
A USER FRIENDLY INTERF A'CE

FOR

OBJECT ORIENTED DATABASES

Dissertation submitted in partial fulfillment

of the requirements for the

award of the degree of

Master of Technology

in

Computer Science

. by

Srikanth Goteti

SCHOOL OF COMPUTER & SYSTEMS' SCIENCES

JAWAHARLAL NEHRU UNIVERSITY
~

, .. :If' NEW DELHI- 11 0067

December 2001

. ' ~---- .,:.__ ~- ~

005.11 TH

G711 Us

1111111111111111111111111
TH9476

CERTIFICATE

This is to certify that the project entitled "A user friendly interface for

object oriented database systems" being submitted by Srikanth .Goteti to the School of

Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, in partial

fulfillment of the requirements for the award of the degree of Master of Technology in

Computer Science is a bonafide work carried by me under the guidance and supervision

of Prof. Parimala N.

The matter embodied in the dissertation has not been submitted for the

award of an~ other degree or diploma.

f·~·~ (-1• . \

Prof. Pari mala N. ~ \ r•\ t>

Schoof of Computers and Systems Sciences,

Jawaharlal Nehru University,

New Delhi-110067.

Prof. K.K Bharadwaj

Dean,

School of Computers and Systems Sciences,

Jawaharlal Nehru University,

New Delhi-110067.

q, ~~M,.."'~
(u sfik'anih)' v.2_ (.!> I I 9., l D I

ACKNOWLEDGEMENTS

I am grateful to my guide, Prof. Parimala N. for suggesting me to do the

work in object oriented databases and being there to direct me all the time.

I would like to thank Prof. K.K. Bharadwaj, Dean, School of Computers

and Systems Sciences (SC&SS), JNU for providing excellent lab facilities.

I would a]so like to thank Mr. T.V. Vijay Kumar, research scholar,

SC&SS, and all my batch mates for their cooperation and advice.

ABSTRACT

Object oriented database systems are software systems integrating techniques from
databases, object-oriented languages, programming environments and user interfaces.
These systems support many interfaces so that the uscr can retrieve data from the
database. A query language is the most commonly used and easy to use interface.
However even to use the query language the user must know the underlying database
schema.

we propose a user-friendly interface to the object oriented database system. In this
system the users need not have any knowledge either about the schema of the database
that they are using or about any query language that the system supports This
transparency is achieved as follows:

1. The user doesn't have to know the class of the object in which the desired data
exists. This implies that the 'from' clause in the general SOL query structure is
eliminated.

2. In object oriented databases objects may contain other objects. To retrieve data
from ·these component objects the user should have knowledge about their
container objects. This interface doesn't expect the user to have such knowledge
and provides hirn with the required data.

3. The complex structures such as nested tables, sets etc. and references to ether
objects are made transparent to the user.

4. The interface is made intelligent enough to find out the relation between data in
different objects so that the user can retrieve data in most desirable form.

The interface allows the user to perform some actions such as selecting the data
Qeeded by him and imposing conditions, if any, on the data selected by him. The system
maps these requests of t4e u·ser into meaningful queries of the query language supported
by the database being used. The system uses these queries to retrieve data from the
database and presents this data to user.

·The interface is designed in Java and Oracle is used as the backend to store data
and to respond to the queries sent.

lll

CONTENTS

CERTIFICATE

ACKNOWLEDGEMENTS

ABSTRACT

1. INTRODUCTION

2. THE GRAPHICAL USER

INTERFACE

3. DESIGN

4. IMPLEMENTATION

5. CONCLUSION

REFERENCES

iv

ii

iii

1

9

25

33

46

48 .

CHAPTER!

INTRODUCTION

1.1 Object Oriented Database Systems:

A databa.se system consists of a collection of related data an~. a set of

programs to access that data. The main aim of the database system is to provide an

efficient and convenient access to the data stored.

Object oriented database systems are software systems integrating

techniques from databases, object-oriented languages, programming environments and

user interfaces. An object oriented database management system should be

1. a DBMS, that is, it should have persistence, secondary storage management,

concurrency, recovery and an ad hoc query facility.

2. object oriented, that is, it should have complex objects, objectidentity,

encapsulation, types or classes, inheritance, overloading and late binding,

extensibility. and computational completeness.

All the above features beginning with the object oriented ones are

briefly explained below:

Complex objects are built from simpler ones. An object oriented

database should support sets, tuples and lists. Sets are a natural way of expressing

collections in the real world. Tuples capture the properties of an entity. Lists or arrays

depict the order that occurs in the real world.

1

Object identity is the intrinsic property of an object, which distinguishes

it from all other objects. Two different objects with the same values for all their members

are not identical. Hence because of object identity, an object has existence which is

independent of its value.

Encapsulation hides the implementation leading to the behaviour of the

object. An object has an interface and implementation. The interface is the specification

of the set of operations that can be performed on the object. It is the only visible part of

the object. The implementation has a data part (the representation or the state of the

object) and a procedure part which describes the implementation of each operation.

Encapsulation distinguishes the specification of each operation from its implementation

and thus leads to 'logical data independence' i.e. the implementation of an operation can

be changed without changing the programs using that operation.

A type summarizes the common structure of a set of objects with the

same characteristics. It corresponds to the notion of an abstract data type. The
' .

specification of the class is same as that of a type but it is more of a run-time notion.

Since it is used for the creation of objects it can be considered as an object factory.

Inheritance is a relationship among classes having common properties.

With Inheritance, each class (super or base class) can be specialised into a more specific

class (sub or derived class) which inherits the methods and structure of the super class

and in addition it contains· some other members. Inheritance can lead to a hierarchy of

classes with each class at a level being a more specialised version of the one at the

immediately higher level.

Overloa4ing and Late binding occur due. to Polymorphism. They are

explained below.

