Trafﬁc'.Mode_lling for Broadband Networks

-with Emphasis on Self-Similarity

Dissertation Submitted to

JAWAHARLAL NEHRU UNIVERSITY

in partial fulfillment of requirements
for the award of the degree of

Master of Technology

n
Computer Science

. by
Polimetla Daiva Kumar

SCHOOL OF COMPUTER & SYSTEMS SCIENCES
- JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI - 110 067
January 1998



CERTIFICATE

This is to certify that the dissertation entitled Traffic modeling for broadband
networks - with emphasis on self-snmllarlty being submitted by Polimetla Daiva
Kumar to the school of computer and systems sciences, Jawaharlal Nehru University,
New Delhi in partial fulfillment of the requirements for the award of the degree of Master
of Technology in computer science is a bonafied work carried by him under the guidance

and supervision of Prof. Karmeshu.

The matter embodied in the dissertation has not been submitted for the award of

any degree or diploma.

X@//ng

Prof. Karmeshu
SC&SS, INU,
New Delhi.

(P. DAIVA K U\%

m (aneAt
of. P.C.Saxena @/"L

Dean,
SC&SS, JNU,
New Delhi.



ACKNOWLEDGMENTS

I wish to convey my heartful gratitude and sincere acknowledgments to
my guide Prof. Karmeshu, School of Computer and Systems Sciences,
Jawaharlal Nehru University for his wholehearted, tireless and relentless |

effort in helping me throughout in completing this project.
I would hke to record my sincere thanks to my dean Prof.
P.C.Saxena, School of Computer and Systems Sciences, JNU for. providing

the necessary facilities in the centre for successful completion of this_prbject.

I would take this opportunity to thank all of my faculty mémbers and

friends for their help and suggestions during the course of my proj‘}ec’t work.

P.'Déiva Kumar



..... dedicated to
my beloved parents, brother and sister .....



Contents

Abstract

1.

Introduction - -
1.1 Asynchronous transfer mode
1.2 The B-ISDN ATM protocol reference model
1.2.1 Physical layer
1.2.2 ATM layer
1.2.3 ATM adapfation layer
1.3 ATM switching
1.4 Need to develop traffic models
Overview of tfaﬁic models |
2.1 Introduction
2.2 ReneWal traffic models
2.2.1 Poisson process
222 Bemoulli process
223 _Phase-fybe renewal process -
2.3 Markov and embedded Markov models
2.3.1 ON-OFF models
2.3.2 IPP models
2.3.3 Markov modulated Poisson proéess

2.3.4 Markov modulated fluid model§ '

11

13

13

15

15

16

16

16

17

18

18

19



2.4 Regression models
2.4.1 Linear autoregressive models
2.4.2 Discrete autoregressive models
243 Autoregressive moving average models
2.4.4 Autoregressive integrated moving average models
3. Self-similarity and power law behaviour in traffic models
3.1 Definition of self-similarity
3.2 Heavy-tailed distribution and power law behaviour
3.3 Maximum entropy - rationale for power law
4. Generalized model for traffic distribution with power law
4.1 Omstein - Uhlenbeck process
4.2 Generalized model
4.3 Solution for Fokker - Planck equation
5. Self-similar traffic model

5.1 Montroll - Weiss random walk type traffic model
Concluding remarks

References

20
20
23
23
24
25
28
2
29

33

34

36

40

42

.42

46

47



Figure contents

1.1 ATM cell format
1.2 'The_B-ISDN ATM reference model

1.3 ATM cell header

1.4 Service classes in B-ISDN
1.5 ATM switch

2.1 *Finite state model for voice
2.2 ON-OFF model

2.3 IPP model

2.4 MMPP process

3.1 Ethernet traffic data at various levels of aggregation

17

18

18

19

27



Abstract

Broadband networks, utilizing ATM, are expected to provide the information
transport for a rich mixture of services (voice, video, and data etc.) and applications.
These are associated with bréad spectrum of traffic types and transport performance
requirements. It is therefore necessary to develop traffic models to capture the statistical
- features of actual traffic characterized by marginal distribution, auto-correlation structure,
traffic delays and cell loss probabilities. Such models will facilitate network performance

 studies in realistic situations.

Recently, statistical analysis of different types of network traffic has shown that
network traffic is self-similar or fractal in nature; A characteristic feature of self-similarity
is the existence of a heavy-tailed distribution which behaves like a power law. It is
proposed to develop a new generalized traffic model mimicking the power law behaviour.
We have also developed a self-similar traffic model based on random-walk with transition

probabilities having infinite first moment.

The dissertation consists of five chapters. The ﬁrst_two deal with. brief review of
ATM characteristics and traffic models respectively. Chapter 3 is concerned with self-
similarity aspects and power law behaviour in traffic models. In chapter 4, we present a
new generalized model for traffic distribution. The last chapter deals with random walk

based self-similar traffic model. Finally, the dissertation ends with conclusions.
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Introduction

In the evolution from the current telecommunication networks towards the
Broadband Integrated Digi'_tal4Services Network (B-ISDN), some important directions and
guidelines have recently béen'made. The recent directions opened up by the B-ISDN are
influenced by a number of paraméters, the most important being the emergence of a large
number of tele-services with different, sometimes yet unknown requirements. In this
information age, customers are looking for an ever increésing number of new services. The
most promising telesérvicés to appear in the future are HDTV (High Definition TV), video
conferencing, high spveedv data transfer, videophony, video library, home education, and
video on demand. Each of these services will generate other requirements for the B-ISDN.
This large set of requirements introduces the need for one universal network which is
ﬂexible‘enough to provide all Qf these sérvices in the same way. The other parameters
- which are affecting the directions suggested by the B-ISDN are the fast evolution of

semiconductor and optiéal fiber technology [1].

The traditional circuit switching, currently used in telephone network has some

limitations because it is incapable of satisfying the wide range of bandwidth required for
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varying services such as video, voice, and multimedia services. It is also inefficient for
switching bursty traffic because it establishes a dedicated communication path for the
duration of the connection without regard to whether the information is being actually
transmitted or not. Fast packet switching is complicated, requiring node-to-node protocols
~ to deliver error free packet and can result in large delay and incfe_ase in variance of the
packet transmission time. Fast packet switching is a concept that covers several
alternatives, all with the same basic characteristic, i.e. packet switching with minimal

functionality in the network [2].

