
SOFTWARE IMPLEMENTATION
OF RSA ALGORITHM

Dessertation submitted in partial fulfilment of the requirements for the
award of the degree of

005.1
'8848 . So

II II 111111111111 IIIII Ill
TH6846

TH

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE

by

BRAHMA PRAKASH

SCHOOL OF COMPUTER & SYSTEM SCIENCES
JAWAHAR LAL NEHRU UNIVERSITY

NEW DELHI ·110067
January 1998

CERTIFICATE

This is to certify that dissertation entitled SOFTWARE

IMPLEMENTATION OF RSA ALGORITHM being submitted by BRAHMA

PRAKASH to the School of Computer & System Sciences of the

JAWAHAR LAL NEHRU UNIVERSITY, NEW DELHI in the partial

fulfilment of the requirements for the award of the degree of Master of

Technology in Computer Science is a bonafide work carried out by him

under the guidance and supervision of Prof. R.G.Gupta. The matter

embodied in the dissertation has not been submitted for the award of any

other degree or diploma.

/9
,6 '?J:J~~:) ·~
Prof. R.G.Gupta
Professor, SC&SS
Jawaharlal Nehru Universitry
New Delhi 11 0067

r::: .{'k>tJ~
Prof. P.C.Saxena 1112
Dean, SC&SS
Jawaharlal Nehru Universitry
New Delhi 11 0067

ACKNOWLEDGEMENT

I am very glad to express my sincere gratitude to my guide, Prof.

R.G.Gupta for his valuable guidance in completing this project

successfully. He provided me important literature and books related to this

project. He always inspired me. I feel it is a great privilige to have had the

opportunity to work under his prestigious supervision. His constant

encouragement and support helped me immenesely. He also rectified my

personality.

Prof. Gupta arranged to attened me a course no. MA531 N

"Cryptology" co-ordinated by Dr. V.Ch.Venkaiah,in liT Delhi from July to

November 1997. I am also thankful to Dr. V.Ch.Venkaiah, who gave me

apportunity to attend his lecture classes and gave beneficial suggestions

and advice to improve this project.

I am also thankful to my friends who helped me in carrying out this

project.

Date: BRAHMA PRAKASH

CERTIFICATE

ACKNOWLEDGEMENT

ABSTRACT

1- INTRODUCTION

CONTENTS

1.1 Secure communication

1 .2 Cryptography

1.3 Public key cryptography

2- RSA ALGORITHM

2.1 Key generation

2.2 Encryption and Decryption

3- MULTI-PRECISION ARITHMETIC

3.1 Addition

3.2 Subtraction

3.3 Multiplication

3.4 Division

3.5 Modular reduction

3.6 Fast exponentiation

4- DESIGN & IMPLEMENTATION

5- CODING & TESTING

6- COMPARISON

APPENDIX- A: Source code

APPENDIX- B: Test data & its output

APPENDIX- C: Bibliography

ii

iv

1

2

3

5

8

9

13

17

18

19

20

21

23

27

33

36

38

39

50

52

ABSTRACT

In development of this software the classic life cycle paradigm is

used. Sometimes it is called the "waterfall model". The life cycle paradigm

demands a systematic, sequential approach to software development that

begins at the system level and progresses through analysis, design,

coding, testing and maintenance. Following are the description of the

steps.

System engineering and analysis: For implementing RSA algorithm, work

begins by establishing requirements for all basic issues and elements and

then allocating these requirements to develop a software. This view is

essential when one must interface with other elements of software.

System engineering and analysis encompasses requirements gathering at

the system level with a small amount of top-level design and analysis.

Software requirement analysis: The requirements gathering process is

intensified and focused specifically on software. To understand the nature

of the program to be built, information domain must be understand for the

software as well as the required function and performance. Requirements

are documented and reviewed through the problem.

Design: Software design is actually a multistep process that focuses on

four distinct attributes of the program: data structure, software

architecture, procedural detail, and interface characterization. The design

process translates requirements into a representation of the software that

can be assessed for quality before coding begins.

Coding: The design must be translated into a machine readable form. The

coding step performs this task. If design is performed in a detailed

manner, coding can be accomplished mechanically.

Testing: Once code has been generated, program testing begins. The

testing process focusses on the logical internals of the software, ensuring

that all statements have been tested, and on the functional externals, that

is, conducting tests to uncover errors and ensure that defined input will

produce actual results. In this step sometimes it may happen that, we

have to correct a function which is tested before and found correct, but

when it is in use in another function and this function gives some errors

due to error of function called.

Maintenance: Software will undoubtedly undergo change after its

development because of the functional or performance enhancements.

Software maintenance reapplies each of the preceding life-cycle steps to

an existing program rather than a new one.

In chapter 1, Need of secure communication, necessity, benefits

etc. are explained. Theme of cryptography (private & public) is explained

and some well known public key cryptosystem is given.

In chapter 2, RSA algorithm is explained. Key generation,

properties & generation of prime numbers, computing gcd & modulo

inverse are explained. Encryption and Decryption have been explained.

In chapter 3, Multi-precision arithmetic is taken as a primary issue

which is the basic building block of computations in RSA algorithm. In this

chapter we have considered addition, subtraction, multiplication and

division. We also explained modular reduction and fast modular

exponentiation algorithms.

In chapter 4, we have explained design and implementation of

some ideas which are helping to implement some different algorithms

successfully.

In chapter 5, coding and testing are explained. Program metric and

software metric, execution times etc. are given in this chapter. Source

code and test datas are given in appendices A and B respectively.

In chapter 6, there is comparison between RSA cryptosystem and

RSA based cryptosystem. We have compared it on the basis of speed.

complexity and security measure.

CHAPTER 1

INTRODUCTION

Communication is taking place in day-to-day life of every one. In

defence and political sphere, it is very important to maintain confidentiality

of information. RSA algorithm may perform this role. Popularity and

efficiency of RSA algorithm makes it in use in electronic commerce,

electronic banking, electronic fund transfer etc. Computer networking is

spreading very fast around the globe. RSA algorithm may be used in

these computer networks. It serves the purpose of authentication, digital

signatures etc. Processing speed of RSA algorithm is slow. It is to be

equalize with high data bit rate communication channels. It may perform

wonder in future.

In 1977 Ronald Rivest, Adi Shamir and Leonard Adleman took up the

challenge of producing a full-flegded public-key cryptosystem. The

process lasted several months during which Rivest proposed approaches,

Adleman attacked them, and Shamir recalls doing some of each. In May

1977 they were rewarded with success. They had discovered how a

simple piece of classical number theory could be made to solve the

problem. Implementation of RSA algorithm was a challenging job. H/W &

S/W implementation of RSA had achieved by some people. VICTOR was

an efficient RSA H/W implementation. But S/W implementation of RSA

was not efficient. It took long processing time while communication

channels can carry information very fast.

Two large prime integers are chosen and multiplication of these is

published in public directory as a public number. Euler's totient function is

computed. Secret key is chosen and tested for coprime of totient function.

Public keys are derived from the secret keys and totient function

computing multiplicative inverse of totient func.tion and published in a

public directory. Ciphertext is computed as plaintext to the power public

key modulo public number and plaintext is recovered from ciphertext as

ciphertext to the power secret key modulo public number.

Number theory is the root of the RSA algorithm. Factorization of very

large number is very much time consuming, it is the strength of RSA

algorithm. We need Multi-precision arithmetic. Modulus is being computed

using modular reduction algorithm which is fast. Exponentiation uses

square-and-multiply technique, right to left binary technique, k-SR, k-ary,

SS(I) etc. which make very fast computation of modular exponentiation.

Some method is used at implementation level to make this software fast.

1.1 Secure Communication

Secure communication activities involve exchange of information

from a person to another person maintaining confidentiality.

Communication activities may be performed through satellites,

microwaves, radiowaves, digital communication systems, electronic

communication systems etc. Secure communication activities are needed

in the field of defence, diplomatic activities, business, share market,

2

political sphere. Secure communication can be achieved through public

key cryptosystem which also serves the purpose of authentication,

authorization, digital signatures etc. Therefore we can say that nowadays

one can communicate with another securely.

1.2 Cryptography

Cryptography is the science of secret communications which involves

controlled corruption of messages or signals so that only authorized

person may be able to make meaning out of them. Historically people

belonging to four different part of life have used and contributed to the art

of cryptography: the military, the diplomatic corps, the diarists and lovers.