Because of overloading, an object can support many operations that

have the same name but each of these operations corresponds to a different

2

implementation. This implies that many methods can be declared having the same n~me,

as long as their invocations (messages) can be distinguished by their signatures,

consisting of the no and types of their arguments.

A name, say 0, may denote objects of many different classes that are

related by a common superclass (due to multiple inheritance). An operation defined in

the superclass can be defined again ·in one or more sub classes with a different

implementation. Since 0 can denote any of these subclasses, different esponses can be

obtained for a common ·set of operations. This leads to dynamic or late binding.

Computational completeness means that any computable function can

be programmed using the system. Though this concept is obvious fom programming

language point of view, it is new to the database systems.

Extensibility means that the system comes with a set of predefined types

or classes which can be extended i.e. there is a means to define new types and here is no

distinction between system-defined and user-defined types.

Persistence is the ability. of data to survive the execution of a process

and to be eventually reusable in another process.

Disk ·Management includes the classical features one finds in a DBMS

such as. index management, data clustering and data buffering.

Concurrency means that the system should ensure harmonious

cooperation be;tween users working simultareously on the database. The system should

therefore support the standard notion of atomicity of a sequence of operations and of

~ontrolled sharing.

Recovery means that, in case of hardware or software failure, the system

should recover, that is, be brought back to some coherent point.

3

The system should also provide an ad hocquery facility to the user. The

query facility should be

1. H,igh Level: The query facility should be reasonably declarative concmtrating

on what rather than on how.

2. Optimizable.~ The formulation of queries should lend itself to some sort of

optimization.

·3. Application Independent: The query facility should not be targeted to a

specific application .

. All the above mentioned topics are described in detail in [1].

1.2 Query Language for OODBMS:

Database Management systems support many interfaces so that the user

can retrieve data from the database; A query language is the most comrmnly used and

ea~y to use interface.

As mentioned in the previous section, a query language that provides ad

hoc query facility in object oriented database systems should behigh level, optimisable

and application independent. These characteristics ensure efficient and convenient access

to the database.

This section, using example queries, explains how two popular object

oriented query languages, OQL and SQL3, facilitate the retrieval of data from the objects

stored in the database.

1.2.1 OQL:

OQL is an object -oriented SOL-like query language. 90L is the query

language of the Object Data Management Group (ODMG)-93 standard. It can be used in

two different ways either as an embedded function in a programming language or as an

4

ad hoc qu~ry language. It has special features for dealing with complex objects and

·methods iri the object-oriented database 02.

The examp.les given below illustrate the queries in OQL for retrieving

data. Consider the following schema

Class Place_to__go

Type tuple (Name: string;

Address: tuple (Country: string,

City: string,

Street: string)

Description: string,

Phone.: integer,

Things_to_do: set (Thing_to_do))

Class Thing_ to_ do

Type tuple (Name: string,

Description: string,

ClosiniLdays: string,

Fee: integer)

An object of type Place_to_go is created by the statement below

Object Eiffel_Tower: Place.:._to_go

Example 1:

To know all the activities that cost less than 10 dollars, query flat

should be used is

Select x.name

From x in Thing_ to_ do

Where x.fee < 10

5

Example 2:

Similarly in order to know the prire of a visit to Eiffel_ Tower the query

required is

. Select x.fee

From x in Eiffd_Tower.Things_to_do

Where x.name= "visit"

More information about OQL can be obtained from [4] and [5]. The

section below gives similar queries in SQL3

L2.2 SQL3:

· SQL3 is ,an extension of SQL, the Structured Query Language, which

includes the object-oriented concepts. As in the case of relational databases, the database

supporting SQL3 also contains tables. The tuples of these tables are called 'row types'

and .the columns are the different 'types' that constitute a 'row type'. These 'row types'

are sjmilar to complex objects. More information about SQL3 can be obtained from [6].

Consider the schema containing tables Bars with tuples of 'row type'

BarType, Beers with tuples of 'row type' BeerType and Sells with tuples of 'row type'

MenuType; The structure of these RowTypes is given below

RowType BarType

{

};

Name char (20),

Addr char (20)

RowType BeerType

{

};

Name char (20),

Manf char (20)

6

RowType MenuType

{

};

Bar Ref (BarType),

Beer Ref (BeerType),

Price Float

Example 3:

To find the beers served by Joe the SQL3 query required is

Select beer->name from

From Sells

Where bar->name = 'Joe"s bar';

Here beer is a reference to an object of type BeerType and-> serves as the

dereference operator.

1.3 The need for a new interface:

· The above section (section 1.2) gives an introduction to the two query

languages that are most commonly used. From the examples given in that section we can

infer that in order: to retrieve data even using an ease to us~ interface such as a query

language the user must have knowledge about

1. The syntax of the query language: If the user doesn't know the query

language, he cannot prepare correct queries and even if he prepares

syntactically correct queries they may not be the ones that are required to

retrieve the data needed by him.

2. The schema of the database: The user must know the different classes that

comprise the schema of the database. The user must also know the

relationships that exist between classes. For example in order to generate the

query given in example 2,section 1.2.1, the user must know thatThings_to _do

. in Eiffel_ Tower is a set of objects of type Thing_to _do.

7

3. Object Oriented Concepts: In order to understand the schema of the database

and the relationships that exist be.tween different classes in the database the

user must have knowledge about the object oriented concepts.

The aim of this implementation is to provide the user with the data

needed by him without expecti~ any such prior knowledge from the user.

1.4 The Proposed User-Friendly Interface:

The proposed interface to the object oriented database systems is a

graphical user friendly one. To use this interface the user need not haveprior knowledge

about the schema of the underlying database, object oriented concepts.etc as in the case

of the query language. Using this interface the user can retrieve the desired data just by a

few mouse clicks.

