
VIEW MATERIALIZATION

A dissertation submitted to the Jawaharlal Nehru University
in partial fulfillment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

IN

COMPUTER SCIENCE AND TECHNOLOGY

BY

ALOKE GHOSHAL

' • .J

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI- 110067

JULY2008

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

JAW AHARLAL NEHRU UNIVERSITY

NEWDELHI-110067

DECLARATION

This is to certify that the dissertation titled "View Materialization" being

submitted to the School of Computer and Systems Sciences, Jawaharlal Nehru

University, New Delhi, in partial fulfillment of the requirements for the award of

the degree of Master of Technology in Computer Science & Technology, is a

record of bonafide work carried out by me.

The matter embodied in the dissertation has not been submitted in part or full to

any University or Institution for the award of any degree or diploma.

1

Aloke Ghoshal
(06/1 0/MT /03)

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI- 110067

CERTIFICATE

This is to certify that this dissertation titled "View Materialization" submitted

by Mr. Aloke Ghoshal, to the School of Computer and Systems Sciences,

Jawaharlal Nehru University, New Delhi, for the award of degree of Master of

Technology in Computer Science & Technology, is a research work carried

out by him.

II

2 8 - cf?·- 2-() o &

ijay Kumar
(Supervisor)

~ y\<i)G<l
Prof. Parimala N.

(Dean)

ACKNOWLEDGEMENTS

This is a rare opportunity to express my heartfelt gratitude to those dearest to me. To start

with are my parents, who come above all on this list. They are two lovely people, who have

taught us well and instilled in us good values. Always given morals priority and in this regard,

set us up high standards to achieve. Thanks mama, thanks papa

Next up on the list is my sister, Piu. My biggest critic and my biggest supporter. This stint at

JNU is to a great extent due to her motivation. It's been a real grounding experience and the

learning will be there with me for ever. Two equally important people are dadu and dima

They have looked after us very well in this phase of our lives, better than any parents could

have. Tuki mashi and her family has also been a big support from amongst close family.

I have been lucky to have such an approachable person like Dr. T.V. Vijay Kumar as my

supervisor. For me he has been the proverbial friend, philosopher and guide who has slowly,

but surely, managed to improve my approach towards work. Especially with his mantra of

revise, re-revise, re-re-revise, ad-infinitum, he was able to get the best out of me in terms of

the quality of our final work. Francis Bacon in his treatise "the advancement of learning

(1605)", talked about the dual importance of registering and proposing doubt about the work

that one is doing. Firstly to guard against potential error or slip ups, and secondly to bring

about an increased knowledge about the subject, since one is having to constantly challenge

and defend every little bit of their work. Vijay sir, thank you for being the 'doubt planter', and

for showing me that the theory works for real! From JNU, another person due for thanks is

Haider, for his untiring support close to the finish line.

Finally at the end, it is a mention of names of my good friends - Arijit, Punit, Sahil, Virmani,

Gun jan, Saint and Sumiti. It has been a special association with each one of yo

ABSTRACT

View materialization deals with materializing views containing data and their specification.

·This dissertation focuses on the view selection issue of view materialization. View selection

generally deals with selecting an optimal set of beneficial views for materialization subject to

constraints like space, response time, etc. The problem of view selection has been shown to be

in NP. Several heuristics based view selection algorithms exist in the literature of which the

most fundamental greedy based algorithm is HRU, which uses a multidimensional lattice

framework to determine a good set of views to materialize. HRU exhibits a high run time

complexity. This issue has been addressed by the algorithms proposed in this dissertation.

One reason for high run time complexity of HRU has been found to be the frequent re

computations of benefit values after every selection of view for materialization. An algorithm

Reduced Lattice Greedy Algorithm (RLGA) has been proposed that addresses this issue by

using a heuristic to reduce the number of dependencies among views. This results in a

reduced lattice, with respect to the dependencies, from which beneficial views are selected

greedily. RLGA was experimentally found to have fewer re-computations and an improved

execution time in comparison to HRU.

Another reason for high run-time complexity of HRU is that the number of views is

exponential in the number of dimensions, making it infeasible for high dimensional data sets.

Algorithm Reduced Candidate Greedy Algorithm (RCGA) has been proposed that improves

the scalability by recommending views using the RLGA heuristic followed by greedily

selecting the most beneficial views from them. RCGA was experimentally found to have a

better execution time than HRU but with a slight loss in terms of benefit values. RCGA was

also compared with another existing algorithm PGA and found to have similar execution time

and slightly higher benefit values for high dimensional data sets.

IV

CONTENTS

][)JB:C::~~~ ~][«=)~ ••][

C::JB:R ~IFI C::~ ~18:•..••.•................•••••........................•...•••••••• II

~ C::KN" «=) W~JB:][)G JB:MJB:~~S ... III

~BS~~C::~ ... IV

C::HAP~JB:R 1: IN'~Rc:)][)UC::~Ic:)~ .. 1
1.1 Related Work .. 2

1.2 Materialized View Selection .. 5
1.2.1 Greedy Algorithm Based ... 7
1.2.2 Index Selection Based ... 9
1.2.3 Genetic Algorithms Based ... lO
1.2.4 Web View Materialization .. 12

1.3 Aim ... 14

1.4 Organization of the Dissertation .. 15

CHAPTJB:R 2: MATJB:RIA~IZJB:][) VIJB:W SJB:~JB:CTIO~ 16
2.1 Greedy Based Algorithms ... :.19

2.1.1 The HRU Algorithm ... 21
2.1.2 The PGA Algorithm .. 26
2.1.3 Comparisons (HRU Vs. PGA) ... 29

2.2 Reduced Lattice Greedy Algorithm (RLGA) ... 35
2.2.1 Complexity Analysis - RLGA ... 50
2.2.2 Comparisons (HRU Vs. RLGA) .. 52

2.3 Reduced Candidate Greedy Algorithm (RCGA) 58
2.3.1 Complexity Analysis- RCGA ... 61
2.3.2 Comparisons (HRU Vs. RCGA) ... 63
2.3.3 Comparisons (PGA Vs. RCGA) .. 69

· CHAPTER 3: CONCLUSIONS .. 75

REFERENCES · .. 77

v

CHAPTERl

INTRODUCTION

A view is a specification for generating data from the underlying data repository [CDOl,

R97]. The view, when queried, is recomputed as per the specification given. Such a view is

then said to be materialized if it contains data along with the specification of the view [R97]

and the results obtained can be stored [CDOl]. A materialized view can be queried as any

other data within the repository.

Many views get computed within a data repository over time, but most views are discarded

after being used once [R97]. The cost of generating the view is high in such a scenario and

needs to be borne each time a similar query is posed. This cost becomes very high in a data

warehouse type of set-up, where there is a large volume of subject-oriented, integrated, time

variant and non-volatile data[I03]. The frequent re-computation of views results in a poor

performance from the system. Instead by caching results (storing as materialized views) from

prior views [R97, YYL07] and by re-using these results, a substantial saving can be effected

during subsequent queries over the same views. The queries posed later would be able to get

results within a very short span of time [TU] from the same views that were computed and

1

stored in earlier iterations. It is obvious that the materi~Jized views would need to be stored to

the disk. So there is an additional space overhead on the system with materialized

views[CHSOl, HRU96, GHRU97, R97, TU, YYL07].

The number of possible views within a system is related to the number of dimensions of the

data, in fact, an exponential function of the number of dimensions[NT02]. So trying to

materialize all possible views is infeasible in most real world systems. A better alternative is

to choose the optimal subset of views to materialize that bring about the maximum

improvement in the performance of the system. However, making such a selection is NP

complete [CHS01,GHRU97, SRR06], so a better strategy or a heuristic needs to be used to

choose the most beneficial set of views for a given context. This has been the focus of most of

the existing literature in the area of view materialization. The related work in the area of view

materialization is discussed next.

1.1 Related Work

Research in the area of materialization of views started off in the 80's [BLT86, H87, RK86,

SF89, SF90, SP89a, SP89b]. The initial focus was on decoupling views from the underlying

data store, also referred to as pure data in [R97], and materializing these views and storing

them in separate tables (or memory) as opposed to keeping them purely virtual [RK86, SF90,

SP89a]. Since data in the materialized views would need to be updated with changes to the

underlying data, alternatives suggested were either to re-compute the entire view [BLT86,

RK86] or to follow an update procedure that is able to work with the differentials [BLT86,

H87, SP89a]. In [SP89a] an approach is given using differential files to which the modified

tuples are appended followed by duplicates elimination, whenever changes are seen. Since all

changes to the backing store may not be necessary for propagation to the view, a screen test

2

approach was suggested [BLT86, SP89a] to filter out the irrelevant ones. Approach for

updates to views in the case of distributed systems was presented in [SP89b, SF89, SF90]. A

currency concept was introduced [SP89b] to indicate the lag between the data present in the

view and that of the backing store. The currency value allows identification of the optimal

time for executing the update queries for the materialized views. The updates could be run in

a scheduled manner or on demand. A hybrid of the two approaches is presented in [SP89b].

This work was extended in [SF90] to be able to choose the most optimal sources for an update

(another view or backing store) for a set of distributed materialized views. The one major

drawback of the algorithm presented in [SF90] is that it basically works for acyclic graphs,

i.e. , not having duplicate views at different sites. Though the authors have handled cyclic

graphs by reducing it to an acyclic graph, the computation complexity for such a pre

processing.step would be phenomenal in most distributed system.

[CHSOl] provides a definition for the view selection problem as the choice of views to

materialize given set of workload queries, storage space and database schema. The authors go

on to show a similarity between the approach for selection of views to materialize and the

approach for placement and replication of data over nodes in a distributed network [CHSOl].

The key contribution of [CHSOl] being to show that selection of views to materialize. is a

function of the statistics about the size of the views available with the query optimizer. With

complete statistics availability assumption, which happens to be the basis for many heuristics

(like HRU96, NT02, etc.), the complexity of the optimum view selection problem is shown to

be exponential in the size of dimensions of the data cube. On the other hand when heuristic

are used for estimating the size, it reduces to polynomial complexity. But the cost for

3

selection of indexes and the cost for maintenance of views have not been considered in the

analysis.

[AD98] does a complexity analysis for the problem of making use of materialized views to

answer user queries. The problem is analyzed in two cases, first for a closed world assuming

all relevant tuples are materialized, and then for an open world assuming only a few relevant

tuples are materialized. With the open world assumption, the materialized view is incomplete

and only able to partly answer user queries. This tolerance for approximation (or error) in

results in the open world assumption brings with a great saving in computation costs as shown

in [AD98]. The authors also briefly touched upon benefits of using such an approach for self

maintenance of views to cater to updates on the underlying data. Since with the open world

assumption, the view is perceived as an incomplete representation of the database, updates

can automatically be compensated for with such a model. On the other hand for a closed

world assumption all such computations become intractable.

[TBOO] goes on to better generalize the issues in materialized views and present a number of

design goals for selection of views. These include the different cost functions (query

evaluation, maintenance, etc.) and the constraints (space, response time, etc.) that need to be

considered. [RSS96] proposed an approach for materializing some additional views that in

tum improve the query response time for other dependent views.

A survey on some of the existing literature for the period can be found in [CDOl, MSRK99,

SRR06]. The authors [CDOl] have categorized the surveyed work based on the approach

taken for view selection (e.g. space time trade-oft), for view maintenance (e.g. incremental)

and on applicability to distributed systems. In [MSRK99] an overview of the major research

challenges in the area of data warehousing is given, one of the problems being related to view

4

materialization. In [SRR06] the survey is arranged along the lines of pure static, pure

dynamic and hybrid materialization of views. The authors [SRR06] further go on to show the

benefit of taking a hybrid approach to view materialization and an approach on the hybrid

lines. The authors (SRR06] performed extensive tests to compare their algorithm against

another dynamic view management algorithm Dynamat [KRO 1].

One of the key issues in view materialization is materialized view selection. The view

selection problem is the selection of the subset of views to materialize, keeping certain

constraints like cost of materialization, space available to store views, etc. in focus [TBOO].

This has been stated more formally in [CHSOl] as the issue of selecting a set ofviews V over

a schema R, such that the some constraint X (like storage space) is not exceeded by the set of

views selected. Further, the cost estimation function for query processing, the cost of selecting

the views V over R, using a given set of workload queries Q, should be the minimum

[CHSO 1]. The materialized view selection is discussed next

1.2 Materialized View Selection

As mentioned earlier one of the key issues surrounding materialized views is the issue of

selection of the appropriate views to materialize. There is usually an exponentially high

number of possible views to be materialized within any system[NT02], but the space available

for storing these views is restricted, so only a small number of views can be materialized at a

time. This subset of views needs to be selected from among all possible views to bring about

the maximum improvement in the performance of the system. However, making such a

selection is NP-complete (CHSOl, GHRU97, SRR06]. So the entire effort in the area of

selection of views to materialize is devoted to identifying a strategy that on the one hand is

effective in selecting beneficial views, while on the other is feasible for practical purposes.

5

Some key considerations while making the selection of views to materialize are mentioned

below.

Query evaluation cost minimization - Query evaluation cost is associated with the query

execution plan that is chosen for answering a particular query. In the presence of

materialized· views, these materialized views should get a higher priority for computing

results for queries as compared to the base relations [BPT97, 097, GM99, HRU96, TBOO,

YKL97]. The other factor related to query evaluation cost minimization is the

interdependence among views, where some auxiliary views, though not directly used for

answering queries, might have many other views dependent on them [RSS96, TBOO]. In

such situations it may be beneficial to materialize these auxiliary views even though they

are not used directly for answering queries.

Operational cost minimization - Operation cost is a function of the query evaluation and

maintenance cost [BPT97, CDOl, RSS96, TBOO]. Query cost is related to the cost of

computing results for a query from materialized views. While maintenance cost is related to

the frequency of change to backing data repository and to the cost of propagating these

changes to the materialized view.

Multiple Query Optimization (MQO) - MQO deals with identifying the optimal plan for

executing multiple queries from the same point in time (IOO, YKL97] by sharing of

temporary results between the queries. Sharing of temporary results would bring about a

cost saving for answering queries. In this area algorithms by [YKL97] using Multi-View

Processing Plan (MVPP) are found to be very comprehensive. [Y AE05] extends this work

to include maintenance process optimization and incremental maintenance algorithms.

