(9

A RELATIONAL DATABASE SYSTEM

IN PROLOG

DISSERTATION SUBMITTED TO THE JAWAHARLAL NEHRU UNiVERSITY
IN PARTIAL FULFILMENT OF THE RERUIREMENTS
FOR THE AWARD OF THE DEGREE OF
| MASTER OF TECHNOLOGY

- (COMFUTER SCIENCE)

KUO PAHAIL

SCHOOL OF COMFPUTERS & SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY
NEW DELHI - 110 0&7

1987

To my parents

CERTIFICATE

This work, embodied in the dissertation titled, "A RELATIONAL
DATABASE SYSTEM IN PROLOG", has been carried out by Mr.Kuo
Pahai, & bonafide student of School of Computere and Systems

Sciences, Jawaharlal Nehru University, New Delhi - 110 067.

This work ie original and has not been submitted for any

other degree ov diploma in any other university or

institute.

<:;(Lagi’;;%umwMﬁ, Uﬁ!ﬁ)@(\’@“ﬂLmA,Cch/

Mr. C,Ravi Shankar, Dr. K.K.Nambiar,

Systems Specialist, Frofessor,

R & D Centre, _ School of Computers &

cMC Ltd., Systems Sciences,

115, S.D. Road, Jawaharlal Nehru University,
Secunderabad - S00 003. New Delhi - 110 067.

Frofgssor Karmecshu,
Dean, School of Computers & Systems Sciences,

Jawaharlal Nehru University,
New Delhi - 110 067.

ACKNOWLEDGEMENTS

Thie project would not have materialized without the
kind consent of my guide Prof. K.K.Nambiar. I am grateful
for the help and advice given by him during the tenure of my
project, and many more things.

My eincere thanks are due te Mr. C.Ravi Shankar, my
quide at CMC Secunderabad, whose foresight and understanding
of the time-bound nature of the project helped me choose an
appropriate topic of work. 1 am alsoc grateful to him for the
help and advice offered whenever 1 needed it.

I am thankful tco Mr, S.,Kapoor, Systems Manager, for
qiving me thie opportunity to work at the CMC, R&D Centre, in
Secunderabad.

Many thanks are due to some membere of PACE (Farallel
Archi tecture Computation Envivronment), notably, U.Bhaskar and
Siva Prasad for clearing many of my nagging doubts about
Prolcg. ‘

I am grateful to Mr. Narasimha Rao, who patiently sat
through & query sescsion on the supplier—-part-department
databazse, and offered many helpful suggestions on what the
shortcomings were and how they could be removed. Many of his
suggesticons, have given iInsight in the &area of integrity
constraintse, and &also other features coffered on various
DEME =.

My thanks alsc go to the ‘Operaticns’ staff who bore my
long hours at the terminal pleasantly and for booting VAX
promptly, despite wvagaries in power supply, particularly
during the end of my project.

Sincere thanks Qo to all friends sitting near my clucster
in Parklane, for having accomcdated me and also for many
stimulating and informative discussions on computers and
ctherwise.

The list of all persons whom [chould acknowledge is
very long. éAny oversight on my part in thie aspect, 1 hope,
is forgiven.

Jan 1938 M b=

PROLOGUE

CHAPTER

CHAFTER

CHAPTER

CHASFTER

CHAFTER

1

R

3

HD D

n

(et enoen

Mamm

03 0] 00X W

Lo I O I N)

. v e
QY ra b=

H WM

Lypry P

I

[N OO FO I LN g

(i)

CONTENTS

INTRODUCTION TO LOGIC, RESOLUTION aAMND PROLOG

PREDICATE LOGIC . .+ + + + o o & v v & & « s « « &
BASIC NOTATIOMNS . . o o v v v v 6 v a0« 0 2 s & &
RESOLUTION« © e e e w
FROLOG AS & LOGIC FPDGPHMMING LQNGHAGE e e e e s

RELATIONAL ALGEBRA - DEFIMITIONS, THEORY . ¢ . .« « « .

TERMINOLOGY OF RELATIONAL MODEL e e s
THE RELATIONSHIP BETWEEWN LOGIC AND DATABASES .
OPERATIONE OF RELATIONAL ALGEBR&S o & o o o 0 o

SYNTAX, INTERNAL REPRESENTATION AMND
FARSING THE QUERY . + « &+ + + « « + +

THE LAMGUAGE SQL . e e e e e e a s

USAGE OF AGGREGATION DFEFHTGFS (BUILT-IN FUNCTIONS)
STORAGE OPEFATIONS . « v ¢ « o & & & & o 4 s s o &

SYMTEX OF SOL & & . v v o s 0 s e e e e e e e

QUERY PROCESSING . « & + + o « v v o o o & s s

TOF. LEVEL QUERY PROCESSING o + « « v o v v o v v o o &

CREATION OF UARISBLES . o v v o v v v 0 o &+ &
TREATMENT OF COMDITIONS . ., . s e e
TOF LEVEL IMFLEMEWTATION CDRPE’PHNDIH .
TO RECURSIVE FROGRAMMING . . . e e e e e s

TRACE OF QUERY PROCESSING BY AN EXQMPLE . e s e

MEGATION, AGGREGATION AND
OTHER USEFUL FREDICATES

NEGATION AS MONPROVABILITY . . o « + o o o &« & ¢
THE FREDICATE "GROUFP" . . . +« o & « & &« & & = v
THE PREDICATE "UPDATE" . . o ¢« o « ¢ & & o & =+ « &
AGGREGHTE FUNCTIONS e e e e .
IMPLEMENTATION OF AGGREGHTIDN FUNCTIDN“ . e e e s
A LOOK 4T S0ME OTHER USEFUL PREDICATES . . .

P

BB
pY B

0
O

£ L)
ooy =0

(1i)

CHAFTEFR & SUGGESTIONS FOR IMPROVEMENT AND
IDEAS FOR FUTURE WORK . . . + o « v ¢ « v o o o 0 o .« 72

APPENDIX 1 THE SAMPLE DATABASE . . .+« « + + + « v 4 & & « « « « « . 88

AFFPENDIX SAMPLE QUERIES, THEIR ANSHWERS ARD

THEIR RESPOWNSE TIMES . . .+ . « & & +« + + &« « « « « » « 90

431

APFENDI X

02

SYNTAX OF THE QUERY LaNGUAGE . . .+ . . .+ +« « + « « .+ . 102

AFFENDIX 4 INTERWNAL REPRESEWNTATIOW OF THE SAMPLE D&TABASE,
RELATIONAL SCHEMA AND INTEGRITY COWSTRAINTE 105

APFPENDIX

n

S0URCE CODE OF THE DATABASE PROGRAM ;.- B N € g

AFFENDIX & BIBLIOGRAFHY AND REFERENCES . . . & . & « « + & » « « . 124

[

PROLOGUE

The following chapters describe in detail the creation
of a relational database system in Prolog and some aspects of

the formalism of logic and relational algebra.

The idea of implementing a relational database system in
Proleog 1is as old as the language itself, and is in fact an
obvious consequence of the "databacse" nature of PFPreleg. I
shall not offer &a detailed argument to support this view -
suffice to say that, Prolog ie an inherent tuple searching
(datsbase searching) language and backtracking encsures
exhaustive database search till all possible sclutions to &

given query are found.

Frolog is & recursive languaqe and coding can be very

compact. More importantly it is a 'highly descriptive
lanquage iﬁ that - specification reqarding "what te do" and
net "how to do" is enough. In other words one need not give
specific control statements far pYogram execution.

Consequently, it not only cuts down program development time
but alse makes a pragram more understandable and amenable to
changes. The Prolog program itself executes like 3 database
seatrch where eacﬁ sub-goal to 5& catisfied is searched and on
matching with the appropriate head of the clause enters it
and executes ites bkody, which may be further sub-g9oals to be

satisfied. In fact one might say here that the distinction

between data and program is lost.

The data manipulatioh langquage is very similar in syntax
to the query language SQL. 'The database ic created and
stored as Prolog facte. The relational schema are stored as

Prolog structures,.

Chapters 1 and 2 discuse some preliminaries of logic,
predicate calculus, relational algebra and some important

definitions invelved in this algebra.

Chapters 3 and 4 form the core of the project, where the
query processor is discussed with the help of & complicated
query., The functions qf the top level predicates involved in

thic processcr are explained.

Chapter S deals with some aspects of reprecsentation of
negative information in the datahbacse, some strategies
involved in the construction of aggreqation oaperators and

cther useful predicates.

Chapter & discusses the implementation, its
capabilities, its performance compared to cther RDBMS systems
its shortcomings and how one could remove them, and other

pointers for future work.

Page 3

The appendices at the end contain a sample databacse,
sample queries and their sclutione, the syntax of the query
langquage, internal representation of relational schema and

integrity constraints and the source listing of the program.

CHAPTER 1

INTRODUCTION TO LOGIC, RESOLUTION AND PROLOG

A brief introduction to logic, resclution and Proleg 1is

given here.

1.1 PREDICATE LOGIC

Logic studies the relaticncship between assumptione and
conclusions. It was originally devicsed as a way of
representing arguments formally, so that it would be possible
to chéck in a mechanical way whether or not they were valid.
Thus Qe can use logic to express propositions, the vrelation
between propositions and how one can validly infer some
propositions from cthers (theorem proving). From the logic
peint of view, a3 generalised DBMS is just a general-purpose
question-answering svetem in which the set of facts necessary
ifor question-answering (or problem solwving) can be viewed as
axioeme of & theorem, and the question (or the problem) can be
viewed as= the conclusion of the theorem. Therefore the
emphasie of such & database management system 1& on its
deductive power, which corroborates the assertion that logic

plays a significant role in DBMS<.

Page S

The predicate calculus ie & formal 1language whose
essential purpose i€ to symbolize logical arguments in
mathematics. The sentences in this languagé are called
well-formed formulas (wffs). By "ihterpreting" the symbols
in 8 wff we obtain a statement which is either true or falce.
We can ascsociate many different interprétations with the same
wff and therefore obtain a class of <statements where each
statement is either true or false. However our interest is
mainly in a very restricted subclace of the wffs, those that

vield & true value for every possible interpretation.
1.2 BASIC NOTATIONS

The symbole from which our <statements are concstructed

are listed below.

i.2.1 Quéntifiers:

The two quantifiers used are: ¥ (universal quantifier)

and 3 (existential quantifier).
1.2.2 A term is recurcsively defined as:

1. A constant is a term.

Page &

2. A variable is a term.

3. If f is an n—ary function symbol, &and tl,t2,...,tn are

terms, then f(tl,...,tn) is a term,

4. All terms are generated by applying the above rules.

1.2.3 Atomic formulacs are defined as:

If P ie an n-ary predicate svymbol, and tl,tZ,...,tn are
terms, then P(tl,...,tn) 1is an atomic formula. No other

expression can be an atomic formuls.

1.2.4 Hkell formed formulas (WFFe) are recursively defined

==

1. An atomic formula is a WFF.

2. If F and G are WFFs then:
“F, F &G, F # 6, F ->G and F <{-> G are WFFes, where
~y, &, #, -> and <> are ‘negation’, ‘conjunction’,
‘disjuncticn’, ‘implication’ and ‘equivalence’ logical -

connectives respectively.

If F ie 8 WFF, x is & free variable, then (Wx)F and (3x)F

)

are WFFs, where Yx and 3Ix are universal and existential

quantifiers (quantity connectives) respectively,

Page 7

4, WFFs are generated only by a finite number of

applications of (1), (2) and (3).

" In a WFF a connective can be expressed in terms of the

other connectives. For instance :

(F => B) & (G -> F)

F -y G ==

F =>G == ~“F #G
~p == P

“(F & G) == ~F # "G

“(F # G) == ~F & ~G
(30F == T(((VP
(Ux)F == ~((IxI(CPY)

A functionally complete set of connectives in FPredicate
Calculus, which 1is sufficient to express any formula in an
equivalent form, could be:

L&,V ,Exy or {F,~>,Ux¥>.

As & result of the redundancy, there are many ways to
exﬁregs the <ame formula in an equivalent form (& similar
situation toe that in database query languages; different
queries rmay expresse the same request). If we wish to carry
out formal manipu{ations on Predicate Calculus formulas, this
turns out to be very inconvenient., It would be much nicer if
everything we wanted to say could only be expressed in one

wWay,

Page 8

A special form called the Clausal Form alleviates this

problem to a certain extent.

1.2.5 The Clausal Form -

A claucse ie an exprecssicen of the form. :

Bi,B2,...,Bm <- Al ,AZ,...,An
where Bl ,BZ2,...,Bm,Al,AR2,...,An are atomic formulas, n >=0
and m »= 0. The atomic formulas Al ,AZ,...,An are joint
conditione of the clause; and B1,B2,...,Bm are the
alternative conclusions. If the clauce contains the
variables x1,x2,...,xk, Bl or B2 or ... or Bm holde if @Al
and 42 and ... and An hold. Alternatively a clause mav be
defined as a finite disjunction of literals, & literal being
an atomic formula or negation of an atomic formula., @& wff is
said to be in a clausal form if it ie & fimite conjunction of

clauses.
There are three special casecs of clausal forme:

1. If n=0, that is,
Bl,B2,...,Bm <-
then: for all xl,x2,...,%xk, Bl or BZ or ... ar Bm is

unconditionally true.

Page 9

2. If m=0, that is,
<— Al’ﬁz,lll,ﬁn
then: for all x1,x2,...,%xk, it is not the case that Al

‘and A2 and ... and An are true.

3. If m=n=0, that ic the empty clause:
<_.
then: thie ie & formula which ie always false (&

contradiction).

l1.2.6 Horn Claucses

Clauces containing at most one conclusion are called
Horn. Clapses, (first inuestfgated by logician Alfred Horn).
For many applications of logic, it is sufficient to restrict
the form of clauses to Horn Clauses. There are two types of

Hoern Clauses:

1. Headed Horn Clauses.
B (- A4l,A2,...,AN

or

Fage 10

2. Headless Horn Clauses.

<_ Al,Az,uc-,An

or an empty clause:

Any solvable Horn Clauses can be expressed in.such a way
that, there is one headless clause, and all the rest of the

clauses are headed.

Mathematical Logic

First Order Predicate Calculus

Claucal Form

Horn Clause

A e S e TR v A v - —— " . ot " p—

Fiqure(l1.1). The onion layer of logic programming.

Page 11

Thus, we can decide to Qiew the headless clause as the
geal which must be present for a problem to be sclvable and
the other clauses as the hypotheses (axioms). Because
resolution with Horn clauses is relatively simple, they are
an obvious choice as the basis of a theorem prover which

provides & practical programming system.

1.3 RESOLUTION

Proving the satisfiability of wffe in predicate calculug
can be done easily by a method known as resclution.
Resolution techniques can be applied only te wffs which are
in clausal form and all wffs can be reduced to the clausal
form. Prolog alesc incorporates the idea bof resclution for

proving & theorem.

1. (Robinson) A given wff § in clause form is unsatisfiable
if and only if the empty clause can be derived eventually

by repeated application of the rescluticon rule.

2. Resclution: To prove the satisfiability of a wff S in
clausal form, it is equivalent to prove that its negation
Y& is uncsatisfiable. Therefore we repeatedly apply
resclution vule to 7S, until an empty clause is obtained.
Resolution method says that if we have a clause A and its
negation TA, then: "resoclvent” of A and “A yvields the

empty clause. In Prolog such clauses may be interpreted

Page 12

as the sub-goale of a main goal, thereby reducing the
problem of proving the main gecal to that of resolving the
sub-goals. If all the sub-goals are resolvable the the

main goal is true.

1.4 PROLOG AS A LOGIC PROGRAMMING LANGUAGE

The language Prolog based on Hovrn Clauses can be ceen as
the firset step towards the ultimate goal of programming in

. logic [1]. In fact Preloq can be summed up as:
FPROLOG = Horn ClLauses + Extralogical facilities

Prolog, based on Horn clauses has to provide
extralogical facilities in order to solve many problems. In
fact the precence of thece extralogical facilities may mean

the difference between sclving the problem or not sclving it.

Decspite these "shortocomings" Proleg is & language with
many outstanding features. It is a highly descriptive
lanquage - where the logic of the program is coded, andv a
programmery is not bogged down by the syntax and creation of
data structures s in other more conventional procedural

langquages. Alse Proleg is the most widely available logic

programming lanquage.

Page 13

The version of Prolog I have wused 1is C-Prolog which
incorporates all features of the de facto standard -
Edinburgh Prolog apart from which it alsoc provides many other

facilities in the form of built-in predicates.

A few of the bare essentials of Prolog are given here.

The objecte that are present in Prolog are:

1.4.1 Terms

The data objects of the langquage are called terms. A

term may be a constant, & variable or a structure.

1. Constants: A constant is thought of naming & specific
cbject or a specific relationship. The constants include
integers such as: 0, 1.3e2 and atome which normally
begin with a lower case such as: apple, jchn or special
symbols such as ?-, -, -> ete. To improve readability
the underscore character "_" may be wused such as

book_name

2. Variables: WUariabkles are like atoms except that they
begin with an uppercase letter or with an underscore e.q.
London, _val. Hkhen we do not need to know what a
variable is instantiated to while running a Prolog
program the underscere "_" is used and is referred to as

.the anonymous wvariable. @& variable may thus be thought

3.

Page 14

of as standing for some definite but unspecified object.

Structures : A structure comprises of a functor and a
sequence of one or more terms called arguments. A
functor is characterized by ite name, whichkh is an atom,
and its arity being the number of arguments. €.9.
book(Title,Author_name,Language) may be thought of as a
structure in Prolog where book is the functor of this
structure with three arqumente called Title,éuthor_name

and Language.

1.4.2 Headed Clauces

1.

-

-

There are two kinde of headed clauses - facte and rules.

Facts: A fact is an assertion which is an ‘axiom, such
asy likes(john,mary) stating that john likes mary. When
defining relationships about objects the order may be
arbitrary but we must he consistent about its
interpretation and order. For instance, likes(john,mary)

ic not the same as likes(mary,iochn).

Rules: @A rule is a conditional assertion which consists
of & head and & body. The head and the body are
connected by the symbcocl ":-" which may be read as “"if"
€.9. Head :- Geall, GeslzZ, ... Gosaln. For instance

joehn likes anvone who likes wine in Prolog would become:

Page 15
likes(john,X) :- likes(X,wine).

The head of this rule describes what fact the rule
is intended to define. The body describes the
conjunction of goale that must be <catisfied, one after
the other, for the head to be true. Suppeose john likes

any female who likes wine, we have:

likes(john,X) :- female(X), likes(X,wine}.

Here unless the sub-goals female(X) and
likes(X,wine) are true the head likes(john,X) will not
succeed. The databazse <cearch 1is done left to vright
depth—-firet i.e. not until sub—goal female(X) is

satisfied, will likes(X,wine) be attempted.

1.4.3 Headless Clauses

Headless clauses in Prolog are questicns. A special

n
n

symbol "?-" is always put before the question by the system.
Whern a question is asked of Prolog, it will <cearch through
the database, and look for facts and rules that match the
questicon, Two facts match if their functors are the same and
if eéch of their corresponding arguments are the same. Such
a match ie called vunification of two terms. Unification
algorithm is discussed well in [2]. In legic this method of

matching may be interpreted ac finding & procof of the

question in the databace by resolution, where the symbel "7-"

Psge 16

stands for negation of the question, and hence if negation of
the question is vresolvable then the quecstion is true— the

basis for proof by resoclution.

For & more detailed account of the syntax and semantics
of Prolog I suggest the reader to peruse Programming in
Froleq - W.F.Clecksin and C.S.Mellish [3]. Chapters cane
through three of Mathematical Theory of Computation by Zohar
Manna give an excellent introduction to predicate calculus

and resolution [4].

Page 17

CHAPTER &2

RELATIONAL ALGEBRA - DEFINITIONS, THEORY

Thie chapter deals with relational algebra, some

important definitions and concepts.

One of the most critical probleme facing databace
installations today is the rapidly increasing cost of
developing and maintaining programs.Two fundamental probleme

in the use of files are:

l. The data dependence problem: In nondatabase systems an
application is data—depéndent. If ie impossible to
change the storage (how the data is physically recorded)
oY access sfrategy (how it is‘accessed) without affecting

the applicatjon.

