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Abstract 

Broadband networks, utilizing ATM, are expected to provide the information 

transport for a rich mixture of services (voice, video, and data etc.) and applications. 

These are associated with broad spectrum of traffic types and transport performance 

requirements. It is therefore necessary to develop traffic models to capture the statistical 

· features of actual traffic characterized by marginal distribution, auto-correlation structure, 

traffic delays and cell loss probabilities. Such models will facilitate network performance 

studies in realistic situations. 

Recently, statistical analysis of different types of network traffic has shown that 

network traffic is self-similar or fractal in nature. A characteristic feature of self-similarity 

is the existence of a heavy-tailed distribution which behaves like a power law. It is 

proposed to develop a new generalized traffic model mimicking the power law behaviour. 

We have also developed a self-similar traffic model based on random-walk with transition 

probabilities having infinite first moment. 

The dissertation consists of five chapters. The first two deal with brief review of 

A TM characteristics and traffic models respectively. Chapter 3 is concerned with self­

similarity aspects and power law behaviour in traffic models. In chapter 4, we present a 

new generalized model for traffic distribution. The last chapter deals with random walk 

based self-similar traffic model. Finally, the dissertation ends with conclusions. 



1 
Introduction 

In the evolution from the current telecommunication networks towards the 

Broadband Integrated Digital Services Network (B-ISDN), some important directions and 

guidelines have recently been made. The recent directions opened up by the B-ISON are 

influenced by a number of parameters, the most important being the emergence of a large 

number of tele-services with different, sometimes yet unknown requirements. In this 

information age, customers are looking for an ever increasing number of new services. The 

most promising teleservices to appear in the future are HDTV (High Definition TV), video 

conferencing, high speed data transfer, videophony, video library, home education, and 

video on demand. Each of these services will generate other requirements for the B-ISDN. 

This large set of requirements . introduces the need for one universal network which is 

flexible enough to. provide all of these services in the same way. The other parameters 

which are affecting the directions suggested by the B-ISDN are the fast evolution of 

semiconductor and optical fiber technology [ 1]. 

The traditional circuit switching, currently used in telephone network has some 

limitations because it is incapable of satisfYing the wide range of bandwidth required for 
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varying services such as video, voice, and multimedia services. It is also inefficient for 

switching bursty traffic because it establishes a dedicated communication path for the 

duration of the connection without regard to whether the information is being actually 

transmitted or not. Fast packet switching is complicated, requiring node-to-node protocols 

to deliver error free packet and can result in large delay and increase in variance of the 

packet transmission tiJ11e. Fast packet switching is a concept that covers several 

alternatives, all with the same basic characteristic, i.e. packet switching with minimal 

functionality in the network [2]. 

Asynchronous Transfer Mode (ATM) is the fast packet switching and multiplexing 

technology that has been standardized for the B-ISON. Here, asynchronous refers to the. 

manner in which bandwidth is allocated among connections and users. Bandwidth is 

divided into time slots of fixed length. These time slots are allocated for user on demand 

[3].Traffic mode is a term intended to signifY that it uses the multiplexing and switching 

technique. There are many reasons for choosing packet switching over circuit switching. 

Firstly, packet switching is highly flexible and can handle both constant rate traffic (audio, 

video) and variable rate traffic (data) easily. Secondly, looking to transmission at very high 

speeds (Gbps), digital switching of cells is easier than using traditional multiplexing . 

techniques, especially using fiber optics. Thirdly, broadcasting is essential for television 

distribution, which cannot be possible with cell switching [4].So, ATM is a compromise 

between pure circuit switching and packet switching. 
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1.1 Asynchronous Transfer Mode (A TM) 

The basic idea underlying A TM is transmission of all information in small, fixed 

size packets called cells. The length of A TM cell is 53 bytes, consisting of 5 bytes of 

header information followed by 48 bytes of data. The main reason for choosing 48 bytes of 

data l~ngth was the reduction of packetization delay of voice, reduction of the internal 

buffers in the switching nodes, and limiting the queuing delays in those buffers [I]. A 

typical A TM cell format is shown in the fig. I. I. 

5 bytes 48 bytes 

Header User data 

Figure 1.1 ATM cell format 

ATM is connection oriented and supports-two types of connections, such as point­

to-point and point-to-multipoint. The connection is half-duplex. Then, for two way 

communication it needs two connections. If any end station wants to set up the connection 

with the network, then initially it has to send a message for the connection. So, if the 

resources are available, then the connection can be given. A TM is guaranteed for the cell 

delivery order but there can be cell loss. The intended speeds for ATM networks are 15 5 

Mbps and 622 Mbps with the possibility of Gigabit per second speeds at a later stage. The 

I55 Mbps speed was chosen to transmit high definition television. And the 622 Mbps 

speed was chosen so that four 155 Mbps channels could be sent through it. 

The advantages of A TM are : 
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• Flexibility to support existing services and unforeseen future services; 

• Dynamic bandwidth allocation; 

• Integrated transport of all information types; 

• Efficient utilization of network resources by statistical sharing. 

The disadvantages are that cells may suffer variable delays through the network or 

may be lost. The network must ensure the quality of service, in terms of cell delays and 

cell loss rate, required by the users. In addition, considerable processing is involved in 

converting user information into and from the A TM cell format, and in carrying cells at 

high rates through each switch [4]. 

1.2 The B-ISDN A TM Protocol Reference Model 

Broadband ISDN using A TM has its own reference model based on standards 

developed by the ITU. The protocol _reference model based for ATM is divided into three 

layers: the physical layer, the ATM layer, and ATM adaption layer plus whatever the users 

want to put on top ofthat [4] as shown in the fig 1.2. 

1.2.1 Physicallayer 

The physical layer defines a transport method for A TM cells between two A TM 

entities. It encodes and decodes the data into suitable electrical/optical waveforms for 

transmission and reception on the communication medium used. It also provides cell 
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Plane management 

Layer management 

Control Plane Userplane 

Upp<:_r layers Upper layers 

cs 
---------------- A TM adaptation layer -----------­

SAR 

ATM layer 

TC. 
-------------------- Physical layer ----------------­

PMD 

Figure 1.2 The B-ISDN ATM reference model. 