The interface. allows the user to perform some actions such as selecting

the data needed by him and imposing conditions, if any, on the data selected by him. The

system maps these requests of the user into meaningful queries of the query language
' .· .

supported by the database being used. The system uses these queries to retrieve data from

the database and. p~esents this data to user. Since these queries are invisible to the user the

interface encapsulates the functionality of the query language.

This interface hides the complexity that exists in retrieving data from

different kinds of constructs that are supported by the object oriented database systems.

The way in which this transparency is achieved is explained in detail in the chapters that

follo'w.

This interface is not restricted either to a particular application or

database. This is open for all object oriented databases i.e. the same interface can be used

to retrieve data from different object oriented databases.

This interface is designed in Java and oracle is used as the backend to

store data and respond to the queries sent.

8

CHAPTER2

The Graphical User Interface

1. The Interface:

As mentioned before the system provides the user a graphical user­

friendly interface to interact with. The user using the interface retrieves the data that he

requires.

This chapter pictorially depicts the way the user 'interacts with the

interface. It also explains how the retrieved data is displayed to the user.

The user initially encounters the screen given below:

9

OODB Queries

SELECT

Fig 1

Name
Ssn
Addr
Street
City
State
Zip_code
Empno

Done

10

In the above figure, the box beside the label 'SELECT' displays the

schema of the database. In this chapter and in the chapters to come objects of the

following classes are assumed to exist in the database.

Persons

{

Name: string,

SSN: integer,

Addr

{

Street: string,

. City: string,

State: string,.

Zip_code: string

}

}

Participants

{

Empno: integer,

~name: string,

Job: string,

Mgr: string;

Hire.;..date: date,

Sal: integer,

Deptno: string

}

11

Employees

{

}

Empnumber: integer,

Person_data: references Persons

· Manager: references Persons

omce_addr

{

}

Street: string,

City: string,

State: string,

Zip_code: string

Salary: integer,

Phone~nums: Set of strings

Projects

{

}

Name: string,

Id: integer,

Owner: references Participants

Start_date: date,

Duration: string,

Modules: Set of Objects

{

}

Module_id: integer,

Module_name: string,

Module_start;_date: date,

Module_duration: string

12

Places_ to _go

{

Name: string,

Addr

{

Street: string,

City: string,

State: string,

Zip_code: string

}

Accom

{

Name: string,

Addr

{

Street: string,

City: string,

State: string,

Zip_code! st:ring

}

}

}

In the above representation, the term 'references' indicates that a

member of an object points to some other object. For example, 'owner', the member of

objects of' projects' class points to an object of class 'participants'.

A 'Set' means collection of variable number of objects or members of a

type. 'Phone_nums' in 'Employees' is a collection a strings. 'Modules' in 'Projects', a

collection of objects, can be considered as a nested table.

13

· The Sele~t box in the screen displays the schema without its structure.

The user will not know that 'Persons' is an object and the address 'Addr' of the 'Persons'

is another object within that 'Persons' object.

The members with same names are not repeated in the select box to

avoi.q confusion for the user. ·For example, though 'Name' is the name of a member in

'Persons' and 'Places_to_go', it is listed only once. No distinction is made either for

references or sets. Hence the user will not know that 'phone_nums' is a set and

'Manager' refers to some other object.

When the user completes the selection and clicks on the 'Done' button

the following dialogue box will appear

Do you want to specify a Condition?

Yes I No

Fig 2

If the user wants to impose a condition on the dtta he wants to retrieve,

he has to click on 'Yes' button. If the user clicks on 'No', the processing continues

without pausing for the user to specify the condition.

If the user clicks on 'Yes' the screen given below is displa)ed.

14

OODB Queries

SELECT Name

CONDITION

Ssn
Addr
Street
City
State
Zip_code
Empno

SUBMIT I
·-----··~--··-··---------···---~··-···-·-·- .. ·----~

Fig 3
15

When the user clicks on 'Submit' after specifying the condition the

system starts p~ocessing the user requests. As mentioned before the systemmaps the user

requests into meaningful queries of the query language supported by the database being

used. The system uses these queries to retrieve data from the database.

The remaining part of this section, through some exampes, illustrates

how the system displays data retrieved when the user requests include complex structures

such as sets, nested objects etc.

1.1 Path Resolution:

Let us consider the case when the user selects 'Name' and 'Addr'. The

database used in this implementation is Oracle. The queries to retrieve 'Name' and

'Addr' in the query language supported by Oracle are given below.

1. Select oO.name , oO.addr.street, oO.addr.city, oO.addr.state, oO.addr.zip _code

from persons oO

2. Select ol.name, bl.addr.street, ol.addr.city, ol.addr.state, ol.addr.zip_code

from places_to_go ol.

3. Select ol.accom.name, ol.accom.addr.street, ol.accom.addr.city,

ol.accom.addr.state, ol.accom.addr.zip_code from places_to_go ol

. From the above queries it can be seen how the nesting of objects is

made transparentto the user. The user doesn't have to mention the path 'ol.addr.street'

for retrieving the 'street' where the person lives. Just a click on the 'street' will serve the

purpose for the user.

The user even need not know about the existence of 'Persons' objects

in the dafabase.Thus the schema of the existing database is made transparent to the user.

The result for the query no 1 given above is displayed in the following

manner.

16

Results

Persons

Addr

' Name · Street City State Zip_code

Previous I Next I Exit I New Data l Other Data J Help

Fig4 17

'fhe format, in which the data is displayed, represents the structure of

the data.

The label "Persons" indicates that 'Name' and 'Addr' are members of

'Person' object. Similarly the label "Addr" indicates that 'Street', 'City', 'State' and

'Zip_code' are members of 'addr' object.