The data redundancy problem: The fact that each

%)

application has its own private files can often lead to
considerable redundancy in stered data, with resultant

waste in storage space and a high risk of inconsistency,

The relational approach grounded in a well-established
mathematical discipline, is a significant approach to the
logic description and manipulation of data. Briefly speaking

it views the leogical database as a time-varying collection of

Page 18

normalized relations which are flat in that no repeating

groups are involved.

A relational database is manipulated by powerful
operators for extracting columns and joining them, and
invelves no consideration of pesitionsal, pointer orv access
path aspecte ac in the case of the network and hierarchical

appreoaches.

2.1 TERMINCQLOGY OF RELATIONAL MODEL.

The relational approach carries a terminoclogy of its own
and a tendency to use terms which are rather mathematically
criented as it has a good theoretical foundation. A few

important terms are defined below for convenience:

1. RELATION : Given a collection of setlel,DE,...,Dn, R is
a relation on those n sets if it is & set of ordered
n—-tuples <dl,d2,...,dn> sucﬁ that dl belongs to D1, dZ
belengs te D2,...,dn belonge to Dn. It is normal to
display relations as tables where the attributes head the

columns and the vrows are tuples. Hence the name table

and relation are used interchangeably.

Page 19

R |

A8 BB ccC oD
al bl cl dl
al bz ce de
al bl cl d2
al bz cZ dl
ae b3 cl dil
az B3 cl de

Figure(2.1). A Relation (or table) ‘R’

TERM CORRESPONDING NAMES

relation table/file

relational table heading
scheme :

attribute column names/field type

attribute underlying domain
values

component value
arity degree
tuple row/entity/segment/recard

cardinality
FD

MUD

Figure(z.2). Terminclogy.

EXAMPLES

R

<Ah,BB,CC,DD>

BE ~--> CC

AA —-»-> <BE,CC>

Page 20

RELATIONAL SCHEME: This is a set of attributes, which are

names of columne for & vrelation. @A relational scheme is

assumed to remain constant - over time, while the vrelation

corfesponding to it changes frequently.

ARITY: The arity of a relation is the number of columne in
the relation. Relations of arity twoe are binary, ..., and

relations of arity n are n-ary.

ATTRIBUTE: An attribute of a relation ies a column name in

the relation; whereas the attribute values are the contents

of the column.

DOMAIN: A domain ie the set of values from which the set of
attribute wvalues of a relation may be taken; that is, from
which a8 column of a table may be formed. It is important to

appreciate the difference between a domain and columns; a

column represents the use of a domsin within a relation,

TUPLE: MWe may consider & relation as being a mathematical
set of tuples, & tuple is a row in the table. Each tuple in

a row is unique since it is an element in & mathematical set.

CARDINALITY: The cardinality of & relation R, denoted by

IRl, ie the number of tuplec in R.

Page 21

8. INTEGRITY CONSTRAINTS: Database consistency is enforced by

integrity constraints which are accertions that databacse
ihstances are compelled to obey. Data dependencies are

B
ispecial cases of integrity constrainte.

e

9. FUNCTIONAL DEPENDENCY-(FD): A functional dependency X-->Y is

an assertion about & relation <scheme. It asserts of any
A "legal" relation that two of its tuples tl and t2 that agree
on & set of a&ttributes X, also agree on Y, that is, if

tl{X] = t2[X] then tl[Y] = t2[{Y].

10. MULTIVALUED DEPENDENCY (MUD): & multivalued dependency
X=>=>Y is a statement that if tl and t2 are two tuples of &
relation that satisfies X->-2>Y and X-->Y, then the trelation
must have & third tuple t3 that takes the Y-value from one of
the tuples, cay tl, and its value everywhere from the other.

In other words, X->->Y means that the set of Y-values

(LS T -\

ascsociated with a particular X-value must be independent of

the ualués of the rest of the attributes.

11. KEYS: In terms of F and MUD of a relation, & minimum
collection of attributes that can function as & unique
identifier is called a candidate key. A relation may have

more than one candidate key.

12.

14,

Page 22

NORMALIZATION: The theory of normalization relates
dependency typecs to decirable properties of relation schemes.
By normalization there can be no redundancy caused by
dependencies of the given type in the relatione for this

scheme.

NORMALIZED RELATION: @& normalized relation ies a table with

non—decomposable wvalues, which <cometimes 1is called a base

table, or & base relation.

DATABASES: A database is a collection of relations, and

their relation schemes collectively form the database scheme.

To sum up a relational database DB is a collection R =
{Ri}, describing certain objects of the world having certain
attributes [, and the relationships among D,‘i.e. a set of
dependencies F. Each relation Ri ic charactericed by a set
of attributes Si = {Dj|IDj belongs-te D> called its scheme,
and consiste of a set of tuples. Each tuple ic a map from
the attributes of the relation schemeutg\their domains that

eatisfy 311 the dependencies of F.

A relaticnal database is accesseq by a set of requests
submitted by the user.in order to retrieve, delete, incert or
modify any subset of the data. In general, retrieval 1is an
essential part of these processes. Usere submit their

requests for information in the form of queries, specifying

‘the data which must be retrieved and the conditions which

Page 23

must be satisfied by the desired dats. The task of query
processing is to determine the set of data, the proper order
in which the data should be accessed and the types of
manibulations that must be performed on the data. This
processing is referred to by different authors as query

translation, access path finding, or optimisation.

2.2 THE RELATIONSHIP BETWEEN LOGIC AMND DATABASES

lLegic has been found to be highly wuseful beth for
describing static databases as well as for processing
databases which change. 0On the other hand, the evclution 1in

datsbase technology, particularly in relational model, has

[11]

been drifting more and more toward the use of logic. A
considerable amount of programming logic theory can be
transferred to databacses. The wuse of logic for data
description abolishes the distinction between databases and
programs. Strategies which apply to the execution of
programs apply also to the retrieval of answeres to databacse
queries. Methods for proving properties of programs apply to
verification of . integrity constraints. Procedures for
ma}ntaining dvnamically evelving datasbases apply to the

evolutionary development.

are

Page 24

As far acs relational query languages and user-—-interfaces

concerned, there are many problems that can be

conveniently transformed into logic, some of which are:

™

From the uiewpdint of theorem proving, a database cystem
can be considered as a question—-answering system where
facts are represented a= logic formulas, and answering a
question from facts may be regarded as proving that a
formula corresponding to the ancswer is derivable from the
formulas representing the faéts; and therefore deductive

search becomes important [S].

If a query is written in é very high level non-procedural
query lanquage the execution of such & query is to
perform taske that would be called intelligent. The
database system can be viewed as a3 knowledge;baee systern,
Starting with an initial state, one tries to find &
sequence of operators. that will transform the initial
state into the decired state which is called knowledge
informatioen processing. In this case, we can describe
the states and the <state transition rules by logic
formulas., In other worde, logic programming langquages,
such as Proleog, can be applied to the task of writing
compilers for high leuel.query languages [€,7]. The majoer
advantage of Prolog as a language for writing compilers

is that it specifies algorithms in a human-oriented way.

[}

Page 25

Such specification can be interpreted as a wuniform

resoluticon theorem prover. It is neat a great
exaggeration to say that specification is the
implementation. In fact, logic programming can extend

any query language te¢ a programming language.

Since & database may be viewed &= & logic program,
retrieval is automatically taken care of through
resclution. For instance, given & predicate definition
for an n-ary predicate p, the retrieval of the jth
argument corresponding to specific values of the others
is simply obtained by posing the query:
I 7= p(vl;... vi=-1,X,vi+l,...,vn).

where vl are those specific values and X is a wvariable.
Because of nondeterminism, more than one value for X may
be retrieued. Because of the nondeterminism between
input and cutput, any argument or combination of
arguments can be chosen for retrieval. Thus retrieval
operaticns that are usually needed in vrelaticnal
databazes. For the above example, projection and

selection become so simple with logic programming.

The link with logic was not only found at the language
level and query evaluation. For instance, an equivalence
between dependencies (FDs and MUDs) and & fragment of

prepositiconal logic has been found [8,9].

| rl | | s1 |

33 tbb cc as bb cc
a b c b =] a
d a f d a f
c b d

| r2 | | 2 |
aa bb ce dd cec dd

a b c d c d

a b e f e f

b c e f

€ d c d

e d e f

a b d e

| v2 | | &3 |

aa bb cc dd ee

1 2 3 3 1

q S () 6 b

7 8 9

| r4 ! | s4 i

aa bb cc bb cc dd
a b c b c d
b b f b c e
c a d 5 d b

Figure(2.3). MATHEMATICAL DATABASE

Page 26

Page 27

A wider use of logic should have a positiue effect on
the database field, as it prouides.not only a conceptual
framework for formulating various database concepts, but also
(in -the form of logic programming) a tool for implementing

them.

2.3 OPERATIONS OF RELATIONAL ALGEBRA:

Some of the bacic operations of relational algebra which
are provided by standard DBMS‘s are given below with

illustrative examples.

To give an example of these cperaticons the mathematical
database given in Figure(2.3). ie used. There are five
basic cperations that serve to define vrelational &lgebrs.
These are: union, set difference, extended cartesian

product, projection and selecticn.

1. Union. The union of relations R and &, denoted R++5, is
the <set of tuples that are in R or § or both., R and S
must be union compatible, that is to say that they have

the same arity. For example rlit++el is:

Page 28

Set difference. The difference of relations R and §,

denoted R--S5, ie the set of tuples in R but not in S. R

and § are required to be union-compatible. For example
rl -- sl is:

rl -- sl

aa bb e

s b e

c b d

Cartesian product. Let R and € be relatione of arity m
and n, respectively. Then R*%S, the cartesian product of R
and S, is¢ the set of (mtn) tuples t‘s such that t is the

concatenation of & tuple r belonging to R and a tuple S

belonging to §. The concatenation of & tuple r =
[rl,v2,...,vrm] and & tuple s = [sl,52,...,8n], in that
order, is & tuple t = [rl,r2,...,rm,sl,s2,...,8nl. Far

example rlkks]l is:

rl *x il

11 22 33 44 55 66

a b c b g a

a b C d a f

d a f b g a

d a f d a f

c b d b g a

c b d d £ f

Projection. The projection operater transforms ohe

relation intoc a new one censisting of selected attributes
of the first, including duplicate elimination. Project

relation vl on attributes cc and aa, denoted rllcc,aal,

Page 29

is formed by taking each tuple in rl and forming a new
tuple from the third and first compconents of rl in that
order. For example rvl[cc,aal is:

rl [cc,aa]

Selection. Let F be a formula involving:

1. operands that are constants or attributes,
2. the arithmetic comparison: =,\=,{,>,={,>=,
3. the arithmetic operators: +,-,%,/,

then R:F is the set of tuples t in R such that when all
attributes occurring in F aré substituted by the
corresponding components of t, the formula F becomes
true, | For example, to select tuples from r3 where bhi2,

denoted r3: bb>2, we cohtain:

r3 : bhk>2

a3 bb cc
) S [

7 g8 =)

Page 30

In addition, there are a number of useful algebraic
operatione thét can be expressed in terme of the
previously mentioned operatione, but which have been
giueh namee in the literature and <cometimes ucsed as
primitive algebraic operations. These are intersection,

quotient, 3jcin, and natural join.

Intersection. The intersection of two (union—-compatible)
relations R and S, denoted R::S, ic the cet of all tuples
t belonging to both R and S. We have:

,R;:S == R -— (R -- 8)

For example the intersection of rl and sl, rl::sl is:

rl :: <1
aa bb cc
d a f

Quotient. .Let R and S be relations of arity m and n
respectively where m>n. Then R %% £ is the set of (m-n)
tuples t such that for all s—-tuples u in S, the tuple tu
is in R. For example rz2%%c2 ic: .

Y2 %% s2

ql

the

Page 31

Join. The B0-j0in of R and S on columns
r1,r2,...,ri;sl,s2,f..,sj written as R**S:F where F is a
formula involved with these columns and defined as the
éame as that in selec;ion cperation, is a set of tuplecs t
in the cartesian product. of .R**S such that when all
attributes occurring in F are substituted by
corresponding components of t the formula F becomes true.

For example r3*%%xs3 : dd:bb [aa,bb,cc,dd,ee] is:

r3 %% 3 : dd > bb [aa,bb,cc,dd,ee]

a b c d e
1 2 3 3 1
1 2 3 & Z
4 S 6 6 2
Natural join. If O is "=" in an O-jein operation, it is

called an equi-join dencted by R <(=> S. For example R

{=>» § is:
r4 (= <4;:
aa bb cc dd
a b c d
& b C e
c 3 d b

Many other functione like updating and deleting tuples,

ability to group tuples using the key of the relation,

finding aggregation of certain attributes, like CNT, SUM,

AVG,

MAX, MIN are slso possible. The existential quantifier

in claucal form is implicitly assumed. A lot of structural

compatibility between the leogic form and existing high level

Page 32

query languages 1is achieved. Thus logic reprecentation
appears to be encugh for implementation of many realistic and

useful query langquages.

Addi tional information on vrelational algebra and other

RDBMS’s are found in [10,11].

CHAPTER 3

SYNTAX, INTERNAL REPRESENTATION AND PARSING THE QUERY

" This chapter deals with the syntax of the query
language, some of 1its important features and the firet two

steps involved in the procescing of the query.

The language which resembles SUL is simple in its
etructure, so that usere without prior experience are able to
learn a uséble subset on their first sitting. At the. same
time when taken as & whole, the language provides the query
power of the first-order predicate caiculus combined with
cperators for grouping, arithmetiﬁ, and other aqaregation
functione such as AVG, MAX, MIN. One of the good QUalities
of this langquage, as expressed by the users was the
uniformity of ite syntax acrvoss environmente of application
programe, ad hoc queries and definition of views., Languages
like SQL provide & common core of features that will be

required by all high level query langqages.

For these reasons, therefore, it is necessary that an
understanding of the features provided by the query language
be looked at. The query langquage chosen for this
implementation is very similar to SOL (Structured Quer?
Language), developed by IBM, on System R. For all practical

purposes I shall call the language SUL itcelf.

Page 34

The following section illustrates some of the important
features of SQL, bacsed on the supplier-parts—-department

database given in the appendix.

3.1 THE LANGUAGE saL

The fundamental operation for data manipulation in SOL -
is the SELECT-FROM-WHERE block. The SELECT clause specifiecs
the attributes of the target result; the FROM clause
specifies the names of vrelations which are involved in
getting the result beth in conditioning selection and in
actually supplying result value; the WHERE clause specifies
the conditioen(s) or the constraint(s) based on which the
results are to be obtained. For example the user might like
to see a display of <cupplier names and theivr status for
suppliers in Paris. The query 0(3.1) which does this is:

select [sname,status]
from [supplier]
where [city=parics].
Q(3.2) Get full details of all emplovees.

select *
from [emplovee].

The astericsk is @ shorthand for an ordered list of all
attribute names in the FROM table. At the moment this
implementation allows only in "SELECT-FROM" queries. For

instance the above query could be equivalently written as:

celect [ename,age,salary,dno]
from [employee].

Page 35

Qualified retrieval, Q(3.3). Get supplier numbers for
suppliers in Paris with status >20.
select [sno]
from [eupplier]
where [status>20, city=paric].
The conditione following "WHERE may include comparison

operators like =, \=, >, »=, < and ={. The comma specified in

the WHERE list is implicitly assumed to be the AND operator.

Join. Joining in SQOL is described by placing attributes
from more than one vrelation in the SELECT clause, placing
multiple relation names in the FROM clause, and including a
join criterion in the WHERE clause. For e.9. Q(3.4). For
each part supplied, get the part number and names of all
cities supplving the part.

select [pno,city]
fram [ehipment,supplier]
where -[shipment@sno = supplier@sno].
At present this implementation does not allow using the

relation namecs in the select clause which is used to resolve

any ambiquities in the query,

To get the less jein of some relation we have Q(3.5).

List all suppliers names and locaticne for suppliers whose

etatuse 1c less than Smith’<=.

select [sname,city]
from [eupplier]
where [[status] <
select [status]
from [supplier]
where [ename = smithl].

Page 36

Retrieval using equi-join, Q(3.6) Get suppliér names
for suppliers whao supply part p2:
select [sname]
from [supplier ,shipment]
where [supplier@sno = shipment@pno,
shipment@pno = pZ].

Since the result in the above query is entirely
extracted from supplier, though use of two relastione is made
to determine the result, it should therefore be possible to
express the query in the form:

select [sname]

from [supplier]

where [[sno] =
select [sno]
from [shipment]
where [pne = p2]].

The expression in the brackets is a sub-query. In
general the condition

f = [SELECT Sth FROM ...]
evaluates to true if and only if the value of f is equal to
at least cone value in the result of evaluating the "SELECT
Sth FROM ,..". Similarly the condition

f < [SELECT Sth FROM ...]
evaluates to true if and only if the value of f is less than
at least one wvalue in the result of evaluating the "SELECT

Sth FROM ...". The operators >, »>=, \= and ={ are analogdusly

defined.

Page 37

0Of the various comparison conditions the most useful is:
f = [SELECT Sth FROM ,..]
which may be equivalently (and more clearly) written as

f in [SELECT Sth FROM .:..]

Retrievals with multiple levels of nésting. Q(3.7) Get.
supplier names for suppliere who supply at least one red
part.

select [sname]
from [supplier]
where [[sno] in
select [sno]
from [shipment]
where [[pnol in
select [pneol
from [part]
where [color = redll].

Sub-queries can be nested to any depth. It ie also

poscible to rvretrieve with s sub—-query where the same relation

name is involved in both blocke. Refer example Q(3.5).

Retrieval with negation. ((3.8) Get supplier names for
suppliers whe do not supply part p2.
select [sname]
from [supplier]
where J[[snol] not_in
select [enc]
from [shipment]
where [pno = p2l].
The condition in the where clause:

f not_in [select Sth from ...]

evaluates to true if and only if for all values WVW'=s in the

Fage 28
result of evaluating "SELECT Sth FROM ..." none of them is f.

SQL uses the usual set operators - UNION, INTERSECT, and
MINUS - teo combine the results of independent SELECT-blocks.
These operators are algebréic in nature, and are procedural
components. In order to reduce the procedufality, saL
dicpences with INTERSECT and MINUS by wusing IN and NOT_INM

combined with & set of attributes instead.

For example for the mathematical database given. The

intersecticon of relations vl and €1 can be queried as Q(3.9)

cselect [aa,bh,cc]

from [r1]

where [[aa,bb,cc] in
select [as,bb,cec]
from [el1l].

1n
=

To get the difference of relatione vl and €1, we as
Q(3.10)

select [aa,bb,cc]
from [rl]
where [[aa,bb,cc] not_in
cselect [a
[=

bb,ccl
fraom 1.

S,
1]

Retrieual'using union: Q(3.11). Get part number for.
parts that either weigh more than 18 units, or are currently

supplied by Jones or both,

select [pnol
from [part]
where [wt > 18]
union
select [pnol
from [ehipment]
. where [[snel in

Page 39

select [sno]
from [supplier]
where [sname = jones]].

3.2 USAGE OF AGGREGATION OPERATORS (BUILT-IN FUNCTIONS)

The retrieval power of the basic language can be easily
extended by provision of built-in functions. The functions
currently supported by SQL are: CNT, SUM, MAX, AVG, MIN and

graouped_by.

Function inm the SELECT claucse. Q(3.12) Get the number
of shipments for part p2.

seleét [cnt{snao)]

from [shipment]
where [pno = p2].
Function in a sub-query. Q(3.13). Get employvee names

for emploeyees who earn more than the average of all emplovees
in the department dl.

select [ename]

from [emplovee]

where [[salary] >
select [avg(csalary)]
from [employee]
where [dno = dl}].

Use of grouped_by. Q(3.14) For each part supplied, get
the part number and the totsl quantity supplied of that part.
select [pno,sum(gty)]

from [shipment]
grouped_by [pno].

Fage 40

The GROUPED_BY operator conceptually‘rearranges the FROM
relation into partitions or groups, such that within any one
group all tuples have the same wvalue for the GROUPED_BY
attribute. In the above example relation ‘“"shipment" is
grouped such that the first group contains the tuples for
part pl, the second containe the tuples for part p2 and so
on. The SELECT clause is then applied to each group of the
partitioned vrelation. Each expression in the SELECT claucse
mucst be single~-valued for each group; that is it can be the
GROUPED_BY attribute itself, or & function such as SUM that
operates on all values of a given attribute within a group
and reduces those valuese to a cingle value. (3.15) For each
department, get the total number of employees with their
averagqe aqe and their average salary.

select [drio,cnt(ename) ,avg(age),avg{csalary)]
from [employee]
grouped_by [dnol.
Use of HAVING and GROUPED_EY. Q(2.16) Get part number

for all parts supplied by more than two suppliers.

select [pnol

from [shipment]
grouped_by [pno]

having [ecnt(sneo) > 21.

