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ABSTRACT 

In development of this software the classic life cycle paradigm is 

used. Sometimes it is called the "waterfall model". The life cycle paradigm 

demands a systematic, sequential approach to software development that 

begins at the system level and progresses through analysis, design, 

coding, testing and maintenance. Following are the description of the 

steps. 

System engineering and analysis: For implementing RSA algorithm, work 

begins by establishing requirements for all basic issues and elements and 

then allocating these requirements to develop a software. This view is 

essential when one must interface with other elements of software. 

System engineering and analysis encompasses requirements gathering at 

the system level with a small amount of top-level design and analysis. 

Software requirement analysis: The requirements gathering process is 

intensified and focused specifically on software. To understand the nature 

of the program to be built, information domain must be understand for the 

software as well as the required function and performance. Requirements 

are documented and reviewed through the problem. 

Design: Software design is actually a multistep process that focuses on 

four distinct attributes of the program: data structure, software 

architecture, procedural detail, and interface characterization. The design 



process translates requirements into a representation of the software that 

can be assessed for quality before coding begins. 

Coding: The design must be translated into a machine readable form. The 

coding step performs this task. If design is performed in a detailed 

manner, coding can be accomplished mechanically. 

Testing: Once code has been generated, program testing begins. The 

testing process focusses on the logical internals of the software, ensuring 

that all statements have been tested, and on the functional externals, that 

is, conducting tests to uncover errors and ensure that defined input will 

produce actual results. In this step sometimes it may happen that, we 

have to correct a function which is tested before and found correct, but 

when it is in use in another function and this function gives some errors 

due to error of function called. 

Maintenance: Software will undoubtedly undergo change after its 

development because of the functional or performance enhancements. 

Software maintenance reapplies each of the preceding life-cycle steps to 

an existing program rather than a new one. 

In chapter 1, Need of secure communication, necessity, benefits 

etc. are explained. Theme of cryptography (private & public) is explained 

and some well known public key cryptosystem is given. 



In chapter 2, RSA algorithm is explained. Key generation, 

properties & generation of prime numbers, computing gcd & modulo 

inverse are explained. Encryption and Decryption have been explained. 

In chapter 3, Multi-precision arithmetic is taken as a primary issue 

which is the basic building block of computations in RSA algorithm. In this 

chapter we have considered addition, subtraction, multiplication and 

division. We also explained modular reduction and fast modular 

exponentiation algorithms. 

In chapter 4, we have explained design and implementation of 

some ideas which are helping to implement some different algorithms 

successfully. 

In chapter 5, coding and testing are explained. Program metric and 

software metric, execution times etc. are given in this chapter. Source 

code and test datas are given in appendices A and B respectively. 

In chapter 6, there is comparison between RSA cryptosystem and 

RSA based cryptosystem. We have compared it on the basis of speed. 

complexity and security measure. 



CHAPTER 1 

INTRODUCTION 

Communication is taking place in day-to-day life of every one. In 

defence and political sphere, it is very important to maintain confidentiality 

of information. RSA algorithm may perform this role. Popularity and 

efficiency of RSA algorithm makes it in use in electronic commerce, 

electronic banking, electronic fund transfer etc. Computer networking is 

spreading very fast around the globe. RSA algorithm may be used in 

these computer networks. It serves the purpose of authentication, digital 

signatures etc. Processing speed of RSA algorithm is slow. It is to be 

equalize with high data bit rate communication channels. It may perform 

wonder in future. 

In 1977 Ronald Rivest, Adi Shamir and Leonard Adleman took up the 

challenge of producing a full-flegded public-key cryptosystem. The 

process lasted several months during which Rivest proposed approaches, 

Adleman attacked them, and Shamir recalls doing some of each. In May 

1977 they were rewarded with success. They had discovered how a 

simple piece of classical number theory could be made to solve the 

problem. Implementation of RSA algorithm was a challenging job. H/W & 

S/W implementation of RSA had achieved by some people. VICTOR was 

an efficient RSA H/W implementation. But S/W implementation of RSA 

was not efficient. It took long processing time while communication 

channels can carry information very fast. 



Two large prime integers are chosen and multiplication of these is 

published in public directory as a public number. Euler's totient function is 

computed. Secret key is chosen and tested for coprime of totient function. 

Public keys are derived from the secret keys and totient function 

computing multiplicative inverse of totient func.tion and published in a 

public directory. Ciphertext is computed as plaintext to the power public 

key modulo public number and plaintext is recovered from ciphertext as 

ciphertext to the power secret key modulo public number. 

Number theory is the root of the RSA algorithm. Factorization of very 

large number is very much time consuming, it is the strength of RSA 

algorithm. We need Multi-precision arithmetic. Modulus is being computed 

using modular reduction algorithm which is fast. Exponentiation uses 

square-and-multiply technique, right to left binary technique, k-SR, k-ary, 

SS(I) etc. which make very fast computation of modular exponentiation. 

Some method is used at implementation level to make this software fast. 

1.1 Secure Communication 

Secure communication activities involve exchange of information 

from a person to another person maintaining confidentiality. 

Communication activities may be performed through satellites, 

microwaves, radiowaves, digital communication systems, electronic 

communication systems etc. Secure communication activities are needed 

in the field of defence, diplomatic activities, business, share market, 
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political sphere. Secure communication can be achieved through public 

key cryptosystem which also serves the purpose of authentication, 

authorization, digital signatures etc. Therefore we can say that nowadays 

one can communicate with another securely. 

1.2 Cryptography 

Cryptography is the science of secret communications which involves 

controlled corruption of messages or signals so that only authorized 

person may be able to make meaning out of them. Historically people 

belonging to four different part of life have used and contributed to the art 

of cryptography: the military, the diplomatic corps, the diarists and lovers. 

Of these, military has had the most important roles. For exchange of 

secret information in the defence, diplomatic corps, business, scientific 

research and other secret informations of the interest of national security 

we need some safe method of communication. A large volume of data is 

exchanged and communicated through internet. e-mails also need secure 

propagation. Home pages and Websites need authorization. Some may 

trap these datas and may perform illegal access if there is no prevention. 

For preventing illegitimate access cryptography can be used. 

Cryptography can be classified into two streams. One is private key 

cryptography and another is public key cryptography. In private key 

cryptography, key is secret and same for both ciphering and deciphering 

i.e. keys are symmetric. In public key cryptography there is a public key for 
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ciphering which is known to all because it is published in a public directory 

and there is a secret key for deciphering which can not be obtained 

knowing public key & method used i.e. here keys are asymmetric. 

Private key cryptography: Private key cryptography was used earlier 

when computers were not commonly availabl,e. There are various private 

key cryptosystem e.g. substitution cipher, transposition cipher etc. Since 

computers came in existence, it is very easy to break the long messages 

using statistical methods. Using statistical distribution of English alphabet 

one can break the substitution cipher for long messages. There are also 

problems of key distribution and maintenance. As number of users 

increases number of keys increases quadratically. It does not serve the 

purpose of authentication, authorization, digital signatures. It may not be 

effective for secure communication. The only advantage of this is that it 

can cipher and decipher very fast, at the rate of the communication 

channels. Public key cryptography overcome all these problems but it is a 

slow process. 

Public key cryptography: Since computer systems came in existence, 

public key cryptography became more popular. In this method there are 

public and private keys. Public keys are known to all but private keys are 

known to only receivers. Sender and receiver have different private keys. 

They don't know private key of each other. It also serves law enforcement. 

One can claim in the court on the basis of it. That is why it is apllied in 

electronic commerce, electronic banking, electronic fund transfer and 
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various business applications. It may not be broken easily that is why it is 

applied in defence, diplomatic corps, political sphere, scientific research 

etc. Different public key algorithms are there e.g. Elgamal's, Deffi-

Hellman's key exchange protocol, Merkle-Hellman's knapsack trapdoor 

algorithm, RSA algorithm etc. The only problem with public key 

cryptography is slow processing. To overcome this problem various 

techniques are used but it is not serving our purpose completely. Various 

techniques are under development process that will enable it to face high 

data bit rate communications and there will be no delay in processing, that 

is, flow will be maintained. It needs fast multi-precision arithmetic 

operations. 

