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ABSTRACT 

View materialization deals with materializing views containing data and their specification. 

·This dissertation focuses on the view selection issue of view materialization. View selection 

generally deals with selecting an optimal set of beneficial views for materialization subject to 

constraints like space, response time, etc. The problem of view selection has been shown to be 

in NP. Several heuristics based view selection algorithms exist in the literature of which the 

most fundamental greedy based algorithm is HRU, which uses a multidimensional lattice 

framework to determine a good set of views to materialize. HRU exhibits a high run time 

complexity. This issue has been addressed by the algorithms proposed in this dissertation. 

One reason for high run time complexity of HRU has been found to be the frequent re­

computations of benefit values after every selection of view for materialization. An algorithm 

Reduced Lattice Greedy Algorithm (RLGA) has been proposed that addresses this issue by 

using a heuristic to reduce the number of dependencies among views. This results in a 

reduced lattice, with respect to the dependencies, from which beneficial views are selected 

greedily. RLGA was experimentally found to have fewer re-computations and an improved 

execution time in comparison to HRU. 

Another reason for high run-time complexity of HRU is that the number of views is 

exponential in the number of dimensions, making it infeasible for high dimensional data sets. 

Algorithm Reduced Candidate Greedy Algorithm (RCGA) has been proposed that improves 

the scalability by recommending views using the RLGA heuristic followed by greedily 

selecting the most beneficial views from them. RCGA was experimentally found to have a 

better execution time than HRU but with a slight loss in terms of benefit values. RCGA was 

also compared with another existing algorithm PGA and found to have similar execution time 

and slightly higher benefit values for high dimensional data sets. 
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CHAPTERl 

INTRODUCTION 

A view is a specification for generating data from the underlying data repository [CDOl, 

R97]. The view, when queried, is recomputed as per the specification given. Such a view is 

then said to be materialized if it contains data along with the specification of the view [R97] 

and the results obtained can be stored [CDOl]. A materialized view can be queried as any 

other data within the repository. 

Many views get computed within a data repository over time, but most views are discarded 

after being used once [R97]. The cost of generating the view is high in such a scenario and 

needs to be borne each time a similar query is posed. This cost becomes very high in a data 

warehouse type of set-up, where there is a large volume of subject-oriented, integrated, time­

variant and non-volatile data[I03]. The frequent re-computation of views results in a poor 

performance from the system. Instead by caching results (storing as materialized views) from 

prior views [R97, YYL07] and by re-using these results, a substantial saving can be effected 

during subsequent queries over the same views. The queries posed later would be able to get 

results within a very short span of time [TU] from the same views that were computed and 
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stored in earlier iterations. It is obvious that the materi~Jized views would need to be stored to 

the disk. So there is an additional space overhead on the system with materialized 

views[CHSOl, HRU96, GHRU97, R97, TU, YYL07]. 

The number of possible views within a system is related to the number of dimensions of the 

data, in fact, an exponential function of the number of dimensions[NT02]. So trying to 

materialize all possible views is infeasible in most real world systems. A better alternative is 

to choose the optimal subset of views to materialize that bring about the maximum 

improvement in the performance of the system. However, making such a selection is NP 

complete [CHS01,GHRU97, SRR06], so a better strategy or a heuristic needs to be used to 

choose the most beneficial set of views for a given context. This has been the focus of most of 

the existing literature in the area of view materialization. The related work in the area of view 

materialization is discussed next. 

1.1 Related Work 

Research in the area of materialization of views started off in the 80's [BLT86, H87, RK86, 

SF89, SF90, SP89a, SP89b]. The initial focus was on decoupling views from the underlying 

data store, also referred to as pure data in [R97], and materializing these views and storing 

them in separate tables (or memory) as opposed to keeping them purely virtual [RK86, SF90, 

SP89a]. Since data in the materialized views would need to be updated with changes to the 

underlying data, alternatives suggested were either to re-compute the entire view [BLT86, 

RK86] or to follow an update procedure that is able to work with the differentials [BLT86, 

H87, SP89a]. In [SP89a] an approach is given using differential files to which the modified 

tuples are appended followed by duplicates elimination, whenever changes are seen. Since all 

changes to the backing store may not be necessary for propagation to the view, a screen test 
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approach was suggested [BLT86, SP89a] to filter out the irrelevant ones. Approach for 

updates to views in the case of distributed systems was presented in [SP89b, SF89, SF90]. A 

currency concept was introduced [SP89b] to indicate the lag between the data present in the 

view and that of the backing store. The currency value allows identification of the optimal 

time for executing the update queries for the materialized views. The updates could be run in 

a scheduled manner or on demand. A hybrid of the two approaches is presented in [SP89b]. 

This work was extended in [SF90] to be able to choose the most optimal sources for an update 

(another view or backing store) for a set of distributed materialized views. The one major 

drawback of the algorithm presented in [SF90] is that it basically works for acyclic graphs, 

i.e. , not having duplicate views at different sites. Though the authors have handled cyclic 

graphs by reducing it to an acyclic graph, the computation complexity for such a pre­

processing.step would be phenomenal in most distributed system. 

[CHSOl] provides a definition for the view selection problem as the choice of views to 

materialize given set of workload queries, storage space and database schema. The authors go 

on to show a similarity between the approach for selection of views to materialize and the 

approach for placement and replication of data over nodes in a distributed network [CHSOl]. 

The key contribution of [CHSOl] being to show that selection of views to materialize. is a 

function of the statistics about the size of the views available with the query optimizer. With 

complete statistics availability assumption, which happens to be the basis for many heuristics 

(like HRU96, NT02, etc.), the complexity of the optimum view selection problem is shown to 

be exponential in the size of dimensions of the data cube. On the other hand when heuristic 

are used for estimating the size, it reduces to polynomial complexity. But the cost for 
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selection of indexes and the cost for maintenance of views have not been considered in the 

analysis. 

[ AD98] does a complexity analysis for the problem of making use of materialized views to 

answer user queries. The problem is analyzed in two cases, first for a closed world assuming 

all relevant tuples are materialized, and then for an open world assuming only a few relevant 

tuples are materialized. With the open world assumption, the materialized view is incomplete 

and only able to partly answer user queries. This tolerance for approximation (or error) in 

results in the open world assumption brings with a great saving in computation costs as shown 

in [AD98]. The authors also briefly touched upon benefits of using such an approach for self­

maintenance of views to cater to updates on the underlying data. Since with the open world 

assumption, the view is perceived as an incomplete representation of the database, updates 

can automatically be compensated for with such a model. On the other hand for a closed 

world assumption all such computations become intractable. 

[TBOO] goes on to better generalize the issues in materialized views and present a number of 

design goals for selection of views. These include the different cost functions (query 

evaluation, maintenance, etc.) and the constraints (space, response time, etc.) that need to be 

considered. [RSS96] proposed an approach for materializing some additional views that in 

tum improve the query response time for other dependent views. 

A survey on some of the existing literature for the period can be found in [CDOl, MSRK99, 

SRR06]. The authors [CDOl] have categorized the surveyed work based on the approach 

taken for view selection (e.g. space time trade-oft), for view maintenance (e.g. incremental) 

and on applicability to distributed systems. In [MSRK99] an overview of the major research 

challenges in the area of data warehousing is given, one of the problems being related to view 
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materialization. In [SRR06] the survey is arranged along the lines of pure static, pure 

dynamic and hybrid materialization of views. The authors [SRR06] further go on to show the 

benefit of taking a hybrid approach to view materialization and an approach on the hybrid 

lines. The authors (SRR06] performed extensive tests to compare their algorithm against 

another dynamic view management algorithm Dynamat [KRO 1]. 

One of the key issues in view materialization is materialized view selection. The view 

selection problem is the selection of the subset of views to materialize, keeping certain 

constraints like cost of materialization, space available to store views, etc. in focus [TBOO]. 

This has been stated more formally in [CHSOl] as the issue of selecting a set ofviews V over 

a schema R, such that the some constraint X (like storage space) is not exceeded by the set of 

views selected. Further, the cost estimation function for query processing, the cost of selecting 

the views V over R, using a given set of workload queries Q, should be the minimum 

[ CHSO 1]. The materialized view selection is discussed next 

1.2 Materialized View Selection 

As mentioned earlier one of the key issues surrounding materialized views is the issue of 

selection of the appropriate views to materialize. There is usually an exponentially high 

number of possible views to be materialized within any system[NT02], but the space available 

for storing these views is restricted, so only a small number of views can be materialized at a 

time. This subset of views needs to be selected from among all possible views to bring about 

the maximum improvement in the performance of the system. However, making such a 

selection is NP-complete (CHSOl, GHRU97, SRR06]. So the entire effort in the area of 

selection of views to materialize is devoted to identifying a strategy that on the one hand is 

effective in selecting beneficial views, while on the other is feasible for practical purposes. 
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Some key considerations while making the selection of views to materialize are mentioned 

below. 

Query evaluation cost minimization - Query evaluation cost is associated with the query 

execution plan that is chosen for answering a particular query. In the presence of 

materialized· views, these materialized views should get a higher priority for computing 

results for queries as compared to the base relations [BPT97, 097, GM99, HRU96, TBOO, 

YKL97]. The other factor related to query evaluation cost minimization is the 

interdependence among views, where some auxiliary views, though not directly used for 

answering queries, might have many other views dependent on them [RSS96, TBOO]. In 

such situations it may be beneficial to materialize these auxiliary views even though they 

are not used directly for answering queries. 

Operational cost minimization - Operation cost is a function of the query evaluation and 

maintenance cost [BPT97, CDOl, RSS96, TBOO]. Query cost is related to the cost of 

computing results for a query from materialized views. While maintenance cost is related to 

the frequency of change to backing data repository and to the cost of propagating these 

changes to the materialized view. 

Multiple Query Optimization (MQO) - MQO deals with identifying the optimal plan for 

executing multiple queries from the same point in time (IOO, YKL97] by sharing of 

temporary results between the queries. Sharing of temporary results would bring about a 

cost saving for answering queries. In this area algorithms by [YKL97] using Multi-View 

Processing Plan (MVPP) are found to be very comprehensive. [Y AE05] extends this work 

to include maintenance process optimization and incremental maintenance algorithms. 
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Partly Materialized Views - Recent research direction is towards materializing a portion of 

the view [L07, LWL06, ZLOD07]. Such empirical algorithms [SRR06] are facilitated by 

making use of historic trends and access patterns at relational and tuple levels. 

A detailed categorization of the work done by authors in the area of selection of views to be 

materialized is given below. 