The HAVING clause is only wused to restrict & partitioned
relation so HAVING is alwayse used with GROUPED_RBY. The
expression in a HAVING clause must be single-valued for each

aroup.

Page 41

A comprehensive eiémple. Q(3.17). How many people earn

less than $8000 in each department ?

select [dno,cnt(ename)]
from [employee]
grouped_by [dno]

where [salary < 8000},

It ie important to make the distinction between HAVING
and WHERE clauses. In comparison with 0(3.16), both the
WHERE c¢lause and the HAVING clause are followed by
GROUFPED_BY, but they differ .in that the exprecssion in &
HAVING clause involves & built-in function <showing the
proprerty of each group whereas a WHERE clause only specifies

a simple condition in a grouped relation.

3.3 STORAGE OPERATIONS

The three storage operations are: updation, deletion and

insertion of tuples.

Update cperation., Q(3.18) Change the coler of part pe2
to vellow.
update [part]

set [color =
where [pno = p2Z

vyellow]
]

Within a set clause, any reference to an attribute on the
right bhand side of an equal sign refers to the value of that
attribute before the updating has been done. Hence the query

Q(3.19). Double the status of all the suppliers in Paris can

Page 42

be written as following.

update [supplier]
set [status = statusk2]
where [city = paris].

Update with complex conditicns. Q(3.20) Set the
quantity to zero for all suppliers in London.
update [shipment]
set [qty = 0]
where [Isnol in
celect [sno]]
from [supplier]
where [city = londonl.
Single tuple insertion. A(2.21) Add part p?¥ (name
"WHEEL" ,coleor "GREY", weight 27, city = "Hyderabad") to table
"P&RTR .

insert_into [part] : [p7,wheel,grey,27,hyderabad].

Single tuple deletion. 0(3.22) Delete all part records
in which the weight is greater than 17.

delete [part]
where [wt > 17].

Multiple rvrelations deletion. Q(3.23) Delete those parts
from vrelation "part" whose color is red, weight greater than
10 and ie supplied by pecple in London.

delete [part]
where [color = red,
wt > 10,
[pro] in
select [pno]
from [shipment]
where [[sncl] in
select [snc]
from [supplier]

Page 43
where [city = londonll].

Frorm the discussion above, it can be seen that SOQL is a
self-contained, structured Englich keyword 1language that
avoids the use of mathematical notations and concepts. The
form SELECT ...FROM... is an expression which, as far as the
user is concerned, produces a set of objecte. The use of
such exprescions greatly simplifies the process of
constructing & query. Many problems can be expressed in SGL
more eacsily and concisely. However the nonprocedurality of
€OL ie open to question. The decigners of S0OL describe it a&
nonprocedural (descriptive), since a SELECT-block specifies
cnly what dats is wanted, not a procedure for obtaining the
data. Some othere describe it as procedural becaucse there
are some procedursal elements, such as UNION, and GROUFED_EBY,

in that language.

3.4 THE SYNTAX OF SsaL

In contrast to conventional languages, the syntax of SUL
is not 311 that obvicus. The definition of the syntax uses
the Backue Naur Form meta-lanquage. édppendix 3 gives the

syntax of the query langquage.

The difference between SELECT-block and SELECT-blocks is
given in Figure(3.1) below. It is easy to see that the

syntax specification is recursive, permitting a SELECT-block

Page 44

to be nested within an outer SELECT-block. In the vast
majority of SQL retrievals we conctruct one or more “"SELECT
.-.FROM ..." "blocks, and such a 5lock specifies a set of
tupleé, that is a relation. To handle such relationcships, we

typically <epecify a tuple from one such block in anocther

nested block, or that a block containe tuples of another

block.
| SELECT-block | | SELECT-block]
- s I . . '
I | | SELECT-block | |
. - ! I . . | |
| union { | | | SELECT-block | j |
Y e/ | I | |]
| | P ‘ | |
. . i I | |
| SELECT-block |] ¢]
.~ ~ rd ' l
] | |
{ union |
A
| SELECT-block |
SELECT-blaocks . SELECT-block

Figure(3.1). SELECT-blocks and SELECT-block

Page 45

3.5 QUERY PROCESSING

Figure(3.2). gives a schematic of the way a query is

processed.

The steps involved in query processing are:

1. Input of task in SQL.

2. Parsing the query.

3. Intermediate form generation.
4. Final form generation

S. Execution of the final form.

6. QOutput.

3.5.1 Input Of Task In SQL

The query ie input by the user aon & terminal and <sent
far processing. At the moment this implementation is & bit
rigid in the sense that, all queries are to be input in the
lower case, and the arguments like relation list, attribute
liet and condition list have ta be encloesed <specifically in

l|[ll and ll]ll.

Fage 46

An input query

|
I
| select [ename,city]
| from [supplier]

! where [[snol in

I select [sno]
I from [shipment]

| where [pno = pZ2,

| qty > 20011].
|

Intermediate Form

sub_q(supplier,[_12, 13, 14, 151,[1,[1,
({_1Z,snal},[_13,snamel),[_15,cityll,!),

sub_qg(shipment,[_12,p2,_161,[_16>2001,[1,
[[_12,snc),[_16,qtyll,!).

— — — — — —— —
- — — - — —

r
“~

Final Form

ans((_13,_15)) :-
shipment(_12,p2,_16),
_1é>z00,
supplier(_12,_13,_ 14, 15).

Y
sname city
smith london
jones paris

Figqure(3.2). & cample query processing and its answer. .

Page 47

3.5.2 Parsing The Query

Thie section is devoted to ah implementation technique
for the SQL parser. The technique employed ie fairly general
and can be employed for parsing other structured query
languages. The emphacsis is on those aspects which have been
put tco practical use in the programming langquage Prolog,
showing how a structured query is understood by logic program
solving. The advantage of writing a compiler in Prolog may

be realised here.

2.5.3 Cencidering Keywords As Operators

Proleg can instantiate wvariables only to <structures,
atoms ov numbers, As & result an arbitrary sentence cannot
be read in using the "read(S)" predicate, because S will fail
to instantiate to the sentence. One elegant way to overcome
this problem is to pre-declare the key-words of the query
langquage as operators. Acs a conseduence of thies declaration,
réad(S), may be able to read in the query and instantiate it

to & structure if the input query is error-free,

One of the impartant strategies in writing the parser of
SQL i1s that each structured Englich keywofd in S0OL is
considered as an operatoer in Preolog by declaring it in
advance. Thecse operators not only provide seyntactic

convenience when reading or writing, but alsc allow the use

Page 48

of simplé expressions for what would otherwise have to be
implemented through more complicated code containing explicit
control structures such as iteration. Each operator has
three properties: & position, precedence and associativity.
The position can be postfix, prefix or infix, that is, an
cperator with one argument can gqo after ov before ity an
operator with twoe arguments can go between them. The
precedence is an integer and makes expressions unambiguous
where the syntax of the terms is not made explicit through
the use of parentheses. The associativity makes expressions
unambiguous in which there are two operators with the same
precedence. If we wish to declare that an operater with a
given position, precedence and asscciativity is to be
recognicsed when terme are read and written, use of the
built-in predicate "op" is made. If name is the decsired
aperatery (the stom that we want to be an operastor), prec the
precedence (an integer within the appropriate range), and
cpec the position/associativity cspecifier, then the operator

is declared by providing the following goal:

I ~

?- op(prec,spec,name).

Given below is the declaration of operators in the
implementaticn:
i~ op(40,xfx,in), op(40,xfx,not_in),

op(40,xfx,"\="), op(40,xfx,@), op(l8S,yfx,having},
cp(l180,yfx,where), op(l9z2,yfx,qroauped_by),

Page 49

op(195,yfx,from), oh(lSS,yfx,set), op(1935,ufx, 1),

op(200,fx,cselect), op(200,fx,update), op(200,fx,incsert_into),

op(200,fx,delete), op(215,xfy,union), op(200,fx,create),
op(200,fx,table), op(215,fx, {), op(200,xf, 2"}.

It is important to study how these operaters have been
defined. All querye will be read-in and appropriate
structures for them will be constructed if the query is

correct.

It ie this declaration that permite the nesting of
operators and such a nesting may be carried to any depth, so
that queries in SQL could be constructed with arbitvary
complexity. By means of the declaration, an SUL query is
internally reprecsented as a function or function form. e
sha;l use Ei to denote the internal reprecsentation of anm SOL
query Qi. A few of the results of the translation are

'illustrated belots:

Qi: SELECT [target list] FROM [relation] WHERE
[conditions] GROUPED_BY [attribute].

El: get_sub_gs(select(from(TARGET_LIST,
grouped_by([RELATION] ,where([GROUPING_ATTRIBUTE],
COMDITION_LIST2))),Xs,Hash,ANSHER) :-

Q2: SELECT [target list] FROM [relations]
WHERE [conditiones].

EZ: get_sub_gs(select(from(TARGET_LIST,where(RELATION_LIST,
CONDITION_LIST))) ,Xs,Hash ,ANSWER) :-

03: SELECT [target list] FROM [relation] GROUPED_BY
[attribute] HAVING [{function
COMPARISON OFERATOR number].

E3: get_sub_qs(select(from(TARGET LIST,grouped_by([RELATION],
having([GROUF_ATTRIBUTE] ,[function COMFARISOM

Page 50

OPERATOR number1)))) ,Xs,Hash,ANSWER) :-

Q4: SELECT [target list] FROM [relation]
GROUFED_BY [attribute].

E4: get_sub_qs(cselect(from(TARGET_LIST,grouped_by ([RELATION],
[GROUPING_ATTRIBUTE]))) ,Xs,Hash ,ANSWER) :--

05: SELECT [target list] FROM [relstion].

ES: get_sub_qs(select(from(TARGET_LIST,[RELATION])),
Xe,Hash,ANSWER) :- .

06: DELETE [relation]l WHERE [conditions].

E6: get_sub_qs(delete(where([RELATION] ,CONDITION_LIST)),
Xs,Hash,{]}) :-

07: DELETE [relation].
E7: get_sub_gqs(delete([RELATION]) ,Xs,Hash,[1) :-

(g: UFDATE [relaticn] SET [attribute =
arithmetic expression] WHERE [conditions].

E8: get_sub_qgs(update(cet([RELATION] ,where([ATTRIBUTE=
EXPRESSION] ,CONDITON_LIST))), [([(Var,Attr]], ' ,[]1) -

Q%: UPDATE [relation] SET [attribute=arithmetic exprecsion]

E9: get_sub _qs(update(set{[RELATION],[ATTRIBUTE=EXPRESSION])),
Xe,0,[1) -

Q10:INSERT_INTO [relation] : [constants].

ElD:get_sub_qs(insert_into(:([RELATION],CONSTANT_LIST)),
Xs,Hash,[}) - '

Qli:[celect block] UNION [select block].

Ell:get_sub_gs(unicen(SELECT_BLOCK1 ,SELECT_BLGOCKZ),
Xs,Hash,ANSHER) -

Since the SOL parser has & different entry for each
poessible S0L query, unacceptable queries can be discarded on

groundes of a mismatch. This technique allows the

Page 51

implementation _to resolve query ambiguities with

comparatively little effort,

~The <cubsequent chapter deale with the top level
predicates involved in query processing and the execution of

the answer set of tuples.

CHAPTER 4

TOF LEVEL QUERY PROCESSING

The top level predicates inveolved in nested query
processing are discussed below. The ratiocnale behind
choosing this mode of proacessing should become clear as the
predicates involved in the processing are discussed in

detail.

In this implementaticon of the query processor, the
important pointe to be noted are the creation of variables,
unification of variables and treatment of conditions. One
more point te be noted here is that the query processor
converts the query intce an intermediate form (called the
CANONICAL LOGIC FORM [12]) which is then converted to the

are all

4]

sub-clauses of the answer goal. Thece <sub-clause
elemernts of & list in this implementati0n. Hhen the
processing is complete the elementsvof this list are called
one at a time, and if all the sub-clauses are called

successfully then the answer is printed.

By discussing the processing of a query of
SELECT-FROM-WHERE type, I <shall explain how nested queries
are tackled (since this iz the mest general type of query

possible). The reader should not be unduly worrvied about the

Page S3

fact that only a specific query has been discussed. In fact
the general strategy involved in processing the different
queries (like- SELECT-FROM-GROUPED_BY-WHERE or DELETE-WHERE
or other queries involving WHERE) is not much different. The
queries not involving WHERE are much easier to process and in
fact are a special case of queries having WHERE, where the

condition liet is empty.

4.1 CREATIOWN OF VARIABLES

The query which has been parced, ic firet processed to
extract the attributes asked for by the user from the
structure created for the query. Then the attributes are
processed and wvariables are created for them. Specifically
if the attribute is simple then, i£5 variable <sublist will "
have two elements and if the attribute ie one inveolving
function like AVG, CNT, MAX etc., then the wvariable sublict
wWill involve three elements. A tvypical variable list would
look like - [[_128,pnol,[_Z271,9tv,cuml}l. Once this list is
created the variables from this list are extracted into just
& variable list and kept for writing the answer set. If the
above list is the Xe liet then the plain variable list is
[;128,_2?1]; Now depending on whether the query is & SELECT
or DELETE or INSERT_INTO or UPDATE the appropriate get_sub_qs
predicate ie matched. The get_sub_qge predicate has the first

argument for the query structure, the second one is the list

Page 54

of Xs, the third one for whether the query was one invelving
negation or NOT “and the last arqument is the answer list
which containe the various tuples to be satisfied for getting

the ancswers.

In assimilating the function (query structure), we have
the problem of dealing with the situation when & new
attribute 1is discovered. If the attribute has been
encountered before, then the created vwariable corresponding
to the attribute ie & join variable that will appear 1in the
intermediate form; actherwise we must ensure that the new
variable we ascign to it dbes not accidently coincide with
one representing any cother sttribute. In both cases it ig

important to keep the correspondence bétween the attributes.

and the variables.

While dealing with an attribute, it is helpful not only
te remember whether the corresponding variable ie decsired by
the user but alsoc to understand whether the wvariable is &
jein-variable or just an independent one. In the actual
implementation there was no need to clascsify the different
variables because new variables were created as and when
needed and if the attribute was alvready precsent then the
variable created was unified with the earlier created

variable.

Page &5

4.2 TREATMENT OF CONDITIONS

In general, a SELECT-block will be translated inte &
sub-query in an intermediate form. The most difficult part
in processing the query ie to understand the WHERE-conditions

oh which the answer to & query itg to be obtained.

Coneider the following example:

select [attrll,attrZl]

fram [rell,relZ]

where [rell@attrll >
rellé@attrla =
rel2@attrze

elZGattrzl,

v
=p

[N

n
cselect [attr3l]
from [rel3]
where [attr32 = smith]].

It is easy to see that there are three kinds of

conditions:

1. Join conditicne: The comparison between two attributes

belonging to different relations, such as

rell@sttrll > relZéattrl

2. Chaining conditions: One of the chaining operators

("im", or "={, or "not_in"}) is used in the comparison in

ovrder to select information from one relation based on

the contents of ancther relation, such as:
esa.YelZ@attrZ2 in
celect [attr2l] from [rel3]
wWwhere [sname = smithll].

Page 56

3. Simple conditions: Compariscon with a constant, (integer
or atom), such as

rellé@attrl3 = 5

The predicate "break_off" splitse the condition list into
“tiwo - ane containing simple and chaining conditione and the

other containing join conditions.

4.3 TOF LEVEL PROLOG IMPLEMENTAT IO CORRESFONDIMG TO

RECURSIVE PROGRAMMING

Given below are the top level predicates inveolved in the
query processor and their functions

get_sub_qgsiselect(from{Attre,where(Relaticons,Conditians)),
Xe,Hash,Ans) -
simplify_cols(Attre,Cols),
break_off(Colsd4,Xe2,Conditions,5,V,F,FFJ,
differ(Relations,S,V,F,FF,R),
cne_by_one(R,Ans).

break off(S,K' []3*—,“ [] [])

break_off (51 ,V1,[AlB],;S, U F, [HIIFF]‘ i
join cond(°1 Ul +F, 82 Uc,él),
break_off {52 ,Vz,B,5,V,F,FF).

break_off(cl,ll [HIE],S,U [AlF].FF) -
break_of f(S1,V1,B,8,V,F,FF).

differ([],_ _s_sL13.

dxffer([NllNc] £ 5,V,F,FF,[(N1,51,V1,F1,FF1)[R]}) :-
plcP_up(Nl,&,U F FF,Sl U1, Fl FFl z JFe,FFay,
differ(MNz2,5,V2 F;,FF: Ry.

one_by_one([{N,S,V,F1,F2}1[1],Ansy -
get_tuples(N,5,V,Fl,F2,A,ANs).

one_by_one([(N,S5,V,F1,F2)|B],Ancl) :-
get_tuples(N,5,V,F1,F2,4A, An)

‘ one_by_one(B,T), dppend(én_,T Ansl).

qet_tuples(N,5,V,C,F2,S5th,Ans) - relétion(K),

Page 57

K =.. [NIL], length(L,Num), get_skel(Num,A),
break_down(s,V,C,8¢,Vs,Fel,F21,Anc2),
reform_f2(S¢,Vs,F2,8ss,Ves,F22), append(FZ2l,F22,Fs2),
sart(lL,A,5=s=s,Vse), get_sth(L,A,Vees,Sth),
unific(L,A,Fel,Fsll), remove(Fs2,Fs22),
asserta(sub_q(N,A,Fsll,Fes22,Vee,Sth)),
get_querys(sub_q(N,A,Fsll ,Fs22,Vss,Sth) Ancl),
append(AnsZ,Ancl ,Ans) .

break_down(S,V,[1,5,V,[1,[1,[1) = 1,
break_dcewn(81,VY1,[AlB]},52,V2,Fsl,Fs2,Ans) - A=..[1,J,K],

(((atom(K) : number(K)), simplify_relatr([J],[J1]),

cut_offl(¢(s1,V1,1,J1,K,5,V,F1,F2,4nsl))
b
cut_off(51,V1,I,J,K,8,V,F1,F2,4nsl)),

‘break_down(S,V,B,52,V2,F12,F22,Ans2),

(Fl==1, Fsl=F12; Fel=[F1(|F12]),

(F2==1, Fe2=F22; Fs2=[F2|F22]),

append(Ansd,Ancsl ,Ans).

cut_off(S,V,in,J,K,81,V1,!,t,Ans) -
simplify_colse(Jd,L), subst(S5,V,L,%s,581,V1),
arg(l,Kk,Temp), ext(Temp,[Atr|_1),
create_var(Atr ,Attrl), get_onlv2i{¥s,Temz),
set_diff(AttrlTem2,Tem3),
get_xs(Tem3,Xs,Xsl), get_sub_qs(k,Xel,! Ans),
extract(Xs,Tempo), extract(Xsl,Tempo).
cut_off(5,V,=,J,K,81,V1,!,!,Ans) :-
cut_off(S,V,in,Jd,K,81,V1,!,! Ans).
cut_off(S,V,not_in,J,K,S51,V1,!,!,Ans) :-
simplify_cole(Jd, L), subst(S,V,L,Xs,51,V1},
arg(l,K,Temp), ext(Temp,[Atr|_1),
create_var(Atr,Attrl), get_only2(Xe,TemZ),
set_diff(attrl,TemZ,Tem3),
get_xs(Tem3,Xs,Xsl), get_sub_gs(K,Xel,nct Ans),
extract(Xs,Tempoy, extract(Xel ,Tempol. ‘
cut_of f(S1,V1,I,J,K,5,W, 1 ,F2,Ans) - !, simplify_cole(J,J1},
subst(S81,V1,J1,[Xs],5,V), argl(l,K,Ry, ext(R,[HIT]},
H=[H1]T1],
{((atom(H1), ¥=1 = [[¥2]1J111)

1

(H1 =.. [Cp,_1,

appendiJil,[0p],Atrl), Xl = [[¥Y2latrlll)),
get_sub_ges(kK,Xsl,!,Ans),
extract(Xs,[{¥Y1]), F&=..[1,¥Y1,YZ].

cut_off1(S1,V1,1,J,K,S,V,F1,!,[1) :-
substitute(Sl,V1,1,J,K,8,\), F1 =.., [I,J,K].

