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Abstract 

In the present work, we have analyzed the effect of increase in percentage of routing 

misbehavior on the performance of the network for Ad hoc On demand Distance Vector 

Routing Algorithm (AODV). We have varied the network size, traffic pattern and 

mobility rate to see it effect on End-to-End delay, delivery rate, overhead ratio and 

bandwidth utilization. 

Our simulation results show that as the percentage of routing misbehavior 

increases there is a significant decoration of the network performance. Main factors 

responsible for detoriate of network performance are queuing delay and uncontrolled 

spread of control REQUEST and REPLY packets of AODV routing algorithm. 

In the implementation, Tel script has been used to configure the network and to 

simulate it. For simulation analysis trace file was analyzed using UNIX script and C 

code. 



Contents 

1 Introduction 

1.1 Mobile Ad-hoc networks (M.A.NETs) 

1 

2 

1.2 Classification of Routing Protocols . . . . . . . . . . . . . . . . . . . . . . . . 3 

1.2.1 Proactive Routing Protocols . . . . . . . . . . . . . . . . . . . . . . . . . 4 

1.2.1.2 Destination Sequenced Distance Vector Protocol 4 

1.2.2 Reactive Routing Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

1.2.2.1 Dynamic Source Routing . . . . . . . . . . . . . . . . . . . . 5 

1.2.2.2 Ad-Hoc On Demand Distance Vector Protocol . . . 6 

1.2.2.3 Temporary Ordered routing Algorithm . . . . . . . . .. . 7 

1.3 Applications of Mobile Ad hoc Networks . . . . . . . . . . . . . . . . . . . 9 

1.4 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

2 Routing :vlisbehavior 11 

2.1 Detection of routing misbehavior in MANET . . . . . . . . . . . . . . . 11 

2.1.1 Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

2.1.2 Pathrater 

3 The Ad-hoc On-Demand Distance Vector Algorithm 

3.1 Introduction 

3.2 Ovef\·iew 

14 

16 

16 

16 

3.3 Generating Route Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

3.3.1 Controlling Route Request Broadcasts . . . . . . . . . . . . . . . . . 18 

3.4 F Of\\·arding Route Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

3.4.1 Processing Route Request . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

3.5 Generating Route Replies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

3.5.1 Route Reply Generation by the Destination . . . . . . . . . . . . . 20 

3.5.1 Route Reply Generation by an Intermediate Node . . . . . . . 21 

3.6 Fof\varding Route Replies . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 21 



3. 7 Local Connectivity Management ................... . 

3.8 Hello Messages ................................ . 

3.9 Maintaining Local Connectivity ......................... . 

3 .1 0 Route Error Messages ................................ . 

3.11 Maintaining Routing Table ............................ . 

3 .12 Configuration Parameters ............................. . 

4 Network Simulator And Simulation Methodology 

4.1 Overview ............................... . 

4.2 Extensions to Network simulator ........................ . 

4.3 Simulation Methodology ............................. . 

5 Simulation Results 

5.1 Format of Simulation Trace file ........................ . 

5.2 Simulation Variable .................................... . 

5.3 Simulation Results ..................................... . 

5.3.1 End-to-End Delay 

5.3.2 Delivery Rate 

5.3.3 Overhead Ratio 

22 

23 

23 

24 

25 

25 

27 

27 

30 

31 

33 

34 

35 

36 

36 

38 

40 

5.3.4 Percentage Bandwidth Utilization . . . . . . . . . . . . . . . . . . . . 42 

6 Conclusions and Future work 45 

6.1 Future Work .............................. . 46 

References ............................................ . 47 



Introduction ]_ 

Mobile hosts such as notebook computers, featuring powerful CPUs, large main 

memories, hundreds of megabytes of disk space, multimedia sound capabilities, and 

color displays, are now easily affordable and are becoming quite common in everyday 

business and personal life. At the same time, network connectivity options for use 

with mobile hosts have increased dramatically, including support for a growing 

number of wireless networking products based on radio and infrared. With this type of 

mobile computing equipment, there is a natural desire and ability to share information 

between mobile users. Often, mobile users will meet under circumstances that are not 

explicitly planned for and in which no connection to a standard wide area network 

such as the Internet is available. For example, employees may find themselves 

together in a meeting room; friends or business associates may run into each other in 

an airport terminal; a hotel ballroom for a workshop or conference. Requiring each 

user to connect to a wide area network in such situations, only to communicate with 

each other, may not be possible due to lack of facilities, or may be inconvenient or 

impractical due to the time or expense required for such connection. 

The solution to these types of networking problems has come up in the form of 

Mobile ad hoc networks. An ad hoc network is a collection of wireless mobile hosts 

forming a temporary network without the aid of any centralized administration or 

standard support services regularly available on the wide area network to which the 

hosts may normally be connected. 

Some form of routing protocol is in general necessary in such an environment, 

since two hosts that may wish to exchange packets might not be able to communicate 

directly. For example, Figure l.l illustrates a simple ad hoc network of three mobile 

hosts using wireless network interfaces. Host C is not within the range of host A's 

wire less transmitter (indicated by the circle around A) and host A is not within the 

range of host C's wireless transmitter. If A and C wish to exchange packets, they may 

in this case enlist the services of host 8 to forward packets for them, since 8 is within 



the overlap between A's range and C's range. The maximum number of network hops 

needed to reach another mobile host in any practical ad hoc netvvork is likely to be 

small, but may often be greater than one as shown here. The routing problem in a real 

ad hoc network may be even more complicated than this example suggests, due to the 

inherent nonuniform propagation characteristics of wireless transmissions, and since 

any or all of the hosts involved may move at any time. 

_// 

......... ·~~---~---·~/ 
.. / 

Figure 1.1 An ad hoc network ofthree wireless mobile hosts 

1.1 Mobile Ad-hoc networks (M.A.NETs) 

A mobile, ad hoc network (MANET) is a collection of wireless mobile hosts forming 

a network without the aid of any established infrastructure or centralized 

administration[ 12]. A MANET may be considered an autonomous system of mobile 

nodes. Such networks have dynamic, sometimes rapidly changing, random, multihop 

topologies, whi~h are likely composed of relatively bandwidth-constrained wireless 

links. 

MANETs have several salient characteristics that have to be taken into account 

when considering their design and deployment: 

o • Dynamic topologies: Nodes are free to move arbitrarily; thus, the network 

topology (which is typically multihop) may change randomly and rapidly at 

unpredictable times, and may consist of both bi-directional and unidirectional 

links. 

o . Bandwidth-constrained, variable capacity links: Wireless links typically have 

significantly lower capacity than their hardwired counterparts. In addition, the 
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realized throughput of wireless communications (after accounting for the effects 

of multiple access, fading, noise, and interference conditions) is often much less 

than a radio's maximum transmission rate. 

o . Energy-constrained operation: Some or all of the nodes in a MANET may rely 

on batteries or other exhaustible means for their energy. For these nodes, a finite 

energy capacity may be the most significant performance constraint, and thus its 

utilization should be viewed as a primary network control parameter. 

While the above characteristics are common to any kind of wireless network, 

MANETs are further distinguished by their "Infrastructure less" property : There is 

no centralized administration or preexisting infrastructure that takes care of the 

network management and existence. Mobile nodes are themselves responsible for 

establishing and maintaining connection between them. In such an environment, it is 

necessary for one mobile host, to enlist the aid of other hosts in forwarding a packet to 

its destination, due to the limited range of each mobile host's wireless transmissions. 

Thus, robust and efficient operation in mobile wireless networks is supported by 

incorporating routing functionality into all the mobile nodes, in contrast to fixed 

networks such as the Internet where only some nodes in the network perform the 

routing function. 

It is obvious that the routing function is of utmost importance for the viability 

of an ad-hoc network. It is also a big challenge since all the characteristics of the 

mobility and wireless channel previously mentioned, must be taken into account when 

designing such protocols. 

1.2 Classification of Routing Protocols 

There has been extensive research work in the field of routing algorithm's of Mobile 

Ad hoc Networks (MANET). Many routing algorithms have been proposed and are in 

the different stages of development like AODV[2], DSR[5], DSDV[3], TORA[l4], 

etc. The routing protocols can be separated in two main classes, namely proactive or 

reactive, according to the way routes are created and maintained. 
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1.2.1 Proactive Routing Protocols 

These algorithms maintain a route to the destination much like the traditional fixed 

networks. When the packet is to be transmitted it just picks up a root from the cache 

and uses it. This leads to the instant transmission of the first packet, but the nodes 

have to work hard in the background to establish roots, wasting precious radio 

resources. 

One prominent protocol in the proactive class is the Destination Sequenced 

Distance Vector Protocol (DSDV) [3] . 

1.2.1.1 Destination Sequenced Distance Vector Protocol (DSDV) 

DSDV [3] is a hop-by-hop distance vector routing protocol that in each node has a 

routing table that for all reachable destinations stores the next-hop and number of 

hops for that destination. Like distance-vector, DSDV requires that each node 

periodically broadcast routing updates. The advantage with DSDV over traditional 

distance vector protocols is that DSDV guarantees loop-freedom. 

To guarantee loop-freedom DSDV uses a sequence numbers to tag each route. 

The sequence number shows the freshness of a route and routes with higher sequence 

numbers are favorable. A route R is considered more favorable than R' if R has a 

greater sequence number or, if the routes have the same sequence number but R has 

lower hop-count. The sequence number is increased when a node A detects that a 

route to a destination D has broken. So the next time node A advertises its routes, it 

will advertise the route to D with an infinite hop-count and a sequence number that is 

larger than before. 

DSDV basically is distance vector with small adjustments to make it better 

suited for ad hoc networks. These adjustments consist of triggered updates that will 

take care of topology changes in the time between broadce:sts. To reduce the amount 

of information in these packets there are two types of update messages defined: full 

and incremental dump. The full dump carries all available routing information and the 

incremental dump that only carries the information that has changed since the last 

dump. 