5 

transmission and reception on the communication medium used. It also provides cell 

delineation functions, header error check (HEC) generation and processing, performance 

monitoring and payload rate matching of the different transport formats used at this layer. 

It is divided into two sublayers: Transmission Convergence (TC) sublayer and Physical 

Medium Dependence (PMD) sublayer. TC sublayer is responsible for mapping of the 

A TM cells to the transmission system used. And the PMD sub layer is responsible for the 

correct transmission and reception ofbits on the physical medium [5]. 

1.2.2 ATM layer 

The A TM layer is responsible for cell relaying between A TM layer entities, cell 

multiplexing of individual connections into composite flow of cells, cel1 demultiplexing of 
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composite flow into individual connections, cell rate decoupling or unassigned cell 

insertion and deletion, priority processing and scheduling of cells, cell loss priority marking 

and reduction, cell rate pacing and peak rate enforcement, explicit forward congestion 

marking and indication, cell payload type marking and differentiation, and generic flow 

control access. The functionality of the A TM layer is defined by the fields present in the 

A TM cell header. A typical A TM cell header is shown in fig. 1.3. 

Cell (53 bytes) 

Header Information 

Generic VCIIVPI Payload cell loss Header 
flow type check- Payload 

control field indicator priority sum 

4 bits 24 bits 2 bits 2 bits 8 bits 48 bytes 

Figure 1.3 ATM cell header. 

The cell header consists of a generic flow control (GFC) field, the VCINPI fields, 

a payload type indicator (PTI) field, a cell loss priority (CLP) field, and a header checksum 

field. The GFC field supports the implementation of a flow control mechanism on the user 

network interface. The VCINPI fields are used for channel identification and 

simplification of the multiplexing process. The PTI field is used to distinguish between 

user cells and control cells. The CLP field is used to indicate whether a cell may be 
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• discarded during periods of network congestion. The header checksum field is used to 

protect the header field from transmission errors. 

·1.2.3 ATM adaption layer (AAL) 

The A TM adaption layer enhances the setvice provided by the A TM layer to the 

higher network layers. It performs functions for the user, control and management planes 

which depend on higher layer requirements. The AAL is subdivided into two layers: the 

segmentation and reassembly sublayer (SAR) and the convergence sublayer (CS). The 

SAR sub layer is used for segmentation of the higher layer information into a size suitable 

for the payload of consecutive ATM cells of a virtual connection, and the inverse 

operation, reassembly of contents of the cells of a virtual connection, into data units to be 

delivered to the higher layers. The convergence sublayer performs functions like message 

identification, time/clock recovery, etc. [ 1]. 

Upto now four service classes have been defined, based on three parameters: time 

relation between the source and the destination, constant or variable bit rate and 

connection mode. 

The service classes are: class A, class B, class C, and class D. 

Class A - a time relation exists between the source and the destination, the bit rate is 

constant, and the service is connection oriented (e.g. a voice channel). 
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Figure 1.4 service classes in B-ISON. 
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Class B - a time relation exists between the source and the destination, the bit rate is 

variable, and the service is connection oriented (e.g. a video or audio channel). 

Class C - no time relation exists between the source and the destination, the bit rate is 

variable, and the service is connection-oriented (e.g. a connection oriented file transfer). 

Class D - no time relation exists between the source and the destination, the bit rate is 

variable, and the service is connectionless (e.g. LAN interconnection and electronic mail). 

Initially four types of AAL protocols were recommended by ITU to support the 

four service classes A, B, C and D, called types 1,2,3 and 4 respectively. Later, AAL3 and 

AAL4 were merged into a single type (called AAL type 3/4), since the differences between 

them were minor. After that, a fifth AAL type has also been defined, in view of the high 

complexity of AAL3/4 [5]. The AAL also plays a key role in the internet-working of 
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different networks and services. So, cell transmission in A TM networks can be done by 

passing through the devices known as A TM switches. 

1.3 A TM switching 

An ATM switch is composed of a number of input ports and output ports and a 

' 

network which connects input ports to output ports called switch fabric. As shown in 

INPUT PORTS OUTPUT PORTS 

SWITCH > 

FABRIC 

Figure 1.5 A TM switch. 

fig. 1.5, cells arrive at the input port asynchronously, pass through the fabric and are 

eventually transmitted on the appropriate output line. A number of different switching 

fabrics exist including simple crossbars and Hatcher Banyan networks. 

All A TM switches have buffers, so that they can store the cells, if they are arriving 

too quickly or there is congestion in the switch fabric. Buffers can be at the input ports 

(input buffering) or at the output ports (output buffering) [ 6]. Most of the ATM switches 

use a combination of input and output buffering. A TM switches use the VPI and VCI 

fields of the cell header to identifY the next network segment that a cell needs to transmit 

on its way to final destination. A virtual channel is equivalent to a virtual circuit - that is, 
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both terms describe a logical connection between the two ends of a communications 

network. A virtual path is a logical grouping of virtual circuits that allows an A TM switch 

to perform operations on groups of virtual circuits. 

When an end station connects to the A TM network, it is essentially making a 

contract with the network based on Quality of Service (QoS) and parameters such as, peak 

bandwidth, average sustained bandwidth and burst size. It is the responsibility of the A TM 

device to adhere to the contract by means of traffic shaping, which will use the queues to 

constrain data bursts will limit the peak data rate, and smooth jitter so that the traffic meet 

the prescribed QoS parameters. A TM switches have the option of using traffic policing to 

· enforce the contract. The switch can measure the actual traffic flow and compare it against 

the agreed upon QoS parameters. If it finds that the traffic is outside these parameters, the 

switch can discard the cell by setting the CLP (cell loss priority) bit during the periods of 

congestion. 

