
ANALYSIS OF DISTRIBUTED OBJECT SYSTEMS
(DCOM VS. CORBA)

rAV· Ml" "~" ,~ ~H""iRU UNIVERSITY
""V

Dissertation Submilled to
JAW AHARLAL NEHRU UNIVERSITY

in partial fulfilment of requirements
for the award of the degree of

Master of Technology
10

Computer Science & Technology

by
RAJESH

Jawaharlal ~ehru c;nl\ er!.it~

SCHOOL OF COMPUTER & SYSTEM SCIENCES
JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI- 110 067
January 1998

CERTIFICATE

This is to certify that the dissertation entitled "Analysis of Distributed Object

System (DCOM vs. CORBA) " being submitted by 'RAJESH' to School of Computer

and System Sciences. Jawaharlal Nehru L·niversity, New Delhi.in partial fulfillment of

the degree of Master of Technology in Computer Science, is a bonafide work carried by

him under the guidance and supervision of Prof. R.C.Phoha. This work has not been

submitted elsewhere for any other purpose.

~1~~
Dean, SC&SS /Cj ~
(Prof. P.C. Saxena) /-
Sc&SS,J .N. U .,
New Delhi-110067

Supervisor
Dr. R.C.Phoha
SC&SS
New Delhi-110067

ACKNOWLEDGEMENT

I express my profound sense of gratitude to Prof. R.C.Phoha, SC&SS, JNU, under

whose invaluable guidance and incessant encouragement, my work has taken its present

shape.

I am also indebted to my parents,brothers,sister and friends for their invaluable

support and constant encouragement. I am also thankful to all those who cooperated me

during the whole course work.

CONTENT .

CHAPTERS

(I) Abstract

1. Introduction

2. Object oriented paradigm

-1. Objects,classes

-2. Polymorphism and overloading.

-3. Reusability

-4. Inheritance

-5. In the system

3. Distributed system design issues

-1. Communication

-2. Transparency

-3. Garbage collection

-4. lnterprocess communication

-5. Marshalling

-6. Concurrency

4. Distributed system Architecture

5. Distributed component object model

-1. Com Functions

-2. Marshalling

-3. Structured storage

-4. Monikers

-5. Uniform data transfer

-6. Version management

-7. OLE automation

PG.NO

1

3

4

4

4

5

6

7

7

7

8

9

11

13

14

19

20

20

20

21

21

21

22

-8. OLE control 22

-9. OLE documents 24

10. Object services 26

6. CORBA 28

-1. ORB 28

-2. Object services 38

-3. Common facilities 41

-4. Domain interfaces 41

-5. Application Interfaces 41

7. Analysis 42

8. Conclusion 46

APPENDIX- A : Digrams

-1. Figure 3.1 Two interacting processes in a distributed system

-2. Figure 3.2 and 3.3 Communication subsystem

-3. Figure 5.1 DCOM architecture

-4. Figure 5.2 Working of OLE contrfol with an applicatiion

-5. Figure 5.3 OLE control messaging interface.

-6. Figure 6.1 CORBA architecture

-7. Figure 6.2 OMG reference model

- 8. Figure 6.3 CORBA client server

- 9. Figure 6.4 Role of an object adapter

-10. Figure 8.1 Systme neutral interworking.

-11. figure 8.2 System centric interwbrking

APPENDIX-B : Bibliography

ABSTRACT

Distributed computing . has made significant advances in the past few years.

Distributed systems are becoming very popular because of the potential benefits of

distributed processing. Distributed systems are intended to form the backbone of

emerging next generation communication systems, including electronic commc-rce, PCS ,

satellite surveillance systems, distributed medical imaging, real-time data feeds and flight

reservation systems. Distributed technology is also applied to multimedia and distributed

transaction processing systems. There are several emergmg product-level

implementations of distributed transactions that conform to new standards. X/Open

consortium has defined the X/Open Distributed transaction processing (DTP) application

programming interface named XA.

Distributed processmg Improves functionality, performance, economics,

reliability and scalability. In order to exploit this capacity appropriate support is needed

that enables the development and execution ·of distributed applications. The supporting

infrastructure should make the inherent complexity of distributed processing transparent

as much as possible.

An important characteristic of large computer networks such as the internet, the

world wide web and corporate intranets is that they are heterogeneous. For example, a

corporate intranet might be made up of mainframes, UNIX workstations and servers, PC

system running various flavours of Microsoft Windows, IBM OS/2 or Apple Macintosh

and perhaps even devices such as telephone switches. robotic arms or manufacturing

test beds.

The networks and protocols underlying and connecting these systems might be

just as diverse: Ethernet, fibre distributed data interface (FDDI), asynchronous transfer

mode (ATM), transmission control protocoVInternet protocol (TCP/IP), Novell netware

and various remote procedure calls(RPC) for example. Fundamentally .the rapidly

increasing extents of these networks are due to the need to share information and

resources within and across diverse computing enterprise.

Distributed processing coupled with object oriented technique facilitates the

integration of seperately developed component with application objects are inherent

distributed and concurrent. Distributed object oriented system can enhance software reuse

and speedup computation simultaneously. In pure object oriented programming, clients

can not access the concrete state of an object directly but via the objects methods. This

methodology applies beautifully to distributed computing, since the method calls are a

convenient place to insert the communication required by the distributed system.

There are many such infrastructure :DCE, DCOM, CORBA. Emerald, SOS,

ORCA and Amber for multiprocessor, Argus and Arjuna and many more keep arriving

everyday. My study is focussed to DCOM and CORBA. I have discussed their

architecture and underlying technology. Finally the capabilities of one respect to another

is discussed.

Chapter -1.

INTRODUCTION

CORBA (Common object request broker architecture) and DCOM (distributed

component object model) are popular for distributed computing. In OMG CORBA

objects interact over networks using ORBs. DCOM is built on active X and OLE

technologies. COM and CORBA use almost identical IDLS, both of which are derived

from OSF DCE. Programming tools then compile these into proxies, stubs and type

libraries that a developer can access from the actual application development

languages such as C++, Visual Basic, Java or Smalltalk.

There are a number of projects that are currently employing object - oriented

distributed technology and are Planned to become operational shortly. For example,

the Iridium system, which is being designed and manufactured by Motorola and

associated companies, intends to provide global personal satellite based

communications via handhelds terminals by the end of Year 1998. Motorola using

CORBA to implement portions of the Iridium system control software. Several other

firms are using CORBA based technology successfully including Federal Express,

Boeing, chevron Petroleum. One of the major strength of DCOM is OLE. New

enhancement to OLE has been completed which gives three tier architecture. OLE is

the object technology that dominates most desktop -development efforts today . As

Microsoft extends OLE reach into a distributable environment, the combination of the

client stranglehold with strong network services covld creates an insurmountable

mountain for CORBA.

The whole work is organized into 8 chapters starting chapters 2,3, and 4,

discuss various concepts and techniques required in distributed system. Chapter 2

details objects oriented paradigm and ingredient factors : objects classes,

Polymorphism and and overloading, Reusability, Inheritance and how these

techniques are incorporated into the system. Chapter 3 gives detail of about

Distributed system design issues : communication. transparency, Garbage collection,

Interprocess communication, Marshalling and concurrency. Chapter 4 describes a

hierarchical architecture of a typical distributed system.

Chapter 5 provides the architecture of DCOM and vanous Issues : COM

functions, Marshalling, structured storage, monikers, Uniform Data Transfer. Version

management, OLE automation OLE controL OLE documents and Object services. In

chapter 6 architecture of CORBA and model (OMG) in which it is based in described.

Other elements of Object model are also described in brief.

Finally chapter 7 provides analysis of both DCOM and CORBA w.r.t. certain

parameters : Interface definition language, object Oriented. Approach. object

reference and Interpretable object reference. memory management technique. remote

procedure call. Platform neutrality. Implementation, Enterprise level support.

Transaction processing Security Service, Exception and error conditions. Chapter 8 is

dedicated to conclusion.

2

CHAPTER- 2

OBJECT ORIENTED PARADIGM

OOP is a programmmg and design methodology in \Vhich the system to be

constructed is modeled by a set of cooperating objects, which interact by message

passing. Object oriented programming techniques gives more natural view of real life

problems. User can not access the concrete state of an object directly, but only via the

objects method(member functions).The data is hidden, so it is safe from accidental

alteration. Data and its functions are said to be encapsulated into a single entity. Objects

communicate with each other by calling one anothet's member functions. Calling an

object's memb(!r function is referred to as sending a message to the object.