At the bottom of the screen are six buttons. The user uses these buttons

to interact with the system.The purpose of each of these buttons is explained below:

Previous & Next: If the user requests retrieve a large amount of data, it will not be

possible to display the entire data at one go. Thtse buttons help the user to go through the

retrieved data.

Exit: The user ~an use this button to exit the application.

New Data: On clicking this button the user will encounter the initial screen depicted

in Fig.l so that he can perform the select operation again.

Other Data: This button will be used to display data retrieved by the execution of

the next query in the set of queries generated. In the case of above example, query no. 2

will be executed and the data retrieved will re displayed to the user.

Help: This button helps the user understand the format in which the data is

displayed.

1.2 Resolving References:

Let us consider the case where the user selects 'Manager' and

'Office addr' in· 'Employees', The member 'Manager' of 'Employee' refers to a

'Person' object The query generated in this case are given below:

Select bO.name, bO.ssn as manager, oO.office_addr.street,

oO.office~addr.city, oO.pffice_addr.state, oO.office_addr.zip_core from employees

oO, perSons bO where ref (bO) = oO.manger

The data retrieved by this query is displayed in this manner:

18

Results

Employees
Manager

Office_addr

Name SSN Street City State Zip_code

Previous . Next I Exit New Data Other Data Help

Fig 5 19

Again the correspondence between the format in which the data is

displayed and the structure of the data can be felt. 'Name' and 'SSN' are the members of

the 'Persons' object to which the member 'Manager' of 'Employee' points. Although

only two members of the 'Persons' obFct are displayed, it is possible to retrieve and

display other members of the 'Persons' object.

1.3 Handling Sets:

Let us consider the case where the user selects the members 'Id' and

'Modules' of 'Projects'. The member 'Modules' in 'Projects' is a set of objects

(considered as nested table). The queries generated to retrieve the data are given below:

1 .. Select oO. id from projects oO.

2. Select ol.module_)d, ol.module_name, ol.module_:start_date,

ol.inodule_duration from projects a, table (a:modules) ol.

The data ·~etrieved by these two queries is displayed in the following

manner.

20

Results

Projects

Modules

Id Module_id Module name Module start d Module duratio - -
ate n

~

'8 f~~~ Library~ 1
\\'; ~
·~~ ~~·

*

Previous I Next I Exit I New Data I Other Data I Help

Fig 6
21

IIIII/III Ill/ 1111111/l IIIII IIIII/II/I II/IIIII
TH-9476

In the above figure, 'ld' and 'Module;' are the members of 'Projects'.

Each project has a no of modules. Hence each 'ld' of~ 'Project' has a no of 'Modules'

attached to it.

1.4 Working out r.elations:

Let 'Name', 'Ssn' and 'Id' be the attributes selected by the u;er. 'Name'

and 'Ssn' are members of 'Persons' and 'ld' is the member of 'Project'. The system

explores the relationship between these two objects by generating the following query

1. select oO.name,oO.ssn, ol.id from persons oO, projects ol where

oO~name=o l.name.

The data retrieved will be displayed in the following manner:

22

Results

Persons Projects

Name
,/

Ssn Id

Previous I Next I . Exit 1 New Data l Other Data I Help

23
Fig 7

..

As in previous cases, the correspondence between data requested and

data retrieved is apparent. 'Name' and 'Ssn' are members of 'Persons~ and 'ld' is the

member of 'Project'. This is similar to 'join' in relational databases.

2. Transparency:

· The transparency achieved through this interface is described below:

1. The user doesn't have to know the class of the object in which the desired data

exists. This implies that the 'from' clause in the general S(L query structure is
' ' .

eliminated.

2. In object oriented databases objects may contain other objects. To retrieve data

from these component objects the user should have knowledge about their container

objects. This interface doesn't expect the user to have such knowledge and provides

him with the required data.

3. The complex structures such as nested tables, sets etc. and references to other

objects are ~ade transparent to the user.

4. The interface is made . intelligent enough to find out the relationships between

different objects so that the user can retrieve data in most desirable form.

The user need not have knowledge even about the object oriented

concepts to retrieve data from the database using this interface. The remainirg ~hapters

explain the design and implementation details of the system.

24

CHAPTER3

DESIGN

2.1 Architectural Structure:

The system is based on a two tier architecture. In this architecture there

will be one or more clients and a server which responds to the queries of those clients.

The following is a pictorial depiction of the architecture of the system

2-Tier .A.rchitectuTe

GUi

Apptacatlon
Client

Fig 1

. GlU

Apphc;a,lou
Client.

IQ the system designed, a front-end application acts as client. It

generates queries, which correspond to the user requests and send them to the bacliend

database server. The database server sends the retrieved data to the client, which hen

displays it to the user. Concurrency, ohe of the features of object oriented database

systems, enable many users (Clients) to simultaneously access the database.

25

1.2 The Design:

The detailed design of this system is given in this section.

This interface is implemented in Java. Oracle is used as the backend.

There are two main modules in this implementation. The functionality of the

interface and the database is divided between the modules intf and dbcon

respectively.

intf controls .the interaction betweeh the user and the interface. The

interface allows the user to perform some actions such as selecting the data

needed by him and imposing crnditions, if any, on the data selected by him. The

system maps these requests of the user into meaningful queries of the query

language supported by the database being used. These queries are handed over to

dbcon for further processing.

dbcon establishes a connection with the database. It then sends the

queries generated by intf to retrieve data from the database. It also presents the

data retrieved to the user in an orderly and desirable manner.

The diagram below is the structure chart depicting the overall

system design. The module intfdb coordinates the execution of intf and dbcon.

26

User
Requests

intf

intfdb

? Queries~
~ Queries

dbcon

Fig 2

··.In the above diagram, the module "intf' maps the user requests into

meaningful queries in the query language supported by the underlying database. these

queries are sent to the' module '~dbcon", which establishes a ·connection with the database,

retrieves the data and displays it.