1.2.1 Greedy Algorithm Based 

As shown in [HRU96], the problem of selection of the set of views to materialize for data 

cubes is NP-complete. The authors thus went on to propose algorithms based on the greedy 

approach to select the beneficial views for materialization. The algorithm works with the 

assumption of knowing from before hand the size of different possible views to be 

materialized. For making the estimate about the size of the view, authors in [HRU96] have 

suggested making use of sampling and analytical techniques. Authors have also established 

the lower bound value for benefit for working with the greedy algorithm as ( e-1 )/e, where e is 

base of natural logarithms, i.e. 63% of the optimal algorithm. In the extension to the basic 

model of greedy algorithm two other cases are considered [OHRU97], where the probability 

of all views being queried need not be equal and a space constraint might be applied 

restricting, the number of views to be materialized. Authors have also looked at the space­

time trade off aspect within the hypercube lattice. 

[097, OHRU97] present polynomial time greedy algorithms for selection of views to 

materialize AND graphs and OR graphs, and an exponential time algorithm for AND-OR 

graphs. However, the authors only consider the cost of materialization given a constraint on 

the maximum space available for materialization of views. [097, OHRU97] originally did not 
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consider the cost of maintenance of materialized views. This cost is included in the more 

recent work by [GM05]. 

A variant of the greedy algorithm which is able to identify the optimum set of views in 

polynomial time (PGA) is given in [NT02]. PGA operates in two phases - nomination and 

selection. In the first phase starting from the root of the data hypercube lattice, the smallest 

node from all its child nodes is nominated as the candidate for materialization. The process is 

repeated and nodes added to the candidate set till the bottom of the lattice is reached. The 

assumption for nomination phase being that, smaller views tend to be more beneficial per unit 

cost of materialization as compared to larger views. Next in the selection phase, the benefit of 

materializing each candidate is estimated to finally pick the view that yields most benefit in a 

greedy manne~. The time complexity of PGA is shown to be 0( d2k2
) for d levels in the lattice 

and k candidates which compares favourably over the algorithm in [HRU96] having 

complexity of O(k22d). Although, PGA does have an additional overhead of 0( d2k) in terms 

of space needed to maintain metadata information about the candidate views in each iteration. 

[EM07] presents another algorithm based on the greedy approach that makes use of the 

number of dependent relationship (utilization rate of a view) and the frequency of update to 

the base relations to compute the cost of materializing a view. The basis of the algorithm 

being that dependent relationships can utilize the same materialized view (i.e. if there's been 

no update), so there can be a cost saving if the optimum set of dependent relationships are 

identified based on execution cost or in a greedy manner. The set of dependent relationships 

so identified are then given as input to the algorithm in [EM07] which selects the optimum set 

of materialized views. 
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There are many other algorithms [CLFOl. EM07, G97, GHRU97, GM05, HRU96, NT02, 

YYL07] that are based on the greedy algorithm. In [CLFOl] an adapted greedy algorithm is 

· presented and some elaborate test results to ascertain the benefit of working with the proposed 

cost model and for making use of the hybrid approach in data warehouse. The hybrid 

approach only selects those views for materialization that offer cost benefit, while the rest of 

the views are kept virtual and computed on the fly. 

1.2.2 Index Selection Based 

In [ACNOO, GHRU97, GM05], the authors have considered selection of indexes alongside 

selection of materialized views. Indexes have been shown to be similar to materialized views, 

in the sense that both are additional physical structures added to improve the response time for 

queries. Both the structures present a space overhead on the system over which they have 

been defined. [ ACNOO] further goes on to prove indexes to be a special kind of materialized 

view that has been projected from a single table. It has also been suggested in [ ACNOO] that 

indexes and materialized views should be able to make use of one another, though no specific 

strategy for doing so is mentioned. In [ ACNOO], all candidate views for materialization are 

identified along with the indexes on the base table by application of heuristics for the 

Microsoft SQL server 2000. In contrast to this, [GM05] (and their earlier work [GHRU97]) 

present a more general approach for selection of indexes, which have been defined for views, 

which have been materialized. These indexes are built on views and are relevant in bringing 

down the computation cost for queries, only if the corresponding views have been 

materialized. [GHRU97, GM05] present a few algorithms (e.g. r-greedy, inner level greedy) 

based on the greedy approach [HRU96] that consider the selection of materialized views and 

indexes for a given amount of storage space. The drawback of this approach is that in case 
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more than one indexes to a particular view are present, the advantage of using one index over 

the other cannot be evaluated until all possible dependent views have also been materialized 

[CDOl]. 

1.2.3 Genetic Algorithms Based 

Application of randomized search algorithms and Genetic Algorithms (GA) to materialized 

view selection is also gaining focus. In this regard the pioneering work was done by 

[HCLK.99, ZYY99]. Both papers considered the query access cost and the update cost in the 

cost functions presented. The work in [HCLK.99] gave a high level approach for performing 

genetic local search to identify the set of materialized views using AND-OR graphs. In 

[ZYY99] the problem was defined with respect to MVPP. A fitness function to be maximized 

was defined, after transforming the cost function appropriately. Some experimental results 

from [ZYY99] also seemed to show that the GA based algorithms were able to identify better 

than what conventional heuristic based algorithms could do, though the GA based algorithms 

were taking far longer to execute. In the subsequent work by the same authors [ZYYOl], the· 

selection problem has been split into two different problems operating at two levels of 

hierarchy. At the higher level, the problem is selection of the optimized global processing 

plan by merging many individual processing plans. While at the lower level, the problem is to 

select the optimum set of views (nodes) to be materialized from the optimum global 

processing plan identified at the higher level. The authors applied evolutionary algorithms at 

both levels and were able to compare results from the different settings (GA applied at either 

level, at both level, etc.). 

[HCL03] extended their earlier work to present a two part representation for the genome, first 

one to identify the query plan and the second one for the view (node) to be materialized from 
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the plan. Using such a representation, the plan and the view are directly known from the 

resulting population of the subsequent generations. The test results show GA yields better 

quality results than the greedy algorithm though its execution time is high for small number of 

queries and shows improvement only for large number of queries. The higher execution time 

for GA based was also seen in [ZYYO 1]. 

[LB06] present two evolutionary algorithms for selection of views to materialize incase of 

multiple distributed OLAP (M-OLAP) data cubes, including a co-evolutionary genetic 

algorithm. For representation of the genome, eight bits per cube has been used where a value 

of 1 indicates that the corresponding node from the cube is to be materialized. For the normal 

GA, each individual is represented by one genome string obtained by merging M (number of 

data cubes) eight bit strings. While in the co-evolutionary algorithm, each individual is 

represented by M genomes each of length eight bits. In their experimental evaluation on the 

TPC-R database over a LAN set-up, [LB06] found that the co-evolutionary algorithm 

outperformed simple GA and Greedy algorithms in terms of the total cost of solutions. The 

co-evolutionary algorithm also scales up better than the other two for an increase in the 

number of nodes in the data cubes (varying it from 64 to 256) and an increase in the number 

of cubes. 

Unlike the work where different objectives of the view selection problem (like query cost) are 

combined into one (linear) cost function to be minimized, in (L06] a multi-objective function 

is used. Two objectives for the selection problem are identified as the query cost and the 

maintenance cost, that are simultaneously minimized using multi-objective GA. By 

minimizing such a multi-objective function, a number of optimal (pareto) solutions can be 

obtained. From these solutions, the appropriate set of views can thus be materialized trading 
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one objective for the other depending upon their importance. The author performed tests with 

two standard non-elitist multi-objective genetic algorithms and found the results compared 

favourably against greedy algorithm. 

[VGP07] presents two hybrid (genetic and greedy) algorithms for selection of an optimal set 

of objects (materialized views, vertical fragments and indexes) from the data cube. In the 

greedy step the set of views with highest usability ratio are picked up and appended to the set 

of chromosomes from the previous generation randomly. Thereby modulating the solution 

space in which the greedy algorithm is applied. In this way the chromosome length keeps on 

growing until the length yielding optimal results (convergence) is found. 

1.2.4 Web View Materialization 

Alongside research in view materialization for databases and data warehouses, there is also 

ongoing work in the area of materialization of views for the web [CFP99, KSCP04, LR99, 

LROO, LROla, LROlb, LR02, LR04, MMM02, SKRPOl, SSA07, YFIVOO]. Web presents its 

own set of challenges like having to work with highly dynamic content that gets updated 

frequently, operating in a 24X7 online mode, etc. that affect selection of views. Materialized 

web views enhance performance of the system on the web, by caching some of the query 

results outside the backing data store, which can be re-used for answering future queries 

[LR02]. 

System architecture for a web based system is given in [LROla, LROlb, LR02]. These 

essentially make use of an asynchronous cache layer, between the application and db server 

layers, where views are materialized. Such a cache can be refreshed on update without having 

to be invalidated, thereby improving the response time. The response time is measured in 

[LR02] by the quality of service (QoS) metric, by recording the average time for servicing a 
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request. While the freshness of data is measured using the quality of data (QoD) metric, which 

measures the average period from the time when an update was received to the time when the 

update was propagated to the relevant cached materialized views. The online view selection 

algorithm (OVIS) thus proposed in [LR02], works for a user defined QoD threshold value, 

constantly monitoring and balancing any surplus (or deficit) in QoD by decreasing (or 

increasing) the number of materialized views. In other words the algorithm does a QoD to 

QoS trade-off to ensure the system is providing results with QoD around the threshold. 

Experimental results in support of the OVIS algorithm is found in [LR04]. [LR04] also 

presents a few other metrics for measurement of QoD based on the freshness value of 

fragments. Depending on the requirements of the application, page fragments of the 

appropriate level of freshness can be aggregated to form corresponding views. 

In [SKRPO 1] also the poterit combination of parameterized fragments and XML is seen for 

generation of web views. Several such fragments can be pre-computed, thus saving 

computation costs during peak load hours. [YFIVOO] evaluate different caching strategies 

such as caching pre-computed pages, XML file, DB caching, etc., using a declarative 

specification (weave) for data intensive websites. 

A somewhat different treatment of web views is found in [MMM02]. Here authors have tried 

to find out navigational paths within structured websites, by pulling out relational abstractions 

from these websites. Since search based interfaces to hypertext documents are inadequate at 

finding the optimal navigational path between hypertext pages, so the relational abstraction is 

proposed on which SQL queries can be executed. A cost model, with parameter such as 

network access [MMM02], can then be applied on the results of the queries to identify the 
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optimal navigational path. The approach thus allows users to work with declarative queries, 

which can be translated to navigational paths in the hypertext pages. 

A recent work by [SSA07] uses mining technique over the web log files to identify the most 

relevant set of web views for a web based system. A great deal of indicative information 

about the user's access and navigational patterns within the system get captured in these web 

log files. This information can be useful for empirically [SRR06] deciding upon the best set of 

web views to materialize. The authors [SSA07] work with a similar intermediary cache based 

architectural system presented in [LR02]. 