Asynchronous Transfer Mode (ATM) is the fast packet _SWitcﬁing and multiplexing
technology that has been standardized for the B-ISDN. Herej; asynchronous refers to the.
manner in which bandwidth is allocated among connectiéﬁs, and users. Bandwidth is
divided into time slots of fixed length. These time slots are allocated for user on demand
[3] Traffic mode is a term intended to signify that it uses the fnultiplexing and switching
technique. There are many reasons for choosing packet switching over circuit switching.
Firstly, packet switching is highly flexible and can handle both constant rate traffic (audib,
video) and variable rate traffic (data) easily. Secondly, looking to transmission at very high
speeds (Gbps), digital switching of cell; is easier than uging traditic;nal multiplexing
techniques, especially using fiber optics. Thirdly, broadcasting is essential for television
distribution, which cannot be possible with cell switching [4].So, ATM is a compromise

between pure circuit switching and packet switching.
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L.1 Asynchronous Transfer Mode (ATM)

The basic idea underlying ATM is transmission of all information in small, fixed
size packets called cells. The length of ATM celi is 53 bytes, consisting of 5 bytes of
| header information followed by 48 bytes of data. The main reason for choosing 48 byt«gs of
data length was the reduction of packetization delay of voice, reduction of the internal
buffers in the switching nodes, and limiting the qﬁeuing delays in those buffers {1]. A

typical ATM cell format is shown in the fig.1.1. |

5 bytes 48 bytes

Header User .d ata

Figure 1.1 ATM cell format

ATM is connection oriented and supports-two types of connections, such as 'p.oi.nt-
to-point and point-to-multipoint. The connéctioﬁ is half-duplex. Then, for twé way
communication it needs two connections. If any énd station wants to set up the connection
with the netwo.rk; then initially it has to send a'message for the connection. 'So>,b if the
resources are available, then the connectioﬁ can be given. ATM is guarantéed for the.cell
delivery order but there can be cell loss. The intended speeds for ATM networks: a}e 155
Mbps and 622 Mbps with the possibility of Gigabit per second speeds at a léter stage. fh‘e
155 Mbps speed was chosen to transmit high definition television. And the 622 Mbps

speed was chosen so that four 155 Mbps channels could be sent through it.

The advantages of ATM are :
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J Flexibility to support existing services and unforeseen future services;
. Dynamic bandwidth allocation;

J Integrated transport of all information types;

J Efficient utilization of network resources by statisti\cal sharing.

The disadvantages are that cells may suffer variable delays through the network or
may be lost. The network must ensure tﬁe quality of service, in terms of cell delays and
cell loss rate, required by the users. In addition, considerable processing is involved in
converting user information into and from the ATM cell format, and in carrying cells at

high rates through each switch [4].
1.2 The B-ISDN ATM Protocol Reference Model

Broadband ISDN using ATM has its own reference model based on standards
developed by the ITU. The protocol reference model based for ATM is divided into three
layers: the physical layer, the ATM layer, and ATM adaption layer plus whatever the users

want to put on top of that [4] as shown in the fig 1.2.
1.2.1 Physical layer

The physical layer defines a transport method for ATM cells between two ATM
entities. It encodes and decodes the data into suitable electrical/optical waveforms for

transmission and reception on the communication medium used. It also provides cell
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/ Plane management
f Layer management

Control Plane User _plane

Upper layers Upper layers /

---------------- ATM adaptation layer ------------
SAR '
ATM layer /

Physical layer -----=se=msmeeu-x

/

ANEANANAN

TC

PMD

Figure 1.2 The B-ISDN ATM reference model.

transmission and reception on the communication medium used. It also provides --ceﬂ
delineation functions, header error check (HEC) generation and pfocessing, perfomiaﬂce
monitoring and payload rate matching of the different transport formats used at tlns layer.
It is divided into two sublayers: Transmission Convergence (TC) sublayer and Physiéal |
Medium Dependence (PMD) sublayer. Té sublayer is responsible for mapping 6f the
ATM cells to the transmission system used. And the PMD sublayer is responsible for ;he

correct transmission and reception of bits on the physical medium [5].

1.2.2 ATM layer

The ATM layer is responsible for cell relaying between ATM layer entifiés; cell

multiplexing of individual connections into composite flow of cells, cell demultiplexing of
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composite flow into individual connections, cell rate decoupling or unassigned cell
insertion and deletion, priority processing and scheduling of cells, cell loss priority marking
and reduction, cell rate pacing and peak rate enforcement, explicit forward congestion
marking and indication, cell payload type marking and differentiation, and generic flow
 control access. The functionality of the ATM layer is defined by the fields present in the

ATM cell header. A typical ATM cell header is shown in fig. 1.3.

Cell (53 bytes)
Header Information
Generic - VCI/VPIL | Payload cell loss Header
flow type check- Payload
~control field indicator priority sum
- 4 bits 24 bits 2 bits 2 bits 8 bits 48 bytes

Figure 1.3 ATM cell header.

The cell header consists of a generic flow control (GFC) field, the VCI/VPI fields,
a payl;)ad type indicator (PTI) field, a cell loss priority (CLP) field, and a header checksum
ﬁeld. The GFC field supports the implementation of a flow control mechanism on the user
netwprk -interfacer. The VCI/VPI fields are used for channel ide_ntiﬂcation and
simpiiﬁca_tion of thé multiplexing process. The PTI’ﬁeld is used to distinguish between

user cells and control cells. The CLP field is used to indicate whether a cell may be
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discarded during periods of network congestion. The header checksum field is used to

protect the header field from transmission errors.
'1.2.3 ATM adaption layer (AAL)

The ATM adaption layer enhances the service provided by the ATM layer to the
higher network layers. It performs functions for the user, contrél and management planes
which depend on higher layer requirements. The AAL is subdiQided into two layers: the
segmentation and reassembly sublayer (SAR) and the conﬂzérgence sublayer (CS). The
SAR sublayer is used for segmentation of the higher layer information into a size suitable
for the payload of consecutive ATM cells of a virtual connection, and the inverse
operation, reassembly of contents of the cells of a virtual connection, into data units to be
delivered to the higher layers. The convergence sublayer performs functions like message

identification, time/clock recovery, etc. [1].

Upto now four service classes have been defined, based on three parameters: time
telation between the source and the destination, constant or variable bit rate and

connection mode.
The service classes are: class A, class B, class C. and class D.

Class A - a time relation exists between the source and the destination, the bit rate is

constant, and the service is connection oriented (e. g. a voice channel).
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class A class B class C class D
Timing between
source and required not required
destination
Bit rate constant variable
connection connection-oriented connection-
mode less

Figure 1.4 service classes in B-ISDN.

Class B - a time relation exists between the source and the destination, the bit rate is

variable, and the service is connection oriented (e.g. a video or audio channel).