ANALOGY

A whole company can be modeled by set of cooperating departments each treated

as an object-such as sales, accounting, personnel, and so on. Departments provide an

important approach to corporate organization. Each department has its own personneL

with clearly assigned duties. It also has its own data: payroll, sales figures, personnel

records, inventory, or whatever, depending on the department. The people in each

department control and operate on that department's data. Dividing the company into

departments makes it easier to comprehend and control the company's activities, and

helps maintain the integrity of the information used by the company. The payroll

department, for instance, is responsible for the payroll data. If user is from the sales

department, and he wants to know the total of all the salaries paid in the southern

region in July. He should send a memo to the appropriate person in the department. and

then wait for that person to access the data and send him reply with the information. This

ensures that the data is accessed accurately and that it is not corrupted by outsiders. In

the same way, objects provide and approach to program organization, while helping to

maintain the integrity of the program's data.

3

A few major elements of object-oriented languages are discussed below:

2.l.OBJECTS,CLASSES :-

An object is a self-contained module. It has local state and a set of operations

which can modify or return its state. Objects of the same category form a class. A class

acts as a template. Objects of the same class thus have common operations and uniform

behaviour. A class can inherit operations from its superclasses.

2.2. POLYMORPHISM AND OVERLOADING

Polymorphism allows the same message to be sent to different objects, w·hich then in turn

can decide how to handle each one. This is very useful when users are viewing the same

basic data in a different ways a new object can be displayed differently for one user in a

graphical window versus another in text window. Using operators or functions in

different ways, depending on what they are operating on, is called polymorphism(one

thing with several distinct forms). \Vhen a function is given the capability to operate on a

new data type, it is said to be overloaded. Overloading is a kind of polymorphism.

2.3. REUSABILITY

Once a class has been written, created, and debugged, it can be distributed to other

programmers for use in their own programs. This is called reusability. It is similar to the

way a library of functions in a procedural language can be incorporated into different

programs.

In OOP, the concept of inheritance provides an important extension to the idea of

reusability. A programmer can take an existing class, and without modifying it, add

additional features and capabilities to it. This is done ,by deriving a new class from the

existing one. The new class will inherit the capabilities of the old one, but is free to add

new features of its own.

4

2.4. INHERITANCE

Inheritance builds the hierarchical relationship between classes. A class can be

divided into subclasses. Original class is called base class and the latter is called derived

class. Derived class inherit some characteristics from their base class, but add new ones

of their own. However, this sharing may cause the following problems:-

2.4.a) More Complexity in Dynamic Binding

If an inheritance hierarchy spans multiple nodes, the implementation of dynamic binding

and execution of an operation become more complicated e.g at the handling a message,

the entire inheritance hierarchy of its receiving object may be searched for the method.

Therefore the search may be done in several nodes. Besides, the method may be in

different address space from where the object stays. There are in general two approaches

to solve the problem caused by dynamic binding:-

2.4.a.i) To restrict an inheritance hierarchy in a node and let an instance and its class

be inside the same node

2.4.a.ii) Allowing multi-node inheritance hierarchy and using replication method to

alleviate the dynamic-binding problem.

2.4.b) The uncertainty of behaviour of an object

If a class or its superclass(es) is redefined, the behaviour of its instances is changed

accordingly. This problem is even more serious when an inheritance hierarchy is shared

by multiple users (nodes).

The easiest way to solve this problem is to let a class unchangeable after it is

released. While a class is being created, it is tagged with developing and during its

development other users except creator should not use this class. After the development is

complete it is tagged with released. There is another solution which keep multiple

5

versions of a class. Each time a class is released, a new version is added to the class. The

user of an object needs to know its version exactly.

2.5 . IN THE SYSTEM

There are different ways of adopting the object oriented paradigm in distributed

systems. Some systems, e.g. CORBA, provide object f110del for development. The object

model defines a set of requirements that must be supported by that system. There are two

different ways of defining the object: global identifiers, object reference. The object

reference can be passed as a parameter in a operation, or stringified and stored into a file

and database. Later the string can be retrieved from persistent storage and turned back

into an object reference. Object references can have standardized formats, such as those

for the OMG standard Internet Inter-ORB Protocol and DCE Common Inter-ORB

Protocol. Naming scheme should better be node independent.

There are two design alternatives:-

a- node-wide vs. system-wide global variables .

b- unique vs. non-unique global variables :-Microsoft's COM -uses global unique

identifier.

Object granularity varies from system to system . In CORBA whole application could be

an object. This flexibility allows CORBA support a non-object oriented application.

CORBA and DCOM does not support polymorphism. CORBA supports multiple

interface inheritance i.e a class can inherit operations from multiple superclasses.

CORBA and DCOM are designed to support many languages. It is achieved by mapping

the interface to desired language. Every system is provided with some language which

may not be full-fledged. It may not provide featur_es like control constructs and may not

be used for implementing distributed application. However language mappings determine

how IDL features are mapped to the facilities of a given programming language. OMG

has standardized language mappings for C, C++, Smalltalk, Ada.

6

CHAPTER-3

DISTRIBUTED SYSTEM DESIGN ISSUES

Distributed systems are usually very complex. In addition to the system part

which deals with the application properly a large part of the system is concerned with the

communication between distributed components, exchanging data over great distances,

and controlling the synchronization and consistency of the operations performed at

different locations.

There are several design Issues like transparency, communication, concurrency,

interprocess communication, marshalling e.t.c which ate discussed one by one below :-

3.1. COMMUNICATION

The communication system itself is usually built as a hierarchical layered system.

Fig 3.2 and 3.3 shows an additional level of detail. Two system components, building the

process-to-process communication service out of a more primitive communication

service are shown, located with each of the communicating processes respectively. They

may be considered service processes which communicate with one another via the more

primitive communication service, according to a particular protocol.

3.2 TRANSPARENCY

We assume that, instead of directly interacting, two processes m a distributed

system communicate via some subsystem providing a communication service. Interaction

should be as much transparent as possible. Possible transparency may be due to :-

a) throughput limitations

b) delay

c) limitations of the available interaction primitives

d) transmission errors

7

e) loss or duplication of messages

f) loss of the message sequencing

g) complicated interfaces to the communication subsystem

3.3.GARBAGE COLLECTION

Garbage collection mechanism is used for freeing the inaccessible objects. To

design a distributed garbage collector, two problems must be solved. The first one is that

an object is reclaimed only when it is neither locally nor remotely referenced. The second

one is cyclic garbages (local and distributed). There are three Techniques for garbage

collection :reference counting, marking and generation scavenging:

3.3.i REFERENCE-COUNTING

In Reference-counting technique a reference count for each object is maintained.

Whenever an additional reference is created to the object the reference count is

incremented and when reference is dropped reference count. is decremented. When the

reference count of an object reaches zero, no other objects can reference that object thus

the memory occupied by that object can be reclaimed. In distributed system ,the reference

to an object may be spanning several nodes. A network communication is needed to

update the count. This may cause excessive system load. This scheme will not garbage­

collect cycles that span address spaces. To avoid this storage leak, programmers are

responsible for explicitly breaking cycles that span address spaces.

3.3.ii MARKING TECHNIQUE

In marking technique the whole object space is searched and marked. In the

second phase all the objects in object space is scanned again for identifying the

unmarked(inaccessible) objects and then reclaimed. Cyclic garbage problem can be can

be solved. The whole normal system activities are stopped until the marking job is

completed.

8

3.3.iii GENERATION SCAVANGING

In generation-scavenging based garbage collectors, objects are seperated into two

or more generations by their ages and each generation has its own object space. Objects

are initially allocated in the youngest generation. Its space is filled up quickly and then

scavenged.

Most objects are dead ,only a few living objects are copied, the cost of garbage

collection is low and most space can be reclaimed. This technique is based on the

observation that all the objects do not have the same lifetime. It works well in local node

but for using it in distributed system some modifications are required.

3.4. INTERPROCESS COMMUNICATION

Interprocess communication (IPC) provides a way of communication amongst the

processes. There are various methods for IPC: shared memory/variables, pipes, message

queue, semaphore. Two important issues dealt in interprocess communication are

synchronization and communication. There are various synchronization primitives

available with distributed systems. Some of them are :semaphore, critical region,

conditional critical region, monitor and path expression. As a form of IPC, they are not

used for exchanging large amounts of data but are intended to let multiple processes

synchronize their operations. Main use of semaphores is to synchronize the access to

shared memory segments.