1.3 Aim 

Among the algorithms for view selection discussed above, the greedy based view selection 

algorithm presented in [HRU96] forms the foundation of many of the other algorithms for 

view selection. The [HRU96] algorithm works with a set of views and the dependencies 

among them, and from them the most beneficial view in each of the iteration is selected for 

materialization. The algorithm exhibits high run time complexity[NT02, SR06], which may 

be attributed to following reasons: 

• Frequent re-computation of benefit values while selecting views for materialization 

i.e. with every selection of view, the benefit value of other views in the lattice may get 

affected and therefore require re-computation. The number of these re-computations 

may be high and thus contribute to the high run time complexity. This high run time 

complexity can be reduced by reducing the number of re-computations of benefit 

values. An algorithm Reduced Lattice Greedy Algorithm (RLGA) is proposed to 

reduce the re-computation of benefit values based on a heuristic that defines the 
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criteria for reducing the set of dependencies among views. The reduced set of 

dependencies results in a reduced lattice, which when used for greedily selecting 

views may result in a significantly lesser number of re-computations than those 

required for a complete lattice. This may in turn improve run time complexity. 

• The number of possible views is exponential with respect to the number of 

dimensions[NT02]. The algorithm is infeasible for high dimensional data sets as its 

execution time becomes phenomenally high. An algorithm Reduced Candidate Greedy 

Algorithm (RCGA) is presented that improves the scalability, with respect to number 

of dimensions, for selecting views for materialization. The algorithm RCGA, utilizes 

the heuristic used in RLGA to identify view for materialization in polynomial time 

relative to the number of dimensions. 

1.4 Organization of the Dissertation 

The dissertation is organized as follows: Chapter 2 discusses the algorithms in [HRU96] and 

[NT02] in detail, followed by a discussion about the two proposed algorithms RLGA and 

RCGA. The comparisons of the proposed algorithms with the existing algorithms are also 

given in Chapter 2. The Conclusions are given in Chapter 3. 
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CHAPTER2 

MATERIALIZED VIE"W SELECTION 

Materialized view selection has been identified as a key issue in view materialization. A view 

selection problem generally deals with selecting an optimal set of views for materialization 

subject to constraints like space, response time, etc. [TBOO]. An optimal selection of views 

usually refers to the set of views that are most beneficial in answering user queries and may 

thus reduce the operational costs [TBOO]. 

As per [YYL07], there are three possible ways of selecting views to materialize namely 

materialize all, materialize none and materialize a select few. Each of these ways trades in 

different amounts the space requirement for storing views, against the response time for 

answering user queries. Although materializing all views (2d views, ford dimensions) may 

result in the least possible response time, storing these views would have a high space 

overhead. At the other extreme with no views materialized, the view's results would have to 

be recomputed each time slowing down the response time. Thus, the only option available is 

to selectively materialize a subset of views statically that are likely to be most beneficial in 

answering user queries, while keeping the remaining views dynamic [SRR06, YYL07]. 

16 



However, due to the exponentially high number of possible views existing in a system, the 

search space is very large, so the problem of selecting the optimal subset from it for 

materialization has been shown to be in NP [CHSOl, GHRU97, SRR06]. Thus, for all 

practical pmposes, the selection of the subset of views to materialize is done by pruning of the 

search space, in either of the two ways mentioned below [TU]. 

1. Empirically: By analyzing past user querying patterns. Using the log of queries posed 

in the past, information like volume of data, commonly accessed portions of the data, 

etc. can be computed. This information can guide the selection of appropriate views to 

materialize that are likely to be useful for answering future queries. 

2. Heuristically: By identifying the best possible subset of views using a heuristic based 

algorithm. The heuristics commonly used are Greedy based [CLFOl, EM07, G97, 

GHRU97, GM05, HRU96, NT02, YYL07], A*[GM05, GYCL03], Genetic based 

[HCLK99, L06, VGP07], etc. These heuristics provide a reasonably good solution for 

selecting views to materialize for many real world problems. 

Several heuristics based approaches have been discussed in the literature[ ACNOO, CLFO I, 

EM07, G97, GHRU97, GM05, HRU96, HCLK99, HLJ06, KSCP04, L06, LB06, LROO, 

LYSW07, MMM02, NT02, SKRPOI, SSA07, YYL07,' ZLGD07, ZYY99, ZYYOI]. Most of 

these are greedy based approaches. The greedy based approach at each step selects an 

additional view, that has the maximum benefit per unit space and that fits within the space 

available for view materialization. Several papers discuss the greedy heuristic for selecting 

views for materialization [CLFOl, EM07, G97, GHRU97, GM05, HRU96, NT02, YYL07]. 

One of the fundamental greedy based algorithms was proposed in [HRU96]. This algorithm 
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uses a multidimensional lattice framework, expressmg dependencies among vtews, to 

determine a good set of views to materialize. 

The algorithm in [HRU96] exhibits a high run time complexity. This high run time 

complexity may be due to frequent re-computation of benefit values while selecting views for 

materialization i.e. with every selection of view, the benefit values of other views in the lattice 

may get affected and require re-computation of their benefit values. The number of re­

computations may be high in each iteration and may therefore contribute to the high run time 

complexity. This high run time complexity can be reduced by reducing the number of re­

computation of benefit values. An algorithm Reduced Lattice Greedy Algorithm (RLGA) is 

proposed that reduces the re-computation of benefit values of the views by considering only 

those dependencies in the lattice that have an impact on the benefit values. The resultant 

lattice is a reduced lattice with respect to the dependencies among views in it. The views are 

selected greedily over the reduced lattice. 

Another prime reason for high run time complexity for algorithm in [HRU96] is that the 

number of possible views is exponential with respect to the number of dimensions[NT02]. 

This makes the algorithm infeasible for high dimensional data sets as its execution time 

becomes phenomenally high. An algorithm Reduced Candidate Greedy Algorithm (RCGA) is 

presented that improves the scalability, with respect to number of dimensions, for selecting 

views for materialization. The algorithm RCGA attempts to achieve solution in polynomial 

time relative to the number of dimensions. 

Before discussing the algorithms RLGA and RCGA, a brief overview of greedy based 

algorithms is given with emphasis on algorithms in [HRU96] and in [NT02]. 
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2.1 Greedy Based Algorithms 

As discussed earlier, greedy based algorithms are widely used algorithms for selecting views 

to materialize. These algorithms are based on selecting views in decreasing order of their 

benefit per unit space values subject to space being available for their materialization. Most 

greedy based algorithms work with the multidimensional lattice framework[SRR96]. One of 

the fundamental greedy based algorithms is the one proposed in [HRU96] that uses the 

dependencies among views in the lattice framework to select the best set of views to 

materialize. The HRU algorithm exhibits high run time complexity due to a large number of 

views to analyze for selecting the beneficial views[NT02]. The HRU algorithm is discussed in 

section 2.1.1. Another reason for high run time complexity is that the number of possible 

views is exponential with respect to the number of dimensions[NT02]. A scalable solution to 

this problem was presented as Polynomial Greedy Algorithm (PGA) in [NT02). The PGA 

algorithm attempts to achieve solution in polynomial time relative to the number of 

dimensions. The PGA algorithm is discussed in section 2.1.2. 

Since these algorithms use the Lattice framework, the Lattice framework is discussed next. 

Lattice Framework 

The Lattice framework [HRU96, SRR06, MSRK99] represents all possible views to be 

materialized as its nodes. The top most node of the lattice, i.e. root node, represents the base 

fact table computed from an aggregation on all dimensions. For construction of a lattice, at 

least a partial ordering must exist for the views of the lattice where all views of the lattice 

depend upon the root node of the lattice, directly or indirectly. 
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A node (view) X is said to be dependent on another node (view) Y, if queries on X can be 

answered using the view corresponding to node Y. Direct dependencies within nodes (views) 

get captured within the lattice by defining an edge between the corresponding nodes, i.e. 

X~ Y. While indirect dependencies get captured transitively, i.e. if X~ Y and Y ~Z, then it 

implies that X~ Z. A node in a lattice is referred to as the ancestor node of all nodes that 

appear at a level lower than it in the lattice and are dependent on it (directly or indirectly). 

The lattice concept can be better understood from the example given below. 

Example 1: Consider a lattice constructed for a data set comprising three dimensions A, B 

and C. There will thus be a total of23
, i.e. 8 possible nodes (views) in the lattice. The 

corresponding lattice is shown below in Figure 1. 

Figure I: Lattice Structure for a 3-Dimensional Data 

The Lattice, shown in Figure 1, shows that all views directly or indirectly depend on the top 

view, i.e. ABC and view NONE, which has no dimension associated with it, has no dependent 

view. All nodes have edges connecting them to their direct ancestors. Like view AB, which is 

the ancestor of views A and B, has edges to these dependent views. Further, using the lattice, 

cost and benefit values can be identified for the views corresponding to each node of the 

lattice. 
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2.1.1 The HRU Algorithm 

The [HRU96] algorithm works with a linear cost model, where cost is computed in terms of 

the size.of the view. The basis for this cost model is that there is an almost linear relationship 

between the size of the view on which a particular query is executed and the execution time of 

the query, as all tuples of the view may be needed to answer a query. This assumption of the 

linear cost model has been experimentally justified in [HRU96]. 

The algorithm in [HRU96] requires the size values for each view (node) of the lattice to be 

available prior to use of the algorithm. Since the size values are synonymous with cost, the 

accuracy of the algorithm depends on the correctness of these size values. However, given 

that the actual number of tuples change over time, it is difficult to determine the size at any 

give!]. instant of time. The size of views can be estimated using sampling or analytical 

techniques [HRU96]. The algorithm based on [HRU96] is given in Figure 2 and the method 

for construction of the complete lattice from dependencies in Figure 3. An example showing 

the construction of reduced lattice using this method is shown after the Figure 3. 

Input: Dependencies D among views V and size of the views 
Output: Top T views 
Method: 
Step 1: //Arrive at a complete lattice L 

L=ConstructLattice(D) 
Step 2: II Select Top T views 

Count :=0; S:={Root View}; 
B(V,S) =0, initially; 
I. FOR (Count :=1 to T) 

a. ComputeBenefit() 
b. Select top view (VToP) from not inS such that B(VToP, S) is maximized. 
c. S := S UNION {VTOP} 
d. Count++ 

2. RETURNS 
II Method to compute benefit value of views ofthe lattice 
METHOD ComputeBenefit() 
For every view V from the lattice L, compute: 

00 !Y, 
43~//; 
Yf 

B(V,S) := Benefit of the view V, relative to the nearest materialized ancestor 
view in the set S 

Figure 2: Algorithm based on HRU 
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Input: Dependencies D among views V and size of the views 
Output: Complete Lattice L 
Method: 

L:= NodeRooT corresponding to Root View 
FOR (Every Dependency du from D between two views Vi> V, from V, such that Vr-7 V,) 
1. Get nodes Node1 and Node, corresponding to views V1 and V1 

2. Add Edge between Noder and Node, in case there is no path (set of edges) connecting 
Noder to Node, 

3. IF (Node, is not the same as NodeRooT) 

Return L 

a. Add Edge between Node, and NodeRoor in case there is no path (set of edges) 
connecting Node, to NodeRooT 

b. Remove Edge between Noder and NodeRooT in case a direct edge exists 
between Noder and NodeRooT 

Figure 3: Method ConstructLattice 

Example 2: For the following dependencies D among Views V of Sizes S, arrive at a 

complete lattice 

v s 
ABC 5K 
AB 5K 
AC 0.9K 
BC 3K 
A 0.09K 
B lK 
c 0.5K 

D = {AB-7 ABC, AC-7 ABC, BC -7 ABC, A-7 ABC, A-7AB, A~AC, 

B-7 ABC, B -7 AB, B -7 BC, C -7 ABC, C -7 AC, C -7 BC} 

First, a node is created for the root view ABC, and a reference to the lattice L is assigned this 

node. 