Fage S&

break_off(s,V,C,81,V1,F,FF) :— The predicate "break_off"
ie used to break off such a SELECT-block in which the FROM
clavuse contains several.relations. Az a result, by creating
join -uariables, the Jjecin conditions specified in the WHERE

clause will be replaced by relevant formulas.

This predicate breaks the input list of attributes &, input
list of wvariables V and conditions C into cutput list 51
concisting of S plus those attributes obtained from C which
are not already present in &, (same definition for V which
gets converted to V1). The conditions C get broken intoe two;
F - the independent formulas and FF - the relevant formulas.
F consists of &ll eimple conditions and chaining conditions,
whereas FF consicsts of all conditions involving comparison
wWith the same attributes of other relations, For the moment

all the chaining conditicons are assumed to be simple ones.

break_down(s,V,C,51,V1,Fsl,Fs2,Ans) i— The predicate
"bfeak_down“ is only used to break down such a SELECT-block
in which the NHERE‘clause may contain chaining conditions,
As & result, by c¢reating Jjoin wvariables, the chaining
conditionse will be broken down intco peeudo-independent

fermulas and relevant formulas.

\

Fredicate break_down deals with the list of conditicons
C, containing simple conditions and chaining conditions.

Each condition is tested to see whether it is scimple or

Fage 59

chaining. If the condition ic simple predicate cut_offl is
called else cut_off is called. As a result all new
attributes that are found in C are added to & to give Sl1, new
uariébles are added to VUV to give V1. New independent
formulas and new relevant formulas that accrue from chaining
conditions are put in Fel and Fe2 respectively. Ane is the
list of answers c¢btained so far from processing the nested

sub querye.

differ(N,S,V,F,FF,R) := The function of the predicate
"differ" 1ie that from the collection of all attributes S,
variables V, non-join conditions F, and relevant formulas FF
which is the recsult of the execution break-off, each relation
picke up ite own attributes &1, wvariables U1, non?join
fermulas Fl, and relevant formulas FFl respectively, and puts
them in the kox R in the particular order:

[(Nl,Sl,vl,Fl,FFlj,(NE,SE,U2,F2,FFé),...]

The box R will be desalt by the predicate one_by_one}

oné_by_one(ﬂ;éns) - Thie predicate takes the
list R obtained above and processes the list of csub-querys
(nested quervs) for 2all the relations present in R, and gets

the final list of answer templates for finding answers.

get_tuples(N,&5,V,F1,F2,A,Ansl) :- A= the sub-goal of the
predicate one_by_one, the predicate get_tuplecs performs the

staring of the query tuple in the intermediate form.

Page 60

Typically the intermediate form is:

sub_q(Name,Attr_lis,Indef_lics,Relef_lis,Var_lis,Grp_atr_lic)

Here Name is the name of the relation, Attr_lis the list
of attributes 1involved in vrelation Name, Indef_lis is the
list of independent formulas, Relef_lis 1ie the 1list «of
relevant formulas, Var_lics is the list of variables involved
and their associations with the attributes and whether they
have any aggregation cperaticons on them. Grp_atr_lis ie the
liet containing the attribute whose aggregation is needed.
Thise predicate performs the intent of one_by_one far each
element of R. The Anel obtained here is & sublist of Ane in
the above predicate cne_by_one. ‘A7 here ie instantiated to
a list containing any aggregatien functions like grouped_by,

SUM, COUNT, AVG, MAX, MIN.

cut_off(s,V,in,J,K,51,W1,!,!,Ans) :1- Deale with
sub-querys having “in’ &as the chaining ocperator. J being the
“target list’ of the sub-query K. I have put target list in
quotes to indicate that the targef liet in the sub query K-
may ndt eactly match; in the <enze that, for instance J
might be [pno,gqty] Qheréas the target list in K might be
[pno,sum{qty)). Ane is the answer obtained af ter processing
the <sub-querye K. 85,V get modified to £1,V1 containing all
attributes and variables in J not already presént in & and W

respectively.

cut_off(s,V,=,J,K,51,V1,!,!,Ans) 1~ Here =" 1is wused
instead of “in’, and its meaning ic the same as the cut_off

given above,

cut_off(S,V,not_in,J,K,51,V1,!,!,Ans) - I the same

s

as above but for the chaining operator which is ‘not_in’.

cut_off(s,V,1,J,K,51,V1,!,F2,Ancs) :- Deals with
all those chaining conditions where the chaining cperator

happens to be one of >, »=, {, ={, =,

cut_offl(s,V,I,J,K,51,V1,F1,!',[1) :- Deale with
all <simple conditions. F1 getes instantiated to the simple

condition comparison.

If there exist nested queries embedded in the chaining
conditien then the predicate get_sub_ges will be called again
and again until the break_off and break_down processing hits

the bottom of the recursion.

It would ke relevant here to show‘into what intermediate
form the nested gquery is reduced after a major part of the
processing is over.

In SQL:

select [ename]

from [employee]

where [age { 35,

‘ [esalarv] > _
celect [avg(esalary)]
from [employee]].

In Intermediate Form:
sub_q(emplovee,[_13,_14,_15,_161,[_14<35]1,[_15>_24],
[[_13,name],[_14,a9e],[_15,salaryll,!),

sub_q(emplovee,[_17,_18&,_ 19, 2031,01,03,[[_12,salary]l],
- [[_24,s8lary,avgll).

In the finalrexecutable form:
[ava(_1%,employvee(_17,_18,_19, 20),_=24},

emplovee(_13,_ 14, 15,_1¢€),
_14<35, _15>_24]

It can be seen that the nested query is decomposed into
a simple collection of query tuples in its intermediate form.
Thie intermediate form is then converted intc the final

executable form, and will be ultimately executed.

4.4 TRACE OF QUERY FROCESSING BY AN EXAMFPLE

Tt would be prudent here to diecuse the functicon of the

top level predicates with the help of an example.

ExAMPLE: Find the names and ages for emplovees in

department "dl" who earn more than the aversge salary of

those who are in the same department with age greater than
30:

select [ename,age]
from [employee]
where [dno = dl,
[ealarv] >
celect [avg(salarv)]
from [emploves]
where [dno = dl, age *¥ 20]117.

Fage €3

The query is vead through the built—-in predicate
"read(8)", where S will now ke instantisted to:

§ = select [ename,age] from [employee] where [dno=dl,[salary] >
select [avg(salary)] from [employee] where [dno=dl,age>30]]

whose internal representation ics:
& = select(from([ename,age] ,where(lemployeel ,[dno=dl,[salary]>

cselect(from({avg(salary)],where{[emplovee],
[dno=dl,a9e>30]1)3213))

Then a predicate "create_var([ename,agel,L)”, creates =&
list of wvariablesz for final output. Here L ics instantiated
to:

L =[[_4d12,ename],[_428,aqe]]
fAleo a ceparate liet of only these variables is kept in L1,
~which is done with the help of "extract(L,L1)" where L1 is:

Ll = [_412,_428]

Another liet L2 is created from the attribute liet in S
the query structure,

Lz = [éname,age]

Af ter confirming what is needed the predicate
“get_sub_gqsi{5,L,!, 213", ie called, where _21 will ultimately

be cantaining the ancwer tuples.

From the fixed structure of & above, the list containing
the relation names can be obtained. Therefore it is now easy
to obtain & skeleton list containing variables, the length of

the 1list being equal to the number of attributes of the

Fage 64

relation in question.

Now the predicate

He

break_off(L2,L,[dno=dl,[salary] > select [avg(salary)]
from [emplovee] where [age>30, dno=dl]l]l,_S542,_S543,_544,_3543)

processed, which gives the output as:
break_off(LZ2,L,[dno=dl,[salaryv] > select [avg(salary)]

from [employee] where [age>30, dno=dlll,[ename,age],
[[_412,ename]l,[_428,a9ell,[dno=dl,[=salary]rselect [avg(salary)]

from {employee] where [ager>30,dnoe=dl1]1,[1)

re the variable _542 is the same as the ligt LZ, since no

new attributes were discovered in the condition list - the

th

he

Th

ar

is

(_

in

ird argqument of break_off. Alec it might be remembered
re that the néated SELECT ie ignored for the moment.
erefore there is noc corresponding change in the fifth
qument (_543) of break_coff, and it ic the came mc L. _544
the same as the conditicon list, becauce the final argument
S545) is the empty licst, i.e. the condition liet is broken

to the fifth and sixth arquments where the former containe

simple conditione and necsted "SELECT" and the latter contains

jo

Th

in conditions.

& predicate

'differ([employee},[ename,age],[[_412,ename},[_428,age]],

be

[dre=dl,[salary]l>select [avg(salary)] from [employee] where
[age>30,dno=d11],[],_546)

comes

differ{{emplovee],[ename,agel,[[_412,ename],[_428,a9el],
[dno=dl,[calary]l>select [avg(salary)] from [employee] where
[age>30,dne=d111,[].[(emplovee,[enamne,agel,[[_412,ename]l,
[_428,ag9ell,[dno=dl,[salary]rselect [avg(salary)] fraom
[emploves] where [ager30,dno=dl1]1,[1)]

Page 65

Here the lacst argument gets instantiated to the 1list whose
elements are such that each element coentaine the attributes,
variables and conditions for each vrelation. In thie case
5ince- there was only one relation the final list likewise

contains only one element.

The predicate
cne_by _one([(employee,[ename,agel],[[_412,enamel,[_428&,a9e]],
[dno=dl,[salarv]rcselect [avg(salary)]l from [employee] where
[age>Z0,dro=d111,[1)1,_54%)
becomes
cne_by_one([(emplovee,[ename,agel,[[_412,ename],[_428,aq9e]ll,
[dno=dl,[salarv]lrcelect [avgi(salary}] from [employee] where
[age>30,dno=d131,[131,[avg(_1949,[emplovee(_1535, 1942, 1949,d1),
_1942>301,_1224),emplovee(_412,_42&,_1100,d1), _1100>_1224])
Here cne_by_cne, az the name suggests takes one element each
of the lict represented by _S45, and processes them to give
the final aneswer list _S54%. The predicate one_by_one makes
use of predicates like "cut_off" and "cut_offl" which act on

the nested SELECT and simple conditicns (in the condition.

list) respectively.

Apart from thie <come other wuseful predicates remove
cimple conditione involving "eguality”., For instance if we
have one of the answer tuples as:

employves(_1935,_ 1942, 1949, 1956)
and condition list ac:
[d60=d1]

Then the answer tuple might as well be:

Fage €&

employee(1935, _1942,_1945,d1)

and the condition list can now be made empty.

Once the answer set is obtained, which is:

[avg(_1949,[emplovee(1935, 1942, 1949,d1), 1942>30],_1224),
employee(_ 412, 428, 1100,dl), _1100>_1224]

the predicate

callingl(lavg(_1948,[emplayee(_ 1935, 19242, 1945,d1),
_1942)30],_1224),employee(_412,_428,_1100,dl),_1100>_1224])

calls each element of the list one at a time. In thie cace
firet
avq(_19249,[emplovee(_1935,_ 1942, 1349,d1),_19242>20],_1224)

is called which becomes:
avq(_1949,[employvee(_1935,_1942,_1949,d1),_1942>30]1,8050)
It might be added here that "avg" finds the average of the
firet argument which <catisfies certain conditions in the
csecond argument, and then puts 1ite answer in the third
argument., Once this 1is done, the predicate callingl calis
ite cecond element, which gets instantiated to:
emplovee(iohn,24,8600,d1) |
Nqu callingl call=s for the third time as:
get0o > enso
It exite with all the elements of callingl, <=satisfied, and
then the predicate "write_attr", does pretty printing on the
desired cutput stream. Then fail 1iec encountered, whereby
different elements of callingl are resatiesfied and thus

ensutring exhavstive database search, until no more sclutians

Page &7

are possible.

ername age
Jjohn 24
henry 29

Mention mucst be made here of the predicate "break_down".
In the query discussed since there are no join conditieons,
this ie not of use, but in queries invelving join coenditions,
break_down does analogqously to join conditicons what break_off

does to the simple and chaining conditions.

In concluding this chapter I must add that meost of the
query processing involves 3 lot of unification, and creation
of variables. This observation makes the relevance of Frolcog

8¢ & databacse lanquage 3ll the more significant.

Page 68

CHAPTER 5

NEGATION,-AGGREGATIDN AND OTHER USEFUL FREDICATES

Thie chapter discusses negation involved in wvarious
queries, its interpretation and then goes on to discuss other
facilities provided by SQL - namely aggregation coperations,

and also discussecs some useful predicates.

5.1 NEGATION AS NONFROVABILITY

Many queries involve (explicitly or implicitly) the
concept of negaticn. For e.g9.1
select [sname]
from [supplier]
where f[[sno] not_in
select [snol

from [=hipment]
where [prio = p2l].

5.1.1 The open and\closed world assumptions

Care must be taken when representing negative
information, as under certain circumstances, its operational
and declarative interpretations might not coincide.

Basically, two assumptions are possible: the open and closed

world assumptione.

Page €9

1. The open world assumption corresponds to the usual first
order approach to query evaluation: Given a databace DB
and a gquery Q, the only answers to 0 are those 4which
dbtain from proofe of @ given DB as hypothecses. With
this definition we could represent negative information
explicitly, for example, by adding assertions of the form

"not(p)".

2. Under the closed world assumption, certain answers are
admi tted as é result of failure to find a proof. More
épecifically, if no proof of a positiue' ground 1literal
exists, then the negation of that literal is assumed
true. This can be viewed as equivalent to implicitly
augmenting the given database with all1 such nega@ed

literals.

The <cecond order approcach presupposes a camplete
knowledge of the domain being represented. For many domains
of application, this assumption is appropriate. For example
it is natural to assume that thocse employees who are not
stated to work at department "dl", de not work fhere. In
octher words, the individuals named in the database are the
only individuals there are., For such domaine, an implicit
representation is usually preferable, as negative information
outndmbers by far positive information, and it would be

redundant to represent it explicitly when it can simply be

Page 70

established by default.

5.1.2 Negation as failure

In dealing with how meaning can be scscsigned to answers
to negative questions, the standard negation of first order
logic is problematic to implement and seems inappropriate for
many purposes. By contrast, the great advantage of the
closed werld assumption is the ease with which it can be
implemented. For pragmatic reasoﬁs Prolog provides a partial
implementation of non-provability. To show that P ies falece
we do an exhaustive search for a proof of P. If every
poscible proof fails, not P is “inferved’. Given below is
the implementation of not P.

net(F) :— call(fF), !, fail.
not(P).

Therefore the query, e.q9.1 would be interpreted as:
?ind supplier names for suppliers who are not known to supply

part p2.

Unfortunately, dealing with closed world assumption does

not 1itself guarantee negation by default te behave as
expected within 1logic programs. Let wus concsider the
following database which contains the following facts.
male(david).
male(albert).

female(susan).
- female(margaret).

Page 71

Under the closed world agsumption, "male(susan)" and
"male(margaret)" must be concidered to be false. But wheresas
the queries "not male(susan)" and "not male(margaret)" will
be COfrectly evaluated as "yes“'since both "male(susan)" and
"male(margaret)" will fail, the query "not male(X)" will just
fail inestead of just retrieving susan and margaret as values
for X since male(X) can be proved by matching X with either

david or albert.

Acs this example shows, within the closed world
databases, negated predicates are only safe to evaluate when
they contain no free variables, i.e., when all the wvariables

they contain have been replaced by ground terms.

One poscsible scluticon to this problem is to dyvnamically
postpone the evaluation of some atome in a query, according
to predefined criteria. The execution of & formal "not P

i

can be blocked until P containe no free variables.

2.2 THE PREDICATE "GROUP"

High‘ level query languages very often involve the
partition facility which conceptually rearranges a relation
into groups such that in any one group all tuples have the

same value for the grouped attribute.

Page 72

The predicate group can be implemented as:

group(N,G,N) :- call(G), only(N)}.
only(N) :- not(ffound(N)), asserta(ffound(N)), !.

where ffound is a functor to remember what has been grouped
so far during a query execution., There is a difference
between the two N’s which are the arguments of the second
order predicate *“group'. If and only .if the sub-goal
"only(N)Y", in which the N was instantiated by calling 6
succeeds, then the predicéte group succeeds, and only at that

time the second N can be matched.

5.3 THE PREDICATE "UPDATE"

As far as the <storage operations are concerned, we

introduce a predicate update with three arguments. We can

consider ubdate(Old,G,New) as; saying that replace an
instantiated tuple G in the database by a new tuple which is
the came as G except that.the dcéurrence of 0ld becomes Newf
Given below is the "updat" predicate,

updat(X,G,Y,Attr) -
(callingl(G} ;3 (not(is_list(G)), call(G))),
updated(X,G,Y ,Attr}, fail.

updated(X,G,Y,Attr) :— {find(Y,Y1)}, {integ(Attr,Y1)},
replace(¥Yl,X,G,New}, nl, retract(G),
asserta(removable(G)), asserta(savable(New)),
asserta(New), write(G),
write(’” i updated to : ‘), write(New), !.

find(X,X) :— atemic(X).
find(E,R) :—~ R is E.

replace(New,01d,01ld,New),
replace(MNew,01d,Val,Val) :— atomic(Val).

Page 73

replace(New,01d,Val ,NewWal) :- functor(Val,Fn,N},
functor(NewVszl ,Frni ,N), '
subst_args(N,New,01d,Val ,NewVal).

subst_args(0,_,_,_,_) = 1|,

subst_args(N,New, Dld Val ,NewVal) :- arg(N,Val,0ldArg),

arg(N,Newal Newérg), replace(New,Gld,OldArg,NewArg),
N1l is N-1, subst_args(Nl,New,0ld,Val ,NewMal).

5.4 AGGREGATE FUNCTIONS

One of the important functien of DBMS’s is the
application of aggregation or statistical functions. The
functions that are currently supported are CNT, SUM, AVG, MaAX
and MIN, For example to calculate the average calaries in
the relation EMPLOYEE in the department "dl1", we can ashk:

select [avg(salary)] from [employee] where [dno = dl}.
The execution could be in the way that, firet the relation
EMPLOYEE would be selected under the department "dl", then

praejected on the attribute "salary"; finally the projection

would be sent te the AVG function.

A formal definition of an aggregation function is:
An aggregate function takes a set of tuples (3 relation) as
an arqument and produces & single simple wvalue (usually a

number) as a result.

Page 74
5.5 IMPLEMENTATION OF AGGREGATION FUNCTIONS

The implementation strategy is based on two principles:

1. Any aggregate function is based on a base relation.

2. The query tuple 1involving an aggregate function in
intermediate form will introduce an aggregate-predicate
which incorporates the expressive power of high-order

predicate calculus in the intermediate form.
Therefore the implementation of the above query would be

avg(_45,employee(_43, 44, 45,d1), 50)
where the variable 50 i instantiated to the average salary

of the emplovee in department dl;

In general, the extension allows goals of the form:
aggregate_predicate(V,F, XD
to be read - the aggregate function specified by
"agqregate_predicate" on VY’'s sdch that F is provable is X,

where P is a goal or a conjunction of goals.

With this implementation strategy, let wue consider &
more sophisticated query: Find thé emplovee names and ages
for emplovees in department "dl1" who earn more than the
average salary of those who are at the came department with

age over 30:

Pagé 75

select [ename,age]
from [employee]
where [dno = dl,
salary >
select [avg(salary)]
from [employee]
where [dno = dl, age > 30]].
whose final executable form would be:

[avg(_41,[employee(_39,_40,_41,d1),_40>30],_50),
employee(_51,_52, 53,d1), _53>_50]

N.B. Here _51 and _53 are the variables which get

ultimately instantiated to the answers - employee
name and employee salary csatisfying the criteria.

In this implementation, the second argument of all
aggreqation predicates can be instantiated to & list
containing arbitrary number of conditions such that the
answer which will be instantiated 1in the third argument

satisfiecs all these conditions.

S.6 A LOOK AT SOME OTHER USEFUL PREDICATES

The Prolog wversion of the query obtained .so far
incorprorates a eimple proof procedure? However, the
extralogical primitives provided by the Prolog system such as
cut, fail, fork play an important vreole in improving
efficiency, since they can derige how the procf can be

carried out.