Congestion will occur when there is contention for limited resources (i.e. buffer, 

bandwidth and processors); it is exhibited when the offered traffic load exceeds the 

network's designed capacity. Because A TM is connection oriented and packet switched, 

ATM networks may exhibit congestion at both the levels of connection and cell. At the 

level of connections, call processors will become preoccupied with unsuccessful call 

attempts. At the level of cells, transmission links will become saturated with traffic, and 

· buffers will overflow with cells. Hence, to eliminate the congestion we need to control the 

traffic. The primary role of traffic control in B-ISON is to protect the network and the 
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user in order to achieve predefined network performance objectives (e.g. in terms of cell 

loss probability or cell transfer delays) and to optimize the use of network resources [I]. 

1.4 Need to develop Traffic Models 

One of the most important aspects concerning A TM networks is the issue 

concerning traffic in the transmission line. The idea is to develop traffic models which can 

reproduce traffic patterns observed in reality. To achieve better performance of the 

network, we need to develop good traffic models. Accurate traffic models can capture the 

statistical characteristics of actual traffic. If traffic models do not accurately represent the 

actual traffic, one may overestimate or underestimate the network performance. Since a 

model is viewed as a faithful representation of the target system, instrumentation is 

required in order to collect statistics and formulate performance predictions. More often, 

the desired response of the system is a function of a parameter vector. For example, the 

cell loss rate in an ATM switching network is a function of a set of congestion-control 

parameters. Correlation in the measured observations must be taken into account when 

· forming statistical performance estimates. For example, positive auto-correlation in a 

' 
sequence of delay times would cause bursts of long (short) delays. Thus, if message k has 

experienced a long (short) delay, then long (short) delay for message k+ 1 becomes 

probable. Furthermore, rare events, such as ATM cell losses, are key issues that 

characterize the performance of emerging broadband networks [7]. Thus, the models that 

capture the auto-correlated nature of traffic are essential for predicting the performance of 

emerging broadband networks. -
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The aim of this project is to develop some new traffic models, by considering the 

self-similarity nature of traffic. 



2 

Overview of Traffic Models 

The efficient flow of information is a key element in today' s technological 

environment. As discussed in the first chapter, this is possible with the high-speed 

networks, such as A TM, if it is properly designed and operated. Traffic modelling is a 

key element in designing and operating the communication networks. Hence, it is 

necessary to understand the nature of traffic, in order to select the appropriate random 

traffic model for the better performance of the network. This oveiView closely follows 

the articles [7] and [8]. 

2.1 Introduction 

In this chapter, the main discussion is about the general traffic models in 

broadband networks .. Basically, traffic models can be stationary or non-stationary. In 

generaL stationary traffic models can be divided into two types: short-range and long­

range dependent. Short-range dependent models consists of significant correlation 

structure for small lags. Examples are Renewal processes, Markov processes and 

Regression models. Long-range dependent traffic models have significant conelations 
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for large lags. Examples are Fractional AutoRegressive Integrated Moving Average (F-

ARIMA) and Fractional Brownian motion. 

Traffic models can be analysed on the basis of the number of parameters 

required to describe the mode, parameter estimation, analytical tractability and perfect-

fit. To evaluate perfect-fit, it is necessary to determine how "close" the model is to the 

actual data., i.e. how far the model is able to give marginal distributions, auto-

correlations structure and ultimately to predict delays and cell loss probabilities (8]. 

For calculating performance measures, the most common modelling context is 

queueing, where traffic is offered to a queue or to a network of queues [7]. Simple 

traffic consists of single arrivals of discrete entities like packets. This can be described 

as a point process, consisting of a sequence of arrival instants T~,T2, ... ,Tn··· measured 

from the origin 0 (i.e. T0 = 0). These point processes have two additional equivalent 

descriptions -- counting processes and interarrival_ time processes. A counting process 

{ N ( t)} :o is a continuous-time, non-negative integer-valued stochastic process, where 

N(t) = max{n; tn :$ t} is the number of (traffic) arrivals in the interval (O,t]. An 

interarrival time process is· a non-negative random sequence {An} ~= 1 , where An = T n-

Tn·I is the length of the time interval from the nth arrival to the (n-l)th. Since 

n 

T, = L A1 , the equivalence of these descriptions follows from the evident relation : 
l=l 
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2.2 Renewal Traffic Models 

There are two special types of these models based on Poisson process and 

Bernoulli process. These models are analytically simple, when An are independent, 

identically distributed (liD); however their distribution is allowed to be a general one. 

Unfortunately, the superposition of independent renewal processes does not always 

yield a renewal process. These processes also have a serious limitation in modelling as 

the auto-correlation function of {An} vanishes similarly for all non-zero lags. 

2.2.1 Poisson Process 

This renewal process has the inter-arrival times {An} distributed exponentially 

with rate parameter A such that P{An s t} = 1-exp(-/...t). It is also a counting process 

and number of arrivals in subsequent intervals is statistically independent. 

Poisson process has some special analytical properties. The superposition of 

independent Poisson processes results in a new Poisson process whose rate is the sum 

of the component rates. This process has ifidependent increment property rendering it a 

memory-less process, which in tum, greatly simplifies queueing problems involving 

·Poisson arrivals. On the basis of Palm's theory, this process support many traffic 

applications, which comprise hirge number of independent traffic Streams. But the main 

limitation is, that, traffic aggregation (multiplexing) may not always result in a Poisson 

stream [7]. 
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2.2.2 Bernoulli Process 

This process is . the discrete-time analog of Poisson process. Thus, the 

probability of an arrival in any time slot is p, independent of all others. So, the number 

of arrivals m slot k follows binomial distribution such that, 

2.2.3 Phase-Type Renewal Process 

These processes will occur when the inter-arrival times follows the phase type. 

For modeling phase-type inter-arrival times we consider the time to absorption in a 

continuous time Markov process C = {C(t)}:
0 

having the state space {O,l, .. ,m} with 

state 0 as the absorbing state while all other states being transient [7]. The advantage 

of using these type of models is that the analysis ofthe problem becomes tractable. 

2.3 Markov and Embedded Markov Models· 

In many situations, a source can be modeled by a finite number of states 

characterizing finite different activities. For example, a finite state model in voice 

telephony as shown in fig. 2. 1 is widely used. In this model, a voice source can either 

be in idle state or in busy state with the source transmiting the packets only in busy 

state (i.e. speech activity). In general, we can increase the number of states, for more 

accurately describing a situation, but one has to pay the price by increasing 

computational complexity. 
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Busy 

Figure 2.1 Finite state model for voice. 