Class C - no time relation exists between the source and the destination, the bit rate is

variable, and the service is connection-oriented (e.g. a connection oriented file transfer).

Class D - no time relation exists between the source and the destination, the bit rate is

variable, and the service is connectionless (e.g. LAN interconnection and electronic mail).

Initially four types of AAL protocols were recommended by ITU to support the
four service classes A, B, C and D, called types 1,2,3 and 4 respectively. Later, AAL3 and
AALA4 were merged into a single type (called AAL type 3/4), since the differences between
them were minor. After that, a fifth AAL type has also been defined, in view of the high

complexity of AAL3/4 [S]. The AAL also plays a key role in the internet-working of
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different networks and services. So, cell transmission in ATM networks can be done by

passing through the devices known as ATM switches.
1.3 ATM switching

An ATM switch is composed of a number of input ports and output ports and a

network which connects input ports to output ports called switch fabric. As shown in

INPUT PORTS OUTPUT PORTS

v Vv

SWITCH

FABRIC

v v v

Figure 1.5 ATM switch.

fig. 1.5, cells arrive at the input port asynchronously, pass through the fabric and are
eventually transmitted on the appropriate output line. A number of different switching

fabrics exist including simple crossbars and Batcher Banyan networks.

| .AllAATM switches have buffers, so that they can store the cells, if they are arriving
too quickly or there is congestion in the sWitch fabric. Buffers can be at the input ports
(input buffering) or at the output ports (output buffering) [6]. Most of the ATM switches
use a combination of input and output buffering. ATM switches use the VPI and VCI
fields of the cell header to identify the next network segment that a cell needs to transmit

on its way to final destination. A virtual channel is equivalent to a virtual circuit - that is,
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both terms describe a logical connection between the two ends of a communications
network. A virtual path is a logical grouping of virtual circuits that allows an ATM switch

to perform operations on groups of virtual circuits.

When an end station connects to the ATM network, it is essentially making a
contract with the network based on Quality of Service (QoS) and parameters such as peak
V bandwidth, éverage sustained bandwidth and burst size. It is the responsibility of the ATM
device to adhere to the contract by means of traffic shaping, which will use the queues to
constrain data bursts will limit the peak data rate, and smooth jitter so that the traffic meet
tﬁé' prescribed QoS parameters. ATM switches have the option of using traffic policing to
: enforce the contract. The switch can measure the actual traffic flow and compare it against
t’h‘e agreed upon QoS parameters. If it finds that the traffic is outside these parameters, the
switch can discard the cell by setting the CLP (cell loss priority) bif during the periods of

congestion.

Congestion will occur when there is contention for limited resources (i.e. buffer,
_ .ban__dwidth and processors); it is exhibited when the offered traffic load exceeds the
_ne_tWork‘s designed capacity. Because AfM 1s connection orient.ed and packet switched,
ATM ne-tworks may exhibit congestion at both the levels of connection and cell. At the
level of .connections, call processors will become preoccupied with unsuccessful call
attempts. At the level of cells, transmission( links will become saturated with traffic, and
" buffers will overflow with cells. Hence, to eliminate the congestion we need to control the

~ traffic. The primary role of traffic control in B-ISDN is to protect the network and the
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user in order to achieve predefined network performance objectives (e.g. in terms of celi

loss probability or cell transfer delays) and to optimize the use of network resources [1].

1.4 Need to develop Traffic Models

One of the most important aspects concerning ATM -networks is the issue
concerning traffic in the tranlsmissiovn‘ line. The idea is to develop traffic models which can
reproduce traffic patterns observed in reality. To achieve better performance of the
network, we need to develo? good traffic models. Accurate traffic models can capture the
statistical characteristics of actual traffic. If traffic models do not accurately represent the
actual traffic, one may ov:eresti_ma_te or uﬁderestimate the network performance. Since a
model is viewed as a faith'ﬁ‘xl‘ representation of the targét system, instrumentation is
required in order to collecf st_atistics and formulate performance predictions. More often,
the desired response of the system ié a function of a parameter vector. For example, the
cell loss rate in an ATM swi‘tc-hing network is a function of a set of congestion-control
parameters. Correlation in the measured observations must be taken into account when
" forming statistical perfonnancv:ébe‘stimates. For example, positive auto-correlation in a
sequence of delay times wo.uld éause bur;ts of long (short) delays. Thus, if message & has
experienced a lbng (shoft) _delay, then long (short) delay for message k+1 becomes
probable. Furthermore, r:ar'.e events, such as ATM cell losses, are key issues that
charz’icterize the performanée of ~emerging broadband networks [7]. Thus, the models that
capture the auto-correlated nature of traﬁic are essential for predicting the performance of

emerging broadband networks, -
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The aim of this project is to develop some new traffic models, by considering the

self-similarity nature of traffic.



2

Overview of Traffic Mpdels

The efficient flow of information is a key element in today’s technological
environment. As discussed in the first chapter, this is possible with the high-speed
networks, such as ATM, if it is properly designed and operated. Traffic modelling is a
key element in designing and operating the communication networks. Hence, it is
necessary to understand the nature of traffic, in order to select the appropriate random
traffic model for the better performance of the network. This overview closely follows

the articles [7] and [8].
2.1 Introduction

In this chapter, the main discussion is about the general traffic models in
broadband networks.. Basically, traffic models can be stationary or non-stationary. In
general, stationary traffic models can be divided into two types: short-range and long-
range dependent. Short-range dependent models consists of significant correlation
structure for small lags. Examples are Renewal processes, Markov processes and

Regression models. Long-range dependent traffic models have significant correlations
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for large lags. Examples are Fractional AutoRegressive Integrated Moving Average (F-

ARIMA) and Fractional Brownian motion.

Traffic models can be analysed on the basis of the number of paramgter§
required to describe the mode, parameter estimation, analytical tractability and perfect-
fit. To evaluate perfect-fit, it is necessary to determine how “close” the model is to the
actual data., i..e. how far the model is able to give marginal distributions, auto-

correlations structure and ultimately to predict delays and cell loss probabilities [8].