Inter process communication(IPC) can be classified into three categories shared

variables, message passing and message sharing.

3.4.a) SHARED VARIABLES

Two or more processes can communicate by usmg shared variables.

Synchronization is needed for shared variables because the effects of a process on a

9

shared variables are implicit and immediate to other process. Access of the shared

variable should be mutually exclusive and

process should access the shared variable only when its state is appropriate i.e the access

should be conditionally synchronized.

3.4.b) MESSAGE PASSING

Message passing is more complex than shared variables, because it involves the

interaction of two processes .. Message passing requires the proper synchronization

between the sending and receiving processes, for a message can be received only after it

has been sent. There are following issues related with message passing :-

1) naming : direct or indirect

2) synchronization : synchronous or asynchronous message passing

3) transport medium

4) argument format :Is there a format for each type of message

5) one-to-one or one-to-many communication

There are basically six models for message passing point-to-point messages, one-to­

many messages, remote procedure call, asynchronous methods call, network stream. Pipe

can be implemented using Message passing technique. A pipe provides a one way flow of

data. For bulk data transfer, logical pipes can be established between client and server by

passing pipe references as RPC parameters. A server can then request large chunks of

data via pipe dynamically, and can also send bulk data back to the client this way. This

facility is available in DCE.

3.4.c) MESSAGE SHARING

Message passing is natural for distributed systems which have no direct-shared

memory. Message queue(MQ) is an important technique for IPC. It requires storage

.medium for sharing the message. A process S that wants to reliably send message M to

10

process R submits the message to its local MQ handler. The handler writes the content of ..
the message on nonvolatile storage to avoid message loss if a crash occurs. After

submitting the message. the process is releived of any activity necessary to deliver M.

The MQ handler consists of an independent process that is responsible for storing and

delivering messages on behalf of application processes. S's handler attempts to transfer

the message to R's handler. If the destination handler happens to be unavailable because

of downtime, a site crash, or a network partition, S's handler will attempt to deliver the

message periodically until R's handler becomes available. Message queue facility can be

used in communication and transaction processing .

3.5. MARSHALLING

Assembling a collection of typed data into a form suitable for being sent across a

network is called marshalling. As in any distributed programming system, argument

values and results are communicated by marshalling them into a sequence of bytes,

transmitting the bytes from one program to the other, and then unmarshalling them into

values in the receiving program. Thus It is the basic functionalities of distributed system.

There are two techniques for marshalling : compiled, interpreted.

3.5.1 COMPILED STUB TECHNIQUE

Marshalling code is generated from the object type at compilation time. Pieces of

code(stubs) are tailored to each type and linked to each process that needs them. A

process that wants to build a message containing a given data structure invokes the stub

tailored to that structure. The stub linearizes these data, e.g, it copies them on a

contiguous area of memory, in particular, by dereferencing all pointers encountered, and

usually converts them into machine-independent representation. The reconstruction of a

data structure enclosed in a message is also performed by a stub. lt follows that different

message structures require different stubs ,and a process must be linked with a seperate

stub for each message structure it may use. Often, an executable includes all stubs it will

possibly need at run-time.

II

3.5.2 INTERPRETED APPROACH

A single module of code(the interpreter itself) is able to marshal any message

exchanged in the distributed system, provided that it is given proper structural

description(MM program). MM-programs are \Witten in a simple language that resembles

an assembly language specialized for marshalling data. The problem of generating MM­

programs is essentially identical to the problem. of generating marshalling and

unmarshalling stubs: they may be written by hand or generated by a dedicated tool,

starting from a description of the desired message structure expressed in a specialized

'Interface Definition Language'. The same MM program can be used for marshalling as

well as unmarshalling the message depending upon the direction.

MM-programs are ordinary data that can be freely exchanged across heterogeneous

machines. Therefore, entire machinery for building a distributed application may become

simplified.

RPC can be implemented usmg MM-based run-time system. Moreover,

applications that interact with services whose inter~ace is not completely known at

compile-time may be accomodated neatly. This feature is key for simplifying the

implementation of applications that have to cope with evolving or/and unfamiliar

environments. Future applications of mobile computing are going to become more and

more important from this point of view. For instance, equipping a hand-held computer

with an MM-based run-time system would simplify the support of scenarios in which a

user that happens to be at a certain place discovers on-the-fly the services that are

available at that place, and which offer themselves across wireless links. The processes

implementing these services could even employ compiled stubs. Other exan1ples may be

found in those applications that must adapt to change at run-time and rely on 'self­

describing objects' or in the Dynamic Invocation Inte:face of the CORBA architecture.

For instance, a properly enriched MM could constitute a simple support for implementing

this aspect of CORBA.

struct marks { · ·····struct temp (number O)··· ,,,,,, ,,,

12

int 1;

char sub[l5];

}

struct temp{

int i;

int j;

long k;

short i[20];

struct marks *head; }

0 intf 2

1 longf

2 shortf 20

3 callptrf 1 5 1 ;call procedure at offset 5 once

4 return

;;;;;;struct marks (number 1);;;;

5 intf I

6 char 15

7 return

FIGURE:- A data structure defined in C(left) and an MM-program_that describes

it (right)

3.6. CONCURRENCY

This service defines how an object mediates simultaneous access by one or more

clients such that objects it access remain consistent and coherent. It is a very important

tool for transaction processing. It ensures that transactional and non-transactional clients

are serialized with respect to one another. This is implemented as object service in most

of the Distributed object systems.

13

CHAPTER4

DISTRIBUTED SYSTEM ARCHITECTURE

A four layered approach to communication system design is discussed below:-

4.1 COMMUNICATION OVER A DEDICATED CIRCUIT

A dedicated circuit is a means of transmitting data between two fixed locations. It

can be considered the lowest layer in the hierarchical structure of the communication

system,and provides as service the transmission of bit sequences as described below:-

4~1.a) Transmission of bit sequences

Transmission of bit sequences, simultaneously or alternatively between two

locations in both direction is considered a basic communication service. Such a service is

provided by analogue (e.g telephone) circuits with modems and digital circuits.

The service is characterized by :-

1- nominal transmission speed (in bits per second)

2- end-to-end delay

3- transmission error characteristics

4- possible limitations of code transparency

5- reliability and availability e.t.c

4.l.b) Framing and bit sequence transparency

The service provided by this layer is the transmission of data blocks consisting of

arbitrary bit sequences (i.e there is bit sequence transparency) usually limited to a

maximum length.

14

The service may be characterized by :

1- fixed or variable data block length, and possibly a maximum data block length.

2- the probability of a transmitted data block being lost

3- the overhead induced e.t.c

4.l.c) Transmission error detection

The service provided by this layer is the transmission of data blocks and detection

of possible transmission errors. Some redundancy coding scheme is used to detect

transmission errors. The service is characterized by :-

1- the probability of undetected transmission errors

2- the introduced overhead

4.l.d) Link initialization and data transfer

The link initialization layer is concerned with establishing agreement. between the

communicating subsystem, on the status of the communication subsystem, its

initialization, and recovery from major faults of the layer below.

The data transfer layer provides reliable data transmission by using retransmission

techniques to recover from(detected) transmission errors and loss of data blocks.

Following facilities should be provided

1- flow control

2- fragmentation

4.2. COMMUNICATION OVER A NETWORK

In network a given subsystem may exchange information not only with one, but

with a large number of different subsystem located at different places. The different

15

subsystems connected to a network, or several different interconnected networks, are

usually distinguished by network subscriber address. The desired subsystem is selected in

one of the following way:-

4 .. 2.i- LONG TERM SELECTION

Network administration establishes "permanent" or "dedicated" circuits between

subscriber addresses.

4 .. 2.ii- MEDIUM TERM SELECTION

Real or virtual (Packet S\Vitched) circuits are established between subscriber

addresses and cleared dynamically.

4.2.iii- SHORT TERM SELECTION

The address of the destination subsystem is indicated in each data packet sent

through the network. This selection mode is adopted for datagrams.

4.3. A UNIFORM TRANSPORT SERVICE

The transport service provides the facility needed for communication between

(logical) processes, such as application programs terminals, host computer log-in

processes, data base access procedures, e.t.c. The communication system components are

identified by network subscriber address and port. The communication facilities provided

by the transport service may include :-

1- Process addressing, via ports

2- establishment and clearing of port-to-port associations,

3- transport of "messages" and "interrupts", directly between ports or through

established associations.