1.3 Public Key Cryptography 

It is very hard to compute secret keys, knowing public key, is the 

theme around the public key cryptography. Some public key algporithms 

are given below. 

(a) Diffie-Hellman's key exchange protocol 

Secret key: xA xB 
Public Key: p 
g is chosen by both users. 

A 
gxA(mod p) 
gxAx8 {mod p) 

8 
gx8 (mod p) 

gxAx8 (mod p) 
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(b) Merkle-Hellman's knapsack trapdoor algorithm 

It is a super increasing sequence i.e. ai > ai U=1 .. i-1) 
pis chosen such that p>Laj and w is chosen such that gcd(w,p)=1. 

secret key: A, p, w 
Public key: A'=(a,*w(mod p),a/w(mod p), ... a/w(mod p)). 

M=(m1,m2, .... mn) where mi={O, 1}. 
A'M=C' where C' is a positive integer. 
w'C'(mod p)=C 
AM=C 

Multiple Iteration: A=(a1,a2, .... an) where a?O 

W1 P1 
A'=A*w1(mod P1) 
W2 P2 
A"=A'*w2 (mod P2) 
W2'C"(mod P2)=C' 
w/C'(mod P1)=C 

(c) Elgamal's cryptosystem: It is based on descrete logarithm problem. 

A 
xA a ,p, a 

m (message) 
B~A 

k 
(ak,m, axak) 
(ak)><A ~ akxA 
(a\m2 axak) 
m1 a xak =C, 
m2 a xak =C2 

c1 m1 
c2 = m2 
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(d) RSA algorithm: 

p,q: large prime integer of the order of 100 digit. 
n=p*q 
~(n)=(p-1 )(q-1) 

gcd(d, ~(n))=1 

e*d=1 mod ~(n) 
ae(mod n)=c 
cd(mod n)=a 

(e) RSA based public key cryptosystem: 

choose P; & gi where 1~ i~ 3, 1~ j~ 6 

P;<pi whenever i<j 
gcd(p;,g;)=1 V i 

Encryption: 
C;=P;e(mod N) V i 

c3+i=g;e(mod N) Vi 
c9+;=(((m;+g4)g1(mod p1)+g5)g2(mod p2)+g6)g3(mod p3) 

Decryption: 
C;d(mod N)=p;ed(mod N)=p; i=1,2,3 
c3+id(mod N)=g;ed(mod N)=g; j=1, .. 6 
m;=(((((cs+l g3-1(P3)-gs)(mod P3)g2-1(P2)-g5)(mod P2)g,-1(P, )-g4(mod p,) 
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CHAPTER2 

RSA ALGORITHM 

RSA is most popular public key algorithm. It is named for its 

inventors Ronald Rivest, Adi Shamir and Leonard Adleman. It is based on 

the fact that current computing art of factorization of composite numbers 

with large prime factors involve overwhelming computations. Multi­

precision integer arithmetic is used in RSA algorithm. It is secure system 

because breaking of RSA is easy by method but very much time 

consuming (of the order of millions of years). RSA algorithm involves 

following assumptions and computations. 

Two very large prime integers are chosen as private keys which are 

nearly equal. Multiplication of these two prime numbers is public. Euler's 

totient (also called indicator, ) function of it is computed and is private. A 

number which is coprime of totient function is chosen and it is private. 

Multiplicative inverse of it modulo totient function is computed and it is 

public. Ciphertext is computed as plaintext to the power public key modulo 

multiple of primes. 

Deciphering is carried out by computing ciphertext to the power 

private key modulo multiple of primes. The fact that how plaintext will be 

recovered from ciphertext is based on that multiplication of both private & 

public key modulo totient function is equivalent to integer one. 

Multiplicative inverse is computed by using Euclid's algorithm. Euclid 

algorithm computes greatest common divisor of two integers. We choose 
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secret key and if gcd of it w.r.t. totient function is not one, then we divide 

chosen number by gcd, then gcd of this number and totient function will be 

one. Then we compute inverse. For computing exponent we can use 

repeated square and multiply technique. We are describing methods for 

key generation and Encryption & Decryption. 

2.1 Key generation 

We are explaining prime numbers and Euclid's algorithm which are 

used to generate keys for our cryptosystem. 

a) Prime number generation: We used given theorem to generate required 

prime number. It may happen that generated number is psuedo prime yet 

it will fulfil our requirement. 

Theorem: If gcd(a,p)=1 and ap-1(mod p)=1 then pis a prime number. 

Using this theorem it is very easy to check that a given number is 

prime or not. We can choose an odd number and then we test this 

property for that number if it is satisfied then the number is prime 

otherwise we subtract or add two in that number and test this property 

again untill the number is not prime. Some properties and other 

information about prime numbers are given. 

Distribution of primes: A computation by M. Kraitchik shows that for each 

group of 100 numbers in the interval from 1 012+1 to 1 012+1 000 the 

corresponding frequency of primes is 

4,6,2,4,2,4,3,5,1,6 
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Even though the prime numbers gradually become more scarce as 

the numbers within the groups become larger, there are still infinitely many 

primes. 

According to the prime number theorem, the ratio of 7t(X), the 

number of primes in the interval from 2 to x, and x/ln(x) approaches 1 as x 

becomes very large, that is. 

lim TI.(x) =1 
x->oc x/ln(x) 

where ln(x) is the (natural) logarithm of x to the base e=2.71828: .. On the 

average about (x-1 )/ 7t(x)=ln(x) values must be tested before a prime is 

found. 

Testing for primality: Several methods can be used to test a randomly 

selected number for primality. However, the most straightforward 

approaches are not computationally feasible. For example, a test could be 

based on Wilson's theorem, which states that 

(p-1 )!= -1 (mod p) if pis prime 

where (p-1 )!=2*3* ... *(p-1) 

In all other cases (except n=4), it can be shown that 

(n-1 )! =O(mod n) if n is not prime 

It should be obvious, however, that a test based on Wilson's 

theorem is useless for large values of p, since too many multiplications 

would be required to compute (p-1 )!. 
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A different test could be based on the simple fact that if a number n 

is not prime, then n must contain a factor less or equal to the square root 

of n. But even here the test is useless for large primes p, since to show 

that p is not divisible by any number between 2 and p, and thus prove that 

p is prime, would still require too many computations. 

To test a large number n for primality, one could use the elegant 

"probabilistic" algorithm of Solovay and Strassen. It picks a random 

number a from a uniform distribution (1 ,2, ... ,n-1) and tests whether 

gcd(a,n)=1 and J(a,n) a(n-1v2(mod n) (eq 10) 

where J(a,n) is the Jacobi symbol. if n is prime, then equation 10 always 

holds. If n is composite, the equation 10 will be false with probability of at 

least 1/2. 

The number n can now be tested for primality by using a set of 

integers, A={a1,a2,. •. ,aJ, where each A is less than n. The test requires 

that, for each value of a in A , equation 10 holds. Thus n is found to be 

composite if there is an a in A for which equation 10 does not hold; 

otherwise n is accepted as prime. 