6

Partly Materialized Views - Recent research direction is towards materializing a portion of

the view [L07, LWL06, ZLOD07]. Such empirical algorithms [SRR06] are facilitated by

making use of historic trends and access patterns at relational and tuple levels.

A detailed categorization of the work done by authors in the area of selection of views to be

materialized is given below.

1.2.1 Greedy Algorithm Based

As shown in [HRU96], the problem of selection of the set of views to materialize for data

cubes is NP-complete. The authors thus went on to propose algorithms based on the greedy

approach to select the beneficial views for materialization. The algorithm works with the

assumption of knowing from before hand the size of different possible views to be

materialized. For making the estimate about the size of the view, authors in [HRU96] have

suggested making use of sampling and analytical techniques. Authors have also established

the lower bound value for benefit for working with the greedy algorithm as (e-1)/e, where e is

base of natural logarithms, i.e. 63% of the optimal algorithm. In the extension to the basic

model of greedy algorithm two other cases are considered [OHRU97], where the probability

of all views being queried need not be equal and a space constraint might be applied

restricting, the number of views to be materialized. Authors have also looked at the space

time trade off aspect within the hypercube lattice.

[097, OHRU97] present polynomial time greedy algorithms for selection of views to

materialize AND graphs and OR graphs, and an exponential time algorithm for AND-OR

graphs. However, the authors only consider the cost of materialization given a constraint on

the maximum space available for materialization of views. [097, OHRU97] originally did not

7

consider the cost of maintenance of materialized views. This cost is included in the more

recent work by [GM05].

A variant of the greedy algorithm which is able to identify the optimum set of views in

polynomial time (PGA) is given in [NT02]. PGA operates in two phases - nomination and

selection. In the first phase starting from the root of the data hypercube lattice, the smallest

node from all its child nodes is nominated as the candidate for materialization. The process is

repeated and nodes added to the candidate set till the bottom of the lattice is reached. The

assumption for nomination phase being that, smaller views tend to be more beneficial per unit

cost of materialization as compared to larger views. Next in the selection phase, the benefit of

materializing each candidate is estimated to finally pick the view that yields most benefit in a

greedy manne~. The time complexity of PGA is shown to be 0(d2k2
) for d levels in the lattice

and k candidates which compares favourably over the algorithm in [HRU96] having

complexity of O(k22d). Although, PGA does have an additional overhead of 0(d2k) in terms

of space needed to maintain metadata information about the candidate views in each iteration.

[EM07] presents another algorithm based on the greedy approach that makes use of the

number of dependent relationship (utilization rate of a view) and the frequency of update to

the base relations to compute the cost of materializing a view. The basis of the algorithm

being that dependent relationships can utilize the same materialized view (i.e. if there's been

no update), so there can be a cost saving if the optimum set of dependent relationships are

identified based on execution cost or in a greedy manner. The set of dependent relationships

so identified are then given as input to the algorithm in [EM07] which selects the optimum set

of materialized views.

8

There are many other algorithms [CLFOl. EM07, G97, GHRU97, GM05, HRU96, NT02,

YYL07] that are based on the greedy algorithm. In [CLFOl] an adapted greedy algorithm is

· presented and some elaborate test results to ascertain the benefit of working with the proposed

cost model and for making use of the hybrid approach in data warehouse. The hybrid

approach only selects those views for materialization that offer cost benefit, while the rest of

the views are kept virtual and computed on the fly.

1.2.2 Index Selection Based

In [ACNOO, GHRU97, GM05], the authors have considered selection of indexes alongside

selection of materialized views. Indexes have been shown to be similar to materialized views,

in the sense that both are additional physical structures added to improve the response time for

queries. Both the structures present a space overhead on the system over which they have

been defined. [ACNOO] further goes on to prove indexes to be a special kind of materialized

view that has been projected from a single table. It has also been suggested in [ACNOO] that

indexes and materialized views should be able to make use of one another, though no specific

strategy for doing so is mentioned. In [ACNOO], all candidate views for materialization are

identified along with the indexes on the base table by application of heuristics for the

Microsoft SQL server 2000. In contrast to this, [GM05] (and their earlier work [GHRU97])

present a more general approach for selection of indexes, which have been defined for views,

which have been materialized. These indexes are built on views and are relevant in bringing

down the computation cost for queries, only if the corresponding views have been

materialized. [GHRU97, GM05] present a few algorithms (e.g. r-greedy, inner level greedy)

based on the greedy approach [HRU96] that consider the selection of materialized views and

indexes for a given amount of storage space. The drawback of this approach is that in case

9

more than one indexes to a particular view are present, the advantage of using one index over

the other cannot be evaluated until all possible dependent views have also been materialized

[CDOl].

1.2.3 Genetic Algorithms Based

Application of randomized search algorithms and Genetic Algorithms (GA) to materialized

view selection is also gaining focus. In this regard the pioneering work was done by

[HCLK.99, ZYY99]. Both papers considered the query access cost and the update cost in the

cost functions presented. The work in [HCLK.99] gave a high level approach for performing

genetic local search to identify the set of materialized views using AND-OR graphs. In

[ZYY99] the problem was defined with respect to MVPP. A fitness function to be maximized

was defined, after transforming the cost function appropriately. Some experimental results

from [ZYY99] also seemed to show that the GA based algorithms were able to identify better

than what conventional heuristic based algorithms could do, though the GA based algorithms

were taking far longer to execute. In the subsequent work by the same authors [ZYYOl], the·

selection problem has been split into two different problems operating at two levels of

hierarchy. At the higher level, the problem is selection of the optimized global processing

plan by merging many individual processing plans. While at the lower level, the problem is to

select the optimum set of views (nodes) to be materialized from the optimum global

processing plan identified at the higher level. The authors applied evolutionary algorithms at

both levels and were able to compare results from the different settings (GA applied at either

level, at both level, etc.).

[HCL03] extended their earlier work to present a two part representation for the genome, first

one to identify the query plan and the second one for the view (node) to be materialized from

10

the plan. Using such a representation, the plan and the view are directly known from the

resulting population of the subsequent generations. The test results show GA yields better

quality results than the greedy algorithm though its execution time is high for small number of

queries and shows improvement only for large number of queries. The higher execution time

for GA based was also seen in [ZYYO 1].

[LB06] present two evolutionary algorithms for selection of views to materialize incase of

multiple distributed OLAP (M-OLAP) data cubes, including a co-evolutionary genetic

algorithm. For representation of the genome, eight bits per cube has been used where a value

of 1 indicates that the corresponding node from the cube is to be materialized. For the normal

GA, each individual is represented by one genome string obtained by merging M (number of

data cubes) eight bit strings. While in the co-evolutionary algorithm, each individual is

represented by M genomes each of length eight bits. In their experimental evaluation on the

TPC-R database over a LAN set-up, [LB06] found that the co-evolutionary algorithm

outperformed simple GA and Greedy algorithms in terms of the total cost of solutions. The

co-evolutionary algorithm also scales up better than the other two for an increase in the

number of nodes in the data cubes (varying it from 64 to 256) and an increase in the number

of cubes.

Unlike the work where different objectives of the view selection problem (like query cost) are

combined into one (linear) cost function to be minimized, in (L06] a multi-objective function

is used. Two objectives for the selection problem are identified as the query cost and the

maintenance cost, that are simultaneously minimized using multi-objective GA. By

minimizing such a multi-objective function, a number of optimal (pareto) solutions can be

obtained. From these solutions, the appropriate set of views can thus be materialized trading

11

one objective for the other depending upon their importance. The author performed tests with

two standard non-elitist multi-objective genetic algorithms and found the results compared

favourably against greedy algorithm.

[VGP07] presents two hybrid (genetic and greedy) algorithms for selection of an optimal set

of objects (materialized views, vertical fragments and indexes) from the data cube. In the

greedy step the set of views with highest usability ratio are picked up and appended to the set

of chromosomes from the previous generation randomly. Thereby modulating the solution

space in which the greedy algorithm is applied. In this way the chromosome length keeps on

growing until the length yielding optimal results (convergence) is found.

1.2.4 Web View Materialization

Alongside research in view materialization for databases and data warehouses, there is also

ongoing work in the area of materialization of views for the web [CFP99, KSCP04, LR99,

LROO, LROla, LROlb, LR02, LR04, MMM02, SKRPOl, SSA07, YFIVOO]. Web presents its

own set of challenges like having to work with highly dynamic content that gets updated

frequently, operating in a 24X7 online mode, etc. that affect selection of views. Materialized

web views enhance performance of the system on the web, by caching some of the query

results outside the backing data store, which can be re-used for answering future queries

[LR02].

System architecture for a web based system is given in [LROla, LROlb, LR02]. These

essentially make use of an asynchronous cache layer, between the application and db server

layers, where views are materialized. Such a cache can be refreshed on update without having

to be invalidated, thereby improving the response time. The response time is measured in

[LR02] by the quality of service (QoS) metric, by recording the average time for servicing a

12

request. While the freshness of data is measured using the quality of data (QoD) metric, which

measures the average period from the time when an update was received to the time when the

update was propagated to the relevant cached materialized views. The online view selection

algorithm (OVIS) thus proposed in [LR02], works for a user defined QoD threshold value,

constantly monitoring and balancing any surplus (or deficit) in QoD by decreasing (or

increasing) the number of materialized views. In other words the algorithm does a QoD to

QoS trade-off to ensure the system is providing results with QoD around the threshold.

Experimental results in support of the OVIS algorithm is found in [LR04]. [LR04] also

presents a few other metrics for measurement of QoD based on the freshness value of

fragments. Depending on the requirements of the application, page fragments of the

appropriate level of freshness can be aggregated to form corresponding views.

In [SKRPO 1] also the poterit combination of parameterized fragments and XML is seen for

generation of web views. Several such fragments can be pre-computed, thus saving

computation costs during peak load hours. [YFIVOO] evaluate different caching strategies

such as caching pre-computed pages, XML file, DB caching, etc., using a declarative

specification (weave) for data intensive websites.

A somewhat different treatment of web views is found in [MMM02]. Here authors have tried

to find out navigational paths within structured websites, by pulling out relational abstractions

from these websites. Since search based interfaces to hypertext documents are inadequate at

finding the optimal navigational path between hypertext pages, so the relational abstraction is

proposed on which SQL queries can be executed. A cost model, with parameter such as

network access [MMM02], can then be applied on the results of the queries to identify the

13

optimal navigational path. The approach thus allows users to work with declarative queries,

which can be translated to navigational paths in the hypertext pages.

A recent work by [SSA07] uses mining technique over the web log files to identify the most

relevant set of web views for a web based system. A great deal of indicative information

about the user's access and navigational patterns within the system get captured in these web

log files. This information can be useful for empirically [SRR06] deciding upon the best set of

web views to materialize. The authors [SSA07] work with a similar intermediary cache based

architectural system presented in [LR02].

1.3 Aim

Among the algorithms for view selection discussed above, the greedy based view selection

algorithm presented in [HRU96] forms the foundation of many of the other algorithms for

view selection. The [HRU96] algorithm works with a set of views and the dependencies

among them, and from them the most beneficial view in each of the iteration is selected for

materialization. The algorithm exhibits high run time complexity[NT02, SR06], which may

be attributed to following reasons:

• Frequent re-computation of benefit values while selecting views for materialization

i.e. with every selection of view, the benefit value of other views in the lattice may get

affected and therefore require re-computation. The number of these re-computations

may be high and thus contribute to the high run time complexity. This high run time

complexity can be reduced by reducing the number of re-computations of benefit

values. An algorithm Reduced Lattice Greedy Algorithm (RLGA) is proposed to

reduce the re-computation of benefit values based on a heuristic that defines the

14

criteria for reducing the set of dependencies among views. The reduced set of

dependencies results in a reduced lattice, which when used for greedily selecting

views may result in a significantly lesser number of re-computations than those

required for a complete lattice. This may in turn improve run time complexity.

• The number of possible views is exponential with respect to the number of

dimensions[NT02]. The algorithm is infeasible for high dimensional data sets as its

execution time becomes phenomenally high. An algorithm Reduced Candidate Greedy

Algorithm (RCGA) is presented that improves the scalability, with respect to number

of dimensions, for selecting views for materialization. The algorithm RCGA, utilizes

the heuristic used in RLGA to identify view for materialization in polynomial time

relative to the number of dimensions.

1.4 Organization of the Dissertation

The dissertation is organized as follows: Chapter 2 discusses the algorithms in [HRU96] and

[NT02] in detail, followed by a discussion about the two proposed algorithms RLGA and

RCGA. The comparisons of the proposed algorithms with the existing algorithms are also

given in Chapter 2. The Conclusions are given in Chapter 3.

15

CHAPTER2

MATERIALIZED VIE"W SELECTION

Materialized view selection has been identified as a key issue in view materialization. A view

selection problem generally deals with selecting an optimal set of views for materialization

subject to constraints like space, response time, etc. [TBOO]. An optimal selection of views

usually refers to the set of views that are most beneficial in answering user queries and may

thus reduce the operational costs [TBOO].

As per [YYL07], there are three possible ways of selecting views to materialize namely

materialize all, materialize none and materialize a select few. Each of these ways trades in

different amounts the space requirement for storing views, against the response time for

answering user queries. Although materializing all views (2d views, ford dimensions) may

result in the least possible response time, storing these views would have a high space

overhead. At the other extreme with no views materialized, the view's results would have to

be recomputed each time slowing down the response time. Thus, the only option available is

to selectively materialize a subset of views statically that are likely to be most beneficial in

answering user queries, while keeping the remaining views dynamic [SRR06, YYL07].

16

However, due to the exponentially high number of possible views existing in a system, the

search space is very large, so the problem of selecting the optimal subset from it for

materialization has been shown to be in NP [CHSOl, GHRU97, SRR06]. Thus, for all

practical pmposes, the selection of the subset of views to materialize is done by pruning of the

search space, in either of the two ways mentioned below [TU].

1. Empirically: By analyzing past user querying patterns. Using the log of queries posed

in the past, information like volume of data, commonly accessed portions of the data,

etc. can be computed. This information can guide the selection of appropriate views to

materialize that are likely to be useful for answering future queries.

2. Heuristically: By identifying the best possible subset of views using a heuristic based

algorithm. The heuristics commonly used are Greedy based [CLFOl, EM07, G97,

GHRU97, GM05, HRU96, NT02, YYL07], A*[GM05, GYCL03], Genetic based

[HCLK99, L06, VGP07], etc. These heuristics provide a reasonably good solution for

selecting views to materialize for many real world problems.