Page 76

Let us consider the execution of
a :t- b, ¢, d, e, f,
Suppose we know that the sub-gozl f fails, and suppose we
als& know that there is no point in trying to resatisfy d and
e because they will anyhdw fail. In sﬁch a case when
backtracking occure (when f fails), we would 1like the
subgoals d and e to be <ckipped for resatisfying and the

subgoal ¢ to be resatisfied.

To circumvenf thies problem we define s pair of prefix
and postfix operators, "{" and "}" , whose intent is given in
the following Prolog definition.

{XF 1= call(X), .
The X here can be instantiated to any number of sub-goals,
which we know are invariably going te fail on'backtyacking.
By doing so these sub-goale will never be attempted to bé
recsatisfied in the event of & backtrack. For the example
gqiven above we may include d and e as chown below:
a :—- b, c, {d, er, fqy e.c .
Now when f faile, e and d will neot be resatisfied but
directly the attempt to resatisfy c will be made. It means
that thecse sub-goals d and e will only be entered from the

"left" so to say.

Page 77

The advantages of hawing such an implementation are

obvious.

Since there is no in-built definition of the comparicson

operator "=" , it has been defined below:
AN B :-A=EB, !, fail.
A \= B.

I would 1like to highlight another <cimple predicate
called "pick_up", which is the backbone of this
implementation. It has been uced to unify variables and for
instantiating wvariables te atoms, and often to pick up
certain elements of the list given the 1list and their

positions in it from the beginning of the list.

The implementation in Prolog of pick_up is given below:

pick_UP([],._;[])-
pick_up(IMIN],L,[XIY]) :- mem(M,X,L), pick_up(N,L,Y).

mem(1,X,[X|_1).
mem(N,X,[_IY]) :— mem(M,X,¥Y), N is M+1,

This predicate may becst be explained by giving examples:

€.9.1 pick_vup([4,2),[a,b,c,d],L).
gives L = [d,b]

e.qg.2 pick_up(L,[a,b,c,d),[c,a])
gives L = [3,1]

€.9.3 pick_up([1,4},[a,b,c,d],[A,B])
gives & = a, B = d

9-9-4 ple__Up([E,l],[A,B,C,D] ,[FsG])
Af ter this F shares with B and G with A

€.9.95 However pick_up(L,[A,B,C,D],[C,A))
is meaningless, in the sense that
L ie instantiated to [1,1]

Page 78

Other predicates are extract_attr which dives deep into
a list and extracts all atoms and numbers and collects them

in a list.

The implementation of extract_sattr is given below:
extract_attr([];[])-
extract_asttr(X,[X]}) - atomic(X).
extract_attr(T,L) :- arg(l,T,X),

extract_attr(X,L1), arg(2,T,Y),
extract_attr(Y,L2), append(lLl,LZ2,L}.

Apart from the top level predicates discussed in Chapter
4 and some. of the important ones discussed above there are
ofher predicates involved in wvarious functioné of finding
aggregation of attributes and for simplifying the attributes,
variablees ete. during variouse <etages of processing. It
would be irrelevant to discuse them in detail as the purpocse

they serve is cbvious from the implementation itself,

Page 79

CHAPTER 6

SUGGESTIONS FOR IMPROVEMENT AND IDEAS FOR FUTURE WORK
At the end of implementing any system, one invariably
feels that there 1is room for improvement in almost every
acspect of the implementation. I <¢hall discuse & few
important points where | feel the performance of this system

will be considerably improved.

The idea that suggestions for imrovement and ideas for
future work 'go hand in hand because both these aspects are
interconnected. One might build over the already existing

work or one might try te rectify the flawe in this and then

go ahead by building over it.

1 shall specify the shortcomings of the implementation

and a3 possible way to remove them as I list them:

1. The existing implementation allows queries to be input in
the lower case only, and the attribute list, relation
list, and condition liste have to be specially enclosed
in brackets (*[" and "]"), due to the peculiarities of
the Proleog uvesd. There is a possibility of including &
pipe (a wutility which helps in giving the output of one
program as the input of ancther) written in any of the

procedural languages, where the input can be more

flexible in that the query may be specified in either

(0]

Paée 80

upper or lower case and that elements of the attribute,
relation, condition 1lists need not be specifically
enclosed 1in brackete. In other words the job of this

program i€ to make query entry more elegant.

Af ter the processing of the query is over, a list of
query tuples is created which have to be searched through
the database. It can be shown that in certain cases,
recordering the query tuples in the final liet might mean
the difference between getting almost instantaneous
answers or having to wait for hourse. Hence an optimizer,
ensures that all queries are answered in a vreasonable

amcunt of time [1].

Improving the performance of thic syestem can be done by
designing more powerful predicates which invelve less
computation. This may be realized by useing partial data
structures calledb difference 1lists [&] and removal of
redundant code. What I have'suggested will hopefully be
clearer with the following example:

We write append predicaté as:

append([],L,L)}.
append([HIX],Y,[HIZ]) :- append(X,Y,Z}.

If the purpoce of this predicate ic just to append
two liste then it might as well be done using:

append(X,Y,Y,X).

However now we need to write - append two lists L1
and L2 to give L3 as:

Page 81

append([L1]A],L2,A,L3).
For e.q. append([1,2,3|Al,[c,d,el,A,ARns).
gives Ans = [1,2,3,c,d,e].

in one shot,

Many such improvements are poecible in the
implementation, and this will substantially reduce query
procecssing fime. Such optimizatione and improvement in
the style of w}iting the code will undoubtedly make it
more understandable and amenable to‘changes without much

difficulty.

4. .Coﬁparizon of the performance of this implementation in.
processing queries (i.e. time taken to procéss it) with
that of SPREADE (Simple-to-uce Pertable RElAticnal
Database System). has been a bit difficult because fhis
implementation is on the UAX 11/750 while SPREADS is on
IMPACT. Hoewever, preliminary studies indicate that this
implementation is much slower, maybe by three or four
times than SPREADS because of a few unavoidable reasons

and otherwice.

Other possibilities for improvements are discussed

below. They are:

(<L)

Page 82

The implementation is working on a Prolog interpreter,
whereas SPREADS is compiled and ready to execute., This
is one major factor which prevents any really reasonable

benchmarking to be done.

The second and no lescs important factor is that there |is

some vredundancy in the code and other suggestions for
improvement mentioned above (use of partial data
structures etc.), if implemented, should make it preform

faster.,

One more problem which significantly effects performance
is the hardware itself. Most hardwaré has been designed
keeping in wview the programming languages it would
support (usually procedural lanquages like Pascal or C),
and since Proleg ics a relatively new lanquage none of the

designs include any features germane to it.

Also, it has been found that changing the output stream
te write 1in & file instead of the screen cignificantly
improves its processing time, by a factor of two or

three, especially where lot of 1/0 is involved.

Many other improuementsr are poscible like use of
disjunction in the condition list of the query itself.
For instance: Get all supplier names from suppliers who
are either in Paris or have statue greater than 20, is

now written as:

Page 83

select [sname] from [supplier] where [city = paris]
union '

select [sname] from [supplier] where [status > 20].
but couid be:
select [sname]

from [supplier]
where [city = paris § status >20].

There is also the possibility of 1including, queries of
the type: Get those supplier names who "only" supply red_
parts. Many such extensions can be included in the

system to enhance its power.

Integrity constraints is one more area where a lot can be
done. At present the integrity checks are carried out
cnly on the new value; i.e. te see whether the new
value corresponding to a particular attribute viclates
the constraints or not. That means there are no temporal
integrity checks. Faor instance, when theA age of an
employee is updated one should check that the new age is
greater than the earlier one. Other integrity
constraintse may be in the form of vules. For instance :
If the employee 1is in departmenf dl, then his salary
should not exceed $20,000 and if the employee is 1In any
other department then no such constraints hold. At

present the only integrity constraints are in the form of

simple rules, where the body of the rule is the "cut".

16.

11.

Page 84

Another problem to be taken care of is that of incomplete
databases, i.e.,‘ certain attribute values in some
relations may not be filled up. For such cases, there
should be a concistent interpretation regarding what

needs to be done during query processing.

Ancther area of interest would be to take care of
deleting relations where deleting certain tuples from a
relation, may also effect other tuples in other
relatione. For 1instance after deleting suppliers who
supply part p2, we might even delete tuplese in vrelation
shipment where part p2 no more exists because it is not
supplied. The presence of this dafa is not uvseful in any
way as it might be ‘Yinaccessible'. For the moment

deleting tuples, is done only for a given relation.

Many other appendages may be added to thé program which
would make it more user friendly and make debugging of
erroneous queries simpler. The debugging aids . to check

wrongly input queries are at the moment very primitive.

To make the system really useful while updation and
insertion and deletion of data ics done, some wWork needs
to be done in the area of file handling. Thie 1is of
paramount importance because proper recovery procedures

should be available in the event of a system crash.

Page 85

12. Other built-in predicates, specific to the efficient
manipulation of databases - 1like database search are
available, but have not been made use of. There is a
-possibilty of impreving database search using these

built—-in predicates which make use of keyes for searching.

13. At present queriee involving WHERE &allow only ohe
aggrégation operator, if the MWHERE contains a nested
SELECT. This can therefore be modified to include more

than one aggqregation operator.

14, There i no implementation of wundeing any updation,
deletion or insertion operation when it has been found
that the updation, deletion cor insertion hae been done

wrongly,

The implementation ie vaw and & lot of fine points and
improvements need to be done. The one difference between
this system and SPREADS is that while SPREADS doces not allow
nesting of queries, one can ask nested nected queries, here -—
thecretically to any depth. This feature is helpful 1in
ahswering the negative queries, like getting all suppliers
names who do noet supply part p2, and in many places where
complicated queries may be used te get answers where it is

not poscsible to do so on SPREADS.

Page 86

Testing of this system was done extencively on the
supplier—part—department database and some of the times taken
;p answer the queries have been given, Paucity of time
precluded testing this implementation on databasecs of any
reasonable size, but there <should be no¢ problems. When
writing ancswers, Prolog suffers from one drawback, in that,
the attributes have to be writtenm one at a -time and a
somewhat clumsy method of gqiving tab spacing has to be given
(for an elegant ocutput — refer to the predicates "write_attr"
and "writeln" in the <souvce 1listing). Iﬁ SPREADS this

problem does not exist, because it can write all wvalues at

once.,

One more test was carried out on & <ingle vrelation
database, involwving about a hundred tuples and ten
attributes. It was found to work correctly and reasonably

fast.

Cne ares of interest in making the system more versatile
would be in making it more user friendly. For inétance by
including fragmente of natural lanquage intc it. Work in this
area has already been done [13]. However this itself will be

a part of ancther project.

Page €7

Work has alse been done in the area of knowledge
representation, and Proleg has been found to be quite a
powerful tool. Use of Prolog for making database systems
more intelligent involves the reprecentation of knowledge in
the form of semantic networks., Here 1instead of just
reprecsenting plain facte as has been done in conventional
databases, rules can be wucsed to implement databases, and
thereby the trancition from datébases to knowledge bases is

possible.

Froloeg at prescent can handle databacsec of limited <cize,
and 1ts performance in vretrieving information from large
databases ie yet to reach the <cpeeds of more conventional
approaches. This can certainly be an interesting area of

work.

I would like te conclude with the comment that all these

possibilities are exciting and a loct work can be done too.

Page 88

APPENDIX 1

THE SAMPLE DATABASE.

| supplier |
sno sname status city
sl smith 20 london
s2 jones i0 paris
s3 blake 30 .paris
=4 clark 20 london
&5 adams 30 athens
| shipment |
sno pno gty
sl pl 300
sl pe 200
sl p3 400
sl pd 200
sl pS 100
sl p6 - 100
s2 pl 300
s2 pe 400
€3 pe 200
=4 pe 200
s4 p4 200
€4 S 440
| part |
pno prniame color Wt city
pl nut red 12 london
pe bolt green 17 paris
p3 SCYew blue 17 rome
ra SCT EW red 14 london
pS cam blue iz paris

pé cog red is laondon

Page 89

| stock |
dept prio qty
dl pl 600
dl pe 350
d2 pl 450
d3 pl 500
d3 p4 220

dept city manager

dil london emith

dz2 perth . long

d3 london , lee

| emplovee |

ename age salary dept
john 24 8600 dl
morQan 24 6300 dz
lewis 42 a000 d3
long 34 8500 dz
henry 29 12300 di
thomas 21 7300 <

martin 45 7500 dil

APPENDIX 2

SAMPLE QUERIES, THEIR ANSWERS AND THEIR RESPONSE TIMES
e.9.1 Get full details of all parte supplied.

select * from [part].

prio pname color Wt city

pl nut red iz london
p2 bolt qreen 17 paries
p3 sSCY ew blue . 17 . rome

pd SCY e red 14 london
pS cam blue iz paris
pe cog red 19 london

Time taken: 4.9833¢

e.g9.2 Find all parte, their weight and the city where
they are kept.

select [pname,wt,city] from [part].

phame wt city

nut iz london
bolt 17 paris
SCY e 17 rome

sCcrew 14 london
cam iz paris
cog 19 lendon

Time taken: 3.5s

"e.9.3 Find the average age, number of employees and
average calary of 3ll employees.

select [avg(age),cnt(ename},avg(csalary)]

from [employee].
avg(age) cnt(ename) avqg(salary)
34.1429 7 8500

Time taken: 2.75¢

€.9.4 For each part csupplied, get the part number and
" the total quantity supplied of that part.

Page 91

select [pno,sum(qty)]
from [ehipment]
grouped_by [pnol.

pno sum(qty)

pl 600

p2 1000

p3 400

pa S00

pS 500

pé 100

Time taken: 3.15001s

€.9.9 Find the average age, number of employees and
average salary in each department.

select [cnt(ename),aug(salary),aug(age)]'
from [emplovee]

qrouped_by [dnol.

cnt{ename) avg(ealary) avq(aqe)

3 9466.66 36

2 7400 29

2 ‘ 8150 36.5

Time taken: 3.8334s

e.g9.6 Get part numbers for all parte supplied by more than
two suppliers.

select [pno,sum(qty)]
from [shipment]
grouped_by [prol

having [ent(sno)2>2].
pno sum(gty)

p2 1000

Time taken: 2.6s
e.9.7 Set the quantity to zero of all stocks.

update [stock] set [qty = 0].

Page 92

stock(dl,pl,0)
stock(dz2,p2,0)
stock(d2,pl,0)
stock (d3,pl,0)
stock(d3,p4,0)

stock(dl,pl,600)
stock(d2,p2,350)
stock(d2,pl1,450)
stock(d3,pl1,500)
stock(d3,p4,220)

updated to
updated to
updated to
updated to
updated to

Time taken: 2.70003=

e.9.8 Enhance salary of all employees to double their
original =salary.

salary * 2].

update [employeel] set [salary

employee(john,34,86006,d1) : updated to :
employee(iohn,34,17200,d1)
employee(morgan,24,6300,d2) : updated to :
employee(movrgan,24,12600,d2)
employee(lewis,42,9000,d3) : updated to :
employee(lewis,42,18000,d3)
employee(long,34,8500,d2) : updated to :
emplovee(long,34,17000,d2)
employee(henry,29,12300,d1} : updated to :
employee(henry ,29,24600,d1)
employee(thomas,31,7300,d3) : updated tc
employee(thomas,31,14600,d3)
employee(martin,45,7500,d1) : updated to
: emplovee(martin,45,15000,d1)

Time taken: 5.06667s
e.9.9 Change the color of all parts to red,
update [part] cet [color = red].

part(pl,nut,red,12,london) : updated to :
part(pl,nut,red,12,london)
part(pe,bolt,green,l17,paris) : updated to :
part(p2,bolt,red,17,paris)
part(p3,screw,blue,1?7,vrome) : updated to :
part(p3,screw,red,17,rome)
part(pd,screw,red,l4,londan) : updated to :
part(pd,screw,red,l14,london)
part(p3,cam,blue,12,paric) : updated toc :
part(pS,cam,red,l12,paris)
part(p6,coq,red,19,london) : updated to : v
part(pb6,cog,red,19,london)

Time taken: 4.31667s

e.g9.10 Add part p?7 (name WHEEL, color BLACK, weight 24,
city HYDERABAD) to table "part".

e.g.11

e.q.12

e.g9.13

Page 93

insert_into [part] : [p7,wheel,black,24,hyderabad].

Fact: part(p7,wheel,black,24,hyder abad)
inserted inte the databsace

Time taken: .BB66E73s
Find the name of employees, department and

salaries who earn the most in their respective
departments.

select [ename,aqe,max(salary),dnol
from [emplovee]

qrouped_by [dnol}.

ename age max(salary) dno
hernry 29 12300 dl

long 34 8500 dz2

lewis 4z saod d3

Time taken: 3.66667c

Get maximum salary, age and department number from

employee grouped by department number.

select [max(salary),dno]
from [employee]
qrouped_by [dnol.
max(salary) dno

12300 dl

8500 . dz

9000 d3

Time taken: 2.26667s
Delete relation stock.
delete [stock].

stock(dl,pl,600) deleted.
stock(dZ,p2,350) deleted.
stock(d2,pl,450) deleted.
stock(d3,pl,500) deleted.
stock(d3,p4,220) deleted.

Fage 94

Time taken: 1.50001s

e.9.14 Get supplier name and status from suppliers having
status greater than 20 and who are in Paris.

select [sname,statuc]
from [supplier]

where [status > 20, city = paric].
sname status
blake 3a

Time taken: 1.85s

€.9.15 Get supplier number and supplier name from supplier
who are in Paris or who have status greater than 20.

cselect [sno,sname]
from [supplier]

where f[city = paris]
union
select [sno,sname]
from [eupplier]
where [status > 20].
snao sname
sz jones
s3 blake
=] adams

Time taken: 3.23334¢

e.9.16 Get part number whose weight is grester than 18, or
located in Paris, or supplied by Jones.

select [pnol
from [part]
where [wt > 18]

union

select [pnol

from [part]

where [city = paris]
union

select [pnol
from [shipment]
where [[snol] in
select [sno]

from
where

Time taken: 2.633234<

Page 95

[supplier]
[ename =

jones]].

€.9.17 Get supplier numbers for suppliers who supply both

part pl and pZ2.

select [sno])

from [ehipment]
where [pno=pl,
[enc] in
select [sno]
from [shipment]
where [pno = p2l].
snao
sl
s2

Time taken: 1.98334<

e.9.18 Get supplier names and status for suppliers who
live in London and supply at leact cone red part.

select [esname,status]

select [pnol

from [supplier]
where [city = london,
[snel in
select [snco]
from [shipment]
where {[[pno] in
from
where
shame cstatuc

[part]

[color = red]]].

Page 96

Time taken: 3.81668¢

e.9.19 Get supplier numbere for suppliers not currently
supplying any parts.

select [sno] ¢
from [supplier]

where [[snol] not_in
select [sno)
from [gshipment]].

Time taken: 1.41667¢<

e.9.20 List all the suppliers’ names and locations for
supplier whose statue is greater than Smith’s,

select [sname,city]
from [supplier]
where [[statusl >
celect [status]
from [supplier]
where [sname = smithl].

sname city
blake paris
adames athens

Time taken: 2.65001<

€.9.21 Get supplier names and status for suppliers.who
do not supply part p2.

select [sname,statucs]

from [eupplier]

where [[sno] not_in
select [sno]
from [shipment]
where [pno = p2l].

Time taken:

2.50002s

Page 97

€.9.22 Collect suppliers’ names, part namecs and quantities
suppliers in London.

supplied for

select [snam

e,pname,qty]

from [supplier,shipment,part]
lier@city = london,

where [supp
supp

shipment@pno

lier@sno

shipment@sno,
part@pnc].

smi th
smith
smith
smith
mi th
~smith
clark
clark
clark

Time taken:

€.9.23 How many suppliers are there in London?

select {cnt(
- from [supp
where [city

Time taken:

€.9.24 How many people earn more than %8000 in

depar tment dl

select [cnt(
from [empl

where [salary > 8000, dno

prniame qty
nut 200
bolt 200
SCY e 440
sCrew 200
camnm 1400
cog 100
bolt 200
sCrYew 300
carn 400
£.03336¢

sna)l
lier]
= london}.

1.40002¢s

?

ename)]
oyee]

dll.