Because DSDV is dependent on periodic broadcasts it needs some time to 

converge before a route can be used. This converge time can probably be considered 
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negligible in a static wired network, where the topology is not changing so frequently. 

In an ad hoc network on the other hand, where the topology is expected to be very 

dynamic, this converge time will probably mean a lot of dropped packets before a 

valid route is detected. The periodic broadcasts also add a large amount 

of overhead into the network. 

1.2.2 Reactive Routing Protocols 

Reactive routing protocols or "on demand" routing protocols create and maintain 

routes only in an "as needed" basis, unlike proactive protocol's where routes are 

maintained to all potential destinations. When a route is needed, a global route 

discovery procedure is initiated to find the path for the specific information that has 

not been cached. The route discovery is usually done by employing classical flooding 

mechanisms. The three prominent protocols in the reactive class are the Dynamic 

Source Routing Protocol (DSR) [5], Ad hoc on Demand Distance Vector Routing 

Algorithm (AODV)[2] and Temporary Ordered routing Algorithm (TORA)[14]. 

1.2.2.1 Dynamic Source Routing (DSR) 

The Dynamic Source Routing protocol (DSR) [5], uses source routing a technique 

where the source of a data packet determines the complete sequence of nodes through 

which to forward the packet. The source explicitly lists this route in the packet's 

header and then transmits the packet over its wireless network interface to the first 

hop identified in the source route. When a host receives the packet, if this host is not 

the final destination ofthe packet, it strips from the packet header its own address and 

simply transmits the packet to the next hop identified in the packet header. This 

process goes on until the packet reaches its destination. The two basic operations 

supported by DSR are Route Discovery and Route Maintenance. 

DSR builds routes on demand by flooding the network in a controlled manner 

(for example by using a Time To Live (TTL) field in the packet header). In Route 

Discovery, the source node sends a query in the form of a route request packet that 

carries the sequence of hops it passed through. Once a query reaches the destination, 

the destination replies with a route reply packet that simply copies the route from the 

query packet and traverses it backwards. To reduce the cost and frequency of the 
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Route Discovery, each node has a route cache, where complete routes have been 

stored as learned from the reply packets. These routes are used by the data packets 

until they fail as determined by the failure of attempted message transmissions. 

Route Maintenance procedure monitors the operation of the routes and 

informs the sender of any routing errors. Error detection is supported in the data link 

layer. If the data link layers reports a transmission problem for which it cannot 

recover, this host sends a route error packet to the original sender of the packet. The 

route error packet contains the addresses of the hosts at both ends of the hop in error : 

I. the host that detected the error, and 

2. the host to which it was attempting to transmit this packet on this hop. 

When a route error packet is received by the source host, the hop in error is removed 

from this host's route cache and all routes which contain that hop are truncated at that 

point. Then, a new route discovery for the destination is initiated by the sender. 

DSR has a unique advantage by virtue of source routing. The key advantage of 

source routing is that intermediate nodes need not maintain up-to date routing 

information in order to route the packets they forward, since the packets themselves 

already contain all the routing decisions. This fact coupled with the on demand nature 

of the protocol eliminates the need for the periodic route advertisement and neighbor 

detection packets present in other protocols. Another nice feature of DSR is that since 

the route is part of the packet itself, routing loops, either short or long lived, cannot be 

formed, as they are immediately detected and eliminated. A node can learn a route to 

a destination while passing on route reply packets. Also routes can be improved by 

having nodes promiscuously listen to conversations between other nodes in proximity. 

1.2.2.2 Ad-Hoc On Demand Distance Vector Protocol (AODV) 

AODV[2] is an on-demand variation of distance vector protocols. It is essentially a 

combination ofDSR and DSDV. It borrows the basic on demand mechanism ofRoute 

Discovery and Route Maintenance from DSR plus the use of hop-by-hop routing, 

sequence number and periodic beacons from DSDV. AODV uses sequence numbers 

maintained at destinations to determine freshness of routing information. In AODV, a 

query flood is used to create a route, with the destination responding to the first such 

query, much as in DSR. However, AODV maintains routes in a distributed fashion, as 

routing table entries on all intermediate nodes of the route. 
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Routing table entries are tuples in the form of < destination, next hop, 

distance >. Nodes propagating query packets "remember" the earlier h0p taken by 

such a query packet. This hop is used to forward the reply packet back to the source. 

The reply packet, in turn, sets the routing table entries on the nodes in its path. 

Distributing routing tables in such a fashion makes them smaller than the case of DSR 

where each node must keep the whole path in its cache. However, in order to maintain 

routes, AODV normally requires that each node periodically transmit a HELLO 

message, with a default rate of one per second. Failure to receive three consecutive 

HELLO messages from a neighbor is taken as an indication that the link to the 

destination in question is down. 

When a I ink goes down, any upstream node that has recently forwarded 

packets to a destination using that link is notified via an UNSOLICITED ROUTE 

REPLY containing an infinite metric for that destination. Upon receipt of such a 

ROUTE REPLY, a node must acquire a new route to the destination using Route 

Discovery as described above. 

AODV maintains the addresses of the neighbors through which packets 

destined for a given destination were received. A neighbor is considered active (for a 

destination) if it originates or relays at least one packet for that destination, within the 

past active timeout period. A routing table entry is active if it is used by an active 

neighbor. The path from a source to destination via the active routing table entries is 

called an active path. On a link failure, all routing table entries for which the failed 

link is on the active path, are erased. This is accomplished by an error packet going 

backwards to the active neighbors, which forward them to their active neighbors and 

so on. This technique effectively erases the route backwards from the failed link. 

Much like DSR, AODV advocates use of "early quenching" of request 

packets, i.e., any node having a route to the destination can reply to a request. AODV 

also uses a technique called route expiry, where a routing tale entry expires after a 

predetermined period, after which fresh route discovery must he initiated. Neither 

DSR nor AODV guarantee shortest path. 

1.2.2.3 Temporary Ordered routing Algorithm (TORA) 

The unique feature of TORA [5] is that it is a protocol designed to minimize reaction 

to topological changes. This is accomplished by maintaining multiple routes to a 
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specific destination, so that many topological changes need no reaction at all, unless 

all routes to a specific destination are lost. In that case routes are re-established via a 

temporary ordered sequence of diffusing computations, which are essentially link 

reversals that eventually establish a path to the destination. 

TORA does not maintain routes between a given source/destination pair at all 

times but creates new routes on demand. Route optimality (shortest paths) is 

considered secondary importance, and longer routes are often used to avoid the 

overhead of discovering newer routes. This ability to initiate and react infrequently 

serves to minimize the communication overhead at the expense of multiple non­

optimal (shortest path) routes to the destination. In order to select one of the multiple 

routes two alternatives are suggested : 

1. choosing a neighbor randomly so that the loads are more or less evenly 

distributed, or 

2. choosing the "lowest" neighbor. 

TORA is based in part on algorithms that try to maintain the destination oriented 

property of a directed acyclic graph (DAG). A DAG is defined to be destination 

oriented if there is always at least one path to a specific destination. The DAG 

becomes destination disoriented when one or more link fails. In this case by 

employing link reversals these algorithms ensure that the DAG will become again 

destination oriented in a finite time. 

TORA uses the notion of node "height" to maintain the destination oriented 

DAG. Each node maintains a height and exchanges this value with each neighbor. 

The significance of the height is that a link is always directed from a "higher" node to 

a "lower" node. The notion of "height" and link reversals are destination specific. This 

means that each node of the network runs a logically separate copy of TORA for each 

destination. 

The route discovery process for a specific destination creates a destination 

oriented graph for this destination in a source initiated fashion: The source node 

broadcasts a QUERY packet containing the address of the destination for which it 

requires a route. This packet propagates through the network until it reaches the 

destination or an intermediate node having a route to the destination. The recipient of 

he QUERY then broadcasts an UPDATE packet listing its height with respect to the 

destination. As this packet propagates through the network, each node that receives 

the UPDATE sets its height to a value greater than the height of the neighbor from 
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which the update was received. This has the effect of creating a series of directed 

links from the original sender of the QUERY to the node that initially generated the 

update. 

Route maintenance is achieved as follows : when a node i discovers that a 

route to a destination is no longer valid, it adjusts its height so that it is a local 

maximum with respect to its neighbors and transmits an UPDATE packet. This is 

effectively a link reversal and it means that now all links emanating from node i are 

directed from I towards its neighbors (since the neighbors have now lower heights). 

This has as an effect all traffic entering i to flow back out of i towards the neighbor 

nodes that had previously been routing packets to the destination via i. If the node has 

no neighbors of finite height with respect to this destination, then the node attempts to 

discover a new route via the route discovery process. 

1.3 Applications of Mobile Ad hoc Networks 

A mobile ad hoc network includes several advantages over traditional wireless 

networks, including: ease of deployment, speed of deployment, and decreased 

dependence on a fixed infrastructure. MANET is attractive because it provides an 

instant network formation without the presence of fixed base stations and system 

administrators. MANET is being viewed as a suitable systems for some specific 

applications including: 

o Personal communication like cell phones, laptops, PDA, 

o Group communication such as communication set-up m exhibitions, 

conferences, presentations, meetings, lectures, 

o Military. emergency, discovery and civil communication. 