Of these, military has had the most important roles. For exchange of

secret information in the defence, diplomatic corps, business, scientific

research and other secret informations of the interest of national security

we need some safe method of communication. A large volume of data is

exchanged and communicated through internet. e-mails also need secure

propagation. Home pages and Websites need authorization. Some may

trap these datas and may perform illegal access if there is no prevention.

For preventing illegitimate access cryptography can be used.

Cryptography can be classified into two streams. One is private key

cryptography and another is public key cryptography. In private key

cryptography, key is secret and same for both ciphering and deciphering

i.e. keys are symmetric. In public key cryptography there is a public key for

3

ciphering which is known to all because it is published in a public directory

and there is a secret key for deciphering which can not be obtained

knowing public key & method used i.e. here keys are asymmetric.

Private key cryptography: Private key cryptography was used earlier

when computers were not commonly availabl,e. There are various private

key cryptosystem e.g. substitution cipher, transposition cipher etc. Since

computers came in existence, it is very easy to break the long messages

using statistical methods. Using statistical distribution of English alphabet

one can break the substitution cipher for long messages. There are also

problems of key distribution and maintenance. As number of users

increases number of keys increases quadratically. It does not serve the

purpose of authentication, authorization, digital signatures. It may not be

effective for secure communication. The only advantage of this is that it

can cipher and decipher very fast, at the rate of the communication

channels. Public key cryptography overcome all these problems but it is a

slow process.

Public key cryptography: Since computer systems came in existence,

public key cryptography became more popular. In this method there are

public and private keys. Public keys are known to all but private keys are

known to only receivers. Sender and receiver have different private keys.

They don't know private key of each other. It also serves law enforcement.

One can claim in the court on the basis of it. That is why it is apllied in

electronic commerce, electronic banking, electronic fund transfer and

4

various business applications. It may not be broken easily that is why it is

applied in defence, diplomatic corps, political sphere, scientific research

etc. Different public key algorithms are there e.g. Elgamal's, Deffi-

Hellman's key exchange protocol, Merkle-Hellman's knapsack trapdoor

algorithm, RSA algorithm etc. The only problem with public key

cryptography is slow processing. To overcome this problem various

techniques are used but it is not serving our purpose completely. Various

techniques are under development process that will enable it to face high

data bit rate communications and there will be no delay in processing, that

is, flow will be maintained. It needs fast multi-precision arithmetic

operations.

1.3 Public Key Cryptography

It is very hard to compute secret keys, knowing public key, is the

theme around the public key cryptography. Some public key algporithms

are given below.

(a) Diffie-Hellman's key exchange protocol

Secret key: xA xB
Public Key: p
g is chosen by both users.

A
gxA(mod p)
gxAx8 {mod p)

8
gx8 (mod p)

gxAx8 (mod p)

5

(b) Merkle-Hellman's knapsack trapdoor algorithm

It is a super increasing sequence i.e. ai > ai U=1 .. i-1)
pis chosen such that p>Laj and w is chosen such that gcd(w,p)=1.

secret key: A, p, w
Public key: A'=(a,*w(mod p),a/w(mod p), ... a/w(mod p)).

M=(m1,m2, mn) where mi={O, 1}.
A'M=C' where C' is a positive integer.
w'C'(mod p)=C
AM=C

Multiple Iteration: A=(a1,a2, an) where a?O

W1 P1
A'=A*w1(mod P1)
W2 P2
A"=A'*w2 (mod P2)
W2'C"(mod P2)=C'
w/C'(mod P1)=C

(c) Elgamal's cryptosystem: It is based on descrete logarithm problem.

A
xA a ,p, a

m (message)
B~A

k
(ak,m, axak)
(ak)><A ~ akxA
(a\m2 axak)
m1 a xak =C,
m2 a xak =C2

c1 m1
c2 = m2

6

(d) RSA algorithm:

p,q: large prime integer of the order of 100 digit.
n=p*q
~(n)=(p-1)(q-1)

gcd(d, ~(n))=1

e*d=1 mod ~(n)
ae(mod n)=c
cd(mod n)=a

(e) RSA based public key cryptosystem:

choose P; & gi where 1~ i~ 3, 1~ j~ 6

P;<pi whenever i<j
gcd(p;,g;)=1 V i

Encryption:
C;=P;e(mod N) V i

c3+i=g;e(mod N) Vi
c9+;=(((m;+g4)g1(mod p1)+g5)g2(mod p2)+g6)g3(mod p3)

Decryption:
C;d(mod N)=p;ed(mod N)=p; i=1,2,3
c3+id(mod N)=g;ed(mod N)=g; j=1, .. 6
m;=(((((cs+l g3-1(P3)-gs)(mod P3)g2-1(P2)-g5)(mod P2)g,-1(P,)-g4(mod p,)

7

CHAPTER2

RSA ALGORITHM

RSA is most popular public key algorithm. It is named for its

inventors Ronald Rivest, Adi Shamir and Leonard Adleman. It is based on

the fact that current computing art of factorization of composite numbers

with large prime factors involve overwhelming computations. Multi­

precision integer arithmetic is used in RSA algorithm. It is secure system

because breaking of RSA is easy by method but very much time

consuming (of the order of millions of years). RSA algorithm involves

following assumptions and computations.

Two very large prime integers are chosen as private keys which are

nearly equal. Multiplication of these two prime numbers is public. Euler's

totient (also called indicator,) function of it is computed and is private. A

number which is coprime of totient function is chosen and it is private.

Multiplicative inverse of it modulo totient function is computed and it is

public. Ciphertext is computed as plaintext to the power public key modulo

multiple of primes.

Deciphering is carried out by computing ciphertext to the power

private key modulo multiple of primes. The fact that how plaintext will be

recovered from ciphertext is based on that multiplication of both private &

public key modulo totient function is equivalent to integer one.

Multiplicative inverse is computed by using Euclid's algorithm. Euclid

algorithm computes greatest common divisor of two integers. We choose

8

secret key and if gcd of it w.r.t. totient function is not one, then we divide

chosen number by gcd, then gcd of this number and totient function will be

one. Then we compute inverse. For computing exponent we can use

repeated square and multiply technique. We are describing methods for

key generation and Encryption & Decryption.

2.1 Key generation

We are explaining prime numbers and Euclid's algorithm which are

used to generate keys for our cryptosystem.

a) Prime number generation: We used given theorem to generate required

prime number. It may happen that generated number is psuedo prime yet

it will fulfil our requirement.

Theorem: If gcd(a,p)=1 and ap-1(mod p)=1 then pis a prime number.

Using this theorem it is very easy to check that a given number is

prime or not. We can choose an odd number and then we test this

property for that number if it is satisfied then the number is prime

otherwise we subtract or add two in that number and test this property

again untill the number is not prime. Some properties and other

information about prime numbers are given.

Distribution of primes: A computation by M. Kraitchik shows that for each

group of 100 numbers in the interval from 1 012+1 to 1 012+1 000 the

corresponding frequency of primes is

4,6,2,4,2,4,3,5,1,6

9

Even though the prime numbers gradually become more scarce as

the numbers within the groups become larger, there are still infinitely many

primes.

According to the prime number theorem, the ratio of 7t(X), the

number of primes in the interval from 2 to x, and x/ln(x) approaches 1 as x

becomes very large, that is.

lim TI.(x) =1
x->oc x/ln(x)

where ln(x) is the (natural) logarithm of x to the base e=2.71828: .. On the

average about (x-1)/ 7t(x)=ln(x) values must be tested before a prime is

found.

Testing for primality: Several methods can be used to test a randomly

selected number for primality. However, the most straightforward

approaches are not computationally feasible. For example, a test could be

based on Wilson's theorem, which states that

(p-1)!= -1 (mod p) if pis prime

where (p-1)!=2*3* ... *(p-1)

In all other cases (except n=4), it can be shown that

(n-1)! =O(mod n) if n is not prime

It should be obvious, however, that a test based on Wilson's

theorem is useless for large values of p, since too many multiplications

would be required to compute (p-1)!.

10

A different test could be based on the simple fact that if a number n

is not prime, then n must contain a factor less or equal to the square root

of n. But even here the test is useless for large primes p, since to show

that p is not divisible by any number between 2 and p, and thus prove that

p is prime, would still require too many computations.

