"A masterpiece." -Physics Today QUANTUM COMPUTING FOR EVERYONE CHRIS BERNHARDT 006.3843 B4676

006.3843 B4575

Jawaharlal Nehru University Accession No. 2659 Source Dierseas Proces

Bill No. & Date .. 11 31393.

Catalogued by.....

First MIT Press paperback edition, 2020 © 2019 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.

This book was set in ITC Stone Sans Std and ITC Stone Serif Std by Toppan Best-set Premedia Limited. Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Names: Bernhardt, Chris, author.

Title: Quantum computing for everyone / Chris Bernhardt.

Description: Cambridge, MA: The MIT Press, [2019] | Includes bibliographical references and index.

Identifiers: LCCN 2018018398 | ISBN 9780262039253 (hardcover : alk. paper)—

9780262539531 (paperback)

Subjects: LCSH: Quantum computing—Popular works.

Classification: LCC QA76.889 .B47 2019 | DDC 006.3/843—dc23 LC record

available at https://lccn.loc.gov/2018018398

10 9 8 7

006.3843

B4575 Qu

Contents

```
Acknowledgments xi
Introduction xiii
1 Spin 1
  The Quantum Clock 6
  Measurements in the Same Direction 7
  Measurements in Different Directions 7
  Measurements 9
  Randomness 10
  Photons and Polarization 11
  Conclusions 15
2 Linear Algebra 17
   Complex Numbers versus Real Numbers 17
  Vectors 19
   Diagrams of Vectors 19
   Lengths of Vectors 20
   Scalar Multiplication 21
  Vector Addition 21
   Orthogonal Vectors 23
   Multiplying a Bra by a Ket 23
   Bra-Kets and Lengths 24
   Bra-Kets and Orthogonality 24
   Orthonormal Bases 25
   Vectors as Linear Combinations of Basis Vectors 27
   Ordered Bases 29
   Length of Vectors 30
   Matrices 30
```

Matrix Computations 33
Orthogonal and Unitary Matrices 34
Linear Algebra Toolbox 35

3 Spin and Qubits 37

Probability 37

Mathematics of Quantum Spin 38

Equivalent State Vectors 41

The Basis Associated with a Given Spin Direction 43

Rotating the Apparatus through 60° 45

The Mathematical Model for Photon Polarization 46

The Basis Associated with a Given Polarization Direction 47

The Polarized Filters Experiments 47

Qubits 49

Alice, Bob, and Eve 50

Probability Amplitudes and Interference 52

Alice, Bob, Eve, and the BB84 Protocol 53

4 Entanglement 57

Alice and Bob's Qubits Are Not Entangled 57

Unentangled Qubits Calculation 59

Entangled Qubits Calculation 61

Superluminal Communication 62

The Standard Basis for Tensor Products 64

How Do You Entangle Qubits? 65

Using the CNOT Gate to Entangle Qubits 67

Entangled Quantum Clocks 68

5 Bell's Inequality 71

Entangled Qubits in Different Bases 72

Proof That
$$\frac{1}{\sqrt{2}}\begin{bmatrix}1\\0\end{bmatrix}\otimes\begin{bmatrix}1\\0\end{bmatrix}+\frac{1}{\sqrt{2}}\begin{bmatrix}0\\1\end{bmatrix}\otimes\begin{bmatrix}0\\1\end{bmatrix}$$
 Equals

$$\frac{1}{\sqrt{2}}|b_0\rangle\otimes|b_0\rangle+\frac{1}{\sqrt{2}}|b_1\rangle\otimes|b_1\rangle|\quad 73$$

Einstein and Local Realism 75

Einstein and Hidden Variables 77

A Classical Explanation of Entanglement 78

Bell's Inequality 79

The Answer of Quantum Mechanics 80

Contents

The Classical Answer 81

Measurement 84

The Ekert Protocol for Quantum Key Distribution 86

6 Classical Logic, Gates, and Circuits 89

Logic 90

Boolean Algebra 91

Functional Completeness 94

Gates 98

Circuits 99

NAND Is a Universal Gate 100

Gates and Computation 101

Memory 103

Reversible Computation 103

Billiard Ball Computing 111

7 Quantum Gates and Circuits 117

Qubits 118

The CNOT Gate 118

Quantum Gates 120

Quantum Gates Acting on One Qubit 121

Are There Universal Quantum Gates? 123

No Cloning Theorem 124

Quantum Computation versus Classical Computation 126

The Bell Circuit 127

Superdense Coding 129

Quantum Teleportation 132

Error Correction 135

8 Quantum Algorithms 141

The Complexity Classes P and NP 142

Are Quantum Algorithms Faster Than Classical Ones? 144

Query Complexity 145

Deutsch's Algorithm 145

The Kronecker Product of Hadamard Matrices 149

The Deutsch-Jozsa Algorithm 152

Simon's Algorithm 157

Complexity Classes 166

Quantum Algorithms 168

9 Impact of Quantum Computing 171 Shor's Algorithm and Cryptanalysis 172 Grover's Algorithm and Searching Data 176 Chemistry and Simulation 181 Hardware 182 Quantum Supremacy and Parallel Universes 186 Computation 187

Index 191