1.4. Problem Description 

In MANET all nodes are mobile and can be connected dynamically and in arbitrary 

manner. All nodes of this network behave as routers and take part in discovering and 

maintenance of routes to other nodes in the network. But some times a node may 

agree to forward packet and then failing to do so. This phenomenon is known as 

routing misbehavior. A node may misbehave because it may be overloaded node, 

selfish node, malicious node and broken node. 
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In the present work, a study of routing misbehavior of Ad hoc on Demand Distance 

Vector (AODV) routing algorithm in the following network context has been done: 

0 Network size 

0 Bandwidth 

0 Traffic pattern 

0 Mobility rate 

0 Battery power · 

In the situation of routing misbehavior the performance of the AODV routing 

algorithm has been evaluated. The parameters for evaluation are : 

o End-to-End Delay 

o Delivery Rate 

o Overhead Ratio 

o Percentage Bandwidth Utilization 

10 



Routing Misbehavior 2 

Ad hoc networks maximize total network throughput by using all available nodes for 

routing and forwarding. Therefore, the more nodes that participates in packet routing, 

the greater the aggregate bandwidth, the shorter the possible routing paths, and the 

smaller the possibility of a network partition. However, misbehaving nodes could be a 

significant problem. A node may misbehave by agreeing to forward packets and then 

failing to do so, because it is overloaded, selfish, malicious, or broken. 

o An overloaded node lacks the CPU cycle, buffer space or available network 

bandwidth to forward packets. 

o A selfish node is unwilling to spend battery life, CPU cycle or available 

network bandwidth to forward packets not of direct interest to it, even though 

it expects others to forward packets on its behalf. 

o A malicious node launches a denial-of-service attack by dropping packets. 

o A broken node might have a software fault that prevents it from forward 

packets. 

Misbehaving nodes can be a significant problem. Our simulation shows that even for 

10%- 30% routing misbehavior in the network there is a severe impact on the overall 

performance of the network. 

2.1 Detection of routing misbehavior in MANET 

Current versions of mature ad hoc routing algorithms, like DSR[5], AODV[2], 

TORA[l4], DSDV[3], and others only detects if the receiver's network interface is 

accepting packets, but they otherwise assume that the routing nodes do not 

misbehave. Sergio Marthi, T.J. Giuli, Kevin Lai, and Mary Baker[l3] have proposed 

certain solutions to handle misbehaving nodes. 

One of the solution is to forward packets only through nodes that share an a 

priori trust relationship. A priori trust relationship are based on pre-existing 
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relationships build outside of the context of the network (e.g. friendship, companies, 

and armies) . Hmvever this solution has some drawbacks. It require key distribution. 

Moreover trusted nodes can be overloaded or it can be compromised. 

Another solution to misbehaving node is to attempt to forestall or isolate 

these nodes from within the actual routing protocol for the network. However, this 

would add significant complexity to protocols whose behavior must be very well 

defined. 

Due to the drawbacks and complexities of the above stated solutions, they 

presented a different approach. In this approach, they introduced two extensions to the 

Dynamic Source Routing protocol to mitigate the effect of routing misbehavior -

Watchdog and Pathrater. Though they implemented these tools on top of DSR[S], 

some of the concepts can be generalized to other source routing protocol. 

2.1.1 Watchdog 

The watchdog method detects misbehaving nodes. Figure 2.1 illustrates how the 

watchdog works. Suppose there exists a path from node S to D through intermediate 

nodes A, 8, and C. Node A cannot transmit all the way to node C. but it can listen in 

on node 8's outgoing traffic. Thus, when A transmits a packet for 8 to forward to C, 

A can often tell if 8 transmitted the packet. A buffer of recently sent packets are 

maintained and compared with each overheard packet to see if there is a match. If, so 

the packet in the buffer is removed and forgotten by the watchdog, since it has been 

forwarded on. If a packet has remained in the buffer for longer than a certain timeout 

period, the watchdog increments a failure tally for the node responsible for 

forwarding on the packet. If the tally exceeds a certain threshold bandwidth, it 

determines that the node is misbehaving and sends a message to the source notifying 

it of the misbeha,·ing node. 

® &------@---€) 

Figure 2.1 

The watchdog technique has advantages and weaknesses. This technique hast 

the advantage that it can detect misbehavior at the forwarding level and not just the 
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link level. Watchdog's weaknesses are that it might not detect a misbehaving node in 

the presence of the following: 

0 

0 

0 

0 

0 

Ambiguous collisions 

Receiver collisions 

False misbehavior 

Collusion 

Partial dropping 

(;\_2~ I~ 
~-----~ 

Figure 2.2 

The Ambiguous collision problem prevents A from overhearing transmission from B. 

As figure 2.2 illustrates, a packet collision can occur at A while it is listening forB to 

forward on a packet. A does not know if the collision was caused by B forwarding on 

a packet as it should or if B never forwarded the packet and the collision was caused 

by other nodes in A's neighborhood. Because of this uncertainty, A should not 

immediately accuse B of misbehaving, but should instead continue to watch B over a 

period of time. If A repeatedly fails to detect b forwarding on packets, then A can 

assume that B is misbehaving. 

0 &---'--~ 

Figure 2.3 

In the Receiver collision problem, node A can only tell whether B sends the packet to 

C, but it cannot tell if C receives it (figure 2.3). If a collision occurs at C when B first 

forwards the packet, A only sees B forwarding the packet and assumes that C 

successfully receives it. Thus, B should skip retransmitting the packet. B could also 

purposefully cause the transmitted packet to collide at C by waiting until C is 

transmitting and then forwarding on the packet. In the first case, a node could be 

selfish and not want to waste power with retransmissions. In the latter case, the only 

reason B wouid have for taking the actions that it does is because it is malicious. B 

waste battery power and CPU time, so it is not selfish. An overloaded node would not 

13 



engage in this behavior either, since it waste badly needed CPU time and bandwidth. 

Thus, this case should be a rare occurrence. 

False misbehavior problem, occurs when node falsely report other nodes as 

misbehaving. A malicious node could attempt to partition the network by claiming . 
that some nodes following it in the path are misbehaving. For instance, node A could 

report that node B is not forwarding packets when in fact it is. This causeS to mark B 

as misbehaving even though A is the culprit. This behavior, however will be detected. 

Since A is passing message on to B (as verified by S ), then any acknowledgements 

from D to Swill go through A to S, and S will wonder why it receives replica from D 

when supposedly B dropped packets in the forward direction. In addition, if A drop 

acknowledgements to hide from S, then node B will detect this misbehavior and will 

report it to D. But this problem can't be solved if the packets move over UDP as no 

acknowledgement will be generated. 

In Partial dropping problem, a node can circumvent the watchdog by dropping 

packets at a lower rate than the watchdog's configured minimum misbehavior 

threshold. Although the watchdog will not detect this node as misbehaving, this node 

is forced to forward at the threshold bandwidth in other to prevent itself from been 

identified itself as a misbehaving node. 

2.1.2 Pathrater 

The pathrater, runs on each node in the network, combining knowledge of 

misbehaving nodes with link reliability data to pick the route most likely to be 

reliable. Each node maintains a rating for every other node it knows about in the 

network. It calculates a path metric by averaging the node ratings in the path. Metric 

was chosen because it give~ a comparison of the overall reliability of different paths 

and allows pathrater to emulate the shortest length path algorithm when no reliability 

information has been collected, as explained below. lfthere are multiple paths to the 

same destination, the path with the highest metric is chosen. Since the pathrater 

depends on knowing the exact path a packet has traversed, it must be implemented on 

top of a source routing protocol like DSR[S]. 
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The pathrater assigns ratings to nodes according to the following algorithm. 

When a node in the network becomes known to the pathrater (through route 

discovery), the pathrater assigns it a "neutral" rating of 0.5. A node always rates itself 

with a 1.0. This ensures that when calculating path rates, if all other nodes are neutral 

nodes (rather than suspected misbehaving nodes), the pathrater picks the shortest 

length path. The pathrater increments the ratings of nodes on all actively used paths 

by 0.0 I at periodic intervals of 200 ms. An actively used path is one on which the 

node has sent a packet within the previous rate increment interval. The maximum 

value a neutral node can attain is 0.8. We decrement a node's rating by 0.05 when we 

detect a link break during packet forwarding and the node becomes unreachable. The 

lower bound rating of a "neutral" node is 0.0. The pathrater does not modify the 

ratings of nodes that are not currently in active use. 

A special highly negative value, is assigned to nodes suspected of 

misbehaving by the watchdog mechanism. When the pathrater calculates the path 

metric, negative path values indicate the existence of one or more suspected 

misbehaving nodes in the path. If a node is marked as misbehaving due to a temporary 

malfunction or incorrect accusation it would be preferable if it were not permanently 

excluded from routing. Therefore nodes that have negative ratings should have their 

ratings slowly increased or set back to a non-negative value after a long timeout. 

When the pathrater learns that a node on a path that is in use misbehaves, and 

it cannot find a path free of misbehaving nodes, it sends out a ROUTE REQUEST. 
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The Ad-hoc On-Demand Distance Vector Algorithm 

3.1 Introduction 

The Ad Hoc On-Demand Distance Vector (AODV)[2] algorithm enables dynamic, 

self-starting, multihop routing between participating mobile nodes wishing to 

establish and maintain an ad hoc network. AODV allows mobile nodes to obtain 

routes quickly for new destinations, and does not require nodes to maintain routes to 

destinations that are not in active communication. AODV allows mobile nodes to 

respond quickly to link breakages and changes in network topology. The operation of 

AODV is loop-free, and by avoiding the Bellman-Ford "counting to infinity" problem 

offers quick convergence when the ad hoc network topology changes (typically, when 

a node moves in the network). When links break, AODV causes the affected set of 

nodes to be notified so that they are able to invalidate the routes using the broken link. 

One distinguishing feature of AODV is its use of a destination sequence 

number for each route entry. The destination sequence number is created by the 

destination for any route information it sends to requesting nodes. Using destination 

sequence numbers ensures loop freedom and is simple to program. Given the choice 

between two routes to a destination, a requesting node always selects the one with the 

greatest sequence number. 

