /2 activation, its phosphorylation by CK2a alters its 

substrate preference in favor of MKP1, with the consequent attenuation of its activity. 

This postulates yielded a satisfactory solution after a few optimization and simulation 

exerc1ses. 

Our earlier findings that the depletion of MKP3 from cells by si-RNA resulted in 

a marked enhancement in the BCR-dependent phosphorylation of MEK-1/2 (Kumar et 

al., 2008) also prompted us to link phosphorylated MKP3 as a negative regulator of 

MEK-1/2. Consequendy, while phospho-MKP3 would not be expected to direcdy 

inhibit ERK-1/2 activation this would nonetheless, be compensated by the inhibitory 

effect ofMKP3 on the upstream kinase MEK-1/2. Further, PP2A has been described as 

a regulator of the phosphorylation of MEK-1/2 (Bhalla and Iyengar, 1999; Bhalla et al., 

2002; Kolch, 2000). In addition, a marked increase in ERK-1/2 phosphorylation was also 

observed under these conditions. We accounted for these unexpected fmdings by 

considering the possibility that phosphorylation of MKP3 could be reversed by the direct 

action ofPP2A. Thus in addition to de-phosphorylating Raf and MEK-1/2, PP2A is also 

likely to function in regulating the balance between the phosphorylated and non­

phosphorylated pools of MKP3. The resulting model for the MAPK module yielded a 
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A. Simulated profile of restimulation following 6hrs after first stimulus 
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Figure 1 Top panel shows here the simulation profile of ERK phosphorylation (ppERK) 
following a first stimulus of thirty minutes and a second stimulus 6 hours after the first 
stimulus. Inset in the top panel shows the \Xlestern blot from the similar experiment on A20 
cells. Both \Xlestern blot and in silico prediction showing the excellent match. Lower Panel 
shows the MKP3 expression level over 12 hours following BCR stimulation. Both panels are 
validating the model proposed. 
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prediction for the time dependent phosphorylation of ERK-1/2 that was in excellent 

agreement with the experimentally obtained results. 

The above results thus identify a cascade of phosphatases (PP2A-MKP3-MKP1) 

that is aligned in parallel with the MAPK cascade (Raf-MEK-ERK). ERK activation also 

leads to transcriptional up-regulation of MKP1 and MKP3. We have achieved the same 

through a reaction scheme similar to as proposed by (Bhalla et al., 2002), although the 

rates are scaled according to the present concentration of these two phosphatases. The 

concentrations of c-Raf, MEK, ERK, PP2A, MKP1, RasGDP-GTP total, Akt were 

determined by Western blot titrations that compared against corresponding levels present 

in NIH3T3 and CHO cells (Data not shown here). Concentrations of the remaining 

molecules were estimated. 

Complete scheme of biochemical interactions described above is converted into a 

system of coupled differential equations (see Annexure for details) to generate the model. 

Model ts implemented and optimized tn Simbiology 2.2 (MA 'ILAB) 

(www.mathworks.com). 
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Assumptions and criteria for implementation of the model 

Few important considerations have been taken while implementing model tn 

mathematical form which are as follows: 

1. Since a detailed description of the early signaling events at the BCR signalosome 

is currendy unavailable, the steps were minimized and unnecessary complexity 

was avoided. For this, the parameters were constrained to the extent possible for 

describing the kinetics of these events without affecting the known outputs, and 

keeping the system simple. For example, phosphorylation of BLNK at multiple 

sites was represented by a single step. Further, the four different (1 + 3) events of 

phosphorylation at the ITAMs (BCR in the model) by BCR activation and Syk 

mediated feedback were simplified in two steps (1 by BCR engagement + 1 by 

Syk) keeping the positive feedback effect ofLyn-Syk-ITAM feedback loop intact. 

2. Activated to unactivated ratios were maintained for different molecules in 

accordance with their cytoplasmic locations and mode of activation. 

Compartmentalization was not considered in our analysis. 

3. In the case of regulation by multiple phosphatases, the experimental results 

obtained by Western blot analyses cannot be direcdy correlated to exact relative 

levels of activated molecules since quantitation by this technique is not linear 

over a large range. Thus a true regression scheme cannot be employed for 

phosphatase-mediated perturbations involving large variations in phosphorylation 

levels. Further, shifts in baseline phosphorylation levels also cause problems, 

which are not usually encountered in the traditional model building exercises 

where maximum phosphorylation levels of substrates following on receptor 

activation are considered as 100% and regression is then applied for a 

comparatively smaller range of modulations in phospholevels. However post 

implementation techniques were employed for assessing regression stability of 

the parameters. These were Multi Parametric Sensitivity Analysis (MPSA) and 

Partial Rank Correlation Coefficients (PRCC), as described later in sensitivity 

analysis and robustness scores. 

TH-16441 
,- ~ r 
'~- (.___ .. -· 
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4. Parameters describing the kinetics of molecules on the network periphery were 

grouped together to define the representative kinetic behavior relevant to the 

present MAPK module. 

Sensitivity of the Model 

Having constructed the model, we performed an exhaustive sensitivity analysis for 

identifying the key regulatory features of BCR induced MAPK (ERK). Table 1 shows 

selected sensitivities and their corresponding parameters with their reaction scopes. 

Sensitivity analysis was done using four different methods using SBML_SA T (Zi et al., 

2008) a MA TLAB toolbox for sensitivity analysis of systems biology models which is 

based on SBML. SBML_SAT ts free and available at 

(http:// sysbio.molgen.mpg.de/ SBML-SAT /). 

We used four different methods of sensitivity analysis on integrated response of 

model output variables. All these methods of analysis identified BLNK-mediated 

activation of the BLNK/Grb2/SOS complex, which functions as the RasGTP-GDP 

exchanger upon BCR stimulation. BLNK has a key role in B cell receptor induced 

signaling. It serves as a scaffold for SoS and, therefore, couples Syk with downstream 

signaling events of BCR signalososme (lshiai et al., 2000; lshiai et al., 1999; Pappu et al., 

1999). Global sensitivity analysis methods use multiple parameter variations. The scores 

identify the Multi-parametric Sensitivity analysis and give Kolmogorov-Smirnov (K-S) 

statistics values for the distance between frequencies of the acceptable and unacceptable 

parameter sets generated through random perturbations. That is, MPSA reveals the 

uncertainty of the parameter space used. Thus the K-S value here specifically revealed 

that kcat_123 (the enzymatic action of ppMEK on ERK) and kf_124 (binding of pERK 

to the ppMEK), had a significant effect on the ppERK response. This has also been 

reported earlier, and the consistency of these parameters found in all the methods 

employed suggests that this two-step phosphorylation is an important step in shaping the 

both integrated responses and the maximal responses of ppERK. Interestingly, the two­

step phosphorylation of ppMEK does not actually give high K-S value or local sensitivity 

coefficient for the enzymatic action of pRaf on MEK (kcat_1 04), and this remains 

consistent on both the integrated and maximum response of ppMEK. The detailed 

Sensitivities of ppMEK and ppERK are provided in the accompanying CD. 
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kcat_1 08 [PKCm:CK2alpha] -> PKCm + CK2alphap 

kf_109 CK2alphap -> CK2alpha 

kf_110 CK2alphap + MKP3 <-> [CK2alphap:MKP3] 

kcat_111 [CK2alphap:MKP3] -> CK2alphap + MKP3p 

kf_112 MKP3p + PP2A <-> [MKP3p:PP2A] 

kb_112 MKP3p + PP2A <-> [MKP3p:PP2A] 

kf_114 MEKpp + PP2A <-> [MEKpp:PP2A] 

kf_116 MEKp + PP2A <-> [MEKp:PP2A] 

kb_116 MEKp + PP2A <-> [MEKp:PP2A] 

kcat_117 [MEKp:PP2A] -> MEK + PP2A 

kf_118 MEKpp + MKP3p <-> [MEKpp:MKP3p] 

kb_118 MEKpp + MKP3p <-> [MEKpp:MKP3p] 

kcat_119 [MEKpp:MKP3p] -> MEKp + MKP3p 

kf_122 ERK + MEKpp <-> [ERK:MEKpp] 

kb_122 ERK + MEKpp <-> [ERK:MEKpp] 

kcat_123 [ERK:MEKpp] -> ERKp + MEKpp 

kf_124 ERKp + MEKpp <-> [ERKp:MEKpp] 

kb_124 ERKp + MEKpp <-> [ERKp:MEKpp] 

kcat_125 [ERKp:MEKpp] -> ERKpp + MEKpp 

kf_130 ERKpp + MKP1 <-> [ERKpp:MKP1] 

kb_130 ERKpp + MKP1 <-> [ERKpp:MKP1 ] 

kcat_131 [ERKpp:MKP1] -> ERKpp + MKP1 p 

kb_132 MKP1p + MKP3p <-> [MKP1p:MKP3p] 

kf_132 MKP1 p + MKP3p <-> [MKP1 p:MKP3p] 

kcat_133 [MKP1p:MKP3p] -> MKP1 + MKP3p 

kf_134 ERKpp + MKP2 <-> [ERKpp:MKP2] 

kb_134 ERKpp + MKP2 <-> [ERKpp:MKP2] 

kcat_135 [ERKpp:MKP2] -> ERKp + MKP2 

kf_136 ERKp + MKP2 <-> [ERKp:MKP2] 

kb_136 ERKp + MKP2 <-> [ERKp:MKP2] 

kcat_137 [ERKp:MKP2] -> ERK + MKP2 

kf_148 [Rafp:RasGTP] -> Rafp + RasGTP 

kf_149 [L:BCR1] + BCR <-> [L:BCR] 

kb_149 [L:BCR1] + BCR <-> [L:BCR] 

kf_150 [L:BCRp] + SHP1 <-> [L:BCRp:SHP1] 
[BLNKp:Grb2:SoS] + RasGDP -> 

km_154 [BLNKp:Grb2:SoS] + RasGTP 
[BLNKp:Grb2:SoS] + RasGDP -> 

vm_154 [BLNKp:Grb2:SoS] + RasGTP 

kf_155 ERKpp + MKP1p <-> [ERKpp:MKP1p] 

kb_155 ERKpp + MKP1p <-> [ERKpp:MKP1p] 

kcat_156 [ERKpp:MKP1p] -> ERKp + MKP1p 

kf_157 ERKp + MKP1p <-> [ERKp:MKP1p] 

kb_157 ERKp + MKP1p <-> [ERKp:MKP1p] 

kcat_158 [ERKp:MKP1p] -> ERK + MKP1p 
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Mathematical Model of BCR-MAPK Pathwcry 

Weighted average of local sensitivity (WALS) which uses the weighted average 

of local sensitivity indices on parameters space and calculate the least square errors of 

reference simulation and perturbations. The scores of W ALS here primarily identified the 

component important for the dose response components of present network including 

the main phosphatases of the model and the BCR-LYN-SYK positive feedback loop. 

The popular Global Sensitivity Analysis (GSA) method of regression-based rank 

transformation method Partial Rank Correlation Coefficient (PRCC) uniquely isolates the 

vm_7 (Vmax of CD22 phosphorylation) which is the part of Negative auto-regulatory 

loop at BCR dependent Lyn activation, and responsible for the membrane recruitment of 

SHP1 which negatively regulate and shapes the activity of BCR signalosome. PRCC also 

uniquely identified the binding of MEKpp to PP2A, the negative regulator of both MEK 

and Raf activity, both in the Integrated and maximum response of ppERK. This 

identifies that the first step of ppMEK binding to PP2A competes along with pMKP3, 

which is another negative regulator of MEK activity in the phosphatase cascade. In all 

cases of ppERK and ppMEK, the integrated response was invariably affected by the 

action of PP1 on pRaf, which we found to be true experimentally as well (Kumar et al., 

2008). PRCC also revealed the role of the initial conditions on various model output 

variables and is shown in figure 2. 

Figure 3 to 8 shows the vanous output variables and their sensitivities for 

integrated and maximum responses by the different methods of LSA and GSA. The 

sensitivity of time dependent responses were also measured (data not shown), and this 

was consistent with the present results and model behavior. The model was also tested 

for various perturbations and combinations of the initial concentrations of Raf-MEK­

ERK and we found that the solution for the SAM converged to the same response 

spectrum. Although we identified parameters which were sensitive to perturbations, the 

sensitivity of these parameters did not affect model output significantly since the cut off 

for the highlighted results chosen was as low as 10% of the maximum possible 

sensitivity in each case. Thus model was robust with respect to variations in parameters 

and initial conditions. 
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Figure 2: Sensitivity Analysis of Model output 
Variables for initial conditions : The three panels are 
showing the result of Sensitivity analysis performed on 
Initial conditions by three different methods (A) Local 
Sensitivity Analysis (LSA), (B) l\Iulti Parametric Sensitivity 
Analysis (MPSA), (C) Partial Rank Correlation Coefficient 
(PRCC). Sensitivity analysis was performed against initial 
condition variation and Sensitivity measured for different 
model output variables for their integrated reponses. 
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Mathematical Model rifBCR-A1APK Pathu;qy 

Robustness of the Model 

Our present model was unique in that it also modeled active regulation by phosphatases. 

It included active regulation of phosphatase by the kinase components of the network, 

which in turn was negatively regulated by these active phosphatases. Thus it became 

important to test the model for its robustness to the parameter variations, at least to the 

extent that it compared well with existing models. Robustness is a fundamental property 

of biological systems, which allows the systems to maintain its behavior against random 

perturbations (Kitano, 2007; Stelling et al., 2004). We preformed the Robustness analysis 

by SBML_SAT (Zi et al., 2008), a free software and 1s available at 

(http:/ /sysbio.molgen.mpg.de/SBML-SAT/). Robustness analysis was performed as 

described (Barkai and Leibler, 1997; Bluthgen and Hetzel, 2003), and Robustness scores 

measured as Total Parameter Variations (TPV) by randomly generated parameters by 

Latin Hypercube Sampling (LHS) method. 

The R scores (Robustness scores) of a biological model assumes a negative value. 

The closer it is to zero, the more robust the model. Here we compared some of the most 

of models for the MAPK pathways in the literature with our present model. The 

corresponding R scores of MAPK components of those models, calculated under 

identical conditions of perturbations, are given in Table 2. As is evident here, the 

robustness score of our model compares well with that of the others, particularly with 

those that take phoshatases into consideration. Our model shows a particularly good 

agreement with that of (Bhalla et al., 2002), the only other model that incorporates active 

regulation of the phosphatase MKPl. 
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Table 2: Comparison of the robust scores of various Models ofMAPK: 

Model Name Receptor/ RasGTP pMAPKKK ppMAPKK pMAPK Phosphatase 

Activator Regulation 

Huang Ferrell -0.00543320 ------- -0.662038 -0.961861 -1.23605 No 

Kholodenko ------- ------- -0.537109 -1.00071 -1.25602 No 

2000 

Levchenko ------- ------- -0.344902 -0.67925 -1.11045 No 

\Vi th scaffold 

Levcheno ------- ------- -0.561329 -1.3463 -2.80383 No 

No Scaffold 

Hatakeyama -0.58779 -1.53691 -1.59975 -1.78692 -3.52799 Phosphatases 

2003 Buffered 

Sasagawa -0.472733 -0.79791 -0.875844 -1.2053 -1.99484 Phosphatases 

(cRaf) Buffered 

-0.980000 

(BRat) 

Bhalla 2002 -1.44197e-034 -0.158336 -0.88649 -3.01403 -5.13613 MKPl 

Regulation by 

MAPK 

Present Study -0.386837 -0.980019 -1.34911 -2.27352 -4.98263 Active 

phosphatase 

cascade. 
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Modeling BCR-dependent activation of the MAPK network 

Our previous experimental studies of the plasticity of the BCR signaling network, and its 

response to specific perturbations (Kumar et al., 2008; Kumar et al., 2007; Singh et al., 

2005), provided us with an internally normalized dataset for modeling salient features of 

the signaling network. We, therefore, combined these results with data from the literature 

to develop a block diagram for the BCR-activated MAPK signaling network. Here we 

specifically included the results from our most recent experiments probing the 

consequences of siRNA-mediated depletion of various cellular phosphatases, on BCR­

dependent phosphorylation of the constituents of the MAPK pathway (Kumar et al., 

2008). Data generated from the depletion of five of the tested phosphatases were taken 

for this study, and these five phosphatases were: PP1, PP2A, MKP1, MKP2, and MI<P3. 

