A USER FRIENDLY INTERFACE
- FOR
OBJECT ORIENTED DATABASES

Dissertation submitted in partial fulfillment
of the requirements for the
award of the degfee_ of

Master of Technology
in N
Computer Sciénc‘e o
- by

Srikanth Goteti

SCHOOL OF COMPUTER & SYSTEMS SCIENCES

JAWAHARLAL NEHRU UNIVERSITY
NEW DELH! - 110067

Decembef 2001 - -

005.11 TH
G711 Us

T

- CERTIFICATE

This is to certify that the project entitled “A user friendly interface for

object oriented database syétems_” being submitted by Srikanth Goteti to the School of

Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, in partial

fulfillment of the requirements for the award of the degree of Master of Technology in

Computer Science is a bonafide work carried by me under the guidance and supervision

of Prof. Parimala N. .

The matter embodied in the dissertation has not been submitted for the

award of any other degree or diploma.

?@\XA‘MW N

Prof. Parimala N. 1™ ®" _
School of Computers and Systems Sciences,
Jawaharlal Neﬁru University,

New Delhi-110067.

Prof. K.K. Bharadwaj

Dean,

School of Computers and Systems Sciences,
Jawaharlal Nehru University,

New Delhi-110067.

(. Sy
(dmzullgzel

ACKNOWLEDGEMENTS

I am grateful to my guide, Prof. Parimala N. for suggesting me to do the

work in object oriented databases and being there to direct me all the time.

‘ I would like to thank Prof. K.K. Bharadwaj, Dean, School of Computers
and Systems Sciences (SC&SS), JNU for providing excellent lab facilities.

I would also like to thank Mr. T.V. Vijay Kumar, research scholar,

SC&SS, and all my batch mates for their cboperation and advice.

(5 sl 70|/2/0|

" ABSTRACT

Object oriented database systems are software systems integrating techniques from
databases, object-oriented languages, programming environments and user interfaces.
These systems support many interfaces so that the user can retrieve data from the
database. A query language is the most commonly used and easy to use interface.
However even to use the query language the user must know the underlying database .
schema. :

we propose a user-friéndly interface to the object oriented database system. In this
system the users need not have any knowledge either about the schema of the database
that they are using or about any query language that the system supports This
transparency is achieved as follows:

1. The user doesn’t have to know the class of the object in which the desired data
exists. This implies that the ‘from’ clause in the general SQL query structure is
eliminated.’ :

2. In object oriented databases objects may contain other objects. To retrieve data

_ from these component objects the user should have knowledge about their

container objects. This interface doesn’t expect the user to have such knowledge
and provides him with the required data.

3. The complex structures such as nested tables, sets etc. and references to cther
objects are made transparent to the user.

4. The interface is made intelligent enough to find out the relation between data in
different objects so that the user can retrieve data in most desirable form.

" The interface allows the user to perform some actions such as selecting the data
needed by him and imposing conditions, if any, on the data selected by him. The system
maps these requests of the user into meaningful queries of the query language supported
" by the database being used. The system uses these queries to retrieve data from the
database and presents this data to user.

- The interface is designed in Java and Oracle is used as the backend to store data
and to respond to the queries sent.

iii

CONTENTS

CERfIFICATE
A'VCKNOWLEDGVEMENTS
 ABSTRACT
1. INTRODUCTION

2. THE GRAPHICAL USER
INTERFACE

3. DESIGN
4. IMPLEMENTATION
5. CONCLUSION

'REFERENCES

25
33
46

48

CHAPTER 1

INTRODUCTION

1.1 Object Oriented Database Systems:

A database system consists of a collection of related data and a set of
programs to access that data. The main aim of the database system is to provide an

efficient and convenient access to the data stored.

Object oriented database systems are software systems integrating
techniques from databases, object-oriented languages, programming environments and

user interfaces. An object oriented database management system should be

1. a D'BMS, théi is, it should have persistence, secondary storage mémagement,
concurrenéY,--fécovery and an ad hoc query facility.
2. 6bject oriented, that is, it should have complex objects, objectidentity,
e'n'cabsulétioﬁ, types or classes, inheritance, overloading and late binding,

extensibility and computational completeness.

All the above features beginning with the object oriented ones are

briefly explained below:

Complex objects are built from simpler ones. An object oriented
database should support sets, luples-arid lists. Sets are a natural way of expressing
collections in the real world. Tuples capture the properties of an entity. Lists or arrays

depict the order that occurs in the real world.

Object identity is the intrinsic property of an object, which distinguishes
it from all other objeéts. Two different objects with the same values for all their members
are not identical. Hence because of object identity, an object has existence which is

independent of its value.

Encapsulation hides the impleméntation leading to the behaviour of the
object. An object has an interface and implementation. The interface is the specification
of the set of operations that caﬁ be performed on the object. It is the only visible part of
the object. The implementation has a data part (the representation or the state of the
object) and a procedure part which describes the implementation of each operation.
Encapsulation distinguishes the specification of each operation from its implementation
and thus leads to ‘logical data indcpendehce’ i.e. the implementation of an operation can

be changed without changing the programs using that operation.

A type summarizes the common structure of a set of objects with the
same characteristics. It corresponds to the notion of an abstract data type. The
specification of the class is same as that of a type but it is more of a runrtime notion.

Since it is used for the creation of objects it can be considered as an object factory.

Inheritanée is a relationship among classes having common properties.
With Inheritance, each class (super or base class) can be specialised into a more specific
class (sub or derived class) which inherits the methods and structure of the super class
and in addition"it contains'some other members. Inheritance can lead to a hierarchy of
+ classes with each class at a level being a more speéialised version of the one at the

immediately higher level.

Overloading and Late binding occur due to Polymorphism. They are
explained below. ’
. Because of overloading, an object can support many operations that

have the same name but each of these operations corresponds to a different

implementation. This implies that many methods can be declared having the same name,
as long as their invocations (messages) can be distinguished by their signatures,-

consisting of the no and types of their arguments.