Defining by the random variable Xn, the state from the given state space S = 

{sJ,s2, .... ,sM} at time n. The set of random variables {Xn} will form a discrete Markov 

chain, ifthe probability ofthe next value Xn+I = Sj depends only on the current state 

[8,9]. The Markov chain can be called as discrete time Markov chain, if state 

transitions occur at integer time epochs (0, l, .... ,n, ... ). When transitions occur in 

continuous time, the Markov chain is called the continuous time Markov chain. This 

means, that the future value depends on the current state but not on previous states 

and not on the time delay spent in the current state. Because of this, the time spent in a 

state is restricted to geometric distribution in discrete case and to an exponential 

distribution in the continuous case. 

The stochastic process is called a Semi-Markov process when the time between 

state transitions follows an arbitrary probability distribution. An embedded Markov 

chain can be obtained by ignoring the time distribution between transitions and the 

sequence of states visited by the Semi-Markov process will be a discrete time Markov 

chain [8]. 

2.3.1 ON-OFF Models 

TI1e ON-OFF source model is widely used for the voice traffic with transitions 

shown in fig. 2.2. In this model, packets are generated only during talk spurts (ON 

state) 
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Figure 2.2 ON-OFF model. 

with fixed An. Tite time sp-ent in ON and OFF states is exponentially distributed with 

mean a-1 and 1)-1
, respectively [8]. TI1is model provides a simplest description for the 

voice traffic. However, in realistic situations this. model fails to capture bursty nature of 

traffic. 

2.3.2 IPP Models 

The Interrupted Poisson Process (IPP) can be in states such as active and idle 

as shown in fig. 2.3. and arrivals occur only durllig the active state. Thus IPP model 

differs from ON-OFF model in inter-arrival time during the active state [8]. 

Figure 2.3 IPP model. 

2.3.3 Markov Modulated Poisson Process 

Morkov Modulated Poisson Process (MMPP) is the most commonly used 

model for examining the performance measures. TI1is process can be considered as a 

doubly stochastic Poisson process. This model combines the simplicity of the 

modulating (Markov) process with that of the modulated (Poisson) process as shown 
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in fig. 2.4 .. The Markov process uses the cuJTent state to control (modulate) the 

probability distribution ofthe traffic [7]. 

ann-1 

Figure 2.4 MMPP process 

In this model, the arrivals occur according to a Poisson process at the rate Ak, 

while in state Sk. Thus the rate changes according to the state. The MMPP parameters 

can be estimated by quantizing the arrival rate into finite number of rates associated 

with the number of states. Tiris means each rate is associated with a state in Markov 

chain. For example, if we denote q;j as the transition rate from state ito state j, then q;j 

can be estimated by quantizing the empirical data and by calculating the fraction of 

times state i switch~d to state j [8]. 

2.3.4 Morkov Modulated Fluid Models 

The fluid traffic models treat traffic as a stream of fluid, characterized by a flow 

rate (such as bits/sec). These models are appropriate when we consider situations with 

heavy such that individual units . such as traffic packets have little impact on the 

perfonnance of the network. It may be noted that, all models that distinguish between 

cells and consider the anival of each cell as a separate event. require vast amount of 
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memory and CPU resources. In contrast, these fluid models characterize the incoming 

cells by a flow rate [7]. 

Ju Markov modulated fluid models, the cunent state of the Wlderlying 

Markov chain specifies the traffic flow rate. Generally, this model is employed in 

modeling the VBR video sources [I 0]. For simulating fluid model, one assumes that 

the incoming fluid (traffic) flow remains (roughly) constant over much longer time 

periods and traffic fluctuations can be modeled by events reflecting a change of flow 

rate. In a queueing conte:\.1, the buffer waiting time conesponds to the time it takes to 

serve (clear) the cunent buffer, and loss probabilities (at a finite buffer) can be 

calculated in terms of overflow volumes. The disadvantage of this model is the 

existence of many parameters, and exponentially decaying auto-correlation function. 

Besides these disadvantages, queueing performance of this model is. still analytically 

tractable. 

2.4 Regression Models 

These models express the random variable in the sequence in temis of previous 

ones in the presence of a white noise. We briefly discuss some of the commonly used 

regression models [8]. 

2.4.1 Linear Autoregressive Models 

The linear Autoregressive model of order p, denoted by AR(p), has this form: 

(2.2) 
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where X,'s are correlated random variables, 4>/s are real constants and s, is white noise. 

Accordingly, X,' s will be nonnally distributed random variables, if s, is a white 

Gaussian noise with variancea: . In terms of lag operator B as X1• 1 = BX~, we can 
' 

rewrite (2.2) as, 

(2.3) 

where cj>(B) = (l-cj>1B- ... -~pDP). Multiplying eq. (2.2) with Xt-k and taking the 

expectation, we get, 

(2.4) 

Thus the general solution is, 

(2.5) 

where Gt 's are roots of cj>(B). There fore, in general, the auto-correlation function of 

AR(p) process will consist of damped exponentials depending on the roots (real or 

imaginary). These AR models have been used to model the output bit rate of VBR 

encoder, because successive Video frames are not likely to vary much visually. 

Accordingly, the output bit rate. within a frame period is constant and changes from 

frame to frame based on the following AR( 1) model : 

A.[n] = ¢A.[n .:... 1] + b&[n] (2.6) 
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Here A.[n] is the bit rate during frame n and E[n] is a Gaussian white noise. E[n] is 

chosen so that the probability of A.[n] being negative is very small. For computational 

aspects, whenever /,[n] is negative, it is set to zero in eq. (2.6), as the number ofbits in 

frame n cannot assume negative values. Tims, the bit rate of frames within the scenes 

can be modeled as AR process and the scene changes can be modeled as Markov 

.chain. The limitation of this framework is that it fails to capture the sudden changes in 

the frame bit rates that occur due to scene changes in video. 