Foy calculating performance measures, the most common modelling context is
queueing, where traﬁici is offered to a queue or to a network of queues [7]. Simple
traffic consists of single arrivals of discrete entities like packets. This can be described
as a point process, consisfing of a sequence of arrival instants T;,T5,...,T,... measured
from the origip 0 (i.e. To = 0). These point processes have two additional equivalent
descriptions -- counting processes and intérarrival. time processes. A counting proéess
{N (t)}:io 1S a continuous-time, non-negative integer-valued stochastic process, where
N(t) = max{n; t, < t} is the number of (traffic) anﬁals in the interval (0,t]. An
interarrival time process is a non-negative random sequence {An }::: , where A, = T,-

To1 is the length of the fime interval frqm the n" arrival to the (n-1)". Since

T = z A, , the equivalence of these descriptions follows from the evident relation :
k=1

k=]

.{N_(.t)=n}={T"étﬁ_»Y:,H}:{iA, szs%Ak} (2.1)
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2.2 Renewal Traffic Models

There are two special types of these models based on Poisson process and
Bemnoulli process. These models are analytically simple, when A, are independent,
identically distributed (IID); however their distribution is allowed to be a general one.
‘Unfortunately, the superposition of ind’einendent renewal processes (ioes not always
»yiel(i a renewal process. These processes also have a serious limitation in modelling as

, - the auto-correlation function of {A,} vanishes similarly for all non-zero lags.
2.2.1 Poisson Process

- This renewal process has the inter-arrival times {A,} distributed exponentially
w1th rate parameter X such that P{A, <t} = l-exp(-At). It is also a counting process

and number of arrivals in subsequent' intervals is statistically independent.

Poisson process has somé special analytical properties. The superposition of
independent Poisson processes results in a new Poisson process whose rate is the sum
~ of the component rates. This process has iﬁdependent increment property rendering it a

;hemory-less process, which in tumn, greatly simplifies queueing problems involving
‘Poisson arrivals. On the basis of Palm’s theory, this process support many traffic
~applications, which comprise lzirge..number of independent traffic streams. But the main
_limifation is, that, traffic aggregation (multiplexing) may not always result in a Poisson

‘stream [7].
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2.2.2 Bernoulii Process

This process is the discrete-time analog of Poisson process. Thus, the
probability of an arrival in any time slot is p, independent of all others. So, the number

of amvals in slot k follows binomial distribution such that,

P{Nk = n} = (gp”(] - p)k-", 0<n<k(see[7]).

2.2.3 Phase-Type Renewal Process

These processes will occur when the inter-arrival times follows the phase type.

For modeling phase-type inter-arrival times we consider the time to absorption in a
continuous time Markov process C = {C(t)}::o having the state space {0,1,..,m} with

state 0 as the absorbing state while all other states being transient [7]. The advantage

of using these type of models is that the analysis of the problem becomes tractable.

2.3 Markov and Embedded Markov Models

In many situations, a source can. be modeled by a finite number of states
characterizing finite different activities. for éxample, a finite state model in voice
télephoﬁy as shown in fig. 2.1 is widely used. In this model, a voice source can either
be in idle state or in busy state with the source transmiting the packets oﬂy in busy
state (i.e. speech activity). In general, we can increase the number of states, for more

accurately describing a situation, but one has to pay the price by increasing

computational complexity.
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Figure 2.1 Finite state model for voice.

Defining by the random variable X, the state from the given state space S =
{s1,82,....,5m} at time n. The set of random variables {X,} will form a discrete Mz;rkov
chain, if the probability of the next value X,+; = S; depends only on the current state
[8,9]. The Markov chain can be called as discrete time Markov chain, if state
transitions occur at. integer time epochs (0,1,....,n,...). When transitions occur in
continuous time, the Markov chain is called the continuous time Markov chain. This
means, that the future value depends on the current state but not on previous states
and not on the time delay spent iﬁ the current state. Because of this, the time spent in a
state is restric{ed to geometric distribution in discrete case and to an exponential

distribution in the continuous case.

The stochastic process is called a Semi-Markov process when the time between
state transitions follows an arbitrary probability distribution. An embedded Markov
chain can be obtained by ignoring the time distribution between transitions and the

sequence of states visited by the Semi-Markov process will be a discrete time Markov

chain [8].

2.3.1 ON-OFF Models

The ON-OFF source model is widely used for the voice traffic with transitions

shown in fig. 2.2 In this model, packets are generated only during talk spurts (ON

state)
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o

B
Figure 2.2 ON-OFF model.

with fixed A,. The time spent in ON and OFF states is exponentially distributed with -
mean o' and B, respectively [8]. This model provides a simplest description for the

voice traffic. However, in realistic situations this model fails to capture bursty nature of

traffic.
2.3.2 IPP Models

The Interrupted Poisson Process (IPP) can be in states such as active and _idlg
as shown in fig. 2.3. and arrivals occur only during the active state. Thus IPP mode_i‘ '

differs from ON-OFF model in inter-arrival time during the active state [8].

§
Figure 2.3 IPP model.

2.3.3 Markov Modulated Poisson Prqcess

Morkov Modulated Poisson Process (MMPP) is the most commonly used
model for examining the performance measures. This process can be considered as a
doubly stochastic Poisson process. This model combines the simplicity of the

modulating (Markov) process with that of the modulated (Poisson) process as shown
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i fig. 2.4. The Markov process uses the current state to control (modulate) the

probability distribution of the traffic {7].

Up-11n

Q-1

Figure 2.4 MMPP process

In this model, the arrivals occﬁr.according to a Poisson process at the rate A,
while in state s,. Thus the rate changes according to the state. The MMPP parameters
can be estimated by quantiz;ng the arrival rate into finite number of rates associated
with the number of states. Tﬁis meaﬁ_s each rate is associated with a state in Markov
cham. For example, if we denote q}j as the transition rate from state i to state j, then q;;
can be estimated by quantizing ﬁe empirical data and by calculatinrg the fraction of

times state i switched to state j [8];
2.3.4 Morkov Modulated Fluid Models

The fluid traffic m(;dels treat traffic as a stream of fluid, characterized By a flow
rate (such as bits/sec). These ﬁodels are appropriate when we consider situations with
heavy such that individual units such as traffic packets have little impact on the
performance of the network. It tinay be noted that, all models that distihgui»sh between

cells and consider the arrival of each cell as a separate event, require vast amount of
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memory and CPU resources. In contrast, these fluid models characterize the incoming

cells by a flow rate [7].