Time taken: 1.68336s

Page 98

€.9.25 Find the names of employees who are under 35
vyeare of age and are paid more than the average

calary for all employees,

select [ename]
_from [employee]
where [age < 35,
[ealary] >

select [aug(salaryj]
from [employeel].

john
henry

Time taken: 2.0666%9¢

e.q9.26 Find the employees names and their managers names
for employees who are under 30 years of age, work
in London, and are paid more than the average
calary for all employees with age over 40.

select [ename ,manager]

from [employes,depar tment]
where [employee@dnoe = department@dno,
city = loendon,

[ename] in -
select [ename]
from [emplayee]
where f[age { 30,
[salary] >

select [avg(salary)]

from
where

Time taken: 4.11667<

€.9.27 How many people earn less than $£8700
depar tment.

select [dno,cnt(ename)]

[employee]
[age > 401]111].

in each

Pagqe 99

from [emplovee]
grouped_by [dno] :
where [salary < 8700].

dro cnt(ename)

dl 2

de z

d2 1

Time taken: Z.78336<s

©.9.28 Double the salaries of zll employees in the
deparvtment “"dl".

update {employee]
set fealary = Zkezlary]
where {dno = dl].

emplovee(john,34,8600,dl) : updated to
employee(jchn,34,17200,d1)

employee(henry,29,12300,d1l) : updated to
employee(henry ,29,24600,d1)

employee(martin,4S,7300,dl) : updated to
emplovee(martin,45,15000,d1)

Time taken: 2.80004<

e.9.29 Delete parts supplied by Smith from table "part”
whose color is red and weight is less than 15,

delete [part]
where [coler = red,
wt < 15,
{pnol) in
select [pnal |
from [shipment]
where [[snco] iIn
select [snol
from [supplier]
where [ename = smithll].

part{pl,nut,red,12,london) deleted.
part(pd,screw,red,l14,london) deleted.

Time taken: 2.35333%¢

€.9.30 Set the quantity tc zero for all suppliers in
London.

FPage 100

update [shipment]
set [qty = 0]
where [[snal in
select [sno]
from [supplier]
where [city = londonl].

shipment(sl,pl,300) deleted.
shipment(sl,p2,200) deleted.
shipment(sl,p3,400) deleted.
shipment(<sl,pd4,200) deleted.
shipment(sl,pS,100) deleted.
shipment(sl,p6,100) deleted.
shipment(s4,p2,200) deleted.
shipment(<4,p4,300) deleted.
shipment(s4,p5,400) deleted.

Time taken: 5.91672<
e.g9.31 Calculate the average salary at the department "d2".

select [avg(salary)]
from [femployee]
where [dno = dZz].

Time taken: 1.38336<

e.g.32 Find the employee names and ages for employees at
“dl" department who earn more than the average
salary of those who are in the same department
with age over 30.

select [ename, age]
from [emplovee]
where [dno = di,
[ealary] >
select [avg(salary)]
from [employee] :
where [age > 30, dno = dll].

ename age
john 34
henry 29

-Page 101

Time takén: 3.11667s

€.9.33 Find the maximum salary for voung employees aged
under 35 at each department.

cselect [dno,max(salary)]
from [employee]
grouped_by {dno)

where [age < 35].

dno max(salary)

dl 12300

d2 8500

d3 7300

Time taken: 2.90002<

€.9.34 Find the department and its location, where there is
at least one part the quantity of which happens to
be the total number of the same part supplied by all
all suppliers.

select [dno,city]
fram {department]
where [[dnc] in
select [dnol
from [stock]
where [[pno,gty] in
select [pno,sum(qgty)]
from [shipment]
grouped_by [pnolll.

dl london
Time taken: 3.83003s

€.9.35 Find average salary and number of emplovees in
department dl. '

select [avg(salary),cnt(ename)]

from [employvee] °
where [dne=dl].

Page 102

9466.66 3
Time taken: 2.26672s
e.9.36 Get the table for part.

table [part].

Time taken: 1.75005s

€.9.37 Create 3 new table by name emp_data having
attributes name, age, wt, salary, dno

create [emp_data] : [name,age,wt,salary,dnol.

Page 103

APPENDIX 3

SYNTAX OF THE QUERY LANGUAGE

{a task written in EL> ::=
{retrieval operation} | <{update operation’
{insert operation’ | {delete operation>

{retrieval operation> ::= (select-blockes>

{update operation’> ::=
UPDATE <relation}> SET <attribute’ {arithmetic expression’ |

UPDATE <(relation> SET <attribute> = <arithmetic expressioen’
WHERE <conditions?

{insert operation> :z:= INSERT_INTO <{relation?> : {constants>

{delete operation?> ::= DELETE <(relstion?> |
DELETE <relation> WHERE <conditions>

{select~blocke> :1:= {(celect-block> |
{select-block> UNION <(select-blockes>

{select-block> ::=
SELECT <(target licst> FROM <(relations’> |
SELECT <{target list> FROM <relations> WHERE <conditione’> |
SELECT <{target list> FROM <relation> GROUFED_BY <attribute’> |
SELECT <(target list> FROM <relation> GROUPED_BY <attribute>
HAVING <{functicon?> {compariscn operator? <{real number’|

SELECT <(target list> FROM <{relation> GRQUPED_BY <attribute>
WHERE <condition>

{target list> ::= <{target> | <{target>, {target ligt)>
{target’> ::= {(attribute) | {(relation>@{attribute?> | <{function>
{conditione? ::= {condition} | <{condition>, {canditiaons>

{condition?> ::= <{simple condition> | {(chaining conditieon?> |
{join condition?] <set requirement>

{simple condition} ::=
{attribute?> {comparison operator?> <{constant’> |
{relation>@{attribute> {comparison operator} <{constant>

{chaining condition? 31:=
{attribute?> {chaining operator} <{select-block>

{join condition> ::=
{relation>@<{attribute> {comparison ocperator>
{relation*@<{attribute>

Page 104

{set requirement> ::=
(<{attributes?>) <(chaining operator’> <{select-block?

{arithmetic expression?> ::= {(constant) |
(something> <arithmetic operator} {samething>

{chaining operator> t:= IN | = | NOT_IN | > | < | »= | =< | \=
{comparison aperator> :1:= (| > | =< | >= | = | \=‘
{arithmetic operator> 2:= + | - | % | /

{function?> ::= <built-in function>(<attribute>)
{built—in function> ::= OCNT | MAX | MIN | SUM | AVG
<somethin9> ::= {real number’ | (attribute)

{relations> ::= <relation> | <{relation>, {(relations’
{relation?> :1:= {relation name’

{attributes> ;:= <aftribute> | <attribute?, <{(attributecs’
{attribute> ::= {(attribute name’

{constants> ::= {(econstant> | {constant?>, {constants>

{constant?> ::= <atomr | <integer’

APPENDIX 4

INTERNAL REPRESENTATION OF THE SAMPLE DATABASE

supplier(sl,smith,20,london).
supplier(s2,jones,10,paris).
supplier(s3,blake,30,paris).
supplier(sd4,clark,20,london).
supplier(s5,adams,30,athens).

shipment(sl,pl,300).
shipment{(sli,p2,200).
shipment(sl,p3,400).
shipment(sl,pd,200).
shipment(sl,p5,100).
shipment{(sl,p6,100).
shipment(s2,pi,300).
shipment(s2,p2,400).
shipment(s3,p2,200).
shipment(cd,pe,200).
shipment(sd4,p4,300).
shipment(sd4,po,400).

part(pl,nut,red,12,london).
part(p2,bolt,green,l17,paric).
part(p3,screw,blue,17,rome).
part(pd,screw,red,14,london).
part(pS,cam,blue,l2,parics).
part(pé,cog,red,19,london).

stock(dl,pl,e00).
stock({dz,pe,350).
stock(d2,pl,450).
stock (d3,pl,S500).
stock(d3,pd,220).

department(dl,london,smith).
department(d2,perth,long).
department(d3,london,lee).

employee(ichn,34,8600,d1).
employee(morgan,24,6€300,d2).
employee(lewis,42,9000,d3).
employee(long,34,8500,d2).
employee(henry,29,12300,dl).
employee(thomas,21,7300,d3).
employee(martin,45,7500,dl).

Page 105

Page 106

INTERNAL REPRESENTATION OF RELATIONAL SCHEMA
AND INTEGRITY CONSTRAINTS
relation{(supplier(sno,sname,status,city)}).
relaxion(shipment(snd,ﬁno,qty)).
relation(part(pno,pname,color wt,cityl).
telation(stock(dno,pno,qty)).
 relation(department(dno,city,manager)).

relstion(employee(ename,sge,salary,dnc)).

integrity(status,A,[A>=10,A=<1000,integer(A)]) :- !.
integrity(qty,A,[A>=0,A=<100000,integer(A)]) :~- 1,
integrity(wt,A,[A>0,A=<1000]) :- !,
integrity(age,A”,[A>1E8,A={(62]) - I,

integrity(csalary,q,[A>=1000,A=¢(50000]}) :- !.

Page 107

APPENDIX S

/ Federkdede de ook ek ke ek e e ke ok e e e e ke e Ak e e de dede ke ke e e e e oo A e e ke ke /

/k%kdk GQURCE CODE OF THE DATABASE FROGRAM Hkdkk/
/Fedkede ke ke ek dede e ek e dede ke de ke e e ook ke ok ok dede e de e ke ek ek oo ek ke ek /

/% CONSULTATION OF THE DATABASE, RELATIONAL SCHEMA %/
Ik : AND INTEGRITY FILES */

1— [database,relation,integrity}.

Sk OPERATOR DECLARATION PART */
/% TREATS ALL KEY-WORDS OF THE QUERY LANGUAGE AS OPERATORS */
/% WHICH SIMPLIFIES SYNTAX ANALYSIS AND PARSING OF QUERY */ :

- op(40,xfx,in), op(d40,xfx,nat_in), op(d40,xfx,’'\="),
op(40,xfx,@), op(l1l83,vfx,having), ,
op(190,vfx,where), op(l92,yfx,grouped_by),
op(195,vfx,from), op(l193,vfx,set), op(l95,vfx, "),
op(200,fx,select), op(200,fx,update),
op(200,fx,incsert_into), op(200,fx,delete},
ocp(21%,xfy,union}), op(200,fx,create),
op(200,fx,table), op(21S,fx, " {"), op(200,xf,"}").

Sk THE QUERY READING AND ANSWERING PART */
/% READS IN THE QUERY, CREATES VARIABLES FOR THE ATTRIBUTES */
7k AND FINALLY FINDS THE AMSWERS TO THE TUPLES CREATED *s

do :— nl, write(“0Output ctream Screen or File (s./f.) 7 “},
read(Mode), {nl, nl, write(’ QUERY :7),
nl, write(” ‘), read(sS),
({{& = ex; & = exit), exit) ; true},
arg(l,8,X), ext(¥,[HIT]), length(H,Num),
((H =[*])
(s update(_))
(S delete(_))
(s insert_into(_))
(S create(_), L1 = [
(S tablE(_)g L1 =[]

wounonn

I
)

TN me can ma e aae can

for_write(H,Teml), nl, writeln{(Num), nl, write_attr(Teml),
nl, writeln(Num), create_var(H,Xs), extract(Xs,L1), nl))},

{((Mode = €) ; (Mode = f, tell(file), nl, writeln(Num), nl,
write_attr(Teml), nl, writeln(Num), nl))¥,
{get_sub_qgs(S,Xs,! Ans), '
((H=1[*], Ans = [BIT3], B =.. [_1L11) ; H \= [*])},
callingl(Ans), {write_attr(L1l), nl¥, fail.

do :— retract(ffound(N)), fail.

de :- told, do.

Paqe 108

/e ek e e ok e ek e ok e e e e sk F ok ol sk e e ek ook ke e e e ko ke e e ek ke sk e e de ke 2
ZkFkddokkkdkkddkkkk QUERY PROCESSING PART hdddokdhkdkdokdddddokkk/
e Fo e ek Ao ke ek e T ok e e ke e e ok e ke ok ok ke e e e e vk e ke o ok e e e e ke e ke e e e e e ek e e e e e edkeok

ZFKedokkodok e dedededd Ao e ek sk de ke e ke e de e ek ke e e she e e ek ke ook de ke e ek oo e e dookeokeok
/%k% (1) SELECT <target list> FROM <relation> GROUPED_BY %¥k/
/xkdokdoksdokdokdokdk {attribute> WHERE <conditione? ddnkkdokkddkkhkd/

get_sub_qgs(select(from(Attre,grouped_by([Name] ,where([Grp_atr]l,

Conditiong)))) , Xs,Hash,Ans) :-
1, {relation(K), K =.. [NamellS], length(LS,Numz2),

get_ckel(Numz2,B), Tempol =.., [NamelE],

simplify cols(Attre,Cols), pick_up(Num3,LS,[Grp_atrly,

pick_up(Num3,B,[Var]), get_only3(Xs,Len3),

length(Len3,Len3_num), get_only2(Xs,Len2),

((Len3_num > 1, Tem iec Len3_num - 1,
get_set_skels(Numz,Tem,Skel_lis),
unify(Num3,Skel lis,[Varly, Len3 = [H2|TZ],
simplify(Attrs,Attr_lis,Aggr_lis),
convert(Aggr_lics,[NN|New_1lic]), Aggr_lie = [HeadlTaill,
form(New_lis,Skel_lis,L5,Name,5et), extract(Xs,L1l),
pick_up(Nu,LS,Attr_lis), pick_up(Num_list,Attrs,Attr_lis),
pick_up{MNum_list,L1,Tempe), wunify(Nu,Skel_lis,Tempal},
pick_up(Nemo,Attrs,Aggr_lis), pick_up{Nemo,L1,[_[Temp2]),
unifier(Tail,Set,Temp2), H3 = [_,Colo,Grpl,
append(Attr_lis,[Colcl,Coled), append(Lenz,[H3],Xs2))

b

(Xe2 = Xe, Coleq = Cols)),
({member (Grp_atr,Colsd), extract(Xs2,LE),
pick_up(Numl,Colsd4,[Grp_atr]), pick_up(Numl,LE&,[Var]),
Xel = Xe2, Colsl = Colsd) :
)

(append([Grp_atr]),Cols4,Celel),

append([[Var ,Grp_atrll:¥Xs,Xsl))),
Ansz =.. [group,Var,Tempol,Var],
break_off(Colsl,Xsl,Conditions,S,V,F,FF),
differ({Name},5,V,F,FF,R), one_by _one(R,Ansl),
({Hash = !, Ans3 = Ansl)

H

{(Ansl = [H]T], H1 =.. [not,H], Ans3 = [H1[T1)),
append([Ans2],Ans3,Ans4), '
((Len3_num > 1, append(Set,Ansd,Anc))

3
{(Ans = Ansd)) .

/g oo de e o ek e e s e e e ke o sl e etk A e ook e ook e Aok ke ke e el e/

/shkk (2) SELECT <target list)> FROM <relationcs) %k%x/
SEdddekkdkkkkhkhkk WHERE <conditione} Hddkikikhhkhddikiki,/

get;sub_qs(select(from(éttrs,where(&elatione,Conditions))),
Xs,Hash,Ans) 11— '

Page 109

length(Relations ,Numb), simplify_cols(Attrs,Cols),

((Numb = 1, Relaticns = [NamelList],
Conditions = [Heal|Tail, Hea =.. [Oper,Heal,Tail]l,

relation(K), K =,. [Name|LS], length(LS,Numz),

get_ckel(Numz2,B), Tempol =.. [Name|Bl, get_only3(Xs,Len3),
length(Len3,Len3_num), get_conly2(Xes,Lena), '
((Len3_num > 1, Tem i Len3_num - 1,
get_cet_skels(Numz,Tem,Skel_lis), pick_up(Num3,L5,[Heal]),
unify(Num3,Skel_lis,[Taill), Len2 = [H3|T3],
simplify(Attre,Attr_lis,Aggr_1lis),
convert(Aggr_lis,[NN|New_lisl), Aggr_lis = [Head|Taill,
form(New_lis,Skel_lis,LS,Name,Set), extract(Xe,L1l)},
pick_up(Nu,LS,Attr_lis), pick_up(Num_list,Attre,Attr_lis),
pick_up(Num_list,L1,Tempo), unifv(Nu,Skel_lis,Tempo),
pick_up(Nemo,Attrs,Aggr_lis), pick_up(Nemo,L1,[_|Temp2]),
unifier(Tail,Set,TempzZ), HZ = [_,Colo,_1,
append(Attr_lis,[Colo],Colsd), .
create_var(Attr_lis,Tem_lic), append(Tem_lis,[H3],Xc2))

1

(Xe2 = Xe, Coled = Cole)))

H

(Len3_num = 0, Coleqd = Cols, Xs2 = Xs),
{break_off{Coled,Xs2,Conditions,S,V,F,FF},
differ(Relations,s,V,F,FF,R), cone_by_one(R,Ansl),
({Hash = !, Ansl = Ansd)

H
(Ancl = [HIT]y Hl =.. [not,H], Ansd = [H1IT1)),
((Len3_num > 1, append(Set,Ansd,Ans))

3
(Ane = Ansd))}.

ARtk dedededok ek A K kA A deA de koA e Aok sk e e e e e ek sk e e Ao A e e e e ek e A de ke ke ke ek ok
skkdk (3) SELECT {(target list> FROM <{relation? GROUPED_BY ¥kt~
ShkddedkhkhkhkkhkdkkA {attribute) HAVING <{functiony *dhkkhkidhdbihkiks

get_sub_gs(select{from(Attre,grouped_by([Name],having([Grp_atr],
C[Funl)))),Xs,Hach,Ans) - '

{Fun =.. [Comp_op,Function,Scmethingl, extract(Xs,L1),
Function =.. [Aggrop,Fun_Attr]l, conf([Namel),
relation(K), K =.. [Name|L), pick_up(Fun_Num,L,[Fun_Attr]),
length(L,Num), get_skel(Num,A), pick_up(ZX,L,[Grp_atr]l),
simplify(Attrs,Attr_lis,Aggqr_lis), length(hggr_lis,Te)},
(({member{(Grp_atr,L), member(Fun_attr,L), Te = 0,
pick_up(ZX,A,[Variable]), pick_up(Num_list,Attrs,Attr_lis),
convert(Aggr_lis,New_lis), length(Aggr_lis,Aggr_lis_len),
get_set_skels(Num,Aggr_lis_len,Skel_lis),.
unify(Zx,Skel_lis,[Variable}), pick_up(Nu,L,Attr_lis),
form(New_lis,Skel_lis,L ,Name,Set),
pick_up(Num_list,L1,Tempo), unify(Nu,Skel_lis,Tempo),
pick_up(Nemo,Attrs,Aggr_lis), pick_up(Nemc,L1l,Temp2),
chec_attr(Attr_lis,L), unifier{Aggr_lis,Set,Temp2),

Fage 110

Al =..[NamelAl, get_skel(Num,C), pick_up(ZX,C,[Variable]),
Bl =.. [group,Variable,Al ,Variablel]l, get_cskel(Num,B),
pick_up(ZXx,B,[Variable]), pick_up(Fun_Num,C,[Func_Attr]l),
A2 =.. [Name]Bl, A3 =.. [Name|C],

A4 =.. [Aggrop,Func_Attr,A3,Fun_ans],
€1 =.,., [Comp_op,Fun_ans,Something],
append([BllSet] [A4,C1],Ansl)})

({Te=0, pick_up{(Number,L,Attrs), pick_up(Number,A,L1l),
chec_attr(Attrs,L), get_skel(Num,B), get_skel(Num,C),
pick_up(ZX,A,[Variablel), pick_up(ZX,B,[Variablel),
pick_up(Number ,B,L1), pick_up(Number,C,L1),

Al = [Name|al, AZ =.. [Name|B], pick_up(ZX,C,[Variablel}),
Bl =.., [group,Variable, Al ,Variable], A3 =.. [Name]C],
84 = [Agarop Func_Attr ,A3,Fun_an<],

pick_up(Fun_Num,C,{Func_Attrl),
Cl =.. [Comp_op,Fun_ans,Something}, Ansl = [Bl,AZ2,A4,C1l1%1),
{(Hash = !, Ane = Ansl)

3
(Ansl = [HIT], HL =.. [rnct,H], Ans = [HLIT1)).

e e o e o e e ke she s e ke ke e ok ohe e e she sk e ke ol ok ke e e ke e otk sl e e e ok e oo e e Fodleoke S
Skdk (4) SELECT <{target list> FROM <relation’ *¥k*k/
Addekbkdokdokdkk GROUPED_BY <{attribute’ ddkddkdkdhidiokk,/

get_sub_qgsi{cselect(from{Attre,grouped_by{[MNamel,[Grp_atr1))},
Xe,Hash,Ans) 11—
{conf ([Namel), relation(K), K =,. [MName|L], extract(Xs,L1l),
length(L Num), get_skel(Num,d), pick_up(ZX,L,[Grp_atrl),
simplifv(Attrs,Attr_lis,Aggr_lis), length(Aaggr_lis,Tel},
(¢({ Te \= 0, member(Grp_atr,L), pick_up(ZX,A,[Variablel),
pick_up(Num_list,Attrs,Atty_lis), pick_up(Hu,L,Attr_lis),
caenvert{Aggr_lis,Mew_lis), length(Aggr_lis ,Aggr lis_len),
get_set_chkels(Num,Aggr_lics_len,Skel_lis),
pick_up(Num_liet,L1,Tempc), unify(Nu,Skel_lis,Tempo},
unify(ZX,Skel_lis,{Variablel), :
form(New_lis,Skel_lis,L ,Name,Set],
pick_up(Nemo,Attrs,Aggr_lis), pick_up(Nemo,L1 ,Temp2),
unifier(Aggr_lic,Set,Temp2), chec_attr(Attr_lis,L),
Al =..[NamejAl, Bl =.. [group,Variable, Al ,Variable],
get_skel(WNum,B), pick_up(ZX,B,[Variablel},
Ansl = [Bl]Setl]})
({Te = 0, pick_up(Number,L,Attre), pick_up{Number,A,L1),
chec_attr{Attrs,L), pick_up(ZX,L,[Grp_atrl), get_skel(Num,B),
pick_up(ZX,A,[Variable}), pick_up(ZX,B,[Variable]), :
Al =.. [NamelAal, A2 =.. [Name|B]l, pick_up(Number,B,L1),
Bl =.. [group,varlable Al Uarxable], Ansl = [Bl1,A2]13)),
((Hash = !, Ans = Ansl)

;
(Ansl = [HIT], H1 =.. [not,H], Ans = [H1IT1)).