3.2 Overview 

As long as the endpoints of a communication connection have valid routes to each 

other, AODV does not play any role. Nodes that do not lie on active paths neither 

maintain any routing information nor participate in any periodic routing table 

exchanges. Further, a node does not have to discover and maintain a route to another 

node until the two need to communicate, unless the former node is offering its 
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services as an intermediate forwarding station to maintain connectivity between two 

other nodes. When the local connectivity of the mobile node is of interest, each 

mobile node can become aware of the other nodes in its neighborhood by the use of 

several techniques, including local (not system-wide) broadcasts known as hello 

messages. The routing tables of the nodes within the neighborhood are organized to 

optimize response time to local movements and provide quick response time for 

requests for establishment of new routes. The algorithm's primary objectives are: 

• To broadcast discovery packets only when necessary 

o To distinguish between local connectivity management (neighborhood 

detection) and general topology maintenance 

o To disseminate information about changes m local connectivity to those 

neighboring mobile nodes that are likely to need the information. 

AODV uses a broadcast route discovery mechanism , as is also used (with 

modifications) in the Dynamic Source Routing (DSR) algorithm [5]. Instead of source 

routing, however, AODV relies on dynamically establishing route table entries at 

intermediate nodes. This difference pays off in networks with many nodes, where a 

larger overhead is incurred by carrying source routes in each data packet. To maintain 

the most recent routing information between nodes, we borrow the concept of 

destination sequence numbers from DSDV [3]. Unlike in DSDV, however, each ad 

hoc node maintains a monotonically increasing sequence number counter which is 

used to supersede stale cached routes. The combination of these techniques yields an 

algorithm that uses bandwidth efficiently (by minimizing the network load for control 

and data traffic), is responsive to changes in topology, and ensur~s loop-free routing. 

3.3 Generating Route Requests 

A node broadcasts a Route Request Packet (RREQ) when it determines that it needs a 

route to a destination and does not have one available. This can happen if the 

destination is previously unknown to the node, or if a previously valid route to the 

destination expires or is broken. The RREQ contains the following fields: 

{Source IP Address; Source Sequence No; Broadcast id; 

Destination IP Address; Destination Sequence No; Hop Count } 
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The Destination Sequence Number field in the RREQ message is the last known 

destination sequence number for this destination and is copied from the Destination 

Sequence Number field in the routing table (see section 3.10). If no sequence number 

is known, a sequence number of zero is used. The Source Sequence Number in the 

RREQ message is the node's own sequence number. The Broadcast ID field is 

incremented by one from the last broadcast ID used by the current node. Each node 

maintains only one broadcast ID. The Hop Count field is set to zero. 

After broadcasting a RREQ, a node waits for a Route Reply Packet (RREP) 

(see section 3.5 ). If the RREP is not received within NET_TRAVERSAL_TIME 

milliseconds, the node MAY rebroadcast the RREQ, up to a maximum of 

RREQ_ RETRIES times. Each rebroadcast MUST increment the Broadcast ID field. 

3.3.1 Controlling Route Request Broadcasts 

To prevent unnecessary network-wide broadcasts of RREQs, the source node 

SHOULD use an expanding ring search technique as an optimization. In an 

expanding ring search, the source node initially uses a TIL= TTL_START in the 

RREQ packet IP header and sets the timeout for receiving a RREP to 2 * TTL * 
NODE_TRAVERSAL_TIME milliseconds. Upon timeout, the source rebroadcasts 

the RREQ with the TTL incremented by TTL_INCREMENT. This continues until the 

TTL set in the RREQ reaches TIL_ THRESHOLD, beyond which a TTL = 

NET_ DIAMETER is used for each rebroadcast. Each time, the timeout for receiving 

a RREP is calculated as before. Each rebroadcast increments the Broadcast ID field 

in the RREQ packet. The RREQ can be rebroadcast with TTL = NET DIAMETER 

up to a maximum ofRREQ_RETRIES times. 

3.4 Forwarding Route Requests 

When a node receives a broadcast RREQ, it first checks to determine whether it has 

received a RREQ with the same Source IP Address and Broadcast ID within at least 

the last BROADCAST_RECORD_TIME milliseconds. If such a RREQ has been 
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received, the node silently discards the newly received RREQ. The rest of this 

subsection describes actions taken for RREQs that are not discarded. 

3.4.1 Processing Route Request 

When a node receives a RREQ, the node checks to determine whether it has an active 

route to the destination. Ifthe node does not have an active route, it rebroadcasts the 

RREQ from its interface(s) but using its own IP address in the IP header of the 

outgoing RREQ. The Destination Sequence Number in the RREQ is updated to the 

maximum of the existing Destination Sequence Number in the RREQ and the 

destination sequence number in the routing table (if an entry exists) of the current 

node. The TTL or hop limit field in the outgoing IP header is decreased by one. The 

Hop Count field in the broadcast RREQ message is incremented by one, to account 

for the new hop through the intermediate node. 

If the node, on the other hand, does have an active route for the destination, it 

compares the destination sequence number for that route with the Destination 

Sequence Number field of the incoming RREQ. If the existing destination sequence 

number is smaller than the Destination Sequence Number field of the RREQ, the 

node again rebroadcasts the RREQ just as if it did not have an active route to the 

destination. 

The node generates a RREP (as discussed further in section 3.5) if either: 

o it has an active route to the destination. and the node's existing destination 

sequence number is greater than or equal to the Destination Sequence Number 

of the RREQ, or 

o it is itse If the destination. 

The node always creates or updates a reverse route to the Source IP Address in its 

routing table. If a route to the Source IP Address already exists, it is updated only if 

either 

o the Source Sequence Number in the RREQ is higher than the destination 

sequence number of the Source IP Address in the route table, or 

o the sequence numbers are equal, but the hop count as specified by the RREQ 

is now smaller than the existing hop count in the routing table. 

When a reverse route is created or updated, the following actions are carried out: 
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o the Source Sequence Number from the RREQ is copied to the corresponding 

destination sequence number; 

o the next hop in the routing table becomes the node broadcasting the RREQ (it 

is obtained from the source IP address in the IP header and is often not equal 

to the Source IP Address field in the RREQ message); 

o the hop count is copied from the Hop Count in the RREQ message; 

o the lifetime of the route is the higher of its current lifetime (for a:n active route) 

and current time plus REV _ROUTE_LIFE. 

This reverse route would be needed in case the node receives an eventual RREP back 

to the node which originated the RREQ (identified by the Source IP Address). 

3.5 Generating Route Replies 

If a node receives a route request for a destination, and either has a fresh enough route 

to satisfy the request or is itself the destination, the node generates a RREP message 

and unicasts it back to the node indicated by the Source IP Address field of the 

received RREQ. A RREP contains the following information: 

{Source IP Address; Destination IP Address; Destination Sequence No; Hop 

Count; lifetime } 

The node generating the RREP message copies the Source and Destination IP 

Addresses in RREQ message into the corresponding fields in the RREP message 

which is to be sent back toward the source of the RREQ. Additional operations are 

slightly different, depending on whether the node is itself the requested destination, or 

instead if it is an intermediate node with an admissible route to the destination. 

As the RREP is forwarded to the source, the Hop Count field is incremented 

by one at each hop. Thus, when the RREP reaches the source, the Hop Count 

represents the distance, in hops, of the destination from the source. 

3.5.1 Route Reply Generation by the Destination 

If the generating node is the destination itself, it uses a destination sequence number 

at least equal to a sequence number generated after the last detected change in its 

neighbor set and at least equal to the destination sequence number in the RREQ. If the 

20 



-~ 

destination node has not detected any change in its set of neighbors since it last 

incremented its destination sequence number, it MAY use the same destination 

sequence number. The destination node places the value zero in the Hop Count field 

of the RREP. 

3.5.2 Route Reply Generation by an Intermediate Node 

If node generating the RREP is not the destination node, but instead is an intermediate 

hop along the path from the source to the destination, it copies the last known 

destination sequence number in the Destination Sequence Number field in the RREP 

message. The intermediate node places its distance in hops from the destination 

(indicated by the hop count in the routing table) plus one in the Hop Count field in the 

RREP. 

When the intermediate node updates its route table for the source of the 

RREQ, it puts the last hop node (from which it received the RREQ, as indicated by 

the source IP address field in the IP header) into the precursor list for the forward 

path route entry i.e., the entry for the Destination IP Address. Furthermore, the 

intermediate node puts the next hop towards the destination in the precursor list for 

0"'> 
I 
~ 3.6 Forwarding Route Replies 

When a node receives a RREP message, it first compares the Destination Sequence 

Number in the message with its own copy of destination sequence number for the 

Destination IP Address in the RREP message. The forward route for this destination 

is created or updated only if 

o the Destination Sequence Number in the RREP is greater than the node's copy 

of the destination sequence number, or 

o the sequence numbers are the same, but the route is no longer active or the 

Hop Count in RREP is smaller than the hop count in route table entry. 

If a new route is created or the old route is updated, the next hop is the node from 

which the RREP is received, which is indicated by the source IP address field in the 
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IP header; the hop count is the Hop Count in the RREP message plus one; the expiry 

time is the current time plus the Lifetime in the RREP message; the destination 

sequence number is the Destination Sequence Number in the RREP message. The 

current node can now begin using this route to send data packets to the destination. 

When any node generates or forwards a RREP, the precursor list for the 

corresponding destination node is updated by adding to it the next hop node to which 

the RREP is forwarded. Also, at each node the (reverse) route used to forward a 

RREP has its lifetime changed to current time plus ACTIVE_ROUTE_TIMEOUT. 