NodeAsc: = Create new node for view ABC 

L: =NodeAsc 

The step wise construction of the complete lattice from given dependencies among views is 

shown below 
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I Dependency Execution Steps Lattice 

AB~ABC 1. Get nodes for views ABC and AB. 5K 

s:: NodeABc for view ABC exists. 

? 0 NodeAB = Create new node for view AB ·~ 
~ 2. Add an edge between NodeABc and NodeAB, since 

.::: it does not exist - 3. NA. 

5 

AB "' ... 
~ 4. NA 

AC~ABC 1. Get nodes for views ABC and AC. 5K 
NodeABc for view ABC exists. 

-o NodeAc = Create new node for view AC s:: 
0 2. Add an edge between NodeABC and NodeAC• since 0 
0 

it does not exist Cll 

3. N.A. 
4. N.A. 

s:: BC~ABC 1. Get nodes for views ABC and BC. 5K 
0 NodeABC for view ABC exists. 
-~ 

Nodesc = Create new node for view BC .... 
2 2 . Add an edge between NodeABC and Nodesc, since ...... 
-o it does not exist ... :.a 3. N.A. 
E-< 

4. N.A. 

A~ABC 1. Get nodes for views ABC and A. SK 

s:: NodeABc for view ABC exists. 
0 NodeA = Create new node for view A ·~ ... 2 . Add an edge between Nod eAse and NodeA> since it 
2 does not exist ...... 

"€ 3. N.A. 
:::1 4. N.A. 0 
~ 

A~AB I. Get nodes for views AB and A. SK 

s:: 
Both nodes NodeAB for view AB and NodeA for 

0 view A exist. 
·~ 2 . Add an edge between NodeAB and NodeA> since it .... 
0 does not exist. .::: 

..0:::: 3 . Edge (path) exists between Node As and root node 
¢::: 

Node ABC• so new edge does not have to be added ~ 
between them. 

4. Remove edge between NodeA and NodeABc· 

A~AC I. Get nodes for views AC and A. SK 

s:: Both nodes NodeAc for view AC and NodeA for 
0 view A exist. 
·~ 2 . Add an edge between NodeAc and Node A, since it .... 
2 does not exist ...... 

..0:::: 3 . Edge (path) exists between NodeAc and root node 
>< NodeA8 c, so new edge does not have to be added en 

between them. 
4. Remove edge between Node A and NodeABC· 
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I Dependency Execution Steps Lattice 

B~ABC I. Get nodes for views ABC and B. 5K 

:::: NodeABC for view ABC exists. 
0 Nodes = Create new node for view B ·.;:: 

"' 2. Add an edge between NodeABC and Nodes, since it does ... 
~ not exist 

-5 3. N.A. 
:::: 4. N.A. Q 
> 
Q 

Vl 

B~AB I. Get nodes for views AB and B. 5K 

:::: Both nodes NodeAB for view AB and Nodes for view B 
0 exist. 
-~ 

2 . Add an edge between NodeAB and Nodes, since it does ... 
Q 
~ not exist 
...c: 3. Edge (path) exists between NodeAB and root node 1:: 

t>ll NodeABc. so new edge does not have to be added between 
ii3 them. 

4. Remove edge between Nodes and NodeABc· 

B~BC I. Get nodes for views BC and B. 5K 

:::: Both nodes Nodesc for view BC and Nodes for view B 
0 exist 
·~ 2 . Add an edge between Nodesc and Nodes, since it does ... 
B not exist -...c: 3 . Edge (path) exists between Nodesc and root node 
E NodeA8c, so new edge does not have to be added between z them. 

4. Remove edge between Nodes and Node ABC· 

C~ABC l. Get nodes for views ABC and C. 5K 

:::: NodeAsc for view ABC exists. 

-~ Nodec =Create new node for "iew C 
;;; 2 . Add an edge between Node ABC and Nodec, since it does ... 
Q 

not exist ~ 
...c: 3. N.A . 
E 4. N.A. 
~ 

C~AC I. Get nodes for views AC and C. 
:::: Both nodes NodeAc for view AC and Nodec for view C 
-~ ;;; exist. ... 

2. Add an edge between NodeAc and Nodec, since it does ~ 
-5 not exist 
:::: 3. Edge (path) exists between NodeAc and root node 
Q 
> Node ABC• so new edge does not have to be added between 
Q 

~ them. 
4. Remove edge between Nodec and NodeABC· 

C~BC l. Get nodes for views BC and C. 
:::: Both nodes Node8c for view BC and Node8 for view B 
0 
-~ exist. ... 2 . Add an edge between Nodesc and Nodec, since it does Q 
~ not exist. 
...c: 

3. Edge (path) exists between Nod esc and root node ¢: 

0 Node ABC• so new edge does not have to be added between 
~ 

E-< them. 
4. Remove edge between Nodec and Node ABC· 
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The HRU algorithm selects views greedily using the lattice corresponding to the dependencies 

among views. In the HRU algorithm, the benefit of a view is computed using the cost (size) 

associated with the view[HRU96]. The benefit value is a function of the number of dependent 

views and the difference in size of a view and that of its nearest materialized ancestor view. 

Initially the root node (view) of the lattice is assumed as materialized and all benefit values 

are computed using it. In each of the iteration, the most beneficial view is selected for 

materialization. With each view selection, the benefit values of other views in the lattice 

change and are recomputed with respect to the nearest materialized ancestor view. The 

algorithm at each of the iteration continues to select the best view for materialization till a 

predefined number of views have been selected. 

In the algorithm given in [HRU96], at every iteration the benefit value of all the views other 

than the view selected for materialization are recomputed. This may result in high number of 

re-computations when the number of dimensions is high. This in turn may lead to high run 

time complexity[NT02, SRR06, URT99, VVK02]. This run time complexity therefore can be 

improved upon by decreasing the number of re-computations. An algorithm Reduced Lattice 

Greedy Algorithm (RLGA) is proposed that attempts to reduce the number of re-computations 

while selecting the beneficial views for materialization. The algorithm RLGA is discussed in 

section 2.2. Another reason for exponential runtime complexity of the HRU algorithm is that 

in each of the iteration of execution of the algorithm, the benefit values of nearly all views of 

the lattice have to be evaluated. This exponentially high runtime complexity makes the HRU 

algorithm infeasible for high dimensional data sets as its execution time becomes 

phenomenally high. A scalable solution to this problem was presented as Polynomial Greedy 

Algorithm (PGA) in [NT02]. The PGA algorithm is discussed next. 

25 



2.1.2 The PGA Algorithm 

The PGA algorithm was proposed m [NT02] as a solution to the exponential run time 

compiexity of the HRU algorithm. The PGA algorithm works with a two-stage process of 

nomination and selection. In the first stage only a small number of views, termed as the most 

promising set of views, belonging to the smallest size view's hierarchy starting from the top 

of the lattice get nominated. In the second stage, a greedy based selection is performed over 

only those views that were nominated. Since the nomination phase significantly reduces the 

number of views under consideration, to at most m views in each the iteration for m levels of 

the lattice, the PGA algorithm is able to perform the selection of views in quadratic time in 

the number of dimensions of the data. The PGA algorithm is given in Figure 4. The PGA 

algorithm takes dependencies among views as input and produces top T views as output. 

Input: Dependencies D among views V and size of the views 
Output: Top T views 
Method: 
Count :=0; S:={Root View}; 
L:=NULL; II Lattice 
Step 1: //Arrive at a complete lattice L 

L=ConstructLattice(D) 
S:= {} 

Step 2: II Nominate views 
R:=Nod~ooT 

W:={} //Set of nominated views 
WHILE (More nodes to consider at a level below R) 

I. FOR (Each Node from one level below R) 

Identify smallest node, rsMALLEST that has not been nominated earlier 

2. W:= W U { rsMALLEST} 

3. R:= rsMALLEST 
Step 3: //Materialized view selection 

I. FOR (Every view V from the candidates set W) 
Compute Benefit using ComputeBenefit() function from HRU 

2. Select top view (VToP) from W having the highest benefit 
3. S := S UNION {VTOp} 
4. Count++ 
IF (Count< T) 

Go to Step 2; II Nominate more views 
ELSE 

RETURNS; 

Figure 4: Algorithm based on PGA (NT02( 
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The PGA algorithm nominates views in each of the iteration. The nomination starts at the root 

view by nominating the smallest sized child view that has not yet been nominated. The 

nomination moves down a level with the nominated child as the parent and the smallest child 

of it being nominated as next nominated view. The nominations continue until the bottom of 

the lattice is reached. In the selection phase, the most beneficial view from the nominated 

views is selected for materialization. In every subsequent iteration, the nomination of views, 

from the top view, and selection of the beneficial view are carried similarly until top T views 

are selected. The PGA algorithm greedily selects views for materialization from a few sets of 

nominated views instead of all the views in the lattice as done by HRU algorithm. This 

enables PGA algorithm to select top K views for materialization in O(Kd2
) time instead of 

O(.K22
d) time taken by the HRU algorithm, for a data set having d dimensions. The 

experimental comparisons between PGA and HRU are given in section 2.1.3. An algorithm 

RCGA has been proposed on the same lines as PGA but it utilizes the heuristic used in the 

algorithm RLGA, for recommending views for selection. The algorithm RCGA comprises of 

the recommendation phase and the selection phase. The recommendation phase recommends 

views based on the heuristic used in RLGA. The selection phase selects greedily most 

beneficial recommended view. The algorithm RCGA is discussed in section 2.3. 

Example 3: Consider the dependencies among views of Example 2. The corresponding lattice 

is shown in Figure 5. Arrive at the top 3 materialized views using algorithm HRU and PGA. 

Figure 5: Lattice for the given dependencies 
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. The selection of top 3 views using HRU and PGA algorithms are shown in Figure 6 and 

Figure 7 respectively. 