To test a large number n for primality, one could use the elegant

"probabilistic" algorithm of Solovay and Strassen. It picks a random

number a from a uniform distribution (1 ,2, ... ,n-1) and tests whether

gcd(a,n)=1 and J(a,n) a(n-1v2(mod n) (eq 10)

where J(a,n) is the Jacobi symbol. if n is prime, then equation 10 always

holds. If n is composite, the equation 10 will be false with probability of at

least 1/2.

The number n can now be tested for primality by using a set of

integers, A={a1,a2,. •. ,aJ, where each A is less than n. The test requires

that, for each value of a in A , equation 10 holds. Thus n is found to be

composite if there is an a in A for which equation 10 does not hold;

otherwise n is accepted as prime.

The procedure does not guarantee that a selected number is prime,

but only that it has not failed the test of primality. The greater the number

of integers in A, the greater the probability that a selected number is

prime.

11

When n is odd, an, and gcd(a,n)=1, the Jacobi symbol, J(a,n), has

a value in {-1, 1} and can be efficiently computed by the following recursive

procedure:

J(a,n)=if a==1 then 1 else

if a is even then J(a/2,n)(-1)<"2·1)/8

else J(n(mod a),a)(-1)<a-1J<n-1)14

Prime numbers are generated, now we need to compute Public keys and

Secret keys. Modulo public number is computed by multiplying two prime

numbers. Secret keys and other public keys can be computed using

Euclid algorithm given below.

b) Euclid Algorithm: Let a>b>O be two integers. By division property

rn-2=r n-1 *q n +r n
r n-1=r n *q n+1

O<r1<b
O<r2<r1
O<r;<r2

O<r n<r n-1

where r n!=O but r n.,=O

The gcd of a and b is then r n

If gcd(a,b)=1 then multiplicative inverse of b modulo a exist and

computing it we need to define

y 1=0-1*q1,
y2=1-y,*q2,
y3=y1-y2*q3,
y4=y2-y/q4,

12

Yn=Yn-2-Yn-1*qn,
Y n+1=y n-1-y n*q n+1•

If rn=1 then multiplicative inverse of b modulo a is the positive residue of

Yn modulo a_

we can compute the multiplicative inverse as in the following table

a 0

b 1

qn+1 r n+1 y n+1

2.2 Encryption & Decryption

To explain the Encryption and Decryption process we are

explaining RSA algorithm.

RSA algorithm:

1 . p and q are primes
2. r=p.q
3. cj>(r)=(p-1)(q-1)
4. SK is the private key
5. PK is the public key
6. X is the message (plaintext)
7. Y is the ciphertext

(secret)
(nonsecret)
(secret)
(secret)
(nonsecret)
(secret)
(nonsecret)

The RSA algorithm is based on an extension of Euler's theorem, which

states that

13

a~<r>=1 (mod r)

where

1 . a must be relatively prime to r.

2. <jl(r)=r(1-1/p1)(1-1/p2) ••• (1-1/pn), where p1,p2 , .•• pn are the

prime factors of r.

<jl(r) is Euler's -function of r (also called indicator or totient) which

determines how many of the numbers 1 ,2, r are relatively prime to r.

To obtain the mathematical ralationship between the public and

private keys, PK and SK, Euler's result is extended as follows. First it is

shown that ab(mod r) implies that am bm(mod r) for any exponent m. Thus

Euler's formula aW> = 1 (mod r) can be rewritten as

a m~(r) =1 (mod r) (eq 1)

where, as before, a is relatively prime to r. From the fact that a=b(mod r)

implies that ae=bc(mod r) for any integer c, and from above equation it

follows that

X mw>·1=X(mod r) (eq 2)

where plaintext X is relatively prime to r (a ·restriction which will be

removed later on). Let the public key PK and secret key SK is chosen so

that

SK.PK=m<jl(r)+1

or, equivalently,

(eq 3)

SK.PK=1 (mod <jl(r)) (eq 4)

14

Equation 2 can be therefore rewritten as

xsKPK=X(mod r) (eq 5)

which holds true for any plaintext (X) that is relatively prime to the modulus

<j>(r).

Encipherment and decipherment can now be interpreted as follows:

EPK(X)=Y= XsK(mod r) (eq 6)

D5K{Y) =Y5K{mod r) =XsKPK(mod r) =X(mod r) (eq 7)

Moreover, because multiplication is a commutative operation (i.e.

SK.PK=PK.SK), it follows that encipherment followed by decipherment is

equivalent to decipherment followed by encipherment:

(eq 8)

This property is useful for generating digital signatures.

Because XPK(mod r) =(X+mr) PK(mod r) for any integer m, each

plaintext X,X+r,X+2r, ... ,results in the same ciphertext. Thus the

transformation from plaintext to ciphertext is many-to-one. But restricting X

to the set {0, 1 , ,r-1} makes the transformation one-to-one, and thus

encipherment and decipherment can be achieved as described in

equation 6 and 7.

Theorem: Prove that xmq,(rJ•1=X(mod r) holds for any plaintext,X, where

r=pq is the product of two prime factors and X is restricted to the set

{0,1 , ... ,r-1} - a condition which is necessary for encipherment and

decipherment.

15

proof: The theorem holds trivially for X=O, and so only the case X>O must

be considered. If X is not relatively prime to r=pq, then X must contain

either p or q as a factor. Suppose p is a factor of X, so that the relation

X=cp holds for some +ve integer c. Since X is restricted to the set

{0, 1 , ... ,r-1}, and r equals pq, it follows that X must be relatively prime to q.

Otherwise, X would also contain q as a factor, in which case it would

exceed r-1. Using Euler's theorem, we have

x<~>(q)= 1 (mod q)

where ~(q)=q-1. But

xm(p-,)q,(q) =1 m(p-1) =1 (mod q)

for any integer m, and (p-1) ~(q)=(p-1)(q-1)= ~(r), so that

xmcl>(r) =1 (mod q)

or , for some integer n

1 =X mcl>(r)+nq

Multiplying each side by X=cp results in

X=X mc~>(r)+ 1 +(nq)(cp)

=X mci>(rl+ 1+ncr

or, X mc~>(r)+ 1 =X(mod r)

The case in which q is a factor of X can be handled in the same manner,

thus completing the proof.

Encryption process: XPK(mod n)=Y

Decryption process: Y5K(mod n)=X

16

CHAPTER3

MULTI-PRECISION ARITHMETIC

In this chapter we are describing basic operations (addition,

subtraction, multiplications, division) and some more operations which are

used in RSA algorithm.

Let us now consider operations on numbers which have arbitrarily

high precision. For the sake of simplicity, let us assume that we are

working with integers instead of numbers with an embedded radix point.

We will also be working only with positive integers. Now we will disscuss

algorithm for:

a) addition and subtraction of n-place integers, giving an n-place answer

and a carry;

b) multiplication of an n-place integer by an m-place integer, giving an

(m+n)-place answer;

c) division of an (m+n)-place integer by an n-place integer, giving an

(m+1)-place quotient and an n-place remainder.

These algorithms for basic operations may be called "the classical

algorithms", since the word "algorithm" was used only in connection with

these processes for several centuries. By the term "n-place integer", we

mean any integer less than bn, where b is the radix of the conventional

positional notation in which the numbers are expressed; such numbers

can be expressed using at most n "places" in this notation. The most

17

important fact to understand about multiple precision integers is that they

may be regarded as numbers written in radix b where b could be the

computers word size. For example if we have a computer with word size

b=1010
, then an integer that fills up 10 words has actually 100 decimal

digits; but we will consider it to be a 10 place integer to the base 1010
• It is

clear that the larger the base, the lesser will be the number of computer

words required to store the number. Obviously the base cannot be larger

than the size of the computer word.

Let us first state the primitive operation into which we will decompose

the above problem:

a) addition and subtraction of one place integers, giving a one place

answer and a carry:

b) multiplication of one place integer by another one place integer, giving a

two place integer:

c) division of a two place integer by a one place integer, provided that the

quotient is a one place integer, and yielding also a one place remainder.

By adjusting the word size, if necessary, nearly all computers will have

these three operations available, and so we can construct our algorithms

mentioned above in terms of these primitive operations. Let us now

consider each of these algorithms in more detail.

3.1 Addition

Addition is the simplest among all the operations described above, but

some of the ideas involved occur in other algorithms also. The idea

18

involved in the algorithm is the usual pencil and paper method adopted

from Knuth(volume II, semi-numerical algorithms).