4- protection against transmission errors

16

5- sequencing of messages (this includes against message loss and duplication)

6- flow control of messages

7- delivery confirmation e.t.c

The transport protocol layer should be designed such that :-

a- It may be implemented in many different environments m order to allow for the

interworking of different computer systems

b- The same transport service can be provided usmg different network transmission

services, such as dedicated or switched circuits, packet switched circuits or datagrams.

4.4. HIGHER LEVEL PROTOCOLS

Usually, the term "higher level protocols" denotes these layers of a distributed

system (from the transport layer up) which provide functions that are general to be used

by a variety of different applications. These protocols are also called "function-oriented''

protocols, since each of them provides a particular set of functions used for obtaining

access ,from a distance, to a given kind of resource, such as terminals. files. data bases.

e.t.c. Typical examples of higher-level protocols are the following:-

a- Terminal access protocols specify the interaction between an application program and

a terminal, or between two terminals. There are different access protocols :-

• line and/or page-oriented interactive characters terminals

• data entry terminals. handling forms which are structured into fields of characters

• graphics terminals

• batch terminals for remote job entry.

17

b- File transfer protocols specify how complete data files may be transferred from one

computer system to another. It may be used for remote entry of batch processing jobs,

and for many distributed processing applications.

c- File access protocols specify how an application program may selectively access

certain elements of a file at a different location. Different classes of file access protocols

are:-

• file transfer i.e obtaining a complete copy of distant file.

• record oriented file access ,i.e selective access.

• structure oriented file access, I.e retrieval and update access to structured

databases.

There are many distributed processmg systems such as : Distributed communication

systems, Distributed multimedia systems, Distributed transaction systems, and various

plateforms for distributed computing.

18

CHAPTER- 5

DISTRIBUTED COMPONENT OBJECT MODEL

Microsoft's Distributed Component object model allows component(object) wise

computation. A COM object lets a client access its methods through interfaces, each of

which contains one or more methods. Client software using this object can acquire

individual pointers to each interface and invoke that interface's method. COM itself lets a

client remain unaware of whether the object it's using is implemented in a dynamically

linked library or in another process on the same machine. How a COM object calls a

methods in another COM object depends on where they are running. If they are in the

same process, they can call each other via pointers. Objects running in different processes

interact via proxy objects and stubs that pack and unpack the called parameters into a

standard format for transmission. Communication between components running on

different machines takes place via remote procedure calls(RPCs)-the core technology

inside distributed COM. In all these cases, however, the client object's method doesn't

need to know the details of how the communication is done(location transparency).

Proxys and stubs provide a static link between components, but COM also enables

components to discover and call new interfaces at runtime. When a client invokes a

method on a remote object, DCOM locates the object on the network and issues an RPC

to the destination system. The remote object's location can be supplied by the client,

stored in the client registry. or, in NT 5.0,looked up using Active Directory. Both the

client and the remote object can behave just as in the lo~al case.

COM IDL is used to define a language-independent binary interface for objects

that allows them to behave in consistent ways. COM also handles all the communications

between components. While COM can be used by itself for custom development, it is

more commonly the basis of an integrated OLE solution that uses a variety of OLE

services. Fig 5.1 shows architecture ofDCOM.

In addition to the binary object specification itself, COM includes the following features :

19

5.1 COM FUNCTIONs:

The COM function library provides a number of useful routines for software

developers. In general, these functions begin with "Co" and have names like Coinitialize

and CoCreatelnstance.

5.2 MARSHALLING:

COM handles the process of packaging, sending, and unpackaging interface

parameters across process, machine and network boundaries. Marshalling and

unmarshalling are basically synonyms for packaging and unpackaging. The actual

transport mechanism is provided by the operating system itself and is not considered part

of COM. Locally, COM uses a process called "lightweight" remote procedure

calls(LRPCs); remotely, it uses the industry standard Distributed Computing

Environment (DCE)RPC.

5.3 STRUCTURED STORAGE:

COM provides a full-featured system for handling storage and stream objects in a

robust, persistent, hierarchical manner. In general, a single structured storage object is

like an entire disk volume : It has something that maps out the contents(like a file

allocation table),one or more storage objects(analogous to root directories and

subdirectories), and one or more stream objects(similar to files in directories). Structured

storage objects can be aggregated and nested, and they can exist inside a disk file. in

memory, or even as database records.

In addition to these file system-like features, structured storage also provides

complete transaction processing that you can use, for example, to implement Undo

operations. OLE also provides a default implementation of structured storage called

compound files, from which OLE compound documents are derived.

20

The flexibility of COM structured storage is helpful in enabling legacy

applications with OLE; they often have propietry storage models that can be difficult to

reimplement. Structured storage also offers a major improvement over dealing with file

systems directly. particularly for multiplateform solutions are required. While COM

structured storage is fundamental when implementing servers,it can also handle custom

storage needs.

5.4 MONIKERS :

As the word implies. a moniker is a name for a specific COM objects. Like a fully

quantitled filename, which includes drive and path information, a moniker contains

information about an object as well as the instruction for connecting to it. Monikers can

be serialized into

stream objects. This consistent access mechanism allows applications to automate

connections to objects. COM provides built in implementations for tile. item and

composite monikers and allows developers to easily create their own implementations.

One example is the new URL moniker, which holds a uniform resource locator that

allows the client applications to access server resources on the internet using a variety of

protocols.

77-7- 6gS I
5.5 UNIFORM DATA TRANSFER:

Uniform data transfer(UDT) is an important mechanism in any component based

software. COM insures that OLE services using the clipboard, performing drag-and-drop

operations, and doing OLE automations all use compatible data formats.

5.6 VERSION MANAGEMENT:

Using a COM interface creates a contract between the object provider and

consumer .It's important that this contract not be broken as objects evolve. COM

21

intereface version management allows adding services to objects without breaking

existing applications.

5. 7 OLE AUTOMATION

Controlling applications work with objects and with associated commands that are

exposed by server applications. With automation, OLE's original linking-and-embedding

paradigm starts to get lost : while a controller may obtain a pointer to an object in a

server, it does so merely to get and set the server's properties and methods and not to

create a persistent

storage objects. It's possible to sen·e any object that can be created in code :result sets

return from database queries. real-time data, or -perhaps more powerfully-internally

developed business objects for things like orders and invoices.

5.8 OLE CONTROLS :

OLE controls are mix of OLE automation server and OLE in-process server. The

former allows one OLE control to expose its class mt>dules to other OLE controls and

latter is a server which a server implements as a DLL. OLE controls support embedding;

OLE automation; event notification; and capability to connect objects which establishes

two-way communications between object an object and an application. This link lets an

object notify an application when there's a change in its data or when a user has fired an

event, such as executing a mouse click. In addition ,OLE controls register themselves in

the Windows registry (through the DllregisterServer function),provide licensing feature

and proper editing) .

OLE controls transform user-generated events (such as mouse clicks) into messages that

communicate with the application (the container in OLE parlance). OLE controls use

these events to trigger event handlers that carry out the bidding of the OLE control.

22

There are two major steps in the process of creating an OLE Control. First we

must design the control which means creating, writing, and compiling the code that draws

the control

and sets up all the methodsand data encapsulated inside it. The code ewntually becomes

a DLL with an .OCX or .DLL extension. Second, we need to design the interface that

allow

Microsoft's Visual Basic, Borland's Delphi,or other appropriate development

environment to use the OLE Control. OLE controls are DLLs and are not linked to a

single application.

The communication between applications and OLE Controls is through a

messaging interface. The host application tells the control what to do through this

interface, and the control carries out the operation. Every OLE object has a receptor,

known as a sink, to receive an application's instruction. In some cases. however. a user

may generate an event within OLE Control, and the controls needs to communicate this

to the application. OLE Controls set up these two-way communication links dynamically.

The control first tells the application what language it can speak. The application then

sets up the proper sink to accept this language, and the two sides make a connection.

To ease development, OLE provides standard events(called stock events) for each

OLE control. These are the base events that developers build on to create their OLE

controls. The OLE control parent class, Microsoft Foundation Classes·coleControl,

manages stock events by default. To make an OLE Control interactive, developers must

add interface methods and properties. Methods provide the OLE Control with basic

behaviours: properties generally include color and fonts for use in the OLE control.

Methods and properties together make up

23

the basic mechanism that allows the appearence and values in the control to change as

application processing takes place.

Internally, OLE controls are compound document objects that are controlled via

OLE automation objects. They combine the features of both services .Support for OLE

controls is

growing development packages such as Borland's Delphi,Microsoft's Foxpro and

Access,and Visual Basic all support OLE controls. Moreover OLE is an integral part of

Windows 95 and other Microsoft operating system.