A name, say O, may denote objects of many different classes that are
related by a common superclass (due to multiple inheritance). An operation defined in
the superclass can be defined again in one or more sub classes with a different
implementation. Since O can denote any of these subclasses, different esponses can be

obtained for a common set of operations. This leads todynamic or late binding.

Computational completeness means that any computable function can
be programmed using the system. Though this concept is obvious fom programming

language point of view, it is new to the database systems.

Extensibility means that the system comes with a set of predefined types
or classes which can be extended i.e. there is a means to define new types and here is no

distinction between system-defmed and user-defined types.

Persistence is the ability of data to survive the execution of a process

and to be eventually reusable in another process.

Disk Management includes the classical features one finds in a DBMS

such as index management, data clustering and data buffering.

Concurrency means that the system should ensure harmonious
cooperation between users working simultareously on the database. The system should
therefore support the standard notion of atomicity of a sequence of operations and of

controlled shéring.

Recovery means that, in case of hardware or software failure, the system

should recover, that is, be brought back to some coherent point.

The system should also provide an ad hocquery facility to the user. The
query facility should be
1. High Level: The query facility should be reasonably declarative concentrating

en what‘ rather than on how.

2. Optimizable: The formulation of queries should lend itself to some sort of
optimization. B

3. Application Independent: The query facility should not be targeted to a
specific applieation. |

. All the above mentioned topics are described in detail in [1].

1.2 Query Language for OODBMS:

Database Management systems support many interfaces so that the user .
can retrieve data from the database. A query language is the most comnonly used and

easy to use interface.

As mentioned in the previous section, a query language that provides ad
hoc query facility in object oriented database systems should behigh level, optimisable
and application independent. These characteristics ensure efficient and convenient access

to the database.

This section, using example queries, explains how two popular object
oriented query languages, OQL and SQL3, facilitate the retrieval of data from the objects

stored in the database.
1.2.1 OQL:
OQL is an Ob]CCt -oriented SQL-like query language. OQL i is the query

language of the Ob_]CC[Data Management Group (ODMG)-93 standard. It can be used in

two different ways either as an embedded function in a programming language or as an

ad hoc query langl;lage. It has special features for dealing with complex objects and

-methods in the object-oriented database O2.

- The examples giveh below illustrate the queries in OQL for retrieving

data. Consider the following schema

Class Place;to _gd
Type tﬁple (Name: string,
Addressi tuple (Country: string,
City: string,
_ Street: string)
Description: string,
Phoné; integer,

Things_to_do: set (Thing_to_do))

Class Thing_to_do
Type tuple (Name: string,'
_ Descriptidn: string,
Closing_days: string,

Fee: integer)

~ An object of type Place_to_go is created by the statement below
Object Eiffel_Tower: Place to_go '

Example 1:

. To know all the aétivities that cost less than 10 dollars, query hat

should be used is | ' | '
Select x.name
From x in'Thing_to_do
Where x.fee <10

Example 2:
Similarly in order to know the price of a visit to Eiffel_Tower the query
required is
‘Select x.fee
From x in Eiffel_Tower.Things_to_do

Where x.name= “visit”

" More inf‘ov'r_mation about OQL can be obtained from [4] and [S]. The

section below gives similar queries in SQL3

1.2.2 SQL3: '
- SQL3 is an extension of SQL, the Structured Query Language, which
includes the objeci—oriented concepts. As in the case of relational databases, the database
.supporting SQL3 also contains tables. The tuples of these tables are called ‘row types’
and the co‘lumns.a're the differen; ‘types’ that constitute a ‘row type’. These ‘row types’

are similar to coiﬁplex ‘objec'ts.- More information about SQL3 can be obtained from [6].

Considef the schema containing tables Bars with tuples of ‘row type’
BarType, Beers with tuples of ‘row type’ BeerType and Sells with tuples of ‘row type’
MenuType. The structure of these RowTypes is given below
RowType BarType |

{
Name char (20),

Addr char (20)
14

RowType BeerType

{
Name char (20),
Manf char (20)
Y

RowType MenuType

{ . - :
Bar Ref (Barfl;ype),:
Beer Ref (BeerType),
Price Float

%

Example 3:
| ‘To find the beers served by Joe the SQL3 query required is
Select beer->name from
From Sells
Where bar->name = ‘Joe”s bar’;

Here beer is a reference to an object of type BeerType and -> serves as the

dereference operator.

1.3 The need for a new interface:

- The above section (section 1.2) gives an introduction to the two query
languages that are most commonly used. From the examples given in that section we can
infef that in order to retrieve data even using anease to use interface such as a query
language the user must have knowledge about

1. The syntax of the query language: If the user doesn’t know the query
language, he cannot prépare correct queries and even if he prepares
syntactically correct queries they may not be the ones that are required to
retrieve the data needed by him.

2. The schema 'of the database: The user must know the different classes that
comprise the schema of the database. The user must also know the
relationships that exist between claéses. For example in order to generate the
query given in example 2,section 1.2.1, the user must know thatThings _to_do

. in Eiffel_Tower is a set of objects of type Thing _to_do.

3. Object Oriented Concepts: In order to understand the schema of the database
and the relationships that exist between different classes in the database the

user must have knowledge about the object oriented concepts.

The aim of this ifnplementation is to provide the user with the data

needed by him without expecting any such prior knowledge from the user.
1.4 The Proposed User-Friendly Interface:

The proposed interface to the object oriented database systems is a
graphical user friendly one. To use this interface the user need not haveprior knowledge
about the schema of the_ underlying database, object oriented concepts.etc as in the case
of the query language. Using this interface the user can retrieve the desired data just by a
few mouse clicks. | | ' |

The_' interféc’e, allows the user to perform some actions such as selecting
the data needed by him and imposing conditions, if any, on the data selected by him. The
system maps ‘these requests of the user into meaningful queries of the query language
supported by the database Being used. The system uses these queries to retrieve data from
the databas‘e_"an_d‘ presents this data to u'sér. Since thes;e queries are invisible to the user the
interface encapsulates the funcfionality of the query language.