The procedure does not guarantee that a selected number is prime, 

but only that it has not failed the test of primality. The greater the number 

of integers in A, the greater the probability that a selected number is 

prime. 
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When n is odd, an, and gcd(a,n)=1, the Jacobi symbol, J(a,n), has 

a value in {-1, 1} and can be efficiently computed by the following recursive 

procedure: 

J(a,n)=if a==1 then 1 else 

if a is even then J(a/2,n)(-1 )<"2·1)/8 

else J(n(mod a),a)(-1 )<a-1J<n-1)14 

Prime numbers are generated, now we need to compute Public keys and 

Secret keys. Modulo public number is computed by multiplying two prime 

numbers. Secret keys and other public keys can be computed using 

Euclid algorithm given below. 

b) Euclid Algorithm: Let a>b>O be two integers. By division property 

rn-2=r n-1 *q n +r n 
r n-1=r n *q n+1 

O<r1<b 
O<r2<r1 
O<r;<r2 

O<r n<r n-1 

where r n!=O but r n.,=O 

The gcd of a and b is then r n 

If gcd(a,b)=1 then multiplicative inverse of b modulo a exist and 

computing it we need to define 

y 1=0-1*q1, 
y2=1-y,*q2, 
y3=y1-y2*q3, 
y4=y2-y/q4, 
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Yn=Yn-2-Yn-1*qn, 
Y n+1=y n-1-y n*q n+1• 

If rn=1 then multiplicative inverse of b modulo a is the positive residue of 

Yn modulo a_ 

we can compute the multiplicative inverse as in the following table 

a 0 

b 1 

qn+1 r n+1 y n+1 

2.2 Encryption & Decryption 

To explain the Encryption and Decryption process we are 

explaining RSA algorithm. 

RSA algorithm: 

1 . p and q are primes 
2. r=p.q 
3. cj>(r)=(p-1 )(q-1) 
4. SK is the private key 
5. PK is the public key 
6. X is the message (plaintext) 
7. Y is the ciphertext 

(secret) 
(nonsecret) 
(secret) 
(secret) 
(nonsecret) 
(secret) 
(nonsecret) 

The RSA algorithm is based on an extension of Euler's theorem, which 

states that 
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a~<r>=1 (mod r) 

where 

1 . a must be relatively prime to r. 

2. <jl(r)=r(1-1/p1)(1-1/p2 ) ••• (1-1/pn), where p1,p2 , .•• pn are the 

prime factors of r. 

<jl(r) is Euler's -function of r ( also called indicator or totient ) which 

determines how many of the numbers 1 ,2, .... r are relatively prime to r. 

To obtain the mathematical ralationship between the public and 

private keys, PK and SK, Euler's result is extended as follows. First it is 

shown that ab(mod r) implies that am bm(mod r) for any exponent m. Thus 

Euler's formula aW> = 1 (mod r) can be rewritten as 

a m~(r) =1 (mod r) (eq 1) 

where, as before, a is relatively prime to r. From the fact that a=b(mod r) 

implies that ae=bc(mod r) for any integer c, and from above equation it 

follows that 

X mw>·1=X(mod r) (eq 2) 

where plaintext X is relatively prime to r ( a ·restriction which will be 

removed later on ). Let the public key PK and secret key SK is chosen so 

that 

SK.PK=m<jl(r)+1 

or, equivalently, 

(eq 3) 

SK.PK=1 (mod <jl(r)) (eq 4) 
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Equation 2 can be therefore rewritten as 

xsKPK=X(mod r) (eq 5) 

which holds true for any plaintext (X) that is relatively prime to the modulus 

<j>(r). 

Encipherment and decipherment can now be interpreted as follows: 

EPK(X)=Y= XsK(mod r) (eq 6) 

D5K{Y) =Y5K{mod r) =XsKPK(mod r) =X(mod r) (eq 7) 

Moreover, because multiplication is a commutative operation (i.e. 

SK.PK=PK.SK), it follows that encipherment followed by decipherment is 

equivalent to decipherment followed by encipherment: 

(eq 8) 

This property is useful for generating digital signatures. 

Because XPK(mod r) =(X+mr) PK(mod r) for any integer m, each 

plaintext X,X+r,X+2r, ... ,results in the same ciphertext. Thus the 

transformation from plaintext to ciphertext is many-to-one. But restricting X 

to the set {0, 1 , .... ,r-1} makes the transformation one-to-one, and thus 

encipherment and decipherment can be achieved as described in 

equation 6 and 7. 

Theorem: Prove that xmq,(rJ•1=X(mod r) holds for any plaintext,X, where 

r=pq is the product of two prime factors and X is restricted to the set 

{0,1 , ... ,r-1} - a condition which is necessary for encipherment and 

decipherment. 
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proof: The theorem holds trivially for X=O, and so only the case X>O must 

be considered. If X is not relatively prime to r=pq, then X must contain 

either p or q as a factor. Suppose p is a factor of X, so that the relation 

X=cp holds for some +ve integer c. Since X is restricted to the set 

{0, 1 , ... ,r-1}, and r equals pq, it follows that X must be relatively prime to q. 

Otherwise, X would also contain q as a factor, in which case it would 

exceed r-1. Using Euler's theorem, we have 

x<~>(q)= 1 (mod q) 

where ~(q)=q-1. But 

xm(p-,)q,(q) =1 m(p-1) =1 (mod q) 

for any integer m, and (p-1) ~(q)=(p-1 )(q-1 )= ~(r), so that 

xmcl>(r) =1 (mod q) 

or , for some integer n 

1 =X mcl>(r)+nq 

Multiplying each side by X=cp results in 

X=X mc~>(r)+ 1 +(nq)(cp) 

=X mci>(rl+ 1+ncr 

or, X mc~>(r)+ 1 =X(mod r) 

The case in which q is a factor of X can be handled in the same manner, 

thus completing the proof. 

Encryption process: XPK(mod n)=Y 

Decryption process: Y5K(mod n)=X 
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CHAPTER3 

MULTI-PRECISION ARITHMETIC 

In this chapter we are describing basic operations (addition, 

subtraction, multiplications, division) and some more operations which are 

used in RSA algorithm. 

Let us now consider operations on numbers which have arbitrarily 

high precision. For the sake of simplicity, let us assume that we are 

working with integers instead of numbers with an embedded radix point. 

We will also be working only with positive integers. Now we will disscuss 

algorithm for: 

a) addition and subtraction of n-place integers, giving an n-place answer 

and a carry; 

b) multiplication of an n-place integer by an m-place integer, giving an 

(m+n)-place answer; 

c) division of an (m+n)-place integer by an n-place integer, giving an 

(m+1 )-place quotient and an n-place remainder. 

These algorithms for basic operations may be called "the classical 

algorithms", since the word "algorithm" was used only in connection with 

these processes for several centuries. By the term "n-place integer", we 

mean any integer less than bn, where b is the radix of the conventional 

positional notation in which the numbers are expressed; such numbers 

can be expressed using at most n "places" in this notation. The most 

17 



important fact to understand about multiple precision integers is that they 

may be regarded as numbers written in radix b where b could be the 

computers word size. For example if we have a computer with word size 

b=1010
, then an integer that fills up 10 words has actually 100 decimal 

digits; but we will consider it to be a 10 place integer to the base 1010
• It is 

clear that the larger the base, the lesser will be the number of computer 

words required to store the number. Obviously the base cannot be larger 

than the size of the computer word. 

Let us first state the primitive operation into which we will decompose 

the above problem: 

a) addition and subtraction of one place integers, giving a one place 

answer and a carry: 

b) multiplication of one place integer by another one place integer, giving a 

two place integer: 

c) division of a two place integer by a one place integer, provided that the 

quotient is a one place integer, and yielding also a one place remainder. 

By adjusting the word size, if necessary, nearly all computers will have 

these three operations available, and so we can construct our algorithms 

mentioned above in terms of these primitive operations. Let us now 

consider each of these algorithms in more detail. 

3.1 Addition 

Addition is the simplest among all the operations described above, but 

some of the ideas involved occur in other algorithms also. The idea 
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involved in the algorithm is the usual pencil and paper method adopted 

from Knuth(volume II, semi-numerical algorithms). 

Algorithm A( Addition of nonnegative integers): Given nonnegative n-place 

sum, (w0 ,W1,W2, •••• wn)b. (Here w0 is the "carry", and it will always be equal 

to 0 or 1 ). 

A 1. [Initialise] 

Set j ~ n, k ~ 0. (The variable j will run through the various digit 

positions, and the variable k keeps track of carries at each step.) 

A2. [add digits] 

or 1, depending on whether a "carry" occured or not, i.e. whether ui+v;+k= 

b or not. At most one carry is possible during the two additions, since we 

always have 

ui +vi+ k ::s;(b-1) + (b-1) + 1 < 2b. 