The detailed design of each of these modules given through structure

charts is shown below:

27

The "intf' module prepares the interface so that the user can interact .

with it and loads the schema on to the interface in a user-friendly format.

As the user indicates the completion of selection (say, by th~ press of a

button) the interface proceeds with further processing which is given below.

s.a?;

~S.c,s.a

fclass

selected
attributes

fclaps

S.c Q
s.a t

·fcom

intf

+
/ J1 s.c
6 r.p

resolve

Fig 3

The structure diagram for pstmt is given below

pstmt

28

pstmt

fquers hcond hrelcs

Fig 4

In the above diagrams

s.a : set of selected attributes

S.c,s.a : set of classes corresponding to the selected set of attributes.

s.c,s.a s.c = a subset of S.c such that each class in that subset has all the

selected attributes as its members. If no such subset exists then

s.c· is same as S.c

s.c,r.p : set of classes with the resolved paths for each of the selected attributes.

Qs : Queries (without condition if at all a condition is specified by the user)

ca : attributes mentioned in the condition

qs : queries{with condition, if it is S{X!cified by the user.).

The module "fclaps" finds the classes of the selected attributes and

resolves their paths. The module "fclass" accepts the 'Set of attributes selected by the user

and finds out one or more classes to whi:::h each of these attributes belongs. The module

'~fcom" checks whether a common set of classes to which all the selected attributes

belong, exists or • not. The module "resolve" performs the path resolution, which is

explained in. chapter no.4.

29

The module "pstmt" prepares the query statements. The structure chart

given below depicts the modules used by "pstmt".

hcond

c.a Q 6' .. · w s.c
r.p ~Qs

fclaps pstmt

s.a?; s.c

s.c,s.a <::>~

s.c, s.a ~

fclass fcorri resolve

Fig 5

In the above diagram,

s.a : set of attributes mentioned in the condition

S.c,s.a : set of classes corresponding to the set of attributes mentioned in the

condition.

s.c,s.a : s.c = a subset of S.c such that each class in that subset has all the

attributes mentioned in the condition as its members. If no such subset

exists then s.c is same as S.c

s.c,r.p : set of classes with the resolved paths for each of the attributes.

fquers

30

Qs : Queries (with condition specified by the user)

The module. "hcond" is called by "pstmt" if the user imposes a

condition on the data selected by him. As in the case of the attributes selected by the user,

the previous procedure ofcalling "fclaps" and "pstmt" is repeated for the attributes that

are mentioned in the condition imposed by the user.

The structure chart for the module "hrelcs" is given below:

hrelcs

Qs <f ! queries

getrel rescs dbcon

Fig 6

·In the above diagram,

qs : The queries generated by the module "fquers" + the queries generated by

the module "hcond".

31

Qs : qs + additional queries representing the relation between the selected

attributes.

queries : Qs modified to handle the complexities

The module "hrelcs" which is called by "pstmt" resolves complex

structures and uses the module "getrel" to find out whether a relation exists between the

selected attributes. The module "rescs" resolves the complex structures in the queries,

The module "hrelcs" passes on the queries to the module 'tlbcon". The structure chart

depicting the. modules used. by it given below.

dbcon

queries~

,,
qmanage

/ ~
data~

getdata display

Fig 7

The module "qmanage" acts as the·' query manager'. "getdata" is used

to retrieve the data ·from the database. The module "display" displays the data retrieved.

32

CHAPTER4

IMPLEMENTATION

This chapter explains how the input given by the user is transformed

into the output that the user finally views. The various stages involved in this process are

1. Finding the classes

2. Resolving the paths

3. Framing queries

4. Handli~g conditions

5. Deducing relationships.

6. Resolv,ing complex structures.

7. · Retrieving data

8. Displaying data .

. The first six stages can be considered as performing the mapping of user

requests into meaningful queries supported by the query language of the underlying

database. The last two stages are meant for establishing connection with the database,

retrieving the data and displaying it to the user. These are explained below

1. Generation of queries:

1.1 Finding out classes:

·As mentioned before, the system doesn't let the user know the structure

of the data stored. When the user indicates the completion of seloction to the system, it

begins proce.ssing the user requests by finding out the classes in which ~he selected

attributes are members.

The schema of the database is maintained in a separate data structure.

This can be easily updated to accommodate changes to the database schema. This

structure can be as complex as B-Trees and balanced trees to facilitate efficient searching

33

in the case oflarge databases. In this implementation, schema is stored in a file and a

linear search method is used.

The database schema is searched to find out the classes in which the

selected attributes are members. This search yields a set of classes for each of the selected

attributes such that each attribute is a member of e~h class in the set corresponding to

that attribute. If al, a2 and a3 are the attributes selected by the user then sl, s2 and s3 are

the sets of classes such that al is a member of each class (or one of its component) in sl

and so on. The resulting sets of classes are further processed to find whether these sets

have any subset. in common. If such a subset exists, it implies that each of the selected

att1ibutes is a member of each class (or one of its Gomponents) in that subset and the

remaining elements, other than those in that subset, in each of the sets for different

attributes are ignored.

The mod~les 'fclass' and 'fcom' perform the functions described above.

Let 'Name' and 'Street' be the attributes selected by the user. 'fclass' on searching the

schema, finds that the attribute 'Name' is mentioned in 'Persons' and 'Places_to_go', say

set ,sl, and the· attribute 'Street' is mentioned in 'Persons', 'Places_to_go' and

'Employee', say set s2. 'fcom'··On examining these two sets finds that they have 'Persons'

and 'Places_to_go', say set s, in common. Hence the class 'Employee' in set s2 is

ignored. This is explained below.

It is most likely that the user desires to view data fran the instances of

classes containing all the selected attributes as members. Hence those classes are

preferred to the dasses containing only a few of the selected attributes as members while

mapping the user requests into queries.