Several heuristics based approaches have been discussed in the literature[ACNOO, CLFO I,

EM07, G97, GHRU97, GM05, HRU96, HCLK99, HLJ06, KSCP04, L06, LB06, LROO,

LYSW07, MMM02, NT02, SKRPOI, SSA07, YYL07,' ZLGD07, ZYY99, ZYYOI]. Most of

these are greedy based approaches. The greedy based approach at each step selects an

additional view, that has the maximum benefit per unit space and that fits within the space

available for view materialization. Several papers discuss the greedy heuristic for selecting

views for materialization [CLFOl, EM07, G97, GHRU97, GM05, HRU96, NT02, YYL07].

One of the fundamental greedy based algorithms was proposed in [HRU96]. This algorithm

17

uses a multidimensional lattice framework, expressmg dependencies among vtews, to

determine a good set of views to materialize.

The algorithm in [HRU96] exhibits a high run time complexity. This high run time

complexity may be due to frequent re-computation of benefit values while selecting views for

materialization i.e. with every selection of view, the benefit values of other views in the lattice

may get affected and require re-computation of their benefit values. The number of re

computations may be high in each iteration and may therefore contribute to the high run time

complexity. This high run time complexity can be reduced by reducing the number of re

computation of benefit values. An algorithm Reduced Lattice Greedy Algorithm (RLGA) is

proposed that reduces the re-computation of benefit values of the views by considering only

those dependencies in the lattice that have an impact on the benefit values. The resultant

lattice is a reduced lattice with respect to the dependencies among views in it. The views are

selected greedily over the reduced lattice.

Another prime reason for high run time complexity for algorithm in [HRU96] is that the

number of possible views is exponential with respect to the number of dimensions[NT02].

This makes the algorithm infeasible for high dimensional data sets as its execution time

becomes phenomenally high. An algorithm Reduced Candidate Greedy Algorithm (RCGA) is

presented that improves the scalability, with respect to number of dimensions, for selecting

views for materialization. The algorithm RCGA attempts to achieve solution in polynomial

time relative to the number of dimensions.

Before discussing the algorithms RLGA and RCGA, a brief overview of greedy based

algorithms is given with emphasis on algorithms in [HRU96] and in [NT02].

18

2.1 Greedy Based Algorithms

As discussed earlier, greedy based algorithms are widely used algorithms for selecting views

to materialize. These algorithms are based on selecting views in decreasing order of their

benefit per unit space values subject to space being available for their materialization. Most

greedy based algorithms work with the multidimensional lattice framework[SRR96]. One of

the fundamental greedy based algorithms is the one proposed in [HRU96] that uses the

dependencies among views in the lattice framework to select the best set of views to

materialize. The HRU algorithm exhibits high run time complexity due to a large number of

views to analyze for selecting the beneficial views[NT02]. The HRU algorithm is discussed in

section 2.1.1. Another reason for high run time complexity is that the number of possible

views is exponential with respect to the number of dimensions[NT02]. A scalable solution to

this problem was presented as Polynomial Greedy Algorithm (PGA) in [NT02). The PGA

algorithm attempts to achieve solution in polynomial time relative to the number of

dimensions. The PGA algorithm is discussed in section 2.1.2.

Since these algorithms use the Lattice framework, the Lattice framework is discussed next.

Lattice Framework

The Lattice framework [HRU96, SRR06, MSRK99] represents all possible views to be

materialized as its nodes. The top most node of the lattice, i.e. root node, represents the base

fact table computed from an aggregation on all dimensions. For construction of a lattice, at

least a partial ordering must exist for the views of the lattice where all views of the lattice

depend upon the root node of the lattice, directly or indirectly.

19

A node (view) X is said to be dependent on another node (view) Y, if queries on X can be

answered using the view corresponding to node Y. Direct dependencies within nodes (views)

get captured within the lattice by defining an edge between the corresponding nodes, i.e.

X~ Y. While indirect dependencies get captured transitively, i.e. if X~ Y and Y ~Z, then it

implies that X~ Z. A node in a lattice is referred to as the ancestor node of all nodes that

appear at a level lower than it in the lattice and are dependent on it (directly or indirectly).

The lattice concept can be better understood from the example given below.

Example 1: Consider a lattice constructed for a data set comprising three dimensions A, B

and C. There will thus be a total of23
, i.e. 8 possible nodes (views) in the lattice. The

corresponding lattice is shown below in Figure 1.

Figure I: Lattice Structure for a 3-Dimensional Data

The Lattice, shown in Figure 1, shows that all views directly or indirectly depend on the top

view, i.e. ABC and view NONE, which has no dimension associated with it, has no dependent

view. All nodes have edges connecting them to their direct ancestors. Like view AB, which is

the ancestor of views A and B, has edges to these dependent views. Further, using the lattice,

cost and benefit values can be identified for the views corresponding to each node of the

lattice.

20

-
-

2.1.1 The HRU Algorithm

The [HRU96] algorithm works with a linear cost model, where cost is computed in terms of

the size.of the view. The basis for this cost model is that there is an almost linear relationship

between the size of the view on which a particular query is executed and the execution time of

the query, as all tuples of the view may be needed to answer a query. This assumption of the

linear cost model has been experimentally justified in [HRU96].

The algorithm in [HRU96] requires the size values for each view (node) of the lattice to be

available prior to use of the algorithm. Since the size values are synonymous with cost, the

accuracy of the algorithm depends on the correctness of these size values. However, given

that the actual number of tuples change over time, it is difficult to determine the size at any

give!]. instant of time. The size of views can be estimated using sampling or analytical

techniques [HRU96]. The algorithm based on [HRU96] is given in Figure 2 and the method

for construction of the complete lattice from dependencies in Figure 3. An example showing

the construction of reduced lattice using this method is shown after the Figure 3.

Input: Dependencies D among views V and size of the views
Output: Top T views
Method:
Step 1: //Arrive at a complete lattice L

L=ConstructLattice(D)
Step 2: II Select Top T views

Count :=0; S:={Root View};
B(V,S) =0, initially;
I. FOR (Count :=1 to T)

a. ComputeBenefit()
b. Select top view (VToP) from not inS such that B(VToP, S) is maximized.
c. S := S UNION {VTOP}
d. Count++

2. RETURNS
II Method to compute benefit value of views ofthe lattice
METHOD ComputeBenefit()
For every view V from the lattice L, compute:

00 !Y,
43~//;
Yf

B(V,S) := Benefit of the view V, relative to the nearest materialized ancestor
view in the set S

Figure 2: Algorithm based on HRU

005.1
G3465 Vi

111/lll/1/llllll/1111/11/l/1111
TH15191

\

/21
)

i
I

Input: Dependencies D among views V and size of the views
Output: Complete Lattice L
Method:

L:= NodeRooT corresponding to Root View
FOR (Every Dependency du from D between two views Vi> V, from V, such that Vr-7 V,)
1. Get nodes Node1 and Node, corresponding to views V1 and V1

2. Add Edge between Noder and Node, in case there is no path (set of edges) connecting
Noder to Node,

3. IF (Node, is not the same as NodeRooT)

Return L

a. Add Edge between Node, and NodeRoor in case there is no path (set of edges)
connecting Node, to NodeRooT

b. Remove Edge between Noder and NodeRooT in case a direct edge exists
between Noder and NodeRooT

Figure 3: Method ConstructLattice

Example 2: For the following dependencies D among Views V of Sizes S, arrive at a

complete lattice

v s
ABC 5K
AB 5K
AC 0.9K
BC 3K
A 0.09K
B lK
c 0.5K

D = {AB-7 ABC, AC-7 ABC, BC -7 ABC, A-7 ABC, A-7AB, A~AC,

B-7 ABC, B -7 AB, B -7 BC, C -7 ABC, C -7 AC, C -7 BC}

First, a node is created for the root view ABC, and a reference to the lattice L is assigned this

node.

NodeAsc: = Create new node for view ABC

L: =NodeAsc

The step wise construction of the complete lattice from given dependencies among views is

shown below

22

I Dependency Execution Steps Lattice

AB~ABC 1. Get nodes for views ABC and AB. 5K

s:: NodeABc for view ABC exists.

? 0 NodeAB = Create new node for view AB ·~
~ 2. Add an edge between NodeABc and NodeAB, since

.::: it does not exist - 3. NA.

5

AB "' ...
~ 4. NA

AC~ABC 1. Get nodes for views ABC and AC. 5K
NodeABc for view ABC exists.

-o NodeAc = Create new node for view AC s::
0 2. Add an edge between NodeABC and NodeAC• since 0
0

it does not exist Cll

3. N.A.
4. N.A.

s:: BC~ABC 1. Get nodes for views ABC and BC. 5K
0 NodeABC for view ABC exists.
-~

Nodesc = Create new node for view BC
2 2 . Add an edge between NodeABC and Nodesc, since
-o it does not exist ... :.a 3. N.A.
E-<

4. N.A.

A~ABC 1. Get nodes for views ABC and A. SK

s:: NodeABc for view ABC exists.
0 NodeA = Create new node for view A ·~ ... 2 . Add an edge between Nod eAse and NodeA> since it
2 does not exist

"€ 3. N.A.
:::1 4. N.A. 0
~

A~AB I. Get nodes for views AB and A. SK

s::
Both nodes NodeAB for view AB and NodeA for

0 view A exist.
·~ 2 . Add an edge between NodeAB and NodeA> since it
0 does not exist. .:::

..0:::: 3 . Edge (path) exists between Node As and root node
¢:::

Node ABC• so new edge does not have to be added ~
between them.

4. Remove edge between NodeA and NodeABc·

A~AC I. Get nodes for views AC and A. SK

s:: Both nodes NodeAc for view AC and NodeA for
0 view A exist.
·~ 2 . Add an edge between NodeAc and Node A, since it
2 does not exist

..0:::: 3 . Edge (path) exists between NodeAc and root node
>< NodeA8 c, so new edge does not have to be added en

between them.
4. Remove edge between Node A and NodeABC·

23

I Dependency Execution Steps Lattice

B~ABC I. Get nodes for views ABC and B. 5K

:::: NodeABC for view ABC exists.
0 Nodes = Create new node for view B ·.;::

"' 2. Add an edge between NodeABC and Nodes, since it does ...
~ not exist

-5 3. N.A.
:::: 4. N.A. Q
>
Q

Vl

B~AB I. Get nodes for views AB and B. 5K

:::: Both nodes NodeAB for view AB and Nodes for view B
0 exist.
-~

2 . Add an edge between NodeAB and Nodes, since it does ...
Q
~ not exist
...c: 3. Edge (path) exists between NodeAB and root node 1::

t>ll NodeABc. so new edge does not have to be added between
ii3 them.

4. Remove edge between Nodes and NodeABc·

B~BC I. Get nodes for views BC and B. 5K

:::: Both nodes Nodesc for view BC and Nodes for view B
0 exist
·~ 2 . Add an edge between Nodesc and Nodes, since it does ...
B not exist -...c: 3 . Edge (path) exists between Nodesc and root node
E NodeA8c, so new edge does not have to be added between z them.

4. Remove edge between Nodes and Node ABC·

C~ABC l. Get nodes for views ABC and C. 5K

:::: NodeAsc for view ABC exists.

-~ Nodec =Create new node for "iew C
;;; 2 . Add an edge between Node ABC and Nodec, since it does ...
Q

not exist ~
...c: 3. N.A .
E 4. N.A.
~

C~AC I. Get nodes for views AC and C.
:::: Both nodes NodeAc for view AC and Nodec for view C
-~ ;;; exist. ...

2. Add an edge between NodeAc and Nodec, since it does ~
-5 not exist
:::: 3. Edge (path) exists between NodeAc and root node
Q
> Node ABC• so new edge does not have to be added between
Q

~ them.
4. Remove edge between Nodec and NodeABC·

C~BC l. Get nodes for views BC and C.
:::: Both nodes Node8c for view BC and Node8 for view B
0
-~ exist. ... 2 . Add an edge between Nodesc and Nodec, since it does Q
~ not exist.
...c:

3. Edge (path) exists between Nod esc and root node ¢:

0 Node ABC• so new edge does not have to be added between
~

E-< them.
4. Remove edge between Nodec and Node ABC·

24

The HRU algorithm selects views greedily using the lattice corresponding to the dependencies

among views. In the HRU algorithm, the benefit of a view is computed using the cost (size)

associated with the view[HRU96]. The benefit value is a function of the number of dependent

views and the difference in size of a view and that of its nearest materialized ancestor view.

Initially the root node (view) of the lattice is assumed as materialized and all benefit values

are computed using it. In each of the iteration, the most beneficial view is selected for

materialization. With each view selection, the benefit values of other views in the lattice

change and are recomputed with respect to the nearest materialized ancestor view. The

algorithm at each of the iteration continues to select the best view for materialization till a

predefined number of views have been selected.

In the algorithm given in [HRU96], at every iteration the benefit value of all the views other

than the view selected for materialization are recomputed. This may result in high number of

re-computations when the number of dimensions is high. This in turn may lead to high run

time complexity[NT02, SRR06, URT99, VVK02]. This run time complexity therefore can be

improved upon by decreasing the number of re-computations. An algorithm Reduced Lattice

Greedy Algorithm (RLGA) is proposed that attempts to reduce the number of re-computations

while selecting the beneficial views for materialization. The algorithm RLGA is discussed in

section 2.2. Another reason for exponential runtime complexity of the HRU algorithm is that

in each of the iteration of execution of the algorithm, the benefit values of nearly all views of

the lattice have to be evaluated. This exponentially high runtime complexity makes the HRU

algorithm infeasible for high dimensional data sets as its execution time becomes

phenomenally high. A scalable solution to this problem was presented as Polynomial Greedy

Algorithm (PGA) in [NT02]. The PGA algorithm is discussed next.

25

2.1.2 The PGA Algorithm

The PGA algorithm was proposed m [NT02] as a solution to the exponential run time

compiexity of the HRU algorithm. The PGA algorithm works with a two-stage process of

nomination and selection. In the first stage only a small number of views, termed as the most

promising set of views, belonging to the smallest size view's hierarchy starting from the top

of the lattice get nominated. In the second stage, a greedy based selection is performed over

only those views that were nominated. Since the nomination phase significantly reduces the

number of views under consideration, to at most m views in each the iteration for m levels of

the lattice, the PGA algorithm is able to perform the selection of views in quadratic time in

the number of dimensions of the data. The PGA algorithm is given in Figure 4. The PGA

algorithm takes dependencies among views as input and produces top T views as output.