A3. [Loop on j] 

Decrease j by one. Now if j > 0, go back to step A2; 

otherwise set wO k and terminate the algorithm. 

There is a possibility of improvement in the above algorithm. 

3.2 Subtraction 

S1: [Initialise]: 
Set j ~ n 
k~o 

S2: [Subtract digits.] 
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Set wi ~(ui - vi + k +b )mod b 
k ~ (ui- vi+ k +b)/b 

S3: [Loop on j] 
j ~ j-1 
if j >0, go back to step S2 
else terminate the algorithm 

Again the subtraction algorithm has scope for improvement as in the case 

of addition. 

3.3 Multiplication 

Multiplication is an important building block for public-key 

cryptosystems. Firstly we consider a simple multiplication which is nothing 

but the normal pencil and paper method as presented by Knuth.The 

primitive operation which will help us to perform multiplication is 

multiplication of one place integer by another one place integer, giving a 

two place answer. 

Algorithm MIM(Multiple Integer Multiplication) 

in radix b, this algorithm forms their radix b product (w1 ,w2, .... wm+n)b. 

MIM1. [Initialise] 
For k=m+1 to m+n do w k =0; 
j=m 

MIM2. [Zero multiplier] 
If vi =0 then wi =0; 
goto step MIM6. 

MIM3. [Initialise] 
i=n;carry=O; 
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MIM4. [Multiply and Add] 
t=ui*vi+wi•i +carry. 
wi•i=t mod b;carry =t div b; 

MIM5. [Loop on i] 
i=i-1 ;if i>O then goback to step MIM4 else wi=carry; 

MIM6. [Loop on j] 
j=j-1 ; 
if j>O then goback to step MIM2. 

else stop. 

3.4 Division 

Object: To divide (n+m) place integer by n-place integer where n is very 

large, of the order of a few hundred decimal digits. 

Description: Any division operation essentially consists of dividing a (n+1 )-

place integer by an n-place integer where the divisor is an n place integer. 

A series of such operation constitute a long division of two multiple 

precision integers. So the problem breaks down to dividing an n place 

integer by an n place integer, i.e. u/v where u=(n+1 )-place integer and 

v=n-place and 0~ u/v<b where b is the base of the integers. 

The problem is to determine q= u/v . If we write r=u-qv then the unique 

integer satisfying O~r<v. The algorithm basically attempts to guess the 

value of q such that the error is never too large. 

Set q'=min( (u0b+u 1)/v1 ,b-1) 

Algorithm MPID: {Multiple Precision Integer Division} 
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Given: Non negative integers u=(u, U2 ••• um•n)b and v=(v, V2 ••• vn)b 

expressed in radix b, where v,>O and n>1, we form the radix-b quotient 

MPID1. [Normalize] 
d=b div (v1+1) 
u0=0 
(U0 U1 U2 ••. Um+n)=(U 1 U2 ... Unh*d 

(V1 V2 •.. Vn}=(v1 V2 ••• Vnh*d 

MPID2. [Initialize] j=O 

MPID3. [Calculate q'] 
if ui=v 1 then q'=b-1 
else q'=(uib+ui+1) div v, 
while v2q'>(uib+ui+1-q'v,)b+ui+2 do 
q'=q'-1 

MPID4. [Multiply and subtract). 
(uiui., ... ui+n)b = (uiui.1 ••• ui•n)b-q*(v,v2 •.. vn)b 

MPID5. [Test remainder] 
qj=q' 
if (uiui+1 ••• ui+nh<O then goto step MPID6 
else goto step MPID7 

MPID6. [Add back] 
qi=qr1 
(uiui., ... ui•n) b=(uiui., ... ui•n)b +(Ov, V2 ... v n)b 

MPID7. [Loop on j) 
j=j+1 
if j::;m then go back to step MPID3. 

MPID8. [Unnormalize] 
q=(qoq,qz ... qm)b 
r=(um+1···u m+n)b div d 

For ciphering and deciphering we need fast modular reduction 

operation and fast modular exponentiation. Now we explain the algorithms 
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for modulo operation and exponentiation. These algorithms can help to 

compute fast. 

3.5 Modular reduction: 

The standard method for doing the modular exponentiation is by using 

the well known "repeated square and multiply" technique. The left to right 

form of this algorithm involves repeatedly squaring and multiplying by a 

'local' fixed value (modulo a 'global' fixed value). The 'local' fixed value is 

dependent on plaintext (m), i.e. it is fixed for the duration of the encryption 

computation. The global fixed value, i.e. the modulus, depends on the key 

and is therefore fixed for a number of encryption operations. We use this 

notion of local and global fixed values throughout this section. 

This algorithm is concerned with speeding up these modular arithmetic 

operations. H takes the advantage of local and global fixed values to 

precompute 'look-up' tables whose use speeds the individual calculations. 

This also works on a block by block basis, i.e. it makes use of the fact that 

computers operate on strings of several bits at a time, rather than on 

individual bits. 

In the description of the algorithm we use the following notational 

convention. We suppose all numbers are stored in 32-bit words, and we 

denote the individual words of the 32n-bit number a by 

a[O],a[1 ], ... ,a[n-1] 

where a[O] contains the least significant word and a[n-1] the most 

significant word. Hence 
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a=a[0]+232*a[1 ]+264*a[2]+ ... +232<n-1>*a[n-1] 

We then write aD for the collection a[O],a[1], ... ,a[n-1]. We also write 

T for 232
". Finally it is kept in mind that the algorithm is described in terms 

of 8-bit bytes and 32-bit words, it would work equally well with other byte 

and word lengths. 

This algorithm is concerned with modular reduction. Given a 64n-bit 

number k and 32n-bit modulus d, it outputs a 32n-bit number k', where 

k'= k(modulo d) 

To do this it uses a table of values pre-computed using the modulus d. 

This table does not need to be reevaluated for each computation since it is 

dependent on a global fixed value. In the context of RSA this algorithm is 

useful when computing modular squares. Squaring can be made 

considerably faster than a square-mod method which reduces modulo d 

as it works out the answer, so it is quicker to use a fast non-modular 

squaring algorithm followed by this algorithm. 

The idea of the algorithm is to reduce the length of k by 8 bits (i.e. one 

byte) at a time. At the begining of each step it is assumed that k is 4n+i+1 

bytes long, (where i ranges from 4n-1 down to 0), together with an extra 

bit at the most significant end which may be 1 or 0 (this is left over from 

previous iteration). At each step of the algorithm, the largest multiple of the 

d that can be safely subtracted from k is subtracted. This process uses the 

table atab, set up in advance. 
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By safely we mean the largest multiple of d that can be subtracted 

to leave the result positive, given that only the most significant 9 bits of k 

are examined. This results in a value of k which has the byte under 

consideration set to either 0 or 1 (this single bit forming the left over bit for 

the next subtraction). 

The table atab consists of 512 entries of the form 

atab[i]. 0~ i~511, 

where each entry consists of an (n+1 )-word multi-precision integer. In the 

precomputation phase, atab[i] is set to the unique integer multiple gd of d 

defined so that 

int(gd/T)=i-1 and int((g+1 )d/T)=i 

and there is int(x) which denotes the unique integer s satisfying 

s~x<s+1 

The computation of this table may be achieved by a very simple 

combination of additions and comparisons; no multiplications or divisions 

are required. 

If one modified the algorithm to reduce by w bits at a time then atab 

would need to contain 2w+, entries. 

In the main algorithm, atab is used to compute a value k' satisfying 

k' =k(modulo d) and O~k'~T +2d-1 

The following two steps are repeated 4n times, for a value of 

descending from 4n-1 to 0: 
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(a) Examine bytes 4n+i+1 and 4n+i. Byte 4n+i+1 will be set to either 

zero or one, and thus the value j obtained by regarding the byte pair as an 

integer will satisfy O~j~511. 

(b) Subtract 28
i times atab[j] from k. This wil have the effect of clearing 

byte 4n+i+1 and resseting byte 4n+i to either zero or one. 