In a more general setting, simple AR(2) has been used to model variable bit 

rate (VBR) coded video. One plausible model for VBR video traffic is 

(2. 7) 

where Yn and Zn are two independent AR( I) processes and Vn Cn the product of a 

simple Markov chain and an independent normal random variable. With a view to 

achieving a better fit to empirical auto-correlation function, it has been suggested to 

employ two AR schemes; the third term., VnCn is proposed to capture sample path 

spikes due to video scene changes. 

Since the auto-correlation function decays exponentially, this model is still 

unable to capture the slow decay in comparision to exponential decay. It needs to be 

emphasized that, AR processes ·with Gaussian distribution cannot capture VBR video 

traffic probability distribution, since VBR video traffic distribution exhibits a power 

law behaviour which is not depicted by Gaussian [8]. 
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2.4.2 Discrete Autoregressive Models 

A discrete autoregressive model of order p, denoted by DAR(p ), generates a 

stationary sequence of a discrete random variables with an arbitrary probability 

distribution yielding auto-correlation structure similar to that of an AR(p ). It is 

plausible that, the number of cells per frame of teleconferencing VBR video be , 

modeled by DAR( I) with negative binomial distribution. 

The advantage of this model is the simplicity in parameter estimation with less 

number of parameters. Though, the resulting process disttibution is arbitrary, the 

analytical queueing performance is tractable. On the other hand, since the auto-

correlation function decays exponentially as in AR(p ), it cannot used to model the 

traffic with a slower auto-correlation decays [8]. 

2.4.3 Autoregressive Moving Average Models 

An Autoregressive Moving Average model of order (p,q), denoted by 

ARMA(p,q), is used for modeling VBR traffic. In this case too the auto-correlation 

function decays exponentially. The duration of a video frame is divided into m time 

intervals equally, such that the number of cells in the nth time interval can be modeled 

as: 

m-1 

X, = ¢.X,_m + LBAs,_A (2.8) 
A=O 

TI1e AR part is used to model the re-correlation effect and the parameters Sl 

are adjusted to fit the correlation structure. Since each frame in video data is correlated 
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due to temporal correlation, the auto-correlation fimction has peaks at all lags. For this 

model, the parameter estimation and analytical solutions are difficult to obtain. 

2.4.4 Autoregressive Integrated Moving Average Models 

This model denoted by ARlMA(p,d,q) is an extention to the ARMA(p,q). It is 

obtained by constructing the polynomial cj>(B) to have d roots equal to unity and the 

remaining roots lie outside the unit circle. The ARMA(p,d,q) can be represented as : 

rp(B)'Vd X, = B(B)c:, (2.9) 

Here \I is a difference operator, defined as (X1 - X1• 1) =\IX~, and q>(B) is a polynomial 

in B. The ARlMA(p,d,q) can be used for capturing the non-stationary in the time series 

[8]. 

Till now, traditional stationary traffic models have been discussed, in which, it 

is observed that the auto-correlation fimction decays exponentially. Recently, it has 

been found in the traffic measurements of Ethernet LAN traffic that the auto­

correlation fimction decays .at a much slower rate than exponential. So, the processes 

that exhibits this type of slow decay is called long-range dependent processes. 



3 

Self-Similarity and Power Law Behaviour in 
Traffic Models 

Recently several authors [II] have carried out extensive studies with a view to 

understand the realistic features of local area and wide ·area network traffic. These 

studies show that, network traffic exhibits variability at a wide range of scales [ 12]. This 

gives to a phenomenon of self-similarity is the existence of heavy-tailed distribution 

asymptotically behaving like a power law. We shall briefly review these aspects in this 

chapter. 

The phenomenon of self-similarity is obseJ;Ved in traffic related studies in 

broadband networks and one can observe structural similarities across wide range of 

time scales. In the case of packet traffic, self-similarity is observed at every time scale 

ranging from a few milliseconds to minutes and hours by similar looking bursts [13]. 

These bursts will occur when the interarrival processes appear to form visual clusters, 

i.e. several small interarrival times followed by a relatively bigger one. The major cause 

ofburstiness is the presence of strong positive auto-correlations [7]. 
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For the purpose of illustration oftlris phenomenon, we reproduce here the graph in 

fig. 3.1 from (6]. This shows the same Ethernet traffic trace at various levels of 

aggregation. As observed by Morin and Nailson "the first plot shows 3 seconds of the 

original trace where each point plotted represents the number of bytes of traffic during 

the corresponding 10 msec interval. The second plot shows 30 seconds of the original 

trace when each point plotted represents the number of bytes of traffic during the 

corresponding I 00 msec interval divided by 10: The third plot shows 300 sec of the trace 

where each point plotted represents the number of bytes of traffic during the 

corresponding I second interval divided by 100. Lastly, the fourth plot shows 3000 

seconds of the trace where each point plotted represents the number of bytes of traffic 

during the corresponding 10 sec interval divided by 1000. Surprisingly, the plots look 

similar, even as the level of aggregation increases. This is in contrast to traditional traffic 

models, whose plot shows smoothness as the level of aggregation increases". This 

means, that, there exists natural length of bursts in Ethernet traffic. Crovella and 

Bestavros [14] noted that, the world wide web network traffic also exhibits the self­

similar nature. 

Based on these observations it has been found that, the high speed network traffic 

is bursty over wide range of time scales. 
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Figure 3.1 Ethernet traffic data at various levels of aggregation. 
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3.1 Definition of Self-Similarity 

Let X(t) be a wide-sense stationary stochastic process with mean f..l, variance cr2
, 

and auto-correlation p(k), k z 0. The stochastic process { X(t )J is said to be "exactly 

self-similar", ifthe correlation structure, 

. (3.1) 

is preserved across different time scales. The process { X(t)} is said to be "asymptotically 

self-similar", if the corresponding aggregated processes Xim> given by 

X!m> =II n( X knt-m+l + ... +X km), k z I are same as X. i.e., 

(3.2) 

Earlier in this chapter, it was said that the stochastic self-similar processes retain 

the same statistical characteristics over a range of time scales and they satisfy the 

following relation in distribution sense; viz.: 

{ X(at)} = aH { X(t)} (3.3) 

where His self-similar parameter [8]. For more details see [ 1 1]. 
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3.2 Heavy-Tailed · Distribution and Power Law 

Behaviour. 