Input: Dependencies D among views V and size of the views
Output: Top T views
Method:
Count :=0; S:={Root View};
L:=NULL; II Lattice
Step 1: //Arrive at a complete lattice L

L=ConstructLattice(D)
S:= {}

Step 2: II Nominate views
R:=Nod~ooT

W:={} //Set of nominated views
WHILE (More nodes to consider at a level below R)

I. FOR (Each Node from one level below R)

Identify smallest node, rsMALLEST that has not been nominated earlier

2. W:= W U { rsMALLEST}

3. R:= rsMALLEST
Step 3: //Materialized view selection

I. FOR (Every view V from the candidates set W)
Compute Benefit using ComputeBenefit() function from HRU

2. Select top view (VToP) from W having the highest benefit
3. S := S UNION {VTOp}
4. Count++
IF (Count< T)

Go to Step 2; II Nominate more views
ELSE

RETURNS;

Figure 4: Algorithm based on PGA (NT02(

26

The PGA algorithm nominates views in each of the iteration. The nomination starts at the root

view by nominating the smallest sized child view that has not yet been nominated. The

nomination moves down a level with the nominated child as the parent and the smallest child

of it being nominated as next nominated view. The nominations continue until the bottom of

the lattice is reached. In the selection phase, the most beneficial view from the nominated

views is selected for materialization. In every subsequent iteration, the nomination of views,

from the top view, and selection of the beneficial view are carried similarly until top T views

are selected. The PGA algorithm greedily selects views for materialization from a few sets of

nominated views instead of all the views in the lattice as done by HRU algorithm. This

enables PGA algorithm to select top K views for materialization in O(Kd2
) time instead of

O(.K22
d) time taken by the HRU algorithm, for a data set having d dimensions. The

experimental comparisons between PGA and HRU are given in section 2.1.3. An algorithm

RCGA has been proposed on the same lines as PGA but it utilizes the heuristic used in the

algorithm RLGA, for recommending views for selection. The algorithm RCGA comprises of

the recommendation phase and the selection phase. The recommendation phase recommends

views based on the heuristic used in RLGA. The selection phase selects greedily most

beneficial recommended view. The algorithm RCGA is discussed in section 2.3.

Example 3: Consider the dependencies among views of Example 2. The corresponding lattice

is shown in Figure 5. Arrive at the top 3 materialized views using algorithm HRU and PGA.

Figure 5: Lattice for the given dependencies

27

. The selection of top 3 views using HRU and PGA algorithms are shown in Figure 6 and

Figure 7 respectively.

View(V) Size of View (Sizev) Size of the Nearest Materialized Number of Benefit
Ancestor Node (Sizer<MA) Dependents (D) (SizemtA - Sizev) x D

= AB SK SK {ABC} 3 {AB,A,B} (5-5) X 3 = 0
~

SK {ABC} 3 {AC,A,C} t~JB~!!(:S~;,)t~t)f,~~~;Ji~~t!l: f! AC 0.9K
~ BC 3K SK {ABC} 3 {BC,B,C} (5-3) X 3 = 6
'E A 0.09K SK {ABC} 1 {A} (5-0.09) X l = 4.91 10:

8 1K SK {ABC} 1{B} (5-l) X l =4

c O.SK SK {ABC} 1 {C} (5-0.5) X l = 4.5

View(V) Size of View (Sizev) Size of the Nearest Materialized Number of Benefit

= Ancestor Node (Sizer<MA) Dependents (D) (SizfNMA- Sizev) x D
.2
'CO AB SK SK {ABC} 2 {AB,B} (5-5) X 2 = 0 ..

.,;:;,;:.t\11J: ~ BC 3K SK {ABC} 2 {BC, B}
"C::

= A 0.09K 0.9K {AC} 1 {A} (0.9-0.09) X l= 0.81 e
" .. B 1K SK {ABC} 1 {B} (5-l) X l = 4 en

c O.SK 0.9K {AC} 1 {C} (0.9-0.5) X I = 0.4

View(V) Size of View (Sizev) Size of the Nearest Materialized Number of Benefit
= Ancestor Node (Sizep.MA) Dependents (D) (SizfNMA- Sizev) x D e
~ AB SK SK {ABC} 1 {AB} (5-5) X 1 = 0 ..
~ A 0.09K 0.9K {AC} 1 {A} (0.9-0.09) X I = 0.81 "C:: .. ::: 8 1K 3K {BC} 1 {B} .. ,. . , , \:F·i'~%=2 ;':,::'T;
!-

c O.SK 0.9K {ABC} 1 {C} (0.9-0.5) X 1 = 0.4

Figure 6: Selection of top 3 views using HRU algorithm

Recommended Size of the Size of the Nearest Materialized Number of Dependents (D)
Benefit=

= (Size.,AN- Sizev) x D .Sl Views(V) View (Sizev) Ancestor Node (SizCNMA)
'CO ..
~ ABC 5 SK {ABC} 7{AB,AC,BC;Ac,A,B,C} (5-5)* 7 = 0
t;

JJj~·~;9> .* 3 .~J;~-;3,'[. &: AC 0.9 SK {ABC} 3 {AC,A,C}

A 0.09 SK {ABC} 1 {A} (5-0.09} * I = 4.91

= Recommended Size of the View Size of the Nearest Materialized
Benefit=

.Sl Number of Dependents (D)
(Size.,AN- Sizev) x D = Views(V) (Sizev) Ancestor Node (SizfNMA) ..

~

"C:: BC 3 SK {ABC} I {BC,C}
1 j'!'~(513> ~ i_:_J,.; ,,_ c

e
" .. c 0.5 0.9K {AC} I {C} (0.9- 0.5} * I = 0.4 en

= Recommended Size of the Size of the Nearest Materialized Number of Dependents (D)
Benefit=

.Sl (Size.tAN- Sizev) x D = Views(V) View (Sizev) Ancestor Node (SizCNMA) ..
~

"C:: AB 5 SK {ABC} 2 {AB, B} (5-5) * 2 = 0 ..
:::
!- B 1 3K {BC} I {B} (3-1) * 1·.~2';::',

Figure 7: Selection of top 3 views using PGA algorithm

28

2.1.3 Comparisons (HRU Vs. PGA)

The HRU and PGA algorithms were compared by conducting experiments on an Intel based

2.3 GHz PC having 2 GB RAM. The two algorithms were compared on parameters like the

execution time and the benefit value.

First, a graph was plotted to compare HRU and PGA algorithms on execution time against the

number of dimensions. The graph is shown in Figure 8.

HRU Vs. PGA

1000000

900000

800000
Q) 700000
E
i= 600000
c:

500000 0
;:
::l 400000 (.)
Q)
)(

300000 w

200000

100000

0
6 7 8 9 10 11 12 13 14

Number of Dimensions

Figure 8: HRU Vs. PGA: Execution Time Vs. Number of Dimensions

It can be noted from the graph that the execution time increases with the increase in the

number of dimensions. This graph establishes the claim in [NT02] that PGA has a better

execution time than HRU. The same trend can be observed in the graphs, shown in Figures 9-

12, plotted for Execution Time versus Iteration for the dimensions 8, 10, 12 and 14.

29

C1)

E
i=
c
0 ..
:::s
0
C1)
>< w

C1)

E
i=
c
0 ..
:::s
0
C1)

>< w

L

350

300

250

200

150

100

50
0

1 2

HRUVs.PGA
(8 Dimensions)

3 4 5 6

Iteration

I~ I ---- PGA

I
I

7 8

Figure 9: HRU Vs. PGA: Execution Time Vs. Iteration: 8 Dimensional Data

4000
3500
3000
2500
2000
1500
1000
500

0
1 2 3

HRU Vs. PGA
(10 Dimensions)

4 5 6 7

Iteration

-,
-HRU
-a-PGA

8 9 10

Figure 10: HRU Vs. PGA: Execution Time Vs. Iteration: 10 Dimensional Data

30

HRU Vs. PGA
{12 Dimensions)

1 2 3 4 5 6 7 8 9 10 11 12

Iteration

-HRU

-PGA

Figure 11: HRU Vs. PGA: Execution Time Vs. Iteration: 12 Dimensional Data

~0000
800000

600000

400000

200000

HRUVs.PGA
{14 Dimensions)

·----------------

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Iteration

Figure 12: HRU Vs. PGA: Execution Time Vs. Iteration: 14 Dimensional Data

31

Next, graph was plotted to observe benefit value of the views selected versus the nwnber of

dimensions. The benefit value corresponds to at most top d views selected for materialization

where dis nwnber of dimensions. The graph is shown in Figure 13.

HRU Vs. PGA

20000000

18000000

16000000

14000000
Ql
:::J 12000000 iij
> - 10000000
I;:
Ql

8000000 c
Ql
m 6000000

4000000

2000000

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Dimensions

Figure 13: HRU Vs. PGA: Benefit Value Vs. Number of Dimensions

~
~

The graph shows the anticipated results as stated in [NT02] that the benefit value of PGA is

lower than that ofHRU. This is because the PGA algorithm is based on a heuristic that trades

benefit value for an improvement in execution time.

To understand the difference in the benefit values, graphs were plotted for dimensions 8, 10,

12 and 14 against the iteration. The graphs are shown in Figures 14 - 1 7. These graphs also

show that HRU has a benefit higher than that of PGA.

32

Q)
::J
-;
> ...
It:
Q)
c
Q)

10

Q)
::J
iij
>
I;:
Q)
s::::
Q)

10

1000000

800000

600000

400000

200000

0
1 2

HRU Vs. PGA
{8 Dimensions)

3 4 5

Iteration

6 7 8

Figure 14: HRU Vs. PGA: Benefit Value Vs. Iteration: 8 Dimensional Data

3000000

2500000

2000000

1500000

1000000

500000

0
1 2

HRUVs. PGA
{1 0 Dimensions)

3 4 5 6 7

Iteration

8 9 10

F=HRUl
~

Figure IS: HRU Vs. PGA: Benefit Value Vs. Iteration: 10 Dimensional Data

33

Ql
::I
ii
> ...
;;:
Ql
c
Ql
al

...
~
c
Ql
al

8000000
7000000
6000000
5000000
4000000
3000000
2000000
1000000

0

HRUVs.PGA
(12 Dimensions)

1 2 3 4 5 6 7 8 9 10 11 12

Iteration

Figure 16: HRU Vs. PGA: Benefit Value Vs.lteration: 12 Dimensional Data

HRU Vs. PGA
(14 Dimensions)

20000000 -------- - ---- -------------------- --·--------

15000000

10000000

5000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Iteration

FHRUl
~

Figure 17: HRU Vs. PGA: Benefit Value Vs. Iteration: 14 Dimensional Data

34

2.2 Reduced Lattice Greedy Algorithm (RLGA)

The HRU algorithm exhibits high run time complexity and one reason for high run time

complexity may be due to frequent re-computation of benefit values while selecting views for

materialization. This high run time complexity can be improved upon by decreasing the

number of re-computations of the benefit value. RLGA is proposed in this dissertation that

attempts to reduce these re-computations by reducing the dependencies among the views.

RLGA is based on a reduced lattice framework where instead of considering the complete

lattice, as in HRU algorithm, a reduced lattice is arrived at from the set of dependencies

among the views. This reduced .lattice shows only those dependencies that can contribute to

selecting the beneficial views. A heuristic is coined to identify such dependencies. The

heuristic is defined as follows:

For each view, its dependency with its smallest sized parent is retained

The basis of this heuristic is that in HRU algorithm the view having the smallest size, among

all views at a level of the lattice, has the maximum benefit at that level with respect to all the

views on which it is dependent. This implies that picking the smallest sized view can

maximize the benefit with respect to views above it in a lattice. In other words, retaining

dependency of each view to its smallest sized parent view is most beneficial as the smallest

sized parent will in turn have maximum benefit with respect to the view above it. Thus these

smallest sized parent views have a high likelihood of being selected for materialization.

To understand the basis of the heuristic for the reduced lattice better, consider the lattice

shown in Figure 18 (a). Now as per the heuristic the dependent view V3 retains its direct

dependency only with its smallest parent view, i.e. the view V ~, resulting in the reduced lattice

shown in Figure 18 (b).

35

Figure 18 (a): Complete Lattice Figure 18 (b): Reduced Lattice

Again as per the heuristic, the view V 1, by virtue of being smaller in size, has a higher

likelihood of being materialized as compared, to the other view V2 from the same level of the

lattice. This assumption behind the heuristic is proven to be right, as the first view to be

selected for materialization from this lattice is indeed the view V 1, having the highest benefit.

As a result of this for the next iteration, its dependent view V 3 will consider this view V., as

its nearest materialized ancestor view. Thus, by adjusting dependencies as per the reduced

lattice heuristic the same decision can be made, in terms of selecting the most beneficial

views for materialization, without having to evaluate all the other dependencies from the

lattice, like the dependency between views V 3 and its other parent view V 2•

The reduced lattice comprises nodes, corresponding to views to be materialized, and edges,

expressing dependencies, from each node to its smallest sized parent node. The method to

arrive at reduced lattice from the set of dependencies among views is given in Figure 19,

followed by a worked out example based on it.

Input: Dependencies D among views V and size of the views
Output: Reduced Lattice L
Method:

L:= Nod~oOT corresponding to Root View
FOR (Every Dependency du from D between two views V~o V1 from V, such that V1-7 V1)

I. Get nodes Node1 and NodeJ corresponding to views V1 and V1

2. IF(SIZE(Node1) < SIZE(Node1.ParentNode) OR Node1.ParentNode =NULL)
a. Remove Edge between Node1 and Node1.ParentNode
b. Set Node1.ParentNode := Node1

c. Add Edge between Node1 and Node1 in case there is no path (set of edges) connecting Node1 to Node1

d. IF(Node1 is not the same as NodeRooT)'
Add Edge between Node1 and Nod~ooT in case there is no path (set of edges) connecting them

Return L

Figure 19: Method ConstructReducedLattice

36

Example 4: Arrive at a reduced lattice for the dependencies among views of Example 2.

The stepwise construction of the reduced lattice is given below

I Dependency Execution Steps Lattice

AB~ABC 1. Get nodes for views ABC and AB. SK

c:: NodeABC for view ABC exists.