Pseudo-code description: 

Input: kD (a 2n-word number) 

dO (an odd n-word constant, where d ~ T/2.) 

Output: kD (an n-word number congruent to the original kD modulo d) 

Method: Prior to performing individual computations it is assumed that a 

(512(n+1 ))-word array 

atab[i][j] (O~i~511, O~j~n) 

has been set up as follows: 

atab[O][ ]:=0; 
for i:=1 to 511 do 

{ Let g be the unique integer satisfying 
int(g.d/T)=i-1 and int((g+1 ).d/T)=i; 
atab[i][ ]:=gd } 

where, as described above , atab[i][ ] represents the number stored in the 

n+1 words 

atab[i][O],atab[i][1 ], ... ,atab[i][n] 

for each i, g=int(T.i/d); the description above is used to emphasise that no 

divisions are involved in the computation of atab. 

The main algorithm proceeds as follows: 
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for i:=4n-1 to 0 step -1 do 

{j:=int(k[ ]/(28i.T)); 

k[ ]:=k[ ]-28i.atab0][]} 

To complete the process it may be necessary to subtract either d or 2d 

from the final k in order to ensure that it is less than T, which is sufficient 

for intermediate results in modular exponentiation. At most one further 

subtraction of d will ensure that the result is less than d. 

The two operations in each iteration of the algorithm are very simple. It, 

although apparently involving a division and an exponentiation, actually 

merely involves examining the two most significant bytes of k. 

Finally note that during the computation of atab[ ][ ], 

d/T;:::: 1/2 and hence g<1022 for every i 

Thus g.d can be stored in at most (n+1 )32-bit words. This explains 

why atab[ ][ ] has dimensions allocated to it. 

3.6 Fast exponentiation: 

Here we are describing two methods which are based on same logic but in 

different ways. 

a) Square-and-multiply technique 

Having seen the basic multiple precision arithmetic routines, we are 

now in a position to use them for fast modular exponentiation. The aim of 

this section is to develop faster ways of computing xn mod m, where both 

m and n are typically very large integers, i.e., around 200 digits each. If we 
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· use a very naive approach and multiply x with itself (n-1) times we do get 

xn, but if n is a 100 digit number then it will take few thousand years to 

achieve our desired goal even with the fastest of computers. Clearly we 

have to do much better than this if we wish to have a practical 

implementation. We first consider a very old method that is still widely 

used methods for fast exponentiation. For purposes of clearity, we drop 

the mod notation since it does not play any role in the exponentiation. The 

idea behind this method, which is known as the "square and multiply 

method" is very simple: suppose, for example, that we are asked to 

compute x16
, we could simply start with x and multiply x fifteen times as 

explained above; but it is possible to obtain the same answer in 4 

multiplications, if we repeatedly take the square of each partial result, 

successively x2
, x4

, x8
, x16

. 

The same idea applies, in general, to any value of n, in the following 

way: We write n in the binary number system (suppressing zeros at the 

left). Then replace each "1" by the pair of letters SX, replace each "0" by 

S, and cross off the "SX" which now appears at the left. The result is a rule 

for computing xn, If "S" is interpreted as the operation of squaring, and if 

"X" is interpreted as the multiplying by x. For example, if n=23, its binary 

representation is 10111; so we form the sequence SX S SX SX SX and 

remove the leading SX to obtain the rule SSXSXSX. The rule states that 

we should "square, square, multiply by x, square, multiply by x, square, 

multiply by x"; in other words, we should successively compute 

28 



sequence of computation is the following: 

So essentially we are looking at the binary representation of n from 

left to right, and if we encounter a "1 ", we multiply x to the partial result 

and square the partial result, else we only square the partial result. This 

method has the advantage that it brings down the number of computations 

from n to about log2n. However we do have the overhead of converting the 

exponent from decimal to binary. Since in our case n is a multi-precision 

integer, we have to divide by 2 to deduce the binary representation from 

right to left. We now state the algorithm for exponentiation, based on a 

right to left scan of the exponent, as described by Knuth. 

Algorithm Exp(x,n) (Right to left binary method for exponentiation): 

This algorithm evaluates x", where n is a positive integer. 

A 1. [Initialize.] 
Set N ~n. Y~1. z~x. 

A2. [Halve N.] 
(At this point, we have the relation x"=YxZN.) Set N~N/2 and at the same 
time determine whether N was even or odd. If N was even, skip to step 
A5. 
A3. [Multiply Y by Z.] Set Y~ZxY. 
A4. [N=O?] If N=O, the algorithm terminates, withY as the answer. 
A5. [Square Z.] Set z~zxz, and then return to step A2. 
As an example of the working of the algorithm we consider here the steps 
in the execution of x23

: 
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N y z 

After step A 1 23 1 X 

After step A4 11 X X 

After step A5 11 X x2 

After step A4 5 x3 x2 

After step A5 5 x3 x4 

After step A4 2 x7 x4 

After step A5 2 x7 xs 

After step A5 1 x7 x,6 

After step A4 0 x23 x,6 

b) SS(I) 

We describe a new technique for improving the performance of 

square-and-multiply exponentiation. Exponentiation of large integers is the 

basis of several well known cryptographic algorithms such as RSA 

algorithm. The exponentiation problem is to compute me(mod N), where m 

and N are very large integers,and e is the integer exponentiation,such that 

e has binary representation 'e1e2 ... e0 _1e0 ' where is the most significant bit. 

We also treat e as a bit string of length n denoted as e[1 ,n], where n is 

typically 512 or 1024. Througout this section, for simplicity mi(mod N) is 

written as mi for any integer j. 

Various representations of e have been suggested with the same goal 

of reducing the number of multiplications involved. The best published 

approach to date is the 'modified signed digit' representation which 

requires an average of n/3 multiplications at the cost of precomputing mi. 

Recently, a further improvement, based on a 'string replacement' 

representation, was reported by Mitchell, who proposed a family of 
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algorithms k-SR where k is an integer parameter that determines the 

number of exponents of m needed to be precomputed. Mitchell proved 

that 2-SR and 5-SR reduce the average number of multiplications to n/3 

and 8n/31, respectively. In fact, this number is reduced to n/4 when k' . 

Analysis of our algorithm SS(I): On n-bit exponents has shown that the 

expected number of multiplications required tends to n/(1+1) for large n. 

Here we only compare the performance of our technique with that of the 

approach of Mitchell because it is the best reported algorithm to date. 

Algorithm: It is a family of algorithm that are used to compute me. Each 

algorithm is parameterised by the value I, the maximum length of the 

exponent to be precomputed. 

The idea is to precompute a set of exponents of m: m21+1 Vi belongs to 

[1 ... (21
-
1-1 )], i.e. the set of all odd integers between 3 and 21

-
1

• The 

precomputed exponents are stored in a table H[1 .. (2 1
-
1-1 )] where H[i] 

contains m 21+1
• The algorithm reduces the number of multiplications 

through this exponent table. It scans e[1 .. n] starting from e,. The variable x 

always stores meruJ for some i belongs to [1 .. n]. If e[i+1] is a '0', x becomes 

X 2
, i.e. m e[1.i+1J. Otherwise, i.e. if e[i+1] is a '1', the algorithm first 

recognises the longest bit pattern e[(i+1 ) .. j] such that mef(i+1>.n is in H, 

secondly updates x by repeatedly self-squaring it j-i times, and then thirdly 
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multiplies x by the precomputed value m e[(i+1>··il. The SS(I) algorithm is as 

follows: 

X ~1; i~O; 

Loop{/* the invariant is: x=me[uJ */ 

while(i<n) and (e;+1='0') 

{ i~i+1; x~x2(mod N);} 

if(i 2::n) then done and return x as answer. 

j~i+l; 

whileU>n) or (e i='O') {j~j-1 ;} 

a =the value e[(i+1 ) .. j]; b~(a-1 )/2; 

while(i<j) {i~i+1; x~x2(mod N);} 

x~x*H[b](mod N); 

}/* End Loop *I 
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CHAPTER4 

DESIGN AND IMPLEMENTATION 

In RSA cryptosystem, at the sender end cur system will convert 

alphabetic plaintext into integer forrt:~ of plaintext, compute modular 

exponentiation of integer plaintext and at the receiver end it recovers the 

plaintext from ciphertext and reformat it into alphabetic plaintext. 