Algorithm A(Addition of nonnegative integers): Given nonnegative n-place

sum, (w0 ,W1,W2, •••• wn)b. (Here w0 is the "carry", and it will always be equal

to 0 or 1).

A 1. [Initialise]

Set j ~ n, k ~ 0. (The variable j will run through the various digit

positions, and the variable k keeps track of carries at each step.)

A2. [add digits]

or 1, depending on whether a "carry" occured or not, i.e. whether ui+v;+k=

b or not. At most one carry is possible during the two additions, since we

always have

ui +vi+ k ::s;(b-1) + (b-1) + 1 < 2b.

A3. [Loop on j]

Decrease j by one. Now if j > 0, go back to step A2;

otherwise set wO k and terminate the algorithm.

There is a possibility of improvement in the above algorithm.

3.2 Subtraction

S1: [Initialise]:
Set j ~ n
k~o

S2: [Subtract digits.]

19

Set wi ~(ui - vi + k +b)mod b
k ~ (ui- vi+ k +b)/b

S3: [Loop on j]
j ~ j-1
if j >0, go back to step S2
else terminate the algorithm

Again the subtraction algorithm has scope for improvement as in the case

of addition.

3.3 Multiplication

Multiplication is an important building block for public-key

cryptosystems. Firstly we consider a simple multiplication which is nothing

but the normal pencil and paper method as presented by Knuth.The

primitive operation which will help us to perform multiplication is

multiplication of one place integer by another one place integer, giving a

two place answer.

Algorithm MIM(Multiple Integer Multiplication)

in radix b, this algorithm forms their radix b product (w1 ,w2, wm+n)b.

MIM1. [Initialise]
For k=m+1 to m+n do w k =0;
j=m

MIM2. [Zero multiplier]
If vi =0 then wi =0;
goto step MIM6.

MIM3. [Initialise]
i=n;carry=O;

20

MIM4. [Multiply and Add]
t=ui*vi+wi•i +carry.
wi•i=t mod b;carry =t div b;

MIM5. [Loop on i]
i=i-1 ;if i>O then goback to step MIM4 else wi=carry;

MIM6. [Loop on j]
j=j-1 ;
if j>O then goback to step MIM2.

else stop.

3.4 Division

Object: To divide (n+m) place integer by n-place integer where n is very

large, of the order of a few hundred decimal digits.

Description: Any division operation essentially consists of dividing a (n+1)-

place integer by an n-place integer where the divisor is an n place integer.

A series of such operation constitute a long division of two multiple

precision integers. So the problem breaks down to dividing an n place

integer by an n place integer, i.e. u/v where u=(n+1)-place integer and

v=n-place and 0~ u/v<b where b is the base of the integers.

The problem is to determine q= u/v . If we write r=u-qv then the unique

integer satisfying O~r<v. The algorithm basically attempts to guess the

value of q such that the error is never too large.

Set q'=min((u0b+u 1)/v1 ,b-1)

Algorithm MPID: {Multiple Precision Integer Division}

21

Given: Non negative integers u=(u, U2 ••• um•n)b and v=(v, V2 ••• vn)b

expressed in radix b, where v,>O and n>1, we form the radix-b quotient

MPID1. [Normalize]
d=b div (v1+1)
u0=0
(U0 U1 U2 ••. Um+n)=(U 1 U2 ... Unh*d

(V1 V2 •.. Vn}=(v1 V2 ••• Vnh*d

MPID2. [Initialize] j=O

MPID3. [Calculate q']
if ui=v 1 then q'=b-1
else q'=(uib+ui+1) div v,
while v2q'>(uib+ui+1-q'v,)b+ui+2 do
q'=q'-1

MPID4. [Multiply and subtract).
(uiui., ... ui+n)b = (uiui.1 ••• ui•n)b-q*(v,v2 •.. vn)b

MPID5. [Test remainder]
qj=q'
if (uiui+1 ••• ui+nh<O then goto step MPID6
else goto step MPID7

MPID6. [Add back]
qi=qr1
(uiui., ... ui•n) b=(uiui., ... ui•n)b +(Ov, V2 ... v n)b

MPID7. [Loop on j)
j=j+1
if j::;m then go back to step MPID3.

MPID8. [Unnormalize]
q=(qoq,qz ... qm)b
r=(um+1···u m+n)b div d

For ciphering and deciphering we need fast modular reduction

operation and fast modular exponentiation. Now we explain the algorithms

22

for modulo operation and exponentiation. These algorithms can help to

compute fast.

3.5 Modular reduction:

The standard method for doing the modular exponentiation is by using

the well known "repeated square and multiply" technique. The left to right

form of this algorithm involves repeatedly squaring and multiplying by a

'local' fixed value (modulo a 'global' fixed value). The 'local' fixed value is

dependent on plaintext (m), i.e. it is fixed for the duration of the encryption

computation. The global fixed value, i.e. the modulus, depends on the key

and is therefore fixed for a number of encryption operations. We use this

notion of local and global fixed values throughout this section.

This algorithm is concerned with speeding up these modular arithmetic

operations. H takes the advantage of local and global fixed values to

precompute 'look-up' tables whose use speeds the individual calculations.

This also works on a block by block basis, i.e. it makes use of the fact that

computers operate on strings of several bits at a time, rather than on

individual bits.

In the description of the algorithm we use the following notational

convention. We suppose all numbers are stored in 32-bit words, and we

denote the individual words of the 32n-bit number a by

a[O],a[1], ... ,a[n-1]

where a[O] contains the least significant word and a[n-1] the most

significant word. Hence

23

a=a[0]+232*a[1]+264*a[2]+ ... +232<n-1>*a[n-1]

We then write aD for the collection a[O],a[1], ... ,a[n-1]. We also write

T for 232
". Finally it is kept in mind that the algorithm is described in terms

of 8-bit bytes and 32-bit words, it would work equally well with other byte

and word lengths.

This algorithm is concerned with modular reduction. Given a 64n-bit

number k and 32n-bit modulus d, it outputs a 32n-bit number k', where

k'= k(modulo d)

To do this it uses a table of values pre-computed using the modulus d.

This table does not need to be reevaluated for each computation since it is

dependent on a global fixed value. In the context of RSA this algorithm is

useful when computing modular squares. Squaring can be made

considerably faster than a square-mod method which reduces modulo d

as it works out the answer, so it is quicker to use a fast non-modular

squaring algorithm followed by this algorithm.

The idea of the algorithm is to reduce the length of k by 8 bits (i.e. one

byte) at a time. At the begining of each step it is assumed that k is 4n+i+1

bytes long, (where i ranges from 4n-1 down to 0), together with an extra

bit at the most significant end which may be 1 or 0 (this is left over from

previous iteration). At each step of the algorithm, the largest multiple of the

d that can be safely subtracted from k is subtracted. This process uses the

table atab, set up in advance.

?4

By safely we mean the largest multiple of d that can be subtracted

to leave the result positive, given that only the most significant 9 bits of k

are examined. This results in a value of k which has the byte under

consideration set to either 0 or 1 (this single bit forming the left over bit for

the next subtraction).

The table atab consists of 512 entries of the form

atab[i]. 0~ i~511,

where each entry consists of an (n+1)-word multi-precision integer. In the

precomputation phase, atab[i] is set to the unique integer multiple gd of d

defined so that

int(gd/T)=i-1 and int((g+1)d/T)=i

and there is int(x) which denotes the unique integer s satisfying

s~x<s+1

The computation of this table may be achieved by a very simple

combination of additions and comparisons; no multiplications or divisions

are required.

If one modified the algorithm to reduce by w bits at a time then atab

would need to contain 2w+, entries.

In the main algorithm, atab is used to compute a value k' satisfying

k' =k(modulo d) and O~k'~T +2d-1

The following two steps are repeated 4n times, for a value of

descending from 4n-1 to 0:

25

(a) Examine bytes 4n+i+1 and 4n+i. Byte 4n+i+1 will be set to either

zero or one, and thus the value j obtained by regarding the byte pair as an

integer will satisfy O~j~511.

(b) Subtract 28
i times atab[j] from k. This wil have the effect of clearing

byte 4n+i+1 and resseting byte 4n+i to either zero or one.

Pseudo-code description:

Input: kD (a 2n-word number)

dO (an odd n-word constant, where d ~ T/2.)