A random variable X is said to follow a heavy-tailed distribution U: 

P [X > x} -:- x·a as x ---f oo (3.4) 

Here a is a parameter such that 0 < a < 2. The tail probabilities depict a power law 

behaviour which means that there is a non-negligible probabilities for random variable X 

taking large values. This, in the context of bursty phenomenon in network traffic implies 

occurrence oftransmission oflarge number of packets or cells with finite probability. 

The well known heavy tailed distribution is pareto distnlmtion with p.d.f given as, 

(3.5) 

where a and k are positive parameters [12]. The c.d.f of (3.5) behaves as (3.4). 

It is interesting·to note that heavy-tailed distribution can be obtained by resorting 

to maximum entropy principle. 

3.3 Maximum Entropy-Rationale for Power Law 

The principle ofmaximum entropy provides a rationale. for choosing a probability 

distribution when partial information about a random variable is available. According to 

this principle we choose that probability distribution which besides bein2 consistent with 

/ 
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the given information is maximally unbiased in relation to what is not given. In other 

words the probability distribution chosen has the maximum entropy amongst all 

distributions consistent with the given information. 

Mathematically the problem of maximum entropy distribution can be stated as 

follows (see for details in [15]): let X be a continuous random variable with p.d.f f(x). 

The measure of uncertainty is given by its entropy, 

H=-JJ(x).lnf(x)dx. 

Further we are given the constraints, 

b 

J f(x)dx = 1, 
a 

b 

J gr(x).f(x) = gr, r = 1,2, .. m. 
a 

The principle of maximum entropy states that: 

Max H 

subject to constraints 

The maximum entropy probability distribution is then formed to have the p.d.f, 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

where N, At, A.2, .. , A.n are to be determined inorder to satisfY the constraints (3.7). It is 

interesting to note that when the first two moments of a random variable are prescribed, 

then M.E.P.D. turns out to be Gaussian distribution. 
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As discussed in Kapur ( 15], one obtains the generalized Cauchy distribution when, 

E{ln[J+x)} is prescribed. Then the M.E.P.D. turns out to be 

N 
f(x)=( 2)h' 

l+x 
-oo<x<oo 

The Cauchy density function 

I I 
j(x)=-.--

2
, -oo<x<oo 

1[ I+ X 

being particular case, b= 1. 

(3.10) 

It is worth noting that f{x) given in (3.10) provides power law behavior for large x. 

I.e. 

j(x) = K.x·Jh (3.11) 

Similarly by restricting the random variable x to positive values, one can generate Zipf 

and Pareto like distributions by prescribing E[ln xj. 

The M.E.P.D. turns out to be, 

N 
p{x)=-"-, x>O 

x' 

where N is the normalization constant. One can say that power law maximum diversity 

when the constraint specifies the average logarithm of the variate. As noted by West 

[ 16]. this constraints implies a scaling relation for the variable of interest. TI1is scaling 



Ch. 3. Self-Similarity and Power Law Behaviour in Traffic Mo1eis 32 

can be called as self-similatity and is one of the defining properties of fractal processes 

( 16, 17]. The power law tails of the fractal process distribution indicated that rare events 

occur in clustered form. 
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Generalized model for traffic distribution 
with power law 

In recent years, it has been established that typical traffic in Ethernet local area 

network and wide area network appears to be self-similar across all or at least over a 

wide range of time scales. The crucial feature of self-similar processes is that they 

exhibit long range dependence (LRD). · with auto-correlation function decaying 

hyperbolically, which is much slower than exponential decay, and is non-summable 

[18]. This decay corresponds to power law behaviour and is in contrast to traditional 

models, which exhibit short range dependence (SRD), i.e. have an auto-correlation 

function that decays exponentially. The serious implication for A TM network design is 

that, conclusions based on traditional models may not be applicable under self-similar 

traffic. Recent studies on self-similar traffic have shown that the LRD structure may 

have a significant impact on queueing performance [ 13]. So, the earlier attempts to 

formulate the traffic distribution in terms of Markov Modulated Process does not 

appear to be realistic as it has auto-covari(illce which can be approximated by C( t) = 

C.exp[-at] [8]. Recently, Simonian [19] has also formulated the traffic model in terms 

of Omst~in-Uhlenbeck process with expmientially decaying correlation structure. 
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Denoting by X(t), the instantaneous packet rate into transmission system at timet, the 

correlation function is foW1d to be, 

E[(X(t+ r) -K). (X(t) -K)] = d .e·Pir1 (4. I) 

where K is the mean traffic. Simonian [19] has employed O.U.process model for 

describing the content of fluid queue. 

4.1 Ornstein-Uhlenbeck Process 

For the sake of completeness we are giving brief details of the O.U. process 

(see [20]). 0. U. process is descn"bed as the stochastic differential equation, 

dx =-Jl.X.dt + a 0 .Z(t).Jdi (4.2) 

where X(t) is the speed of a packet at timet and W(t) is the Wiener process which can 

be expressed as equal to Z(t)"dt. Here, Z(t) is a purely a Gaussian random process 

with zero mean and unit variance. Conditioning on X(t) = x, we may write (4.2) as, 

dX(t) = -J.L.x.dt + ao.dW(t) (4.3) 

Comparing (4.3) with the general diffusion process, we get X(t) as a diffusion process 

with infinitesimal mean and variance as -!lx and a 2 respectively. Accordingly, the 

forward Kolmogorov equation is, 

I 2 /fp c tP 
-a0 .-2 

+ Jl.-(x,p) =-
2 m: ix . a (4.4) 
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where, p = p(x.,t) is the p.d.f. of the process X(t) at timet. The initial value condition is 

given by, 

p(x,O)=lim 8(x-x0 ) 
1-->0 

Defining rn.g.f ofX(t) as 

¢(B,t) = f e-xfl p(x,t).dx 

eq. (4.4) reduce to 

(4.5) 

Expressing <!> in terms of cumulant generating fimction \ji(S,t) = log <j>(S,t), we obtain 

from (4.5) 

(4.6) 

from which we get, 

(4.7) 

where, 

2 {1- -2111) 
2( ) o-0 e a- 1 t = --"-----

2p 
d (t) - X -pt an JL 1 - 0 .e 
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It may be noted that in the limit of large times, tltc density function in ( 4. 7) reduces to . 

a Gaussian distribution v.-ith a 1
2(oo) = cr0

2
/2fl and ~t 1 (oo) = 0. Further it can be proved 

from equation ( 4.3) that the auto-correlation decays ex"])onentially. It needs to be 

emphasised that, the exponentially decaying correlation does not represent the realistic 

traffic models for ATM networks. However, in reality, the traffic models should depict 

the power law behaviour. 