In Markov modulated fluid models, the current state of the underlymg
Markov chain specifies the traffic flow rate. Generally, this model is employed n
modeling the VBR video sources [10]. For simulating fluid model, one assumes that
the incoming fluid (traffic) flow remains (roughly) constant over mgch lbnger time
periods and traffic fluctuations can be modeled by events reﬂectil;g a. change of flow
rate. In a queueing context, the buffer waiting time corresponds to the time 1t takes to
servé (clear) the current buffer, and loss probabilities (at a finite buffer) can be
calculated in terms of overflow volumes. The disadvantage of this model is the
existénce of many parameters, and exponentially decaying auto-correlation function.
Besides these disadvantages, queueing performance of this model is still analytically

tractable.
2.4 Regression Models

These models express the random variable in the sequence In terms of previous
ones in the presence of a white noise. We briefly discuss some of the commonly used

regression models [8].
2.4.1 Linear Autoregressive Models
The linear Autoregressive model of order p, denoted by AR(p), has this form:

X=X+ X _+-+4 X,  +& (2.2)

P r=p i
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where X,’s are correlated random variables, ¢;’s are real constants and &, is white noise.
Accordingly, X’s will be normally distributed random variables, if & is a white

Gaussian noise with van'ancea: . In terms of lag operater B as X, = BX,, we can

rewrite (2.2) as,
$B)X,=¢, (2.3)

where  ¢(B) = (1-¢;B-...-¢,B"). Multiplying eq. (2.2) with X and taking the

- expectation, we get,

Pi = Gy T ho O for k20 (2.4)

Py = 4Gt + 4G4+ A G (2.5)

PP

where G/ ’s are roots of ¢(B). There fore, in general, the auto-correlation function of

AR(p) process will consist of damped exponentials depending on the roots (real or
imaginary). These AR models have bgen used to model the output bit rate of VBR
encoder, because successive f\’fidéo frames are not likely to véry much visually.
Accordingly, the output bit ratcthhm a frame period is constant and changes from

frame to frame based on the fo]loWing AR(1) model :

A[n) = gA[n = 1]+ be[n] _ (2.6)
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Here A[n] is the bit rate during frame n and €[n] is a Gaussian white noise. £[n] is
chosen so that the probability of A[n] being negative is very small. For computational
aspects, whenever A[n] is negative, it 1s set to zero in eq. (2.6), as the number of bits in
.‘ﬁame n cannot assume negative values. Thus, the bit rate of frames within the scenes
can be modeled as AR process and the scene changes can be modeled as Markov
chain. The limitation of this framework is that it fails to capture the sudden changes in

the frame bit rates that occur due to scene changes in video.

In a more general setting, simple AR(2) has been used to model variable bit

rate (VBR) coded video. One plausible model for VBR video traffic is
Xn=Y.+Z,+V,C, C(2.7)

where Y, and Z, are two independent AR(1) processes and V, 'C;l the product of a
simple Markov chain and an independent normal random véﬁable.'With a view to
achieving a better fit to empirical auto-correlation function, it has been suggested to
employ two AR schemes; the third term, V.C, is proposed tolic.apturé sample path

spikes due to video scene changes.

Since the auto-correlation function decays exponentially, this model is still
unable to capture the sléw decay in comparision to exponential decéy._ It needs to be
emphasized that, AR processes with Gaussian distribution cannot capture VBR ﬁdeo
traffic probability distribution, since VBR video traffic distribution exhibits a power

law behaviour which is not depicted by Gaussian [8].
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2.4.2 Discrete Autoregressive Models

A discrete autoregressive model of order p, denoted by DAR(p), generates 2
stationary sequence of a discrete random variables with an arbitrary probability
-distribution yielding auto-correlation structure similar to that of an AR(p). It is
plausible that, the number of cells pc;‘r frame of teleconferencing VBR video be

rhodeled by DAR(1) with negative binomial distribution.

| The a&vantage of this model is the simplicity in parameter estimation with less
number of parameters. Th_ough, the resulting process distribution is arbitrary, the
.al-la'lytical queueing performance is tractable. On the other hand, since the auto-
' coﬁelation function decays exponentially as in AR(p), it cannot l;sed to model the

traffic with a slower auto-correlation decays [8].
2.4.3 Autoregressive Moving Average Models

An Autoregressive Moving Average model of order (p,q), denoted by
ARMA(p,q), is used for modeling VBR traffic. In this case too the auto-correlation
ﬁu_iction decays exponentially. The duration of a video frame is divided into m time

B inter'valsequally,_ such that the number of cells in the n™ time interval éan be modeled

as »I
: m-1
Xn = ¢'Xn—m +Zok€n—k (28)
k=0

The AR part is used to model the re-correlation effect and the parameters 6,

are adjusted to fit the correlation structure. Since each frame in video data is correlated
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due to temporal correlation, the auto-correlation function has peaks at all lags. For this

model, the parameter estimation and analytical solutions are difficult to obtain.
" 2.4.4 Autoregressive Integrated Moving Average Models

This model denoted by ARIMA(p,d,q) is an extention to the ARMA(p,q). It is
obtained by constructing the polynomial ¢(B) to have d roots equal to unity and the

remaining roots lie outside the unit circle. The ARMA(p,d,q) can be represented as :
P(B)V'X, = 6(B)e, (2.9)

Here V is a difference operator, defined as (Xi - Xi1) = VX, and ¢(B) is a polynomial

in B. The ARIMA(p,d.q) can be used for capturing the non-stationary in the time series

8]

Till now, traditional stationar_y traffic models have >been discussed, in which, it
is observed that the auto-correlation function decays exponentially. Recently, it has
been found in the traffic measurements of Ethemet LAN fraﬁic that the auto-
correlation function decays.at a much slower rate than expt)nential. So, the processes

that exhibits this type of slow decay is called long-range dependent processes.
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Self-Similarity and Power Law Behaviour in
Traific Models

Recently several authors [11] have carried out extensive studies with a view to
understand the realistic features of local area ‘.and wide area network traffic. These
studies show that, network traffic exhibits variability at a widé range of scales [12]. This
gives to a phenomenon of self-similarity is the existeﬁce of heavy-tailed distribution

asymptotically behaving like a power law. We shall briefly review these aspects in this

chapter.

The phenomenon of self-similarity is observed in traffic related studies in
broadband networks and one can observe structural similarities across wide range of
time scales. In the case of packet traffic, self-similar.ity.is observed at every time scale
ranging from a few milliseconds to minutes and hours by similar looking bursts [13].
These bursts will occur when the interarrival process_e;s appear to form visual clusters,
i.e. several small interarrival times followed by a relatively bigger on.e. The major cause

of burstiness is the presence of strong positive auto-correlations [7]. |
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For the purpose of illustration of this phenomenon, we reproduce here the graph in
fig. 3.1 from [6]. This shows the saine Ethemet traffic trace at vafiotxs levels of
aggregation. As observed by Morin and Nailson “the first plot shows 3 seconds of the
original trace where each point plotted represents the number of bytes of traffic during
the cenesponding 10 msec interval. The second plot shows 30 seconds of the original
trace when each point plotted represents the number of bytes of traffic during the
corresponding 100 msec interval divided by 1 0. The third plot shows 300 see of the trace
where each point plotted represents the number of bytes of traffic dunng the
corresponding 1 second interval d1v1ded by 100. Lastly, the fourth plot shows 3000
seconds of the trace where each point plotted represents the number of bytes of traffic
during the corresponding 10 sec interval divided by 1000. Surprisingly, the plots /ook
similar, even as the level of aggregation increases. This is in contrast to t‘ra‘ditional traffic
models, whose plot shows smoothness as the level of aggregzttionr ihcreeses”. This
meatns, that, there exists natural length of bursts in Ethernet traffic. Crovella and

Bestavros [14] noted that, the world wide web network traffic also exhibits the self-

similar nature.