Page 111

/P dehe R dede e ook ok Fo Ao Aok ho ke eole ok ek oo e e o koo e de bk ook e ke e Aok ek Ak kS

Jhhk (D) SELECT <attributese?> FROM <(relation> %*kk/

e ke A A v vk o dhe ke ke ofe e e ok A e AR e do ke e e e e e ke de e de e ook Ko ke Ao ke ke Ak de ke ok

get_sub_gsi{celect(from(Attrs,[Name]l)),Xs,Hash,Ansd) - !,
{conf([Name]), relation(K), K =.,. [Name|L],
lengqth(L,Num), extract(Xs,L1)>¥,

C(({Attre = "%, get_skel (NumAn),
nl, writeln(Num), nl, write_attr(L), nl, writeln(MNum), nl,
Ansl =.. [NamelAnl, Ans = [Ansll}) :
]
({Simplify(ﬁttrs,ﬁttr_lis,Aggr_lie),
length(rRggr_lis,Te), Te \= 0,
pick_up(Num_list,Attrs,Attr_lic), pick_up(Nu,L,Attr_lis),
convert(fAggr_lis,Mew_lis), length(Aggr_lis,Aggr_lis_len},.
get_cet_skels(MNum,Aggr_lis_len,Skel_lis),
pick_up(MNum_list,L1,Tempo), pick_up(Nemo,Attre,Aggr_lis),
pick_up(Nemo,Ll,Temp2), unify(Nu,Skel_lis,Tempa},
form(New_lis,Skel_lis,L,Name Ans),
unifier(Aggr_lis,Ans,Temp2), chec_attr{Attr_lies,L}¥)

s

({pick_up{(Number,L,Attre},

chec_attr(Attrs,L), get_skel(Num,R), pick_up(Number,B,L1),
A2 =.. [NamelB]l, Ancs = [AZ]*)),

{(Hash = !, AnsS = Ans}

s
(Ans = [HIT], H1 =.. [not,H], AnsS = [H11T1)).

A Hedededede ke ok o dode e oo ok b e e A ok e o ok ok e ok b e e e ek e e e e ke e e e e ok S

/hkk (€) DELETE <relaticn> WHERE <conditione} *hk/

9ok drde sk e sk e oo o e e sl e dr b ol e e e e e o ke ke o ok ok e ke e s ek e o ok ke e ko ok

qet_csub_qs{delete{where([Name],Conditions)) , ,Xs,Hash,[]) ¢~ |,
{relation(K), K =,. [Namellic], create_var(Lis,Lisl},
extract(Lisel,Lis?), break_offilic,lLicl,Conditions,S,V,F,FF},
differ{[Namel],S,V,F,FF,R}, one_by_one(R;Ans),
reverce(Ans,[HIT1l), reveree(T,Teml)¥, callingl{fns), .
find_all({([Namel|llLis2]).

ARdehRodobhodeodeodkodk ok ke ddedko b Aok kb ke b de e ke e de ek ok ek ok A/
Shkdkdkddhkhik (7)1 DELETE <relationy Hkdhkkhkhikikihx/
ZFeeKFedededo Aok Ao ok dok ook e Ak ke Ak ek ke e heok

get_sub_qs(delete([Namel), Xs,Hash,[1) :-
{conf([Name]), skeleton(Name,B)y, find_all([Name|B]).

get_sub_qges(delete(_) ,Xs,Hash,[]).

Ik sk s de s ko ok e e ke e e e e Ao dde e e ke e e e e e e e ke A b e e e ke e o b e e de ke e e e e e ke e ke ok
Skkkxkkk (8) UPDATE <relation} SET <attribute} = dddddokdokd,s
Skhhkkk (arithmetic expression) WHERE <conditiong> ¥ddkdkdkk/

Page 112

get_sub_qe(update(set([Name] ,where([Attr=Expl,Conditions))),
[[Var,Attr]),!,[)) =V,
{break_off([Attr],[[Var,Attr]],Conditions,5,V,F,FF),
differ([Namel,5,V,F,FF,R), cone_by one(R,Ans),
substitute(Var,Exp,New_exp), reverse(Ans,[H|T]),
reverse(T,Teml)}, callingl(Teml),
updat(Var ,H,New_exp,Attr).

/Fededde ke ok ok ol dhe ke dhe kA ok e ke e e T v e gl b ot ok ok d s ke de e e ok e e e ok e e kool ek ke e/
/kxk (9) UPDATE <(relation? SET <attributel = Hkk/
Shhkdddhkkk (arithmetic expressions dddokkdddhdkdk/
get_sub_qs(update(set([Namel],[Attr=Expl)),Xe,!,[]) = I,
{conf({[Namel]l), relation(K), K =..[Name|L], length(L,Num),
chec_attr([Attr},L), !, get_skel(Num,R),
pick_up(NUM,L,[Attr]), pick_up(NUM,A,[Var]),
Al =.. [NamelA]l, substitute(Var ,Exp,New_exp)},
updat(Var Al ,New_exp,Attr).

P 2 30 3 2 2 e S e el R e S R S e Sl e L S S S R R Y S R R e e e 3
J¥kk (10) INSERT_INTO <(relation> : {constante> *kk/
ShFodok ko Ak kA A AR A dddh b A AR AL AR LR Kb d Ak dddd b hhhdhdhhddh s

get_sub_ge(insert_into(:([Namel,L}) Xs,Hash,[]) :-
{{confirm(Name,L), A1l =.. [NamellL], relation(k),
not{(Al), K =.. [Namelliclr, {int{Lis,L}>,
asserta(savable(hl)), assertz(Aal),
Wwrite(’Fact:), write(dl), nl,
write(’ inserted into the database ")r, !.
get_sub_qgs(insert_into(:([Namel,L)),Xs ,Hash,[]) :-
'y nl, write(’Such a fact already existse — not entered’).

ZFededekdedok dedode ok de de e de ok e ek o e e e e ok e ke e e de e ko ok ke ke e e e ke e e A e e ok /S
7xkk (11) {select-block> UNION (select-block> %dk/
A FFedededededededode dodkede ook e o dheoke de ek ek ke ke e ke dedbe e etk e ko ok ke e Ao e e e e ke ke

get_sub_gs(union(A,B) ,Xs,Hash,Ans) - !, {extract(Xs,L1l),
get_sub_qs(A,Xs,Hash,Ansl), get_sub_qs(B,Xs,Hash,Ans)?,
((callingl({Ansl), {write_attr(Ll), nl}>, fail)

3
true).

ARededekede dede e ded ok Aok d A A Kk ke Ao A A Ak hk kA ki h ke dh Ak hdhhhhhhhd ki ik,
Jikk (12) CREATE <{relation-name> : <attribute-list> *k%x/
ZFededededk ke e e ke o oo Ao e R A o e e do sl e e e e Aotk e de sk e e o de e e b e ek ke ok ke e e ke ke e e e ke dede ok

get_sub_qs{create(:([Name] ,Attre)),[1,_,[1) =~
not(duplic(Name))}, B =.., [NamelAttrs],
assertal(relation(B)), asserta(rel(relation(B))),
write(’ Do you want ‘), write(Attrs), write(’ to have any

Page 113

‘integrity constraints ? (y./n.)), nl, read(Ans),

create_integl(Ans,Attre), al, nl,

write(’Have you finished creating relations 7 (y./n.)"),

nl, read(Ancl), do_correct(Ansl).
get_sub_gs(create(:([Name] ,Attrs)),[1,_,[1) :-

nl, write(’ Such a relaticn name already exists

- enter another name 7).

ZFedekede ek Aok b e h ke ke ke e ke e e ook ok ke ke koo ek b ke Aok e sk ek e ek ke ke de bk ok ok
SEkFokkkkkdk (13) TABLE <{relation—name’ dkkdoddkkiobdkd/

get_sub_qge(table([Namel),[1,_,[3) :-
relation(K), K =,. [NameilL]l, length{L,MNum), nl,
write(Name), nl, writeln(MNum), nl,
write_attr(L), nl, writeln(MNum), nl.

sk MIDDLE LEVEL PREDICATES FOR QUERYS CONTAINING “WHERE” */
S dededodk Aok ek ekt o e A ek ek e b ek ook e ke e s e e e e e ook ok e e sbe e dhedbe e e e ke e e ek ke e e ke ke kS

break_off(S,V,[1,5,V,[1,01).

break_off(S1,V1,[AIEB],5,V,F,[ALIFF]) :-
jcin_cond(S1,V1,4,82,V2,a1), break off(S2,V2,B,5,U,F,FF).

break_coff (Sl ,Vi,[AIB],S,V,[AIF],FF} :-
break_off(S1,V1,B,5,V,F,FF).

differ([1, ,_, ,_s[1).

differ([N1IN2]),8,V,F,FF,[(N1,S1,V1,F1,FF13IR]) :-
pick_up(N1,S,V,F,FF,S1,V1,F1,FF1,V2,F2,FF2),
differ(Nz,5,U2,F2,FF2,R).

one_by_one([(N,S,V,F1,F2)|[]],Ans) :-
get_tuples({N,5,V,F1,F2,A,AnRs).,

one_by_one([(N,5,V,F1,F2)|B],Ansl) :—
get_tuples(N,5,V,F1,F2,4,Ans),
one_by_one(B,T), appendiAns,T,Ansl).

get_tuples(N,S,V,C,F2,5th,Ans) - relation(K),
K =.. [NIL], length{L,Num), get_cskel(Num,A),
break_down(s,V,C,5s,Vs,Fecl,F21,Ancz),
reform_f2(S8s,Vs,F2,8s¢,VUss ,F22), append(F21,F22,Fs2),
sert(L,A,Ses,Ves), get_sth(lL,A,Vses,Sth),
unific(L,A,Fsl,Fsll), remove(Fsa2,Fz22),
asserta(sub_q(M,A,Fsll ,Fe22,Vess,5th)),
get_quervs(sub_q(N,A,Fsll,Fs22,Vss,5th) Ansl),
append(Ans2,Ansl ,Ans).

break_down(s,\),{],S,’v’,[],[],[]) HET
break _down(S1,V1,[A|B]),S52,V2,Fsl,Fs2,Ans) - A=..[1,J,K],
(({atom(K) ; number(K)), simplify_relatr([J],[J1]1),

Page 114

cut_off1(S1,V1,I,J1,K,5,V,F1,F2,Ansl))

H
cut_off(Ss1,V1,1,J,K,8,V,F1,F2,Ansl)),
break_down(%,V,B,52,V2,Fl12,F22,AnsZ),
(Fl==!, Fsl=F12; Fel=[F1|F1l2]),
(F2==!, Fe2=F22; Fe2=[FZ|F22]},
append(Anc2 Ansl Ans) .

cut_off(s,V,in,Jd,K,51,V1,V,! Ans) -
gimplify_cols(J,L), subst(S,V,L,Xs,51,V1), arq(l,K,Temp),
ext(Temp,[Atr]|_1), create_var(Atr,Attrl),
qet_conly2(Xe,Temz), set_diff(attrl,Temz,Tem3),
get_x<(Tem3,Xs,Xel), det_csub_qe(K,Xcl,! Anc),
extract(Xes,Tempc), extract{Xesl,Tempol.

cut_of f{S,V,=,J,K,81,V1,!,! ,Arncs) :-
cut_off(s,V,in, J,K,51,V1,!, ! ARc).

cut_off(S,V,not_in,J,K,81,V1,!,!,Ans) -
simplify_cols(J,L), subst(S,V,L,Xs,51,V1), arg(l,K,Temp),
ext{Temp,[Atr|_]1), create_var(Atr,Attrl),
get_only2(Xs,Temg), set_diff{Aattrl,Temz,Temn3),
get_xs{(Tem3,Xes,Xsl), get_sub_qge(K,Xesl,not ,Ans),
‘extract(Xe,Tempo), extract(Xel,Tempol.

cut_of f(S1,V1,I,J,K,8,V,!,,FZ2,Aanc) - !, simplify_cols(J,J1),
subet(S1,V1,J1,[X<],8,VW), arg(l,K,R), ext(R,[HIT]),
H=[H1|T1],
((atoem(Hl), X1 = [[Y21J1]];

]

(H1 =.. [Op,_1, append(Jdl,[0pl,Atrl), X<l = [[YelAatrll]l)),
get_sub_qs(K,Xsl,! Ans), :
extract(Xe,[¥Y1]), Fz2=..[1,¥Y1,Y2].

cut_off1(81,V1,I,J,K,8,V,F1,!,[1) :-
substitute(sSl,V1,I,J,K,8,V), F1 =.. [I,J,K].

get_xs([]1,A,A).

get_xs([H|T],X=s,A4) :— H = [Var,Aattr,0pl, extract(Xs,Teml)},
extract_attr{Xs,Temd), pick_up(Num,Tem2,[Attr]),
pick_up(Num,Teml,[Varl),
subst([Var ,Attr],xs,[Var,attr,0pl,Ans), get_xe(T ,Ans A).

get_queryvs(sub_q(N,A,F,FF,Var ,Sth) Templ) :-
{Tem =., [NIA], append(F,FF,Conds), :
((length(Sth,3), Sth = [Op,Atr,Ans], append([Tem],Condes,Tum),
append([Atr | [Tuml],[Ane],Tuml), Tempz2=.. [Op{Tuml],
append([]1,[Temp2],Templ)) '
; (Temp3 = Tem, append([Temp3],Conds,Templ)))>.

modify([1,[]1). '

modify ([H1IT1],[H2|T2)) :— Hl1 =.. [Comp_op,Relatrl,Relatrz2],
Relatrl =.. [@,Rell,Atrl], Relatrz =.. [@,Rel2,Atr2],
Hz =.. [Comp_cop,Atrl,Atr2], modify(T1,T2).

tab(N,H) - relation(K), K =.. [N]|L],
length(L,Num), get_skel(Num,H).

simplify_relatr([},[]).

simplify_relatr([HIT],[HIT1]) :- atom(H), simplify_relatr(T,Tl).

simplify_relatr([HIT],[H1IT1]) :- not atom(H), H =..[@,_,H1],
simplify_relatr(T,Tl). :

subst(S,V,[],[1,8,\V).

subst(S5,V,[HIT],Xs,51,V1) :- member(H,8), extractiV,\tem),
extract_attr(U,Vatr), pick_up(Num,Vatr,[H]),
pick_up(Num,Vtem,[Anc]l), subst(S5,V,T,Xe1,51,V1),
append([[Ane,H]],Xel,Xe).

subst(S,V,[HIT],[[B,H]lIxsl]),S82,V2) :-
append([H]},S,813, append([[B,H]],V,V1),
subet(&1,V1,T,xXsl,52,V2).

substitute(S1,V1,I,J,K,51,V1) -~ member(J,51).
substitute(s1 ,V1,1,J,K,5,V) = not member(J,S1},
append({J1,81,8), append({IM,J}],V1,V).

reform_fz(Ss,Vs,[]1,5¢,Ve,[1).
reform_f2i{5e,VYs,[HIT],Sss,Mes,[HLIT1]) :-
{H =.. [Op,Relatrl,Relatr?], Relatrl =.. [&,Rell,Atrl]>,
Relatrz =.. [@,RelZ2,Atr2], H1 =.. [Op,Atrl,Atr2],
{ (member(Atrl,S<), reform_f2(Ss,Ve,T,5=5,Ves,T1)
i1(append({Atrl],S$s,5<s), append{[[B,Atrl]l],Vs,Ves),
reform_f2(Sss,Vss,T,8=sp ,Vep,T12)).

sort(_,_,[1,_).

sort(bL,A,Sss,Vese) 11— get_only2(Vss,Templ), extract(Templ,Tempz),
extract_attr(Templ ,Temp3), pick_up(Num,L,Temp3),
pick_up(Num,s,Temp2).

get_only2([],[1). .
get_only2([HITI,[HIT1]) :- lengthiH,2), get_only2(T,T1).
get_only2([HIT1,T1) :- not length(H,Z), get_anly2(T,T1).

get_sth(_, ,[1,[1}).

get_sth(L,A,[HIT],Sth) - length(H,3), H = [Var,sttr,0p],
pick_up(NU,L,[Attr]), pick_up(NU,A,[ARsl), Sth = [Op,Ans,Var].

get_sth(L,Aa,[HIT],;Sth) :— not lenqth(H,3), get_sth(L,&,T,Sth.

jein_cond(81,VM1,4,82,V2,A) :- {A =.. [Comp_0Op,Rell,Rel2],
kell =.. [Op,Rel_naml,Attrl], Rel2 =.. [Op,Rel_nam2,Attr2]1F,
Rel_naml \= Rel_nam2, get_s2v2(Attrl,51,V1,52,Vz).

get_<s2v2(Attrl,51,V1,581,V1) :- member{(Attrl,Sl).
get_s2v2(Attrl,S1,V1,52,V2) :— not member(Attrl,Sl),
append([Attrl],51,S2), append({[B,Attrl]]1,V1,v2).

Page 11¢

pick_up(N1,S,V,F,FF,51,U1,F1,FF1,V2,F2,FF2) :-
relation(kK), K =.. [N1]L],
get_indef(N1,F,F1,L), get _relef(N1,FF,FF1),
get_attr(L,S8,51), qet_var(sl,L,V,V1), deal_wit(FF1l,V,V2)},
set_diff(F,F1,F2), set diff(FF,FF1,FFa).

deal wit([],V,V). ’

deal wit([H|IT) WV MZ) = H =.. [=,_,_1, deal_wit(T,V,V2).

deal Wit([HIT],V,V2) = not H =.. [=,_,_1,
H=., [Op,Relatri,Relatr2], Relatrl =.. [@,Rell,Atrl],
efface([A,Atrl] MV, V_temp), deal_wit{T, U, temp),
append([B,Atrl],V_temp,V2).

remove([],[1).
remove([H|T},T1) = H =.. [=,_,_1, remove(T,Tl)}.
remove([H|T],[HIT1]) :- remcve(T,T1l).

unific(_,_ ,[J,[1).
unific(L,A,[HIT],T1) :-
H=.. [=,Atrl,Atr2], pick_up(Num,L,[Atrl]],
pick_up(MNum,&,[Atr2]1), unific(l,~A,T,T1).
unific(bL,A,[HIT],[H1IT1]) :-
not H=.. [=,_y_1, H=..[0p,Atrl,AtrZ],
pick_up{Num,L,[Atrl]), pick_up(MNum,A,[TY1),
H1 =.. [Cp,TY,Atr2], unific(lL,A,T,T1).

set_diff(ll,_,[1).
set_diff([H{T},F,F2) :- member(H,F}, set_diff(T,F,FZ).
set_diff{[HIT],F,[HIF2]) :- not member{H,F), set_diff(T,F,F2).

get_var({],_,_,[1).

get_var{[HIT],LV,V1) :~ member(H,L), ,
(member ([A,H],V) §; member([&,H,BI,M)), get_var(T,L,u,V2},
((nonvar(B), append{{[A,H,B]1],V2,U1))

3
(append{[[A,H11,Vz,U1))).

get_attr([{1,_,[1).
get_attr([HITI,L,[HIT1]) :- member(H,L), get_attr(T,L,Tl}.
get_attr({[H|T],L,T1) :- not member(H,L), get_=ttr(T,L,T1).