? 0 NodeAB = Create new node for view AB ·~ .. 2 . NodeAB has so far not been assigned a ParentNode. So, u .:::: a. N.A .
ti b . Set NodeAB.ParentNode := NodeAsc

5

' ..
~ c. Add an edge between NodeAB and root node NodeAsc

d. N.A.

AC~ABC 1. Get nodes for views ABC and AC. SK
c::

NodeABc for view ABC exists. 0 ·.; NodeAc =Create new node for view AC ..
u 2 . NodeAc has so far not been assigned a ParentNode. So,

"'0 a. N.A. c::
b. Set NodeAc.ParentNode := NodeAsc 0

0
u c. Add an edge between NodeAc and root node NodeABc Vl

d. N.A.

BC~ABC 1. Get nodes for views ABC and BC. SK
c:: NodeAsc for view ABC exists. 0
·~ Nodesc = Create new node for view BC .. 2. Nodesc has so far not been assigned a ParentNode. So, ~
"'0 a. N.A.

~ b. Set Nodesc.ParentNode := Nod eAse
c. Add an edge between Node8c and root node Node ABc
d. N.A.

A~ABC 1. Get nodes for views ABC and A. 5K

c:: NodeAsc for view ABC exists.
0 Node A = Create new node for view A
-~

2 . NodeA has so far not been assigned a ParentNode. So, ...
u

N.A . .:::: a.
..r:: b . Set NodeA.ParentNode := NodeAsc t ::s c. Add an edge between NodeA and root node NodeABc 0
i-t... d. N.A.

A~AB 1. Get nodes for views AB and A. 5K

Both nodes, Node As for view AB and Node A for view A exist.
c:: 2. SIZE (NodeA.ParentNode, i.e. NodeAsc) > SIZE (NodeA8). So, 0
·~ a . Remove edge between NodeA and NodeABC· ..
2 b. Set NodeA.ParentNode := NodeAB

Add ecjge between NodeA and its parent node NodeAB· ..r:: c .
¢:: d. Edge (path) exists between nodes NodeAs and root
~

node NodeAsc so new edge does not have to be added
between them.

A~AC 1. Get nodes for views AB and A. 5K

1::
Both nodes, NodeAc for view AC and Node A for view A exist.

-~ 2. SIZE (NodeA.ParentNode, i.e. NodeAs) > SIZE (NodeAc). So,
~ a . Remove edge between NodeA and NodeAB· ...
0 b . Set NodeA.ParentNode := NodeAc .::::

..r:: c. Add edge between NodeA and its parent node NodeAc·
>< d. Edge (path) exists between nodes NodeAc and root ti)

node Nod eAse so new edge does not have to be added
between them.

37

I Dependency Execution Steps Lattice

B~ABC I. Get nodes for views ABC and B. SK

s:: NodeABC for view ABC exists.
0 Nodes = Create new node for view B
·~ ... 2 . Nodes has so far not been assigned a ParentNode. So,

Cl)

N.A. ~ a.

-= b. Set Nodes.ParentNode := NodeABc
s::

Add edge between Nodes and its parent node Cl) c. >
Cl) Node ABc· Cl)

d. N.A.

B~AB 1. Get nodes for views AB and B. SK

Both nodes, NodeAB for view AB and Nodes for view B exist.
s:: 2. SIZE (Nodes.ParentNode, i.e. NodeABC) > SIZE (NodeAB). So, 0
·~ a. Remove edge between Node8 and NodeABC· ...

Cl) b. Set Nodes.ParentNode := NodeAB
~

-=
c. Add edge between Nodes and its parent node

-th NodeAB.

m d. Edge (path) exists between nodes NodeAB and root
node NodeABC so new edge does not have to be
added between them.

B~BC 1. Get nodes for views BC and B. SK

Both nodes, Nodesc for view BC and Nodes for view B exist.
s:: 2. SIZE (Nodes.ParentNode, i.e. NodeAB) > SIZE (Nodeac). So, 0
·~ a. Remove edge between Node8 and NodeAB·
~ b. Set Nodes.ParentNode := Nodesc
~

Add edge between Nodes and its parent node ..c: c .
E Nod esc. z d. Edge (path) exists between nodes Node8 c and root

node Nod eAse so new edge does not have to be
added between them.

C~ABC 1. Get nodes for views ABC and C. SK

s:: Node ABC for view ABC exists.
0 Nodec = Create new node for view C
·~ 2 . Nodec has so far not been assigned a ParentNode. So, ...

Cl) a. N.A. ~

-= b. Set Nodec.ParentNode := NodeABc
s:: c. Add edge between Nodec and its parent node Cl)

E-< NodeABc·
d. N.A.

C~AC I. Get nodes for views AC and C. SK

s:: Both nodes, NodeAc for view AC and Nodec for view C exist.
0 2. SIZE (Nodec.ParentNode, i.e. NodeABc) >SIZE (NodeAc). So, -~ ... a . Remove edge betWeen Nodec and NodeABC· Cl)

~ b. Set Nodec.ParentNode := NodeAc

-= c. Add edge between Nodec and its parent node s::
Cl) NodeAc· >
Cl) d. Edge (path) exists between nodes NodeAc and root lil node NodeABC so new edge does not have to be

added between them.

C~BC I. Get nodes for views BC and C. SK

s:: Both nodes, Nodesc for view BC and Nodec for view C exist.
0
-~ 2. Since SIZE (Nodec.ParentNode, i.e. NodeAc) < SIZE ... (Node8 c), the steps 2a- 2c are not executed. Cl)

~
..c:
¢::

0
~

E-<

38

RLGA uses the reduced lattice to select the beneficial vtews greedily similar to HRU

algorithm. The RLGA algorithm is given in Figure 20.

Input: Dependencies D among Views V
Output: Top T views
Method:
Step 1: //Arrive at a reduced lattice L

L=ConstructReducedLattice(D)

Step 2: //Select Top T Views
1. Count :=0; MatViewList:=NULL;
II Select Views for Materialization
1. For every view N from the reduced lattice L, compute:

a. NoDependentsN := COUNT (Number of views appearing at a lower level in the lattice
and having ViewN as an ancestor)

b. BenefitValViewN := (SizeRoor- Siz~) * NoDependentsL
c. Prepare OrderedListBeneficialViewsL =

ORDER_D ESC (BenefitVa!ViewN * NoDependentsN)
2. WHILE (Count< T) DO

a. Select top view (VroP) from OrderedListBeneficia!Views and add Vrop to MatViewsList
b. II Update benefit value and no of dependents

1. For every view V1 from a higher level in the lattice than Vrop, s.t. VroP 7 V1

Adjust NoDependents1 := NoDepedents1 - NoDependentsroP
ii. For every view VM from a lower level in lattice than Vrop, s.t. VM 7 VroP

Adjust BenefitValViewM = (SizeroP- SizeM) * NoDependentsM
c. Remove VroP from OrderedListBeneficia!Views
d. Re-compute OrderedListBeneficia!Views values
e. Count++

3. Return MatViewList

Figure 20: Algorithm RLGA

RLGA takes a set of dependencies among views as input and gives the top T beneficial views

for materialization as output. The algorithm comprises two stages:

1. Arrive at a reduce lattice from the set of dependencies among views

2. Using the reduced lattice, select top T views greedily.

In the first stage the set of dependencies given as input are evaluated one by one, to arrive at a

reduced lattiCe. As discussed above only those dependencies are retained in the lattice that

contributes to selecting beneficial views.

39

Next top T beneficial views are selected greedily using the reduced lattice. The benefit value

of each view is computed similar to the way it is computed by the HRU algorithm i.e. by

taking the product of number of its dependents with the cost (size) difference from its nearest

materialized ancestor view. In the initial iteration, the benefit value for all views are computed

with respect to the root view, which is assumed materialized. The view having the highest

benefit value among them is then selected for materialization. The benefit values of all views

that were dependent on the view selected for materialization are accordingly recomputed.

However, unlike the HRU algorithm that operates over a complete lattice, the RLGA operates

over a reduced lattice thereby substantially reducing the number of nodes dependent upon the

view selected for materialization. This results in fewer nodes requiring re-computation of their

benefit values thereby leading to reduction in the number of re-computations.

Example 5: Select the top 4 beneficial views using HRU and RLGA for the dependencies

among views given in Example 2.

The complete lattice and the reduced lattice arrived at from the set of dependencies (given in

Example 2) among views is shown in Figure 21.

5K 5K

Figure 21: Complete and Reduced Lattices

40

The selection of top 4 views using HRU algorithm is shown in Figure 22.

View(V)

= .~
~
J...

AB

AC

BC

A

B

c
View(V)

sc·

B

c·

View (V)

A

a·

c

View(V)

~ AB
..=
t: A
= 0
~ c

Size of View
(Sizey)

5K

0.9K

3K

0.09K

lK

0.5K

Size of View
(Sizey)

5K

3K

0.09K

IK

0.5K

SizeofView
(Sizey)

5K

0.09K

IK

0.5K

Size of View
(Sizey)

5K

0.09K

0.5K

Size of Materialized
Ancestor Node (Siz~MAl

Size of Materialized
Ancestor Node (Siz~MA)

Size of Materialized
Ancestor Node (Siz~MA)

Size of Materialized
Ancestor Node (SizeNMA)

Number of
Dependents

Benefit
(Siz~MA- Sizey) x D

Number of

Number of
Dependents

Number of
Dependents

l
{C}

Benefit
(Siz~MA- Sizey) x D

Benefit
(Siz~MA- Sizey) x D

Benefit
(Siz~MA- Sizey) x D

(0.9-0.5) X l =

0.4

Fieure 22: Selection of top 4 views usin2 HRU

41

The selection of top 4 views using RLGA algorithm is shown in Figure 23.

View(V) Size of View Size of Materialized Number of Benefit
(Sizey) Ancestor Node (SizfNMA) (SizfNMA. Sizey) X D

AB 5K
= .2 AC 0.9K ...
Gil

"" ~ BC 3K

"' "" ~ A 0.09K

B lK

c 0.5K

View(V) SizeofView Size of Materialized Number of Benefit
(Sizey) Ancestor Node (SizfNMA) Dependents (SizfNMA. Sizey) X D

= Q AB 5K ':C
Gil

"" ~ BC 3K
"CC = A• 0.09K Q
u
~

00
B lK

c· 0.5K

View(V) Size of View Size of Materialized Number of Benefit
(Sizey) Ancestor Node (SizfNMA) Dependents (SizfNMA. Sizey) X D

=
.~ AB 5K = "" ~ ... - A 0.09K
"CC

""' ::; s· lK E-o

c 0.5K

View (V) SizeofView Size of Materialized Number of Benefit

= (Sizey) Ancestor Node (SizfNMAl Dependents (SizfNMA- Sizey) x D
.2 =
""' AB 5K ~ --= A 0.09K
""' = 0

""' 0.9K I (0.9-0.5) X J = c 0.5K {AC} {C} 0.4

Figure 23: Selection of top 4 views using RLGA

42

From the Figure 22, it can be seen that the top 4 beneficial views selected by the HRU

algorithm are AC, BC, B and A. RLGA also selects the same top 4 beneficial views, AC, BC,

B and A, for materialization as shown in Figure 23. The number of re-computations required

in each iteration for the HRU and the RLGA algorithm are shown in. Figure 24.

Iteration Number of Re-computations in HRU Number of Re-computations in RLGA

1 0 0
2 4 2

3 2 1

4 0 0

Total 6 3

Figure 24: Number of re-computations in HRU and RLGA

It can be noted that the RLGA requires fewer (3) re-computations as compared to algorithm

HRU (6). This difference is attributed to the fewer dependencies in the reduced lattice leading

to fewer nodes requiring re-computation. Although the top 4 views selected by both

algorithms are same, the re-computations required in case of RLGA is lesser than that of

HRU. Therefore, it can be said that the reduced lattice is able to provide the same result as the

complete lattice but with fewer re-computations. Further it needs to be shown that the

algorithm RLGA gives results that are nearly as good as HRU for all possible reduction of a

given lattice. This is illustrated with the help of an example given next.

Example 6: Consider a three-dimensional lattice, arrive at all possible reductions of this

lattice by varying the size of the views accordingly. Select the beneficial views for

materialization using HRU and RLGA.