The selection of these phosphatases was guided by the fact that MKPs are known 

regulators of phoshorylation of the intermediates in the MAPK pathway (Bhalla et al., 

2002; Brondello et al., 1999; Dickinson and Keyse, 2006). Further Raf, MEK, MKP1 and 

MKP3 are all regulated through phosphorylation at Ser/Thr residues (Brondello et al., 

1999; Castelli et al., 2004), thereby implicating a possible role for PP1 and PP2A. 

Modeling of BCR mediated signal transduction involved the basic reaction 

scheme from the receptor, to the intermediate molecules leading to the MAPK pathway 

and, eventually, to the regulation of ERK (Fig 9A). This process involved several rounds 

of iterations before the model could completely reproduce the experimental dataset, 

which involved upstream kinases and phosphatases apart from the core MAP kinase 

module. Model parameters such as initial concentrations, Km and Kd values, and other 

rate parameters were either taken from literature or, when not available, were optimized 

for producing the best experimental fit. The model incorporated generic rate laws such as 

mass action and Michaelis-Menten reaction schemes to represent the interactions among 

the species. The system was taken as appropriately modeled when it could fit the 

experimental phenotypic data (e.g. the previous results of our siRNA experiments, Fig 

11), which included both the upstream and the MAPK intermediates. Apart from the 

general schematic (Fig 9A) of BCR signal transduction leading to ERK, the core MAPK 

module regulated by cellular phosphatases (Fig 9B) was of our interest for analysis. Care 

was taken to incorporate these phosphatases in the network in a manner that was 
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consistent with the known literature information and, in cases where adequate 

information was not available; assumptions were made based on our own experimental 

data to fit the phosphatases. Overall, the model consisted of 158 variables representing 

different pools of molecules, 172 biochemical reactions, and 256 total parameters 

(Annexure S1). 

The resulting model was fairly complex, encompassing the span of regulatory 

events emanating from the receptor and terminating at ERK (Fig. 9A, B). To test the 

model, we performed Local and Global Sensitivity analyses using several independent 

methods to evaluate the parameters for their robustness against fluctuations that are 

inherent to noisy biological conditions. We found that parameters that were most 

sensitive were those that are already known to be critical for shaping the BCR-specific 

signaling response (see previous section for details). In other words, our model indeed 

reflected the true kinetic properties of BCR-dependent signaling. Parameters specific for 

the MAPK-phosphatase module (Fig 9B) were robust in terms of the output behavior, 

and could tolerate a broad range of perturbations against the ERK activation response. 

Further, we also verified that the robustness of our model compared well with that of 

other prominent models described for the MAPK pathway (Table 2). At the 

experimental level, the model also successfully recapitulated results available in the 

literature, which included our own earlier experimental data on BCR-dependent signaling 

in A20 cells (Fig 10 and Fig 11). Further, as shown in Figures 9C and D, the time­

dependent phosphorylation profile of ERK predicted by our model was in agreement 

with the experimentally obtained results. 

Analysis of the model 

The model described in Figure 9A exhibited several intriguing topological and dynamical 

features. This is especially evident from Figure 9B, which highlights the co-alignment of a 

phosphatase cascade alongside the MAPK pathway, leading to several cross-regulatory 

interactions between the two. Notably, these interactions also included two novel links 

for MKP3. That is, in addition to ERK, our model described MKP3 to also interact with 

- and negatively regulate - MEK and MKP1 (Fig. 9B). Further, another related prediction 

by the model was that MKP3-dependent regulation was tightly controlled through a 

modulation of its substrate bias. In other words, while phosphorylated MKP3 was 

described to exhibit a preference for MEK and MKP1, its non-phosphorylated form was 
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Figure 10. Shown here is a simulation of the time course of phosphorylation Raf (pRaf) and MEK (pplviEK) in 
cells stimulated with a saturating concentration of ligand. The inset in each panel gives the peak level of 
phosphorylation obtained over a wide range of ligand concentrations. These profiles are consistent with the 
experimental results derived in our earlier studies( Kumar et. a!. , 2007, 2008) The concordance between the 
experimental (red diamonds, values are mean ±_S.D. of three experiments) and the simulated profiles is shown for 
pplviEK. 
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Figure 11. Panel A show simulation of the time course of phosphorylation of the indicated molecules in cells stimulated 
with a saturating concentration of the ligand. For the purposes of comparison, the experimentally derived values at the 
various time points are also included (red diamonds, values mean ± S. D. of three experiments). These values are from our 
earlier study (Kumar et. al., 2007, 2008). For the in si/ico profiles simulations were first run for 3000 seconds to achieve the 
steady baseline levels of phosphorylations prior to stimulation. This explains the baseline levels of phospho-species seen in 
these profiles. Panel B compares the experimentally derived (Experimental) and itr silico (Simulated) proftles of ERK and 
MEK phosphorylation following depletion of cells with the indicated phosphatases. The values for the experimental group 
were taken from Kumar et. al. (2008). In all cases the X-axes start from zero although the units are arbitrary. In all the 
panels the profiles obtained in mock (i.e. GFP-siRNt\) treated cells are shown in blue whereas those for phosphatase­
specific siR A treated cells are in red. For the in si/ico proftles simulations were first run for 3000 seconds to achieve the 
steady baseline levels of ERK phosphorylations prior to stimulation. This explains the minor lag period seen in these 
profiles. 



Experi171ental Validation of the Model 

predicted to be more selective for ERK. As a result, shifts in the distribution of MKP3 

between the phosphorylated and non-phosphorylated pools potentially served as a 

mechanism for diversifying the influence of MKP3 on MAPK signaling. 

An in silico analysis of ERK phosphorylation in response to varymg ligand 

concentrations yielded an incremental dose-response profile (Fig. 12A). This prediction 

of a graded ERK output could be experimentally confirmed by stimulating A20 cells with 

increasing concentrations of anti-IgG (Fig 13C). Importantly, ERK response to ligand 

dose was found to be graded regardless of whether it was monitored at the level of the 

cell population by Western blot analysis (Fig 12B), or at the level of single cells through 

intracellular staining for phospho-ERK and detection by flow cytometry (Fig 12C). 

Experimental verification of the model 

We have already noted earlier that our completed model for the BCR-dependent 

activation of ERK retained its ability to describe the activation profiles of the 

intermediates in a manner that was consistent with the experimental data. Further, 

predictions on both the kinetics of ERK phosphorylation, and on the graded nature of 

the ERK response could also be subsequently borne out by experiment. Collectively 

these results would seem to support the veracity of our model, as well its sensitivity to 

perturbations in a context dependant manner. Nonetheless, it was also necessary to 

additionally confirm some of the topological features of the model, and their 

contribution to the systems properties of the MAPK module. 

As shown in Figure 9B, a significant aspect of our model was the description of 

MKP3 as an important regulator of MAPK signaling through its ability to regulate MEK, 

ERK, and MKP1. While the interactions between MKP3 and ERK are well known 

(Maillet et al., 2008; Zhao and Zhang, 2001), the MKP3-MEK and MKP3-MKP1 

interactions represent novel links identified here. We, therefore, sought to verify the 

existence of these latter links by performing co-immunoprecipitation experiments from 

lysates of A20 cells, using antibodies specific either for MEK, MKP1, or MKP3. As 

shown in Figure 14A, immunoprecipitation of either MEK or MKP1 also led to the 

simultaneous enrichment of MKP3, whereas immunoprecipitates of MKP3 were 

enriched for both MEK and MK.Pl. Although immunoprecipitation results do not 

permit quantification they, nonetheless, support at least the existence of MKP3 in a 

simultaneous complex with MK.Pl and MEK, thereby confirming the interactions 
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Figure 12: The ERK phosphorylation respon se is proportional to the stimulus strength. 

25 

Panel A shows the results of an in Jilico analysis estimating the magnitude of ERK phosphorylation obtained after 
stimulation of cells with varying anti-IgG concentrations. Panel B gives the corresponding results of an 
experiment where A20 cells were stimulated for 15 min, with the indicated doses of anti-IgG. ERK 
phosphorylation was then determined in lysates by Western blot analysis (Figure 13C). Values are the mean 
(±S.D.) of three independent experiments. Stimulated cells were also subjected to staining for intracellular 
phospho-ERK using specific antibodies followed by FITC-labeled secondary antibodies. Stained cells were then 
analyzed by flow cytometry and the results are shown in panel C. Depicted here are the profiles obtained for cells 
stimulated with either 0.1 (black line), 0.5 (green line), 5 (pink line), or 25 !lg/ ml (blue line) of anti-IgG. The 
profile for unstimulated cells overlapped with that for cells stimulated with 0.1 !lg/ ml of ligand. For the negative 
control, cells were stained with rabbit IgG instead of the anti-phospho-ERK antibody. 
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Figure 13. Panel A shows the Western blot profile of MEK in A20 cells treated either with non­
silencing (GFP) siRNA Oabeled Normal), or with MKP3-specific siRNA. In both cases the cells were 
stimulated with the F(ab)2 fragment of anti-mouse IgG for the indicated times. For quantification band 
intensities were normalized against that obtained for PLCg, which was used as loading control. Panel 
B shows the stimulation time-dependent phosphorylation profiles of ERK (ppERK) in either treated 
cells, or in cells pre-treated with DRB. GAPDH (Ctrl) served as the loading control for band intensity 
normalization in these experiments. Shown in Panel C are the time dependent phosphorylation 
profiles of ERK (ppERK) at the indicated concentrations of ligand. Here again, GAPD H was used for 
the loading control and for normalization of band intensities. 
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Figure 14: Verification of novel interactions incorporated in the model 
In panel A, lysates from stimulated or unstimulated A20 cells were irnmunoprecipitated with antibodies specific 
either for MKP3, MEK, or MKP1 (Materials and Methods) Qeft column, IP) . lrnmunoprecipitates were then 
subjected to a Western blot analysis using the antibodies indicated in the right column (WB). As a negative 
control (ctrl), parallel irnmunoprecipitates with rabbit IgG were also probed with the corresponding antibodies. 

Panel B shows the results of Western blot analyses for MKP1 in A20 cells treated either with MKP3-specific 
siRNA (red line), or with non-silencing (i.e. GFP-specific) siRNA (blue line). Stimulation times with anti-IgG (25 
JJg/ ml) are indicated, and values are the mean ± S.D. of three separate experiments. We have previously 
demonstrated that siRNA-mediated silencing of MKP3 results in a >70% reduction of this phosphatase protein 
in A20 cells(Kumar et. a!., 2008). 

In Panel C the top panel shows the effect of DRB (30f,ili1) on the anti-IgG dependent phosphorylation of 
ERK. The lower panel shows the corresponding profiles obtained from an in-silico analysis. The blue color 
identifies the profiles obtained in the absence of any inhibitor, whereas the pink color denotes the profiles 
obtained in the presence of DRB. 
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depicted in Figure 9B. In subsequent experiments we observed that the siRNA-mediated 

depletion of MKP3 resulted in a significant (- 4-fold) increase in the basal levels of 

MKP1 (Fig. 13A and 14B). These levels were further increased upon stimulation of cells 

through the BCR (Fig. 14B). The stability of intracellular MKP1 is dictated by its 

phosphorylation status. While the non-phosphorylated form exhibits a short half-life, 

phosphorylation enhances its stability (Brondello et al., 1999). Thus the observed inverse 

relationship between MKP3 and MKP1 levels in Figure 14B provides additional support 

for the functional nature of the link between these two phosphatases. 

To verify whether the phosphorylation status of MKP3 indeed modulated its 

substrate-specificity, we also examined anti-IgG-mediated stimulation of A20 cells in the 

presence of the CK2 inhibitor, DRB (Zandomeni et al., 1986). As shown in Figure 9B, 

MKP3 is primarily phosphorylated by CK2a. Inhibition of this kinase, therefore, leads to 

a concomitant inhibition of MKP3 phosphorylation (Castelli et al., 2004). According to 

our model then, this should then also result in an increased efficiency of MKP3-mediated 

dephosphorylation of ERK. As expected, stimulation of DRB-treated cells led to 

inhibition of BCR-dependent phosphorylation of ERK (Fig. 13 and 14C). These results 

are also consistent with previous findings that CK2a dependent phosphorylation of 

MKP3 attenuates its inhibitory effect on ERK phosphorylation (Castelli et al., 2004). 

Collectively then, both the consistency between predicted and experimentally 

obtained phosphorylation profiles of the various signaling intermediates described above, 

as well as the experimental confirmation of the new MKP3-dependent regulatory links 

proposed, provide experimental support for the model depicted in Figure 9A. 
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Signal-dependent assembly of the MAPK cascade into a unique 

regulatory module 

According to the model in Figure 9B, each intermediate in the MAPK pathway was 

under the regulatory control of both the co-aligned, and its immediately upstream, 

phosphatase. Thus, MEK was regulated by both PP2A and MKP3, whereas ERK was 

regulated by MKP3 and MKP1 (Fig. 9B). The entire model consisted of links that 

collectively belonged to all of the four possible categories; activation of activator (PKC to 

Raf, and Raf to MEK), inhibition of activator (PP2A to Raf, and MKP3 to MEK), 

activation of inhibitor (PKC to MKP3, and ERK to MKP1 ), and inhibition of inhibitor 

(PP2A to MKP3 and MKP3 to MKP1, 2) (Fig. 9A, B). 

A particularly striking aspect here was that co-alignment of the two cascades 

resulted in the generation of a novel regulatory motif that was composed of a contiguous 

set of two square units. The first of these consisted of Raf, MEK, PP2A, and MKP3 as 

the vertices, whereas the second unit involved MEK, ERK, MKP3, and MKP1 (Fig. 9B). 

Further, the linkage relationships between the corresponding vertices were also replicated 

(Fig. 9B). Interestingly, a closer inspection of this motif revealed that it was in fact 

composed of four smaller regulatory units (each triangle in the motif) that represented 

alternately placed type-2 coherent and incoherent feedforward loops (FFLs, defined as in 

(Alon, 2007a)). A more detailed analysis of these sub-structures, and their individual 

contributions to the overall properties of the parent motif is currently under way as a 

separate study. Here we focused solely on the role of the larger motif, in regulating signal 

processing by the MAPK cascade. 

Assembly of this regulatory motif required two separate input signals originating 

from the BCR. The first of these was a PKC- and RasGTP-dependent AND gate that 

mediated Raf activation in a signal-dependent manner (Bhalla et al., 2002; Kolch, 2000). 

The second input signal was defined by the CK2a -dependent phosphorylation of MKP3 

(Fig. 9B). It has previously been demonstrated that MKP3 and CK2a form a protein 

complex wherein CK2a specifically phosphorylates MKP3, with the corresponding 



Phosphatase Cascade and Signal Processing 

mcrease m ERK-2 phosphorylation (Castelli et al., 2004). As discussed later, the 

regulation of MKP3 between its phosphorylated and non-phosphorylated states has 

significant implications for signal processing by the MAPK pathway. Finally, 

phosphorylation of MKP1 by ERK was also a prerequisite for the assembly of this motif, 

signifying the importance of crosstalk between these two cascades in this process. 

Phosphatase-mediated regulation of the ERK response 

We first examined how the connected network of phosphatases influenced signal output 

from the MAPK module. This was achieved through in silico experiments examining the 

ligand dose-dependency of ERK phosphorylation, under conditions where the individual 

phosphatases were depleted one at a time. Figure 4 shows the results of these 

experiments where panel A depicts the profile obtained in the unperturbed condition. It 

is evident that, with the exception of PP1, no other phosphatase depletion had any 

significant effect on the proportional nature of ERK activation (Fig. 15), The observed 

effect of PP1 depletion is consistent with our earlier experimental fmdings involving 

depletion of this enzyme by siRNA. In these experiments, a marked decrease in the 

magnitude of ERK activation was obtained at the later time points (Kumar et al., 2008). 

Thus these results indicate that PP1 may play an important role in buffering the inactive 

pool of hyper-phosphorylated Raf, which is generated by activated ERK through a 

positive feedback loop, and Akt (Bhalla et al., 2002; Hatakeyama et al., 2003; U eki et al., 

1994). 