3. 7 Local Connectivity Management 

Nodes learn of their neighbors in one of two ways. Whenever a node receives a 

broadcast from a neighbor, it updates its local connectivity information to ensure that 

it includes this neighbor. In the event that a node has not sent any packets to all of its 

active downstream neighbors within hello interval, it broadcasts to its neighbors a 

hello message (a special unsolicited RREP), containing its identity and sequence 

number. The node's sequence number is not changed for hello message transmissions. 

This hello message is prevented from being rebroadcast outside the neighborhood of 

the node because it contains a time to live (TTL) value of I. Neighbors that receive 

this packet update their local connectivity information to the node. Receiving a 

broadcast or a hello from a new neighbor, or failing to receive allowed hello loss 

consecutive hello messages from a node previously, in the neighborhood, is an 

indication that the local connectivity has changed. Failing to receive hello messages 

from inactive neighbors does not trigger any protocol action. If hello messages are not 

received from the next hop along an active path, the active neighbors using that next 

hop are sent notification of link failure as described in Section 3.3. The local 

connectivity management with hello messages can also be used to ensure that only 

nodes with bi-directional connectivity are -:onsidered to be neighbors. For this 

purpose, each hello sent by a node lists the nodes from which it has heard. Each node 

checks to make sure that it uses only routes to neighbors that have heard the node's 

hello message. To save local bandwidth, such checking should be performed only if 

explicitly configured into the nodes. 
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3.8 Hello Messages 

Nodes learn of their neighbors in one of two ways. Whenever a node receives a 

broadcast from a neighbor, it updates its local connectivity information to ensure that 

it includes this neighbor. In the event that a node has not sent any packets to all of its 

active downstream neighbors within hello interval, it broadcasts to its neighbors a 

hello message. Every HELLO _INTERVAL milliseconds, the node checks whether it 

has sent a broadcast (e.g., a RREQ or an appropriate layer 2 message) within the last 

HELLO_ INTERVAL. If it has not, it MAY generate a broadcast RREP with TTL = 1, 

called a Hello message, with the message fields set as follows: 

Destination IP Address The node's IP address. 

Destination Sequence Number: 

Hop Count 

The node's latest sequence number. 

0 

Lifetime ALLOWED HELLO LOSS* HELLO INTERVAL 

A node MAY determine connectivity by listening for packets from its set of 

neighbors. If it receives no packets for more than 

ALLOWED _HELLO_ LOSS * HELLO _INTERVAL milliseconds, 

the node SHOULD assume that the link to this neighbor is currently broken. When 

this happens, the node SHOULD proceed as in Section 3.9. 

3.9 Maintaining Local Connectivity 

Each forwarding node SHOULD keep track of its active next hops (i.e., which next 

hops have been used to forward packets towards some destination within the last 

ACTIVE_ROUTE_TIMEOUT milliseconds). This is done by updating the Lifetime 

field of a routing table entry used to forward data packets to current time plus 

ACTIVE_ROUTE_ TIMEOUT milliseconds. For purposes of efficiency, each node 

may try to learn which of these active next hops are really in the neighborhood at the 

current time using one or more of the available link or network layer mechanisms. 

If a link to the next hop cannot be detected, the forwarding node SHOULD assume 

that the link is broken, and take corrective action by following the methods specified 

in Section 3.10. 
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3.10 Route Error Messages 

A Route Error Packet (RERR) contains the following information: 

{Unreachable Destination IP Address; Unreachable Destination Sequence no; 

Destcount} 

A node initiates a Route Error (RERR) message in the following situations: 

1. if it detects a link break for the next hop of an active route in its routing table, 

or 

11. if it gets a data packet destined to a node for which it does not have an active 

route 

For cases (i) and (ii), the destination sequence numbers in the routing table for the 

unreachable destination(s) are incremented by one. Then RERR is broadcast with the 

unreachable destination(s) and their incremented destination sequence number(s) 

included in the packet. For case (i), the unreachable destinations are the broken next 

hop, and any additional destinations which are now unreachable due to the loss of this 

next hop link. These additional destinations are those that also use the lost link as 

next hop in the routing table. For case (ii), there is only one unreachable destination, 

which is the destination of the data packet that cannot be delivered. The DestCount 

field of the RERR packet indicates the number of unreachable destinations included in 

the packet. 

For cases (i) and (ii), for each unreachable destination the node copies the 

value in the Hop Count route table field into the Last Hop Count field, and marks the 

Hop Count for this destination as infinity, and thus invalidates the route. 

When a node broadcasts a RERR message, it always deletes the precursor list 

of each unreachable destination included in the message. When a node invalidates a 

route to a neighboring node, it must also delete that neighbor from any precursor lists 

for routes to other nodes. This prevents precursor lists from containing stale entries 

of neighbors with which the node is no longer able to communicate. The node should 

inspect the precursor list of each destination entry in its routing table, and delete the 

lost neighbor from any list in which it appears. 
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3.11 Maintaining Routing Table 

For each valid route maintained by a node (containing a finite Hop Count metric) as 

a routing table entry, the node also maintains a list of precursors that may be 

forwarding packets on this route. These precursors will receive notifications from the 

node in the event of detection of the loss of the next hop link. The list of precursors 

in a routing table entry contains those neighboring nodes to which a route reply was 

generated or forwarded. 

Each time a route is used to forward a data packet, its Lifetime field is updated 

to be current time plus ACTIVE_ROUTE_TIMEOUT. 

3.12 Configuration Parameters 

This section gives default values for some important values associated with AODV 

protocol operations. A particular mobile node may wish to change certain of the 

parameters, in particular the NET_DIAMETER, NODE_TRA VERSAL_TIME, 

MY_ROUTE_TIMEOUT, ALLOWED_HELLO_LOSS, RREQ_RETRIES, and 

possibly the HELLO __ INTERVAL. Choice of these parameters may affect the 

performance of the protocol. 

Parameter 

ACTIVE ROUTE TIMEOUT - -
ALLOWED HELLO LOSS - -

BROADCAST RECORD TIME - -

HELLO INTERVAL 

LOCAL ADD TTL - -

MY ROUTE TIMEOUT - -

NET DIAMETER 

NEXT HOP WAIT - -

NODE_TRAVERSAL_TIME 

REV ROUTE LIFE - -

NET TRAVERSAL TIME : - -

Value 

3,000 Milliseconds 

3 

2 * NET TRAVERSAL TIME - -

I ,000 Milliseconds 

2 

2 * ACTIVE ROUTE TIMEOUT - -

35 

NODE TRAVERSAL TIME + 10 - -
40 

NET TRAVERSAL TIME - -

3 * NODE_TRAVERSAL_TIME * NET_DIAMETER) I 2 

25 



RREQ_RETRIES 

TIL START 

TIL INCREMENT 

TIL THRESHOLD 
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Network Simulator And Simulation Methodology 4 

The simulation software used in this thesis is network simulator (ns) version 2.1 b8a 

on a Linux platform. Reason for choosing network simulator was its ability to 

supports mobile ad hoc routing algorithms. 

4.1 Overview 

Network simulator(ns) is a event driven simulator developed at UC Berkeley[9,6, I 0] 

that simulates variety of IP networks. It implements network protocols such as TCP 

and UPD, traffic source behavior such as FTP, Telnet, Web, CBR and VBR, router 

queue management mechanism such as Drop Tail, RED and CBQ, routing algorithms 

such as Dijkstra. and more. Currently, NS (version 2) wrinen in C -H- and OTcl (Tel 

script language \\ ith Object-oriented extensions developed at MIT) is available. 

OTcl Script 
Simulation 
Program 

OTcl; Tel interpreter 
With 00 e:xtention 

NS Simulator Library 

Event Scheduler Objects 
Network Component Objects 
Network Setup Helping 
Modules(Piurnbing Modules) 

Simulation 
Results 

Figure 4.1 Simplified User's View ofNS 

Analysis 

NAM 
Network 

Animator 

As shown in Lgure 4.1, in a simplified user's view, NS is Object-oriented Tel (OTcl) 

script interpreter that has the following three components : 

o simulation event scheduler, 

o network component object libraries, and 

o network setup (plumbing) module libraries 

To use NS, simulation script is wrinen in OTcl script language. To setup and run a 

simulation network, a user write an OTcl script that initiates an event scheduler, sets 
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up the network topology using the network objects and the plumbing functions in the 

library, and tells traffic sources when to start and stop transmitting packets through 

the event scheduler. 

o Plumbing Module - The term "plumbing" is used for a network setup, because 

setting up a network is plumbing possible data paths among network objects by 

setting the "neighbor" pointer of an object to the address of an appropriate object. 

When a user wants to make a new network object, he or she can easily make an 

object either by writing a new object or by making a compound object from the 

object library, and plumb the data path through the object. This may sound like 

complicated job, but the plumbing Otcl modules actually make the job very easy. 

The power ofNS comes from this plumbing. 

o Event Scheduler- Any event inNS has a packet lD that is unique for a packet 

with scheduled time and the pointer to an object that handles the event In NS, an 

event scheduler keeps track of simulation time and fires all the events in the event 

queue scheduled for the current time by invoking appropriate network 

components, which usually are the ones who issued the events, and let them do the 

appropriate action associated with packet pointed by the event Network 

components communicate with one another passing packets. however this does 

not consume actual simulation time. 

o Network Component - All the network components that need to spend some 

simulation time handling a packet (i.e. need a delay) use the event scheduler by 

issuing an event for the packet and waiting for the event to be fired to itself before 

doing further action handling the packet For example, a network switch 

component that simulates a switch with 20 microseconds of switching delay issues 

an event for a packet to be switched to the scheduler as an event 20 microsecond 

later. The scheduler after 20 microsecond dequeues the event and fires it to the 

switch component, which then passes the packet to an appropriate output link 

component 

NS is written not only in OTcl but in C++ also. For efficiency reason, NS- separates 

the data path implementation from control path implementations. In order to reduce 

packet and event processing time (not simulation time), the event scheduler and the 
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basic network component objects in the data path are written and compiled using 

C++. These compiled objects are made available to the Otcl interpreter through an 

OTcl linkage that creates a matching OTcl object for each of the C++ objects and 

makes the control functions and the configurable variables specified by the C++ 

object act as member functions and member variables of the corresponding OTcl 

object. In this way, the controls of the C++ objects are given to OTcl. It is also 

possible to add member functions and variables to a C++ linked OTcl object. The 

objects in C++ that do not need to be controlled in a simulation or internally used by 

another object do not need to be linked to OTcl. Likewise, an object (not in the data 

path) can be entirely implemented in OTcl. 