The 24 possible reductions of a given three dimensional lattice and the beneficial views

selected by the two algorithms, HRU using complete lattice and RLGA using reduced lattice,

is given below:

43

20 20

View Benefit View Benefit

AB 27 AB 27
c 13 c 13
A 10 A 10

AC 5 AC 5
B 5 B 5

BC 2 BC 2

20 20

View Benefit View Benefit

AB 27 AB 27
c 13 c 13
A 10 A 10

BC 5 BC 5
B 5 B 5

AC 2 AC 2

20 20

View Benefit View Benefit

AC 27 AC 27
B 13 B 13
A 10 A 10

AB 5 AB 5
c 5 c 5

BC 2 BC 2

20 20

View Benefit View Benefit

AB 30 AB 20
BC 20 BC 20
AC 10 AC 20
A 9 A 9
B 4 B 4
c 3 c 3

44

20 20

View Benefit View Benefit

AB 30 AB 20
BC 20 BC 20
AC 10 AC 20
A 9 A 9
B 4 B 4
c 3 c 3

20 20

View Benefit View Benefit

BC 27 BC 27
A 19 A 19

AB 5 AB 5
B 5 B 5
c 4 c 4

AC 2 AC 2

20 20

View Benefit View Benefit

AC 27 AC 27
B 13 B 13
A 10 A 10

BC 5 BC 5
c 5 c 5

AB 2 AB 2

20 20

View Benefit View Benefit

BC 27 BC 27
A 19 A 19

AC 5 AC 5
B 5 B 5
c 4 c 4

AB 2 AB 2

45

20 20

View Benefit View Benefit

AB 27 AB 27
c 13 c 13
B 10 B 10

AC 5 AC 5
A 5 A 5

BC 2 BC 2

20 20

View Benefit View Benefit

AB 27 AB 27
c 13 c 13
B 10 B 10

BC 5 BC 5
A. 5 A 5

AC 2 AC 2

20 20

View Benefit View Benefit

AB 30 AB 20
BC 20 BC 20
AC 10 AC 20
B 9 B 9
A 4 A 4
c 3 c 3

20 20

View Benefit View Benefit

BC 27 BC 27
A 14 A 14
B 10 B 10

AB 5 AB 5
c 4 c 4

AC 2 AC 2

46

20 20

View Benefit View Benefit

AC 27 AC 27
B 19 B 19

AB 5 AB 5
A 5 A 5
c 4 c 4

BC 2 BC 2

20 20

View Benefit View Benefit

AB 30 AB 20
BC 20 BC 20
AC 10 AC 20
B 9 B 9
A 4 A 4

c 3 c 3

20 .20

View Benefit View Benefit

AC 27 AC 27
B 19 B 19

BC 5 BC 5
A 5 A 5
c 4 c 4

AB 2 AB 2

20 20

View Benefit
View Benefit

BC 27
A 14 BC 27

AB 10 A 14
AC 5 AB 10
c 4 AC 5

AB 2 c 4
AB 2

47

20 20

View Benefit View Benefit

AC 27 AC 27
B 14 B 14
c 10 c 10

AB 5 AB .5
A 4 A 4

BC 2 BC 2

20 20

View Benefit View Benefit

AC 27 AC 27
B 14 B 14
c 10 c 10

BC 5 BC 5
A 4 A 4

AB 2 AB 2

20 20

View Benefit View Benefit

AB 27 AB 27
c 19 c 19

AC 5 AC 5
B 5 B 5
A 4 A 4

BC 2 BC 2

20 20

View Benefit View Benefit

AB 30 AB 20
BC 20 BC 20
AC 10 AC 20
c 9 c 9
B 4 B 4
A 3 A 3

48

20 20

View Benefit View Benefit

AB 30 AB 20
BC 20 BC 20
AC 10 AC 20
c 9 c 9
B 4 B 4
A 3 A 3

20 20

View Benefit View Benefit

BC 27 BC 27
A 13 A 13
c 10 c 10

AC 5 AC 5
B 5 B 5

AB 2 AB 2

20 --- 20

View Benefit View Benefit

AB 27 AB 27
c 19 c 19

BC 5 BC 5
B 5 B 5
A 4 A 4

AC 2 AC 2

20 20

View Benefit View Benefit

BC 27 BC 27

A 13 A 13
c 10 c 10

AB 5 AB 5
B 5 B 5

AC 2 AC 2

49

It can be observed from the 24 possible cases of lattice reduction that the same views are

selected, in each case, by the two algorithms HRU, using complete lattice, and RLGA, using

reduced lattice. In the cases 4, 5, 11, 14, 20 and 21, the top three views AB, BC and AC have

the same benefit value in the first iteration and can be selected in any order by either of the

algorithms. Therefore, in these cases any possible order of selecting the top three views is

equally beneficial. Further in these six cases, the top views selected by HRU and RLGA are

similar, they only differ with respect to the benefit value, which does not impact the selection

of the beneficial views.

It can be said from above that in all the 24 cases, both algorithms select the top beneficial

views. In the six cases mentioned above, they may select views in slightly different order

since more than one view has the same benefit value. Whereas, in the other eighteen cases,

they select the beneficial views in the same order. Thus, it can be concluded that RLGA is

equally effective as HRU with respect to selecting the top beneficial views. The complexity

analysis of algorithm RLGA is given next.

2.2.1 Complexity Analysis- RLGA

As discussed above, the RLGA heuristic is based upon the reduced lattice. The reduced lattice

retains only the dependencies between a node and its smallest parent. As a result each node of

the reduced lattice, except the root node, only contains one edge to its immediate parent.

Thus, for a total of N nodes (views) in the reduced lattice, there are N-1 dependencies

between each node and its immediate smallest parent. Conversely, looking at the

dependencies from a parent to its child nodes, in the worst case, the maximum possible direct

dependents on a node of the reduced lattice is N/2-1, for a node at a level below the root node.

Similarly, in the worst case the maximum number of dependents of a node at two levels below

50

the root node, can have a maximum of N/4-1 dependents. This feature of the reduced lattice

can be clearly seen in the Figure 25 showing the reduced lattice for a data containing 4

dimensions.

Figure 25: Reduced Lattice

In the reduced lattice of Figure 25, view ABC at a level below the root node of the lattice, has

(D-1), i.e. 3 direct dependents. Similarly the view AB at two levels below the root node, has

(D-2), i.e. 2 direct dependents. In this way thus, the maximum number of dependents on a

node can be computed to be:

(N/2 -1) + (N/4 -1) + ... (N/N -1) = N -logzN

Further, in each of the iteration of the RLGA algorithm, a view is selected for materialization.

As a result of this selection, the benefit value for all dependent views needs to be recomputed.

Therefore, in the worst case, at the most the benefit value for (N - log2N) nodes would have

to be recomputed in a single iteration of the algorithm. Therefore, the complexity of the

RLGA algorithm for selecting top K views, by executing K iterations of the algorithm, can be

computed as O(K)* O(N - logzN) = O(KN).

In order to compare the performance of RLGA with respect to HRU, both the algorithms are

implemented and run on the data sets with varying dimensions. The performance based

comparisons of HRU and RLGA is given in section 2.2.2.

51

2.2.2 Comparisons (HRU Vs. RLGA)

The RLGA and HRU algorithms were compared by conducting experiments on an Intel based

2.3 GHz PC having 2 GB RAM. The two algorithms were compared on parameters like

number of re-computations and the execution.time. First the total number of re-computations

was captured against the number of dimensions. The graph is shown in Figure 26.

HRUVs. RLGA

600000
Ul
c
0 500000
~
CIS -:I
Q. 400000 E
0
t.)
Cl) 300000 0::
0 ...

200000 Cl)

J:l
E
:I z 100000

CQ -0 ... 0 •'
6 7 8 9 10 11 12 13 14

Number of Dimensions

Figure 26: HRU Vs. RLGA: Total Number of Re-computations Vs. Number of Dimensions

It can be note from the graph the number of re-computations required for RLGA is lower than

that for HRU. As the number of dimensions increase, this difference becomes significant.

This lower number of re-computations in the case of RLGA algorithm can be attributed to the

lower number of dependencies that exists within the reduced lattice. To better understand the

difference, the number of re-computations was plotted individually for the dimensions 8, 1 0,

12 and 14 against the iteration of the algorithms. These graphs are shown in Figures 27- 30.

52

Ill
c
0
~

.!9
::s
c.
E
0
u
Cll

0::: .,_
0 ...
Cll .c
E
::s
z

300

250

200

150

100

50

HRU Vs. RLGA
(8 Dimensions)

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Iteration

Figure 27: HRU Vs. RLGA: Number of Re-computations Vs. Iterations: 8 Dimensions

HRU Vs. RLGA
(1 0 Dimensions}

1200
Ill
c
0 1000 ~
Ill
::s 800 c.
E ~~~~~A) 0 600 u
Cll

0::: .,_ 400
0 ...
Cll 200 .c
E
::s
z 0

1 4 71013161922252831343740

Iteration

Figure 28: HRU Vs. RLGA: Number of Re-computations Vs.lterations: 10 Dimensions

53

HRUVs. RLGA
(12 Dimensions)

II) 4500
c 4000 0 .. 3500 C'G -5. 3000
g 2500 g ~ 2000
0::

GA

0 1500
... 1000
Q)
.c 500 E
:::J 0- ' z

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Iteration

Figure 29: HRU Vs. RLGA: Number of Re-computations Vs. Iterations: 12 Dimensions

Figure 30: HRU Vs. RLGA: Number of Re-computations Vs. Iterations: 14 Dimensions

54

In each of these graphs, it can be clearly seen that numbers of re-computations for RLGA is

far lower then that of HRU. These graphs comprehensively establish the first claim with

regard to reducing lattices that it would result in substantially lower number of re-

computations. Another observation that can be made from these graphs is that the number of

re-computations in HRU decreases in the latter iterations.

Next, graphs were plotted to establish the second claim with regard to RLGA i.e. with the

reduction in the number of dependencies, the execution time can be improved. The graph

showing the execution time against the number of dimensions is shown in Figure 31.

Q)

E
i=
c
0
;;

::::s
C)
Q)
)(
w

HRUVs. RLGA

3500000

3000000 -

2500000 ~

2000000-

1500000 -

1000000-'

500000-;

0-

6 7 8 9 10 11 12 13 14.

Number of Dimensions

Figure 31: HRU Vs. RLGA: Execution Time Vs. Number of Dimensions

FHRUl
~

It can be observed that the execution time for RLGA is lower than that of HRU. This can be

further explained by the Execution Time versus Iteration graphs for individual dimensions.

These graphs are shown in Figures 32- 35.

55

C1)

E
i=
c
0
~
::::J
0
C1)

>< w

C1)

E
i=
c
0
~
::::J
0
C1)

>< w

I
L

2500

2000

1500

1000

500

HRU Vs. RLGA
(8 Dimensions)

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Iteration

~ A

Figure 32: HRU Vs. RLGA: Execution Time Vs. Iteration: 8 Dimensions

HRU Vs. RLGA
(10 Dimensions)

16000
14000
12000
10000 -HRU
8000 -+-RLGA I
6000
4000
2000

o-,,.,.,
'• I I I •'

1 4 7 1013161922252831343740

Iteration

Figure 33: HRU Vs. RLGA: Execution Time Vs. Iteration: 10 Dimensions

56

HRUVs. RLGA
(12 Dimensions)

250000
Cl)

E 200000
j:: -HRU c 150000
0 ---RLGA .. ::s 100000
0
Cl)

50000 >< w

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Iteration

Figure 34: HRU Vs. RLGA: Execution Time Vs. Iteration: 12 Dimensions

HRU Vs. RLGA
(14 Dimensions)

3500000
Cl) 3000000
E
j:: 2500000

~ c 2000000
0 .. A
::s 1500000
0 1000000 Cl)

>< w 500000
0 - I I I I I I (I I I I; I I I

1 4 7 1 0 13 16 19 22 25 28 31 34 37 40

Iteration

Figure 35: HRU Vs. RLGA: Execution Time Vs. Iteration: 14 Dimensions

57

2.3 Reduced Candidate Greedy Algorithm (RCGA)

The HRU algorithm discussed above has an exponential runtime complexity primarily

because in each of the iteration of execution of the algorithm, benefit values of nearly all

views of the lattice have to be evaluated. This exponentially high runtime complexity makes

the HRU algorithm infeasible for high dimensional data sets as the execution time of the HRU

algorithm becomes phenomenally high. An attempt is made to utilize the heuristic, used in

RLGA, to improve on the scalability aspect of the view selection problem. For this, a

Reduced Candidate Greedy Algorithm (RCGA) is proposed. The algorithm RCGA comprises

of two stages namely candidate views recommendation and materialized view selection.

In the candidate views recommendation phase, candidate views are recommended for

selection based on the same lines as the heuristic used for lattice reduction in section 2.2. The

heuristic is defined as follows:

For each view, the smallest sized parent is retained for view selection

The basis of this heuristic is that in HRU algorithm, the view having the smallest size, among

all views at a level of the lattice, has the maximum benefit at that level with respect to all the

views on which it is dependent. This implies that picking the smallest sized view can

maximize the benefit with respect to views above it in a lattice. In other words, retaining the

smallest sized parent view is most beneficial, as the smallest sized parent will in tum have the

maximum benefit with respect to the view above it. Thus these smallest sized beneficial

parent views have a high likelihood of being selected for materialization and are therefore

added to the candidate set in the recommendation stage of the algorithm.

The recommendation starts at bottom of the lattice. In the first iteration, as per the heuristic

the smallest sized parent view from the bottom of the lattice, which has not yet been

58

recommended, is added to the candidate set. Next, its smallest sized parent view which has

not yet been recommended is added to the candidate set. This process of adding views to the

candidate set continues till the root view is reached. These views in the candidate set are then

recommended for the selection phase of the algorithm.

In the selection phase, the benefit value of the recommended views is computed using the

benefit function of [HRU96] given below:

where,

Benefit= (Sizem1A- Sizev) x Dv

Siz~MA = Size of the nearest materialized ancestor node of V

Sizev - Size of the view V

D =Number of dependents ofV

The view, among the recommended v1ews, having the highest benefit is selected for

materialization.

The next iteration again starts from the bottom of the lattice by adding the smallest sized

parent view, which has not yet been recommended, to the new candidate set. The smallest size

parent view's addition to the candidate set is done as in the first iteration till the root node is

reached. The most beneficial view from the set of recommended views in the candidate set is

then selected for materialization.

The iterations continue as above till the top T views are selected for materialization. The

algorithm RCGA is given in Figure 36. An example worked out using this algorithm is given

next after Figure 36.

59

Input: Dependencies D among Views V
Output: Top T views
Method:

1. II Construct Lattice of Views using Dependencies D among them
L=ConstructLattice(D)
Count :=0; MatViewsList:=NULL;

1. WHILE (Count < T} DO
a. II Candidate Views Recommendation

R:= Nod~oNE; W:={} II Set of candidate views
b. WHILE (More nodes to consider at a level above R)

1. FOR (Each Node from one level above R that has not yet been recommended)
Identify smallest node rsMALLEST

ii. W:= W U { rsMALLEST }
m. R:= rsMALLEST

c. II Selection of Views
For every view N, from set of candidate views W, compute the following using L:

i. NoDependentsN := COUNT (Number of views appearing at a lower level in
the lattice and having ViewN as an ancestor)

ii. BenefitValViewN := (SizeRooT- Siz~) * NoDependentsN
iii. CommonViewNM : = Identify the direct depedent views common with every

other view M, from the same level in the lattice as N
tv. Prepare OrderedListBeneficialViewsN =

ORDER_DESC (BenefitValViewN * NoDependntsN)
d. Select top view (VTOr) from OrderedListBeneficialViews and add VTOP to

MatViewsList
e. II Update benefit value and no of dependents

1. For every view V K from the same level in the lattice as VTop,
Having a common node V coMMON := Common ViewKTOP
Adjust NoDependentsK := NoDependentsK - NoDependentScoMMON

n. For every view V1 from a higher level in the lattice than VTOP• s.t. VTOP -7 V1
Adjust NoDependents1 := NoDepenendents1 - NoDependentsTOP

iii. For every view VM from a lower level in lattice than Vwp, s.t. VM -7 Vwp
Adjust BenefitValViewM = Sizewp- SizeM

iv. Remove VTOP from OrderedListBeneficialViews
v. Count++

2. Return MatViewList

Figure 36: Algorithm RCGA

Example 7: Consider the dependencies among views of Example 2 and the corresponding

lattice in Example 3. Arrive at the top 3 materialized views using algorithm RCGA.