'"I:‘his interface hides the complexity that exists in retrieving data from
different kinds of constructs that are supported by the object oriented database systems.
The way in which.th'is transparency is achieved is explained in detail in the chapters that
follow. _ ,

This interféée is not restricted either to a particular application or
database. This is open for all objéct oriented databases i.e. the same interface can be used
to retrieve data from different object oriented databases.

. This interface is designed in Java and oracle is used as the backend to

store data and respond to the queries sent.

CHAPTER 2

- The Graphical User Interface

1. The Interface: .
As mentioned before the system provides the user a graphical user

friendly interface to interact with. The user using the interface retrieves the data that he
requires. ’

This chapter pictorially depicts the way the user interacts with the
interface. It alS(.)‘expl'ains ho.w the retrieved data is displayed to the user.

The user initially encounters the screen given below:

OODB Queries

SELECT Name

o Ssn
Addr
Street
City

~State
Zip_code
Empno

Done

Fig1

10

In the above figure, the box beside the label ‘SELECT’ displays the
schemavof the database. In this chapter and in the chapters to come objects of the
following classes are assumed to exist in the database.

Persons
{
Name: string,
SSN: integcr,
Addr
{
Street: string,
City: s’tring,
Sta‘té: string, . .
Zip_cdde: string

Particip'ants

{
Empno: integer,

i Enamé: string,

Job: string,
Mgrﬁ string,
Hire_date: daté,
Sal: integer,

Deptno: string

Employees ;

A

Empnumber: integer,

Person_data: refererices Persons

- Manager: references Persons

Office_addr

A

Street: string,
City: string,
State: string,
Zip_code: string
| _
Salalfy: ivnteger,

Phone_‘numé: Set of strings

Projects

{

Name: string,
Id: integer,

Owner: references Participants

Start_date: date,

Duration: string, '.

Modules: Set of Objects

{
Module_id: integer, -
Modulg_name: string,
M'odule}tart-_date: date,

Module_dufation:_étring

12

Places_to _g'o
{
"~ Name: string,
Addr-
{ .
Street: string,
City: string,
State: étring,
Zip_code: string |
b
Accom
{ _
Name: string,
Addr
{
Street: string,
City: string,
State: string,
Zip_code': string

In the above represeht’ation, the term ‘references’ indicates that a
member of an objeét points to some other object. For example, ‘owner’, the member of
objects of ‘projects’ class points to an object of class ‘participants’.

A ;‘Set’ means collection of variable number of objects or members of a
type. ‘Phone_nums’ in ‘Employees’ is a collection a strings. “Modules’ in ‘Projects’, a

collection of objects, can be colnsi.der'ed as a nested table.

13

~The Select box in the screen displays the schema without its structure.
The user will not know that ‘Persons’ is an object and the address ‘Addr’ of the ‘Persons’
is another objéct within that ‘Persons’ object.

- .The members with same names are not repeated in the select box to
avoid confusion for the uset. 'Fbr example, though ‘Name’ is the name of a member in
‘Persons’ and ‘Places_to_go’, it is listed only once. No distinction is made either for
fefererices or sets. Hence the user will riot know that ‘phone_nums’ is a set and
‘Manager’ refers to some other object.

" When the user completes the selection and clicks on the ‘Done’ button

the following dialogue box will éppear

4

Do ‘yo'u want to specify a Condition?

H
Yes No E

[P | R —

Fig 2

If the user wants to impose a condition on the data he wants to retrieve,
he has to click on ‘Yes’ button. If the user clicks on ‘No’, the processing continues
without pausing for the user to specify the condition.

If the user clicks on “Yes’ the screen given below is displayed.

14

'OODB Queries

SELECT Name
- Ssn
Addr
Street
City
State
Zip_code
Empno

‘CONDITION

SUBMIT

Fig 3

15

When the user clicks on “Submit’ after specifying the condition the
system starts processmg the user requests. As mentioned before the systemmaps the user
requests into meamngful queries of the query language supported by the database being
used. The system uses these queries to retrieve data from the database.

"The remaining part of this section, through some examgles, illustrates
| how the system displays data retrieved when the user requests include complex structures

such as sets, nested objects_etc.

1.1 Path Resolution:

Let us consider the case when the user selects ‘Name’ and ‘Addr’. The
database used in this implementation is Oracle. The queries to retrieve ‘Name’ and

‘Addr’ in the query language supported by Oracle are given below.

1. Select 00.name, eO.addr.street, o0.addr.city, 00.addr.state, 00.addr.zip_code
.from persons 00
’2. Select o1.name, ol.addr.street, ol.addr.city, ol.addr.state, ol.addr.zip_code
from places_to _gool.
3. Select ol.accom.name, ol.accom.addr.street, ol.accom.addr.city,

ol.accom.addr.state, ol.aceo'm.addr.zip_code from places_to_go ol

~ From the above querles it can be seen how the nestmg of objects is
made transparent to the user. The user doesn t have to mention the path ‘ol.addr.street’
for retrieving the street” where the person lives. Just a click on the ‘street” will serve the
purpose for the user. - |

The user even need not know about the existence of ‘Persons’ objects
in the database ‘Thus the schema of the existing database is made transparent to the user.

- The result for the query no 1 given above is dtsplayed in the following

manner.

16

| Res_ults

Persons

Addr

Name -

Street

City

State

Zip_code

Previous

Next

Exit New Daia

Other Data

Help

Fig 4

17

The format, in which the data is displayed, represents the structure of
the d‘ata‘. |
The label “Persons” indicates that ‘Name’ and ‘Addr’ are members of
‘Person’ object. Similarly the label “Addr” indicates ihat ‘Street’, ‘City’, ‘State’ and
‘Zip_code’ are members of ‘addr’ object.
, At the bottom of the screen are six buttons. Theuser uses thes¢ buttons

to interact with the system. The purpose of each of these buttons is explained below:

. Previous & Next: If the user requests retrieve a large amount of data, it will not be
possible to display the entire data at one go. These buttons help the user to go through the
retrieved data. | '

Exit: The user can use this button to exit the application.
| New Data: On clicking this button the user will encounter the initial screen depicted
in F1g1 so that he can perform the select operation again.