Depletion of any of the remaining phosphatases resulted only in a modulation of 

the amplitude of ERK phosphorylation, with MKP1 depletion yielding the most 

pronounced effect (Fig. 15). Notable, however, were the qualitatively distinct effects seen 

upon depletion of the individual, MAPK-associated, phosphatases. Suppression of PP2A 

expression yielded a marginal effect on the shape of the dose response curve (Fig. 15), 

whereas that of MKP3 resulted in a diminished activation window for ERK due to a 

simultaneous increase in sensitivity to lower ligand concentrations, and a decrease in the 

peak level that was achieved (Fig. 15). In contrast, removal of MKP2 induced a 

comparable increase in both the upper and lower bounds of ERK activity (Fig. 15). Thus, 

selective depletion of each of the phosphatases exerted its own individual effect on the 

ligand-dependent dose-response proftle of ERK activation. 
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Figure 15: Phosphatase-mediated regulation of the MAPK signaling response. 
The influence of individual phosphatases in sensitizing the ERK output was monitored in-silico by analyzing 
ligand dose versus peak phospho-ERK levels within the first 30 min of activation. This analysis was performed 
either in normal cells (Normal), or in cells where the indicated phosphatase was depleted from the system. In 
each panel, the fold change in ligand concentration required to increase ERK phosphorylation from 10% to 
90% of its maximal value is also given (F). These values confirm that the ERK response remains proportional 
under all of these conditions. 
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Perturbation in phosphatase concentrations modulates the MAPK 

response 

The output of a signaling network is primarily determined by the topology of the 

network, and the concentrations of its nodal constituents. As shown in Figure 15, the 

topological allocation clearly had a significant bearing in terms of defining the extent of 

regulation that each phosphatase exerted on the MAPK signaling pathway. We, 

therefore, next examined how variations in the concentration of these phosphatases 

would impact on BCR-initiated MAPK signaling. This involved in silico experiments in 

which the concentration of the individual phosphatase was varied from one that was ten­

fold lower, to one that was ten-fold higher than its constitutive level in A20 cells. The 

phosphorylation of both MEK-1/2 and ERK were examined under these conditions. 

While such experiments were also carried out for PP1 and MKP2 (Fig. 17), only 

the results obtained for the three phosphatases that are incorporated in the 'two-square' 

structural motif are shown in Figure 16. The figure describes the effect of varying the 

concentration of these individual phosphatases, on the peak levels of MEK and ERK 

phosphorylation. Of particular note here was the fact that changing PP2A concentrations 

exerted dissimilar effects on MEK and ERK. A bimodal effect was observed for MEK 

and this feature was retained at all strengths of signal (i.e. ligand doses) employed (Fig. 

16). Contrary to this, ERK yielded a PP2A-dependent bimodal profile only at low ligand 

concentrations while the response to this phosphatase became linear as the signal 

strength was increased (Fig. 16). Thus, PP2A-mediated regulation imparted non-identical 

effects on these two - consecutively positioned - signaling intermediates of the MAPK 

pathway. Further, the extent of deviation in behavior between these two intermediates 

was also dependent upon the strength of the stimulus at the BCR. Increasing PP2A 

concentrations also led to a progressive reduction in the amplitude of both MEK and 

ERK responses although the effect on the latter molecule was more pronounced (Fig. 

16). This aspect could be experimentally verified by stimulating A20 cells in the presence 

of the PP2A inhibitor okadaic acid (OA). Although OA is a known inhibitor of both 

PP2A and PP1, the 100-fold lower IC50 value for PP2A allowed us to use a concentration 

range that was specific for PP2A. 

As shown in Figure 18, while inhibition of PP2A activity led to an increase in 

ERK phosphorylation, that of MEK was significandy inhibited. The sensitivity of ERK 
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Figure 16: Modulation in phosphatase concentrations further shape ligand-sensitivity of the MAPK 
pathway. 
Peak phosphorylation of ERK (ppERK) and 1\ffiK (ppl'v1EK) was monitored in response to variations in both 
ligand and individual phosphatase concentrations. Th.ree separate sets of simulation, within a defined 
concentration window, were used to reduce the computing time. For each phosphatase, 100 different 
concentrations of phosphatase were used, varying from 10 times lower to 10 times higher than its constituent 
concentration level in A20 cells. The combined data is plotted here. Panel A profiles peak phospho-MEK levels 
as a combined function of both varying ligand doses (Cone. in f-LM), and varying concentrations of each of the 
three phosphatases. Here, the top panel shows the 3-dimensional plot, while the lower panel depicts the same 
results in the form of a heat map. Similarly, panel B shows peak phospho-ERK levels as a combined function of 
both ligand dose and varying concentrations of the three phosphatases . 
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Figure 17: The peak phosphorylation of MEK (ppME K, top subpanel) and ERK (ppERK, bottom 
subpanel) was determined in response to variations in concentrations of both ligand and either PP1 or 
MKP2. The remaining details are identical to that described for Figure 16. 
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Figure 18: Shown here are the Western blots for phospho-ERK (ppERK) and phospho-MEK in cells 
treated with the indicated concentrations of Okadaic acid (OA). The bar plots show the quantitative 
variations, at 30 minutes after stimulation, obtained after normalization of each phospho-protein blot 
against that for the corresponding protein (i.e. ERK and MEK). 
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to PP2A activity likely derives from the concomitant decrease in the size of the pool of 

non-phosphorylated MKP3, as a result of decreasing PP2A levels. As discussed earlier, 

this would decrease the efficiency of MKP3-dependent dephosphorylation of ERK. In 

addition to this, however, a diminished pool of phospho-MKP3 would also imply a 

consequent reduction in the negative regulation of MKPI and, thereby, an increase in the 

MKP1-dependent inactivation of ERK. 

In similar experiments where MKP3 concentrations were varied, we observed an 

inverse relationship between the amplitude of MEK phosphorylation and MKP3 

concentrations. In contrast to this, ERK activation displayed a bell-shaped profile (Fig. 

16). The curvature of the bell was, however, more pronounced at higher ligand 

concentrations supporting that ERK activation remained responsive to the strength of 

the stimulus. The bimodal effect of MKP3 on ERK activation again probably reflects the 

consequence of concentration-dependent shifts in the distribution of MKP3 between its 

phosphorylated and non-phosphorylated states. At low concentrations, the non­

phosphorylated form of MKP3 would predominate due to the dominant action of PP2A. 

The increased specificity of this form for ERK can then explain the reduced levels of 

peak ERK phosphorylation. As MKP3 levels increase, however, the proportion of its 

phosphorylated form is also expected to increase. The consequences of this on ERK 

activation would then be defined by the balance of the effects of MKP3 on ERK, and 

that of phospho-MKP3 on MEK and MKP1 respectively. Thus, MKP3 negatively 

regulates ERK activity by ensuring its dephosphorylation. In contrast, phospho-MKP3 

preferentially targets MEK and MKP1 but with opposing consequences. While MEK 

inactivation also inhibits transmission of signal to ERK, the dephosphorylation and 

consequent destabilization of MKP1 diminishes the negative regulation of ERK by this 

enzyme. It is the quantitative shifts in balance between these distinct activities that would 

then shape the ERK response to variations in MKP3 concentrations. 

Consistent with expectations, increasing MKP1 levels led to a steep decline in 

peak levels of ERK phosphorylation whereas the effect on MEK was only marginal (Fig. 

16). Thus the cumulative results in Figure 16 emphasize that signal-dependent formation 

of the "two-square" motif enables tight regulation of the MAPK signaling by the 

associated phosphatases. Importantly, both quantitative and qualitative aspects of signal 

transmission between two consecutive nodes were selectively influenced, thereby, 
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providing a mechanism by which signal transmission at the MEK/ERK interface could 

be further calibrated. 

The phosphatase axis orients signal processing by the MAPK module 

Concentrations of phosphatases frequently vary from one cell type to another. Further, 

even within a given cell type, either differences in environmental conditions (histories of 

stimulus) and/ or developmental stages can lead to significant changes in intracellular 

phosphatase concentrations (Dickinson et al., 2002; Dickinson and Keyse, 2006; 

Echevarria et al., 2005). This is particularly true for MKP's in lymphocytes, where 

changes either in the activation or differentiation state of the cell can lead to marked 

alteration in the relative levels of this class of phosphatases (Dickinson and Keyse, 2006). 

Thus, given the high connectivity between the MAPK and the phosphatase cascade, it 

was reasonable to suspect that variations in the relative concentration or activity of the 

MAPK-associated phosphatases would have a significant impact on signal processing. To 

explore this we examined the consequences of simultaneously varying the concentration 

of any two of the three MAPK-associated phosphatases, while keeping the third at its 

constitutive level. The effects on the magnitude of peak phosphorylation of both MEK 

and ERK, at a fixed ligand dose, were monitored. All the three possible phosphatase 

combinations were tested, over a range of 10,000 different pairs - in a 100 x 100 matrix -

of their respective concentrations. The range of phosphatase concentrations employed 

here was identical to that described for Figure 16. 

Figure 19A depicts the results of such an exercise in which PP2A and MKP3 

concentrations were varied, while keeping MKP1 at a fixed level. As shown, MEK 

activity yields a bell-shaped curve in the direction of increasing PP2A levels, although this 

profile tends to progressively 'flatten' as MKP3 concentrations also increase. While the 

inhibitory effect of MKP3 on MEK activation was monotonic it was, nonetheless, 

buffered at high PP2A concentrations (Fig. 19A). In other words, the relative 

concentrations of PP2A and MKP3 have a significant role to play in defining the 

sensitivity of MEK phosphorylation, to ligand-induced stimulation of cells. This was also 

true in the case of ERK although, here, a bimodal activation profile was obtained in the 

directions of both increasing PP2A and MKP3 concentrations. This latter observation 

suggests the existence of compensatory effects between these two phosphatases, whereby 
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Figure 19: Inter-phosphatase crosstalk regulates 
signal transmission through the MAPK pathw ay. 
The effects of simultaneous variations tn the 
concentration SAM-associated phosphatases on peak 
phospho-MEK (ppMEK) and peak phospho-ERK 
(ppERK) levels within a 30-minute activation window 
are shown here . • -\ total of 100 different concentrations 
were employed for each phosphatase. These varied from 
10 times lower, to 10 times higher than the constituent 
concentration in A20 cells. The three combinations 
shown here are "tvfKP3-PP2A (A), MKP3-MKP1 (B) and 
PP2A-l\1KP1 (C). In each case the top panel shows peak 
phospho-MEK levels, while the lower panel shows peak 
phospho-ERK responses. The left and the right panels 
depict the 3-dimensional landscape, and the 
corresponding heat-map representation respectively. The 
corresponding profiles for the remaining components of 
the module that are also regulated by phosphorylation 
(i.e. Raf, l\1KP1, and MKP3) are shown in Figure 20. 
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Figure 20: This Figure represents a part of the experiment performed in Figure 19. Shown here are the effect of 
variation in concentrations of the indicated phosphatase pairs on peak phosphorylation levels of Raf (pRaf), 
MKPl (pMKPl), and MKP3(pMKP3) . It is notable that, as per our expectations from the model in Figure l.A, 
the amplitude of Raf phosphorylation is only weakly sensitive to changes in concentration of PP2A. According 
to our model, the effect of altered PP2A levels is buffered by the excess of available PPl.(In all cases arrows 
showing minimum to maximum cone. of the corresponding enzymes) 
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multiple combinations of their respective concentrations yield the same level of peak 

ERK activity. 

Figure 19B shows the results of a similar experiment where the concentrations of 

MKP3 and MKP1 were varied, under conditions where PP2A levels were kept constant. 

As may be expected, variations in MKP1 concentrations exerted little or no effect on 

peak MEK activity and the resulting landscape was heavily biased in favor of the 

concentration-dependent inhibitory effects of MKP3. In contrast, a bimodal activation 

curve was again observed for ERK along the MKP3 axis. The curvature of this proftle, 

however, was stringently controlled by MKP1, with ERK activation being completely 

inhibited even at moderately higher concentrations of this phosphatase (Fig. 19B). 

Similar to the results in Figure 19A, varying combinations of PP2A and MKP1 

also yielded a bimodal MEK proftle in the direction of PP2A, but with a signiftcant 

reduction in the phosphatase concentration window where at least detectable ME K 

activation was allowed (Fig. 19C). With the exception of attenuating the amplitude of 

MEK activation, varying MKP1 levels had little effect on the profile. Qualitatively similar 

effects were also noted for ERK where increasing MKP1 levels served to further 

exacerbate the inhibition of ERK activation that was observed as a function of increasing 

PP2A levels. However, here the inhibitory effect of MKP1 was far more pronounced 

(Fig. 19C). Thus, although the MAPK module functions as a proportional response 

system, these results emphasize that the net output is further specified by the relative 

concentrations of the individual MAPK-associated phosphatases that are present. In this 

connection, the assembly of these phosphatases into a regulatory axis is particularly 

relevant. As a result, variations in the concentration gradient along this axis exercise a 

combinatorial influence on signal processing by the MAPK pathway. 

Finally, yet another intriguing feature revealed from a cursory exammat10n of 

Figure 19 is the fact that the range of allowed concentration regimens of phosphatases 

was significantly more restricted for ERK than it was for MEK. This was generally true 

for all the three pairs of phosphatase combinations studied where the activation 

landscape for MEK was always larger in area than that obtained for ERK (Fig. 19) . These 

observations suggest that the control exerted by the co-aligned phosphatase axis is 

further accentuated during transmission of signal from MEK to ERK, the effector 

molecule of the MAPK pathway. 
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Experimental support for a regulatory phosphatase axis 

To confirm the above findings we examined- as a representative case- the consequences 

of experimentally modulating MKP3 levels, in conjunction with variations in the 

concentration of active PP2A. MKP3 levels in A20 cells were altered either through the 

use of specific siRNA, which reduces the amount of the protein by >70% (Kumar et al., 

2007), or by stably over-expressing it in these cells to achieve a net two-fold increase in 

its concentration (Materials and Methods, Annexure S2). To modulate the concentration 

of active PP2A, we again employed its inhibitor OA. Thus, cells expressing either 

constitutive, reduced (through siRNA), or increased (through over-expression) levels of 

MKP3 were individually treated with varying OA concentrations, and each of these 

groups were then stimulated with a range of ligand (i.e. anti-IgG) doses. Peak 

phosphorylation levels of ERK were determined in each case, and the results obtained 

are presented in Figure 21 and 22. 

We first compared these results with the predicted effects - on peak ERK 

phosphorylation - of varying levels of the individual phosphatases shown in Figure 16B. 