The iteration wise recommendation and selection of views using RCGA is given in Figure 37.

The top 3 views selected by RCGA algorithms are AC, BC and B. These are the same views

as selected by HRU over the same lattice. A more detailed comparison of the algorithm

RCGA against HRU is given in section 2.3.2.

60

Views Size of Size of the Nearest
Number of Dependents (D)

~enefit=

Recommended the View Materialized Ancestor Node (SizllMAN" Sizev) x D

= (V) (Sizev) (S~M~
0

(5-0.09) • I = ·.;::
«! A 0.09
~ 4.91

'S
AC 0.9 ti:

ABC 5
5K

{ABC}

Views Size of Size of the Nearest
Number of Dependents (D)

Benefit=
= Recommended the View Materialized Ancestor Node (S~ Sizev > x D .2
1;j (V) (Sizev) (Siz~
~

0.9K (0.9- 0.5) • l = "0 c 0.5 = {AC} 0.4 ~
tiJ SK

BC 3
{ABC}

Views Size of Size of the Nearest
c Recommended the View Materialized Ancestor Node 0

"!
£ 3K l
"E B

{BC} {B}
~ SK 2 AB 5

} {AB, 8}

Figure 37: Selecting views for materialization using algorithm RCGA

The complexity analysis of algorithm RCGA is given next.

2.3.1 Complexity Analysis - RCGA

The RCGA algorithm initially recommends D views, for D dimensions of the data set. The

recommendation of D views starts from the bottom of the lattice. Consider the lattice in

Figure 38. First, the smallest parent view of the bottom most view of the lattice is

recommended. In other words, a view from Level-l of the lattice is recommended. It can seen

from the Figure 38, that there are D views, V1, V2, •. ,V0 at Level-l of the lattice. Identifying

the smallest view, V s, out of these D views can be performed by one pass over the D views,

making it an O(D) operation. Next, the smallest parent view ofthe view Vs is identified from

the Level-2, two levels above the bottom most node, of the lattice.

61

Level D-1: I Parent •••••••••••••

Leve12: (0-2) Parents

Level I: (0.1) Parents

Level 0: D Parents

Figure 38: Number of parents at each level of aD-Dimensional Lattice

It can again be seen from the lattice in Figure 38, that a view from the Level-l can form (D-1)

aggregations with other (D-1) dimension of data at Level-l. Therefore, a view present at

Level-l of the lattice contains at most (D-1) parents. Identifying the smallest view from the

(D-1) parent views of view V s is an O(D-1) operation. Continuing this way, the smallest

parent views from each of the level up to the root node of the lattice are recommended. The

total numbers of such parent views that need to be evaluated are:

D + (D-1) + (D-2)+ ... +1 = D(D+l)/2

Therefore, the time complexity of the recommendation stage is O(D2
).

From the D recommended views, the most beneficial view is selected for materialization.

Identifying the most beneficial view requires one pass over each of the D recommended

views, making it a O(D) time complexity operation.

So, the overall time complexity of an iteration of the RCGA algorithm is O(D2
) + O(D), i.e.

O(D2
). For selecting K top views, therefore the overall time complexity works out to be

O(KD2
).

The performance comparison of RCGA with HRU and RCGA with PGA is given in the

following two sub sections 2.3.2 and 2.3.3 respectively.

62

2.3.2 Comparisons (HRU Vs. RCGA)

The HRU and RCGA algorithms were compared by conducting experiments on a,n Intel based

2.3 GHz PC having 2 GB RAM. The two algorithms were compared on parameters like the

execution time and the benefit value.

First, the two algorithms were compared on execution time versus the number of

dimensions. The corresponding graph is shown in Figure 39.

HRUVs.RCGA

1000000

900000

800000
Cl) 700000
E
i= 600000
s::

500000 0
;:
:::s 400000 (.)
Cl)

>< 300000 w

200000

100000

0
6 7 8 9 10 11 12 13 14

Number of Dimensions

Figure 39: HRU Vs. RCGA: Execution Time Vs. Number of Dimensions

The graph shows that the algorithm RCGA lias a much improved execution time as compared

to HRU. This substantiates the claim that the heuristic used in RCGA will result in a much

improved execution time. Graphs were also plotted for the Execution Time versus the

Iteration for the dimensions 8, 10, 12 and 14. These graphs, shown in Figures 40- 43, also

show that RCGA has a much better execution time than HRU.

63

350
CD 300 E
i= 250
r::: 200
0

;:::
:::l 150
0 100 CD
>< 50 w

0
1 2 3

HRUVs. RCGA
(8 Dimensions)

4 5 6

Iteration

~ A

7 8

Figure 40: HRU Vs. RCGA: Execution Time Vs. Iteration: 8 Dimensions

CD
E

3000

2500

i= 2000
r:::
0 1500 ;:::

B 10oo
CD
><

lw
500

I 1

HRU Vs. RCGA
(10 Dimensions)

2 3 4 5 6 7 8 9 10

l _____ ~ Iteration

FHRul
~

Figure 41: HRU Vs. RCGA: Execution Time Vs. Iteration: 10 Dimensions

64

Q)

E
i=
c
0
~ ::s
(.)
Q)

>< w

Q)

HRUVs. RCGA
(12 Dimensions)

50000

40000

~ 30000
A

20000

10000

0
1 2 3 4 5 6 7 8 9 10 11 12

Iteration

Figure 42: HRU Vs. RCGA: Execution Time Vs. Iteration: 12 Dimensions

HRU Vs. RCGA
(14 Dimensions)

1 000000 ---------·-----------------·-----~

E 8ooooo

r:::
0 ..
::s
(.)
Q)

>< w

600000

400000

200000

1 2 3 4 5 6 7 8 9 1011121314

FHRul
~

Iteration I
'-------------______j

Figure 43: HRU Vs. RCGA: Execution Time Vs. Iteration: 14 Dimensions

65

Next, the two algorithms HRU and RCGA were compared on the benefit of the views selected

with respect to dimensions. The benefit value versus the number of dimensions graph is

shown in Figure 44.

20000000

18000000

16000000

Cl)
14000000

::::J
12000000 "iij

-> .. 10000000 I+=
Cl)
r:: 8000000 Cl)

a:l
6000000

4000000

2000000

0

HRUVs. RCGA

2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Dimensions

Figure 44: HRU Vs. RCGA: Benefit Value Vs. Number of Dimensions

J-=HRul
~

The graph shows that the benefit value of RCGA is lower than that of HRU. This is due to

heuristic followed in RCGA that trades benefit value for an improvement in scalability with

respect to the dimensions.

Further, in order to observe how the benefit value change with respect to iteration for the two

algorithms, graphs were plotted for dimension 8, 10, 12 and 14 as shown in Figures 45-48.

The graphs show that the top views selected by the two algorithms have nearly similar benefit

values, with HRU holding a slight edge over RCGA.

66

Q)
;:,
iii
> -~
Q)
c
Q)

Ill

Q)
;:,
iii
> ...
~
Q)
c
Q)

Ill

1000000

800000

600000

400000

200000

0
1 2

HRUVs.RCGA
(8 Dimensions)

3 4 5 6

Iteration

7 8

FHRUl
~

Figure 45: HRU Vs. RCGA: Benefit Value Vs. Iteration: 8 Dimensions

3000000

2500000

2000000

1500000

1000000

500000

0
1 2 3

HRUVs. RCGA
(10 Dimensions)

4 5 6 7

Iteration

8 9 10

FHRUl
~

Figure 46: HRU Vs. RCGA: Benefit Value Vs.lteration: 10 Dimensions

67

CD
::I
c;
> -It=
CD c:
CD

Ol

CD
::I
Ia
> -It=
Cl)
c
Cl)

al

8000000
7000000
6000000
5000000
4000000
3000000
2000000
1000000

0

HRUVs.RCGA
(12 Dimensions)

1 2 3 4 5 6 7 8 9 10 11 12

Iteration

Figure 47: HRU Vs. RCGA: Benefit Value Vs. Iteration: 12 Dimensions

HRU Vs. RCGA:
(14 Dimensions)

20000000 .----·--·-···---····-····--···--·-··--····--·····-··-··-------·-··········-·····-····--·--············--·-·----.
18000000
16000000
14000000
12000000
10000000
8000000
6000000
4000000
2000000

0 +-~~o--r-r-r-r-r-.-,-.~--~

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Iteration

I
- HRU I

----RCGA

Figure 48: HRU Vs. RCGA: Benefit Value Vs. Iteration: 14 Dimensions

68

2.3.3 Comparisons (PGA Vs. RCGA)

RCGA was also compared with the algorithm PGA by conducting experiments on an Intel

based 2.3 GHz PC having 2 GB RAM. The two algorithms were compared on parameters like

the execution time and the benefit value.

The two algorithms were compared on the execution time versus the number of dimensions.

The corresponding graph is shown in Figure 49.

PGAVs. RCGA

800000

700000

600000
Cl)

E 500000 i=
c:

400000 0
;
:J
0 300000 Cl)

>< w
200000

100000

0
6 7 8 9 10 11 12 13 14

Number of Dimensions

Figure 49: PGA Vs. RCGA: Execution Time Vs. Number of Dimensions

It can be seen from the graph that both the algorithms have nearly identical execution time, as

depicted by the overlapping curves of RCGA and PGA.

Next, the execution time versus iteration graphs for the dimensions 8, 10, 12 and 14 were

plotted for the two algorithms. These graphs, shown in Figures 50 - 53, also depict the same

overlapping trends in their corresponding curves.

69

CD
E
j::
c
0
;:;

:::s
0
CD
>< w

CD
E
j::
c
0
;:;

:::s
0
CD
>< w

300

250

200

150

100

50

0
1 2 3

PGAVs. RCGA
(8 Qimensions)

4 5 6

Iteration

-HRU
-+-RCGA

7 8

Figure 50: PGA Vs. RCGA: Execution Time Vs. Iteration: 8 Dimensions

2500

2000

1500

1000

500

0

1 2 3

PGAVs. RCGA
(10 Dimensions)

4 5 6 7 8

Iteration

-HRU
-+-RCGA

9 10

Figure 51: PGA Vs. RCGA: Execution Time Vs. Iteration: 10 Dimensions

70

Q)

E
i=
c:
0 ...
::l
0
Q)

><
jw

PGAVs. RCGA
(12 Dimensions)

50000 ,.-----------------.

40000

30000

20000

10000

0+----r---r-r--r----r---r--,r---,-----r----r--,c----1

1 2 3 4 5 6 7 8 9 10 11 12

Iteration

---PGA
-+-RCGA

Figure 52: PGA Vs. RCGA: Execution Time Vs. Iteration: 12 Dimensions

800000
700000
600000
500000
400000
300000
200000
100000

0
1 2 3 4

PGAVs. RCGA
(14 Dimensions)

5 6 7 8 9 1011121314

Iteration

---PGA. :I

-+-RCGA\1

I

Figure 53: PGA Vs. RCGA: Execution Time Vs. Iteration: 14 Dimensions

71

In order to compare the bel!efit values of view selected by the two algorithms RCGA and

PGA, a graph was plotted between benefit value and the number of dimensions. The graph is

shown in Figure 54.

PGAVs. RCGA

16000000

14000000

12000000
G)
:J 10000000 iii
> - 8000000 r;::
G)
s::
G) 6000000

£Q

4000000

2000000

0
2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Dimensions

Figure 54: PGA Vs. RCGA: Benefit Value Vs. Number of Dimensions

r===PGAl
~

As per the graph, there is very little difference between the benefit values of the view selected

by the two algorithms for lower dimensions. However, for higher dimensions the algorithm

RCGA holds a slight advantage over the algorithm PGA. In order to understand this

difference better, the benefit values versus iteration graph were plotted for the dimensions 8,

10, 12 and 14 for the two algorithms. These graphs are shown in Figures 55-58.

The graphs show that for initial iterations both algorithms have a similar benefit value.

However, in the later iterations, the RCGA shows a slightly higher benefit value as compared

to PGA.

72

Cll
:I
iU
> ..
I;:
Cll c
Cll
ID

Cll
:I
iU
>
I;:
<ll c
Cll
ID

900000

800000

700000

600000

500000

400000

300000

200000

100000

0
2

PGAVs. RCGA
(8 Dimensions)

3 4 5 6

Iteration

7 8

1-PGAl
~

Figure 55: PGA Vs. RCGA: Benefit Value Vs. Iteration: 8 Dimensions

2500000

2000000

1500000

1000000

500000

0

PGAVs. RCGA
(10 Dimensions)

2 3 4 5 6 7 8 9 10

Iteration

Figure 56: PGA Vs. RCGA: Benefit Value Vs. Iteration: 10 Dimensions

73

Gl
:::1
ii
> ..
I;:
Gl
s::
Gl
Ill

Gl
:::1
ii
> ..
1;:::
Q)
s::
Q)

Ill

6000000

5000000

4000000

3000000

2000000

1000000

0

PGAVs. RCGA
(12 Dimensions)

2 3 4 5 6 7 8 9 10 11 12

Iteration

r==PGAl
~

Figure 57: PGA Vs. RCGA: Benefit Value Vs. Iteration: 12 Dimensions

16000000

14000000

12000000

10000000

8000000

6000000

4000000

2000000

0

PGAVs.RCGA
(14 Dimensions)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Iteration

~---__j

Figure 58: PGA Vs. RCGA: Benefit Value Vs. Iteration: 14 Dimensions

74

CHAPTER3

CONCLUSIONS

This dissertation work has focused on the view selection issue of view materialization. A

literature survey on algorithms for view selection has been carried out with special emphasis

on greedy based algorithms. Some issues related to most fundamental greedy based algorithm

HRU have been identified and addressed by the proposed algorithms RLGA and RCGA. The

following have been accomplished as part of the work:

• The existing HRU and PGA algorithms have been discussed and compared on

performance. The comparison shows that PGA is more scalable with respect to

dimensions, as compared to HRU. However, the views selected for materialization

using PGA may not be as beneficial as those selected by HRU.