- ‘Other Data: This button will be Lised to display data retrieved by the execution of
' the nex.t query in the set of qheries generated. In the case of above example, query no. 2
will be executed and the data retrieved will be displayed to the user.

Help: This button helps the user understand the format in which the data is

displayed.

1.2 Resolving References:
Let us consider the case where the user selects ‘Manager’ and
‘Offiée_addr’ in ‘Employees’. The'-member ‘Manager’ of ‘Employee’ refers to a

‘Person’ object. The query generated in this case are given below:
Select b0.name, b0.ssn as manager, 00.office_addr.street,
00.office_addr.city, 00.office_addr.state, 00.office_addr.zip_cod from employees

00, persons b0 where ref (b0) = 00.manger

The data retrieved by this query is displayed in this manner:

18

Results

Employees

Manager
' Office_addr
Name - SSN Street City State Zip_code
- Previous . Next Exit New Data Other Data Help
' Fig5 19

| Again the correspondence between the format in which the data is
displayed and the structure of the data can be felt. ‘Name’ and ‘SSN’ are the members of
the ‘Persons’ object to which the member ‘Manager’ of ‘Employee’ points. Although
only two members of the ‘Persons’ objct are displayed, it is possible to retrieve and

display other members of the ‘Persons’ object.

1.3 Handling Sets: |
Let us con81der the case where the user selects the members ‘Id’ and
‘Modules of ‘Pro;ects The member ‘Modules’ in ‘Projects’ is a set of objects
(considered as nested table) The queries generated to retrieve the data are glven below:
1. . Select 00. id from pr0]ects 00.
2. Select ol.module_'_ld, 0ol.module_name, ol.module_start_date,

ol.module_duratipn from projects a, table (a.modules) o1.

“The data retrieved by these two queries is displayed in the following

manner.

20

Fig6 .

‘Results
Projects
- Modules
Id - Module_id Module_name | Module_start_d | Module_duratio
" ate n
NS
r+
w
5
l
<
Previous Next Exit New Data Other Data Help
21

L

In the above figure, ‘Id” and ‘Modules’ are the members of ‘Projects’.
Each project has a no of modules. Hence each ‘1d” of a ‘Project’ has a no of ‘Modules’

attached to it.

1.4 Working out relations:
Let ‘Name’, ‘Ssn” and ‘Id’ be the attributes selected by the wer. ‘Name’

and ‘Ssn’ are members of ‘Persons’ and ‘Id’ is the member of ‘Project’. The system

explores the relationship between these two objects by generating the following query

1. select 00.name, 00.ssn, o1.id from persons 00, projects 01 where

0o0.name=01.name.

The data retrieved will be displayed in the following manner:

22

Results

Persons

Projects

Name

-

Ssn

Id

Previous

Next

 Exit New Data

OtherData | Help

Fig7

23

As in previous cases, the correspondence between data requested and
data retrieved is apparent. ‘Name’ and ‘Ssn’ are members of ‘Persons’ and ‘Id’ is the

member of ‘Project’. This is similar to ‘join’ in relational databases.

2.Transparency:

',‘The‘ transpar_evncy achieved throhgh this interface is described below:

1. The user doesn’t have to know the class of the object in which the desired data
exists. This implies that the ‘from; clause in the general SQL query structure is

eliminated.

2. In object oriented databases vobjects may contain other objects. To retrieve data
from these component_objects the user should have knowledge about their container
objects. This interface doesn’t expect the user to have such knowledge and provides

" him with the required data’.‘

3. The complex structures such as nested tables, sets etc. and references to other

objects are made transparent to the user.

4. The interface is made .intelligent enough to find out the relationships between

different objects so that the user can retrieve data in most desirable form.
‘The user need not have knowledge even about the object oriented

concepts to retrieve data from the database using this interface. The remaining chapters

explain the design and implementation details of the system.

24

CHAPTER 3

DESIGN

2.1 Architectural Structure:

The system is based on a two tier architecture. In this architecture there

will be one or more clients and a server which responds to the queries of those clients.

'The following is a pictorial depiction of the architecture of the system

2-Tier Architecture

cui [Gul
Appiication [Applicaioi

ko
®
P
Y
k.o
R e
Be
59
-
Be
.y
.
&
k&

Client.
Fig 1
In‘the system designed, a front-end application acts as client. It
generates queries, which.correspond to the user requests and send them to the backend
database server. The database_server_ sends the retrieved data to the client, which tien

displays it to the user. Concurrency, one of the features of object oriented database

systems, enable‘m"any users (clients) to simultaneously access the database.

25

1.2 The Design:

The detailed design of this system is given in this section.

’i‘his interface is implemented in Java. Oracle is used as the backend.
Th'erle are two main modules in this implementation. The functionality of the
interface and the database is divided betweeh the modules intf and dbcon

. respectively.

intf controls the interaction between the user and the interface. The
interface allows the user to perform some actions such as selecting the data
needed by'him and imposing canditions, if any, on the data selected by him. The
system ‘maps ‘these requests of the user into meaningful queries of the query
language supported by the database being used. These queries are handed over to

dbcon for further processing.

 dbcon establishes a connection with the database. It then sends the
queries generated by intf to retrieve data from the database. It also presents the

data retrieved to the user in an orderly and desirable manner.

The diagram below is the structure chart depicting the overall

system design. The module intfdb coordinates the execution of intf and dbcon.