Based on these observations it has been found that, the high speed network traffic

is bursty over wide range of time scales.
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3.1 Definition of Self-Similarity

Let X(t) be a wide-sense stationary stochastic process with mean p, variance o’
and auto-correlation p(k), k 2 0. The stochastic process {X(t)} is said to be “exactly

self-similar”, if the correlation structure,

pp = E[(X (1) - p)(X(t + k) - )]/’ - 3.1)

is preserved across different time scales. The process {X(t)} is said to be “asymptotically
self-similar”, if the corresponding aggregated processes X|™ given by

X" =1/mX,, . .+.+X,), k21aresameasX. ie,

(m)

Py’ => Py, as m—>o (3.2)

Earlier in this chapter, it was said that the stochastic self-similar processes retain
the same statistical characteristics over a range of time scales and they satisfy the

following relation in distribution sense; v12
{X(an)}=a" {X(1)} . (3.3)

where H is self-similar parameter [8]. For more details see [11].
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3.2 Heavy-Tailed Distribution and Power Law

Behaviour

A random variable X is said to follow a heavy-tailed distribution if]
PX>x]~x% as x > w ' (3.4)

Here a is a parameter such that 0 < o < 2. The tail probabilities depict a power law
behaviour which means that there is a non-negligible probabilities for random varable X
taking large values. This, in the context of bursty phenomenon in network traffic implies

occurrence of transmission of large number of packets or cells with finite probability.
The well knowﬁ heavy tailed distribution is pareto distribution with p.d.f. given as, --
px)=ak®x ', x>k . (3.5)

where o and k are positive parameters [12]. The c.d.f. of (3.5) behaves as (3.4).

It is interesting to note that heavy-tailed distribution can be obtained by resorting

to maximum entropy principle.

3.3 Maximum Entropy-Rationale for Power Law

The principle of maximum entropy provides a ratiohale_for choosing a probability
distribution when partial information about a random variable is available. According to

this principle we choose that probability distribution which besides beine consistent with



Ch. 3, Self-Similarity and Power Law Behaviour in Traffic Models 30

the given information is maximally unbiased in relation to what is not given. In other
words the probability distribution chosen has the maximum entropy amongst all

distributions consistent with the given information.

Mathematicaﬂy the problem of maximum entropy distribution can be stated as
follows (see for details in {15]): let X be a continuous random variable with p.d.f fx). -

The measure of uncertainty is given by its entropy,
H==[f()Inf(x)dx » (3.6)

Further we are given the constraints,

b
[7G)dx=1,
. (3.7)
Ig,(x).f(x)=g,, r=12,.m '
The principle of maximum entropy states that:
Max H
. . (3.8)
subject to constraints (3.7)
The maximum entropy probability distribution is then formed to have the p.d.f,
J0) = N.exp[-2181(%)-A:82(%) ... - Amm(X) ] (3.9)

where N, Ay, A, .., An are to be determined inorder to satisfy the constraints (3.7). It is
interesting to note that when the first two moments of a random variable are prescribed,

vthen M.E.P.D. turns out to be Gaussian distribution.
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As discussed in Kapur [15], one obtains the generalized Cauchy distribution when,

Efin[1+x’]} is prescribed. Then the M.E.P.D. tuns out to be

f(x)=(~l—NT),,, ~00<Xx <® (3.10)
+x -

The Cauchy density function

f)=L

7 1+x?

k3

—00 < X <0

being particular case , b=1.

It is worth noting that f{x) given in (3.10) provides power law behavior for large x.

le.
fo) =Kx™" | ' (3.11) -

Similarly by restricting the random variable x to positive values, one can generate Zipf

and Pareto like distributions by prescribing EfIn x].
The M.E.P.D. tumns out to be,

;)(x)z—]Y—, x>0
x|

where N is the normalization constant. One can say that power law maximum diversity
when the constraint specifies the average logarithm of the variate. As noted by West

[16]. this constraints implies a scaling relation for the variable of interest. This scaling
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cae be called as self-similarity and is one of the defining properties of fracial processes
{16,17]. The power law tails of the fractal process distribution indicated that rare events

occur in clustered form.
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Generélized model for traffic distribution
with power law

In recent years, it has been establishled'thét typical traffic in Ethernet local area
network aﬁd wide area network appears tlob be se_lf-similar across all or at least over a
wide fangé of time scales. The crucial feature of self-similar processes is that they
exhibit long range dependence (LRD).: w1th -auto-correlation function decaying
hyperbolically, which is much slower th%m _éxponential decay, and is non-summable
[18]. This deéay corresponds to power law behaviour and is in contrast to traditional
models, which exhibit short range dependenéé _(SRD), i.e. have an auto-correlation
function that decays exponentially. The senous implication for ATM network design is
that, conclusions based on traditional mddgls may not be applicable under self-similar
traffic. Recent studies on self-similar tra‘fﬁg ‘ha\v}e.shown that the LRD structure may
have a significant impact on queueing performande [13]. So, the earlier attempts to
formuiate the traffic distribution in tenﬁsﬁf Mark(;v Modulated Process does not
appear to be realistic as it has auto—covarif:_nge which can be approximated by C(1) =
C.exp[-at] [8]. Recently, Simonian [19] has also formulateci the traffic model in terms

of Omstein-Uhlenbeck process with exponentially decaying correlation structure.
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Denoting by X(t), the instantaneous packet rate into transmission system at time t, the

correlation function is found to be,
E{(X(t+9 -K).(X() -K)] = o .e*"" (4.1)-

where K is the mean traffic. Simonian [19] has ‘employed O.U.process model for

describing the content of fluid queue.