Figure 4.2 shows an object hierarchy example in C++ and OTcl. One thing to 

note in the figure is that for C++ objects that have an OTcl linkage forming a 

hierarchy, there is a matching OTcl object hierarchy very similar to that of C++. 

Figure 4.2 C++ and Otcl :The Duality 

Event 
Scheduler ns2 

tclcl <l 
0 2 
!3 (I) 

Otcl "Cl i 0 

= 0 
(I) 

., 
tcl8.0 = ~ .... 

Figure 4.3 Architectural View ofNS 

Figure 4.3 shows the general architecture of NS. In this figure a general user (not an 

NS developer) can be thought of standing at the left bottom comer, designing and 
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running simulations in Tel using the simulator objects in the OTcl library. The event 

schedulers and most of the network components are implemented in C++ and 

available to OTcl through an OTcllinkage that is implemented using tclcl. The whole 

thing together makes NS, which is an 00 extended Tel interpreter with network 

simulator libraries. 

This section briefly examined the general structure and architecture ofNS. At 

this point, one might be wondering about how to obtain NS simulation results. As 

shown in Figure 4.I, when a simulation is finished, NS produces one or more text­

based output files called trace file that contain detailed simulation data , if specified to 

do so in the input Tel (or more specifically, OTcl) script. The data can be used for 

simulation analysis or as an input to a graphical simulation display tool called 

Network Animator (NAM). NAM has a nice graphical user interface and also has a 

display speed controller. Furthermore, it can graphically present information such as 

throughput and number of packet drops at each link, although the graphical 

information cannot be used for accurate simulation analysis. 

4.2 Extensions to Network simulator 

The present version of network simulator does not support routing misbehavior. The 

present version support Error model, through which we can make each node to 

abruptly drop certain percentage of packets. But this error model cannot be used to 

induce routing misbehavior. According to the definition of routing misbehavior, a 

misbehaving node is one that agrees to participate in forwarding packets but then 

indiscriminately drops all data packets that are routed through it. 

So, to induce routing misbehavior in our simulation we have created a new 

variable in the node structure that can have either 0 or I value. If the value of the 

variable is I then it means that the node is a misbehaving node. The number of nodes 

whose value is set I depends on the percentage of nodes misbehaving. This variable 

value is used to decide whether to drop the packet or not, after ti1e route discovery 

has been made. When a new packet is received by the node, it checks the value of the 

new variable before forwarding the packet. lfthe value of the new variable is 0 then it 

simply forwards the packet to next node. On the other hand, if the value of that new 

variable is I then it starts misbehaving i.e. it drops the packet. 

30 



A new traffic generation OTcl script has also been written in order to generate 

a constant bit rate(CBR) [9] traffic over TCP. This script generate the specified 

number of connections between randomly selected nodes. 

4.3 Simulation Methodology 

For our simulation purpose, we used a version of Berkeley's Network simulator 

(ns)[9] that include wireless extension made by the CMU Monarch project. We also 

used a visualization tool called Network Animator to view the result of our 

simulations and to detect overall trends in the network. 

In our simulation, we varied the percentage of routing misbehaviour from 0% 

to 30% in I 0% increments. The effect of routing misbehavior has been studied by 

varying the following parameters. 

o Network size : In our simulation, we have varied the number of wireless 

nodes, scattered randomly in a 670 by 670 meter flat space. Number of 

wireless mobile nodes chosen are 25, 50, 75 and I 00. 

o Bandwidth : Bandwidth between each connection is set up at the link layer. 

The bandwidth chosen in our simulation is I Mbps as supported by 802.11 

standards[ 4]. 

o Traffic Pattern : In our simulation, nodes communicate using constant bit 

rate (CBR)[9J node-to-node connection established over TCP. A constant 

packet size of I 020 bytes is used. In order to create low, heavy and busty 

traffic pattern, the CBR sends the packet at different packet rates. Packet rates 

in our simulation are 5, 50, and 120 packets /sec. 

o Mobility Rate : In our node movement scenario, the node choose a random 

destination and more in a straight line towards the destination at a constant 

speed. Once the node reaches its destination, it waits for the pause time of 2.0 

sec before again choosing another random destination and repeat the process. 

The maximum speed with which the nodes move in our simulation are 0, 5, I 0 

and 25 rrJs. 
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We evaluated the effect of routing misbehavior u~ing the tbllowing parameters 

o End-to-End Delay : The term end-to-end delay is used as an average 

measure of performance between nodes in a network. It is the sources and the 

receivers that are involved. The end-to-end delay is therefore the total delay 

that a data packet experiences as it is traveling through a network. This delay 

is build up by several smaller delays in the network that adds together. These 

delays might be time spent in route discovery, packet queues, forwarding 

delays, propagation delay (the time it takes for the packet to travel through the 

medium) and time needed to make retransmissions if a packet got lost etc. 

o Packet delivery ratio : The packet delivery ratio presents the ratio between 

the number of packets send CBR and the number of packets actually received 

at the destination nodes. 

o Bandwidth utilization : It is desirable that a routing protocol keeps this rate 

at a high level since efficient bandwidth utilization is important in wireless 

networks where available bandwidth is a limiting factor. This is an important 

metric because it revels the loss rate seen by the transport protocols and also 

characterizes the completeness and correctness of the routing protocol. 

o Overhead Ratio : It is the ratio of the amount of traffic generated by the 

control packets to the actual data send. As mobility in the network increase 

reactive protocols will have to send more routing message and thus have a 

higher overhead ratio. This is where the real strength or weakness of the 

routing protocol can be revealed. 

For simulation analysis the trace file was analysed using the UNIX script and C code. 

This code was written in order to extract meaningful data from the trace file to 

calculate the End-to-End delay, Delivery rate, Overhead ratio and percentage 

bandwidth utilization. 
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Simulation Results § 

Based on the simulation methodology described in chapter 4, simulation was done in 

network simulator(ns)[9]. All the simulations were performed on a Pentium II (400 

Mhz) machine with 64 MB RAM. 

The output of the simulation is in the form of a network animator(NAM) trace 

file that is going to be used as an input to NAM and a simulation trace file that will be 

used for our simulation analysis. Section 5.1 shows the trace format. 

We have used traffic-pattern and node-movement generation files available 

with the ns, to generate different traffic pattern and node movement scenario files. We 

have made certain changes to the traffic-pattern generation file, in order to generate a 

CBR traffic over TCP(9]. These scenario files are used as the input to our simulation 

script to simulate different traffic pattern and mobility rate. 

Different parameters that are used for all our wireless simulation are described 

below: 

o Queuing Delay : Priority queue is used which gives priority to routing 

protocol packets, inserting them at the head of the queue. 

o Radio Propagation Model : Two Ray Ground propagation model has been 

used. It uses Friss-space attenuation I /r2 at near distances and an 

approximation to Two Ray Ground 1 /r.!, at far distances. The approximation 

assumes specular reflection off a flat ground plane. 

o Antenna : An omni-directional antenna having unity gain is used by mobile 

nodes. 

o Network Interfaces : The Network Interphase layer serves as a hardware 

interface which is used by mobile nodes to access the channel. The wireless 

shared media interface used is WirelessPhy. This interface subject to collisions 

and the radio propagation model receives packets transmitted by other node 

interfaces to the channel. 
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o Mac Layer : The IEEE 802. t 1 Mac protocol has been used. It uses a 

RTS/CTS/DA TAl ACK pattern for all unicast packets and simply sends out 

DATA for all broadcast packets. 

5.1 Format of Simulation Trace file 

The trace format generated by the network simulator is as shown below: 

r -t 10.000000000 -Hs 0 -Hd -2 -Ni 0 -Nx 5.00 -Ny 2.00 -Nz 0.00 -Ne -1.000000 -NI 
RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 0.0 -Id 1.0 -It tcp -II 1000 -If2 -li 2 -Iv 32 
-Pn tcp -Ps 0 -Pa 0 -Pf 0 -Po 0 

The trace format as seen above can be can be divided into the following fields : 

o Event type In the traces above, the first field describes the type of event 

taking place at the node . It can be s for send, r for receive, d for drop, f for 

forward. 

o General tag The second field starting with "-t" stands for time. 

o Next hop info This field provides next hop info and the tag starts with a 

leading "-H". 