• One reason for the high run time complexity of HRU algorithm has been found to be

the frequent re-computations of benefit values after every selection of view for

materialization. An algorithm RLGA has been proposed that addresses this issue by

reducing the number of re-computations with every selection of beneficial view. The

algorithm RLGA uses a heuristic based criteria to reduce the number of dependencies

75

among views. This results in a reduced lattice, with respect to the dependencies, from

which beneficial views are selected greedily. The proposed algorithm RLGA has been .

compared with algorithm HRU on the parameters like the number of re-computations

and the execution time. The results show that the algorithm RLGA requires a lower

number of re-computations as compared to algorithm HRU, resulting in an improved

execution time.

Another issue with alg<?rithm HRU is that the number of possible views is exponential

with respect to the number of dimensions, making it infeasible for high dimensional

data sets as its execution time becomes phenomenally high. An algorithm RCGA, on

the lines of existing algorithm PGA, has been proposed that improves the scalability

with respect to number of dimensions. The algorithm RCGA recommends views,

using the heuristic used in RLGA, followed by greedily selecting the most beneficial

view out of the recommended views. The performance of algorithm RCGA has been

compared with algorithms HRU and PGA on parameters like the execution time and

the benefit value. The results show that the algorithm RCGA is more scalable as

compared to the algorithm HRU with a much improved execution time. However, the .

benefit value of views selected by RCGA is found to be slightly lower than those

selected by HRU. Further, the comparison with algorithm PGA shows that both·

algorithms have similar execution time with respect to number of dimensions. Though

algorithm RCGA has a slight edge in terms of benefit value for higher dimensional

data sets.

76

REFERENCES

[ACNOO] Agrawal,S., Chaudhuri, S. and Narasayya, V.: Automated Selection of Materialized

Views and Indexes for SQL Databases, 26th VLDB Conference, Cairo, Egypt; 2000

[AD98] Abiteboul, S. And Duschka, O.M.: Complexity of Answering Queries Using

Materialized Views, ACM PODS, Seattle, WA, USA; 1998

[BB97] Brassard, G. and Bratley, P.: Fundamentals of Algorithms, Prentice Hall of India;

1997

[BLT86] Blakeley, J. A., Larson, P. and Tompa, F.W.: Efficiently Updating Materialized

Views, ACM SIGMOD Management of Data, pp. 61-71, Washington DC; May 1986

[BPT97] Baralis, E., Paraboshi, S. and Teniente, E.: Materialized view selection in a

multidimensional database. 23rd VLDB Conference, pp. 156-165, 1997

[CDOl] Ciferri, C.D de A and deSouza, F. da F.: Materialized Views in Data Warehousing

Environments, IEEE International Conference of the Chilean Computer Science Society

(SCCC'01), p. 0003; 2001

77

[CFP99] Ceri, S., Fratemali, P. and Paraboschi, S.: Data-Driven One-to-One Web Site

Generation for Data-Intensive Applications, 25th VLDB Conference, Scotland; 1999

[CHSOl] Chirkova, R., Halevy, A. Y., and Suciu,D.: A formal perspective on the view

selection problem, 27 VLDB Conference, Italy; 2001

[CLFOl) Chan, G.K. Y. and Li, Q. and Feng, L.: Optimized Design of Materialized Views in a

Real-Life Data Warehousing Environment, International Journal of Information Technology,

7 (1). pp. 30-54; 2001

[CP03] Carrano, F.M. and Prichard, J.J.: Data Abstraction and Problem Solving with Java,·

Walls and Mirrors, Addison Wesley; 2003

[EM07] Encinas, M.T.S. and Montano, J.A.H.: Alorithms for selection of materialized views:

based on a cost model, Eighth Mexican International Conference on Current Trends in

Computer Science, IEEE; 2007

[G97) Gupta, H.: Selection of Views to Materialize in a Data Warehouse, ICDT '97, Delphi,

Greece, Springer, pp. 98-112; January 1997

[GHRU97] Gupta, H., Harinarayan, V., Rajaraman, A., and Ullman, J.D.: Index Selection for

OLAP, 13th ICDE Conference, pp. 208-219; April1997

[GM99] Gupta, H. and Mumick, I. S.: Selection of Views to Materialize Under a

Maintenance Cost Constraint, 7th Intl. Conf. on Database Theory, pp. 453-470; 1999

[GMOS] Gupta, H. and Mumick, I. S.: Selection of Views to Materialize in a Data

Warehouse, IEEE; 2005

[GYCL03] Gou, G., Yu, J.X., Choi, C.H. and Lu, H: An Efficient and Interactive A*

Algorithm with Pruning Power- Materialized View Selection Revisited, Eighth International

DASFAA'03 Conference; 2003

78

[H87) Hanson, E.R.: A Performance Analysis of View Materialization Strategies, ACM

SIGMOD Management ofData, pp. 440-453; May 1987

[HCLK99) Homg, J.T., Chang, Y.J., Liu, B.J. and K.ao, C.Y.: Materialized View Selection

Using Genetic Algorithms in a Data Warehouse System, IEEE CEC; July 1999

[HCL03) Homg, J.T., Chang, Y.J. and Liu, B.J.: Applying Evolutionary Algorithms o

Materialized View Selection in a Data Warehouse, Springer-Verlag Soft Computing; 2003

[HLJ06) Habich, D., Lehner, W. and Just, M.: Materialized Views in the Presence of

Reporting Functions, 18th SSDBMB'06 Conference; 2003

[HRU96) Harinarayan, V., Rajaraman, A. and Ullman, J: "Implementing Data Cubes

Efficiently," Proc. ACM SIGMOD Int'l Conf. Management of Data, 1996

[100) Indulska, M., Shared Result Identification for Materialized View Selection, 11th

Australasian Database Conference, ADC; 2000

[103) Inmon, W.H,: Building the Data Warehouse, Third Edition, Wiley Dreamtech; 2003

(KROl) Kotidis, Y. and Roussopoulos, N.: A Case of Dynamic View Management, ACM

Transactions on Database Systems, pp. 388-423; 2001

[KSCP04) Karenos, K., Samaras, G., Chrysanthis, P. K. and Pitoura, E.: Mobile Agent-Based

Services for View Materialization, ACM SIGMOBILE Mobile Computing and .

Communications Review, Volume 8, Number 3; 2004

[L06] Lawrence, M.: Multiobjective Genetic Algorithms for Materialized View Selection in

OLAP Data Warehouses, ACM GECC0'06, US; July 2006

[L07] Luo, G.: Partial Materialized Views, Int. Conf. on Data Engineering (ICDE'07),

Istanbul, Turkey; Apr. 2007

79

[LB06] Loureiro, J and Belo, 0.: An Evolutionary Approach to the Selection and Allocation

of Distributed Cubes, IEEE IDEAS'06; 2006

[LR99] Labrinidis, A. and Roussopoulos, N.: On the Materialization of Web Views, ACM

SIGMOD Workshop on the Web and Databases (WebDB'99), Philadelphia, USA; June 1999

[LROO] Labrinidis, A. and Roussopoulos, N.: Web View Materialization, ACM SIGMOI?

Conference, Dallas, Texas, USA; May 2000

[LROla] Labrinidis, A. and Roussopoulos, N.: Adaptive Web View Materialization ACM

SIGMOD Workshop on the Web and Databases (WebDB'2001), California, USA; June 2001

[LROlb] Labrinidis, A. and Roussopoulos, N.: Update Propagation Strategies for Improving

the Quality of Data on the Web, 27th VLDB Conference, Rome, Italy; September 2001

[LR02] Labrinidis, A. and Roussopoulos, N.: Online View Selection for the Web, University

of Maryland, Computer Science Department, Technical Report, CS-TR-4343; 2002

[LR04] Labrinidis, A. and Roussopoulos, N.: Exploring the tradeoff between performance

and data freshness in database-driven Web servers, VLDB Journal; Aug 2004

[LWL06] Li, J., Wang, Y. and Liu, R.: Selection of Materialized View Based on Information

Weight and Using Huffman-Tree on Spatial Data Warehouse, IEEE ICICIC, pp. 71-74; 2006

[LYSW07] Lin, Z., Yang, D., Song, G. and Wang, T.: User-oriented Materialized View

Selection, 7th IEEE International Conference on Computer and Information Technology; 2007

[MMM02] Meccan, G., Mendelzon, A.O. and Merialdo, P.: Efficient Queries over Web

Views, IEEE Transactions on Knowledge and Data Engineering, vol. 14, no.6; Nov/ Dec

2002

80

[MSRK99) Mohania, M., Samtani, S., Roddick, J, and Kambayshi, Y.: A4vances and

Research Directions in Data Warehousing Technology, Australian Journal of Information

Systems, Vol 7, No 1; 1999

[NT02) Nadeua, T.P., Teorey, T.J.: Achieving Scalability in OLAP Materialized View

Selection, DOLAP '02, pp. 28-34, ACM; 2002

[R97) Roussopoulos, N.: Materialized Views and Data Warehouse, 4th Workshop KRDB-97,

Athens, Greece; August 1997

[RK86) Roussopoulos, N and K.ang, H.: Principles and Techniques in the Design of

ADMS+/-, COMPUTER; December 1986

[RSS96] Ross, K. A., Srivastava, D. and Sudarshan, S.: Materialized View Maintenance and

Integrity Constraint Checking: Trading Space for Time, ACM SIGMOD International

Conference on Management of Data, pp. 447-458, Montreal; June 1996

[SF89) Segev, A. And Park, J.: Updating Distributed Materialized Views, IEEE Transactions

on Knowledge and Data Engineering; June 1989

[SF90] Segev, A. and Fang, W.: Currency-Based Updated to Distributed Materialized Views,

IEEE; 1990

[SKRPOl) Schrefl, M.; Kapsammer, E.; Retschitzegger, W.; Proll, B.: Self-Maintaining Web

Pages- An Overview, 12th Australasian Database Conference (ADC); 2001

[SP89a) Segev, A. and Park, J.: Maintaining Materialized Views in Distributed Databases,

IEEE; 1898

[SP89b] Segev, A. and Park, J.: Updating Distributed Materialized Views, IEEE Transaction

on Knowledge and Data Engineering, vol. 1, no.2, pp. 173 -184; June 1989

81

[S~06] Shah, B., Ramachandaran, K and Raghavan, V.: A Hybrid Approach for Data

Warehouse View Selection, Inti. Journal of Data Warehousing and Mining; 2006

[SSA07] Saidi, S., Slimani, Y. and Arour, K.: Web View Selection from User Access Patterns,

PIKM'07, Lisboa, Portugal; November 2007

[TU] Teschke, M. and Ulbrich, A.: Using Materialized Views to Speed Up Data Warehousing

[TBOO] Theodoratos, D., Bouzeghoub, M.: A General Framework for the View Selection

Problem for Data Warehouse Design and Evolution, 3rd ACM Inti. Workshop on Data

Warehousing and On-Lin~ Analytical Processing (DOLAP'OO), Washington, DC., U.S.A.,

ACM Press, pp. 1-8; Nov. 2000

[URT99] Uchiyama, H., Runapongsa, K. and Teorey, T.J.: A Progressive View

Materialization Algorithm, ACM DOLAP, Kansas city, USA; 1999

[VGP07] Velinov, G., Gligoroski, D. and Popovska, M.K.: Hybrid Greedy and Genetic

Algorithms for Optimization of Relational Data Warehouses, 25th lASTED International

Multi-Conference, AI and Applications, Austria; Feb. 2007

[VVK02] Valluri, .R., Vadapalli, S. and Karlapalem, K.: View Relevance Driven

Materialized View Selection in Data Warehousing Environment, 13th Autralasian Database

Conference (ADC2002), Melbourne, Autralia; 2002

[WW99] Weber, J.L. and Wutka, M.: Using Java 2 Platform; Que Corp.; 1999

[YKL97] Yang, J., Karlapalem, K. and Li, Q.: Algorithms for Materialized View Design in

Data Warehousing Environment, 23rd VLDB, pp. 136-145; 1997

[YYL07] Yin, G., Yu, X and Lin, L.: Strategy of Selecting Materialized Views Based on

Cache-updating,: IEEE International Conference on Integration Technology, ICIT '07; 2007

82

[YAEOS) Yousri, N.A.R., Ahmed, K.M. and El-Makky, N.M.: Algorithms for Selecting

Materialized Views.in a Data Warehouse, IEEE 2005 International Conference on Computer

Systems and Applications; 2005

(YFIVOO] Yagoub, K., Florescu, D., Issamy, V. and Valduriez, P.: Caching Strategies for

Data-Intensive Web Sites, 26th VLDB Conference, Cairo, Egypt; 2000

[ZLGD07) Zhou, J., Larson, P., Goldstein, J. and Ding, L.: Dynamic Materialized Views,

IEEE 23rd International Conference on Data Engineering, ICDE; 2007

[ZLE07] Zhou, J., Larson, P. and Elmongui, H. G.: Lazy Maintenance of Materialized Views,

ACMVLDB'07, Autria; Sep. 2007

[ZYY99) Zhang, C., Yao, X. And Yang, J.: Evolving Materialized Views in a Data

Warehouse, IEEE CEC; July 1999

83

	TH151910001
	TH151910002
	TH151910003
	TH151910004
	TH151910005
	TH151910006
	TH151910007
	TH151910008
	TH151910009
	TH151910010
	TH151910011
	TH151910012
	TH151910013
	TH151910014
	TH151910015
	TH151910016
	TH151910017
	TH151910018
	TH151910019
	TH151910020
	TH151910021
	TH151910022
	TH151910023
	TH151910024
	TH151910025
	TH151910026
	TH151910027
	TH151910028
	TH151910029
	TH151910030
	TH151910031
	TH151910032
	TH151910033
	TH151910034
	TH151910035
	TH151910036
	TH151910037
	TH151910038
	TH151910039
	TH151910040
	TH151910041
	TH151910042
	TH151910043
	TH151910044
	TH151910045
	TH151910046
	TH151910047
	TH151910048
	TH151910049
	TH151910050
	TH151910051
	TH151910052
	TH151910053
	TH151910054
	TH151910055
	TH151910056
	TH151910057
	TH151910058
	TH151910059
	TH151910060
	TH151910061
	TH151910062
	TH151910063
	TH151910064
	TH151910065
	TH151910066
	TH151910067
	TH151910068
	TH151910069
	TH151910070
	TH151910071
	TH151910072
	TH151910073
	TH151910074
	TH151910075
	TH151910076
	TH151910077
	TH151910078
	TH151910079
	TH151910080
	TH151910081
	TH151910082
	TH151910083
	TH151910084
	TH151910085
	TH151910086
	TH151910087
	TH151910088
	TH151910089