View(V) Size of View (Sizev) Size of the Nearest Materialized Number of Benefit 
Ancestor Node (Sizer<MA) Dependents (D) (SizemtA - Sizev ) x D 

= AB SK SK {ABC} 3 {AB,A,B} (5-5) X 3 = 0 
~ 

SK {ABC} 3 {AC,A,C} t~JB~!!(:S~;,)t~t)f,~~~;Ji~~t!l: f! AC 0.9K 
~ BC 3K SK {ABC} 3 {BC,B,C} (5-3) X 3 = 6 
'E A 0.09K SK {ABC} 1 {A} (5-0.09) X l = 4.91 10: 

8 1K SK {ABC} 1{B} (5-l) X l =4 

c O.SK SK {ABC} 1 {C} (5-0.5) X l = 4.5 

View(V) Size of View (Sizev) Size of the Nearest Materialized Number of Benefit 

= Ancestor Node (Sizer<MA) Dependents (D) (SizfNMA- Sizev ) x D 
.2 
'CO AB SK SK {ABC} 2 {AB,B} (5-5) X 2 = 0 .. 

.,;:;,;:.t\11J: ~ BC 3K SK {ABC} 2 {BC, B} 
"C:: 

= A 0.09K 0.9K {AC} 1 {A} (0.9-0.09) X l= 0.81 e 
" .. B 1K SK {ABC} 1 {B} (5-l) X l = 4 en 

c O.SK 0.9K {AC} 1 {C} (0.9-0.5) X I = 0.4 

View(V) Size of View (Sizev) Size of the Nearest Materialized Number of Benefit 
= Ancestor Node (Sizep.MA) Dependents (D) (SizfNMA- Sizev ) x D e 
~ AB SK SK {ABC} 1 {AB} (5-5) X 1 = 0 .. 
~ A 0.09K 0.9K {AC} 1 {A} (0.9-0.09) X I = 0.81 "C:: .. ::: 8 1K 3K {BC} 1 {B} .. ,. . , , \:F·i'~%=2 ;':,::'T; 
!-

c O.SK 0.9K {ABC} 1 {C} (0.9-0.5) X 1 = 0.4 

Figure 6: Selection of top 3 views using HRU algorithm 

Recommended Size of the Size of the Nearest Materialized Number of Dependents (D) 
Benefit= 

= (Size.,AN- Sizev ) x D .Sl Views(V) View (Sizev) Ancestor Node (SizCNMA) 
'CO .. 
~ ABC 5 SK {ABC} 7{AB,AC,BC;Ac,A,B,C} (5-5)* 7 = 0 
t; 

JJj~·~;9> .* 3 .~J;~-;3,'[. &: AC 0.9 SK {ABC} 3 {AC,A,C} 

A 0.09 SK {ABC} 1 {A} (5-0.09} * I = 4.91 

= Recommended Size of the View Size of the Nearest Materialized 
Benefit= 

.Sl Number of Dependents (D) 
(Size.,AN- Sizev ) x D = Views( V) (Sizev) Ancestor Node (SizfNMA) .. 

~ 

"C:: BC 3 SK {ABC} I {BC,C} 
1 j'!'~(513> ~ i_:_J,.; ,,_ c 

e 
" .. c 0.5 0.9K {AC} I {C} (0.9- 0.5} * I = 0.4 en 

= Recommended Size of the Size of the Nearest Materialized Number of Dependents (D) 
Benefit= 

.Sl (Size.tAN- Sizev ) x D = Views( V) View (Sizev) Ancestor Node (SizCNMA) .. 
~ 

"C:: AB 5 SK {ABC} 2 {AB, B} (5-5) * 2 = 0 .. 
::: 
!- B 1 3K {BC} I {B} (3-1) * 1·.~2';::', 

Figure 7: Selection of top 3 views using PGA algorithm 
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2.1.3 Comparisons (HRU Vs. PGA) 

The HRU and PGA algorithms were compared by conducting experiments on an Intel based 

2.3 GHz PC having 2 GB RAM. The two algorithms were compared on parameters like the 

execution time and the benefit value. 

First, a graph was plotted to compare HRU and PGA algorithms on execution time against the 

number of dimensions. The graph is shown in Figure 8. 

HRU Vs. PGA 
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0 
6 7 8 9 10 11 12 13 14 
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Figure 8: HRU Vs. PGA: Execution Time Vs. Number of Dimensions 

It can be noted from the graph that the execution time increases with the increase in the 

number of dimensions. This graph establishes the claim in [NT02] that PGA has a better 

execution time than HRU. The same trend can be observed in the graphs, shown in Figures 9-

12, plotted for Execution Time versus Iteration for the dimensions 8, 10, 12 and 14. 
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Figure 9: HRU Vs. PGA: Execution Time Vs. Iteration: 8 Dimensional Data 
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Figure 10: HRU Vs. PGA: Execution Time Vs. Iteration: 10 Dimensional Data 
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Figure 11: HRU Vs. PGA: Execution Time Vs. Iteration: 12 Dimensional Data 
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Figure 12: HRU Vs. PGA: Execution Time Vs. Iteration: 14 Dimensional Data 
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Next, graph was plotted to observe benefit value of the views selected versus the nwnber of 

dimensions. The benefit value corresponds to at most top d views selected for materialization 

where dis nwnber of dimensions. The graph is shown in Figure 13. 
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Figure 13: HRU Vs. PGA: Benefit Value Vs. Number of Dimensions 

~ 
~ 

The graph shows the anticipated results as stated in [NT02] that the benefit value of PGA is 

lower than that ofHRU. This is because the PGA algorithm is based on a heuristic that trades 

benefit value for an improvement in execution time. 

To understand the difference in the benefit values, graphs were plotted for dimensions 8, 10, 

12 and 14 against the iteration. The graphs are shown in Figures 14 - 1 7. These graphs also 

show that HRU has a benefit higher than that of PGA. 
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Figure IS: HRU Vs. PGA: Benefit Value Vs. Iteration: 10 Dimensional Data 
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Figure 17: HRU Vs. PGA: Benefit Value Vs. Iteration: 14 Dimensional Data 
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2.2 Reduced Lattice Greedy Algorithm (RLGA) 

The HRU algorithm exhibits high run time complexity and one reason for high run time 

complexity may be due to frequent re-computation of benefit values while selecting views for 

materialization. This high run time complexity can be improved upon by decreasing the 

number of re-computations of the benefit value. RLGA is proposed in this dissertation that 

attempts to reduce these re-computations by reducing the dependencies among the views. 

RLGA is based on a reduced lattice framework where instead of considering the complete 

lattice, as in HRU algorithm, a reduced lattice is arrived at from the set of dependencies 

among the views. This reduced .lattice shows only those dependencies that can contribute to 

selecting the beneficial views. A heuristic is coined to identify such dependencies. The 

heuristic is defined as follows: 

For each view, its dependency with its smallest sized parent is retained 

The basis of this heuristic is that in HRU algorithm the view having the smallest size, among 

all views at a level of the lattice, has the maximum benefit at that level with respect to all the 

views on which it is dependent. This implies that picking the smallest sized view can 

maximize the benefit with respect to views above it in a lattice. In other words, retaining 

dependency of each view to its smallest sized parent view is most beneficial as the smallest 

sized parent will in turn have maximum benefit with respect to the view above it. Thus these 

smallest sized parent views have a high likelihood of being selected for materialization. 

To understand the basis of the heuristic for the reduced lattice better, consider the lattice 

shown in Figure 18 (a). Now as per the heuristic the dependent view V3 retains its direct 

dependency only with its smallest parent view, i.e. the view V ~, resulting in the reduced lattice 

shown in Figure 18 (b). 
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Figure 18 (a): Complete Lattice Figure 18 (b): Reduced Lattice 

Again as per the heuristic, the view V 1, by virtue of being smaller in size, has a higher 

likelihood of being materialized as compared, to the other view V2 from the same level of the 

lattice. This assumption behind the heuristic is proven to be right, as the first view to be 

selected for materialization from this lattice is indeed the view V 1, having the highest benefit. 

As a result of this for the next iteration, its dependent view V 3 will consider this view V., as 

its nearest materialized ancestor view. Thus, by adjusting dependencies as per the reduced 

lattice heuristic the same decision can be made, in terms of selecting the most beneficial 

views for materialization, without having to evaluate all the other dependencies from the 

lattice, like the dependency between views V 3 and its other parent view V 2• 

The reduced lattice comprises nodes, corresponding to views to be materialized, and edges, 

expressing dependencies, from each node to its smallest sized parent node. The method to 

arrive at reduced lattice from the set of dependencies among views is given in Figure 19, 

followed by a worked out example based on it. 

Input: Dependencies D among views V and size of the views 
Output: Reduced Lattice L 
Method: 

L:= Nod~oOT corresponding to Root View 
FOR (Every Dependency du from D between two views V~o V1 from V, such that V1-7 V1) 

I. Get nodes Node1 and NodeJ corresponding to views V1 and V1 

2. IF( SIZE(Node1) < SIZE(Node1.ParentNode) OR Node1.ParentNode =NULL) 
a. Remove Edge between Node1 and Node1.ParentNode 
b. Set Node1.ParentNode := Node1 

c. Add Edge between Node1 and Node1 in case there is no path (set of edges) connecting Node1 to Node1 

d. IF(Node1 is not the same as NodeRooT )' 
Add Edge between Node1 and Nod~ooT in case there is no path (set of edges) connecting them 

Return L 

Figure 19: Method ConstructReducedLattice 
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Example 4: Arrive at a reduced lattice for the dependencies among views of Example 2. 

The stepwise construction of the reduced lattice is given below 

I Dependency Execution Steps Lattice 

AB~ABC 1. Get nodes for views ABC and AB. SK 

c:: NodeABC for view ABC exists. 

? 0 NodeAB = Create new node for view AB ·~ .. 2 . NodeAB has so far not been assigned a ParentNode. So, u .:::: a. N.A . 
ti b . Set NodeAB.ParentNode := NodeAsc 

5 

' .. 
~ c. Add an edge between NodeAB and root node NodeAsc 

d. N.A. 

AC~ABC 1. Get nodes for views ABC and AC. SK 
c:: 

NodeABc for view ABC exists. 0 ·.; NodeAc =Create new node for view AC .. 
u 2 . NodeAc has so far not been assigned a ParentNode. So, ... ...... 

"'0 a. N.A. c:: 
b. Set NodeAc.ParentNode := NodeAsc 0 

0 
u c. Add an edge between NodeAc and root node NodeABc Vl 

d. N.A. 

BC~ABC 1. Get nodes for views ABC and BC. SK 
c:: NodeAsc for view ABC exists. 0 
·~ Nodesc = Create new node for view BC .. 2. Nodesc has so far not been assigned a ParentNode. So, ~ 
"'0 a. N.A. 

~ b. Set Nodesc.ParentNode := Nod eAse 
c. Add an edge between Node8c and root node Node ABc 
d. N.A. 

A~ABC 1. Get nodes for views ABC and A. 5K 

c:: NodeAsc for view ABC exists. 
0 Node A = Create new node for view A 
-~ 

2 . NodeA has so far not been assigned a ParentNode. So, ... 
u 

N.A . .:::: a. 
..r:: b . Set NodeA.ParentNode := NodeAsc t ::s c. Add an edge between NodeA and root node NodeABc 0 
i-t... d. N.A. 