1.2 Resolving the paths:

In the previous stage, a set of classes is identified for each attribute. Let

C be an element in the set of classes for an attribute A. A may be a member of C or a

34

member of a component class of C or a member of a component clas of component class

of C and so on. In this context, path of the attribute A describes the location of A in C.

Recognising this path is necessary to generate the query to retrieve the attribute A. This

process can be termed as "path resolution".

Again let us consider 'Name' and 'Street' as the attributes selected by

the user. The module 'resolve' performs the path resolution. Let ol be an object of

'Persons' and o2 be an object of 'Piaces_to_go'. The paths generated for 'Nal!le are:

ol.name

o2.name

o2.accom.name

The paths generated for 'Street' are:

o l.addr.street

o2.addr .street

o2.accom.addr.street

The module 'resolve' on scanning the schema outputs two lists. One list

contains the resolved paths for the selected attributes and the other list contains the

corresponding class for each of the paths. These lists are later used to generate queries.

1.3 Fr-aming queries:

Using the lists generated by the module 'resolve' queries are formed in

this s~age. As. in SQL, the query language supported by oracle to retrieve data from the

objects contains a "Select'' clause, a "From" clause and a "Where" clause. Each of these

clauses is stored in a separate ordered list. The use of three ordered lists makes the

resolution of complex structures such as sets easier which becomes evident in sections

1.5 and 1.6. Hence if n queries are generated, then each query is split into 3 parts. Query

no i, i<=n, is repre.sented by the [h element in each of these lists.

35

. The module 'fquers' using the lists generated by the module 'resolve'·

creates the above mentioned ordered lists. Let the ordered lists Sq, Fq and Wq represent

the Select clause, From clause and Where clause respectively of the queries generated.

Assuming 'Name' and 'Street' as the selected attributes, the contents of these lists are

given below

Qno Sq Fq Wq

1 ol.name, ol.addr.street Persons o1 -
2 o2.name, o2.addr.street Places_to_go o2 -
3 02.accom.name, . Places_to_go o2 -

· o2.accom.addr .street

Table 1

From the above ordered lists, queries can be formed by appending
'

"Select" to an element in Sq and "From" to the corresponding element in Fq. Hence

queries generated are

Select Sq[i} from Fq[i] .l<=i<=3

The reasoning behind the formation cf these queries is discussed in the

remaining part of this section.

If the attributes selected by the user belong to two .different classes then

the module 'getrel' checks wh.ether a relation exists between those two different cla;ses.

This is explained in the section 1.5.

If the attributes selected do not belong to the same class or one of its

component classes and if there are two or more members in the class with the same name

as that of a selected attribute then the nesting level of the attributes determines the queries

generated. This is illustrated with an example below:

36

In this example places_to_go (section l,chapter2) is modified as given

below

Places_to_go ·

{

Name: string

Addr

{

· Street: string,

City: string,

State: string,.

Zip_code: string,

}

Accom

{

Taddr

{

Street: string,

City: string,

State: string,

Zip_code: string,

}

}

}

If the user selects 'Name' and 'Street' the queries generated are

1. Select oO.name , oO.addr.street from persons oO.

2. Select oO.name, oO.accom.taddr.street from persons oO.

When compared with the level of nesting of 'name',

oO.accom.taddr.street has deeper nesting than oO.addr.street. The lesser the difference in

the level of nesting between the two selected attributes greater is the priority given to that

37

pair while forming the queries. Hence oO.addr.street is given preference O\er

oO.accom.taddr.street

1.4 Handling Conditions:

In this stage the condition imposed by the user is incorporated into the

queries generated. If the user doesn't impose any condition, the module devoted for this

purpose is ignored.

As shOwn in Chapter 2, the user can enter the condition in the text area

labeled 'Condition'. This condition may contain some attributes that are not selected by

the. user. The process of finding the classes and resolvirg paths is repeated for these

attributes. The module 'fquers' is used to generate the ordered lists mentioned in section

1.3 so that they can be used in embedding the condition in the queries .

. The module 'hcond' handles the condtion imposed by the user. Let

'Name' and 'Street' be the attributes selected by the user. The constraints given below

must be satisfied while giving the condition.

1. The statement representing the condition must be of the form

attrib oper const/attrib

Here
. .

attrib is one of the names listed in the initial screen (Fig. 1, chapter2)

operis a relational operator such as'=' , '<'etc

canst may be a number or a string.

2. Strings must be enclosed between ' " '. For example, name = "John".

3. Numbers must not be ·enclosed between ' " ' or any othet symbol. They must be

entered as it is, as shown in the following example ..

Ssn = 123456.

4. The interface doesn't impose any restriction on the number of conditions that the

user can impose.

Let 'Name' and 'Zip_code' be the attributes selected by the user. Let

City = "New Delhi" be the condition imposed by the user. The moduie 'hcond' generates

the following queries to satisfy these requests

38

1. Select oO.name, oO.addr.zip_code from persons oO where oO.addr.city= 'New

Delhi'.

2. Select ol.name, ol.addr.zip_code from places_to_go ol where ol.addr.city=

'New Delhi'.

3. Select ol.accom.name, ol.accom.addr.zip_code from places_to_go ol where

ol.accom.addr.city= 'New Delhi'.

4. Select oO.narrie, oO.addr.zip_code from persons oO.

5. Select ol.name, ol.addr.zip_code from places_to_go ol.

6. Select oLaccom.name, ol.accom.addr.zip_codefrom places_to_go ol

If the condition imposed by the user fails to retrieve data from the

database, then queries 4,5 ahd ()are used to get the data ignoring the condition.