5.9 OLE DOCUMENTS:

OLE documents (sometimes called OLE compound documents) are a form of

compound document that incorporate data created in any OLE enabled applications. The

most common example is probably an Excel Spreadsheet object embedded in a word

document, but a virtually unlimited number of scenerios is possible. Several OLE

subservices are at work here : The object linking and embedding itself (from which OLE

originally got its name but which is now a historical footnote); use of property sets

within the compound documents; and the ability to edit the objects in-place. Yet another

service, drag-and-drop, originated with OLE documents but has recently been extended to

places like the new Windows shell, so it's better to think of drag-and-drop as a seperate

OLE service. Application programs that create compound documents are called OLE

containers and applications that furnish objects are called OLE servers. It is possible for

an application to be both an OLE container and an OLE server. which is the case with

both Microsoft Word and Excel!.

5.9.J.i LINKING & EMBEDDING:

In addition to static information like the worksheet mentioned earlier, OLE

document can also incorporate live elements such as multimedia an external services (

stock market and

24

sports information feeds, e.g). If an object is linked, it still resides outside the compound

document, typically on a server where multiple users have access to a single version.

What's more ,when you update source object, documents that include links back to the

source are automatically updated, too.

Embedded objects are contained within and' actually travel with the compound

document. The data in such objects becomes the part of the container program's data file.

The original data file becomes irrelevant.

Linking and embedding also lets you convert the same object to different types.

This means multiple applications can work with the same object, so it is not necessary for

all users to have the same OLE server.

5.9.1.ii PROPERTY SETS:

OLE documents define an extension to structured storage that provides a method

for storing information about objects; this information can be distinct from the objects

themselves. Property sets are extensible but in general have a defined data structure, a

common format, a defined header, and built in support for localized dictionaries. The

only predefined property set is Document Summary Information, which contains

relatively static attributes like author, subject, and date of creation, as well as dynamic

attribute like word and page count. All major Microsoft applications of the past several

years have provided this information. You can access it from the summary information

selection on the file menu in Windows 3.1 or from the summary

tab of the document's properties page in the new Window shell. If you use this summary

information, you may have also noticed that support for the Document Summary

Information property set is integrated into the new Windows shell: from the shell, select a

document and choose properties from the context menu; you will see additional summary

and statistics tabs that are not provided for other file types such as .TXT files.

25

5.9.1.iii VISUAL EDITING:

Also called in-place activation, visual editing is the name for the process of

editing a server object inside an OLE container. It includes support for what amounts

to bringing up the server application inside the container. To do this, it's necessary to

merge the menus of the two applications, display the OLE server's docked are

floating toolbars ,handle keyboard integration for hot keys and accelerators, and

provide for frame adornments-e.g, the top and left rulers used in most drav,:ing

applications-where applicable. This lets you remain in a familiar host application

without having to activate and switch to another application.

5.10 OBJECT SERVICES

OLE is a set of object services built on top of COM. The first service distributed

by Microsoft was OLE documents. Microsoft heavily marketed this service to end users,

and it is what most people still think of when they hear the term OLE. The next OLE

technology was OLE automation, initially useful only from Visual Basic. Next was OLE

controls-Internally, a

hybrid of OLE documents and OLE automation. Now we have general purpose, industry­

specific, and even internet-related services discussed below :-

5.10.1 OLE DRAG-AND-DROP:

Available in both OLE documents and OLE controls, drag-and-drop is no\v also a

key function in the Windows95 user interface Essentially, it is another OLE

service. So far, Microsoft has defined three types :Inter-window ::-Lets you

drag objects from one application window and drop them into another-one

way of embedding an object using OLE documents.

• Inter-object::- Lets you drag objects and drop them inside other objects.

26

• Dropping into icons ::-Lets you drag objects in the Win95 desktop and drop

them onto resource icons such as printers and mailboxes. Some new OLE

controls, like the Rich Text control that ships with 32bit versions of Windows,

support drag-and-drop operations on the desktop.

5.10.2 INDUSTRY SOLUTIONS:

Microsoft sells vertical-market OLE services. These have been co developed with

leading companies in specific industries. These industry standard make it possible to

create reusable Line-Of-Business objects(LOBjects). So far, Microsoft has released

specifications

for the following industries:

• WOSAIXRT (extensions for real time market data)

• OLE for Health care

• OLE for Insurance

• OLE for Retail/POS

• OLE for design and modelling

5.10.3 TRANSACTION SERVICES

Microsoft has provided specifications for more general-purpose OLE transactions.

Microsoft's own products are starting to incorporate th~se specifications. SQL servers

6.0,e.g, uses OLE database technology, which is sometimes called SQL OLE. Similarly,

OLE messaging is a key component in Microsoft's new Exchange mail server.

27

CHAPTER- 6

COMMON OBJECT REQUEST BROKER

ARCHITECTURE (CORBA)

The OMG has developed a conceptual model, known as the core object model,

and a reference architecture, called the Object Management Architecture(OMA) . In the

Object model, an object is an encapsulated entity with a distinct unchanging identity

whose services can be accessed only through well-defined interfaces. The implementation

and location of object are hidden from the client. Object management architecture (OMA)

consists of four components : Object request Broker(ORB), Object services(OS),

Common facilities(CF), and Application objects(AO). These components define the

composition of objects and their interfaces. Objects are categorized into Object Services.

Common Facilities, and Application objects to establish the standardization for the OMG.

6.1. OBJECT REQUEST BROKER (ORB):-

The core of the OMA is the Object Request Broker(ORB). ORB is a

communication mechanism between interacting objects. It includes all functions required

to support distributed computing, such as a location of objects, marshalling of request

parameters and results, and object referencing. The technology adopted for ORBs is

known as the Common Object Request Broker Architecture (CORBA),which specifies a

framework for transparent communication between application objects. CORBA is the

first specification adopted by the OMG.

The latest version is CORBA2 adopted at the end of l994.The main features of CORBA

2.0 are described one by one (below/next page).

28

6.1.a CORDA INTERFACE ARCHITECTURE-

The CORBA specification defines an architecture of interfaces consisting of three

specific components: client-side interface, object implementation side interfaces, and

ORB Core a.l Client-side interface

a.l.l) IDL stubs.

The IDL stub presents interfaces comprised of functions generated from IDL

interface definitions and linked into the client program. The stub helps to convert the

request from its representation in the programming language to one suitable for

transmission over the connection to the target object. Stubs are also sometimes called

proxies or surrogates.

a.1.2) Dynamic Invocation Interface(DII)

It supports dynamic client request invocation. It is used for specifying and

building a request at run time, rather than calling linked-in stubs. The operations that

support the DII include: create_request, invoke, send, get_response requests. It can be

invoked in one of three ways : ·

0 SYNCHRONOUS INVOCATION:- The client invokes the request, and then

blocks waiting for the response. It is very much like RPC in behaviour.

0 DEFFERED SYNCHRONOUS INVOCATION:- Caller may choose whether or not

to wait for response. It allows asynchronous interaction between the caller and

callee.

0 ONE-WAY INVOCATION:- The client invokes the request and then continues

processing; there is no response.

29

a.1.3) ORB Interface

It allows functions of the ORB to be accessed directly by the client code. It is

shared by both client-side and implementation-side architecture.

a.2 Implementation-side Interface

The implementation-side interfaces consist of the following up-call interfaces,

allowing calls from the ORB up to object implementation :

a.2.1 IDL skeleton

This is the server-side counterpart of the IDL stub interface. ORB and the skeleton

cooperate to unmarshal the request(convert it from its transmissible form to a

programming language form) arrived at the target object and dispatch it to the object.

Once the object completes the request, any response is sent back through the client ORB

and stub, before finally being returned to the client application.

a.2.2 Dynamic skeleton lnterface(DSI)

Analogous to the DII is the server-side DSI. It allows servers to be written without

having skeletons for the objects being invoked compiled statically into the program.

a.2.3 Object Adaptor

The Object Adapter is the means by which object implementations access most

ORB services. Though CORBA states that multiple object adapters are allowed. it

currently only provides one standard called the Basic Object Adapter(BOA). OMG

-recently issued a Portability Enhancement RFP(14) that will result in the adoption of

specifications for standard portable object adapters. Responsibilities of object adaptors

include :

l.Object registration

30

2.object reference generation

3.Server process activation

4.0bject activation

5.Request demultiplexing

6.0bject upcalls-OAs dispatch requests to registered objects.