Output: kD (an n-word number congruent to the original kD modulo d)

Method: Prior to performing individual computations it is assumed that a

(512(n+1))-word array

atab[i][j] (O~i~511, O~j~n)

has been set up as follows:

atab[O][]:=0;
for i:=1 to 511 do

{ Let g be the unique integer satisfying
int(g.d/T)=i-1 and int((g+1).d/T)=i;
atab[i][]:=gd }

where, as described above , atab[i][] represents the number stored in the

n+1 words

atab[i][O],atab[i][1], ... ,atab[i][n]

for each i, g=int(T.i/d); the description above is used to emphasise that no

divisions are involved in the computation of atab.

The main algorithm proceeds as follows:

26

for i:=4n-1 to 0 step -1 do

{j:=int(k[]/(28i.T));

k[]:=k[]-28i.atab0][]}

To complete the process it may be necessary to subtract either d or 2d

from the final k in order to ensure that it is less than T, which is sufficient

for intermediate results in modular exponentiation. At most one further

subtraction of d will ensure that the result is less than d.

The two operations in each iteration of the algorithm are very simple. It,

although apparently involving a division and an exponentiation, actually

merely involves examining the two most significant bytes of k.

Finally note that during the computation of atab[][],

d/T;:::: 1/2 and hence g<1022 for every i

Thus g.d can be stored in at most (n+1)32-bit words. This explains

why atab[][] has dimensions allocated to it.

3.6 Fast exponentiation:

Here we are describing two methods which are based on same logic but in

different ways.

a) Square-and-multiply technique

Having seen the basic multiple precision arithmetic routines, we are

now in a position to use them for fast modular exponentiation. The aim of

this section is to develop faster ways of computing xn mod m, where both

m and n are typically very large integers, i.e., around 200 digits each. If we

27

· use a very naive approach and multiply x with itself (n-1) times we do get

xn, but if n is a 100 digit number then it will take few thousand years to

achieve our desired goal even with the fastest of computers. Clearly we

have to do much better than this if we wish to have a practical

implementation. We first consider a very old method that is still widely

used methods for fast exponentiation. For purposes of clearity, we drop

the mod notation since it does not play any role in the exponentiation. The

idea behind this method, which is known as the "square and multiply

method" is very simple: suppose, for example, that we are asked to

compute x16
, we could simply start with x and multiply x fifteen times as

explained above; but it is possible to obtain the same answer in 4

multiplications, if we repeatedly take the square of each partial result,

successively x2
, x4

, x8
, x16

.

The same idea applies, in general, to any value of n, in the following

way: We write n in the binary number system (suppressing zeros at the

left). Then replace each "1" by the pair of letters SX, replace each "0" by

S, and cross off the "SX" which now appears at the left. The result is a rule

for computing xn, If "S" is interpreted as the operation of squaring, and if

"X" is interpreted as the multiplying by x. For example, if n=23, its binary

representation is 10111; so we form the sequence SX S SX SX SX and

remove the leading SX to obtain the rule SSXSXSX. The rule states that

we should "square, square, multiply by x, square, multiply by x, square,

multiply by x"; in other words, we should successively compute

28

sequence of computation is the following:

So essentially we are looking at the binary representation of n from

left to right, and if we encounter a "1 ", we multiply x to the partial result

and square the partial result, else we only square the partial result. This

method has the advantage that it brings down the number of computations

from n to about log2n. However we do have the overhead of converting the

exponent from decimal to binary. Since in our case n is a multi-precision

integer, we have to divide by 2 to deduce the binary representation from

right to left. We now state the algorithm for exponentiation, based on a

right to left scan of the exponent, as described by Knuth.

Algorithm Exp(x,n) (Right to left binary method for exponentiation):

This algorithm evaluates x", where n is a positive integer.

A 1. [Initialize.]
Set N ~n. Y~1. z~x.

A2. [Halve N.]
(At this point, we have the relation x"=YxZN.) Set N~N/2 and at the same
time determine whether N was even or odd. If N was even, skip to step
A5.
A3. [Multiply Y by Z.] Set Y~ZxY.
A4. [N=O?] If N=O, the algorithm terminates, withY as the answer.
A5. [Square Z.] Set z~zxz, and then return to step A2.
As an example of the working of the algorithm we consider here the steps
in the execution of x23

:

29

N y z

After step A 1 23 1 X

After step A4 11 X X

After step A5 11 X x2

After step A4 5 x3 x2

After step A5 5 x3 x4

After step A4 2 x7 x4

After step A5 2 x7 xs

After step A5 1 x7 x,6

After step A4 0 x23 x,6

b) SS(I)

We describe a new technique for improving the performance of

square-and-multiply exponentiation. Exponentiation of large integers is the

basis of several well known cryptographic algorithms such as RSA

algorithm. The exponentiation problem is to compute me(mod N), where m

and N are very large integers,and e is the integer exponentiation,such that

e has binary representation 'e1e2 ... e0 _1e0 ' where is the most significant bit.

We also treat e as a bit string of length n denoted as e[1 ,n], where n is

typically 512 or 1024. Througout this section, for simplicity mi(mod N) is

written as mi for any integer j.

Various representations of e have been suggested with the same goal

of reducing the number of multiplications involved. The best published

approach to date is the 'modified signed digit' representation which

requires an average of n/3 multiplications at the cost of precomputing mi.

Recently, a further improvement, based on a 'string replacement'

representation, was reported by Mitchell, who proposed a family of

30

algorithms k-SR where k is an integer parameter that determines the

number of exponents of m needed to be precomputed. Mitchell proved

that 2-SR and 5-SR reduce the average number of multiplications to n/3

and 8n/31, respectively. In fact, this number is reduced to n/4 when k' .

Analysis of our algorithm SS(I): On n-bit exponents has shown that the

expected number of multiplications required tends to n/(1+1) for large n.

Here we only compare the performance of our technique with that of the

approach of Mitchell because it is the best reported algorithm to date.

Algorithm: It is a family of algorithm that are used to compute me. Each

algorithm is parameterised by the value I, the maximum length of the

exponent to be precomputed.

The idea is to precompute a set of exponents of m: m21+1 Vi belongs to

[1 ... (21
-
1-1)], i.e. the set of all odd integers between 3 and 21

-
1

• The

precomputed exponents are stored in a table H[1 .. (2 1
-
1-1)] where H[i]

contains m 21+1
• The algorithm reduces the number of multiplications

through this exponent table. It scans e[1 .. n] starting from e,. The variable x

always stores meruJ for some i belongs to [1 .. n]. If e[i+1] is a '0', x becomes

X 2
, i.e. m e[1.i+1J. Otherwise, i.e. if e[i+1] is a '1', the algorithm first

recognises the longest bit pattern e[(i+1) .. j] such that mef(i+1>.n is in H,

secondly updates x by repeatedly self-squaring it j-i times, and then thirdly

31

multiplies x by the precomputed value m e[(i+1>··il. The SS(I) algorithm is as

follows:

X ~1; i~O;

Loop{/* the invariant is: x=me[uJ */

while(i<n) and (e;+1='0')

{ i~i+1; x~x2(mod N);}

if(i 2::n) then done and return x as answer.

j~i+l;

whileU>n) or (e i='O') {j~j-1 ;}

a =the value e[(i+1) .. j]; b~(a-1)/2;

while(i<j) {i~i+1; x~x2(mod N);}

x~x*H[b](mod N);

}/* End Loop *I

32

~Wintruder

v~z _ ____.,!:..."-------::-~;W"-v-..... =-..,

I sender I passive attack I receiver!

intruder V"/ ___ ~,.~"<)iF-Z--~"):1>-~-'?
!receiver! I sender I active attack ·

private key

decip­
her

1----~--t syst-
ciphertext em

1
• t xt

communication P am e
'---------II ctlannel II rece1ver end

CHAPTER4

DESIGN AND IMPLEMENTATION

In RSA cryptosystem, at the sender end cur system will convert

alphabetic plaintext into integer forrt:~ of plaintext, compute modular

exponentiation of integer plaintext and at the receiver end it recovers the

plaintext from ciphertext and reformat it into alphabetic plaintext.

For storing large integer I can allocate memory dynamically or

statically. Dynamic allocation is used where we do not know upper bound.