-Hs: id for this node 

-Hd: id for next hop towards the destination. 

o Node property tags This field denotes the node properties like node-id, the 

level at which tracing is being done like agent, router or MAC. The tags start 

with a leading "-N" and are listed as below: 

-Ni: node id 

-Nx: node's x-coordinate 

-Ny: node's y-coordinate 

-Nz: node's z-coordinate 

-Ne: node energy level 

-Nl: trace leveL such as AGT. RTR, MAC 

-Nw: reason for the event. Example: 

"TOUT" DROP _RTR_ QTIMEOUT i.e. packet has expired. 

o Packet information at IP level The tags for this field start with a leading "-1" 

and are listed along with their explanations as following: 
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-Is: source address.source port number 

-Id: dest address.dest port number 

-It: packet type 

-II: packet size 

-If: flow id 

-li: unique id 

-lv: ttl value 

o Packet info at MAC level This field gives MAC layer information and starts 

with a leading "-M" as shown below: 

-Ma: duration 

-Md: dst's ethemet address 

-Ms: src's ethemet address 

-Mt: ethernet type 

o Packet info at "Application level" The packet information at application 

level c<;msists of the type of application like ARP, TCP, the type of ad hoc 

routing protocol like DSDV, DSR, AODV etc being traced. This field consists 

of a leading "-P" and list oftags for TCP is listed as below: 

-P tcp Information about TCP flow is given by the following sub tags: 

-Ps: seq number 

-Pa: ack number 

-Pf: how many times this pkt was forwarded 

-Po: optimal number of forwards 

5.2 Simulation Variable 

The different values of simulation variables that are used in our simulation work are 

o Network size 

o Mobility Rate 

o Traffic Pattern 

25,50,75 and 100 Nodes 

0.5, I 0 and 25m/sec 

5. 50 and 120 packets/sec 

Area that we are you using for simulation is 670 X 670 meter flat space and 

bandwidth of I Mbps. At a time we change one variable and others are constant. 

Constant values of simulation variable are Network size- 50 Nodes, Mobility Rate -

5m/s, Traffic Pattern - 5 packets/sec. 
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5.3 Simulation Results 

In this section we present the results of all our simulations. The parameters that are 

used for evaluation are described below. Due to time constraints routing misbehavior 

has not been induced in ns by making modification to its source code. Therefore we 

used a different strategy. In this strategy we have induced misbehavior by configuring 

the network for 10 % - 30 % packet drops uniformly distributed over all the nodes. 

5.3.1 End-to-End Delay 

End-to-End delay is analyzed with varying simulation variables one by one. For 

example, when we vary network size other variable are kept constant. This is repeated 

for other variable as well. When we change Network Size from 25 to 50, 75 and 100, 

the other variables remain constant with Mobility Rate - 5m/s, Traffic Pattern - 5 

pkts/sec, Bandwidth- 1Mbps. The figures 5.1, figure 5.2, and figure 5.3 shows the 

End-to-End delay of the network for variable network size, traffic pattern and 

mobility rate respectively. 

o Effect of Network size on End-to-End Delay 

End-to-End Delay 
(for Variable Network Size) 

2.0 

~ 1.5 -: ~ __ -:_·_*'"- - -~ 
;.,\.0~ 
~ 0· ...... -o···-· 
Q 0.5 . 

0.0 - -- --.------

0 10 20 30 

%of Routing Misbef:r\ior 

• • ·0- ·- 2.5 Nodes 

· -a- --50 Nodes 

--tr-- 75 Nodes 

--- x- - 100 Nodes 

Fig 5.1 Overall network 

End-to-End Delay as a 

function of percentage of 

routing misbehavior. 

As expected the End-to-End delay increased as the percentage of routing 

misbehavior increases for the network with 25 and 50 nodes. But as the number of 

nodes in the network increases to 75 and 100 , the End-to-End delay does not show 

36 



any major changes. This could be because of the excess number of nodes in the 

network and the source has multiple routes to the destination. Thus End-to-End delay 

does not show any major change as the node starts misbehaving for network with very 

high number of mobile nodes. 

Since we have used priority queue, the control packets are added at the head of 

the queue. As the number of nodes in a network increases the number of uncontrolled 

routing control packets increases exponentially. So this leads to increased queuing 

delay for the data packets and hence increase in End-to-End delay with respect to the 

increase in network size. 

o Effect of Traffic Pattern on End-to-End Delay 

0.0 -:- . 

0 

------. ··-- -- --------, 

End-to-End Delay 
(for Variable Traffic Pattern) 

0 

·--~ 

10 20 30 

1 • • ·• • • • 5 Pklsfsec 
---c- 50 Pklsfsec 

--lr-- 120 Pklsfsec 

o/o of Routing Misbehavior 

- ---- _______ _j 

Fig 5.2 Overall network End­

to-End Delay as a function of 

percentage of Routing 

Misbehavior. 

The End-to-End delay is significantly low for the bursty traffic, since after the 

route discovery has been done a greater number of packets can be send. Also as the 

percentage of routing misbehavior increases the End-to-end delay rapidly increases. 

But for the low traffic of 5 packets/sec, there is not a significant change in End-to­

End delay. This may be because the time it takes for the source to discover the new 

route is not much more than the rate of packet generation. 
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o Effect of Mobility rate on End-to-End Delay 

End-to-End Delay 
(for Variable Mobality Rate) 

- - -o- - -0 m/s 
--D-5m/s 
-tr-10rn/s 
- -~- -25 m/s 

% of Routing Misbehavior 

[_ ______ ---

Fig 5.3 Overall network 

End-to-End Delay as a 

function of percentage of 

Routing Misbehavior. 

End-to-End delay is increasing significantly as mobility rate increases from 0 

to 25 m/s when there is no misbehaving node. As the percentage of routing 

misbehavior increases the End-to-End delay increases sharply for low mobility of 0 

and 5 m/s as expected. But for high mobility rate there has been no relevant change in 

End-to-End delay as the percentage of routing misbehavior increases, because at high 

mobility rate the route change is much more frequent 

5.3.2 Delivery Rate 

Delivery rate is analyzed with varying simulation variables one by one. For example, 

when we vary network size other variable are kept constant This is repeated for other 

variable as welL When we changes Network Size from 25 to 50, 75 and I 00, the 

other variables remain constant with Mobility Rate- 5rn/s, Traffic Pattern- 5 pkts/sec, 

Bandwidth- IMbps. 

The figures 5.4, figure 5.5, and figure 5.6 shows the delivery rate of the 

network for variable network size, traffic pattern and mobility rate respectively. As 

the percentage of routing misbehavior increases from 0% to 30%, all the three factors 

i.e. Network size, Traffic Pattern and Mobility rate shows a similar pattern. All three 

factors show a decline in delivery rate( figure 5.4, figure 5.5, figure 5.6). However the 

delivery rate remains at a very high value even when 30% of the node misbehave 
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because the traffic source in our simulation i.e. CBR is implemented over TCP. Thus 

ifTCP ACK does not come back to the source, it again sends the packet. 

o Effect of Network size on Delivery Rate 

l 
I 

Delivery Rate 
(for Variable Network Size) 

Z' 1.00 
= .. 
~ 0.95 -------

· · ·0· · ·25Nodes ~ ~,- : -- .. -:-:a--. ---. . . . .... 
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f J ""'-
0 
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%of Routing M~behavior 

----- . - - - . . ·- .. - --· -----------' 

Fig 5.4 Overall network 

Delivery Rate as a function of 

percentage 

Misbehavior. 

of Routing 

The delivery rate varies from 0.83 to 0.90 even when 30% of the nodes misbehave. 

o Effect of Traffic Pattern on Delivery Rate 

~ ---- . Delivery Rate 

I (for Variable Traffic Pattern) 

I =- 1.00 -

I ~0.95~-
: ~ 0.90- ·--~~ :···0···5 Pkts/sec 

~ 0.85 _ ·. 'o ,, --o- 50 Pkts/sec 

e _ ---to- 120 Pkls/sec 
~ 0.80 

0 10 20 30 
0.4 of Routing Misbrllavior 

Fig 5.5 Overall network 

Delivery Rate as a 

function of percentage 

of Routing Misbehavior 

The delivery rate varies from 0.84 to 0.91 even when 30% of the nodes misbehave. 
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o Effect of Mobility rate on Delivery Rate 

Delivery Rate 
(for Variable Mobality Rate) 

~ 1.00 ~ .. 
~ ~ 
~ 0.95 ~ --::':c'Q_. 

~ ~::~ ~ ~!~~:1,1, 
~ 0.80 ---,--

----- o%~,.~~-.M~~=~o _ __j 

Fig 5.6 Overall network 

Delivery Rate as a function 

of percentage of Routing 

Misbehavior. 

The delivery rate varies from 0.85 to 0.87 even when 30% of the nodes misbehave. 

5.3.3 Overhead Ratio 

The figures 5.7, figure 5.8, and figure 5.9 shows the Overhead ratio ofthe network for 

variable network size, traffic pattern and mobility rate respectively. Overhead ratio is 

analyzed with varying simulation variables one by one. For example, when we vary 

network size other variable are kept constant. This is repeated for other variable as 

well. When we changes Network Size from 25 to 50, 75 and 100, the other variables 

remain constant with Mobility Rate - 5m/s, Traffic Pattern - 5 pkts/sec, Bandwidth -

IMbps 

o Effect ofNetworksize on Overhead Ratio 

The Overhead ratio significantly increases from 0.129 to 0.757, as the number of 

nodes in a network increases from 25 to 100. This is because of the spread of control 

REQUEST packets in the network with the increase in the number of mobile nodes in 

the network. Also as the percentage of misbehaving node increases from 0% to 30% , 

there is a clear increase in Overhead Ratio. This is because of the new route discovery 

that takes place due to misbehaving nodes. 
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Over Head Ratio 
(for Variable Network Size) 
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o Effect of Traffic Pattern on Overhead Ratio 

Overhead Ratio 
(for Variable Traffic Pattern) 
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Fig 5. 7 Overall 

network Overhead 

Ratio as a function of 

percentage of Routing 

Misbehavior. 