A~AB 1. Get nodes for views AB and A. 5K 

Both nodes, Node As for view AB and Node A for view A exist. 
c:: 2. SIZE (NodeA.ParentNode, i.e. NodeAsc) > SIZE (NodeA8 ). So, 0 
·~ a . Remove edge between NodeA and NodeABC· .. 
2 b. Set NodeA.ParentNode := NodeAB ...... 

Add ecjge between NodeA and its parent node NodeAB· ..r:: c . 
¢:: d. Edge (path) exists between nodes NodeAs and root 
~ 

node NodeAsc so new edge does not have to be added 
between them. 

A~AC 1. Get nodes for views AB and A. 5K 

1:: 
Both nodes, NodeAc for view AC and Node A for view A exist. 

-~ 2. SIZE (NodeA.ParentNode, i.e. NodeAs) > SIZE (NodeAc). So, 
~ a . Remove edge between NodeA and NodeAB· ... 
0 b . Set NodeA.ParentNode := NodeAc .:::: 

..r:: c. Add edge between NodeA and its parent node NodeAc· 
>< d. Edge (path) exists between nodes NodeAc and root ti) 

node Nod eAse so new edge does not have to be added 
between them. 
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I Dependency Execution Steps Lattice 

B~ABC I. Get nodes for views ABC and B. SK 

s:: NodeABC for view ABC exists. 
0 Nodes = Create new node for view B 
·~ ... 2 . Nodes has so far not been assigned a ParentNode. So, 

Cl) 

N.A. ~ a. 

-= b. Set Nodes.ParentNode := NodeABc 
s:: 

Add edge between Nodes and its parent node Cl) c. > 
Cl) Node ABc· Cl) 

d. N.A. 

B~AB 1. Get nodes for views AB and B. SK 

Both nodes, NodeAB for view AB and Nodes for view B exist. 
s:: 2. SIZE (Nodes.ParentNode, i.e. NodeABC) > SIZE (NodeAB). So, 0 
·~ a. Remove edge between Node8 and NodeABC· ... 

Cl) b. Set Nodes.ParentNode := NodeAB 
~ 

-= 
c. Add edge between Nodes and its parent node 

-th NodeAB. 

m d. Edge (path) exists between nodes NodeAB and root 
node NodeABC so new edge does not have to be 
added between them. 

B~BC 1. Get nodes for views BC and B. SK 

Both nodes, Nodesc for view BC and Nodes for view B exist. 
s:: 2. SIZE (Nodes.ParentNode, i.e. NodeAB) > SIZE (Nodeac). So, 0 
·~ a. Remove edge between Node8 and NodeAB· 
~ b. Set Nodes.ParentNode := Nodesc 
~ 

Add edge between Nodes and its parent node ..c: c . 
E Nod esc. z d. Edge (path) exists between nodes Node8 c and root 

node Nod eAse so new edge does not have to be 
added between them. 

C~ABC 1. Get nodes for views ABC and C. SK 

s:: Node ABC for view ABC exists. 
0 Nodec = Create new node for view C 
·~ 2 . Nodec has so far not been assigned a ParentNode. So, ... 

Cl) a. N.A. ~ 

-= b. Set Nodec.ParentNode := NodeABc 
s:: c. Add edge between Nodec and its parent node Cl) 

E-< NodeABc· 
d. N.A. 

C~AC I. Get nodes for views AC and C. SK 

s:: Both nodes, NodeAc for view AC and Nodec for view C exist. 
0 2. SIZE (Nodec.ParentNode, i.e. NodeABc) >SIZE (NodeAc). So, -~ ... a . Remove edge betWeen Nodec and NodeABC· Cl) 

~ b. Set Nodec.ParentNode := NodeAc 

-= c. Add edge between Nodec and its parent node s:: 
Cl) NodeAc· > 
Cl) d. Edge (path) exists between nodes NodeAc and root lil node NodeABC so new edge does not have to be 

added between them. 

C~BC I. Get nodes for views BC and C. SK 

s:: Both nodes, Nodesc for view BC and Nodec for view C exist. 
0 
-~ 2. Since SIZE (Nodec.ParentNode, i.e. NodeAc) < SIZE ... (Node8 c), the steps 2a- 2c are not executed. Cl) 

~ 
..c: 
¢:: 

0 
~ 

E-< 
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RLGA uses the reduced lattice to select the beneficial vtews greedily similar to HRU 

algorithm. The RLGA algorithm is given in Figure 20. 

Input: Dependencies D among Views V 
Output: Top T views 
Method: 
Step 1: //Arrive at a reduced lattice L 

L=ConstructReducedLattice(D) 

Step 2: //Select Top T Views 
1. Count :=0; MatViewList:=NULL; 
II Select Views for Materialization 
1. For every view N from the reduced lattice L, compute: 

a. NoDependentsN := COUNT (Number of views appearing at a lower level in the lattice 
and having ViewN as an ancestor) 

b. BenefitValViewN := (SizeRoor- Siz~) * NoDependentsL 
c. Prepare OrderedListBeneficialViewsL = 

ORDER_D ESC (BenefitVa!ViewN * NoDependentsN) 
2. WHILE (Count< T) DO 

a. Select top view (VroP) from OrderedListBeneficia!Views and add Vrop to MatViewsList 
b. II Update benefit value and no of dependents 

1. For every view V1 from a higher level in the lattice than Vrop, s.t. VroP 7 V1 

Adjust NoDependents1 := NoDepedents1 - NoDependentsroP 
ii. For every view VM from a lower level in lattice than Vrop, s.t. VM 7 VroP 

Adjust BenefitValViewM = (SizeroP- SizeM) * NoDependentsM 
c. Remove VroP from OrderedListBeneficia!Views 
d. Re-compute OrderedListBeneficia!Views values 
e. Count++ 

3. Return MatViewList 

Figure 20: Algorithm RLGA 

RLGA takes a set of dependencies among views as input and gives the top T beneficial views 

for materialization as output. The algorithm comprises two stages: 

1. Arrive at a reduce lattice from the set of dependencies among views 

2. Using the reduced lattice, select top T views greedily. 

In the first stage the set of dependencies given as input are evaluated one by one, to arrive at a 

reduced lattiCe. As discussed above only those dependencies are retained in the lattice that 

contributes to selecting beneficial views. 
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Next top T beneficial views are selected greedily using the reduced lattice. The benefit value 

of each view is computed similar to the way it is computed by the HRU algorithm i.e. by 

taking the product of number of its dependents with the cost (size) difference from its nearest 

materialized ancestor view. In the initial iteration, the benefit value for all views are computed 

with respect to the root view, which is assumed materialized. The view having the highest 

benefit value among them is then selected for materialization. The benefit values of all views 

that were dependent on the view selected for materialization are accordingly recomputed. 

However, unlike the HRU algorithm that operates over a complete lattice, the RLGA operates 

over a reduced lattice thereby substantially reducing the number of nodes dependent upon the 

view selected for materialization. This results in fewer nodes requiring re-computation of their 

benefit values thereby leading to reduction in the number of re-computations. 

Example 5: Select the top 4 beneficial views using HRU and RLGA for the dependencies 

among views given in Example 2. 

The complete lattice and the reduced lattice arrived at from the set of dependencies (given in 

Example 2) among views is shown in Figure 21. 

5K 5K 

Figure 21: Complete and Reduced Lattices 
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The selection of top 4 views using HRU algorithm is shown in Figure 22. 
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Fieure 22: Selection of top 4 views usin2 HRU 
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The selection of top 4 views using RLGA algorithm is shown in Figure 23. 
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Figure 23: Selection of top 4 views using RLGA 
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From the Figure 22, it can be seen that the top 4 beneficial views selected by the HRU 

algorithm are AC, BC, B and A. RLGA also selects the same top 4 beneficial views, AC, BC, 

B and A, for materialization as shown in Figure 23. The number of re-computations required 

in each iteration for the HRU and the RLGA algorithm are shown in. Figure 24. 

Iteration Number of Re-computations in HRU Number of Re-computations in RLGA 

1 0 0 
2 4 2 

3 2 1 

4 0 0 

Total 6 3 

Figure 24: Number of re-computations in HRU and RLGA 

It can be noted that the RLGA requires fewer (3) re-computations as compared to algorithm 

HRU ( 6). This difference is attributed to the fewer dependencies in the reduced lattice leading 

to fewer nodes requiring re-computation. Although the top 4 views selected by both 

algorithms are same, the re-computations required in case of RLGA is lesser than that of 

HRU. Therefore, it can be said that the reduced lattice is able to provide the same result as the 

complete lattice but with fewer re-computations. Further it needs to be shown that the 

algorithm RLGA gives results that are nearly as good as HRU for all possible reduction of a 

given lattice. This is illustrated with the help of an example given next. 

Example 6: Consider a three-dimensional lattice, arrive at all possible reductions of this 

lattice by varying the size of the views accordingly. Select the beneficial views for 

materialization using HRU and RLGA. 

The 24 possible reductions of a given three dimensional lattice and the beneficial views 

selected by the two algorithms, HRU using complete lattice and RLGA using reduced lattice, 

is given below: 
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20 20 

View Benefit View Benefit 

AB 27 AB 27 
c 13 c 13 
A 10 A 10 

AC 5 AC 5 
B 5 B 5 

BC 2 BC 2 

20 20 

View Benefit View Benefit 

AB 27 AB 27 
c 13 c 13 
A 10 A 10 

BC 5 BC 5 
B 5 B 5 

AC 2 AC 2 

20 20 

View Benefit View Benefit 

AC 27 AC 27 
B 13 B 13 
A 10 A 10 

AB 5 AB 5 
c 5 c 5 

BC 2 BC 2 

20 20 

View Benefit View Benefit 

AB 30 AB 20 
BC 20 BC 20 
AC 10 AC 20 
A 9 A 9 
B 4 B 4 
c 3 c 3 
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20 20 