In RSA algorithm we know the upper bound i.e. multiplication of two large

prime numbers chosen has the maximum fixed length. 32 words of

unsigned integer is taken as an array to store a large integer. I have used

word size 16 for every large number so that multiplication of two such

large numbers can be accomodated in 32 word array of integers as in the

case of casting. There is no in-built multiprecision arithmetic in our system

so we need to develop functions for multiprecision arithmetic for

performing various operations, i.e. modulo arithmetic and exponentiation.

Casting is required where we multiply two 16 bit numbers because

without casting, the result will be stored in 16 bit which may cause

overflow. In various places where in an arithmetic expression 16 bit

subtraction is taking place and addition of 17 bit number (stored in 32 bit

number) is placed afterward, then there may happen subtraction of big 16

bit number from small 16 bit number resulting 2's complement of result

and added to 17 bit number gives carry while adding small 16 bit number

33

into 17 bit number and subtraction of big 16 bit number from it will not

produce any carry which is required, so we add a 16 bit number in 17 bit

number then we subtract big 16 bit number from it to get correct carry and

result.

To avoid overflow we use casting again where addition of two or

more 16 bit numbers, is performed. Coercion is taking place where we are

operating any 16 bit number into 32 bit number, in these places in

expression 32 bit number must come first and others afterwards.

For computing multiplicative inverse I used Euclid's algorithm but

we have not represented large -ve numbers in our large number

representation. Computed y's are alternatively -ve and +ve. yi is -ve if i is

odd otherwise +ve. We have used a flag which indicate sign of the

number. When result will be positive then it is our required result otherwise

we have to subtract the number without sign from modulo number to get

the required result.

In multi-precision division where divisor is one word in length, we

use our pencil and paper technique to get the result. In multi-precision

addition, subtraction, multiplication, and division, index of represented

positional words of most significant is one and index of least significant

word is n. but I designed functions for these operations so that less

significant word's index is small integer and more significant word's index

is big integer. I have designed different algorithm for different type of

operation e.g. logical operations, assignment operations. input ,output etc.

34

Implementation: I have developed this software in the environment of

Turbo C under DOS, and the hardware platform is Pentium(133 Hz). Very

few changes can make it able to be run in ANSI C under unix. It can be

developed in any version of C, i.e. C++, VC++ etc. It can be made

portable, doing some changes like using preprocessing statements, that

will generate code for the environment used at the time of compilation. I

did some programming level code optimization. We can do some more

programming level code optimization by doing walk through the program

and keeping it in mind that we have to optimize our code. We can make it

to take input either from standard input or from file and to give output to

standard output, communication channel or files. We can also make it so

general so that same program have options to take input from standard

input, files or communication channels at the sender end and to give

output to standard output, communication channel or file at the receiver

end. I have implemented it on the basis of block ciphering mechanism. I

can make it on the basis of stream ciphering mechanism or give option for

that. At last I want to say that it is not absolute general software but I can

make it absolute to handle any mode, any type in input and output

systems.

Further after designing very few steps we can develop RSA based

public key cryptosystem and also any other public key cryptosystem

based on the operations of modular exponentiation, modulo operations,

modulo multiplications, multiplicative inverse etc.

35

CHAPTERS

CODING & TESTING

Since our design was in more detailed manner so that our coding is

done more mechanically. It does not mean that coding is absolute

mechanical because I have some limitations while designing. In designing

process we have supposed that a function will take some defined type of

input and give some specific type of output. To achieve this output from

input I have designed algorithms and in coding step all the steps of

algorithms must be syntactically, semantically and logically correct so that

it must be compiled without any compilation and linking error. When it is

linked then I have tested it giving some test data which can execute every

step of the function and verified its output from my result data computed

mannually. When there were some logical errors that gave incorrect

output then I have corrected it so that it gave correct output and all the

steps of function are executed giving correct output. I have done coding

this type and tested for every function. Yet I have been strucked in some

functions which are calling another tested function but needed correction

in tested function to execute and give output properly. At last all functions

were logically correct, while there are several functions those are

dependent on each other, and gave logically correct output.

Program for this software comprises of approximately nine hundred

lines of code exculding the files included.

36

Precomputation of table takes 0.329670 second. Encryption of 'A'

takes 0.219780 second, and encrypted text of 'A' takes 0.549451 second

for decryption.

Table given below shows that what length of text takes how much

time for encryption and decryption.

Text length
(in characters)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
22
22
23
24
25
26
27
28
29·
30
31

32

Time for encryption
(in seconds)

1.483516
1.483516
1.483516
1.483516
1.483516
1.593407
1.593407
1.593407
1.593407
1.593407
1.593407
1.593407
1.593407
1.648352
1.648352
1.648352
1.648352
1.648352
1.648352
1.648352
1.648352
1.703297
1.703297
1.703297
1.703297
1.703297
1.703297
1.703297
1.703297
1.703297
1.703297

1.703297

37

Time for decryprion
(in seconds)

4.505495
4.505495
4.505495
4.505495
4.505495
4.505495
4.505495
4.505495
4.505495
4.505495
4.505495
4.505495
4.505495
4.505495
4.505495
4.505495
4.505495
4.505495
4.505495
4.505495
4.505495
4.505495
4.505495
4.505495
4.505495
4.505495
4.505495
4.505495
4.505495
4.505495
4.505495

4.505495

CHAPTERS

COMPARISON

We compare RSA cryptosystem with the RSA based cryptosystem.

RSA cryptosystem:

In RSA cryptosystem we have to perform various operations to

generate keys and then use fast exponentiation for ciphering and

deciphering. We need multiplicative inverse at the time of generation of

keys. At the time of application we need only modular exponentiation. The

time taken by this cryptosystem may be little bit more than RSA based

cryptosystem but in it there are no complex computations and complexity

of it is also less compare to RSA based cryptosystem. From the point of

security it is more secure than RSA based cryptosystem.

RSA based cryptosystem:

In RSA based cryptosystem we need all operations of RSA

cryptosystem for generating keys, then using these generated keys we

need only multiplicative inverse, addition, subtraction and modulo

operation to cipher and decipher. It is less secure than RSA cryptosystem,

it is more complex than RSA cryptosystem but it is faster than RSA

cryptosystem.

38

APPENDIX A- Source code

add_large_integer(Nuniber aD,, Number bQ,Number cO);

subtract_large_int(Number aQ,Number bQ,Number cO);

/*c=a+b*/

/*c=a-b*/

multiply_large_int(Number uQ,Number vQ,Number wO); /*w=u*v */

devide_large_integer(Number uQ,Number vQ,Number qQ,Number rO);

/* u=q*v + r *I

print_blarge_integer(Number aD);

sub(Number bQ,int num);

assign(Number aQ,Number bO);

create_table(Number aOO.Number dQ,int I);

modular_reduction(Number aOO.Number kQ,Number dO, intI);

create_h(Number aOO.Number hOD. Number mO,Number dQ,int I);

mod_exp_ssi(Number aOO.Number mQ,Number eO,dO,xO,int I);

gcd(Number uQ,Number vO. Number aD);

mult_inv_mod(Number aQ,Number bQ,Number y1 0);/* b*y1 =1 mod(a) *I

make_rand_number(Number xO.int I);

assign_large_integer(Number bQ,char *p);

scan_text_and_make_to_integer(Number gO);

make_integer_to_text_and_print(Number gO);

39

main()
{

int iljlqlkll;
Number t[ARRA YSIZE]~g[ARRA YSIZE]~r[ARRA YSIZE],n[ARRAYSIZE];
Number h[512][ARRA YSIZE];
Number atab[512][ARRA YSIZE];
Number a[ARRA YSIZE]~b[ARRA YSIZE]~c[ARRA YSIZE),d[ARRA YSIZE];
char *p~*p1 ="170141183460469231731687303715884105727"

I *p2="680564 7338418769269267 49214863536422887";

fflush(stdin);
assign_large_integer(a 1p1);
assign_large _integer(b~p2);
multiply _large _integer(albin);
sub(a~ 1);
sub(b~ 1);
multiply_large_integer(a~b~c);
make_rand_number(a~7);

while(1)
{

gcd(c~a~b);
devide _large _integer(alblg ~r);
assign(a~g);

if(equal_to_one(b)) break;
}
mult_inv_mod(c~a~t);
1=32;
while(n[--1]==0);
I++· I
create_table(atab~n~l);

scan_text_and_make_to_integer(g);
mod_exp_ssl(atablglalnlrll);
mod_exp_ssl(atablrltlnlgll);
make_integer_to_text_and_print(g);