1.5 Deducing relations:

If all th.e selected attributes do not belong to the same class then the

module 'getrel' finds out whether a relationship exists between the different classes to

which thes'e attributes belong. If the selected attributes all are members of a single class

or ,a set of few classes, this stage is not encountered during the processing of user

req~ests.

An exponential search method is used to find whether a relation exists

or not. Let al and a2, in classes c1 and c2 be the attributes selecEd by the user. Let A be .

a variable that represents a class in the schema. The search method involves the steps

given below:

1. A=cl

2. If there is an attribute with the same name in A and c2 then go to 5.

3. Find a class c3 with at least one member having the name same as that of a

member in class A. If no such class exists report the lack of relation between

the selected attributes.

4. A=c3. Go to 2.

5. Generate the query.

In step 3, if it is found that the attributes selected are not related, the

user encounters the following dialogue box:

39

UNRELATED DATA

.. Do you want to Continue?

Yes No j
·······~· .. ···~···-··-··· .. ····-··~--.. ~---~·--·····-

If he clicks no 'No' the processing is stopped. However, if the user

clicks on 'Yes', the system proceeds further. For example, if the user seects 'Ssn' and

'Module_name' which are not related the user encounters the above dialogue box. If the

user clicks on 'Yes' the data retrieved by the following queries is displayed one after the

another

1. select oO.ssn from persons oO

2. select ol.module_name from projects a, table (a.modules) ol.

If the relation appears to exist between the selected attributes then the

query expressing the relation is generated in step 5. To illustrate the search procedure

with an example, let us assume that the schema of 'Participants' (refer to chapter 2,

section 1) is modified and now ~ld' is a member in it. Let 'Ssn' and 'Ename' be the

attributes· selected by the user. The relevant part of the modified schema is shown below:

Persons

{

Name: string,

SSN: integer,

Addr

{

Street: string,

City: string,

State: string,

Zip_code: string

}·

}

40

Participants

{

Id: integer,

Empno: integer,

Ename: string,

Job: string,

Mgr: string,

Hire_date: date,

Sal: integer,

Deptno: string

}

Projects

{

Name: string,

Id: integer,

Owner: references.Participants

Start_date: date, .. ·

Duration: string,

Modules: Set of Objects

{

}

' '

Modul~_id: integer,

Module_name: string,

Module_start_date: date,

Module_duration: string

'Ssn' is a member of 'Persons' and 'Ename' is a member of

'Participants'. These two classes have no member in common. In step 3 of the search

41

procedure, it is identified that 'Name' is common in both 'Projects' and 'Persons'. In step

2 it is found that 'Projects' and 'Participants' have a memrer 'Id' in common. Finally in

step 5 the following query is generated

select oO.ssn, ol.id from persons oO, participants ol, projects frO where oO.name

= frO.name and frO.id=ol.id.

To reduce the complexity of the search, for each attribute in the schema

a data structure. containing the set of classes, in which the attribute is a member, is

maintained. Also a list containing the set of classes already searched is constantly

updated in the search procedure, to avdd searching the same class again and again. In·

this implementation a file is used for each attribute to store the set of classes in which it is

a member. A separate module is written to update these files whenever the schema is

updated.

1.6 Resolving Complex structures:

The queries generated in the earlier stages are not capable of retrieving

data from complex structmes such as sets. While generating the queries, the module

'fquers' doesn't check whether the attribute being rarieved is a set or a reference or any

other complex structure. In this stage the module 'rescs' parses the queries generated and

updates them, if required, thus making them capable of handling complex structures.

The module ~fclass', while searching the schema for finding the classes

in which the selected attributes are members, updates lists that contain information about

the complex structures. The module 'rescs' uses these lists to identify the attributes that

represent complex 'structures.

Consider the query given below

Select oO.empnumber, oO.manager from projects oO.

The inemb.er 'manager' of 'Employees' refers to a 'Persons' object. The

module 'rescs', through the Jist that contains the attributes which are references, identifies

42

that owner· refers to a 'Persons' object and updates the query. The modified query is

given below:

Select oO.empnumber, bO.name, bO.ssn as manager from emplcyees oO, persons bO

where ref(bO) = oO.manager.

The module 'fquers' responds to the user request for 'Name' and

'Module_ name' with the following queries

Select oO.name from projects oO.

Select ol.module_name from modules ol.

The module 'rescs' observes that 'Modules' is a nested table within

projects and modifies the above to generate the queries given below:

Select oO.name from projects oO.

Select ol.module_name from projects a:, table (a.modules) ol.

The module ensures the execution of second query whenever the first

query is executed, by maintaining an ordered list, say dep (for dependency). The number

of elements in the list is n where n is equal to the no of queries generated. In this case

dep[1)=2 and dep[2)=-l. dep[1]=2 indicates the dependency of query no 1 on 2. Similarly

a negative value doesn't indicate a dependency.

With this stage ·the mapping of user requests into queries is completed

and these queries are used in the later stages to retrieve data.

2. Retrieving and.Displaying Data:

2.1 Retrieving Data:

In t)lis stage~ the queries formed in the previous stages are used to

retrieve data from the database.

Initially,· the interface requests the database server for connection. Once

the connection is established the queries formed are used to retrieve the data from the

database. The retrieved data is stored in a data structure. In this implementation the data

retrieved is stored in an ordered list (array).

43

The module 'getdata' establishes the connection with the database and

stores the retrieved data. It also handles the dependencies between queries mentioned

above.

1.8 Displaying Data:

. In this stage, the data retrieved is displayed in a user-friendly format.

The module 'display' scans the query and prepares the image of the

screen that should be displayed to the user. Consider the query

Select oO.name, oO.addr.street, oO.addr.city, oO.addr.state and oO.addr.zip _code

from persons oO.