For storing large integer I can allocate memory dynamically or 

statically. Dynamic allocation is used where we do not know upper bound. 

In RSA algorithm we know the upper bound i.e. multiplication of two large 

prime numbers chosen has the maximum fixed length. 32 words of 

unsigned integer is taken as an array to store a large integer. I have used 

word size 16 for every large number so that multiplication of two such 

large numbers can be accomodated in 32 word array of integers as in the 

case of casting. There is no in-built multiprecision arithmetic in our system 

so we need to develop functions for multiprecision arithmetic for 

performing various operations, i.e. modulo arithmetic and exponentiation. 

Casting is required where we multiply two 16 bit numbers because 

without casting, the result will be stored in 16 bit which may cause 

overflow. In various places where in an arithmetic expression 16 bit 

subtraction is taking place and addition of 17 bit number (stored in 32 bit 

number) is placed afterward, then there may happen subtraction of big 16 

bit number from small 16 bit number resulting 2's complement of result 

and added to 17 bit number gives carry while adding small 16 bit number 
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into 17 bit number and subtraction of big 16 bit number from it will not 

produce any carry which is required, so we add a 16 bit number in 17 bit 

number then we subtract big 16 bit number from it to get correct carry and 

result. 

To avoid overflow we use casting again where addition of two or 

more 16 bit numbers, is performed. Coercion is taking place where we are 

operating any 16 bit number into 32 bit number, in these places in 

expression 32 bit number must come first and others afterwards. 

For computing multiplicative inverse I used Euclid's algorithm but 

we have not represented large -ve numbers in our large number 

representation. Computed y's are alternatively -ve and +ve. yi is -ve if i is 

odd otherwise +ve. We have used a flag which indicate sign of the 

number. When result will be positive then it is our required result otherwise 

we have to subtract the number without sign from modulo number to get 

the required result. 

In multi-precision division where divisor is one word in length, we 

use our pencil and paper technique to get the result. In multi-precision 

addition, subtraction, multiplication, and division, index of represented 

positional words of most significant is one and index of least significant 

word is n. but I designed functions for these operations so that less 

significant word's index is small integer and more significant word's index 

is big integer. I have designed different algorithm for different type of 

operation e.g. logical operations, assignment operations. input ,output etc. 
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Implementation: I have developed this software in the environment of 

Turbo C under DOS, and the hardware platform is Pentium(133 Hz). Very 

few changes can make it able to be run in ANSI C under unix. It can be 

developed in any version of C, i.e. C++, VC++ etc. It can be made 

portable, doing some changes like using preprocessing statements, that 

will generate code for the environment used at the time of compilation. I 

did some programming level code optimization. We can do some more 

programming level code optimization by doing walk through the program 

and keeping it in mind that we have to optimize our code. We can make it 

to take input either from standard input or from file and to give output to 

standard output, communication channel or files. We can also make it so 

general so that same program have options to take input from standard 

input, files or communication channels at the sender end and to give 

output to standard output, communication channel or file at the receiver 

end. I have implemented it on the basis of block ciphering mechanism. I 

can make it on the basis of stream ciphering mechanism or give option for 

that. At last I want to say that it is not absolute general software but I can 

make it absolute to handle any mode, any type in input and output 

systems. 

Further after designing very few steps we can develop RSA based 

public key cryptosystem and also any other public key cryptosystem 

based on the operations of modular exponentiation, modulo operations, 

modulo multiplications, multiplicative inverse etc. 
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CHAPTERS 

CODING & TESTING 

Since our design was in more detailed manner so that our coding is 

done more mechanically. It does not mean that coding is absolute 

mechanical because I have some limitations while designing. In designing 

process we have supposed that a function will take some defined type of 

input and give some specific type of output. To achieve this output from 

input I have designed algorithms and in coding step all the steps of 

algorithms must be syntactically, semantically and logically correct so that 

it must be compiled without any compilation and linking error. When it is 

linked then I have tested it giving some test data which can execute every 

step of the function and verified its output from my result data computed 

mannually. When there were some logical errors that gave incorrect 

output then I have corrected it so that it gave correct output and all the 

steps of function are executed giving correct output. I have done coding 

this type and tested for every function. Yet I have been strucked in some 

functions which are calling another tested function but needed correction 

in tested function to execute and give output properly. At last all functions 

were logically correct, while there are several functions those are 

dependent on each other, and gave logically correct output. 

Program for this software comprises of approximately nine hundred 

lines of code exculding the files included. 
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Precomputation of table takes 0.329670 second. Encryption of 'A' 

takes 0.219780 second, and encrypted text of 'A' takes 0.549451 second 

for decryption. 

Table given below shows that what length of text takes how much 

time for encryption and decryption. 

Text length 
( in characters) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
22 
22 
23 
24 
25 
26 
27 
28 
29· 
30 
31 

32 

Time for encryption 
( in seconds ) 

1.483516 
1.483516 
1.483516 
1.483516 
1.483516 
1.593407 
1.593407 
1.593407 
1.593407 
1.593407 
1.593407 
1.593407 
1.593407 
1.648352 
1.648352 
1.648352 
1.648352 
1.648352 
1.648352 
1.648352 
1.648352 
1.703297 
1.703297 
1.703297 
1.703297 
1.703297 
1.703297 
1.703297 
1.703297 
1.703297 
1.703297 

1.703297 
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Time for decryprion 
(in seconds) 

4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 
4.505495 

4.505495 



CHAPTERS 

COMPARISON 

We compare RSA cryptosystem with the RSA based cryptosystem. 

RSA cryptosystem: 

In RSA cryptosystem we have to perform various operations to 

generate keys and then use fast exponentiation for ciphering and 

deciphering. We need multiplicative inverse at the time of generation of 

keys. At the time of application we need only modular exponentiation. The 

time taken by this cryptosystem may be little bit more than RSA based 

cryptosystem but in it there are no complex computations and complexity 

of it is also less compare to RSA based cryptosystem. From the point of 

security it is more secure than RSA based cryptosystem. 

RSA based cryptosystem: 

In RSA based cryptosystem we need all operations of RSA 

cryptosystem for generating keys, then using these generated keys we 

need only multiplicative inverse, addition, subtraction and modulo 

operation to cipher and decipher. It is less secure than RSA cryptosystem, 

it is more complex than RSA cryptosystem but it is faster than RSA 

cryptosystem. 
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APPENDIX A- Source code 

add_large_integer(Nuniber aD,, Number bQ,Number cO); 

subtract_large_int(Number aQ,Number bQ,Number cO); 

/*c=a+b*/ 

/*c=a-b*/ 

multiply_large_int(Number uQ,Number vQ,Number wO); /*w=u*v */ 

devide_large_integer(Number uQ,Number vQ,Number qQ,Number rO); 

/* u=q*v + r *I 

print_blarge_integer(Number aD); 

sub(Number bQ,int num); 

assign(Number aQ,Number bO); 

create_table(Number aOO.Number dQ,int I); 

modular_reduction(Number aOO.Number kQ,Number dO, intI); 

create_h(Number aOO.Number hOD. Number mO,Number dQ,int I); 

mod_exp_ssi(Number aOO.Number mQ,Number eO,dO,xO,int I); 

gcd(Number uQ,Number vO. Number aD); 

mult_inv_mod(Number aQ,Number bQ,Number y1 0);/* b*y1 =1 mod(a) *I 

make_rand_number(Number xO.int I); 

assign_large_integer(Number bQ,char *p ); 

scan_text_and_make_to_integer(Number gO); 

make_integer_to_text_and_print(Number gO); 
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main() 
{ 

int iljlqlkll; 
Number t[ARRA YSIZE]~g[ARRA YSIZE]~r[ARRA YSIZE],n[ARRAYSIZE]; 
Number h[512][ARRA YSIZE]; 
Number atab[512][ARRA YSIZE]; 
Number a[ARRA YSIZE]~b[ARRA YSIZE]~c[ARRA YSIZE),d[ARRA YSIZE]; 
char *p~*p1 ="170141183460469231731687303715884105727" 