4.1 Ornstein-Uhlenbeck Process

For the sake of completeness we are giving brief details of the O.U. process

(see [20]). O.U. process is described as the stochastic differential equation,
de = —p X.dt +0,.2(t).dt (4.2)

where X(t) is the speed of a packet at time t and W(t) is the Wiener process which can
be expressed as equal to Z(t)Vdt. Here, Z(t) 1s a purely a Gaussian random process

with zero mean and unit variance. Conditioning on X(t) = x, we may write (4.2) as,
dX(t) = -px.dt + co.dW(t) « (4.3)

Comparing (4.3) with the general diffusion proéess, we get X(t) as a diffusion process
with infinitesimal mean and variance as -ux and o’ respectively. Accordingly, the

forward Kolmogorov equation is,

1 Fp o '
1 2P (x,p) =

—a, . + pu— — 4.4
27 e T H A a (4.4)
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where, p = p(x,t) is the p.d.f. of the pfocess X(t) at time t. The initial value condition is

given by,

p(x,0) = ling o(x —x,)

Defining m.g.f. of X(t) as

-

$0.1) = [ p(x,1).dx

o0

eq. (4.4) reduce to
Y oagy o _ X |
1 6°¢— ub—= (4.5)

Expressing ¢ in terms of cumulant generating function y(0.t) = log ¢(6,t), we obtain

from (4.5)

2A-e*) 1

#(O,1) = —(x,.e™ )0 + 2 oy 6 (4.6)
from which we get,
1 f 2
plx|x,,1) = \/—2—71:0—-,(7)6“){ b M(t)}/fff(t)J (4.7)

where,

2(] _ e—Z/lI)

o
o(1)= 2 and (1) =x,.e"
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It may be noted that in the limit of large times, tie density function in (4.7) reduces to .
a Gaussian distribution with 6,%(«0) = 6,%/2t and (o) = 0. Further it can be proved
from equation (4.3) that the auto-correlation decays exponentially. It needs to be
emphasised that, the exponentially decaying correlation does not represent the realistic
traffic models for ATM networks. However, in reality, the traffic models should depict

the power law bebaviour.

4.2 Generalized Model

It is proposed to generalize the Simonian {19] model, to capture the realistic
aspects of multiple sources like audic, video, voice and multimedia services. As
mentioned in the first chapter, that any type of information will be transmitted in the

form of packets.

Simonian [19] treated the input process {X(t)} being described by a stationary

0.U. process. The corresponding stoéhastic differential equation is
dX(y) = n.[K-X(®)].dt + cpdW() : - (4.8)

where K, 1, o, are positive parameters and dW(t) is a standard Wiener increment
process. It is easy to show that X(t) has a stationary Gaussian distribution with steady-
state mean K and variance 3> = ¢° / 2n. writing K-X(t) = Y(t), equation (4.8)

becomes,

dY) =-n.Y@) + ondW(y | (4.9)
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It can be argued that, in reality, the rate | cannot be treated as a constant parameter.
However n should vary in stochastic manner as a result of packets originating from
voice, video, and data services. It may be convenient to explain these services in the

present context.

Data : Basically, there are two types of applications such .as low speed (keyboard
input) and high speed (file transfer, image transfer for CAD etc.) applications. The
delay will be more in low speed applications as compared to high speed applications.

So, the correlation structures for both applications will be different.

Voice : Since voice is a constant bit rate (CBR)service, packets can be sent for
transmission only when it is completely filled. This results in the introduction of
packetization delay. Traffic bursts will be generated only during the active (ON)

periods of voice.

Video : In video communications, variable bit rate compression algorithms transmit
at a higher rate during high-activity (motion) scenes and at a low rate when there is
less motion. Different types of video traffic results in fast decaying short term
correlation and slow decaying long term correlation. Based on experimental work Sen
etal.[10] have indicated the following correlation structure in the context of other
types of video traffic, such as broadcast television, videoconferencing, and longer
videotelephone sequences (showing persons talking and listening). Considering an
environment where the video sources feeding the network are a mix of these types,
then two important correlations exist, viz. : a relatively fast-decaying short-term
correlation corresponding to uniform activity levels, with a time constant of the order

of a few hundred milliseconds, and a slow decaying long-term correlation
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corresponding to sudden changes in the gross activity level of the scene (e.g., scene
changes in broadcast TV or changes between listener and talker modes in a video

telephone conversation), with a time constant on the order of a few seconds (see [10]).

Thus the parameter 1, conditioned by the random traffic resulting from
different sources, behave as stochastic process. So, n(t) consists of two components;

VizZ.:
ne =k + A1), (4.10)

where k denotes the average component and A(t) denotes the statistical fluctuations
around the mean rate k. The fluctuations around the mean rate is assumed to be
characterized by Gaussian white noise process. The assumption of A(t) being Gaussian
is justified on the grounds that the fluctuations arise from a large number of random
factors, and, hence, by central limit theorem, the total effect obeys‘ the Gaussian law
[21]. We further assume that the time scale of fluctuations in A(t) is much smaller in
comparison to the macroscopic time scale, which also can be assumed to be
represented by a delta correlated process. Thus A(t) is modelled as a Gaussian white

noise process. i.e.
E[A(t). At)] = o5.5(t)-t5) ’ (4.11)

By substituting (4.10) in (4.9), we get the stochastic differential equation (SDE),

characterizing the traffic becomes,
dY) =-k.Ym.dr - A().Y(@).dt + o-dW(t) (4.12)

This SDE can be recast in the form :
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d¥y =fY).dt + og(¥).dw (4.13)

where f{Y) =-k.Y(t) and g(Y) = (03.Y + 03). This SDE can be interpreted in two
ways, viz.: Stratonovich sense or Ito sense and these two prescriptions are formally
equivalent, 1.e. one can go from the results obtained under one prescription to those
under the other via a transformation formula. _prever, the Stratonovich prescription
1s preferable for modelling the traffic [22]. The F_okker-Planck equation corresponding

to eq. (4.13),

2

| P 1, o g i 2
== [{f(y)+-2-.6 L)-g O)ipl+ (2" ().P] (4.14)

-2
¥ 2 9

Here p = p(y,t) denotes the probability density fmiction. This equation has to be solved
with mitial condition , |

PO =lim 8(y-y,) (4.15)

and appropriate boundary conditions. Using. (4.13) and (4.14), the Fokker-Planck

equation by computing eq. (4.12) becomeé, | -

B O ol & o) o)l

a(y,t)— @[( ky + 5 y)p]+--0-y2[( 5 + 5 )p] (4.16)
2 P 2 _032 a F. o) 2

ol a (y,t)——azz (k——= )-»—O,y(yp)+—@2 [(1+022) )p] (4.17)

Rescaling the variable y and introducing, (d3 /o, ) y =z,

we find,
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o_0, 3. _0?2__(2;)2 g
& o, & & \o,) &

Noticing p(y,t).dy = p(z,t).dz = p(.:,f).ﬁ ,

0,
equation (4.17) yields,

2 2k O >
7.%(:,:) = (—G-—2 - 1).:;—(:;)) +;%—2[(1 +:2")p]

63 3

Introducing a new time scale 1, -

o, .. k
T=t—— and wrtng a = —,
2 : o,

then (4.18) reduces to the standard form as given in Wong [23]. We get

—;iz[(l + )]+ (a- )2 ()= 2

o

(4.18)

(4.19)

This parabolic equation has to be solved with reflecting barrier at the origin and the

initial condition (4.15).