26

intfdb

User f | '
Requests Queries Ci
‘ Cg Queries

intf 1T dbcon

Fig 2

“In the above dlagram, the module “intf” maps the user requests into

meanmgful quenes in the query language supported by the underlying database. These

queries are sent to the module “dbcon which establlshes a connectlon with the database,

retrieves the data and displays it.
‘ The detailed demgn of each of these modules given through structure

charts is shown below:

27

The “intf” module prepares the interface so that the user can interact.
with it and loads the schema on to the interface in a userfriendly format.
| As the user indicates the completion of selection (say, by the press of a

button) the interface proceeds with further processing which is given below.

intf

selected ?
attributes

s.ccx
I.p I.p

fclaps_‘ _ pstmt

fclass | . .} fcom - : resolve

Fig 3

The structure diagram for pstmt is given below

28

pstmt

s.C
rp-

wlds &

fquers ~ hcond hrelcs

S.d
S.cs.a

s.C,S.a

S.C,I.p
Qs
ca

gs

Fig 4

In the above diagrams

: set of selected attributes
: set of classes corresponding to the selected set of attributes.

. s.c = a subset of S.c such that each class in that subset has all the

selected attributes as its members. If no such subset exists then

s.c-is same as S.c

: set of classes with the resolved paths for each of the selected attributes.
: Queries (without condition if at all a condition is specified by the user)
: attnbutes mentioned i in the condition

: queries (with condmon, if it is specified by the user.).

The module “fclaps” finds the classes of the selected attributes and

resolves their paths. The module “fclass” accepts the set of attributes selected by the user

and finds out one or more classes to which each of these attributes belongs. The module

“fcom” checks whether a common set of classes to which all the selected attributes

belong, exists or ‘not. The module “resolve” performs the path resolution, which is

explained in chapter no.4.

29

The module “pstmt” prepares the query statements. The structure chart

given below depicts the modules used by “pstmt”.

hcond

pstmt

RIS

resolve fquers

Fig 5

In the above diagram,

s.a : set of attributes mentioned in the condition

'S.c,s.a :set of classes corresponding to the set of attributes mentioned in the

condition.

s.c,s.a o s.c = a subset of S.c such that each class in that subset has all the

attributes mentioned in the condition as its members. If no such subset

exists then s.cis same as S.c

s.c,r.p : set of classes with the resolved paths for each of the attributes.

30

Qs :Queries (with condition specified by the user)

The module “‘hc,ond” is called by “pstmt” if the user imposes a
condition on the data selected by him. As in the case of the attributes selected by the user,
the previous procedure of calling “fclaps” and “pstmt” is repeated for the attributes that

are mentioned in the condition imposed by the user.

The structure chart for the module “hrelcs” is given below:

~ hrelcs’

QSC\I? équeries
quéries E \

getrel o rescs dbcon

Fig 6

‘In the above diagram,

qs : The queries generated by the module “fquers” + the queries generated by

the module “hcond”.

31

Qs : gs + additional queries representing the relation between the selected

attributes.

queries : Qs modified to handle the complexities

The module “hrelcs” which is called by “pstmt” resolves complex
structures and uses the module “getrel” to find out whether a relation exists between the
selected attributes. The module “rescs” resolves the complex structures in the queries,

The module “hrelcs” passes on the queries to the module ‘dbcon”. The structure chart

depicting the modules used. by it given below.

dbcoﬁ'

queries?

qmanage

queries

. | f CZ’data | | dataci

getdata -

display

Fig 7

.

The module “qmanage” acts as the ‘query manager’. “getdata” is used

to retrieve the data from the database. The module “display” displays the data retrieved.

CHAPTER 4

IMPLEMENTATION

ThlS chapter explams how the input given by the user 1s transformed

into the output that the user finally views. The various stages involved in this process are

Finding the classes
Rles‘olving the paths

Fram_ing qﬁerieg |

| Handling conditions
Deducing relationships.
Resdlv:ing coniplex structures.

- Retrieving data

® NS AW N

; Displayihg data |

- The first six stages can be considered as performing the mapping of user
requests into meaningful q'uve'.ries supported by the query language of the underlying
database. The last two stages are meant for establishing connection with the database,

retrieving the data and d_ispl_ayingit to the user. These are explained below

1. Generation of queries:

1.1 Finding outlclasse's:

- As mentioned before, the system doesn’t let the user know the structure
of the data stored. When the q_ser indicates the completion of selection to the system, it
begins processing the user. féqUests by finding out the classes in which the selected
attributes are members.

The schema of the database is maintained in a separate data structure.
This can be easily updatedv to accommodate changes to the database schema. This

structure can be as complex as B-Trees and balanced trees to facilitate efficient searching

33

in the case of large databases. In this implementation, schema is stored in a file and a

linear search method is used.

The database schema is searched to find out the classes in which the
selected attributes are members. This search yields a set of classes for each of the selected
attributes such that each attribute is a member of each class in the set corresponding to
that attribu‘te. If a1, a2 and a3 are the attributes selected by the user then s1,’s2 and s3 are
the sets of classes such that al is a member of each class (or one of its component) in sl
and so on. The reSul-ting sets of classes are further processed to find whether these sets
have any subset in common. If such a subset exists, it implies that each of the selected
attributes is a member of each class (or one of its components) in that subset and the
remaining elements other than those in that subset, in each of the sets for different

attributes are ignored.

- The modules ‘fclass’ and ‘fcom’ perform tne functions described above.
Let ‘Name’ and ‘Street’ be the attributes selected by the user. ‘fclass’ on searching the
schema, finds that the attribute ‘Name’ is mentioned in ‘Persons’ and ‘Places_to_go’, say
set sl, and the “attribute “Street’ is mentioned in ‘Persons’, ‘Places_to_go’ and
‘Emp]oyeef, say"_set s2. ‘fcom-’.ren examining these two sets finds that they have ‘Persons’
and ‘Places to_go’, say set s, in common. Hence the class ‘Employee’ in set s2 is

ignored. This is explamed below.

It is most Ilkely that the user desires to view data from the instances of
classes containing all the selected attributes as members. Hence those classes are
preferred to the classes containing only a few of the selected attributes as members while

- mapping the user requests into queries.