View Benefit View Benefit 

AB 30 AB 20 
BC 20 BC 20 
AC 10 AC 20 
A 9 A 9 
B 4 B 4 
c 3 c 3 

20 20 

View Benefit View Benefit 

BC 27 BC 27 
A 19 A 19 

AB 5 AB 5 
B 5 B 5 
c 4 c 4 

AC 2 AC 2 

20 20 

View Benefit View Benefit 

AC 27 AC 27 
B 13 B 13 
A 10 A 10 

BC 5 BC 5 
c 5 c 5 

AB 2 AB 2 

20 20 

View Benefit View Benefit 

BC 27 BC 27 
A 19 A 19 

AC 5 AC 5 
B 5 B 5 
c 4 c 4 

AB 2 AB 2 
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20 20 

View Benefit View Benefit 

AB 27 AB 27 
c 13 c 13 
B 10 B 10 

AC 5 AC 5 
A 5 A 5 

BC 2 BC 2 

20 20 

View Benefit View Benefit 

AB 27 AB 27 
c 13 c 13 
B 10 B 10 

BC 5 BC 5 
A. 5 A 5 

AC 2 AC 2 

20 20 

View Benefit View Benefit 

AB 30 AB 20 
BC 20 BC 20 
AC 10 AC 20 
B 9 B 9 
A 4 A 4 
c 3 c 3 

20 20 

View Benefit View Benefit 

BC 27 BC 27 
A 14 A 14 
B 10 B 10 

AB 5 AB 5 
c 4 c 4 

AC 2 AC 2 
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20 20 

View Benefit View Benefit 

AC 27 AC 27 
B 19 B 19 

AB 5 AB 5 
A 5 A 5 
c 4 c 4 

BC 2 BC 2 

20 20 

View Benefit View Benefit 

AB 30 AB 20 
BC 20 BC 20 
AC 10 AC 20 
B 9 B 9 
A 4 A 4 

c 3 c 3 

20 .20 

View Benefit View Benefit 

AC 27 AC 27 
B 19 B 19 

BC 5 BC 5 
A 5 A 5 
c 4 c 4 

AB 2 AB 2 

20 20 

View Benefit 
View Benefit 

BC 27 
A 14 BC 27 

AB 10 A 14 
AC 5 AB 10 
c 4 AC 5 

AB 2 c 4 
AB 2 
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20 20 

View Benefit View Benefit 

AC 27 AC 27 
B 14 B 14 
c 10 c 10 

AB 5 AB .5 
A 4 A 4 

BC 2 BC 2 

20 20 

View Benefit View Benefit 

AC 27 AC 27 
B 14 B 14 
c 10 c 10 

BC 5 BC 5 
A 4 A 4 

AB 2 AB 2 

20 20 

View Benefit View Benefit 

AB 27 AB 27 
c 19 c 19 

AC 5 AC 5 
B 5 B 5 
A 4 A 4 

BC 2 BC 2 

20 20 

View Benefit View Benefit 

AB 30 AB 20 
BC 20 BC 20 
AC 10 AC 20 
c 9 c 9 
B 4 B 4 
A 3 A 3 
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20 20 

View Benefit View Benefit 

AB 30 AB 20 
BC 20 BC 20 
AC 10 AC 20 
c 9 c 9 
B 4 B 4 
A 3 A 3 

20 20 

View Benefit View Benefit 

BC 27 BC 27 
A 13 A 13 
c 10 c 10 

AC 5 AC 5 
B 5 B 5 

AB 2 AB 2 

20 --- 20 

View Benefit View Benefit 

AB 27 AB 27 
c 19 c 19 

BC 5 BC 5 
B 5 B 5 
A 4 A 4 

AC 2 AC 2 

20 20 

View Benefit View Benefit 

BC 27 BC 27 

A 13 A 13 
c 10 c 10 

AB 5 AB 5 
B 5 B 5 

AC 2 AC 2 
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It can be observed from the 24 possible cases of lattice reduction that the same views are 

selected, in each case, by the two algorithms HRU, using complete lattice, and RLGA, using 

reduced lattice. In the cases 4, 5, 11, 14, 20 and 21, the top three views AB, BC and AC have 

the same benefit value in the first iteration and can be selected in any order by either of the 

algorithms. Therefore, in these cases any possible order of selecting the top three views is 

equally beneficial. Further in these six cases, the top views selected by HRU and RLGA are 

similar, they only differ with respect to the benefit value, which does not impact the selection 

of the beneficial views. 

It can be said from above that in all the 24 cases, both algorithms select the top beneficial 

views. In the six cases mentioned above, they may select views in slightly different order 

since more than one view has the same benefit value. Whereas, in the other eighteen cases, 

they select the beneficial views in the same order. Thus, it can be concluded that RLGA is 

equally effective as HRU with respect to selecting the top beneficial views. The complexity 

analysis of algorithm RLGA is given next. 

2.2.1 Complexity Analysis- RLGA 

As discussed above, the RLGA heuristic is based upon the reduced lattice. The reduced lattice 

retains only the dependencies between a node and its smallest parent. As a result each node of 

the reduced lattice, except the root node, only contains one edge to its immediate parent. 

Thus, for a total of N nodes (views) in the reduced lattice, there are N-1 dependencies 

between each node and its immediate smallest parent. Conversely, looking at the 

dependencies from a parent to its child nodes, in the worst case, the maximum possible direct 

dependents on a node of the reduced lattice is N/2-1, for a node at a level below the root node. 

Similarly, in the worst case the maximum number of dependents of a node at two levels below 
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the root node, can have a maximum of N/4-1 dependents. This feature of the reduced lattice 

can be clearly seen in the Figure 25 showing the reduced lattice for a data containing 4 

dimensions. 

Figure 25: Reduced Lattice 

In the reduced lattice of Figure 25, view ABC at a level below the root node of the lattice, has 

(D-1 ), i.e. 3 direct dependents. Similarly the view AB at two levels below the root node, has 

(D-2), i.e. 2 direct dependents. In this way thus, the maximum number of dependents on a 

node can be computed to be: 

(N/2 -1) + (N/4 -1) + ... (N/N -1) = N -logzN 

Further, in each of the iteration of the RLGA algorithm, a view is selected for materialization. 

As a result of this selection, the benefit value for all dependent views needs to be recomputed. 

Therefore, in the worst case, at the most the benefit value for (N - log2N) nodes would have 

to be recomputed in a single iteration of the algorithm. Therefore, the complexity of the 

RLGA algorithm for selecting top K views, by executing K iterations of the algorithm, can be 

computed as O(K)* O(N - logzN) = O(KN). 

In order to compare the performance of RLGA with respect to HRU, both the algorithms are 

implemented and run on the data sets with varying dimensions. The performance based 

comparisons of HRU and RLGA is given in section 2.2.2. 
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2.2.2 Comparisons (HRU Vs. RLGA) 

The RLGA and HRU algorithms were compared by conducting experiments on an Intel based 

2.3 GHz PC having 2 GB RAM. The two algorithms were compared on parameters like 

number of re-computations and the execution.time. First the total number of re-computations 

was captured against the number of dimensions. The graph is shown in Figure 26. 

HRUVs. RLGA 

600000 
Ul 
c 
0 500000 
~ 
CIS -:I 
Q. 400000 E 
0 
t.) 
Cl) 300000 0:: .... 
0 ... 

200000 Cl) 

J:l 
E 
:I z 100000 

CQ -0 ... 0 •' 
6 7 8 9 10 11 12 13 14 

Number of Dimensions 

Figure 26: HRU Vs. RLGA: Total Number of Re-computations Vs. Number of Dimensions 

It can be note from the graph the number of re-computations required for RLGA is lower than 

that for HRU. As the number of dimensions increase, this difference becomes significant. 

This lower number of re-computations in the case of RLGA algorithm can be attributed to the 

lower number of dependencies that exists within the reduced lattice. To better understand the 

difference, the number of re-computations was plotted individually for the dimensions 8, 1 0, 

12 and 14 against the iteration of the algorithms. These graphs are shown in Figures 27- 30. 
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Figure 30: HRU Vs. RLGA: Number of Re-computations Vs. Iterations: 14 Dimensions 
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In each of these graphs, it can be clearly seen that numbers of re-computations for RLGA is 

far lower then that of HRU. These graphs comprehensively establish the first claim with 

regard to reducing lattices that it would result in substantially lower number of re-

computations. Another observation that can be made from these graphs is that the number of 

re-computations in HRU decreases in the latter iterations. 

Next, graphs were plotted to establish the second claim with regard to RLGA i.e. with the 

reduction in the number of dependencies, the execution time can be improved. The graph 

showing the execution time against the number of dimensions is shown in Figure 31. 
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It can be observed that the execution time for RLGA is lower than that of HRU. This can be 

further explained by the Execution Time versus Iteration graphs for individual dimensions. 

These graphs are shown in Figures 32- 35. 
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2.3 Reduced Candidate Greedy Algorithm (RCGA) 

The HRU algorithm discussed above has an exponential runtime complexity primarily 

because in each of the iteration of execution of the algorithm, benefit values of nearly all 

views of the lattice have to be evaluated. This exponentially high runtime complexity makes 

the HRU algorithm infeasible for high dimensional data sets as the execution time of the HRU 

algorithm becomes phenomenally high. An attempt is made to utilize the heuristic, used in 

RLGA, to improve on the scalability aspect of the view selection problem. For this, a 

Reduced Candidate Greedy Algorithm (RCGA) is proposed. The algorithm RCGA comprises 

of two stages namely candidate views recommendation and materialized view selection. 

In the candidate views recommendation phase, candidate views are recommended for 

selection based on the same lines as the heuristic used for lattice reduction in section 2.2. The 

heuristic is defined as follows: 

For each view, the smallest sized parent is retained for view selection 

The basis of this heuristic is that in HRU algorithm, the view having the smallest size, among 

all views at a level of the lattice, has the maximum benefit at that level with respect to all the 

views on which it is dependent. This implies that picking the smallest sized view can 

maximize the benefit with respect to views above it in a lattice. In other words, retaining the 

smallest sized parent view is most beneficial, as the smallest sized parent will in tum have the 

maximum benefit with respect to the view above it. Thus these smallest sized beneficial 

parent views have a high likelihood of being selected for materialization and are therefore 

added to the candidate set in the recommendation stage of the algorithm. 

The recommendation starts at bottom of the lattice. In the first iteration, as per the heuristic 

the smallest sized parent view from the bottom of the lattice, which has not yet been 
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recommended, is added to the candidate set. Next, its smallest sized parent view which has 

not yet been recommended is added to the candidate set. This process of adding views to the 

candidate set continues till the root view is reached. These views in the candidate set are then 

recommended for the selection phase of the algorithm. 

In the selection phase, the benefit value of the recommended views is computed using the 

benefit function of [HRU96] given below: 

where, 

Benefit= (Sizem1A- Sizev) x Dv 

Siz~MA = Size of the nearest materialized ancestor node of V 

Sizev - Size of the view V 

D =Number of dependents ofV 

The view, among the recommended v1ews, having the highest benefit is selected for 

materialization. 

The next iteration again starts from the bottom of the lattice by adding the smallest sized 

parent view, which has not yet been recommended, to the new candidate set. The smallest size 

parent view's addition to the candidate set is done as in the first iteration till the root node is 

reached. The most beneficial view from the set of recommended views in the candidate set is 

then selected for materialization. 