7 .Security-related request(e.g authentication)

a.3 ORB CORE

The ORB Core provides the basic representation of objects and communication

requests. It moves a request from a client to an appropriate adaptor for the target

object.ORB hides the following:

a .Object Location: Where the object is located is unknown to the client. It may

be within the same process, in a different process, across the network, on the same

machine but in a different process.

b. Object Implementation: Client need not bother about how the target object

implemented.

c. Object Execution State: Client does not need to know whether the object is

currently in a executing process and ready to accept requests.

d. Object Communication mechanisms: The <;lient does not need to know about

the communication mechanisms(e.g. TCPIIP, shared memory, Novell netware).

6.1.b. INTERFACE DEFINITION LANGUAGE

OMG IDL is used to statically define the interfaces to objects, to allow invocation of

operations on objects. An object's interface specifies the operations and types that the

31

object supports. It is programming language-neutral and network neutral declarative

language. Since OMG IDL is a declarative language, not programming language, it forces

interfaces to be defined seperately from object implementation.

II OMG IDL specification example :myBank.idl

module BANK {

interface BankAccount {

II types

enum account_ kind { checking,saving};

I /exceptions

exception account_ not_ available {string reason;};

exception incorrect _pin {};

I I attributes

readonly attribute float balance;

attribute account_ kind what_ kind_ of_ account;

I /operations

void access (in string account,in string pin)

raises(account_ not_ available,incorrect_pin);

void deposit(in float f,out float new_balance)

raises(account_ not_ available);

void withdraw(in float f,out float new_ balance)

raises (account not available);

} ; II end of interface Bankaccount

} ; I I end of module BANK

Interfaces are similar to Classes m C++ and interfaces m Java. From the IDL

definitions, it is possible to map CORBA objects into particular programming

language or object systems. The OMG IDL type system is described below.

b.J BUILT-IN TYPES- The CORBA specification precisely defines the sizes of any OMG

IDL type. OMG IDL supports the following built-in types:

• long(signed and unsigned)-arithmetic types

• long long(signed and unsigned)-64-bit arithmetic types

• short(signed and unsigned)-16 bit arithmetic types

• float, double and long double-IEEE 754-1985 floating point types

• char and wchar-character and wide character types.

• boolean

• enum: enumerated type

• any: it can hold value of any OMG IDL type, including built-in types

and user-defined types.

b.2 CONSTRUCTED TYPES- OMG IDL supports constructed types:

• sruct: data aggregation construct(similar to structs in CIC++)

• discriminated union-OMG IDL umons are similar umons m CIC++. with the

addition of the discriminator that keeps track of which alternative is currently

valid.

b.3 TEMPLATE TYPES- Characteristics of these data-types are defined at declaration time :

• string and wstring-Bounded string has length limit and unbounded

string has no length limit e.g a string with maximum length of

33

I 0 characters requires angle brackets to specify the bound.

• sequence-a dynamic-length linear container whose maximum length and

element type can be specified in angle brackets e.g sequence<string, I 0> and

sequence<factory>

b.4 OBJECT REFERENCE TYPES- OMG IOL object reference types can be declared by

naming the desired interface type. e.g

IIOMG IDL

interface Factory Finder { II define a sequence of Factory

II object references

typedefsequence<Facory> FactorySeq;

F actorySeq find_ factories {

in string interface _name

}

}

This OMG IDL specification defines an interface named FactoryFinder that contains the

definition of a type named FactorySeq. The FactorySeq type is defined as an unbounded

sequence of Factory object references. The find _factories operation takes an unbounded

string type as an argument and returns an unbounded sequence of Factory object

references as its result.

6.l.c INTERFACE INHERITANCE- Interface inheritance makes it possible to reuse

existing interfaces when defining new services. The OMG IDL specification given below

shows this characteristic.

interface Factory {

object create(); } ;

interface spreadsheet;

II SpreadsheetFactory derives from Factory

interface SpreadsheetFactory :Factory {

Spreadsheet create_ spreadsheet();

} ;

34

A derived interface inherits all operations defined in all its base interfaces.Here object

supporting the SpreadsheetFactory interface provides two operations:-

I. The create operation inherited from factory

2. The create_spreadsheet operation defined directly m the SpreadsheetFactory

interface.

This allows object references for derived interfaces to be substituted anywhere object

references for base interfaces are allowed. Spreadsheetfactory object reference can be

used anywhere that a Factory object reference is expected.

6.1.d LANGUAGE MAPPING-

OMG IDL language mappings are where the abstractions and concepts specified

in the CORBA meet the "real world" of implementation. language mappings determine

how OMG IDL features are mapped to the facilities of a given programming language.

To understand what a language mapping contains, consider the mapping for the C++

language. Not surprisingly, OMG IDL interfaces map to C++ classes. with operations

mapping to member functions of those classes. Object references map to objects that

support the_operator->function (i.e either a normal C++ pointer to an interface class, or

an object instance overloaded operator->)Modules map to C++ namespaces(or to nested

classes for C++). Mappings for IDL types are shown in the table below:-

OMG IDL TYPE C++ MAPPING TYPE

long, short long, short

float, double float, double

enum enum

char char

35

boolean bool

octet unsigned char

any any class

struct struct

umon class

string char*

wstring wchar t*

sequence class

fixed fixed template class

object reference pointer or object

interface class

TABLE 1. C++ mappings for OMG IDL types (Ref. No. 11)

6.l.e INTERFACE REPOSITRY-Using an interface repository, a client should be

able to locate an object unknown at compile time, enquire about its interface, and then

build a request to be forwarded through the ORB.OMG IDL type specification is

required by application at execution time because :

!.application must know the types of values to be passed as request arguments

2.application must know the types of interfaces supported by the object

Usually type system is fixed at compile time but it may sometimes be required at runtime

e.g, if a client application depends on the Factory interface, and the name of the create

36

operation in the Factory interface is changed to create_object, the client application will

have to be rebuilt before it can make requests on any Factory objects.

There are two ways of doing this-

~ .An application starts at the top-level scope of the IR and iterate over all of the

module definitions defined there. When the desired module is found, it can

open it and iterate in a similar manner over all the definitions inside it. This

hierarchical traversal approach can be used to examine all the information

stored within an IR.

~ .Obtain an InterfaceDef object reference from the get_interface_ operation

defined in CORBA.

6.1.f ORB INTEROPERABILITY

ORB-interoperability specifies a comprehensive, flexible approach to supporting

networks of objects that are distributed across and managed by multiple, heterogeneous

COREA-compliant ORBs.

The elements of interoperability as specified in CORBA2 include:

• ORB interoperability architecture

• Inter-ORB bridge support

• General and Internet Inter-ORB Protocols(GIOPs and IIOPs).

The ORB Interoperability Architecture provides a con~eptual framework for defining the

elements of interoperability. The architecture clearly identifies the roles of different

domains of ORB-specific information. Domains are joined by bridges. Bridges map

concepts in one domain to the equivalent in another. Full interoperability requires that all

concepts used in one domain ·be translatable into concepts in the other. A bridge that

provides one-to-one protocol translation is called full bridge. Every translatable protocol

37

needs bridge. Half bridges and mediate bridges are used to avoid the explosion in number

of full bridges.CORBA2 has designed a very basic inter-ORB protocol, called general

Inter-ORB Protocol(GIOP), which serves as a common backbone protocol so that the

number of different combinations of "half bridges'' needed between domains is

minimized.

General Inter-ORB Protocol specifies transfer syntax and a standard set of

message formats for ORB interoperation over any connection-oriented transport. The

IIOP specifies how GlOP is built over TCP/IP transports. All variants of the GlOP, such

as the Internet IOP(IIOP),share common specifications _for the following:

• common data representation(CDR) including marshalling conventions

• .interoperable object reference

• .interoperable typecodes

• .lOP message content, format and semantics(independent of the method of
message conveyance)

In addition the architecture accommodates Environment Specific inter-ORB

Protocols(ESIOPs) that are optimized for particular environments such as DCE. The

architecture clearly identifies the roles of different domains of ORB-specific information.

Domains are joined by bridges, which map concepts in one domain to the equivalent in

another.