}

add_large_integer(Number aD~Number bD~ Number cO) I* c=a+b*/
{
canst Lnumber d=BBASE;
int i~n=ARRA YSIZEI carry=O;
Lnumber t;
while((a[--n]==O) && (b[n]==O) && (n>=O));
for(i=O;i<n+1 ;i++)
{

40

}

}

t=(Lnumber)a[i]+b[i]+carry;
c[i]=t%d;
carry=t/d;

c[i++]=carry;
while(i<ARRAYSIZE) c[i++]=O;

subtract_large_integer(Number aQ,Number bQ,Number cO)
{

canst Lnumber d=BBASE;
Lnumbert;
int i,neg=O,n=ARRAYSIZE, carry=1;
if(greater_than(b,a)) neg=1;
while((a[--n]==O) && (b[n]==O) && (n>=O));
for(i=O;i<n+1 ;i++)
{

}

t=d+a[i]-b[i]+carry-1;
c[i]=t%d;
carry=t/d;

if(neg) c[i]=-1;
while(i<ARRA YSIZE) c[i++]=O;

}

multiply _large _integer(Number uQ ,Number vO ,Number wO)
{

Lnumber t,c,d=BBASE;
int i,j,k,m,n;
m=ARRA YSIZE;n=ARRA YSIZE;
make_zero(w);
while((u[--n]==O) && (n>=O));
while((v[--m]==O) && (m>=O));
forO=O;j<m+ 1 ;j++)
{

if(vU]!=O)
{

c=O;
for(i=O;i<n+1 ;i++)
{

t=(unsigned long int)u[i]*vO]+w[i+j]+c;
w[i+j]=t%d;
c=t/d;

}

41

}
}

w[i+j]=c;
}

devide_large_integer(Number uO.Number vO.Number qO,Number rO)
{

Number q1 ,q2,t[ARRAYSIZE],s[ARRAYSIZE],p[ARRAYSIZE],
o[ARRAYSIZE],x[ARRA YSIZE];

Lnumber ck1 ,ck2,ck3,b=BBASE;
int i,j,m,n;
m=n=ARRA YSIZE;
for(i=O;i<m;i++) { t[i]=O; q[i]=O; r[i]=O; o[i]=O;}
while((u[--m]==O) && (m>=O));
while((v[--n]==O) && (n>=O));
if(n<O){ fprintf(stderr,"\ndevide by zero error''); return;}
if(n==O)

{

}
else

{

assign(q,u); ·

q2=t[O]=b/((Lnumber)v[n]+1);
multiply _large_integer(u,t,r);
multiply _large _integer(v ,t,s);
for(i=O;i<m-n+1 ;i++)
{

if(r[m+1-i]==s[n]) q1 =b-1;
else

q1 =((Lnumber)r[m+1-i]*b+r[m-i])/s[n];
ck1 =(Lnumber)r[m+1-i]*b+r[m-i] -(Lnumber)q1 *s[n];
ck2=(Lnumber)s[n-1]*q1;
ck3= ck1*b+r[m-i-1];
while((ck1<b) && (ck2>ck3))
{

}

q1--;
ck1 =(Lnumber)r[m+1-i]*b+r[m-i] -(Lnumber)q1 *s[n];
ck2=(Lnumber)s[n-1]*q 1;
ck3= ck1*b+r[m-i-1];

t[O]=q1;
multiply_large_integer(s,t,p);
forU=m-i-n;j<m+2-i;j++) o[i+j-m+n]=rO];
q[m-i-n]=q1;
if(greater _than(p,o))

42

}
}

}

{

}

q[m-i-n]--;
subtract_large_integer(p,s,x);
subtract_large_integer(o,x,p);
forU=m-i-n ;j<m+2-i;j++) r[j]=p[i+j-m+n];

else
{

subtract_large _integer(o,p,x);
forU=m-i-n ;j<m+2-i ;j++) r[j]=x[i+j-m+n];

}

create_table(Number aD[ARRA YSIZE], Number dQ,int I)
{
Number atab[512][ARRA YSIZE];
int i,n; Number t[ARRA YSIZE],g[ARRAYSIZE],r[ARRA YSIZE];
for(i=O;i<ARRAYSIZE;i++) { a[O][i]=O; t[i]=O;}
for(i=1 ;i<512;i++)
{

}
}

t[l]=i;
devide _large _integer(t,d ,g ,r);
multiply _large _integer(d,g,a[i]);

modular_reduction(Number aD[ARRAYSIZE],Number kQ,Number dO. int
I)
{

Number j,n,t[ARRAYSIZE],q[ARRAYSIZE],r[ARRAYSIZE];
inti;
for(i=2*1-1 ;i>=O;i--)
{

}

j=k[l+i/2];
if(i%2) j=j/256;
assign(t,a[j]);
left_shift_by_n(t,i/2);
if(i%2) mul(t,256);
subtract_large_integer(k,t,k);

wh ile(g reater _ than(k,d))
{

print_ blarge _integer(k);

43

}
}

print_ blarge _integer(d);
devide _large _integer(k,d,q,r);
assign(k,r);

create_h(Number aOO.Number hOD. Number niO.Number dO,int I)
{

inti;
multiply _large _integer(m,m,h[O]);
modular_reduction(a,h[O],d,l);
multiply _large _integer(m,h[O],h[1]);
modular_reduction(a,h[1],d,l);
for(i=2;i<8;i++)
{
multiply _large _integer(h[O],h[i-1],h[i]);
print_ blarge _integer(d);
modular _reduction(a,h[i],d ,I);
print_blarge _integer(d);

}
}

mod_exp_ssi(Number atOO.mO.Number fD,Number dO.xO.int I)
{ .

int i,j,n,a,k,b,el=10;
char *e;
Number h[512][ARRAYSIZE],y[ARRA YSIZE];
create_h(at,h,m,d,l);
n=strlen(e);
n--·

'
for(i=O;i<ARRA YSIZE;i++) x[i]=O;
x[0]=1;
i=-1;
while(1)
{

while((i<n) && (e[i+1]=='0'))
{

}

i++;
multiply _large _integer(x,x,y);
modular_reduction(at,y,d,l);
assign(x,y);

if(i>=n) return;
j=i+el;
while(U>n) II (e[j]=='O')) j--;

44

}
}

a=O;
for(k=i+1 ;k<j+1 ;k++)
{

a=a*2;
if(e(k]=='1') a++;

}
b=(a-1)/2;
while(i<j)
{

i++'
'

multiply _large _integer(x,x, y);
modular_reduction(at,y,d,l);
assign(x,y);

}
multiply_large_integer(h[b],x,y);
modular_reduction(at,y,d,l);
assign(x,y);

gcd(Number uO,Number vO, Number aD)
{

inti;
Number q[ARRA YSIZE],r[ARRA YSIZE],b[ARRAYSIZE];
assign(a,u);
assign(b,v);
if(greater_than(b,a)) swap (a,b);
do{

devide _large _integer(a,b,q ,r);
assign(a,b);
assign(b,r);

} while(not_zero(r));
}

mult_inv_mod(Number aO,Number bO.Number y30)
{

Number
zero(ARRA YSIZE],o[ARRA YSIZE],r1 [ARRA YSIZE],r2[ARRA YSIZE],

y2(ARRA YSIZE],q[ARRA YSIZE],r3[ARRA YSIZE],y1 [ARRA YSIZE];
int flag=O;
assign(r1 ,a);
assign(r2,b);
make_zero(zero);
make_zero(y1);
make_zero(y2);

45

y2[0]=1;
do
{

devide_large_integer(r1,r2,q,r3);
multiply_large_integer(y2,q,o);
add_large_integer(y1,o,y3);
assign(r1,r2);
assign(r2,r3);
assign(y1,y2);
assign(y2,y3);
flag++;

} while(!equal_to_one(r2));
if(flag%2){ subtract_large_integer(a,y2,y3);}

}

sub(Number bO.int num)
{

const Lnumber d=BBASE;
Lnumbert;
int c=num,i,n=ARRA YSIZE,carry=1;
while((b[--n]==O) && (n>=O));
for(i=O;i<n+1 ;i++)
{

}

t=d+b[i]+carry-c-1;
b[i]=t%d;
carry=t/d;
c=O;
if(carry==1) return;

if(carry==O) b[i]=-1;
}

assign(Number aO,Number bO)
{

int i,m=ARRAYSIZE;
while((b[--m]==O) && (m>=O)) a[m]=O;
for(i=O;i<m+1 ;i++) a[i]=b[i];