"create_wvavr([]1,[]1:.

create_vwar({HIT],[HLIT1]) :— atem(H),
append([Al,[H]1,Hl), create_var(T,;T1l).

ecreate_var{[H|T],[H1IT1}l) :— not atem(H), H =..[E,C],

append({A],[C,B1,H1), create_var(T,T1l).

get_indef(_,[],[],_).
get_indef(N1,{HIT],[HIB]l,LY :-= H =.. [0Op,R1,R2],
{(member(R1,L)) '

H

Page 117

(R1 =,. [@,N1,R12])), get_indef(N1,T,B,L).
‘get_indef(N1,[{HIT],[HIB],L) :=~ H =.. [0p,R1,R2],

R2 = select(_), get_indef(N1,T,B,L).
get_indef(N1,[H|T),Lis,L) :- get_indef(N1,T,Lis,L).

get_relef(N1,[1,[1).

get_relef(N1,[H|T],[HIB])) :- {H =.. [0p,R1,R2]%,
Rl =.. [@,N1,N2], get_relef(N1,T,R).

get_relef(N1,[HIT},Lis) :- get_relef(N1,T,Lic).

LRk de kA AR LOWER LEVEL FPREDICATES ek oA AAhh Ak ok dkok S
Aok ke ok ahe e ok Tk o b 3k ok ke ok ke o SR oA ke o ok oA e R e o R ke A o A oA Ak ok e Ak Ak R e ke ke e b ke ke o ke ke ok

{X¥ 1= call(X), !.

AN=E :- A=B, !, fail.
A\=EB.

get_only3([]1,[]1). .
get_only3([HITI,[HIT1]) :- length(H,3), get_only3(T,T1).
get_only3([HIT],L) :- get_only3(T,L).

create_integq(n,_) :— al, ascsertz(integrity(_, ,[1)).
create_integ(y,[]) :—- assertz(integrity(_,_ ,[1)),

nl, write(’” Inteqrity checks cver 7).,
create_integ{y,[H|T]) :- nl, write(’Integrity constraints for: 7)),

write(H), nl, nl, write(’” give list of conditions :7), nl,
read(S), replace(Var,H,S,Lis),
assertz(:—-(integrity(H,Var,Lis),!)),
((retract(:—(integrity(_,_ ,[1),!))) ; true),
assertz(inteqra(:=-(integrity(H,Var,Lis),!))), create_integ(y,T).

al - retract(:-(integrity(_
al - retract({integrity(_, ,
al :- azcertz(integrity(_,_,

canvert([1,[1).
convert([H|T],Aggqregate_licst) := H =.. L, convert(T,New_aggr_lis),

append([L],New_aggr_lis,Aggregate_list).

get_set_skels(Num,0,[]). _
get_set_skels(Num;Aggr_lis_len,Ans) :— A is Aggr_lis_len - 1,
get_skel(Num,Al), get_set_skels(Num,A,A2), append([Al],A2,Ans).

form({1,(1,_,_,[(1).

form([H1IT11,[H2{T2]),L,Name,,Ans) :~ H1 = [HiIT), pick_up(Num,L,T),
pick_up(Num,H2,[Al]l), A2 =.. [Namel|H2], A3 =.. [H,Al1,A2,A4],
form(T1,T2,L,Name,AS), append([A3],AS5,Ans). _

Page 118

unify(_,[1,_).
unify(ZX,[H|T],Var) :- pick_up(ZX,H,Var), unify(ZX,T,Var).

unifiercl{1,_,[1).
unifier([HIT],[HLIT1],[H21TZ2])) :— H1 =.. [
unifier(T,T1,T2).

callingl([]).

callingl([HIT1) :— length([HITI,Num), Num \= 1,
H=.. [not,_1, reverse([H|T],L), callingl(L).

callingl ([H|T}) :-= H =., [Qp,B1l,BZ2,AN], (Op = max ; Op = min),
H, Bl = AN, (callingl(B2) ; (not(is_list(B2)), B2)),
1, callingl(T).

callingl([H|T]) :- H, callingl(T).

for_write([],[1).

for_write([HIT],[HIT1]) :- stom(H), for_write(T,Tl;.

for_write([HIT],[H1iIT11l) :- not atom(H), H =.. [A,E],
name(A,Al), name(B,Bl), append(Al,[40{Bl},Templ},
append(Templ,[41],Temp), name(Hl,Temp), for_write(T,T1).

skeleton(Name,A) :- relation(K), K =.. [NamellL], length(L,Num),
get_cskel (Num,f) .

'deal(L,Name,B) - nl, !, Al =..[Namel|B],Al, write(’ 7Y,
pick_up(L,B,L1), write_attr(L1l), nl, fail.

deal_wi th(Num,Al,Exp) :- A&l, Al =,.[HIT], replace(Num,T,Exp).

find_all(A) = nl, nl, J =..A, 1, J,
retract(J), asserta(removable(J)},
write(J), write(”’ deleted.”), nl, fail.

evaluate(0ld,Exp,Exp) :— atom(Exp).

evaluate(O0ld,Exp,New) :- Exp =..[A,B,L], atom(B),
Temp =..[A,01d,C), New ic Temp.

evaluate(0ld,Exp,New) :— Exp =..[A,B,C], atom(C),
Temp =.. [A,B,01d]}, New is Temp.

subst(_,[],_,[1).
subst(X,[XIL],A,[&1IL]).
subst(X,[YIL],A,[YIM]) - subst(X,L,A,M).

pick_up(ll,_,[1). ' ' ‘ '
pick_up([MIN],L,[XIY]) :— mem(M,X,L), pick_up(N,L,Y).

mem(1,X,[XI_1).. . o | .
mem(N,X,[_IY1) t- mem(M,X,Y), N is M+l.

- get_skel(0,[1).

-gef_skel(l,{H]) TR

Page 119

get_skel(N,[HIT]) :— N1 is N-1, get_skel(N1i,T).

member (X, [X|_1).
member (X,[_1Y]) :- member(X,Y).

write_attr([]). '
write_attr([HIT]) :- write(H), name(H,L), length(L,N),
N1 ie 11 - N, tab(N1l), write_attr(T).

exit"—'my :aue(saved,sauable), my_save(deleted,remcvable), halt.
ex - exit.

substitute(Var Exp,Exp) :- atom(Exp).

substitute(Var ,Exp,Exp) - number(Exp).

substitute(Var,Exp,New_exp) :- Exp =.. [0p,T1,T2], atom(T1l),
New_exp =.. [0Op,Var,T2].

substitute(Var ,Exp,New_expy - Exp =.. [0p,T1,T2], atom(T2),

"~ New_exp =.. [0p,T1,Var]. '

conf([]) = 1,
conf([H|IT]) :- relation(K), K =.,.[HIL]}, conf(T).
econf(_) := ', nl, nl, write('Check relation name(s) “), fail.

check(L,Attrs) :1- relation(K),
K =.. [LILis], chec_attri{Attrs,Lis).
check(_,_) :—= !, write(’Check spelling of relation 7}, fail.

duplic(Name) :- relation(K), K =.. [Namel_]J.

do_correct(y) :— my_cave(integrity,integra),
my_save(relation,rel), nl, my_save(relation,relation),
write(’” Integritv(s) and relatxon(c) saved’).
do_correct(n) :- do.

chec_attr([J,Lis). : :
chec_attr([H|Tl,Lis) :- member(H,Lic), chec_attr(T,Lis).
chec_attr([HIT]l,Lis) :— 1,

write(’ Attribute list is incorrect), fail.

confirm(Name,érgs) :- relation(K), K=..[Name|L], length(L,Nul),

length(fArgs ,Nu2), Nul = NuZ.

/*k**********k************tk*********k**************#******/

Sxkdkdkkk SAVE ALL UPDATED CLAUSES AND NEW FACTS Kdkkdkdekkdks/
A Fedodk ke dodedededededede dededode e de oo dede ook doedkde sk e de ootk e de e dede e doke e sk e e de ke ke e/

my_cave(File,Y) :-
O tell(Flle), saue_predxcate(x Y), fail.
'~m9 saue() - told. '

Page 120

save_predicate(X,savable) :- savable(X), write(X),
write(’.7), tab(d), fail.

save_predicate(X,removable) :- removable(X), write(X),
Wwrite(”.”), tab(5), fail.

cave_predicate(X,integra) :- integra(X), write(X),
write(’.”), tab(3), fail.

save_predicate(X,rel) :1— rel(X), write(x},
write(’.”3), tab(5), fail,

save_predicate(X,relation) :- relation(X),
write(relation(X)), write(’.”), tabk(3), fail.

cave_predicate(_,).

A ¥ekehAdedodedk Ao dodedookhod e ek dokede ke e ke ek ok ek vk e o ke ke ek e e e ek Aok e ok 4

Sdhdedkkddokkhkhdh ALL AGGREGATION FUNCTIONS ddkdhddcdodddodkdddk /
Fdekdedkehdohhdhded dekdehk A d A ko ke Fodok Ak A Aok ddok e de ke ko dedeh kA A h koo ki kok S

cnt(X,G,_) :~ assertal(focund(mark)),
(callingl(G) _ .
y (not(ie_liet(G)), call(G))), asserta(found(XX)),

fail.
ent(X,G,C) :1- cnt_found(0,C), !.

sum(X,G,_) :— write_down(X,6), fail.
sum(X,G,8) - sum_found(0,S), !.

avg(X,G,_) write_down(X,G6), fail.
avg(X,6,A}) :- avg_found(0,0,A), 1.

max(X,6,_) :— write_down(X,G), fail.
max(X,G,M) :- max_found(0O,M}, I.

min(X,G,_) :— write_down(X,G), fail.
min(X,G,M) - min_found(l.0e38,M), !.

cnt_found(Il,Jd) :— getnext(X), K is I+1, cnt_found(K,dJ).
cnt_found(K,K).

sum_found(1l,Jd) :- getnext(X), K is I+X, sum_found(K,J).
sum_found(K,Kj).

avg_found(1,J,K) :— getnext(X), M is I+1,
' N is J+X, avg_found(M,N,K),
avg_found(M,N,A) 1= A is N/M, I,
max found(l J) :- getnext(X),
(X>1, max_found{(X,J); max_found(l,J)).
max_found(K,K).

min found(I J) - getnext(X),
(X<I, min_found(X, J), min found(I J))

Page 121

.//;:ﬂm“' ;min_foundtk,x).'

gwrxte down(X,G) . :- asserta(fddnd(mérk)),
(callxngl(G) ' . ‘

(not(xs_llst(G)), call(G))), asserta(fqund(X)).

} : . .

all(Ans,Q,_) :- asserta(found(mark)),
(callingl(Q) ; (not(is_list(G)), call(G))),
one_of_them(Ans), fail.

all(Ans,Q Set) :- collect found([] Set), L

one_of_them(Ans) :- found(Ans), 1.
one_of _them(Ans) :- asserta(found(Ans)).

collect_found(S,Set) :— getnext(X), collect_found([X|S],Set).
collect_found(S,S).

getnext(X) :— retract(found(X)), !, X \== mark.

updat(X,G,Y,Attr) :- (callingl(G) ;3 (not(is_list(G)), call(G))),
updated(X,G,Y,Attr), fail.

updated(X,G,Y,Attr) :— {find(Y,Y1)>, {integ(Attr,Y1l)},
replace(Y1,X,G,New), nl, retract(G),
asserta(removable(G)), asserta(savable(New)),
asserta(New), write(G), '
write(’ : updated to : ‘), write(New), !.

int((1,[1). .
int([HIT],[H1IT1}) :- integrity(H,Hl,Lis),
checking(Lis), int(T,T1).

integ(Attr,Y1l) :- integrity(Attr,Yl,Lis), checking(Lis).
integrity(_,_,[1).

checking([]). : _
checking([H|T}) :— H, ', checking(T).
checking([H|T]) :— !, {nl, write(H),
write(’ : wiolates integrity constraints’), nl,
write(” Nc¢ updation/insertion done for this tuple 7)), fail.

find(X,X) :- atomic(X).
find(E,R) :- R is E.

replace(New,01d,01d,New) . _

replace(New,01d,Val,Val) :- atomic(Val).

repl ace(New,01d,Val ,Newal) :- functor(Val,Fn,N),
‘functor (NewVal ,Fn,N), subst_args(N,New,01d,Val ,Newal).

Page 122

subst_args(0,_,_,_,_) = 1.

subst_args(N,New,01d,Val ,Newal) :- arg(N,Val,01dArg),
arg(N,New/al ,NewArg), replace(New,0l1d,0ldArg,NewArg),
Nl is N-1, subst_args(Nl,New,01d,Val ,Newlal},

group(N,G,N) :- (callingl(G) ; (not(is_list(G)j, call(G)j),
only(N),

only(N} :- not ffound(N), acscserta(ffound(N)), !.

is_list([]).
is_list(I[_1_1).

writeln(0).
writeln(l) :— write(’' —-———=>~——-——— .
writeln(N) := N1 ie N-1, writeln(l), writeln(N1).

simplify([1,01,01).

simplify([HIT],[HlAttr_lis],Aggr_lic) :- atom(H),
simplify(T,Attr_lis,Aggr_lis). v

simplify([HIT],Attr_lis,[H]Aggr_lis]) :- not atomic(H),
not number(H), simplify(T,Attr_lis,Aggr_lis).

simplify_cols([],{1).

simplify_cols([HITl,[HIAttr_lis]) :~ atoem(H),
simplify_cols(T,Attr_lis). v

simplify_cols([HIT],[BlAttr_lis)) :- not atomic{H), not number(H),

H=.. [_,B]l, simplify_cols(T,Attr_lis).

/**%/

ZFdedkkk SOME USEFUL PREDICATES Jok ek /
L FAkdeke Rk dode A Aok Aok oo de Ao de e b e A de e de Ak ke ok ek e e ke ok e ek Ak kS

append([],L,L).
-append([HIL1],L2,[HIL3]) :- append(L1,L2,L3).

extract(X,[]) :—= atomic(X).

extract(X,[X]}) = var(X).

extract(T,L) - arg(l1,T,X), extract(X,L1l), arg(2 T W),
extract(Y,LZ), append(Ll Lz,L). ’

extract_attr(X,[]1) :—- var(X).

- extract_attr([{1,[1).

extract_attr(X, {X}) :— atomic(X).

_ extract_attr(T,L) :— arg(1l,T,X), extract attr(X L1,
o arg(2,T,Y), extract _attr(Y, L2), append(L1,L2,L).

ext(x, [[*]]) _
ext(X,[]) :— atomic(X).
ext(X,[X]) :~vis_;ist(X)y

ext(T,L) :~ {arg(l,T,X), ext(X,L1)>,
arg(2,T,Y), ext(Y,L2), append(Ll,L2,L).
ext(T,L) :- arg(l,T,X), ext(X,L).

efface(A,[AIL),L) - 1.,
efface(A,[BIL],[BIM]) :- efface(A,L,M).

reverse([],[]).

reverse([H|T],L) :- reverse(T,R), append(R,[H],L).

-Page 123

Page 124

////,.v , APPENDIX 6
/&_&: o] ‘& = %

"BIBLIOGRAPHY AND REFERENCES

.

B

ot

ﬁpxz b

Q\%;_~ fﬂ-=? R.A.Kowalski, "Prolog as a Logic Programming Language",
Tt Congrese, 23-25 Sept 1981, Vol 2, pp - 1029-34.

et
121. J.W.Lloyd, "Foundaticne of Logic Programming",
Symbolic Computation Seriecs in A.I1., Springer-Verlag, 19284.

{3}. W.F.Clocksin & C.S.Mellish, "Fregramming in Froleog",
Springer International Students Edition, Springer-Verlag,
Berlin, Heidelberg, 1986.

[4). Zohar Manna, "Mathematical Theory of Computation,
McGraw-Hill Internaticnal Student Edition,
McGraw-Hill Kogakusha Ltd., 1974,

[S]. R.A.Kowalski, "Logic for Data Descriptioen", in Logic and
Databacses, edited by H.Gallaire and J.Minker, Plenum Press,
New York, 1978, pp- 73-103.

[e¢]. D.H.D.Harren, "Logic Programming and Compiler Writing",
Sof tware Practice & Experience, Vol 10, pp- 97-125, 1980.

[7]. Leen Sterling & Ehud Shapire, "The Art Of Prolog:
Advanced Programming Techniques®, The MIT Press, Cambridge,
Massachusetts, 1986.

{&]l]. R.Faqin, "Horn Clauses and Databacse Dependencies®,
Proc. ACM Sigact symposium on Theory of Computation,
pp— 123-134, 1980,

[9]. Y.Sagiv, R.Fagin et zl, "An Equivalence Between
Relationsl Databacse Dependencies & a Fragment of
Propositional Legic, JACHM, Vol 28, pp- 435-453, 1981.

[10]. C.J.Date, "An Introduction to Database Systems",
Addison-Wecslevy/Narosa Indian Student Edition, 19&87.

[11]. J.D.Ullman, "Principles of Databacse Systems",
Pitman Fublishing Limited, 1983,

[12]. Deyi Li, "A Proleog database System", Research Studies
Precs Ltd., Letchworth, Hertfordshire, England, 1984.

{13]. R.N.Cuff, "HERCULES: Database Query Using Natural Language
Fragments", Proc. of the{ﬂﬁrd ~British National Conference on

Databases, 1984
4

	TH23710001
	TH23710002
	TH23710003
	TH23710004
	TH23710005
	TH23710006
	TH23710007
	TH23710008
	TH23710009
	TH23710010
	TH23710011
	TH23710012
	TH23710013
	TH23710014
	TH23710015
	TH23710016
	TH23710017
	TH23710018
	TH23710019
	TH23710020
	TH23710021
	TH23710022
	TH23710023
	TH23710024
	TH23710025
	TH23710026
	TH23710027
	TH23710028
	TH23710029
	TH23710030
	TH23710031
	TH23710032
	TH23710033
	TH23710034
	TH23710035
	TH23710036
	TH23710037
	TH23710038
	TH23710039
	TH23710040
	TH23710041
	TH23710042
	TH23710043
	TH23710044
	TH23710045
	TH23710046
	TH23710047
	TH23710048
	TH23710049
	TH23710050
	TH23710051
	TH23710052
	TH23710053
	TH23710054
	TH23710055
	TH23710056
	TH23710057
	TH23710058
	TH23710059
	TH23710060
	TH23710061
	TH23710062
	TH23710063
	TH23710064
	TH23710065
	TH23710066
	TH23710067
	TH23710068
	TH23710069
	TH23710070
	TH23710071
	TH23710072
	TH23710073
	TH23710074
	TH23710075
	TH23710076
	TH23710077
	TH23710078
	TH23710079
	TH23710080
	TH23710081
	TH23710082
	TH23710083
	TH23710084
	TH23710085
	TH23710086
	TH23710087
	TH23710088
	TH23710089
	TH23710090
	TH23710091
	TH23710092
	TH23710093
	TH23710094
	TH23710095
	TH23710096
	TH23710097
	TH23710098
	TH23710099
	TH23710100
	TH23710101
	TH23710102
	TH23710103
	TH23710104
	TH23710105
	TH23710106
	TH23710107
	TH23710108
	TH23710109
	TH23710110
	TH23710111
	TH23710112
	TH23710113
	TH23710114
	TH23710115
	TH23710116
	TH23710117
	TH23710118
	TH23710119
	TH23710120
	TH23710121
	TH23710122
	TH23710123
	TH23710124
	TH23710125
	TH23710126
	TH23710127
	TH23710128
	TH23710129
	TH23710130