I *p2="680564 7338418769269267 49214863536422887"; 

fflush(stdin); 
assign_large_integer(a 1p1 ); 
assign_large _integer(b~p2); 
multiply _large _integer( albin); 
sub( a~ 1 ); 
sub(b~ 1 ); 
multiply_large_integer(a~b~c); 
make_rand_number(a~7); 

while(1) 
{ 

gcd(c~a~b); 
devide _large _integer( alblg ~r); 
assign(a~g); 

if(equal_to_one(b)) break; 
} 
mult_inv_mod(c~a~t); 
1=32; 
while(n[--1]==0); 
I++· I 
create_table(atab~n~l); 

scan_text_and_make_to_integer(g); 
mod_exp_ssl(atablglalnlrll); 
mod_exp_ssl(atablrltlnlgll); 
make_integer_to_text_and_print(g); 

} 

add_large_integer(Number aD~Number bD~ Number cO) I* c=a+b*/ 
{ 
canst Lnumber d=BBASE; 
int i~n=ARRA YSIZEI carry=O; 
Lnumber t; 
while((a[--n]==O) && (b[n]==O) && (n>=O) ); 
for(i=O;i<n+1 ;i++) 
{ 
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} 

} 

t=(Lnumber)a[i]+b[i]+carry; 
c[i]=t%d; 
carry=t/d; 

c[i++ ]=carry; 
while(i<ARRAYSIZE) c[i++]=O; 

subtract_large_integer(Number aQ,Number bQ,Number cO) 
{ 

canst Lnumber d=BBASE; 
Lnumbert; 
int i,neg=O,n=ARRAYSIZE, carry=1; 
if(greater_than(b,a)) neg=1; 
while((a[--n]==O) && (b[n]==O) && (n>=O)); 
for(i=O;i<n+1 ;i++) 
{ 

} 

t=d+a[i]-b[i]+carry-1; 
c[i]=t%d; 
carry=t/d; 

if( neg) c[i]=-1; 
while(i<ARRA YSIZE) c[i++]=O; 

} 

multiply _large _integer(Number uQ ,Number vO ,Number wO) 
{ 

Lnumber t,c,d=BBASE; 
int i,j,k,m,n; 
m=ARRA YSIZE;n=ARRA YSIZE; 
make_zero(w); 
while((u[--n]==O) && (n>=O)); 
while((v[--m]==O) && (m>=O)); 
forO=O;j<m+ 1 ;j++) 
{ 

if(vU]!=O) 
{ 

c=O; 
for(i=O;i<n+1 ;i++) 
{ 

t=(unsigned long int)u[i]*vO]+w[i+j]+c; 
w[i+j]=t%d; 
c=t/d; 

} 
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} 
} 

w[i+j]=c; 
} 

devide_large_integer(Number uO.Number vO.Number qO,Number rO) 
{ 

Number q1 ,q2,t[ARRAYSIZE],s[ARRAYSIZE],p[ARRAYSIZE], 
o[ARRAYSIZE],x[ARRA YSIZE]; 

Lnumber ck1 ,ck2,ck3,b=BBASE; 
int i,j,m,n; 
m=n=ARRA YSIZE; 
for(i=O;i<m;i++) { t[i]=O; q[i]=O; r[i]=O; o[i]=O;} 
while((u[--m]==O) && (m>=O)); 
while((v[--n]==O) && (n>=O)); 
if(n<O){ fprintf(stderr,"\ndevide by zero error''); return;} 
if(n==O) 

{ 

} 
else 

{ 

assign(q,u); · 

q2=t[O]=b/((Lnumber)v[n]+1 ); 
multiply _large_integer(u,t,r); 
multiply _large _integer(v ,t,s ); 
for(i=O;i<m-n+1 ;i++) 
{ 

if(r[m+1-i]==s[n]) q1 =b-1; 
else 

q1 =((Lnumber)r[m+1-i]*b+r[m-i])/s[n]; 
ck1 =(Lnumber)r[m+1-i]*b+r[m-i] -(Lnumber)q1 *s[n]; 
ck2=(Lnumber)s[n-1]*q1; 
ck3= ck1*b+r[m-i-1]; 
while( (ck1<b) && (ck2>ck3)) 
{ 

} 

q1--; 
ck1 =(Lnumber)r[m+1-i]*b+r[m-i] -(Lnumber)q1 *s[n]; 
ck2=(Lnumber)s[n-1 ]*q 1; 
ck3= ck1*b+r[m-i-1]; 

t[O]=q1; 
multiply_large_integer(s,t,p ); 
forU=m-i-n;j<m+2-i;j++) o[i+j-m+n]=rO]; 
q[m-i-n]=q1; 
if(greater _than(p,o)) 
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} 
} 

} 

{ 

} 

q[m-i-n]--; 
subtract_large_integer(p,s,x); 
subtract_large_integer(o,x,p); 
forU=m-i-n ;j<m+2-i;j++) r[j]=p[i+j-m+n]; 

else 
{ 

subtract_large _integer( o,p,x); 
forU=m-i-n ;j<m+2-i ;j++) r[j]=x[i+j-m+n]; 

} 

create_table(Number aD[ARRA YSIZE], Number dQ,int I) 
{ 
Number atab[512][ARRA YSIZE]; 
int i,n; Number t[ARRA YSIZE],g[ARRAYSIZE],r[ARRA YSIZE]; 
for(i=O;i<ARRAYSIZE;i++) { a[O][i]=O; t[i]=O;} 
for(i=1 ;i<512;i++) 
{ 

} 
} 

t[l]=i; 
devide _large _integer(t,d ,g ,r); 
multiply _large _integer( d,g,a[i] ); 

modular_reduction(Number aD[ARRAYSIZE],Number kQ,Number dO. int 
I) 
{ 

Number j,n,t[ARRAYSIZE],q[ARRAYSIZE],r[ARRAYSIZE]; 
inti; 
for(i=2*1-1 ;i>=O;i--) 
{ 

} 

j=k[l+i/2]; 
if(i%2) j=j/256; 
assign(t,a[j]); 
left_shift_by_n(t,i/2); 
if(i%2) mul(t,256); 
subtract_large_integer(k,t,k); 

wh ile(g reater _ than(k,d)) 
{ 

print_ blarge _integer(k); 
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} 
} 

print_ blarge _integer( d); 
devide _large _integer(k,d,q,r); 
assign(k,r); 

create_h(Number aOO.Number hOD. Number niO.Number dO,int I) 
{ 

inti; 
multiply _large _integer(m,m,h[O]); 
modular_reduction(a,h[O],d,l); 
multiply _large _integer(m,h[O],h[1 ]); 
modular_reduction(a,h[1],d,l); 
for(i=2;i<8;i++) 
{ 
multiply _large _integer(h[O],h[i-1 ],h[i]); 
print_ blarge _integer( d); 
modular _reduction( a,h[i],d ,I); 
print_blarge _integer( d); 

} 
} 

mod_exp_ssi(Number atOO.mO.Number fD,Number dO.xO.int I) 
{ . 

int i,j,n,a,k,b,el=10; 
char *e; 
Number h[512][ARRAYSIZE],y[ARRA YSIZE]; 
create_h(at,h,m,d,l); 
n=strlen( e); 
n--· 

' 
for(i=O;i<ARRA YSIZE;i++) x[i]=O; 
x[0]=1; 
i=-1; 
while(1) 
{ 

while( (i<n) && (e[i+1 ]=='0') ) 
{ 

} 

i++; 
multiply _large _integer(x,x,y); 
modular_reduction(at,y,d,l); 
assign(x,y); 

if(i>=n) return; 
j=i+el; 
while( U>n) II (e[j]=='O')) j--; 
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} 
} 

a=O; 
for(k=i+1 ;k<j+1 ;k++) 
{ 

a=a*2; 
if(e(k]=='1') a++; 