The panel 'a' in Figure 24A shows an expanded region of these predicted proftles 

obtained at the higher range of ligand doses, and over the estimated range of either 

MKP3 concentrations or PP2A activities employed in the present set of experiments 

(Figure 23). Panel 'b' of Figure 24A depicts the experimentally obtained results under 

these conditions. A high degree of correspondence between the simulated and the 

experimentally derived proflles is clearly evident here. This was equally true when peak 

ERK phosphorylation proftles in cells stimulated with sub-optimal doses of the ligand 

were compared (Fig. 24B). In addition to this, the data obtained in Figure 21 also served 

to substantiate the results of our in silico experiments describing the effects of 

simultaneously varying MKP3 and PP2A levels, on the magnitude of ERJ<: 

phosphorylation (Fig. 19A). A comparison of results from the two approaches is shown 

in Figure 24C and D. Here, panel 'a' shows the results of our in silico analysis performed 

by employing either a high (Fig. 24C), or a suboptimal (Fig. 24D) concentration of ligand 

for cell stimulation. The corresponding proflles derived from our experimental data 

(Figure 21) are shown in panels 'b' of these figures. Again, a good correlation between 

results from the two approaches is clearly evident here. 
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Figure 21:Ligand dose response of ERK phosphorylation to variations in levels of phosphatase activity. 
Shown here are the Western blot profiles for both the ERK protein, and its phosphorylated form in either 
normal.A20 cells, in cells treated with MKP3 specific siRNA, or in cells transfected with an MKP3 bearing 
plasmid (see Experimental Procedures). For each group and condition, cells were stimulated with the indicated 
concentration of ligand, and the level of phosphorylation monitored 10 min later. 
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Figure 22: Modulation of dose response by varying phosphatase concentrations: Western Blots in Figure 
21 were normalized and quantified using our toolbox (Gel-norm) as described earlier (Kumar et. al., 2007). The 
plot of these values are shown here. 
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Figure 23. Panel A of this figure gives the simulated profile of peak phospho-ERK (ppERK) levels under 
conditions where concentrations of either MKP3 or PP2A ranged from 10-fold lower, to 10-fold higher than 
their respective levels in A20 cells. ERK. phosphorylation responses at both high and low ligand doses are 
shown here. In each profile the boxed region indicates the concentration (for MKP3), or activity (for PP2A) 
range that was taken for the experiments described in Figure 24A and B. 
Panel B shows the results of a simulation experiment where peak phospho-ERK responses were monitored 
under conditions where the concentrations/ activities of both phosphatases were derived from the same range 
as described for Panel A. Here again, results obtained at high and low ligand doses are shown. The top part of 
this panel gives the resul ts obtained over all the combinations of PP2A and MKP3 concentrations tested, and 
the boxed region identifies the range represented by the experiments in Figure 24C and D . The lower part of 
this panel shows a magnification of this boxed region. 
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Figure 24: Experimental confirmation of the systems properties of the MAPK-associated regulatory 
module. 
Panels A and B depict ERK phosphorylation levels obtained as a function of changes either in l\fKP3 or PP2_-\ 
concentrations as described in the text. For the profiles obtained in silico (Predicted), the concentration ranges 
utilized is described in Figure 23, whereas the extent of variation in phosphatase concentration/ activity 
obtained experimentally (Experimental) is described in the text. The anti-IgG concentrations employed for the 

experiment in panel A were 10 (red line) and 25 (blue line) J.!g/ml; whereas for panel Bit was 0.05 (blue line) 
and 0.5 (red line) J.!g/ ml. 
Panels C and D describe the effects of combined variations in levels/ activities of both l\fKP3 and PP2A, on 
the magnitude of ERK phosphorylation. Here again a comparison between the in silico (Predicted), and the 
experimentally (Experimental) obtained results is shown. Although a similarity in profiles between the two 
groups is clearly evident, the absence of a higher degree of concordance was primarily due to the limited 
number of data points in the experimental group. As described in the text, MKP3 levels were varied in the 
Experimental sets either through specific depletion by siRNA (KD), or by over-expression (OE). 
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Thus by verifying the accuracy of the resulting predictions, the data in Figure 24 

support the fidelity of the model described in Figure 9A. In addition, these findings also 

firmly establish the role played by the co-associated phosphatase axis, in terms of further 

calibrating the stimulus-dependent responsiveness of the MAPK pathway. 
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The prototypic Mitogen Activated Protein Kinase (MAPK) pathway consists of a three­

tiered module composed of a MAPK (ERK-1/2), which is activated via phosphorylation 

by a MAPKK (MEK-1/2), which in turn is phosphorylated by a MAP_KKK (Raf). This 

pathway exists in all eukaryotic organisms and controls fundamental cellular processes 

such as proliferation, differentiation, migration, survival, and apoptosis (Chang and 

Karin, 2001; Cobb, 1999; Widmann et al., 1999). Importantly, the cascade arrangement 

of this module permits integration of a wide range of conserved cellular process, thereby 

enabling a precise control of the amplitude, kinetics, and duration of ERK-1/2 (ERK) 

activation. Several studies have documented that it is the ability to modulate these 

individual parameters of ERK activation that confers signaling specificity to this pathway, 

in terms of regulating the cellular response (Ebisuya et al., 2005; Friedman and Perrimon, 

2006; Kolch et al., 2005; Tan and Kim, 1999). 

The contrast between the apparent biochemical simplicity of this pathway, and 

the range of complex cellular functions that it controls, has prompted extensive 

investigations on the structure and regulation of this pathway. One approach towards 

this goal has been through computational modeling of this pathway. The earliest model 

by Huang and Ferrell demonstrated that ERK activation exhibited ultrasensitivity, and 

that this was primarily due to the distributive mechanism involved in the dual 

phosphorylation of ERK (Ferrell and Bhatt, 1997; Huang and Ferrell, 1996). Subsequent 

to these pioneering findings, an increasing number of models that have gained both in 

size and complexity have been developed over the years. The various aspects examined 

by these models include feedback cooperativity and inhibition, hysteresis, oscillations, 

Ras activation, scaffolding proteins, signal specificity and robustness among others (Das 

et al., 2009; Eungdamrong and Iyengar, 2007; Orton et al., 2005; Qiao et al., 2007). 

From the standpoint of input/ output relationships, these models have provided 

important new insights on feedback, sequestration, and scaffolding influences on the 

ERK response (Bluthgen et al., 2006; Kholodenko, 2000; Levchenko et al., 2000; 

Locasale et al., 2007). 

A less explored aspect of MAPK regulation, however, has been the role of 

phosphatases in regulating signal specificity (Raman et al., 2007). An earlier study by 

Bhalla and co-workers identified MAPK phosphatase (MKP) as the locus of flexibility 
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that regulated between monostable and bistable regimes of operation (Bhalla et al., 2002). 

More recendy, the protein tyrosine phosphates (PTP) SHP-1 was shown to be critical for 

defining the ligand discrimination threshold of the ERK response in T lymphocytes 

(Altan-Bonnet and Germain, 2005). Nonetheless, in view of the multiple phosphatases 

known to be associated with components of the MAPK pathway, a more integrated view 

of how such phosphatases regulate input/ output relationships is presendy lacking. 

Our earlier study in murine B lymphoma A20 cells had demonstrated that the B 

cell antigen receptor (BCR)-dependent phosphorylation profiles of all the three 

constituents of the MAPK module (i.e. Raf. MEK-1/2 and ERK-1/2) were profoundly 

influenced when cells were depleted of a range of cellular phosphatases by siRNA 

(Kumar et al., 2008). Interestingly, depending upon the phosphatase depleted, these 

effects were either positive or negative suggesting diverse modes of regulation. 

Therefore, in the present study, we integrated this experimental data with existing 

literature to generate a mathematical model for ERK phosphorylation. The resulting 

model revealed an additional level of regulation of the MAPK pathway, which was 

enforced through the parallel alignment of a cascade of phosphatases. Importandy, the 

crosstalk between the MAPK and the phosphatases cascade led to the assembly of a 

novel regulatory motif that enabled independent calibration of signal at each successive 

node. As a result signal transmission through the MAPK pathway was non-linear, leading 

to a combinatorial expansion of the landscape of potential output responses. 

Significantly, in addition to parameters such as signal strength and duration, the bounds 

of this landscape also incorporated variations in the relative levels (or, activities) of the 

associated phosphatases. Thus, our studies identify a novel processing principle as a 

result of which the signal output represents an integrated expression of the properties of 

the stimulus, and the phenotypic status of the cell. 

The remarkable versatility of the MAPK module is evident from the fact that 

ERK activation can display a wide range of activity profiles depending on the interfaces 

that regulate signal transmission through this module. Thus depending on the cell type, 

ERK activation can be ultrasensitive, converting graded inputs into a digital output 

response (Orton et al., 2005).Embedding this pathway within a positive feedback loop 

can lead to a dramatic amplification of signal, and also endow it with both bistability and 

hysteresis (Bhalla et al., 2002). In contrast, a negative feedback loop combined with 

intrinsic ultrasensitivity brings about sustained oscillations in ERK phosphorylation 
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(Kholodenko, 2000; Qiao et al., 2007). The sensitivity of the MAPK pathway to the 

cellular milieu is further underscored by the fact that, under certain conditions, it can also 

function as a monostable system yielding a proportional output response at the level of 

ERK phosphorylation (Birtwistle et al., 2007; Santos et al., 2007). At least some of the 

determinants of the nature of input/ output relationships identified so far are the 

concentration of MKPs (Bhalla et al., 2002) the concentration of the scaffolding proteins 

involved (Levchenko et al., 2000), and the extent of sequestration of ERK in a complex 

with its kinase, MEK (Bluthgen et al., 2006). In addition to defining the threshold 

between a switch-like versus a proportional response, these parameters also play a critical 

role in modulating the amplitude and kinetics of the output signal. 

In the present case, the proportional nature of the input/ output relationship -

despite incorporating a distributive mechanism for the dual phosphorylation of ERK -

appears to be combinatorially defined through the relative concentrations/activities of 

the MAPK pathway-associated phosphatases. Thus, in si/ico exercises involving select 

modulations in phosphatase concentrations yielded an enhanced slope for ERK 

activation under conditions where either PP1 or MKP3 levels were significantly increased 

(Figure 25). Alterations in levels of the MAPK pathway components had no such effect. 

Consistent with this is our experimental demonstration that siRNA mediated silencing of 

these individual phosphatases had a significant effect on the amplitude, the stability, the 

kinetics, and the baseline levels of ERK phosphorylation. A role for filtering spurious 

noise by MAPK-associated phosphatases has also been recently discussed (Locasale et al., 

2007). 

Our finding that phosphatase-dependent regulation of the MAPK pathway 

involves organization of the phosphatases into a co-aligned cascade was especially 

interesting. Traditionally, negative regulation of intracellular signal transduction is 

conceived to occur as a discrete set of localized interactions between a phosphatase and 

its target molecule, and a cascade organization for phosphatases has not been considered 

so far (Dickinson and Keyse, 2006; Keyse, 2000). Importantly, this co-alignment resulted 

in the formation of a novel regulatory module that was composed of a contiguous set of 

two square units with the MAPK constituents and the phosphatases PP2A, MKP3, and 

MKP1 constituting the vertices of these units. We have termed this novel signaling motif, 

induced upon BCR-dependent stimulation of cells, as the 'Signal Activated Motif (SAM). 
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Figure 25. Panel A of this figure shows the effect of varying phosphatase 
concentrations on the ligand dose sensitivity of ERK phosphorylation. 
Here ERK phosphorylation was measured at 30 minutes of stimulation. 
Both the ligand dose (Cone. in ~ employed and the phosphatase 
concentrations tested, are indicated. A marked effect of phosphatase 
concentration on the dose response profile is clearly evident in all the 
cases. However only an increase in either PP1 or MKP3 levels led to sharp 
increase in the slope for ERK activation. Contrary to the findings for 
another cell line (Bhalla et. al., 2002), modulation of MKP1 concentrations 
did not yield an ultrasensitive response. This is probably because of the 
absence of the previously described feedback loop since cPLA2 is not 
expressed in mature lymphocytes. Finally, no trend towards ultrasensitivity 
could be detected upon varying the concentrations of the 1\iAPK pathway 
constituents Raf, :MEK, ERK. 
Panel B shows the dose response profile for ERK phosphorylation 
obtained following a 3- fold increase in the concentration of either PP1 
(blue line) or MKP3 (Green line) under conditions where the MKP1 levels 
was reduced by tenfold relative to the experimentally determined values in 
A20 cells. Thus the shape of the ERK output response to BCR stimulation 
clearly reflects a combinatorial outcome of the relative concentrations of 
the individual1\1APK pathway-associated phosphatases 



Discussion 

Assembly of the SAM involved two distinct input signals that, in tum, separately 

activated the functionally distinct components of the module. The first of these involved 

the combined action of PKC and RasGTP to activate Raf, thereby initiating signal flow 

through the MAPK cascade. The second signal, on the other hand, involved the CK2a. -

dependent phosphorylation of MKP3. This event was critical to the regulatory function 

of the phosphatase axis. Thus, while BCR activation activated signal flow through the 

MAPK pathway on the one hand, it also simultaneously embedded this pathway within a 

regulatory module so that the net signal output could be carefully regulated. 

Central to the functioning of the SAM was the distribution of MKP3 between its 

phosphorylated and non-phosphorylated states where the balance between these two 

forms was defined by the reciprocal actions of the constitutively active PP2A, and the 

signal- activated CK2a.. This segregation of input signals to activate both the positive and 

negative regulatory components of the SAM motif provided the mechanism by which 

filtration and appropriate calibration of the signal output could be achieved. Key to this 

was the differential substrate bias displayed by phosphorylated and non-phosphorylated 

MKP3, with the relative proportion of these two subsets being governed by the extent to 

which the input signal (i.e. activated CK2a.) could buffer the action of PP2A. The 

conditional shifts in the equilibrium between these two pools played a critical role in 

defining the signal output in terms of the ERK activation profile. In other words, this 

ability to modulate substrate preferences enabled MKP3 to function as an additional 

response element for signal discrimination whereby both signal amplitude and sensitivity 

to ligand concentration could be further tuned. 

Our subsequent analysis of how output responses were shaped by alterations in 

phosphatase concentrations also provided interesting new insights into the properties of 

the SAM. While MKP3 levels were important in defining the amplitude of ERK 

activation, it was the MKP1 concentrations that strictly deftned the window of ERK 

activation. That output regulation involved the coordinated action of associated 

phosphatases was also emphasized in our studies examining the effect of simultaneously 

varying concentration of two phosphatases. For example, the available levels of the 

remaining two phosphatases further modulated the effects of varying MKP3 

concentrations. This was equally true for PP2A and MKP1, thereby reaffirming the 

signal-dependent assembly of these phosphatases into a functional axis that intimately 

regulates signal processing. 
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The net outcome of the coordinated action of phosphatases was that information 

flow through the MAPK pathway did not occur in a linear fashion. Rather, signal was 

differentially processed at each intermediate in the pathway. Consequently, in addition to 

strength of the stimulus, transmission of signal between successive nodes was also 

rendered sensitive to the relative concentrations of the associated phosphatases. Thus, 

for example, conditions yielding a potent activation of MEK did not necessarily translate 

into a similar profile for ERK. Instead, signal transmission from MEK to ERK was 

additionally regulated by the activity and/ or concentration of the two remammg 

phosphatase components of the SAM. The resultant combinatorial effects then ranged 

from a marked amplification, to a complete suppression, of ERK activation. Indeed even 

the limited investigations performed here reveal how the intricate coupling of a kinase 

with a phosphatase axis can provide for flexible regimes of regulation where the activity 

and/ or concentrations of the participating phosphatases make key contributions to 

calibration of the signal output. A direct consequence of this was an expanded landscape 

of potential ERK responses where a given output characterized not only the strength of 

activating stimulus, but also the phenotypic state of the cell - at least when characterized 

in terms of the MAPK-associated phosphatase milieu. 

Differences in the tissue-specific origin of cells are also often reflected at the level 

of differences in concentration of the individual MKPs. Similarly, variable MKP levels 

frequently characterize the individual stages of lineage commitment in lymphocytes 

(Bettini and Kersh, 2007). Further, even within a given cell type, activation of ERK leads 

to the upregulation of both MKP1 and MKP3 (Dickinson and Keyse, 2006), with the 

consequent de-sensitization of ERK to any further stimulation of the cell. Thus, the 

composition of at least MKPs within a cell may well provide a phenotypic description of 

its activation and/ or differentiation status, which then is also incorporated when defining 

the ERK output response. 

Thus, in summary, our present delineation of an emergent motif that endows the 

MAPK pathway with flexible regimes for modulating signal output provides additional 

insights into mechanisms that facilitate information processing by the signaling 

machinery. At one level, these findings reveal a novel organizational principle wherein a 

kinase cascade is intricately coupled to a regulatory cascade of phosphatases. The 

resulting structural motif that links each kinase intermediate to both the iso-stage, and 

the upstream phosphatase ensures that signal transmission is subjected to tight scrutiny at 
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every step of the pathway. This allows the 'strength' of the links between the phosphates 

axis and the kinase cascade to also function as determinants of signal processing. As a 

result, even a simple proportional response system becomes endowed with the ability to 

generate an output that, in addition to signal duration and strength, is also sensitized to 

variations in phosphatase concentrations and activities. As noted earlier, such variation 

could potentially encapsulate differences in the phenotypic status of cells either at the 

level of cell type, differentiation state, or, the history of prior stimulations. It, however, 

remains to be seen whether such a regulatory module is also associated with the other 

pathways of the signaling network. 

41 



Summary 



Summary 

The fundamental rules governing the context-specified transmission and processing of 

intracellular signals have continued to remain elusive. One approach to addressing this 

issue has been to decipher the organizational motifs that are present in the different 

levels of the structural and functional hierarchy within the signaling network. 