Scanning this query, the module 'display' prepares an ordered list of

strings whose contents are given below:

Persons

Addr (2-5)

Name, Streei, City, State, Zip_code ·

This list determines the way in which the data displayed should be

labeled. Each element iri the list represents a row on the screen. The first row contains the

label 'Persons', the s·econd row contains'Addr' from column 2 to column 5 and the third

row contains the. attdbu.tes whose values are being displ~ed (refer to section 1.1 in

chapter 2). Th.is format re~embles the actual structure of the data in the database.

The queries containing Sets and references are also dealt in a similar

fashion. Chapter 2 pictorially depicts the way the data is displayed for different types of

queries.

· 3. The Platfonn:

.Java is used in designing the graphical user interface and Oracle is used

to store the data and respond to the queries sent. Windows 98 is the cperating system on

which.this application is developed.

44

Java language is created by Sun Microsystems by adapting essential

features of C++ and removing the hassles such as pointers that exist in it. The main

reason for choosing Java is its built in support for designing graphical user interfaces.

The abstract window toolkit (awt) that comes with Java offers various widgets (buttons,

text boxes, lists etc) which make the interface both graphical and user friendly.

Java is an object oriented programming language and hen<:;e carries all

the advantages of object oriented programming such as Encapsulation, Polymorphism

and Inheritance ..

The unique feature of Java is its portabiliJ¥. Programs written in Java

are platform i~dependent because of the 'bytecode' concept introduced by the Sun

Microsysterns. Java programs on compilation will be converted into bytecodes. These

byte~odes will th,en be executed by the Java Virtual Machine (JVM). The JVM can be

implement~d either in the hardware or software on a particular machine. Hence the

· statement 'compile once, run any where'.

Oracle is not a complete object oriented database. But it allows the

creation of complex objects and the existence of complex structures such as sets and

nested tables. It also supports a query language, which can be used to retrieve data from

the objects stored. Hence Oracle is used in this implementation to store the data.

45

CHAPTERS

CONCLUSION

Object. Oriented . Databases are getting more and more popular day by

day. This application is a graphical user interface to retrieve data from object oriented

database systems. The interface allows the user to perform some actions such as selecting

the data needed by him and imposing conditions, if any, on the data selected by him. The

system maps the user requests into meaningful queries of the query language supported

by the database being used. The system uses these queries to retrieve data from the

database and presents it to user.

When the user completes the selection, this application begins

processing by finding out for each attribute.the set of classes in which it is a member. It

then performs the path resolution which involves finding out the location or the depth of

each attribute in the class .. Several issues are considered while framing the queries. The

application infers that the selected attributes are related if there exists atleast one class in

which all the selected attributes are members. If no such class exists it finds out whether

relationships exist between different classes to which the selected attributes belong. If it

finds that the attributes selected are not related it reports the same to the user and

proceeds further if the user wants to do so. In the same class if two or more attributes

with the same name exist then attributes at the same level are preferred. The queres

formed at this stage are modified to make them capable of retrieving data from complex

structures. The interface uses these queries to retrieve the data and the retrieved data is

displayed to the user.

Unlike the query language, this interface doesn't require the user to

have pnor knowledge of . the syntax of the language, object oriented concepts and

database schema. Hence this interface will be extremely useful to the users who don't

have knowledge about databases and object oriented concepts. By encapsulating the

46

functionality of the query language this interface make various intricacies associated with

the query language transparent.

The main purpose of this interface is to provide an easy way b retrieve

the data from the database. The scope for extending this application lies in adding th~

capability to modify and update the database.

47

REFERENCES

1. BUILDING AN OBJECT ORIENTED DATABASE SYSTEM- THE STORY
OF02
Francois Bancilhon, Claude Delobel, Paris Kanellakis(eds.)

2. The following URLs give introductory information about object oriented
databases.

1. http://misdb.bpa.arizona.edu/-mis696g/Reports/ObjectDB/oodb.htm

2. http://www.cs.vu.nl/-fgouwcr/study/oop/introduction.html

3. http://www.dis.J)ort.ac.uk/-chandlcr/OOLccturcs/databasc/database.htm

3. Query Languages for Object Oriented databases can be found at the following
URLs

l. '>\'.'>V'>\' . .iJ1f()biqgcn.fr/~t::fYi<::<:!~/cy<::t:l_h/Pllh/1!}'1.11lll11111()cJ~?,h..tm

2. http://www.sobcrit.hut.fi/-kta/odm/sld022.htm

4. An overview of Object Query Language, a SQL like declarative language can
be obtained from

http://www .odmg.orglstandard/standardoverview. htm

5. The user manual for OQL can be obtained from the website

http://www.cis.upcnn.edu/-cis550/oql.pdf

6. The URLs given below give information about SQL3

1. http://Www.objs.com/x3h7 /sql3.htm

2. http://www.soberit.hut.fi/-kta/odm/sld033.htm_

. 4. http://datasplash.cs.berkeley.edu:8000/sequoia/dba/montagc/FAQ/SQL.html

48

	TH94760001
	TH94760002
	TH94760003
	TH94760004
	TH94760005
	TH94760006
	TH94760007
	TH94760008
	TH94760009
	TH94760010
	TH94760011
	TH94760012
	TH94760013
	TH94760014
	TH94760015
	TH94760016
	TH94760017
	TH94760018
	TH94760019
	TH94760020
	TH94760021
	TH94760022
	TH94760023
	TH94760024
	TH94760025
	TH94760026
	TH94760027
	TH94760028
	TH94760029
	TH94760030
	TH94760031
	TH94760032
	TH94760033
	TH94760034
	TH94760035
	TH94760036
	TH94760037
	TH94760038
	TH94760039
	TH94760040
	TH94760041
	TH94760042
	TH94760043
	TH94760044
	TH94760045
	TH94760046
	TH94760047
	TH94760048
	TH94760049
	TH94760050
	TH94760051
	TH94760052
	TH94760053