4.2 Generalized Model 

It is proposed to generalize the Simonian [ 19] model, to capture the realistic 

aspects of multiple sources like audio, video, voice and multimedia setvices. As 

mentioned in the first chapter, that any type of information will be transmitted in the 

form of packets. 

Simonian [19] treated the input process {X(t)} being described by a stationary 

O.U. process. The corresponding stochastic differential equation is 

dX(t) = rt.fK-X(t)}.dt + CJ(}.dW(t) (4.8) 

where K, TJ, cro are positive parameters and dW(t) is a standard Wiener increment 

process. It is easy to show that X(t) has a stationary Gaussian distribution with steady­

state mean K and variance L2 
= cr2 I 2TJ. writing K-X(t) = Y(t), equation (4.8) 

becomes, 

dY(t) = -7J.Y(t) + CJ~.dW(t) (4.9) 
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It can be argued that, in reality, the rate 11 cannot be treated as a constant parameter. 

However 11 should vary in stochastic manner as a result of packets originating from 

voice, video, and data services. It may be convenient to explain these services in the 

present context. 

Data : Basically, there are two types of applications such ,as low speed (keyboard 

input) and high speed (file transfer, image transfer for CAD etc.) applications. The 

delay will be more in low speed applications as compared to high speed applications. 

So, the correlation structures for both applications will be different. 

Voice : Since voice is a constant bit rate (CBR)service, packets can be sent for 

transmission only when it is completely filled. This results in the introduction of 

packetization delay. Traffic bursts will be generated only during the active (ON) 

periods ofvoice. 

Video : In video communications, variable bit rate compression algorithms transmit 

at a higher rate during high-activity (motion) scenes and at a low rate when there is 

less motion. Different types of video traffic results in fast decaying short term 

correlation and slow decaying long term correlation. Based on experimental work Sen 

eta/. [I 0] have indicated the following correlation structure in the context of other 

types of video traffic, such as broadcast television, videoconferencing, and longer 

videotelephone sequences (showing persons talking and listening). Considering an 

environment where the video sources feeding the network are a mix of these types, 

then two important correlations exist, viz. : a relatively fast-decaying short-term 

correlation corresponding to unifonn activity levels, with a time constant of the order 

of a few hw1dred milliseconds, and a slow decaying long-tenn correlation 
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cmresponding to sudden changes in the gross activity level of the scene (e.g., scene 

changes in broadcast TV or changes between listener and talker modes in a video 

telephone conversation), with a time constant on the order of a few seconds (see [ 1 0]). 

Thus the parameter 11, conditioned by the random .traffic resulting from 

different sources, behave as stocha~ic process. So, 11(t) consists of two components; 

VIZ.: 

17(1) = k + A(t), (4.10) 

where k denotes the average component and A(t) denotes the statistical fluctuations 

around the mean rate k. The fluctuations around the mean rate is assumed to be 

characterized by Gaussian white noise process. The assumption of A(t) being Gaussian 

is justified on the grounds that the fluctuations arise from a large number of random 

factors, and, hence, by central limit theorem, the total effect obeys the Gaussian law 

[21]. We further assume that the time scale of fluctuations in A( t) is much smaller in 

comparison to the macroscopic time scale, which also can be assumed to be 

represented by a delta correlated process. thus A(t) is modelled as a Gaussian white 

noise process. i.e. 

(4.11) 

By substituting (4.10) in (4.9), we get the stochastic differential equation (SDE), 

characterizing the traffic becomes, 

dY(t) =-k. Y(T).dt- A(t). Y(t).dt + a:dW(t) (4.12) 

This SDE can be recast in the f(mn : 
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dY = f(Y).dt + a.g(Y).dW (4.13) 

where f\Y) = -k.Y(t) and g(Y) = (cr3.Y + cr2). Thjs SDE can be interpreted in two 

ways, viz.: Stratonovich sense or Ito sense and these two prescriptions are formally 

equivalent, i.e. one can go from the results obtained under one prescription to those 

under the other via a transformation formula. However, the Stratonovich prescription 

is preferable for modelling the traffic [22]. The Fokker-Planck equation corresponding 

to eq. (4.13), 

tP -o I 2 . · . 0'2 if 2 - = -[{f(y)+-.0' .g(y).g (y)}p]+-.-2 [g (y).p] a ~ 2 · 2 ~ (4.14) 

Here p ~ p(y,t) denotes the probability density function. This equation has to be solved 

with initial condition , 

p(y,O) =lim 8(y- y0 ) 
t--+0 

(4.15) 

and appropriate boundary conditions. Using (4.13) and (4.14), the Fokker-Planck 

equation by computing eq. (4.12) becomes, 

.rl... ~ 2 ·~ 2 2 
vy -u 0' o 0' 0' 
-(y t) = -[(-ky+-3 y)p]+-. -[(-2-+_3 y2)p] 
a ' 0' 2 0'2 2 2 

(4.16) 

(4.17) 

Rescaling the variable y and introducing, ( o-3 / (Y2 )y = =, 

we find, 
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Noticing 

0 (}3 0 
-=-.-; 
ry (}2 & 

(}3 
p(y,t).dy = p(z,t).dz = p(z,t).-, 

(}2 

equation ( 4.17) yields, 

2 ;p 2k . d r1- 2 
- 2 .-(z,t) = (-2 -1).-;:-(zp) + ~2 ((I +z )p] 
(} 3 Ot (} 3 (/..;. (._ 

Introducing a new time scale-r, · 

a/ d . . k 
r = t.- an wntmg a = -

2 
, 

2 a 3 

then (4.18) reduces to the standard fonn as given in Wong (23]. We get 

(4.18) 

( 4.19) 

This parabolic equation has to be solved with reflecting barrier at the origin and the 

initial condition ( 4. 15 ). 