6.2 OMA OBJECT SERVICES

Object services provide fundamental(infrastructure-level) object interfaces

necessary for building object-oriented distributed applications. RFP I and RFP2 led to the

adoption of the OMG of a set of specifications known as Common Object Service

Specification, Volumes 1 and 2 (COSSl and COSS2). Services in COSSI and COSS2

are discussed below:-

38

6.2.a COSSJ

i. Object naming service:- A name binding is always defined relative to a naming

context. Different names can be bound to an object in the same or different

contexts at the same time. This service addrest>es many design points identified

for a name service :

• naming standards

• federation of namespaces

• scope of names: The name context defines the name scope

• operations: It supports bind, unbind, lookup, and sequence operations on a

name context. Rename operation is not supported.

ii Object Event Notification Service:- This service supports notification of events to

interested objects. Objects perform one of the two roles: suppler(produces data) and

consumer role(which processes event data). Event data are communicated between

suppliers and consumers by issuing standard CORBA request. The service defines two

approaches to initiating event communication: push model and pull model. Multiple

suppliers can communicate· with multiple consumers asynchronously using event

channel.

iii. Object Lifecycle service :- This service represents a framework for creating, deleting

and moving objects based on location. Any piece of code that initiates a lifecycle

operation is a client. The client's model of creation is defined in terms of factory objects.

Factories are objects specialized in creating objects of a specific class. They provide a

uniform model for creating objects in a distributed environment.

iv. Persistent Object service :-Persistent Object Service provides common interfaces to

the mechanisms used for retaining and managing the persistent state of objects in a data

store independent manner.

39

6.2.b coss 2

The services provided in this section are:

1. Concurrency Control Service

This service defines how an object mediates simultaneous access by one or more

clients such that objects it accesses remain coherent and consistent. It can be used

with Object Transaction service to coordinate the activities of concurrent

transactions.

2. Externalization Service

Externalizing and internalising an object is similar to copying the object-the copy

operation creates a new object which is initialized from the state of an ex-isting

object.

3. Object relationship service

This service provides for creating, deleting, navigating, and managmg

relationships between objects. It defines three levels of service:

a. The basic level defines relationships and roles

b. The graph level extends the basic level service with nodes

c. Specific relationships are defined by third level.

4. Object transaction service

The service provides a transactional infrastructure and facilities to develop transactional

classes of objects. There are many other object services which are being debated. RFP

have been issued, and some cases submissions have been presented and mergers are in

40

progress. Some of them are : Object security services, Object time servtce, Object

licensing service, Object properties service, Object query service, object collection

service, Trading service, startup service, Object change management service.

6.3 OMA COMMON FACILITIES:

It is categorized into two : horizontal common facilities and vertical common

facilities. Horizontal set of common facilities includes functions covering many or more

systems regardless of application content like user interface, information management.

system management, task nfanagement. Vertical set of common facilities represent

technology which supports various vertical market segments, such as financial systems or

CAD systems.

Many more common facilities have been proposed in CF RFP 1 ,CF RFP2,and CF

RFP3 for technologies in the horizontal common facilities: compound presentation

facility, compound interchange facility, intemation~lization facility, time operation

facility, data interchange facility, mobile agent facility.

6.4 DOMAIN INTERFACES:

These interfaces are oriented toward specific application domains. An example of

domain interface is Product Data management Enabler for manufacturing domain. OMG

RFPs have already been issued or will be issued in the telecommunications, medical and

financial domains.

6.5 APPLICATION INTERFACES:

These are interfaces developed specifically for a given application.

41

CHAPTER-7

ANALYSIS

Similarity and differences between DCOM and CORBA are discussed below w.r.t to

different parameters :-

1. Interface definition language :-

Both COM and CORBA use almost identical IDL's both of which are derived

from OSF's DCE. IDL is used for defining the interface of objects(an objects interface

specifies the operations and types that the object supports and thus defines the requests

that can be made on the object). Programming tools then compile these interfaces into

proxies, stubs, and type libraries that a developer can access from the actual application

development language, such as C++, Visual Basic, Java or Smalltalk. For Java RMI, Java

itself is the IDL(which works because the language is itself plateform neutral).

2.0bject Oriented approach :-

CORBA is well suited for use by object-oriented languages. DCOM does not

provide management classes for the method arguments or a way to link error conditions

to exception mechanism. CORBA also has superior mechanism for handling arrays and

sequences and provides an "any" data type for marshaling arguments whose type is not

known in advance. For object-oriented languages, the DCOM interface is cumbersome

and requires more low-level code than necessary. On the other hand DCOM can be used

without any special gateway software-directly from popular, non object-oriented

languages such as Visual Basic.

3. Object Reference and Interoperable object reference:-

Whereas COM uses globally unique identifiers(l28 bit integer), objects in OMG

model are identified by object references-an implementation defined type guranteed to

42

identify the same object each time the reference is used in a request. While CORBA does

not specify how references are to be implemented, it explicitly states that references are

not guranteed to be unique. It has some concerns about implementation efficiency

.management and interaction with legacy applications that have different approaches to

objects ID. Every ORB may implement it in whatever ·way is convenient. This gives rise

to an interoperability problem. For an object to make a request to an object within another

ORB domain, ORB must understand the object reference passed over from the foreign

ORB. This interoperability problem is solved in CORBA2 where a data structure.

Interoperable Object Reference(IOR), has been specified. An interoperable object

reference is a sequence of object-specific protocol profiles, plus a type ID. It is only used

when crossing object reference domain(ORB) boundaries. IORs need not be used

internally by any given ORB, and are not intended to be visible to application level ORB

programmers. In COM developer provides universal identifier UUID that uniquely

identifies the interface and class definition. The UUID identifies classes instead of a class

name so that there may be multiple classes with same name but different functionality.

CORBA uses naming system that includes the class name and optional module name.

4. Memory Management Technique :-

DCOM uses reference counting technique whereas CORBA uses distributed

garbage collection technique. DCOM - When an object is created, its reference count is

1. When additional proxy connects to that object it must invoke the add ref method to

record reference. As references are dropped the client must call the release. When the

reference count goes to O,the objects can delete itself. CORBA does not attempt to track

the number of clients communicating with a particular object. Transaction manager is

integrated into distributed system.

5. Remote procedure call :-

When a client invokes a method on a remote object, DCOM locates the object on

the network and issues an RPC to the destination system. Microsoft refers to the DCOM

43

variation as object RPC(ORPC) but the packets on the wire conform almost exactly to the

original DCE specification. Object management group has defined an alternative called

IIOP (internet inter ORB protocol). IIOP is a little more than an RPC protocol-it also

provides a redirection facility to let clients learn about objects that have moved -but it

addresses the same basic problem as DCOM's ORPC.

6. Plateform Independence :-

As for as plateform support is concerned CORBA is better than DCOM. ORB is

available for nearly every popular operating system. There are some OS' es for which

more than one ORBs are available e.g MAC OS, AIX, MVS, OS/2 Warp, OS/400,

Digital UNIX, Open VMS, HP-UX, Windows 3.x, Windows 95, Windows NT. Many

vendors are working on Java versions of their ORBs, so expect to see CORBA on any

plateform that has Java Virtual Machine. Currently released for Windows 95 and

NT,DCOM is making its way to other plateforms.

7. Implementation:-

CORBA implementations work from a set of written standards. DCOM

implementations work from source code licensed either from Microsoft or from the Open

group. If there is a difference between the written DCOM standard and the source code,

the source code stands as correct. OMG specificat-ions have always been publicly

available and were designed from the start to be plateform-neutral, programmmg­

language neutral, and to support distribution, rather than having these features added

piecemeal.

8. Enterprise level support :-

Enterprise-level application needs object services such a nammg, event

notification, transactions, concurrency control and life cycle control. Some of these

facilities are provided with CORBA. For DCOM these services are on the way.

44

9. Transaction processing :-

Both DCOM and CORBA handles the transaction processing in different way. In

CORBA it is implemented as object service. DCOM integrated with MTS(microsoft

transaction server) and MTS applications are written as COM objects(Microsoft calls

them Active X component). Independent software vendors can create applications that

conform to MTS standards and let users combine them to build complete solutions.

10. Security Service :-

Security services are required to prevent unauthorized access to object. It is in the

process of adoption in OMG. DCOM can use the service provided with Windows NT.

11. Exception and error condition:-

With COM, all methods return an HRESUL T integer value that indicates the

success or failure of the call. This integer value in fact is split up into a number of bit

fields that allow the programmer to specify context, facility, severity, and error codes.

CORBA implementations, on the other hand, provide an exception mechanism that

returns errors as a structure embedded within another object called the Environment. A

standard System Exception structure is defined for system-level and communications

errors that can occur during a remote method call. As for as this facility is concerned

CORBA is better than DCOM.