In this thesis we combined our own experimental data with prior literature to 

generate a mathematical model for the MAP kinase pathway (MAPK). Importandy, our 

model focused on elaborating the role of cellular phosphatases in regulating the systems 

behavior of this module. Our completed network identified a unique structural motif 

with several novel functional properties. Significant here was our demonstration that 

phosphatases also assemble into regulatory cascades, much like their kinase counterparts 

in the signaling machinery. This highlights a novel dimension to the topology of the 

signaling network. As discussed below, this assembly of a functional phosphatase axis 

provides an additional level of resolution by which both the nature of the stimulus, as 

well as the cellular context in which the signal was received, are defined by the signal 

output. 

The alignment of a phosphatase cascade in parallel with the MAPK pathway led 

to extensive crosstalk between these two components. As a result, each intermediate in 

the MAPK pathway was placed under the regulatory control of both the co-aligned, and 

its immediately upstream, phosphatase. It was these regulatory links between the twin 

cascades that enabled the recruitment of novel modes through which signal transmission 

by the MAPK pathway could be carefully scrutinized. The regulatory interactions 

between the two cascades resulted in the generation of a novel signaling motif that was 

composed of a contiguous set of two square units (Fig 19 B). The first of these consisted 

of Raf, MEK, PP2A, and MKP3 as the vertices, whereas the second unit involved MEK, 

ERK, MKP3, and MKP1. Intriguingly, the linkage relationships between the 

corresponding vertices were also replicated. The existence of such a network motif has 

not been reported for any biological system to date. However, in view of its potential 

significance, it is likely that such a motif also regulates other pathways within the 

signaling network. We have termed this novel structural motif, which is formed upon 

stimulation of cells through the receptor, as the 'Signal Activated Motif' (SAM). 



Sun1mary 

Assembly of the SAM involved two distinct input signals that, in turn, separately 

activated the functionally distinct components of the module. The flrst of these signals 

involved the cooperative action of PKC and RasGTP to activate Raf, thereby initiating 

signal flow through the MAPK cascade. The second signal, on the other hand, involved 

the CK2a -dependent phosphorylation of MKP3, which then conferred the dynamic 

properties to the phosphatase cascade, to enable it to modulate functioning of the 

MAPK pathway. Thus, while receptor activation initiated signal flow through the MAPK 

pathway on the one hand, it also embedded this pathway within a regulatory module that 

enabled appropriate calibration of the eventual signal output. 

The regulatory function of the SAM was activated through the CK2a-dependent 

phosphorylation of MKP3, resulting in the segregation of MKP3 into two separate pools 

represented by its phosphorylated and non-phosphorylated forms. Importandy, the 

equilibrium established between these two pools was modulated in a dynamic manner by 

the strength and duration of the activating stimulus. Central to the functioning of the 

SAM was our demonstration that phosphorylated and non-phosphorylated MKP3 

exhibit distinct substrate specificities. While phosphor-MKP3 displayed a preference for 

MEK (i.e. MAP2K) and the downstream phosphatase MKP1, MKP3 selectively targeted 

the MAPK, ERK. In other words, the SAM was associated with structural plasticity 

wherein the topological features were dynamically deflned by the strength and duration 

of the activating stimulus. Integrated to this was the fact that the MAPK pathway was 

also sensitized to the concentration and/ or activity gradient along the co-aligned 

phosphatase axis. As a result, transmission of signal through each intermediate in the 

MAPK pathway was tighdy calibrated through the combined effects of the strength and 

duration of stimulus, as well as the relative concentrations and/ or activities of the 

associated phosphatase. This resulted in a non-linear transmission of signal through the 

intermediates of the MAPK pathway, thereby providing for an expanded landscape of 

potential output responses that reflected not only the characteristics of the activating 

signal, but also the phosphatase milieu in which this pathway was embedded. Variations 

in phosphatase concentrations/ activities often identify alterations in the phenotypic 

status of the cell. This could be either at the level of cell type, its differentiation state, or, 

even in terms of variations in the history of past stimuli. In other words, the novel 

regulatory motif described here enabled the MAPK pathway to process input signals in a 

manner that specified not only the strength and duration of stimulus, but also the 

phenotypic status of the cell. 
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JNillnJary 

Although this study focused on the regulation of signaling by the MAPK pathway 

it is likely that the findings have broader implications with respect to functioning of the 

signaling machinery. At one level, our discovery that phosphatases also assemble into 

regulatory cascades provides a new perspective on the molecular mechanisms that 

contribute towards signal processing. In addition, description of the interaction between 

phosphates and kinase cascades - to ensure that signal calibration integrates the 

properties of the stimulus with the phenotypic context of the cell - represents the 

delineation of a novel processing principle. 
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S 1. !M.otfe{ (})etai/S 

1. Abbreviations: 

Sr. 
No. Abbreviations InitiaiAmount Names 

L 0.25 ligand 

2 BCR 0.05 B Cell Receptor 
ligand bound to receptor pair, Crosslinkin of BCR and subsequent 

3 L:BCR 0 activation ofiT AM 

4 L:BCRp 0 Mono Phosphorylated Activated BCR 

5 Lyn 0.24 Src Kinase Lyn 

6 L:BCRp:Lyn 0 Lyn Bound ot the Monophosphorylated Receptor 

7 Lynp 0 Activated Lyn 

8 SHP1 0 Membrane localized SHP1 

9 Lynp:SHP1 0 SHP1 hound to Lyn 

10 li 0 Inactivated ligand 

11 BCRi 0 Inactivated or Internalized BCR 

12 CD22 0.18 Membrane Anchored CD22 

13 CD22p 0 CD22 activated 

14 SHP1c 0.014 Cytosolic SHP1 

15 CD22p:SHP1c 0 Cytosolic SHP1 bound to phosphorylated CD22 

16 Syk 0.2 SYKkinase 

17 Lynp:Syk 0 Activated Lyn bound to Syk 

18 Sykp 0 Activated SYK 

19 Sykp:SHP1 0 Activated Syk bound to SHP1 
SYK kinase hound to Mono phosphorylated IT AM of ligand 

20 L:BCRp:Sy1:p 0 activated BCR 

21 L:BCRpp 0 Completely activated BCR, IT AM's Phosphorylated at multiple sites 

22 L:BCRpp:Lyn 0 Completely activated BCR bound to the Lyn 

23 BCRpro 0.05 BCR precursor 
Ligand bound to receptor as non crosslinked form; Single BCR 

24 L:BCR1 0 bound to single molecule of antigen 

25 Btk 0 Bruton's Tyrosine Kinase 

26 Btk:Lynp 0 Bruton's Tyrosine Kinase (Btk)bound to activated Lyn 

27 Btkp 0 Activated Btk 

28 Btk:Syk-p 0 Btk bound to activated Syk 

29 BtkPase 0.04 Btk phosphatase 

30 Btkp:BtkPase 0 Btk hound ot Btk phosphatase 

31 CD19 0.12 Membrane bound CD19 

32 Lynp:CD19 0 Activated Lynp bound to CD19 

33 CD19p 0 Activated CD19 

34 p85PI3K 0.134 p85 subunit of Phosphoinositol-3 kinase 

35 CD19p:p85PI3K 0 CD19p bound to p85subunit ofPI3K 

36 p110PI3K 0.134 p110 subunit ofPhosphoinositol-3 kinase 

37 PBK 0 Complete holoenzyme PBK 

38 CD19p:p85PI3K:p 110PI3K 0 CD19p hound to p85subunit and p110subunit ofPI3K 

39 BCAP 0.2 Membrane anchored B cell adopter protein for PBK signaling 

40 Sykp:BCAP 0 Sykp bound to BCAP 

41 BCAPp 0 Phosphorylated BCAP 

42 BCAPp:p85PI3K 0 Phosphorylated BCAP bound to p85 subunit of PI3K 

43 BCAPp:p85PI3K:p110PI3K 0 Phosphorylated BCAP bound to pBS and p 110 subunit of PI3K 

44 Pase1 0.02 Phosphatase for BCAP 

45 BCAPp:Pase1 0 Phosphatase for BCAP bound to BCAPp 

46 PIP2 10 PIP2 



47 PIP3 0 PIP3 

48 Aktc 0.0058 Cytosolic Akt 

49 Aktm 0 Membrane localized Akt 

50 PIP3:Aktc 0 PIP3 bound to Akt 

51 PDK 0.18 PDKkinase 

52 PIP3:PDK 0 PIP3 bound to PDK 

53 PDKa 0 Activated PDK 

54 PDKa:Aktm 0 PDK bound to membrane localized Akt 

55 Aktp 0 Akt phosphorylated 

56 PP2A 0.0071 Protein Phosphatase 2 A 

57 Aktp:PP2A 0 Akt phosphorylated bound to PP2A 

58 BLNK 0.34 B cell Linker Protein BLNK 

59 Sykp:BLNK 0 Sykp bound to BLNK 

60 BLNKp 0 BLNK phosphorylated 

61 BLNKp:Btkp 0 BLNKp bound to Btkp 

62 Grb2 Adapter Protein Grb2 

63 BLNKp:Grb2 0 BLNKp bound to Grb2 

64 Pase2 O.Gl Phosphatase 2 

65 BLNKp:Pase2 0 Phosphatase 2 bound to BLNK 

66 SoS O.Gl Son of Sevenless exchanger protein for GOP GTP excha 

67 BLNKp:Grb2:SoS 0 Complete complex for lymphocyte RasGTP exchanger 

68 PLCg 0.8 Phospholipase C gamrna2 

69 BLNKp:Btkp:PLCg 0 BLNKp bound to Btkp and PLCg 

70 PLCgp 0 Phosphorylated PLCg 

71 IP3 0 IP3 

72 DAG 0 Diacyl glycerol 

73 Pase3 0.02 Phosphatase 3 

74 PLCgp:Pase3 0 PLCgp bound to Phosphatase3 

75 ip3deg 0 IP3 degradation product 

76 dagdeg 0 DAG degradation product 

77 PKCcyt 0.7884 Cytosolic Protein kinase C 

78 PKCcyt:DAG 0 PKC bound to DAG 

79 PKCm 0 Membrane localized PKC 

80 RasGDP 0.0454 Ras bound with GOP 

81 RasGTP 0 Ras bound with GTP 

82 GEF O.Gl Guanine exchange factor 

83 GEFp 0 GEF phosphorylated 

84 GEFp:RasGDP 0 GEFp bound to RasGDP 

85 GEF:PKCm 0 GEF bound to PKC 

86 GAP 0.002 GTPase activating Protein 

87 PKCm:GAP 0 PKCm bound to the GAP 

88 GAPp 0 GAP phosphorylated 

89 PKCm:Sykp 0 Membrane localized PKC bound to Sykp 

90 Sykpp 0 Inhibited Double phosphorylated Syk 

91 GAP:RasGTP 0 GAP bound to RasGTP 

92 Raf 0.0885 Raf 

93 Raf:RasGTP 0 Raf bound to RasGTP 

94 Raf:RasGTP:PKCm 0 RafRasGTP bound to PKC 

95 Rafp 0 Raf phosphorylated 

96 Rafser259 0 Raf phosphorylated at inhibitory serine259 

97 Raf:Aktp 0 Raf bound to Akt 

98 PP1 0.4748 Protein Phosphatase 1 

99 Rafser259:PP1 0 RafSer259 bound to PPl 

100 Rafp:Aktp 0 Rafp bound to Aktp 



101 Rafpp 0 Raf double phosphorylated 

102 Rafpp:PP1 0 Rafpp bound to PP1 

103 Rafp:PP2A 0 Rafp bound to PP2A 

104 Btkcyt 0.126 Btk cytoplasmic 

105 Sykp:PLCg 0 Sykp bound to PLCg 

106 Rafp:PP1 0 Rafp bound to PP1 

107 MEK 0.0886 MEKkinase 

108 Rafp:MEK 0 Rafp bound to MEK 

109 MEKp 0 MEK phosphorylated 

110 Rafp:MEKp 0 Rafp bound to MEKp 

111 MEKpp 0 MEK double phosphorylated and completely activated form 

112 CK2alpha 0.12 Casein kinase 2 Alpha 

113 PKCm:CK2alpha 0 Membrane localized PKC bound to Casein kinase 2 alpha 

114 CK2alphap 0 CK2alpha phosphorylated 

115 MKP3 0.0015 DUSP6 of MAPkinase phosphatase3 

116 CK2alphap:MKP3 0 CK2alpha phoaphorylated bound to MKP3 

117 MKP3p 0 phosphorylated MKP3 

118 MKP3p:PP2A 0 MKP3p bound to PP2A 

119 MEKpp:PP2A 0 MEKpp bound to PP2A 

120 MEKp:PP2A 0 MEKp bound to PP2A 

121 MEKpp:MKP3p 0 MEKpp bound to l\fKP3p 

122 MEKp:MKP3p 0 MEKpbound to MKP3p 

123 ERK 0.5674 Extracellular signal regulated Kinase 

124 ERK:MEKpp 0 ERK bound to MEKpp 

125 ERKp 0 ERK phsophorylated 

126 ERKp:MEKpp 0 ERKp bound to MEKpp 

127 ERKpp 0 ERK double phosphorylated and completely activated form 

128 mkp1 0.00005 MKP1mRNA 

129 MKP1 0.0002 MAPkinase phophatase 1 

130 mkp3 0.000375 MKP3mRNA 

131 mkp1ubi 0 MKP1 degradation product 

132 mkp3ubi 0 MKP3 degradation product 

133 ERKpp:MKP1 0 ERKpp bound to MKP1 

134 MKP1p 0 MKP1 phosphorylated 

135 MKP1p:MKP3p 0 MKP1 p bound to MKP3p 

136 MKP2 0.002 MAPkinase phophatase 2 

137 ERKpp:MKP2 0 ERKpp bound to MKP2 

138 ERKp:MKP2 0 ERKp bound to MKP2 

139 ERKpp:MKP3 0 ERKpp Bound to MKP3 

140 ERKp:MKP3 0 ERKp bound to MKP3 

141 TrCmplx 1 Transcriptional complex 

142 Rafp:ERKpp 0 Rafp bound to ERKpp 

143 Rafser259:PP2A 0 Rafser259 bound to PP2A 

144 Rafpp:PP2A 0 Rafpp bound to PP2A 

145 Rafp:RasGTP 0 RafpRasGTP complex 

146 L:BCRp:SHP1 0 SHP1 bound to IT AM at the first phosphorylation site 
SHP1 bound to IT AM at other site which are later phosphorylated by 

147 L:BCRpp:SHP1 0 Syk 

148 ERKp:MKP1p 0 ERKpp bound to MKP1p 

149 ERKpp:MKP1p 0 ERKp bound to MKP1p 

150 MKP1:ERKpp 0 MKP1 bound to ERKpp 

151 MKP1:ERKp 0 MKP1 bound to ERKp 

152 TF 0.05 Trancription Factor 

153 ERKpp:TF 0 ERKpp bound to TF 

154 TFa 0 Transcription Factor activated 



155 

156 

157 

158 

NT 

1Fa:NT 

MKP3x 

MKP3:ERKpp 

All concentrations are in micromoles. 

1 

0 

0 

0 

Nucleotide representing DNA 

1Fa bound to the DNA(Representing active transcription) 

ERK mediated MKP3' s phophorylated form prone to ubiquitination 

ERKpp bound to MKP3 where ERK is acting as an enzyme 

Initial amount in bold represents buffered/ constant amount throughout the simulation 

Lignad Unit conversion=> 25 micro gram/ml-= 0.05 micro moles 
Concentrations ofRaf, MEK, ERK, MKP1, PP2A, PP1, Akt,MKP2, RasGDP(total) are experimentally estimated. Rest of the 
concentrations are Estimated to best fit. 
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2. Reaction scheme and Reaction Rates: 

Reaction 

L + HCR <-> [I.:BCRI[ 

[L:HCR[-> p.:BCRp[ 

p.:BCRp[ + Lyn < > [L:BCRp:Lyn[ 

p.:BCRp:l.m[ -> [L:BCRp[ + l.1np 

l.ynp +~Ill'! < > [Lmp:~HI'II 

[I.rnp:~HP!i -> Lm +~HI'! 

l.1np + CD22 > I.mp -'- CD22p 

CD22p + ~HI'Ic < > [CD22p:~lll'lr[ 

[CD22p:~lll'lc[ > CD22p : ~Ill'! 