Fig 5.8 Overall network 

Overhead Ratio Rate as 

a function of percentage 

of Routing Misbehavior 

Overhead ratio, increases significantly as the percentage of routing 

misbehavior increases for all three traffic patterns. This is due to increase in control 

REQUEST and REPLY packets for all the traffic patterns. Also, overhead ratio shows 

a minor decline as the traffic pattern changes from low to busty. This is because once 

the route has been discovered more number of packets can be transmitted before 

another route discovery has to be initiated. 
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o Effect of Mobility rate on Overhead Ratio 

Overhead Ratio 
(for Variable Mobality Rate) 
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Fig 5.9 Overall network 

Overhead Ratio Rate as 

a function of percentage 

of Routing Misbehavior 

As the percentage of routing misbehavior increases, the overall Overhead ratio 

of the network also increases. This is again due to increase in control REQUEST and 

REPLY packets for mobility rates. For a low mobility rate of 0 m/s and 5 m/s, the 

overhead ratio is almost same and much lower than high mobility nodes. This is due 

to lesser requirement for the nodes to initiate a new route discovery for low mobility 

rates. 

5.3.4 Percentage Bandwidth Utilization 

Percentage bandwidth utilization is analyzed with varying simulation variables one by 

one. For example, when we vary network size other variable are kept constant. This is 

repeated for other variable as well. When we changes Network Size from 25 to 50, 75 

and 100, the other variables remain constant with Mobility Rate - 5m/s, Traffic 

Pattern - 5 pkts/sec, Bandwidth - I Mbps 

The figures 5.1 0, figure 5.11, and figure 5.12 shows the percentage Bandwidth 

utilization of the network for variable network size, traffic pattern and mobility rate 

respectively. It is observed that the overall bandwidth utilization in all the cases 

remains at a very low level from a maximum of 32% to a minimum of 12%, even 

when the routing misbehavior is 0%. This low % bandwidth utilization is due to delay 

in route discovery and queuing delay. 
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o Effect of Network size on Bandwidth Utilization 

% Bandwidth Utilization 
(for Variable Network Size) 
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Fig 5.10 Overall network 

% Bandwidth utilization 

as a function of 

percentage of Routing 

Misbehavior 

The percentage bandwidth utilization decreases as the size of the network 

increases. This is due to the increase in the number of uncontrolled route discovery 

packets, with the increase in the network size. These additional route discovery 

packets lead to more queuing delay, and increased number of packet drops due to time 

out (TOUT) of the packets. With the increase in % of misbehaving nodes, the graph 

does not show any specific trend for increasing network size. 

o Effect of Traffic Pattern on Bandwidth Utilization 
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Fig 5.11 Overall network 

% Bandwidth utilization 

as a function of 

percentage of Routing 

Misbehavior. 



Percentage Bandwidth utilization decreases as the traffic pattern changes from 5 

packets/sec to 120 packets/sec. This is due to the increase in queuing delay caused 

by the increase in the traffic. Increased queuing delay leads to more number of 
I 

packet drops and hence decreases Percentage bandwidth utilization with 

increasing traffic loads. With the increase in% of routing misbehavior to 10%, the 

heavy and busty traffic show a sharp decline. This is due to the additional 

requirement for the network to find new routes to the destination. Thus adding 

delay due to route discovery and hence decreases %bandwidth utilization. 

o Effect of Mobility rate on Bandwidth Utilization 
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Fig 5.12 Overall 

network % Bandwidth 

utilization as a 

function of percentage 

of Routing 

Misbehavior 

With the increase in the mobility rate from 0 m/s to 25 m/s, there is a 

significant decline in the bandwidth utilization. This decline is due to the increase in 

the number of route discovery, as the mobility rate increases. With the increase in the 

percentage of routing misbehavior in the network, there is a slight decrease in the % 

bandwidth utilization. This is due to the increase in alternate route discovery made by 

the source as the nodes starts misbehaving. 
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Conclusion and Future Work (6) 

This present work, showed the effect of variation in network size, traffic pattern and 

mobility rate on End-to-End delay, delivery rate, overhead ratio and percentage 

bandwidth utilization as the percentage of routing misbehavior increases in mobile ad 

hoc network for AODV routing algorithm. For simulation analysis trace file was 

analyzed using UNIX script and C code. 

Simulation results showed that the End-to-End delay degrades with the 

increase in the control packets like route REQUEST and REPLY packets as it 

increases queuing delay for the data packets. Increase in the control packets can be 

either due to increase in network size or due to higher mobility rates. Control packets 

also increase as the percentage of routing misbehavior increases. 

As the percentage of routing misbehavior increases from 0% to 30%, all the 

three factors i.e. Network size, Traffic Pattern and Mobility rate showed a decline in 

delivery rate. However the delivery rate remains at a very high value even when 30% 

of the nodes misbehave for the CBR traffic source in ·our simulation. 

Overhead ratio increases with the increase in the control packets like route 

REQUEST and REPLY packets. Increase in the control packets can be either due to 

increase in network size or due to higher mobility rates. Control packets also increase 

as the percentage of nodes misbehaving increases. 

Percentage bandwidth utilization for the entire network was found to be very 

low. This under utilization of bandwidth was a direct result of queuing delay and due 

to the number of uncontrolled packets generated by the AODV algorithm. Bandwidth 

utilization decreased with the increase in the number of routing control packets 

generated by the algorithm. 
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6.1 Future Work 

Based on the study it was found that there are certain· other aspects that have to be 

looked into to evaluate the performance of AODV routing algorithm. Following are 

the recommendations for the future research and enhancement to the existing work. 

o Simulation results shows, very low (32% to 12%) percentage bandwidth 

utilization for AODV[2] routing algorithm. Some more simulation studies can 

be done to find out the contribution of each factor that leads to low % 

bandwidth utilization. 

o We have used constant bit rate(CBR) traffic over TCP in all our simulations. 

Similar study can also be done with CBR traffic over UDP. Since UDP does 

not generate acknowledgments. 

o Similarly simulations can be done using variable bit rate (VBR) traffic. 

o We have used the priority queue in all our simulation, this has lead to 

significant performance degradation for a network with large number of 

mobile nodes. Studies can be made using different types of queues. 

o Due to time constraints, misbehavior could not be implemented on the 

individual nodes, instead it was implemented by inducing the error model in 

this study. A similar study can be done after implementing the changes. 

o Due to time constraints, the effect of misbehavior could not be analyzed with 

variable battery power and bandwidth. This present work can be extended to 

include these factors. 

46 



References 

[I] AndrewS. Tanenbaum, "Computer Networks", PHI publications, 3rd edition 

2000. 

[2] Charles E. Perkins, Elizabeth M. Royer, Samir R. Das, "Ad Hoc on Demand 

Distance Vector (AODV) Routing", Internet Draft, March 2001, 

www.ietf.org/internet-drafts/draft-ietf-manet-aodv-08.txt. 

[3] Charles E. Perkins, P. Bhagwat,"Highly dynamic DSDV for Mobile computer", 

SIGCOM' 94 conference on Communication Architecture, protocols and 

Applications, www.cs.umd.edu/projects/meml/papers/Sigcomm94.ps 

[4] Charles E. Perkins, "Mobility support, Mobile IP and Wireless Channel 

Support for ns-2 ", www.svrloc.org/--charliep/mobins2 

[5] David B Johnson, David A. Maltz, Yih-Chun Hu , Jorjeta G. Jetcheva "The 

Dynamic Source Routing algorithm for Mobile Ad hoc networks" , Internet 

Draft from IETF MANET Working Group, www.ietf.org/internet-drafts/draft­

ietf-manet-dsr-OS.txt 

[6] Jae Chung, Mark Claypool, "NS by Example", WPI Computer Science, 

www .nile. wpi.edu/NS. 

[7] J. Brach, D. Maltz, D. Johnson, Y. HU, J. Jetcheva, "A Performance 

Comparison of Multi-hop Ad-hoc Network Routing Protocols", ACMIIEEE 

International Conference on Mobile Computing and Networking, oct 1998. 

[8] Jochen H Shiller ,"Mobile Communications", PHI publications. 

[9] Kevin Fall, Kannan Varadhan, "Ns Manuaf', VINT project, May 2001, 

www.mach.cs.berkeley.edu/ns/ns-man.html. 

47 



[10] Mark Gries, " Tutorial for Network Simulator NS-2" 

www. isi.edu/nsnam/ns/tutorial. 

[11] Nitin H. Vaidya. Texas A & M University "Mobile Ad-Hoc Networks: 

Routing, Mac and Transport issues", www.cs.tamu.edu/faculty/vaidya. 

[12] Santhosh R. Thampuran,"Routing Protocols for AD Hoc Networks of Mobile 

Nodes", www.unix.ecs.umass.edu/-sthampur/Papers/AdhocRouting.pdf 

(Mobicom 98). 

(13] Sergio Marti, T. J. Giuli, Kevin Lai, Mary Baker, "Mitigating Routing 

Misbehavior in Mobile Ad Hoc Networks", MOBICOM 2000. 

[14] V Park, S Corson, "Internet Draft for TORA", IETF MANET working group, 

July, 2001, www .ietf.org/intemet-drafts/draft-ietf-manet-tora-spec-04.txt 

48 


	TH94810001
	TH94810002
	TH94810003
	TH94810004
	TH94810005
	TH94810006
	TH94810007
	TH94810008
	TH94810009
	TH94810010
	TH94810011
	TH94810012
	TH94810013
	TH94810014
	TH94810015
	TH94810016
	TH94810017
	TH94810018
	TH94810019
	TH94810020
	TH94810021
	TH94810022
	TH94810023
	TH94810024
	TH94810025
	TH94810026
	TH94810027
	TH94810028
	TH94810029
	TH94810030
	TH94810031
	TH94810032
	TH94810033
	TH94810034
	TH94810035
	TH94810036
	TH94810037
	TH94810038
	TH94810039
	TH94810040
	TH94810041
	TH94810042
	TH94810043
	TH94810044
	TH94810045
	TH94810046
	TH94810047
	TH94810048
	TH94810049
	TH94810050
	TH94810051
	TH94810052
	TH94810053
	TH94810054
	TH94810055
	TH94810056