45

CHAPTER -7

CONCLUSION

Both CORBA and DCOM are used for same purpose. Both of them have

strengths and weaknesses. It is therefore quite difficult to decide which one will be

suitable for an application. Efforts are being done to bring the both systems under one

umbrella. There are two ways of achieving interoperability: mapping and intenvorking.

• Mapping solution makes objects in one system available to another .It

allows one way interoperability. Mapping faces asymmetry because COM and CORBA

have different techniques for accompolishing similar goals.

• There are two main approaches to interworking: system-neutral and

system-centric.

a) System-neutral :-

With this approach any existing class or persistent object from CORBA can be installed

into OLE and vice versa. Installed class or object appears natural to the foreign

system.Each object system-OLE automation, COM and CORBA-has a corresponding

Object System Adapter(OSA). When a call passes from one object system to another, the

interworking product uses the two corresponding OSA' s to perform a single-step

conversion. The OSA acts as a compiler front end; it's responsible for reading the native­

format description to the just-in-time(JIT) back end. The OSA is also responsible for

managing issues such as proxy loop detection, mapping reference counting, and garbage

collection across object systems.

46

b) System-centric :-

In System-centric approach developer begins with CORBA IDL and generates all

necessary skeleton and stub code .. The IDL also generates C++ conversion code to map

the developer's new OLE Automation class into CO~BA. Likewise, the IDL generates

C++ conversion code so that a client can use the server as an OLE Automation class. If

the developer have existing OLE Automation objects, it can be used by taking the

object's type library and generating IDL. From IDL client and server proxy code is

generated.

47

PROCESS-I PROCESS-2

I PROCESSI I I PROCESS2 l

I COMMUNIC4TlONSUBSYSTEM. I

FIG. 3.1 TWO INTERACTING
PROCESS

PROCESS I PROCESS2

PROTOCOL

PROCESS 1

4r-- -LOCATION A - ~ C:.. LOCATION B ~
LAYERED STRIJCTURE OF COMMIJMC4TlON SYSTEM

FIG. 3.2 & 3.3
HIERARCHICAL COMMUNICATION SYSTEM

CLIENT SERVER

COM OLE OLE OM OLE OLE
CLIENT AUTOMATION CONTAIN£ f ERVEi AUTO.MATIO CON

CONTROLLER R

'
-NSERVER TRO

r 't. LOCAL OBJECT PROXY
~

COM STUB

I
FIG5.1: DCOMARCHITECTURE

DISTRIBUTING COM C4LLS FORAN OBJECT ON THE CLIENT
MACHINE.tHE PROXY PASSES OBJECT C4LLS OVER THE
NETWORK TO A STUB ON SERVER.

How an OLE Control Works with an Application

Container

.,
~) ~ Containers and OLE

;v:==--~~
~-

.Jil controls communicate
through a messaging
interlace. Every OLE control
has a built-in receptor, called
a sink, to receive instnJctions
from an application.

User-generated events,
such as a mouse click,

send off a message to the
OLE application.

t:r-'j The message tells the
:.':~ application (known in
OLE parlance as a container)
what action it should
perlorrn.

I 'F\\7\l~E >·~
OLE Control Messaging Interface

/, .----

I! I J. Interface
Container

/' .

r------,1 ~

lpVtbl H pfn i

r---1
'pfn !

Function table l pfn 1

An OlE Control iaterface COftSists of a poirrter Ill a function table that
sits between the -.talner laa appllcrion) and the OlE Control.

hi Sometimes a user
"'tr generates an event
within an OLE Control. To
communicate this event to
the container, the control
tells the container to
dynamically set up a sink to
receive the communication.

Client

I CUENT

J
OBJECT I IMPLEMENT AT! ON

\ _L\ I I \
IDL OBJECT

DYNAMIC DYNAMI
SKELET ATAPTO

INVOCATI IDL c
-ON -R

ON STUB pKELETO

INTERfAC ORB N

E (DII) INTERfAC lrNTERfA

E .(.F.

ORB CORE

. FIGURE (6.1): COA1MON OBJECT REQUEST
BROKER ARCHITECTURE

lNCORBA,TWOREPOSITARIES HANDLE WHERE OBJECTS
ARE AND WHAT THEY DO_AND MATCH CLIENT REQUESTS

WITH SERVER OBJECTS

Server

Objec1s
-Jmp(omontellon

I

I

i Caller
I expects
, interface A

Object adapter
adapts

interface X
to interface A

Object
provides

interface X '

L
CORBA ClienUServer ~ · Role of an object adapter.

···---------·----------------------------

System-Neutral Aexibility V \ Gs. • e -1._ .

System-neutral interworking passes calls through Object System 1

Adapters (OSAs) to translate them for both CORBA and COM.

The Orbix/Oesktop paradigm is fundamentally different from

system-neutral examples. starting with the IOL.

System-Centric,
for COIBA Shops

APPENDIX -11.: BIBLIOGRAPHY

1. A.D.Birrell and B.J.Nelson. "Implementing Remote Procedure Calls··. ACM

Trans.Comp.Sys. ,vol.2, Feb. 1984,pp.39-59

2. A.Birrell, Greg Nelson, Susan Owicki and Edward Wobber, "Network Objects"',

ACM Trans. Comp.Sys. , 1993,pp 217-230

3. OMG, "The Common Object Request Broker :Architecture and

v2.0, july 1995

Specification,"

4. S.Vinoski, "Distributed Object Computing with CORBA." C++

July/Aug. 1993.

5. John Montogomery, "Distributed Components", Byte April 1997 pp93

Rep.,Yol. 5.

6. Aberto Bartoli, "A Novel Approach to Marshalling", Software Practice and

Experience vol 27(1) Jan97 pp63-85

7. Dick Pountain and John Montogomery," Web Components", Byte

pp56-68

August97

8. R.M. Soley,Ph.D.,ed.,Object Management Architec~ure Guide,3rd ed., New York:

John Wiley&Sons 1995.

9. A.Gokhale and D.C.scimdt,"Perforrnance of the CORBA Dynamic Invocation

Interface and Dynamic skeleton Interface over High-Speed ATM Networks:· Proc.

GLOBECOM '96,London,U.K.,Nov.l996

10. David S.Linthicum,"Integration, Not Perspiration", Byte jan96 pp83

11. S.Vinoski, "CORBA:Integrating Diverse Applications Within

48

Distributed Heterogeneous Environments", IEEE Communications Magazine,feb 1997

'pp46

I 2. Silvano Maffeis,Oslen and Associates, Douglas C. Schimdt, "Constructing

Reliable Distributed Systems with CORBA", IEEE Communications Feb 1997,

pp56.

13. James Martin, "Computer Networks and Distributed Processing: Software

Techniques and Architecture, P.H.l 1981.

14. Andrew Tanenbaum, "Computer Networks", P.H.l 1993.

15. Keith Pleas, "OLE's Missing Links", Byte April 1996 pp99

16. Gregor Von Boochrnan, " Concepts For Distributed Processing'': Springer Verlag

Berlin , Heidelberg -New York-1983

17. H.Bever, K.Geihs, L. Heuser, M. Micehlhauser,A.schill , "Distributed Systems, OSF

DCE and Beyond", Lecture Notes in Computer Science pp-1-19.

18. Jong-Hsi Huang, Feng-Jian Wang, " Some Design issues of a Distributed Object­

Oriented System",lnstitute of Computer Science and Information Engineering

,National Chiao Tung University,Taiwan,IEEE-1990 pp -353

49

	TH6851001
	TH6851002
	TH6851003
	TH6851004
	TH6851005
	TH6851006
	TH6851007
	TH6851008
	TH6851009
	TH6851010
	TH6851011
	TH6851012
	TH6851013
	TH6851014
	TH6851015
	TH6851016
	TH6851017
	TH6851018
	TH6851019
	TH6851020
	TH6851021
	TH6851022
	TH6851023
	TH6851024
	TH6851025
	TH6851026
	TH6851027
	TH6851028
	TH6851029
	TH6851030
	TH6851031
	TH6851032
	TH6851033
	TH6851034
	TH6851035
	TH6851036
	TH6851037
	TH6851038
	TH6851039
	TH6851040
	TH6851041
	TH6851042
	TH6851043
	TH6851044
	TH6851045
	TH6851046
	TH6851047
	TH6851048
	TH6851049
	TH6851050
	TH6851051
	TH6851052
	TH6851053
	TH6851054
	TH6851055
	TH6851056
	TH6851057
	TH6851058
	TH6851059
	TH6851060