~Ill'! ·>~I! Pic 

CD22p > CD22 

Lynp I ~~-k <-> [l.ynp:~1k[ 

[l.m1>:~1 k[ > I xnp + ~~·kp 

~ykp +~HI'! < > [:>,·kp:~lll'li 

[~1kp::>HPI[ -> ~yk +~HI' I 

p.:HC:Rp[ + ~ykp < > p.:BCRp:~ykp[ 

p.BCRp:~,·kp[ -> p.:BCRpp[ + ~1kp 

p.:BCRpp[ + I.m <-> [L:BC:Rpp:l.yn[ 

lf.:BC:Rpp:lxn[-> II :BCRpp[ I l.mp 

HCRpro > HCR 

HCR -> IKR• 

zp.:BCRI[ <->[I :HCR[ 

[L:BCR[ -> BCR• ~ 1.> 

Hrk + Lmp <-> [Btk:Lynp[ 

[Htk:Lynp[ > Btkp + l.ynp 

Htk + ~~ kp <. > [Btk:~,·kp[ 

[Btk:~ykp[ -> Btkp + ~"kp 

Btkp + Btkl'as<· <-> [Htkp:Btkl'asr[ 

[Btkp:Htkl'asc[ > Btk + Btkl'ase 

Lynp + C:Dl<J <-> [Lynp:CDI'J[ 

[l.1np:CDI'J[ -> l.mp + CDI'Jp 

CDI'Jp + pHSI'I:\J-..: <-> [CDI'Jp:pXSI'I'h[ 
[CDI'Jp:pHSI'L\J-..:[ I pll!ll'I.>K <-> 
[CD! 'Jp:pKSI'l.>K:p ll!li'LIK[ 

[CDI<Jp:pKSI'l'>h:pl!OI'l'>K[ > CDI'Jp + I'L\K 

~ykp + BC.\1' < > ~~~kp:BC.\1'[ 

[:'l·kp:BC\1'[ -> :'ykp I BC.\I'p 

BC.\l'p I pKS!'I.>K <-> [BC\l'p:pKSI't:\K[ 
[BC.\l'p:pHSl'I:\K[ + pll!li'I:\K <-> 
[BC.\Pp:pHSI'I'>K:pllO!'l'>K[ 

[BC.\I'p:pHSI'l'>K:pll!li'I\J-..:[ > BC\I'p + l'I'K 

BC.\Pp + I'Jsel <-> [HC.\l'p:I'.1Scl[ 

[BC.\l'p:J>asel[ -> BC\1' + l'.lSl·l 

CDI'Jp -> CDI'J 

I'Ll"- . > pHSI'l'>K I p ll+il'l.>h 

!'1!'2 + l'l.'>K ->I'll'.'>+ I'LIK 

I'll'.'> > !'11'2 

I'll'.'>+ .\ktc <-> [1'1!'>:.\ktr[ 

[l'll''\:.\krc[ <-> .\ktm 

I'll'.'>-+ I'DK < > [PIP1:PDK[ 

[PII''>:I'DK[ -> PDJ-.:a 

l'Dha -> I'DK + I'll'.\ 

Reaction Rate 

kun_I'L'BCR kuf(_l'[L:BCRI[ 

kf_Z'[L:BCR[/(0.25 ~ [LBCRIJ 

kon_ .\'[I.:BCRp!' Lyn koff.Y II :BCRp:l.m[ 

kcat_4 '[L:BCRp:Lm[ 

kon __ S'Ixnp•:>HI'l- koft S'[l.,np::'HI'l[ 

kcat_(, •p.mp:~l I I'll 

1m_ 7'l.ynp•CD22/(km 7+CD22) 

kf_x•<D22p':'Hl'lc kb __ W[CD22p::'HI'tc[ 

kcat. 'J'[CD22p::'HI'lc[ 

kf_t!I':'I!Pt 

kf_tt·CJ)22p 

k(_12'Lynp':'yk- kb __ l2'[1.ynp:~yk[ 

kcJ>_I '>'[Lynp::>,·k[ 

kf t4·::;,kp·:>HI'l kb __ l4'[~ykp:::;Hl'll 

kcJt_IS'[~ykp:~ll PI[ 

kt tr,•[I.:BC:Rp['~ykp. kb_!l,'[l.:BCRp::>,·kp[ 

kc.u_l7'[l.:BC:Rp:::;,kp[ 

kf_IK' [L:I~CRpp['Lyn kb_IH'[l.:IKRpp:Ly n[ 

kc.u l'J'[L:BCRpp:Lyn[ 

kf_2ti'BCRpro 

kf_2l'BCR 

kon_22'[1.:1KR 11·'2- koff_22'[L:BCR[ 

kt,2'\•[L:BCRJ 

kf 24 'Btk 'l.y np · kb_2·t'[H>k:l.l np[ 

kcu_25'[Btk:LI np[ 

kf 2r.·Btk • Sykp - kb __ Zr>[Brk:~' kp[ 

kcat. 27 'I Hrk:~1 kpl 

kf_2X'Btkp'Btkl'asr. kb_2W[Btkp:Btkl' . .se[ 

kcat. 2'l'JBrkp:Btkl'aseJ 

kf_'>ll' Ly np•< Dl 'J kb_.'>w[l.ynp:CD I 'J[ 

kcJt_'>l 'II ynp:CDI'JI 

ki_'>2'C01 'Jp·pHSI'I.\h kh_.'>2 '[<:Dl 'Jp:pHSPI:lK[ 

kt' __ \'\'[CDI'Jp:pHSI'L\K['pll+il'I'\K- kb_ "'JCDI'Jp:pHSI'I\J-..::pliiii'L\f.:[ 

kc.u __ H'[CDI'Jp:pHSI'I \kplllll'l.'>f.:[ 

kf '>S'~1kp'BC \I'- kb_ '>r,·[~,·kp:BC\1'[ 

kcu V>[:'ykp:BC.\1'[ 

kf_'>7· B<.\l'p'pHSI'Lih- kb __ '>7[1K.\I'p:pHSI'UK[ 

kf_:lH'JBC\I'p:pHSI'l'>K[·ptllli'BK- kb_'>H'[BC.\I'p:pH~I'l'>h:plllll'l.)h[ 

ken_ \') '[B< :. \l'p:pH51'111--::p II 01'111--: I 

kf 4WBC.\I'p'l'ascl · kb_411'[1lC.\I'p·.l'a<d I 

kcat __ 41' [BC.\I'p:l'ase I[ 

kt __ -J2•CDI'Jp 

kf_ 4'>'l'l'>h 

1·m_ 4-l • 1'11'2' l'l'>h/(km __ +t + 1'11'2) 

m1 45'1'11''>/(km_ 45 '·I'll''>) 

kf __ 4r,·PIJ'>•.\krc- kb_-16'[1'11'.'> .\ktc[ 

kt __ 47'[l'll':l:.\ktc[ kb ·17•.\krm 

kf 4H' l'li'\'I'Df.: .. kb .. 41-l'[PII''>:I'DK[ 

kf_·1'J'[I'II':l:I'Dh[ 

kf_SII'I'Dh.t 



51 PDKa + Aktm <-> [PDKa:Aktm) 

52 [PDKa:Aktm) -> PDKa + Aktp 

53 Aktp + PP2A <-> [Aktp:PP2A] 

54 [Aktp:PP2A) -> Aktm + PP2A 

55 Sykp + BLNK <-> [Sykp:BLNK] 

56 (Sykp:BLNK] -> Syk-p + BLNKp 

57 BLNKp + Btkp <-> [BLNKp:Btkp] 

58 BLNKp + Grb2 <-> (BLNKp:Grb2) 

59 BLNKp + Pase2 <-> [BLNKp:Pase2) 

60 (BLNKp:Pase2) -> BLNK + Pase2 

61 (BLNKp:Grb2] + SoS <-> (BLNKp:Grb2:SoS] 

62 (BLNKp:Btkp) + PLCg <-> (BLNKp:Btkp:PLCg] 

63 (BLNKp:Btkp:PLCg] -> (BLNKp:Btkp) + PLCgp 

64 PLCgp + Pase3 <-> [PLCgp:Pase3] 

65 [PLCgp:Pase3) -> PLCg + Pase3 

66 IP3 -> ip3deg 

67 DAG -> dagdeg 

68 PLCgp + PIP2 -> PLCgp + IP3 + DAG 

69 PKCcyt + DAG <-> [PKCcyt:DAG) 

70 [PKCcyt:DAG] <-> PKCm 

71 RasGTP -> RasGDP 

72 GEFp + RasGDP <-> [GEFp:RasGDP) 

73 [GEFp:RasGDP] -> GEFp + RasGTP 

74 GEF + PKCm <-> [GEF:PKCm] 

75 [GEF:PKCm] -> GEFp + PKCm 

76 PKCm + GAP <-> [PKCm:GAP) 

77 [PKCm:GAP) -> PKCm + GAPp 

78 GEFp -> GEF 

79 GAPp -> GAP 

80 PKCm + Sykp <-> [PKCm:Sykp] 

81 [PKCm:Sykp] -> PKCm + Sykpp 

82 Sykpp -> Sykp 

83 GAP + RasGTP <-> [GAP:RasGTP] 

84 [GAP:RasGTP] -> GAP + RasGDP 

85 Raf + RasGTP <-> [Raf:RasGTP] 

86 (Raf:RasGTP) + PKCm <-> (Raf:RasGTP:PKCm] 

87 (Raf:RasGTP:PKCm] -> (Rafp:RasGTP) + PKCm 

88 Raf + Aktp <-> [Raf:Aktp] 

89 (Raf:Aktp] -> Rafser259 + Aktp 

90 Rafser259 + PPl <-> (Rafser259:PP1) 

91 (Rafser259:PP1)-> Raf + PPl 

92 Rafp + Aktp <-> (Rafp:Aktp] 

93 [Rafp:Aktp] -> Rafpp + Aktp 

94 Rafpp + PPl <-> (Rafpp:PPl) 

95 (Rafpp:PPl]-> Rafp + PPl 

96 Rafp + PP2A <-> (Rafp:PP2A) 

97 (Rafp:PP2A) -> Raf + PP2A 

98 Btkcyt + PIP3 <-> Btk 

99 Sykp + PLCg <-> [Sykp:PLCg] 

100 [Sykp:PLCg] -> Sykp + PLCgp 

101 Rafp + PPl <-> (Rafp:PPl) 

102 (Rafp:PPl)-> Raf + PPl 

103 Rafp + MEK <-> [Rafp:MEK] 

104 [Rafp:MEK] -> Rafp + MEKp 

kf_51*PDKa*Aktm- kb_51*[PDKa:Aktm) 

kcat_52*[PDKa:Aktm) 

kf_53*Aktp*PP2A- kb_53*(Aktp:PP2A] 

kcat_54*[Aktp:PP2A] 

kf_55*Sykp*BLNK- kb_55*[Sykp:BLNK] 

kcat_56*[Sykp:BLNK] 

kf_57*BLNKp*Btkp- kb_57*(BLNKp:Btkp) 

kf_58*BLNKp*Grb2- kb_58*(BLNKp:Grb2) 

kf_59*BLNKp*Pase2- kb_59*(BLNKp:Pase2) 

kcat_60*(BLNKp:Pase2) 

k£_61 *(BLNKp:Grb2]*SoS- kb_61 *(BLNKp:Grb2:SoS] 

kf_62*(BLNKp:Btkp)*PLCg- kb_62*(BLNKp:Btkp:PLCg] 

kcat_63*(BLNKp:Btkp:PLCg] 

kf_64*PLCgp*Pase3 - kb_64*[PLCgp:Pase3] 

kcat_ 65*[PLCgp:Pase3) 

kdeg_ 66*1P3 

kdeg_67*DAG 

vm_68 * PIP2 * PLCgp/(km_68 +PIP2) 

kf_69*PKCcyt*DAG - kb_69*[PKCcyt:DAG] 

kf_70*[PKCcyt:DAG)- kb_70*PKCm 

kf_ 71 *RasGTP 

kf_72*GEFp*RasGDP- kb_72*[GEFp:RasGDP] 

kcat_73*[GEFp:RasGDP) 

kf_74*GEF*PKCm- kb_74*[GEF:PKCm] 

kcat_75*[GEF:PKCm] 

kf_76*PKCm*GAP- kb_76*[PKCm:GAP) 

kcat_77*[PKCm:GAP] 

kf_78*GEFp 

kf_79*GAPp 

kf_80*PKCm*Sykp - kb_80*[PKCm:Sykp) 

kcat_81 *[PKCm:Sykp] 

kf_82*Sykpp 

kf_83*GAP*RasGTP- kb_83*[GAP:RasGTP) 

kcat_84*(GAP:RasGTP] 

kf_85*Raf*RasGTP- kb_85*(Raf:RasGTP) 

kf_86*(Raf:RasGTP)*PKCm- kb_86*(Raf:RasGTP:PKCm) 

kcat_87*(Raf:RasGTP:PKCm] 

kf_88*Raf*Aktp- kb_88*(Raf:Aktp] 

kcat_89*(Raf:Aktp) 

kf_90*Rafser259*PP1- kb_90*(Rafser259:PP1] 

kcat_91 *[Rafser259:PP1 J 

kf_92*Rafp*Aktp- kb_92*(Rafp:Aktp] 

kcat_93*(Rafp:Aktp] 

kf_94*Rafpp*PP1- kb_94*[Rafpp:PP1] 

kcat_95*(Rafpp:PP1] 

kf_96*Rafp*PP2A- kb_96*(Rafp:PP2A) 

kcat_97*(Rafp:PP2A] 

kf_98*Btkcyt*PIP3 - kb_98*Btk 

kf_99*Sykp*PLCg- kb_99*[Sykp:PLCg] 

kcat_lOO*[Sykp:PLCg] 

kf_101*Rafp*PP1- kb_101*(Rafp:PP1] 

kcat_102*(Rafp:PP1] 

kf_103*Rafp*MEK- kb_103*(Rafp:MEK] 

kcat_104*(Rafp:MEK] 



105 Rafp + MEKp <-> [Rafp:MEKp] 

106 (Rafp:MEKp]-> Rafp + MEKpp 

107 PKCm + CK2alpha <-> [PKCm:CK2alpha] 

108 [PKCm:CK2alpha]-> PKCm + CK2alphap 

109 CK2alphap -> CK2alpha 

110 CK2alphap + MKP3 <-> [CK2alphap:MKP3] 

111 [CK2alphap:MKP3] -> CK2alphap + MKP3p 

112 MKP3p + PP2A <-> [MKP3p:PP2AJ 

113 [MKP3p:PP2AJ -> MKP3 + PP2A 

114 MEKpp + PP2A <-> [!'>1EKpp:PP2A] 

115 [I'>fEKpp:PP2AJ-> MEKp + PP2A 

116 MEKp + PP2A <-> (I'>fEKp:PP2A] 

117 (I'>fEKp:PP2AJ-> MEK + PP2A 

118 MEKpp + MKP3p <-> [I'>fEKpp:MKP3p] 

119 (I'>fEKpp:MKP3p]-> MEKp + MKP3p 

120 MEKp + MKP3p <-> [I'>fEKp:MKP3p] 

121 [I'>iEKp:MKP3p] -> MEK + MKP3p 

122 ERK + MEKpp <-> [ERK:MEKpp] 

123 [ERK:MEKpp] -> ERKp + MEKpp 

124 ERKp + MEKpp <-> [ERKp:l\1EKpp] 

125 [ERKp:MEKpp] -> ERKpp + MEKpp 

126 mkp1 <-> MKP1 

127 mkp3 <-> MKP3 

128 MKP1 -> mkp1ubi 

129 MKP3 -> mkp3ubi 

130 ERKpp + MKP1 <-> [ERKpp:MKP1] 

131 [ERKpp:MKP1]-> ERKpp + MKP1p 

132 MKP1p + MKP3p <-> [MKP1p:MKP3p] 

133 [MKP1p:MKP3p] -> MKP1 + MKP3p 

134 ERKpp + MKP2 <-> [ERKpp:MKP2] 

135 [ERKpp:MKP2] -> ERKp + MKP2 

136 ERKp + MKP2 <-> [ERKp:MKP2] 

137 [ERKp:MKP2] -> ERK + MKP2 

138 ERKpp + MKP3 <-> [ERKpp:MKP3p] 

139 [ERKpp:MKP3p] -> ERKp + MKP3 

140 ERKp + MKP3 <-> [ERKp:MKP3p] 

141 [ERKp:MKP3p] -> ERK + MKP3 

142 TrCmplx -> mkp1 

143 TrCmplx -> mkp3 

144 Rafp + ERKpp <-> (Rafp:ERKpp] 

145 (Rafp:ERKpp]-> Rafpp + ERKpp 

146 Rafser259 + PP2A <-> [Rafser259:PP2AJ 

147 [Rafser259:PP2AJ-> Raf + PP2A 

148 [Rafp:RasGTP]-> Rafp + RasGTP 

149 [L:BCR1] + BCR <-> [L:BCR] 