1.2 Resolving the paths:
In the previous stage, a set of classes is identified for each attribute. Let

C be an element in the set of classes for an attribute A. A may be a member of C or a

34

member of a cqm.ponenvt class of C or a member of a component clas of component class
of C and so oh. In this' context, path of the attribute A describes the location of A in C.
Recognising this path is necessary to generate the query to retrieve the attribute A. This
process can be térme‘d_'as “path resolution”. '

" Again let us consider ‘Name’ and ‘Street’ as the attributes selected by
the user. The module ‘resolve’ performs the path resolution. Let ol be an object of

‘Persons’ and 02 be an object.of ‘Places_to_go’. The paths generated for ‘Namé are:

ol.name
o2.name -

o02.accom.name

The paths generatéd for ‘Street’ are:

ol.addr.street
02.addr.street

‘02.accom.addr.street

The module ‘resolve’ on scanning the schema outputs two lists. One list
contains the resolved paths for the selected attributes and the other list contains the

corresponding class',for each of the paths. These lists are later used to generate queries.

1.3 Framing queries:

Usihg the lists gene.rated by the module ‘resolve’ queries are formed in
this stage. As in SQL, the query language supported by oracle to retrieve data from the
objects contéins a “Seleét”' clause, a “From” clause and a “Where” clause. Each of these
clauses is ‘stored in a separate ordered list. The use of three ordered lists makes the
resolution of Co’mblex structures such as sets easier which becomes evident in sections
1.5 and 1.6. Hence if n queries are generated then each query is split into 3 parts. Query

no i, i<=n, is represented by the i" element in each of these lists.

35

. The tn‘odule ‘fquers’ using the lists generated by the module ‘resolve’”
creates the above mentioned ordered lists. Let the ordered lists Sq, Fq and Wq represent
the Select clause, From clause and Where clause respectively of the queries generated.
Assuming ‘Name’ and ‘Street’ as the selected attributes, the contents of these lists are

given below

Qno | ‘ - Sq Fq : Wq
1 ol.name, ol.addr.street Persons o1 -
2 02.name, 02.addr.street Places_to_go 02 -
3 02.accom.name, ~Places_to_go 02 -

'02.accom.addr.street |

Table 1

~ From the above ordered lists, queries can be formed by appendmg
“Select” to an element in Sq and “From” to the corresponding element in Fq. Hence
queries generated are

Select Sq[i] from Fql[i].1<=i<=3

The reasoning behind the formation of these queries is discussed in the
remaining part of this section.

I the attributes selected by the user belong to two different classes then
the module getrel’ checks whether a relatlon exists between those two different clsses.
This is explamed in the section 1.5.

If the attnbutes se]ected do not belong to the same class or one of its
component classes and 1f there are two or more members in the class with the same name
as that of a selected attribute then the nesting level of the attrxbutes determines the queries

generated ThlS is 111ustrated w1th an example below

36

In this example places_to __go‘ (section 1,chapter2) is modified as given
below' | |
Places_to_go
(
Name: string
Addr
{ |
- Street: string,
City: string,
State: string,
Zip_code: string,
}
Accom
{
Taddr
t
- Street: string,
City: string,
State: string,

Zip_code: string,

If the user selects "Nar_ﬁe’ and ‘Street’ the queries generated are
1. Select 00.name , 00.addr.street from persons 00.

2. Select 00.name, o0.accom.taddr.street from persbns 00.

When compared with the level of nesting of ‘name’,
o0.accom.taddr.street has deeper nesting than o0.addr.street. The lesser the difference in

the level of nesting between the two selected attributes greater is the priority given to that

37

pair while. fofming the queries: Hence o0.addr.street is given preference owr

00.accom.taddr.street

1.4 Handlmg Condltlons.
| In thlS stage the condition imposed by the user is incorporated into the

queries generated If the usér doesn’t impose any condition, the module devoted for this
purpose is 1gnored
As shown in Chapter 2, the user can enter the condition in the text area
labeled ‘Condition’. This condition may contain some attributes that are not selected by
the user. The ptocess of finding the classes and resolving paths is repeated for these
attributes. The module ‘fquers’ is used to generate the ordered lists mentioned in section
1.3 so that they can be used in embedding the condition in the queries.
- The module ‘hcond’ handles the condtion imposed by the user. Let
‘Name’ and ‘Street’ be the attributes selected by the user. The constraints given below
must be satisfied whtle giving the condition.
1. The statement representmg the condition must be of the form
attrib oper const/attrib
Here
attrib is one of the names listed in the initial screen (Fig. 1, chapter2)
oper is a relational operator such as ‘=", ‘<’ etc
const ‘may be a number or a string.
2. Strmgs must be enclosed between ‘ “ ‘. For example, name = “John”.
3. Numbers must not be enclosed between ¢ “ ¢ or any other symbol. They must be
entered as it is, as shown in the following example.
Ssn = 123456.
4. The interface doesn’t impose any restriction on the number of conditions that the
user can impose.
Let ‘Name’ and ‘Zip_code’ be the attributes selected by the user. Let
City = “New Delhi” be the condition' imposed by the user. The module ‘hcond’ generates

the following queries to satisfy these requests

38

1. SelectboO.name, 00.addr.zip_code from persons 00 where 00.addr.city= ‘New
Delhi’.

2. Select ol.name, ol.addr.zip_code from places_to_go ol where ol.addr.city=
‘New Delhi’.

3. Select ol.accom.name, ol.accom.addr.zip_code from places to_go ol where

| ol.accom.addr.city= ‘New Delhi’. '

4. Select oO.name, 00.addr.zip_code from persons 00.

5‘. Select 'ol.‘name, ol.addr.zip_code from places_to_go ol.

6. Sclect ol: :accom.name, .0'1 .accom.addr.zip_codefrom places_to 80 ol

U If the condmon imposed by the user fails to retrieve data from the

database, then queries 4,5 and 6 are used to get the data ignoring the condition.

L.5 Deducing relations:

If all the selected attributes do not beloﬁg to the same class then the
module ‘getrel’ finds out whether a relationship exists between the different classes to
~ which thésé attributes belong. If the selected attributes all are members of a single class

or a set of f¢W'classes, this stage is not encountered during the processing of user
requests. - |

| An exponential search method is used to find whether a relation exists
or not. Let al and a2, in classes c1 and c2 be the attributes seleced by the user. Let A be
a variable that represents a class in the schema. The search method involves the steps
given below:

1. A=cl

2. If there is an.attri‘bute with the same name in' A and c2 then go to 5.

3. Find a claés c3 with at least one member having the name same as that of a
member in class A. If no such class exists report the lack of relation between
the selected attributes.