} 
b=(a-1 )/2; 
while(i<j) 
{ 

i++' 
' 

multiply _large _integer(x,x, y); 
modular_reduction(at,y,d,l); 
assign(x,y); 

} 
multiply_large_integer(h[b],x,y); 
modular_reduction(at,y,d,l); 
assign(x,y); 

gcd(Number uO,Number vO, Number aD) 
{ 

inti; 
Number q[ARRA YSIZE],r[ARRA YSIZE],b[ARRAYSIZE]; 
assign(a,u); 
assign(b,v); 
if(greater_than(b,a)) swap (a,b); 
do{ 

devide _large _integer( a,b,q ,r); 
assign(a,b); 
assign(b,r); 

} while( not_zero(r) ); 
} 

mult_inv_mod(Number aO,Number bO.Number y30) 
{ 

Number 
zero(ARRA YSIZE],o[ARRA YSIZE],r1 [ARRA YSIZE],r2[ARRA YSIZE], 

y2(ARRA YSIZE],q[ARRA YSIZE],r3[ARRA YSIZE],y1 [ARRA YSIZE]; 
int flag=O; 
assign(r1 ,a); 
assign(r2,b); 
make_zero(zero); 
make_zero(y1 ); 
make_zero(y2); 
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y2[0]=1; 
do 
{ 

devide_large_integer(r1,r2,q,r3); 
multiply_large_integer(y2,q,o); 
add_large_integer(y1,o,y3); 
assign(r1,r2); 
assign(r2,r3); 
assign(y1,y2); 
assign(y2,y3); 
flag++; 

} while( !equal_to_one(r2) ); 
if(flag%2){ subtract_large_integer(a,y2,y3);} 

} 

sub(Number bO.int num) 
{ 

const Lnumber d=BBASE; 
Lnumbert; 
int c=num,i,n=ARRA YSIZE,carry=1; 
while((b[--n]==O) && (n>=O)); 
for(i=O;i<n+1 ;i++) 
{ 

} 

t=d+b[i]+carry-c-1; 
b[i]=t%d; 
carry=t/d; 
c=O; 
if(carry==1) return; 

if(carry==O) b[i]=-1; 
} 

assign(Number aO,Number bO) 
{ 

int i,m=ARRAYSIZE; 
while((b[--m]==O) && (m>=O)) a[m]=O; 
for(i=O;i<m+1 ;i++) a[i]=b[i]; 

} 

make_rand_number(Number xO,int I) 
{ 

inti; 
make_zero(x); 
for(i=O;i<l;i++) 

x[i)=rand(); 
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} 

assign_large_integer(Number cQ,char *str) 
{ 

char *p,b[DIGIT]; 
Number a[ARRAYSIZE]; 
int len,i,j,k,l,n; 
p=str; 
len=strlen(str); 
n=O; 
j=len/DIGIT; 
k=len%DIGIT; 
for(I=O;I<j;l++) 
{ 

for(i=O;i<DIGIT;i++) b[i]=p[len-DIGIT +i]; 
a[n]=atol(b); 
n++; 
len -= DIGIT; 

} 
if(k) 

{ 

} 

for(i=O;i<k;i++) b[i]=p(len-k+i]; 
b[i]='\n'; 

a[n]=atol(b ); 
n++· 

' 

for(i=n;i<ARRA YSIZE;i++) a[i]=O; 
large_dinteger_to_large_binteger(a,c); 

} 

print_blarge_integer(Number aD) 
{ 

int i,j,c,n=ARRAYSIZE; 
Number b[ARRA YSIZE],t; 
for(i=O;i<ARRA YSIZE;i++) b(i]=O; 
while((a[--n]==O)&&(n>=O)); 
for(i=O;i<n+1 ;i++) 
{ 

t=32768; 
forO=O;j<BITSINWORD;j++) 
{ 

mul_d(b,2); if( a[n-i] & t) add_d(b, 1 ); 
t>>=1; 

} 
} 
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n=ARRA YSIZE; 
while((b[--n]==O)&&(n>=O)); 
printf(''\nBiarge integer:\t"); 
if(n>=O) printf("o/od",b[n]); 
else printf("%d",b[n+1]); 
for(i=1 ;i<n+1 ;i++) printf("%04d" ,b[n-i]); 

} 

scan_ text_ and_ make_ to _integer(Number gO) 
{ 

int i,n,j; 
char c,p[38],q[76),a[3); 
printf(''\nEnter number of characters(<39)\t"); 
scanf("o/od" ,&n ); 

} 

printf(''\nEnter text\n"); 
for(i=O;i<n;i++) 
{ 

} 

c=getche(); 
if((c==' ')ll(c=='\t')) j=O; 
else 
j=toupper(c)-'A'+1; 
q[2*i]=j/1 0+48; 
q[2*i+1 ]=j% 1 0+48; 

q[2*i]=O; 
printf(''\n"); 
assign_large_integer(g,q); 

make_integer_to_text_and_print(Number aD) 
{ 

Number t,b[ARRA YSIZE]; 
int i,n=32,j,k,l; 
char q[38]; 
make_zero(b); 
while((a[--n]==O)&&(n>=O)); 
for(i=O;i<n+1 ;i++) 
{ 

t=32768; 
forO=O;j<BITSINWORD;j++) 
{ 

} 

mul_d(b,2); 
if( a[n-i] & t ) add_ d(b, 1 ); 
t>>=1; 
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} 
n=32; 
while((b(--n]==O) && (n>=O)); 
for(i=n;i>=O;i--) 
{ 

1=2*(n-i); 
j=b(i]/1 00; 
k=b[i]% 1 00; 
q[l]=j?'A'+j-1 :' '; 
q[l+1]=k?'A'+k-1 :' '; 

} 
q[l+2]=0; 

printf("\n%s",q); } 
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APPENDIX B- Test data & its output 

large integer: 
11579208923731619542357098500868790784833589034528695631923 
865220015249057384 9 /* multiplication of two primes*/ 

large integer: 
697014061789277386526146338816173 I* public key*/ 

large integer: 
56885506409786238714224180125748840116766189052022173646161 
77785929307677929 3 /*private key*/ 

/*Ciphering and Deciphering starts from here */ 

1. Enter number of characters(<33) 28 
Enter text: jawahar lal nehru university 

large integer: 
36274927342744003827380040313444470047403548314445354651 
large integer: 
15268634331665784121278047287744126943682032611422621035720 
855585189302321280 
large integer: 
36274927342744003827380040313444470047403548314445354651 
jawahar lal nehru university 

2. Enter number of characters(<33) 28 
Enter text: Jawahar Lal Nehru University 

large integer: 
10274927342744001227380014313444470021403548314445354651 
large integer: 
62208948520097550668833716455927057041814317811576300194080 
969765223077815352 
large integer: 
10274927342744001227380014313444470021403548314445354651 
Jawahar Lal Nehru University 

3. Enter number of characters(<33) 32 
Enter text: Jawahar Lal Nehru was 1st PM of 

large integer: 
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10274927342744001227380014313444470049274500094546001613004 
13200 
large integer: 
23152643646199069923414494709173866688528411866360193881120 
695081267097095275 
large integer: 
10274927342744001227380014313444470049274500094546001613004 
13200 
Jawahar Lal Nehru was 1st PM of 

4. Enter number of characters(<33) 1 
Enter text: a 

large integer: 
27 
large integer: 
64508007307897932527864393722951027213960417910581969560210 
017207690791050877 
large integer: 
27 
a 

5. Enter number of characters(<33) 1 
Enter text: A · 

large integer: 
1 
large integer: 
1 
large integer: 
1 
A 

6. Enter number of characters(<33) 15 
Enter text: Hello Mr Brahma 

large integer: 
83138384100134400024427343927 
large integer: 
77767943450200751020937238582056540623209359832601346289647 
317405672807003871 
large integer: 
83138384100134400024427343927 
Hello Mr Brahma 
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