}

make_rand_number(Number xO,int I)
{

inti;
make_zero(x);
for(i=O;i<l;i++)

x[i)=rand();

46

}

assign_large_integer(Number cQ,char *str)
{

char *p,b[DIGIT];
Number a[ARRAYSIZE];
int len,i,j,k,l,n;
p=str;
len=strlen(str);
n=O;
j=len/DIGIT;
k=len%DIGIT;
for(I=O;I<j;l++)
{

for(i=O;i<DIGIT;i++) b[i]=p[len-DIGIT +i];
a[n]=atol(b);
n++;
len -= DIGIT;

}
if(k)

{

}

for(i=O;i<k;i++) b[i]=p(len-k+i];
b[i]='\n';

a[n]=atol(b);
n++·

'

for(i=n;i<ARRA YSIZE;i++) a[i]=O;
large_dinteger_to_large_binteger(a,c);

}

print_blarge_integer(Number aD)
{

int i,j,c,n=ARRAYSIZE;
Number b[ARRA YSIZE],t;
for(i=O;i<ARRA YSIZE;i++) b(i]=O;
while((a[--n]==O)&&(n>=O));
for(i=O;i<n+1 ;i++)
{

t=32768;
forO=O;j<BITSINWORD;j++)
{

mul_d(b,2); if(a[n-i] & t) add_d(b, 1);
t>>=1;

}
}

47

n=ARRA YSIZE;
while((b[--n]==O)&&(n>=O));
printf(''\nBiarge integer:\t");
if(n>=O) printf("o/od",b[n]);
else printf("%d",b[n+1]);
for(i=1 ;i<n+1 ;i++) printf("%04d" ,b[n-i]);

}

scan_ text_ and_ make_ to _integer(Number gO)
{

int i,n,j;
char c,p[38],q[76),a[3);
printf(''\nEnter number of characters(<39)\t");
scanf("o/od" ,&n);

}

printf(''\nEnter text\n");
for(i=O;i<n;i++)
{

}

c=getche();
if((c==' ')ll(c=='\t')) j=O;
else
j=toupper(c)-'A'+1;
q[2*i]=j/1 0+48;
q[2*i+1]=j% 1 0+48;

q[2*i]=O;
printf(''\n");
assign_large_integer(g,q);

make_integer_to_text_and_print(Number aD)
{

Number t,b[ARRA YSIZE];
int i,n=32,j,k,l;
char q[38];
make_zero(b);
while((a[--n]==O)&&(n>=O));
for(i=O;i<n+1 ;i++)
{

t=32768;
forO=O;j<BITSINWORD;j++)
{

}

mul_d(b,2);
if(a[n-i] & t) add_ d(b, 1);
t>>=1;

48

}
n=32;
while((b(--n]==O) && (n>=O));
for(i=n;i>=O;i--)
{

1=2*(n-i);
j=b(i]/1 00;
k=b[i]% 1 00;
q[l]=j?'A'+j-1 :' ';
q[l+1]=k?'A'+k-1 :' ';

}
q[l+2]=0;

printf("\n%s",q); }

49

APPENDIX B- Test data & its output

large integer:
11579208923731619542357098500868790784833589034528695631923
865220015249057384 9 /* multiplication of two primes*/

large integer:
697014061789277386526146338816173 I* public key*/

large integer:
56885506409786238714224180125748840116766189052022173646161
77785929307677929 3 /*private key*/

/*Ciphering and Deciphering starts from here */

1. Enter number of characters(<33) 28
Enter text: jawahar lal nehru university

large integer:
36274927342744003827380040313444470047403548314445354651
large integer:
15268634331665784121278047287744126943682032611422621035720
855585189302321280
large integer:
36274927342744003827380040313444470047403548314445354651
jawahar lal nehru university

2. Enter number of characters(<33) 28
Enter text: Jawahar Lal Nehru University

large integer:
10274927342744001227380014313444470021403548314445354651
large integer:
62208948520097550668833716455927057041814317811576300194080
969765223077815352
large integer:
10274927342744001227380014313444470021403548314445354651
Jawahar Lal Nehru University

3. Enter number of characters(<33) 32
Enter text: Jawahar Lal Nehru was 1st PM of

large integer:

50

10274927342744001227380014313444470049274500094546001613004
13200
large integer:
23152643646199069923414494709173866688528411866360193881120
695081267097095275
large integer:
10274927342744001227380014313444470049274500094546001613004
13200
Jawahar Lal Nehru was 1st PM of

4. Enter number of characters(<33) 1
Enter text: a

large integer:
27
large integer:
64508007307897932527864393722951027213960417910581969560210
017207690791050877
large integer:
27
a

5. Enter number of characters(<33) 1
Enter text: A ·

large integer:
1
large integer:
1
large integer:
1
A

6. Enter number of characters(<33) 15
Enter text: Hello Mr Brahma

large integer:
83138384100134400024427343927
large integer:
77767943450200751020937238582056540623209359832601346289647
317405672807003871
large integer:
83138384100134400024427343927
Hello Mr Brahma

51

APPENDIX C- Bibliography

1. Albrecht & Beutelspacher; Cryptography; Mathematical Association
of America, 1994

2. Gollmann D., Han Y., Mitchell C.J.; Redundant Integer
Representations and Fast Exponentiation; Kluwer Academic
publishers, 1996

3. Introduction to EDI- A primer/ /The evolution of electronic
commerce; Vide: http://www .geis.com/geis/edi/edifaq* .html

4. Knuth D.E.; The art of computer programming: Semi numerical
algorithms; Addison-Wesley Publishing company; vol 2, 2nd
Edition, 1981

5. Konheim A.G.; Cryptography: A primer; Mathematical Science Deptt.,
IBM Thomas J. Watson Research Centre.

6. Lam K.Y. & Hui L.C.K.; Fast square-and-multiply exponentiation for
RSA; Electronics letters, vol. 30, No. 17, 18th.Aug 1994

7. Meyer C.H. & Matyas S.M.; Cryptography: A new dimension in
computer data security; John Wiley & Sons, 1982

8. Mitchell C.J.; Another improvement to square-and-multiply
exponentiation; Technical report CSD-TR-93-21A (Revised
version),Royal Holloway University of London, Department of
computer science, Egham, Surrey TW20 OEX,England,31 Jan 1994

9. Pai T.G. & Prasad U.C.; C implementation of multi-precision
arithmetic algorithms for public key cryptosystems; liT Delhi, April

1997

10. Roy S.A.; Banking & Electronic commerce; CSI communication,
June 1997

11. Sandhu R. & Samarati P.; Authentication, Access control and Audit;
ACM computing survey, vol. 28, No. 1, March 1996

12. Selby & Mitchell C.; Algorithms for software implementations of
RSN/IEEE proceedings, vol. 136 pt. E,No. -3, May 1989

52

13. Tanenbaum A.S.; Computer networks, lllrd edition; P.H.I. Pvt. Ltd.,
N. Delhi-110001, 1997

14. Venkaiah V.Ch.; An RSA based public key cryptosystem for secure
communication; Proc. Indian Academic Science (Math. Sci.), vol 102,
No. 2, August 1992

53

	TH68460001
	TH68460002
	TH68460003
	TH68460004
	TH68460005
	TH68460006
	TH68460007
	TH68460008
	TH68460009
	TH68460010
	TH68460011
	TH68460012
	TH68460013
	TH68460014
	TH68460015
	TH68460016
	TH68460017
	TH68460018
	TH68460019
	TH68460020
	TH68460021
	TH68460022
	TH68460023
	TH68460024
	TH68460025
	TH68460026
	TH68460027
	TH68460028
	TH68460029
	TH68460030
	TH68460031
	TH68460032
	TH68460033
	TH68460034
	TH68460035
	TH68460036
	TH68460037
	TH68460038
	TH68460039
	TH68460040
	TH68460041
	TH68460042
	TH68460043
	TH68460044
	TH68460045
	TH68460046
	TH68460047
	TH68460048
	TH68460049
	TH68460050
	TH68460051
	TH68460052
	TH68460053
	TH68460054
	TH68460055
	TH68460056
	TH68460057
	TH68460058
	TH68460059
	TH68460060
	TH68460061