4. A=c3.Goto2.

5. Generate the query..

In step 3‘, if it is found that the attributes selected are not related, the

user encounters the following dialogue box:

39

UNRELATED DATA

. Do you want to Continue?

Yes ' ‘ No

If he clicks no “No’ the processing is stopped. However, if the user
clicks on ‘Yes’, the system proceeds further. For example, if the user sekcts ‘Ssn’ and
‘Module_name’ which are not related the user encounters the above dialogue box. If the
~ user clicks on ‘Yes’ tﬁe data retrieved by the following queries is displayed one after the
another o -

1. select 00.ssn frd_m'persons o0

2. select ol.module_name from projects a, table (a.modules) ol.

If the relation appears to exist between the selected attributes then the
query expressing the relation is g’enerated in step 5. To illustrate the search procedure
- with an ex'ample,‘le;t us assume that the schema of ‘Participants’ (refer to chapter 2,
section 1) is modified and now ‘Id’ is a member in it. Let ‘Ssn’ and ‘Ename’ be the
attributes selected by the user. The relevant part of the modified schema is shown below:

Persons

{

Name: string,
SSN: integer,
Addr
{
Street: string,
City: sltring, :
State: string,
Zip_che:‘ st;ing

40

Participants |

{
Id: integer,
Empno: integer,
Ename: string,
Job: stririg,
Mgr: string,
Hire_date: date, |
Sal: integer,

Deptno: string

Projects
¢
Name': string,
Id: integer, ,
Owner: ‘rcfevr'encesv,Participants
'S‘tart;_date: date,; -
- Duration: stri‘n‘g,
Mbdul_eé: Set of Objects
{ ! o
Modﬁle_id: intéger,
Module_name: string,
.Modulg_s'tart_date:' date,

Module_duration: string

‘ ‘Ssn’ is a member of ‘Persons’ and ‘Emame’ is a member of

‘Participants’. These two classes have no member in common. In step 3 of the search

41

'pr‘oc'edure,‘.it 1S ide,nt‘ified that ‘Name’ is common in both ‘Projects’ and ‘Persons’. In step
2 it is found that fProjecté’ and ‘Participants’ have a memtber ‘Id” in common. Finally in
stép 5 the following query is génerated'

. select 00.ssn, 0l.id from persons 00, participants ol, projects frO where o0.name

= fr0.name and fr0.id=o01.id.

To reduce the complexity of the search, for each attribute in the schema
a data structure containing the set of classes, in whiqh the attribute is a member, is
maintained. Also a list containing the set of classes already searched is constantly
updated in the search procedure, to avad searching the same class again and again. In:
this implem_emati.on a file is used for each attribute to store the set of classes in which it is
a member. A separate module is written to update these files whenever the schema is

updated.

1.6 Resolving Complex structures:

The queries generated in the earlier stages are not capable of retrieving
data from complex structures such as sets. While generating the queries, the module
‘fquers’ doesn’t check whether the attribute being retrieved is a set or a reference or any
other complex structure. In this stage the module ‘rescs’ parses the queries generated and

updates them, if required, thus making them capable of handling complex structures.

The module *fclass’, while searching the schema for finding the classes
in which the selected attributes are members, updates lists that contain information about
the complex structures. The module ‘rescs’ uses these lists to identify the attributes that

represent complex structures.

Consider the qttery given below
Select 00.empnumber, 00.manager from projects 00.
The tnember ‘manager’ of ‘Employees’ refers to a ‘Persons’ object. The

" module ‘rescs’, through the list that contains the attributes which are references, identifies

42

- that oWner' refers to a ‘Persons” object and updates the query. The modified query is
- given below: ‘ ,
Select 00.empnumber, b0.name, b0.ssn as manager from employees 00, persons b0

where ref(b0) = 00.manager.

The module ‘fquers’ responds to the user request for ‘Name’ and
| ‘Module_name’ with the following queries
Select 00.name from projects 00.

Select o_l.module_nanﬁg from modules ol.

' The module ‘rescs’ observes that ‘Modules’ is a nested table- within
projects and modifies the above to generate the queries given below:
Select 00.name from pfoje_cts 00.
Select o1.module_name from projects a, table (a.modules) ol.

The module ensures the execution of second query whenever the first
query is executed, by maintaining an ordered list, say dep (for dependency). The number
of elements in the list is n where n is equal to the no of queries generated. In this case
dep[1]=2 and dep[2]=1. dep[1]=2 indicates the dependency of query no 1 on 2. Similarly
a negaﬁve value doesn’t indicate a dependency. '

With this stage the mapping of user requests into queries is completed

and these queries are used in the later stages to retrieve data.
2. Retrieving and.Displaying Data:

2.1 Retrieving Data: |
| In this stage, the queries formed in the previous stages are used to

retrieve data from the database.

_ Initially, 'vthe interface requests the database server for connection. Once
the connection is established the queries formed are used to retrieve the data from the
database. The retrieved data is stored in a data structure. In this implementation the data

retrieved is stored in an ordered list (array).

43

The module ‘getdata’ establishes the connection with the database and
stores the retrieved data. It also handles the dependencies between queries mentioned

above.

1.8 Displaying Data:
In this stage, the data retrieved is displayed in a user-friendly format.
The module ‘display’ scans the query and prepares the image of the
screen that should be displayed to the user. Consider the query
Select 00.name, QO.addr.str’eet, 00.addr.city, o0.addr.state and o00.addr.zip_code
from persons 00.
Scanning this query, the module ‘display’ prepares an ordered list of

strings whose contents are given below:

Persons
Addr (2-5)
Name, Street, City, State, Zip_ code -

Thrs list determmes the way in which the data dsplayed should be
labeled. Each element in the hst represents a row on the screen. The first row eontams the
label ‘Persons’, the second row contains ‘Addr’ from column 2 to column 5 and the third
row contains the atrribu,tes whose r/alues are being displayed (refer to section 1.1 in

chapter 2). This format resembles the actual structure of the data in the database.