150 [L:BCRp] + SHP1 <-> [L:BCRp:SHP1] 

151 [L:BCRp:SHP1]-> [L:BCRJ + SHP1 

152 [L:BCRpp] + SHP1 <-> [L:BCRpp:SHP1] 

153 [L:BCRpp:SHP1]-> [L:BCRp] + SHP1 
[BLNKp:Grb2:SoS] + RasGDP -> [BLNKp:Grb2:SoS] 

154 + RasGTP 

155 ERKpp + MKP1p <-> [ERKpp:MKP1p] 

156 [ERKpp:MKP1p]-> ERKp + MKP1p 

157 ERKp + MKP1p <-> [ERKp:MKP1p] 

158 [ERKp:MKP1p] -> ERK + MKP1p 

kf_105*Rafp*MEKp- kb_105*[Rafp:MEKp] 

kcat_106*(Rafp:MEKp] 

kf_107*PKCm*CK2alpha- kb_107*[PKCm:CK2alpha] 

kcat_108*[PKCm:CK2alpha] 

kf_109 * CK2alphap * PP2A/(0.05 + CK2alphap) 

kf_110*CK2alphap*MKP3- kb_110*[CK2alphap:MKP3] 

kcat_111*[CK2alphap:MKP3] 

kf_112*MKP3p*PP2A- kb_112*[MKP3p:PP2A] 

kcat_113*[MKP3p:PP2AJ 

kf_114*MEKpp*PP2A- kb_114*[I'>fEKpp:PP2A] 

kcat_115*[MEKpp:PP2AJ 

kf_116*MEKp*PP2A- kb_116*[MEKp:PP2AJ 

kcat_117*[I'>fEKp:PP2AJ 

kf_118*MEKpp*MKP3p- kb_118*[MEKpp:MKP3p] 

kcat_119*[MEKpp:MKP3p] 

kf_120*MEKp*MKP3p - kb_120*[!'>1EKp:MKP3p] 

kcat_21 *[I'>fEKp:MKP3p] 

kf_122*ERK*MEKpp- kb_122*[ERK:MEKpp] 

kcat_123*[ERK:MEKpp] 

kf_124*ERKp*MEKpp- kb_124*[ERKp:MEKpp] 

kcat_125*[ERKp:MEKpp] 

kf_126*mkp1 - kb_126*MKP1 

kf_127*mkp3 - kb_127*MKP3 

kf_128*MKP1 

kf_129*MKP3 

kf_130*ERKpp*MKP1 - kb_130*[ERKpp:MKP1] 

kcat_131*[ERKpp:MKP1] 

kf_132*MKP1p*MKP3p- kb_132*(I'>fKP1p:MKP3p] 

kcat_133*[MKP1 p:MKP3p] 

kf_134*ERKpp*MKP2- kb_134*[ERKpp:MKP2J 

kcat_135*[ERKpp:MKP2] 

kf_136*ERKp*MKP2- kb_136*[ERKp:MKP2] 

kcat_137*[ERKp:MKP2] 

kf_138*ERKpp*MKP3- kb_138*[ERKpp:MKP3pJ 

kcat_139*[ERKpp:MKP3p] 

kf_140*ERKp*MKP3- kb_140*[ERKp:MKP3p] 

kcat_141 *[ERKp:MKP3p] 

kf_142*TrCmpLx 

kf_143*TrCmplx 

kf_144*Rafp*ERKpp- kb_144*[Rafp:ERKppJ 

kcat_145*(Rafp:ERKpp] 

kf_146*Rafser259*PP2A- kb_147*[Rafser259:PP2AJ 

kcat_147*[Rafser259:PP2AJ 

kf_148*(Rafp:RasGTP] 

kf_149*[L:BCR1J*BCR- kb_149*[L:BCRJ 

kf_150*[L:BCRp]*SHP1- kb_150*[L:BCRp:SHP1] 

kcat_151 *[L:BCRp:SHPt] 

kf_152*[L:BCRpp]*SHP1- kb_152*[L:BCRpp:SHP1] 

kcat_153*[L:BCRpp:SHP1] 

vm_154*RasGDP*[BLNKp:Grb2:SoS]/(km_154+RasGDP) 

kf_155*ERKpp*MKP1p- kb_t55*[ERKpp:MKP1p] 

kcat_156*[ERKpp:MKPtp] 

kf_157*ERKp*MKP1 p- kb_157*[ERKp:MKP1 p] 

kcat_158*[ERKp:MKP1 p] 



159 ERKpp + MKP1 <-> [MKP1:ERKpp] 

160 [MKP1:ERKpp] -> MKP1 + ERKp 

161 ERKp + MKP1 <-> (MKP1:ERKp] 

162 (MKP1:ERKp] -> MKP1 + ERK 

163 ERKpp + 1F <-> [ERKpp:TFJ 

164 [ERKpp:TFJ -> ERKpp + TFa 

165 1Fa + NT <-> [fFa:NT] 

166 1Fa-> TF 

167 NT->mkp1 

168 NT-> mkp3 

169 PKCm -> PKCcyt 

170 MKP3 + ERKpp <-> (MKP3:ERKpp] 

171 (MKP3:ERKpp] -> l\1KP3x + ERKpp 

172 MKP3x -> mk'P3xubi 

kf_159*ERKpp*MKP1 - kb_159*(MKP1:ERKpp] 

kcat_160*(MKP1 :ERKpp] 

kf_161*ERKp*MKP1- kb_161*[MKP1:ERKp] 

kcat_162*(MKP1 :ERKp] 

kf_163*ERKpp*TF- kb_163*[ERKpp:TF] 

kcat_164* [ERKpp:TF] 

kf_165*1Fa*NT- kb_165*[fFa:NT] 

kf_166*TFa 

trnsc_167*NT* [fFa:NT] 

trnsc_168* NT * [fFa:NT] 

kf_169*PKCm 

kf_170*MKP3*ERKpp- kb_170*(MKP3:ERKpp] 

kcat_171 *(MKP3:ERKpp] 

kf_172*MKP3x 



3. Parameter Details: 

Sr. No. Parameter Scope (Reaction) Value 

kon_t L + BCR <-> [L:BCRt) 50 

2 koff_t L + BCR <-> [L:BCRt) 10 

3 kf_2 [L:BCR) -> [L:BCRp] 0.99 

4 kon_3 [L:BCRp] + Lyn <-> [L:BCRp:Lyn] 0.8857 

5 koff_3 [L:BCRp) + Lyn <-> [L:BCRp:Lyn] 0.8766 

6 kcat_ 4 [L:BCRp:Lyn) -> [L:BCRp) + Lynp 0.515 

7 kon_5 Lynp + SHPt <-> [Lynp:SHPt) 7 

8 koff_5 Lynp + SHPt <-> [Lynp:SHPt] 7.9716 

9 kcat_6 [Lynp:SHPt) -> Lyn + SHPt 2 

10 km_7 Lynp + CD22 -> Lynp + CD22p 1.933 

11 vm_7 Lynp + CD22 -> Lynp + CD22p 5.4291 

12 kf_8 CD22p + SHPtc <-> [CD22p:SHP1c) 0.7532 

13 kb_8 CD22p + SHPtc <-> [CD22p:SHP1c] 1.201 

14 kcat_9 [CD22p:SHP1c) -> CD22p + SHPt 0.9426 

15 kf_to SHP1 -> SHPt c O.ot 

16 kf_tt CD22p -> CD22 0.0943 

17 kb_12 Lynp + Syk <-> [Lynp:Syk] 8.7948 

18 kf_12 Lynp + Syk <-> [Lynp:Syk] 0.448 

19 kcat_13 [Lynp:Syk] -> Lynp + Sykp 21.56515 

20 kf_14 Sykp + SHPt <-> [Sykp:SHPt) 20 

21 kb_14 Sykp + SHPt <-> (Sykp:SHPt) 3.6 

22 kcat_15 [Sykp:SHPt) -> Syk + SHPt 0.9 

23 kf_16 [L:BCRp] + Sykp <-> [L:BCRp:Sykp) 0.3143 

24 kb_16 [L:BCRp) + Sykp <-> [L:BCRp:Sykp] 1.2092 

25 kcat_17 [L:BCRp:Sykp) -> [L:BCRpp] + Sykp 0.3023 

26 kf_18 [L:BCRpp) + Lyn <-> [L:BCRpp:Lyn] 0.899 

27 kb_18 [L:BCRpp) + Lyn <-> [L:BCRpp:Lyn] 0.8766 

28 kcat_19 [L:BCRpp:Lyn) -> [L:BCRpp] + Lynp 0.6915 

29 kf_20 BCRpro -> BCR 1.5E-06 

30 kf_21 BCR-> BCRi 1.5E-06 

31 kon_22 2 [L:BCRt) <-> [L:BCR] 10 

32 koff_22 2 [L:BCRt) <-> [L:BCR] 5 

33 kf_23 [L:BCR] -> BCRi + Li 0.0067 

34 kf_24 Btk + Lynp <-> [Btk:Lynp) 0.645 

35 kb_24 Btk + Lynp <-> [Btk:Lynp) 4 

36 kcat_25 [Btk:Lynp) -> Btkp + Lynp 

37 kf_26 Btk + Sykp <-> [Btk:Sykp) 2.4 

38 kb_26 Btk + Sykp <-> [Btk:Sykp) 4 

39 kcat_27 [Btk:Sykp) -> Btkp + Sykp 4 

40 kf_28 Btkp + BtkPase <-> [Btkp:BtkPase] 12 

41 kb_28 Btkp + BtkPase <-> [Btkp:BtkPase] 16 

42 kcat_29 [Btkp:BtkPase] -> Btk + BtkPase 4 

43 kf_30 Lynp + CD19 <-> [Lynp:CD19) 1.2245 

44 kb_30 Lynp + CD19 <-> [Lynp:CD19) 12 

45 kcat_31 [Lynp:CD19)-> Lynp + CD19p 3 

46 kf_32 CD19p + p85PI3K <-> [CD19p:p85PI3KJ 0.00345 

47 kb_32 CD19p + p85PI3K <-> [CD19p:p85PI3K) 1.064 

48 kf_33 (CD19p:p85PI3K) + p110PI3K <-> [CD19p:p85PI3K:p110PI3K) 0.2 

49 kb_33 [CD19p:p85PI3K) + p110PI3K <-> [CD19p:p85PI3K:p110PI3K) 4 

50 kcat_34 (CD19p:p85PI3K:p110PI3K) -> CD19p + PI3K 

51 kf_35 Sykp + BCAP <-> [Sykp:BCAP) 4.8699 



52 kb_36 Sykp + BCAP <-> [Sykp:BCAP] 14 

53 kcat_36 [Sy1:p:BCAP] -> Sykp + BCAPp 3.5 

54 kf_37 BCAPp + p85PI3K <-> [BCAPp:p85PI3K] 0.5 

55 kb_37 BCAPp + p85PI3K <-> [BCAPp:p85PI3K] 3 

56 kf_38 [BCAPp:p85PI3K] + p110PI3K <-> [BCAPp:p85PI3K:p110PI3K] 22 

57 kb_38 [BCAPp:p85PI3K] + p110PI3K <-> [BCAPp:p85PI3K:p110PI3K] 24 

58 kcat_39 [BCAPp:p85PI3K:p 11 OPI3K] -> BCAPp + PI3K 6 

59 kf_40 BCAPp + Pase1 <-> [BCAPp:Pase1] 22 

60 kb_40 BCAPp + Pase1 <-> [BCAPp:Pase1] 8 

61 kcat_ 41 [BCAPp:Pase1] -> BCAP + Pase1 2 

62 kf_42 CD19p -> CD19 0.1 

63 kf_43 PI3K -> p85PI3K + p110PI3K 0.251829 

64 km_44 PIP2 + PI3K -> PIP3 + PI3K 0.00391 

65 vm_44 PIP2 + PI3K -> PIP3 + PI3K 1.69 

66 km_45 PIP3 -> PIP2 0.092 

67 vm_45 PIP3 -> PIP2 1.7 

68 kf_46 PIP3 + Aktc <-> [PIP3:Aktc] 6 

69 kb_46 PIP3 + Aktc <-> [PIP3:Aktc] 12 

70 kf_47 [PIP3:Aktc] <-> Aktm 3 

71 kb_47 (PIP3:Aktc] <-> Aktm 0.3 

72 kf_48 PIP3 + PDK <-> [PIP3:POK] 2.0408 

73 kb_48 PIP3 + PDK <-> [PIP3:PDK] 4.2 

74 kf_49 [PIP3:PDK] -> PDKa 3.5261 

75 kf_50 PDKa -> PDK + PIP3 0.9597 

76 kf_51 PDKa + Aktm <-> [PDKa:Aktm] 1200 

77 kb_51 PDKa + Aktm <-> [PDKa:Aktm] 4 

78 kcat_52 [PDKa:Aktm] -> PDKa + Aktp 

79 kf_53 Aktp + PP2A <-> [Aktp:PP2A] 12 

80 kb_53 Aktp + PP2A <-> [Aktp:PP2A] 0.65 

81 kcat_54 [Aktp:PP2A] -> Aktm + PP2A 2 

82 kf_55 SyJ..-p + BLNK <-> [Sykp:BLNK] 2.4 

83 kb_55 Sykp + BLNK <-> (Sykp:BLNK] 4 

84 kcat_56 [Sykp:BLNK] -> Sykp + BLNKp 

85 kf_57 BLNKp + Btkp <-> [BLNKp:Btkp] 2.723833 

86 kb_57 BLNKp + Btkp <-> [BLNKp:Btkp] 1.8372 

87 kf_58 BLNKp + Grb2 <-> [BLNKp:Grb2] 

88 kb_58 BLNKp + Grb2 <-> [BLNKp:Grb2] 0.05 

89 kf_59 BLNKp + Pase2 <-> [BLNKp:Pase2] 222 

90 kb_59 BLNKp + Pase2 <-> [BLNKp:Pase2] 3.68 

91 kcat_60 [BLNKp:Pase2] -> BLNK + Pase2 0.926 

92 kf_61 [BLNKp:Grb2] + SoS <-> [BLNKp:Grb2:SoS] 0.05 

93 kb_61 [BLNKp:Grb2] + SoS <-> [BLNKp:Grb2:SoS] 