4.2 Solution of Fokker-Planck equation

Following Wong [23] sblution P(zizo, 7) of above Fokker-Planck equation is,

V gl F(Za +1- n) ‘

ﬂj:o,f)=(l+:2)4%+i){—l'i—(cz—_l1)—'_— e‘"‘z"_")’ﬁ"(zo).9,,('.')

o0

27
1

’ l 2 2
+ ;J'e"-” ”‘ ”[‘}’(/1,:‘,)‘1’(-/1,:)+‘P(—p,:n)‘l’(/x,:)]dp}
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where,

- 1 2 (1+1 (?" 2 ,,_(,_}_
2)=2"T(a-n+=X-1)'(0+z*) 2.—|(1+:z 2
6,(z) (@-n 2)( )y (1+:7) (2,,[( )

are poiynomials of degree n, énd W(p,z) is given by,

e
-

— : 11
‘P(y,:):(:'+\/]+zz)"'(l+:2)2.2FI(—a,a+l;l+i,u;E+E 1 =).
+z

Here ,F isthe Gaussian hypergeometric series.

It is interesting to note that a compléte time dependent solution for the

stochastic variate z(t) has been obtained. This in tum- will provide stochastic
3

: o . .
description of traffic input rate, X(¢) = (A - —Zz) . The transient solution can also be
o

utilized in obtaining expressions for equivalent capacity for broadband networks [24].

It can be easily seen that the stationary solution turns out be,

1
P'z)=lim p(z,7)=(1+z )_(Mz)

which for large z behaves as
p(z) = 7Y as z — o

This gives rise to power law behaviour which is a desirable feature for realistic

network traffic.
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Self-Similar Traffic model

In broadband networks, the aggregate traffic can be visualized as comprising
two parts, viz. constant b'it rate (CBR) and variable bit rate (VBR). Generally, CBR
can be described by a;/ex'age t_ime dependent function, whereas VBR is bursty in
character. This VBR. geqerally depicts the fractal like character. This aspect of VBR
can possibly be described by discrete or continuous random walk. To this end we can
adopt the analysis discuSSed by Bendler and Shiesinger [25] for our purpose. This
means that the Waitiﬁg 'timé probability distribution, governing the time interval

between jumps has iﬁﬁnite mean.
5.1 Montrdll-WeiSs Random Walk Type Traffic Model

We denote by Pu(x) the probability for packet executing a random walk such
that at the n™ time epoch the number of packets is x. From this, we can recursively

obtain P.(x) as follows:

B = Zp()Rx-x) (5.1)
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i.e. upto n™ step or time epoch we have (x-x ) packets and then the remaining packets

x arrive during (n+1)" step.

In an interesting paper Montroll and Weiss (1965) established a connection

between P(x,t) and P (x,t) in terms of generating function for P,(x) defined as,
n=0

\ G(x,z) = ZP"(x):" (5.2)

We find from eq. (5.1)

G(x,2) -z p(x)G(x~x) = &, (53)

In a similar way one can write down the continuous version of eq. (5.1) as,
P(x,1) = [ Olx,t - T)R(r)dz (5.4)

0 B

where P(xt) is the probability of having x packets at time t. Denoting by Q(x,t) the
p.d.f to receive x packets at time t and R(t) denotes the probability that several

packets arrive in a time interval 1 after the previous packets have been received.

In terms of probability y(t)dt that a jump occurs in (t,t+dt), we can write

R(t) = 1——Iy/(r)dr (5.5) |

and

QO(x,t) = Z'[(//(T)./)(,\" ).Q(x—x ,t—1).dT +0,,.0(1) (5.6)

X 0
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w“
Defining Laplace transform of () as
f(s)=L{s () = Ze""’.f(t).dt,
we find,
R(s) = [1-p()]/s )
P(x,1) = L“[G(x,y/(s)). 1 Z’(S)] (5.8)

where G represents the generating function as in eq. (5.2). For obtaining behaviour of

P(x,t), we have to specify yi(t).

Noting that,

w(s) = Je"".(//(t).dt xl—st+--- as s—> 0, (5.9)
0

we can obtain the behaviour of P(x,t).

In contrast to first moment being finite moment, we consider the situation

descnbed by,

w(t)= A"+« as t—> o, O0<ac<l, (5.10)

such that the first moment is infinite as can be seen from,

A
wis)=1-—T(1-a)s”
a
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As observed by Bendler and Shlesinger [25] that, “a stochastic process with a
w(t) with t infinite has been called a fractal time process, because it can be shown that,
since the jﬁmps do not occur on the average, .z;t regular intervals they occur in self-
similar bursts. These bursts have the structure of a Cantor set of fractal dimension o*
[26]. Thus we find the traffic generated by random walk for y(t) given by eq. (5.10) is
of fractal nature. This traffic when superposed on the traffic generated b;/ CBR may

provide a more realistic model for the network traffic.

This modeling process needs to be investigated further with a view to making

comparisons with the empirically observed data.



Concluding Rémarks

After briefly reviewing earlier traffic models, we have proposed a new model for
characterizing fraﬂic in communication networks. This model has been formulated in
terms of stochastic differential equation. The advantage of this formulation is that it is
amenable to analytical treatment. The complete time-dependent solution of the probability
density function for the traffic has been obtained. A significant aspect of this model is that
it depicts power law behaviour. This feature }iaé also been found to be present in local as
well as wide area networks. This power law behaviour is gaining a lot of importance in
communication network studies as its influences on performance measures 1S enormous.
Simulation studies show that packet delay, cell loss rate increases substantially. It is
proposed to investigate in future the effect of traffic model which we have proposed in the

performance measures of broadband networks.

We have also formulated a model for fractal like traffic behaviour m terms of
continuous random walk with transition probability having infinite mean. This aspect

appears to be quite promising.
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