The iterations continue as above till the top T views are selected for materialization. The 

algorithm RCGA is given in Figure 36. An example worked out using this algorithm is given 

next after Figure 36. 
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Input: Dependencies D among Views V 
Output: Top T views 
Method: 

1. II Construct Lattice of Views using Dependencies D among them 
L=ConstructLattice(D) 
Count :=0; MatViewsList:=NULL; 

1. WHILE (Count < T} DO 
a. II Candidate Views Recommendation 

R:= Nod~oNE; W:={} II Set of candidate views 
b. WHILE (More nodes to consider at a level above R) 

1. FOR (Each Node from one level above R that has not yet been recommended) 
Identify smallest node rsMALLEST 

ii. W:= W U { rsMALLEST } 
m. R:= rsMALLEST 

c. II Selection of Views 
For every view N, from set of candidate views W, compute the following using L: 

i. NoDependentsN := COUNT (Number of views appearing at a lower level in 
the lattice and having ViewN as an ancestor) 

ii. BenefitValViewN := (SizeRooT- Siz~) * NoDependentsN 
iii. CommonViewNM : = Identify the direct depedent views common with every 

other view M, from the same level in the lattice as N 
tv. Prepare OrderedListBeneficialViewsN = 

ORDER_DESC (BenefitValViewN * NoDependntsN) 
d. Select top view (VTOr) from OrderedListBeneficialViews and add VTOP to 

MatViewsList 
e. II Update benefit value and no of dependents 

1. For every view V K from the same level in the lattice as VTop, 
Having a common node V coMMON := Common ViewKTOP 
Adjust NoDependentsK := NoDependentsK - NoDependentScoMMON 

n. For every view V1 from a higher level in the lattice than VTOP• s.t. VTOP -7 V1 
Adjust NoDependents1 := NoDepenendents1 - NoDependentsTOP 

iii. For every view VM from a lower level in lattice than Vwp, s.t. VM -7 Vwp 
Adjust BenefitValViewM = Sizewp- SizeM 

iv. Remove VTOP from OrderedListBeneficialViews 
v. Count++ 

2. Return MatViewList 

Figure 36: Algorithm RCGA 

Example 7: Consider the dependencies among views of Example 2 and the corresponding 

lattice in Example 3. Arrive at the top 3 materialized views using algorithm RCGA. 

The iteration wise recommendation and selection of views using RCGA is given in Figure 37. 

The top 3 views selected by RCGA algorithms are AC, BC and B. These are the same views 

as selected by HRU over the same lattice. A more detailed comparison of the algorithm 

RCGA against HRU is given in section 2.3.2. 
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Figure 37: Selecting views for materialization using algorithm RCGA 

The complexity analysis of algorithm RCGA is given next. 

2.3.1 Complexity Analysis - RCGA 

The RCGA algorithm initially recommends D views, for D dimensions of the data set. The 

recommendation of D views starts from the bottom of the lattice. Consider the lattice in 

Figure 38. First, the smallest parent view of the bottom most view of the lattice is 

recommended. In other words, a view from Level-l of the lattice is recommended. It can seen 

from the Figure 38, that there are D views, V1, V2, •. ,V0 at Level-l of the lattice. Identifying 

the smallest view, V s, out of these D views can be performed by one pass over the D views, 

making it an O(D) operation. Next, the smallest parent view ofthe view Vs is identified from 

the Level-2, two levels above the bottom most node, of the lattice. 
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Level D-1: I Parent ••••••••••••• 

Leve12: (0-2) Parents 

Level I: (0.1) Parents 

Level 0: D Parents 

Figure 38: Number of parents at each level of aD-Dimensional Lattice 

It can again be seen from the lattice in Figure 38, that a view from the Level-l can form (D-1) 

aggregations with other (D-1) dimension of data at Level-l. Therefore, a view present at 

Level-l of the lattice contains at most (D-1) parents. Identifying the smallest view from the 

(D-1) parent views of view V s is an O(D-1) operation. Continuing this way, the smallest 

parent views from each of the level up to the root node of the lattice are recommended. The 

total numbers of such parent views that need to be evaluated are: 

D + (D-1) + (D-2)+ ... +1 = D(D+l)/2 

Therefore, the time complexity of the recommendation stage is O(D2
). 

From the D recommended views, the most beneficial view is selected for materialization. 

Identifying the most beneficial view requires one pass over each of the D recommended 

views, making it a O(D) time complexity operation. 

So, the overall time complexity of an iteration of the RCGA algorithm is O(D2
) + O(D), i.e. 

O(D2
). For selecting K top views, therefore the overall time complexity works out to be 

O(KD2
). 

The performance comparison of RCGA with HRU and RCGA with PGA is given in the 

following two sub sections 2.3.2 and 2.3.3 respectively. 
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2.3.2 Comparisons (HRU Vs. RCGA) 

The HRU and RCGA algorithms were compared by conducting experiments on a,n Intel based 

2.3 GHz PC having 2 GB RAM. The two algorithms were compared on parameters like the 

execution time and the benefit value. 

First, the two algorithms were compared on execution time versus the number of 

dimensions. The corresponding graph is shown in Figure 39. 
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Figure 39: HRU Vs. RCGA: Execution Time Vs. Number of Dimensions 

The graph shows that the algorithm RCGA lias a much improved execution time as compared 

to HRU. This substantiates the claim that the heuristic used in RCGA will result in a much 

improved execution time. Graphs were also plotted for the Execution Time versus the 

Iteration for the dimensions 8, 10, 12 and 14. These graphs, shown in Figures 40- 43, also 

show that RCGA has a much better execution time than HRU. 
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Figure 41: HRU Vs. RCGA: Execution Time Vs. Iteration: 10 Dimensions 
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Next, the two algorithms HRU and RCGA were compared on the benefit of the views selected 

with respect to dimensions. The benefit value versus the number of dimensions graph is 

shown in Figure 44. 
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Figure 44: HRU Vs. RCGA: Benefit Value Vs. Number of Dimensions 

J-=HRul 
~ 

The graph shows that the benefit value of RCGA is lower than that of HRU. This is due to 

heuristic followed in RCGA that trades benefit value for an improvement in scalability with 

respect to the dimensions. 

Further, in order to observe how the benefit value change with respect to iteration for the two 

algorithms, graphs were plotted for dimension 8, 10, 12 and 14 as shown in Figures 45-48. 

The graphs show that the top views selected by the two algorithms have nearly similar benefit 

values, with HRU holding a slight edge over RCGA. 
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Figure 45: HRU Vs. RCGA: Benefit Value Vs. Iteration: 8 Dimensions 
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Figure 46: HRU Vs. RCGA: Benefit Value Vs.lteration: 10 Dimensions 
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2.3.3 Comparisons (PGA Vs. RCGA) 

RCGA was also compared with the algorithm PGA by conducting experiments on an Intel 

based 2.3 GHz PC having 2 GB RAM. The two algorithms were compared on parameters like 

the execution time and the benefit value. 

The two algorithms were compared on the execution time versus the number of dimensions. 

The corresponding graph is shown in Figure 49. 
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Figure 49: PGA Vs. RCGA: Execution Time Vs. Number of Dimensions 

It can be seen from the graph that both the algorithms have nearly identical execution time, as 

depicted by the overlapping curves of RCGA and PGA. 

Next, the execution time versus iteration graphs for the dimensions 8, 10, 12 and 14 were 

plotted for the two algorithms. These graphs, shown in Figures 50 - 53, also depict the same 

overlapping trends in their corresponding curves. 
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Figure 50: PGA Vs. RCGA: Execution Time Vs. Iteration: 8 Dimensions 
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Figure 51: PGA Vs. RCGA: Execution Time Vs. Iteration: 10 Dimensions 
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In order to compare the bel!efit values of view selected by the two algorithms RCGA and 

PGA, a graph was plotted between benefit value and the number of dimensions. The graph is 

shown in Figure 54. 

PGAVs. RCGA 

16000000 

14000000 

12000000 
G) 
:J 10000000 iii 
> - 8000000 r;:: 
G) 
s:: 
G) 6000000 

£Q 

4000000 

2000000 

0 
2 3 4 5 6 7 8 9 10 11 12 13 14 

Number of Dimensions 

Figure 54: PGA Vs. RCGA: Benefit Value Vs. Number of Dimensions 
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As per the graph, there is very little difference between the benefit values of the view selected 

by the two algorithms for lower dimensions. However, for higher dimensions the algorithm 

RCGA holds a slight advantage over the algorithm PGA. In order to understand this 

difference better, the benefit values versus iteration graph were plotted for the dimensions 8, 

10, 12 and 14 for the two algorithms. These graphs are shown in Figures 55-58. 

The graphs show that for initial iterations both algorithms have a similar benefit value. 

However, in the later iterations, the RCGA shows a slightly higher benefit value as compared 

to PGA. 
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Figure 55: PGA Vs. RCGA: Benefit Value Vs. Iteration: 8 Dimensions 
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Figure 57: PGA Vs. RCGA: Benefit Value Vs. Iteration: 12 Dimensions 
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CHAPTER3 

CONCLUSIONS 

This dissertation work has focused on the view selection issue of view materialization. A 

literature survey on algorithms for view selection has been carried out with special emphasis 

on greedy based algorithms. Some issues related to most fundamental greedy based algorithm 

HRU have been identified and addressed by the proposed algorithms RLGA and RCGA. The 

following have been accomplished as part of the work: 

• The existing HRU and PGA algorithms have been discussed and compared on 

performance. The comparison shows that PGA is more scalable with respect to 

dimensions, as compared to HRU. However, the views selected for materialization 

using PGA may not be as beneficial as those selected by HRU. 

• One reason for the high run time complexity of HRU algorithm has been found to be 

the frequent re-computations of benefit values after every selection of view for 

materialization. An algorithm RLGA has been proposed that addresses this issue by 

reducing the number of re-computations with every selection of beneficial view. The 

algorithm RLGA uses a heuristic based criteria to reduce the number of dependencies 
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among views. This results in a reduced lattice, with respect to the dependencies, from 

which beneficial views are selected greedily. The proposed algorithm RLGA has been . 

compared with algorithm HRU on the parameters like the number of re-computations 

and the execution time. The results show that the algorithm RLGA requires a lower 

number of re-computations as compared to algorithm HRU, resulting in an improved 

execution time. 

Another issue with alg<?rithm HRU is that the number of possible views is exponential 

with respect to the number of dimensions, making it infeasible for high dimensional 

data sets as its execution time becomes phenomenally high. An algorithm RCGA, on 

the lines of existing algorithm PGA, has been proposed that improves the scalability 

with respect to number of dimensions. The algorithm RCGA recommends views, 

using the heuristic used in RLGA, followed by greedily selecting the most beneficial 

view out of the recommended views. The performance of algorithm RCGA has been 

compared with algorithms HRU and PGA on parameters like the execution time and 

the benefit value. The results show that the algorithm RCGA is more scalable as 

compared to the algorithm HRU with a much improved execution time. However, the . 

benefit value of views selected by RCGA is found to be slightly lower than those 

selected by HRU. Further, the comparison with algorithm PGA shows that both· 

algorithms have similar execution time with respect to number of dimensions. Though 

algorithm RCGA has a slight edge in terms of benefit value for higher dimensional 

data sets. 
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