94 kf_62 [BLNKp:Btkp] + PLCg <-> [BLNKp:Btkp:PLCg] 200 

95 kb_62 [BLNKp:Btkp] + PLCg <-> [BLNKp:Btkp:PLCg] 0.6333 

96 kcat_63 [BLNKp:Btkp:PLCg] -> [BLNKp:Btkp] + PLCgp 4 

97 kf_64 PLCgp + Pase3 <-> [PLCgp:Pase3] 52 

98 kb_64 PLCgp + Pase3 <-> [PLCgp:Pase3] 0.54 

99 kcat_65 [PLCgp:Pase3] -> PLCg + Pase3 4 

100 kdeg_66 IP3 -> ip3deg 0.021 

101 kdeg_67 DAG -> dagdeg 0.0225 

102 km_68 PLCgp + PIP2 -> PLCgp + IP3 + DAG 0.05 

103 vm_68 PLCgp + PIP2 -> PLCgp + IP3 + DAG 0.48 

104 kf_69 PKCcyt + DAG <-> [PKCcyt:DAG] 0.45 

105 kb_69 PKCcyt + DAG <-> [PKCcyt:DAG] 0.226 



106 kf_70 [PKCcyt:DAG] <-> PKCm 9.9 

107 kb_70 [PKCcyt:DAG] <-> PKCm 0.005 

108 kf_71 RasGTP -> RasGDP 0.25 

109 kf_72 GEFp + RasGDP <-> [GEFp:RasGDP] 0.08 

110 kb_72 GEFp + RasGDP <-> [GEFp:RasGDP] 0.033 

111 kcat_73 [GEFp:RasGDP] -> GEFp + RasGTP 0.2 

112 kf_74 GEF + PKCm <-> [GEF:PKCm] 1.5 

113 kb_74 GEF + PKCm <-> [GEF:PKCm] 16 

114 kcat_75 [GEF:PKCm] -> GEFp + PKCm 4 

115 kf_76 PKCm + GAP <-> [PKCm:GAP] 1.3125 

116 kb_76 PKCm + GAP <-> [PKCm:GAP] 100 

117 kcat_77 [PKCm:GAP] -> PKCm + GAPp 25 

118 kf_78 GEFp-> GEF 0.1 

119 kf_79 GAPp-> GAP 0.1 

120 kf_80 PKCm + Sykp <-> [PKCm:Sykp] 0.25 

121 kb_80 PKCm + Sykp <-> [PKCm:Sykp] 3.92 

122 kcat_81 [PKCm:Sykp] -> PKCm + Sykpp 0.98 

123 kf_82 Sykpp -> Sykp 0.041 

124 kf_83 GAP + RasGTP <-> [GAP:RasGTP] 2.1666 

125 kb_83 GAP + RasGTP <-> [GAP:RasGTP] 

126 kcat_84 [GAP:RasGTP] ->GAP+ RasGDP 10 

127 kf_85 Raf + RasGTP <-> [Raf:RasGTP] 100 

128 kb_85 Raf + RasGTP <-> [Raf:RasGTP] 2 

129 kf_86 [Raf:RasGTP] + PKCm <-> [Raf:RasGTP:PKCm] 8 

130 kb_86 [Raf:RasGTP] + PKCm <-> [Raf:RasGTP:PKCm] 0.0444 

131 kcat_87 [Raf:RasGTP:PKCm] -> [Rafp:RasGTP) + PKCm 4 

132 kf_88 Raf + Aktp <-> [Raf:Aktp] 2.5 

133 kb_88 Raf + Aktp <-> [Raf:Aktp] 4 

134 kcat_89 [Raf:Aktp]-> Rafser259 + Aktp 

135 kf_90 Rafser259 + PP1 <-> [Rafser259:PP1] 12.85 

136 kb_90 Rafser259 + PP1 <-> [Rafser259:PP1] 9 

137 kcat_91 [Rafser259:PP1] -> Raf + PP1 3 

138 kf_92 Rafp + Aktp <-> [Rafp:Aktp] 0.89 

139 kb_92 Rafp + Aktp <-> [Rafp:Aktp] 2 

140 kcat_93 [Rafp:Aktp] -> Rafpp + Aktp 0.5 

141 kf_94 Rafpp + PP1 <-> [Rafpp:PP1) 9.88 

142 kb_94 Rafpp + PP1 <-> [Rafpp:PP1] 13.6 

143 kcat_95 [Rafpp:PP1] -> Rafp + PP1 3.4 

144 kf_96 Rafp + PP2A <-> [Rafp:PP2A] 2.2 

145 kb_96 Rafp + PP2A <-> [Rafp:PP2A] 16 

146 kcat_97 [Rafp:PP2A) -> Raf + PP2A 4 

147 kf_98 Btkcyt + PIP3 <-> Btk 90 

148 kb_98 Btkcyt + PIP3 <-> Btk 0.00034 

149 kf_99 Sykp + PLCg <-> [Sykp:PLCg] 10 

150 kb_99 Sykp + PLCg <-> [Sykp:PLCg] 16 

151 kcat_100 [SyJ..:p:PLCg] -> Sykp + PLCgp 4 

152 kf_101 Rafp + PP1 <-> [Rafp:PP1] 3 

153 kb_101 Rafp + PP1 <-> [Rafp:PP1] 4 

154 kcat_102 [Rafp:PP1] -> Raf + PP1 4 

155 kf_103 Rafp + MEK <-> [Rafp:MEK] 6.8 

156 kb_103 Rafp + MEK <-> [Rafp:MEK] 9.62 

157 kcat_104 [Rafp:MEK] -> Rafp + l\fEKp 2.405 

158 kf_105 Rafp + MEKp <-> [Rafp:MEKp] 6.8 

159 kb_105 Rafp + MEKp <-> [Rafp:MEKp] 9.62 



160 kcat_106 [Rafp:l\IEKp] -> Rafp + 1\IEKpp 2.405 

161 kf_107 PKCm + CK2alpha <-> (PKCm:CK2alpha] 2 

162 kb_107 PKCm + CK2alpha <-> (PKCm:CK2alpha) 8 

163 kcat_108 (PKCm:CK2alpha) -> PKCm + CK2alphap 2.667 

164 kf_109 CK2alphap -> CK2alpha 0.333 

165 kf_llO CK2alphap + MKP3 <-> [CK2alphap:MKP3) 

166 kb_110 CK2alphap + MKP3 <-> [CK2alphap:MKP3) 4.64 

167 kcat_111 [CK2alphap:MKP3) -> CK2alphap + MKP3p 1.16 

168 kf_112 MKP3p + PP2A <-> [MKP3p:PP2A) 15 

169 kb_112 MKP3p + PP2A <-> [MKP3p:PP2A) 16 

170 kcat_113 [MKP3p:PP2A) -> MKP3 + PP2A 4 

171 kf_114 MEKpp + PP2A <-> [MEKpp:PP2A) 1.31 

172 kb_114 1\IEKpp + PP2A <-> [MEKpp:PP2A) 4 

173 kcat_115 [MEKpp:PP2A) -> 1\IEKp + PP2A 

174 kf_116 MEKp + PP2A <-> [MEKp:PP2A) 1.31 

175 kb_116 1\IEKp + PP2A <-> [MEKp:PP2A) 4 

176 kcat_117 [MEKp:PP2A) -> MEK + PP2A 

177 kf_118 1\IEKpp + MKP3p <-> [MEKpp:MKP3p) 26 

178 kb_118 1\IEKpp + MKP3p <-> [MEKpp:MKP3p) 64 

179 kcat_119 [MEKpp:MKP3p) -> MEKp + MKP3p 16 

180 kf_120 l\IEKp + MKP3p <-> [MEKp:MKP3p) 26 

181 kb_120 1\IEKp + MKP3p <-> [MEKp:MKP3p) 64 

182 kcat_21 [MEKp:MKP3p] -> 1\IEK + MKP3p 16 

183 kf_122 ERK + MEKpp <-> [ERK:MEKpp] 1.6 

184 kb_122 ERK + MEKpp <-> [ERK:MEKpp] 

185 kcat_123 [ERK:l\IEKpp) -> ERKp + MEKpp 0.25 

186 kf_124 ERKp + MEKpp <-> [ERKp:MEKpp] 1.6 

187 kb_124 ERKp + MEKpp <-> [ERKp:MEKpp] 

188 kcat_125 [ERKp:MEKpp) -> ERKpp + MEKpp 0.25 

189 kf_126 mkp1 <-> MKP1 0.0004 

190 kb_126 mkp1 <-> MKP1 0.0001 

191 kf_127 mkp3 <-> MKP3 0.0004 

192 kb_127 mkp3 <-> MKP3 0.0001 

193 kf_128 MKP1 -> mkp1ubi 3.7E-16 

194 kf_129 MKP3 -> mkp3ubi 3.7E-16 

195 kf_130 ERKpp + MKP1 <-> [ERKpp:MKP1] 0.30101 

196 kb_130 ERKpp + MKP1 <-> [ERKpp:MKP1] 4.44 

197 kcat_131 [ERKpp:MKP1]-> ERKpp + MKP1p 2.2 

198 kb_132 MKP1p + MKP3p <-> [MKP1p:MKP3p] 108 

199 kf_132 MKP1p + MKP3p <-> [MKP1p:MKP3p] 141 

200 kcat_133 [MKP1p:MKP3p) -> MKP1 + MKP3p 27 

201 kf_134 ERKpp + MKP2 <-> [ERKpp:MKP2) 76 

202 kb_134 ERKpp + MKP2 <-> [ERKpp:MKP2] 4 

203 kcat_135 [ERKpp:MKP2) -> ERKp + MKP2 

204 kf_136 ERKp + MKP2 <-> [ERKp:MKP2) 76 

205 kb_136 ERKp + MKP2 <-> [ERKp:MKP2) 4 

206 kcat_137 [ERKp:MKP2] -> ERK + MKP2 

207 kf_138 ERKpp + MKP3 <-> [ERKpp:MKP3p] 

208 kb_138 ERKpp + MKP3 <-> [ERKpp:MKP3p) 0.25 

209 kcat_139 [ERKpp:MKP3p) -> ERKp + MKP3 9 

210 kf_140 ERKp + MKP3 <-> [ERKp:MKP3p) 

211 kb_140 ERKp + MKP3 <-> [ERKp:MKP3p) 0.25 

212 kcat_141 [ERKp:MKP3p) -> ERK + MKP3 9 

213 kf_142 TrCmplx -> mkp1 lE-18 



214 

215 

216 

217 

218 

219 

220 

221 

222 

223 

224 

225 

226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

255 

256 

Units of 
rate 

kf_143 

kf_144 

kb_144 

kcat_145 

kf_146 

kb_147 

kcat_147 

kf_148 

kf_149 

kb_149 

kf_150 

kb_150 

kcat_151 

kf_152 

kb_152 

kcat_153 

km_154 

vm_154 

kf_155 

kb_155 

kcat_156 

kf_157 

kb_157 

kcat_158 

kf_159 

kb_159 

kcat_160 

kf_161 

kb_161 

kcat_162 

kf_163 

kb_163 

kcat_164 

kf_165 

kb_165 

kf_166 

trnsc_167 

trnsc_168 

kf_169 

kf_170 

kb_170 

kcat_171 

kf_172 

TrCmplx -> mk-p3 

Rafp + ERKpp <-> [Rafp:ERKpp] 

Rafp + ERKpp <-> [Rafp:ERKpp] 

[Rafp:ERKpp] -> Rafpp + ERKpp 

Rafser259 + PP2A <-> [Rafser259:PP2A] 

Rafser259 + PP2A <-> [Rafser259:PP2A] 

[Rafser259:PP2A] -> Raf + PP2A 

[Rafp:RasGTP] -> Rafp + RasGTP 

[L:BCR1] + BCR <-> [L:BCR] 

[L:BCR1] + BCR <-> [L:BCR] 

[L:BCRp] + SHP1 <-> [L:BCRp:SHP1] 

[L:BCRp] + SHP1 <-> [L:BCRp:SHP1] 

[L:BCRp:SHP1]-> [L:BCR] + SHP1 

[L:BCRpp] + SHP1 <-> [L:BCRpp:SHP1] 

[L:BCRpp] + SHP1 <-> [L:BCRpp:SHP1] 

[L:BCRpp:SHP1]-> [L:BCRp] + SHP1 

[BLNKp:Grb2:SoS] + RasGDP -> [BLNKp:Grb2:SoS] + RasGTP 

(BLNKp:Grb2:SoS] + RasGDP -> (BLNKp:Grb2:SoS] + RasGTP 

ERKpp + MKPtp <-> [ERKpp:MKP1p) 

ERKpp + MKP1p <-> [ERKpp:MKP1p] 

[ERKpp:MKP1p]-> ERKp + MKP1p 

ERKp + MKP1p <-> [ERKp:MKP1p) 

ERKp + MKP1p <-> [ERKp:MKP1p] 

[ERKp:MKP1p) -> ERK + MKP1p 

ERKpp + MKP1 <-> [MKP1:ERKpp] 

ERKpp + MKP1 <-> [MKP1:ERKpp] 

[MKP1:ERKppJ -> MKP1 + ERKp 

ERKp + MKP1 <-> [MKP1:ERKp] 

ERKp + MKP1 <-> [lv!KP1:ERKp] 

[MKP1:ERKp]-> MKP1 + ERK 

ERKpp + TF <-> [ERKpp:TF) 

ERKpp + TF <-> [ERKpp:TF] 

[ERKpp:TFJ -> ERKpp + TFa 

TFa + NT <-> [fFa:NT] 

TFa + NT <-> [fFa:NT] 

TFa->TF 

NT-> mk-p1 

NT-> mk-p3 

PKCm -> PKCcyt 

MKP3 + ERKpp <-> [l\!KP3:ERKpp] 

MKP3 + ERKpp <-> [MKP3:ERKpp] 

[MKP3:ERKpp] -> MKP3x + ERKpp 

MKP3x -> mkp3xubi 

Constants kf* => micromoles secA-1(for second order reactions), minromolesA-1secA-1(for first order reactions) 

kb* => sec-1 

kcat* = > sec-1 

km* => micromoles 

vm* => sec-1 

1E-18 

0.05 

2 

0.5 

2.25 

8 

4 

to 

2 

83 

2.77 

240 

2 

0.050505 

22 

450 

600 

150 

450 

600 

150 

30 

600 

150 

30 

600 

150 

4 

0.000335 

0.0001 

0.0002 

1E-25 

2E-07 

0.000002 

0.1 

0.0034 

0.25 

1.5E-15 



S2. !MaterialS ana !MethodS 

Model building and numerical simulations: 

A complete description of model building and details of the reaction scheme and 

parameters including rate equations for each of the reactions is provided in the 

Supplementary data S1A (Description of model) and S1B (Model content, parameters, 

reaction and their rates, initial conditions). All reactions were converted into molecule­

molecule interactions defining either binding interactions, or catalytic reactions. We have 

used Simbiology2.2 (Mathworks) on MATLAB7.5 as a platform for implementing the 

model and for carrying out numerical simulations. All calculations except for that of 

restimulation experiments were done using ode15s, which is a solver for stiff differential 

equations and DAE. It uses the variable order method based on numerical differentiation 

formula for stiff differential equations. Restimulation experiments were done using 

Sundials solver CVODE provided with Simbiology. Parameters were either taken from 

literature, scaled up if required or estimated. Estimation of unknown parameters was 

done either by iteratively fitting to the experimental constraints, or by using local 

optimization with lsqnonlin, lsqcuroifit (wherever experimental data was available for 

immediate readout). Sensitivity analysis of the complete model was done by using 

SBML_SAT (Zi et al., 2008)., a freely available SBML-based MA TLAB toolbox available 

at (http://sysbio.molgen.mpg.de/SBML-SAT /).Complete model building was carried 

out with Simbiology2.2 with MATLAB7.5 on hpxw4400 workstation (Intel core 2 duo 

2.13GHz) running Red Hat Enterprise Linux WS-4. 

Stimulation of cells and detection of phosphoproteins 

A20 cells (1 x107 /ml) were stimulated with the F(ab)2 fragment of goat anti-mouse IgG at 

a flnal concentration of 25 11g/ml in RPMI for a period of up to 30 min (Singh et al., 

2005). At appropriate times, aliquots of cells were collected, centrifuged, and the cell 

pellets stored in liquid nitrogen. When required, cells were lysed, the detergent-soluble 

proteins resolved by SDS-PAGE, and specific proteins and phosphoproteins detected 

(and quantified) by Western blot using the procedure and antibodies as previously 

described (Kumar et al., 2007). 



Co-Immunoprecipitation: 

Lysates were prepared from 2 x 107 cells/group/time point in a buffer containing a 

cocktail of protease and phosphatase inhibitors as previously described (Singh et al., 

2005). Lysates were pre-cleared with protein A-agarose and then incubated with 

appropriate antibody (0.6 - 1 mg, at 4°C for 2h), after which the immune-complexes 

were precipitated with protein A-sepharose. The immunoprecipitates were identified by 

immunoblotting with specific antibodies (Santa Cruz Biotech). 

Over-expression of MKP3 in A20 cells. 

MKP3 was over-expressed as a Strep-tag II fusion protein in A20 cells (Schmidt and 

Skerra, 2007). For this the eDNA was cloned into the pEXPR-IBA103 vector and then 

transfected into cells by electroporation. Subsequent selection for neomycin resistance 

over a 4-week period yielded stably-transfected cells. A Western blot analysis revealed 

that these cells expressed about 2-fold higher levels of MKP3 when compared to un­

transfected A20 cells. 
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