The queries contammg Sets and references are also dealt in a similar
fashion. Chapter 2 plctorrally depicts the way the data is displayed for different types of

queries.

‘3. The Platform)
Java is used in desrgmng the graphrcal user interface and Oracle is used
to store the data and respond to the queries sent. Windows 98 is the erating system on

which this application is developed.

44

Java language is created by Sun Microsystems by adapting essential
features of C++ and removi”ng- the hassles such as pointers that exist in it. The main
reason for choosing Java is its built in support for designing graphical user interfaces.
The abstract window toolkit (awt) that comes with Java offers various widgets (buttons,

text boxes, lists eic) which make the interface both graphical and user friendly.

Java is an object oriented prbgramming language and hence carries all
the advantages of object oriented- programming such as Encapsulation, Polymorphism

and Inheritance. .

: The'uni'ciué feature of Java is its portabil.ily. Programs written in Java
are platfdrm i@dgpendent because éf the ‘byteCO(.ie’ concept introduced by the Sun
Microsyste'ms‘. Java progr.am.s on compilation will be converted into bytecodes. These
bytecodes will 'th;en be executed by the Java Virtual Machine (JVM). The JVM can be
implemented either in the hardware or software on a particular machine. Hence the

" statement ‘compile once, run any where’.

Oracle is not a complete object oriented database. But it allows the
creation of complex objects and the existence of complex structures such as sets and
nested tables. It also s@pports a query language, which can be used to retrieve data from -

the objects stored. Hence Oracle is used in this implementation to store the data.

45

CHAPTER 5

" CONCLUSION

. Object Oriented Databases are getting more and more popular day by
day. This application is a graphical user interface to retrieve data from object oriented
database systems. The interface allows the user to perform some actions such as selecting
- the data needed by him and imposing conditions, if any, on the data selected by him. The
system maps the user requests into meaningful queries of the query language supported
by the database‘being used. The system uses these queries to retrieve data from the

database and presents it to user.

When the user completes the selection, this application begins
processing by finding out for each attribute the set of classes in which it is a member. It
_then performs the path resolution which invdlves finding out the location or the depth of
each attribute in the class. Several issues are considered while framing the queries. The
application infers‘that the selected‘ attributes are related if there exists atleast one class in
whiéh all the selected attributes are members. If no such class exists it finds out whether
relationships exist between different classes to which the selected attributes belong. If it
finds that the attributes selected are not related it reports the same to the user and
proceeds further if the user wants to do so. In the same class if two or more attributes
with the same name exist then attributes at the same level are preferred. The querks
formed at this stage are modified to make them capable of retrieving data from complex
structures. The inferface uses these queries to retrieve the data and the retrieved data is

displayed to the user.

Unlike the query ‘-langﬁa_ge, this interface doesn’t require the user to
have prior knowledge of the syntax of the language, object oriented concepts and
database schema. Hence this interface will be extremely useful to the users who don’t

have knowl‘edge‘ about databases and object oriented concepts. By encapsulating the

46

functionality of the query language this interface make various intricacies associated with

the query language transparent.

‘The main purpose of this interface is to provide an easy way b retrieve
the data from the database. The scope for extending this application lies in adding the

capability to modify and update the database.

47

REFERENCES

1. BUILDING AN OBJECT ORIENTED DATABASE SYSTEM — THE ST ORY

OF 02
Francois Bancilhon Claude Delobel, Paris Kanellakis(eds.)

2. The following URLs gwe mtroductory information about object oriented
databases

1. http://misdb.bpa.arizona'.edu/~mis6962/Rep0rls/ObjectDB/oodb.htm

2. http://www.cs.vu.ni/~fgouw‘cr/studﬂ//oop/introduclion.hlml

3. hllp;//'Wwiy.dis.pon.ac.uk/~chandlcr/OOLeclurcs/dalabasc/dalabase.hlm

3. Query Languages for Object Orxented databases can be found at the following
URLs

1. .yyw»_i._i,_nfobiog_c_n.t'r/services/cyedb/pub/manual/node7.hlm

2. hup:y//www.soberit.hut.fi/~kta/odm/sld022.htm

4. An overview of Object Query Language, a SQL like declarative language can
be 'obtained from

htlg//www odm}.. org/standard/slandardovcrvxcw htm

S, The user manual for OQL can be obtamed from the website

. http://www.eis.upenn.cdu/~ci5550/g)Q'l.pdf

6. The VURLs'given below give information about SQL3

1. hltp://WWw.obis.'com/x3h7/sdl3.hlm'

2. hup://www.sobetit.hut.fi/~kta/odm/s1d033.him

3. hitpy//www.csce.umbe.cdu/461/spring98/lectures/lecture20/ppframe.htm

"4, hnp://datasplash.cs.berkeley.edu:8000/sequoia/dba/montage/FAQ/SQL.html

48

	TH94760001
	TH94760002
	TH94760003
	TH94760004
	TH94760005
	TH94760006
	TH94760007
	TH94760008
	TH94760009
	TH94760010
	TH94760011
	TH94760012
	TH94760013
	TH94760014
	TH94760015
	TH94760016
	TH94760017
	TH94760018
	TH94760019
	TH94760020
	TH94760021
	TH94760022
	TH94760023
	TH94760024
	TH94760025
	TH94760026
	TH94760027
	TH94760028
	TH94760029
	TH94760030
	TH94760031
	TH94760032
	TH94760033
	TH94760034
	TH94760035
	TH94760036
	TH94760037
	TH94760038
	TH94760039
	TH94760040
	TH94760041
	TH94760042
	TH94760043
	TH94760044
	TH94760045
	TH94760046
	TH94760047
	TH94760048
	TH94760049
	TH94760050
	TH94760051
	TH94760052
	TH94760053