4.2 Solution of Fokker-Planck equation 

Following Wong [23] solution p(zjz0 , r) of above Fokker-Planck equation is, 

p( -l- )-(I ~2)-(a+~){]~ (a-n) -n(2a-n)r.()(-)()(-) 
-1-o, r - +"" - L..J 

1 
( ) .e · , ""o · , -

. 7r 11=0 11. r 2a + I - II 
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where, 

are polynomials of degree n, and ':I'(J..t,z) is given by, 

~· 21 1 I :; 
':l'(,u,=) = (:; + -v 1 + =- r'' (I+:; }2 

.2 F; (-a ,a+ 1;1 + i,u;- + ,-:---;;). 
2 2 "I+ :;2 

Here 2 F; is the Gaussian hypergeometric series. 

It is interesting to note that a complete time dependent solution for the 

stochastic variate z( -r) has been obtained. This in turn· will provide stochastic 

description of traffic input rate, X(t) = (A~:: z). The transient solution can also be 

utilized in obtaining expressions for equivalent capacity for broadband networks [24]. 

It can be easily seen that the stationary solution turns out be, 

I 
-(a+-) 

P*(z)=lim p(z,r)=(l+z2
) 2 

r--+co 

which for large z behaves as 

P(
-) __ -(2a+l) 
,{, ""-~ ,{,. 

This gives rise to power law behaviour which IS a desirable feature for realistic 

network traffic. 



Self-Similar Traffic model 

In broadband networks, the aggregate traffic can be visualized as comprising 

two parts, viz: constant bit rate (CBR) and variable bit rate (VBR). Generally, CBR 

can be described by average time dependent function, whereas VBR is bursty in 

character. This VBR generally depicts the fractal like character. This aspect of VBR 

can possibly be described by discrete or continuous random walk. To this end we can 

adopt the analysis discussed by Bendler and Shlesinger (25] for our purpose. This· 

means that the waiting time probability distribution, governing the time interval 

between jumps has infinite mean. 

5.1 Moo troll-Weiss Random Walk Type Traffic Model 

We denote by Pn(x) the probability for packet executing a random walk such 

that at the nth time epoch the number of packets is x. From this, we can recursively 

obtain Pn+dx) as follows: 

( 5. I) 
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i.e. upto nth step or time epoch we have (x-x) packets and then the remaining packets 

x arrive during (n+ I )th step. 

In an interesting paper Montroll and Weiss (1965) established a connection 

between P(x,t) and Pn(X,t) in terms of generating function for Pn(x) defined as, 

G(x,z) = LP,,(x)z" (5.2) 
u=O 

We find from eq. (5.1) 

G(x,z)-=Lp(x')G(x-x') = J •. o (5.3) 
X 

In a similar way one can write down the continuous version of eq. (5.1) as, 

I 

P(x,t) = J Q(x,t- r)R(r)dr (5.4) 
0 

where P(x,t) is the probability of having x packets at time t. Denoting by Q(x,t) the 

p.d.f to receive x packets at time t and R(r) denotes the probability that several 

packets arrive in a time interval r after the previous packets have been received. 

In terms of probability \j/(t)dt that a jump occurs in (t,t+dt), we can write 

I 

R(t) = 1-J 1f(r)dr (5.5) 
0 

and 

I 

Q(x,t) = L f 'I'( r ).p(x' ). Q(x- x' ,I- r ).dr + ()~_ 0 ./'>'(1) (5.6) 
.\' 0 
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Defining Laplace transform off\t) as 

"' 
f(s) = L{f(t)} = J e-·'' .f(t).dt. 

() 

we find, 

. 
R(s) = [1- Vt(s)]/s (5.7) 

1[ ( ) 1- Vt(s)] P(x,t) = L- G x,vt(s). s (5.8) 

where G represents the generating function as in eq. (5.2). For obtaining behaviour of 

P(x,t), we have to specify \jJ(t). 

Noting that, 

0? 

!f(s) = J e-.<~. Vt(t).dt::::: 1-st+··· as s ~ 0, (5.9) 
0 

we can obtain the behaviour ofP(x,t). 

In contrast to first moment being finite moment, we consider the situation 

described by, 

!f(t)::::: Ar1
-a +··· as t ~ oo, 0 <a< I, 

such that the first moment is infinite as can be seen from, 

A 
f!l(s)::::: 1--r(l-a)s" 

a 

(5.10) 
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As observed by Bendler and Shlesinger [25] that, "a stochastic process with a 

-

l!f(t) with t infinite has been called a fractal time process, because it can be shown that, 

since the jumps do not occur on the average, at regular intervals they occur in self-

similar bursts. These bursts have the structure of a Cantor set of fiactal dimension a" 

[26]. Thus we find the traffic generated by random walk for 111(t) given by eq. (5.10) is 

of fractal nature. Tills traffic when superposed on the traffic generated by CBR may 

provide a more realistic model for the network traffic. 

This modeling process needs to be investigated further with a view to making 

comparisons with the empirically observed data. 



Concluding Remarks 

After briefly reviewing earlier traffic models, we have proposed a new model for 

characterizing traffic in communication networks, This model has been formulated in 

terms of stochastic differential equation. The <tdvantage of this formulation is that it is 

amenable to analytical treatment. The complete time-dependent solution of the probability 

density function for the traffic has been obtained. A significant aspect of this model is that 

it depicts power law behaviour. This feature has also been found to be present in local as 

well as wide area networks. This power law behaviour is gaining a lot of importance in 

communication network studies as its influences on performance measures is enormous. 

Simulation studies show that packet delay, cell loss rate increases substantially. It is 

proposed to investigate in future the effect of traffic model which we have proposed in the 

performance measures ofbroadband networks. 
,. 

We have also formulated a model for fractal like traffic behaviour in terms of 

continuous random walk with transition probability having infinite mean. This aspect 

appears to be quite promising. 
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